WO2015151844A1 - Centrifugal compressor, supercharger, and method for manufacturing centrifugal compressor - Google Patents

Centrifugal compressor, supercharger, and method for manufacturing centrifugal compressor Download PDF

Info

Publication number
WO2015151844A1
WO2015151844A1 PCT/JP2015/058355 JP2015058355W WO2015151844A1 WO 2015151844 A1 WO2015151844 A1 WO 2015151844A1 JP 2015058355 W JP2015058355 W JP 2015058355W WO 2015151844 A1 WO2015151844 A1 WO 2015151844A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
guide cylinder
centrifugal compressor
containment ring
radial direction
Prior art date
Application number
PCT/JP2015/058355
Other languages
French (fr)
Japanese (ja)
Inventor
泰治 手塚
中馬 康晴
広之 荒川
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014074070A external-priority patent/JP6456596B2/en
Priority claimed from JP2014212793A external-priority patent/JP6541956B2/en
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to KR1020167016418A priority Critical patent/KR101884101B1/en
Priority to EP15774141.4A priority patent/EP3067569B1/en
Priority to CN201580003047.6A priority patent/CN106164497B/en
Publication of WO2015151844A1 publication Critical patent/WO2015151844A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/04Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for responsive to undesired position of rotor relative to stator or to breaking-off of a part of the rotor, e.g. indicating such position
    • F01D21/045Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for responsive to undesired position of rotor relative to stator or to breaking-off of a part of the rotor, e.g. indicating such position special arrangements in stators or in rotors dealing with breaking-off of part of rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/16Sealings between pressure and suction sides
    • F04D29/161Sealings between pressure and suction sides especially adapted for elastic fluid pumps
    • F04D29/162Sealings between pressure and suction sides especially adapted for elastic fluid pumps of a centrifugal flow wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers

Definitions

  • the present invention relates to a centrifugal compressor, a turbocharger, and a method of manufacturing the centrifugal compressor.
  • a centrifugal compressor is known as a compressor of a supercharger which raises air supplied to an internal combustion engine used for a ship etc. to atmospheric pressure or more (see, for example, Patent Document 1).
  • the centrifugal compressor includes an impeller attached to a rotor shaft, a guide cylinder accommodating the impeller, and a scroll portion into which compressed air discharged from the guide cylinder flows.
  • the centrifugal compressor compresses the air flowing in the axial direction from the intake port, guides it in the direction inclined from the axial direction, and discharges the compressed air from the discharge port.
  • the present invention has been made in view of such circumstances, and when all or part of the impeller is broken or dropped and scattered in the radial direction orthogonal to the axial direction of the rotor shaft, the entire impeller is
  • An object of the present invention is to provide a centrifugal compressor capable of suppressing a problem in which a part of the dust scatters to the outside.
  • Another object of the present invention is to provide a supercharger including the above-described centrifugal compressor, and a method of manufacturing the above-described centrifugal compressor.
  • the present invention adopts the following means.
  • a centrifugal compressor mounted on a rotor shaft and compressing a fluid flowing in from an intake port and discharging the fluid from a discharge port
  • a guide cylinder housing the impeller, the guide The discharge port side of the guide cylinder and the scroll portion disposed on the outer peripheral side of the cylinder and in which the compressed fluid discharged from the discharge port flows and the impeller is surrounded around the axis of the rotor shaft And an annular member attached at a connecting position with the scroll portion.
  • the outer diameter of the blade is larger on the discharge port side than on the intake port side. Therefore, the center of gravity of the impeller is located on the discharge port side.
  • the connection position between the discharge port side of the guide cylinder and the scroll portion is a position corresponding to the center of gravity of the impeller on the axis (hereinafter referred to as the center of gravity position) or a position near the center of gravity.
  • an annular member is provided at this connection position, and all or part of the broken or dropped impeller is broken even in the radial direction orthogonal to the axial direction from the center of gravity of the impeller. Arranged to collide. Even in the case where the guide cylinder is broken due to the collision of all or part of the broken or dropped impeller, the collision with the annular member does not lead to the brittle failure but only plastic deformation. Accordingly, it is possible to suppress the problem that all or part of the broken or dropped impeller is scattered to the outside.
  • the annular member may be made of a material higher in ductility than the guide cylinder. In this way, when all or part of the broken or dropped impeller collides with the highly ductile annular member, it is more reliably ensured that the annular member remains in plastic deformation without reaching brittle fracture. Can.
  • high ductility means having the property accompanied by large plastic deformation until failure, and indicates that the brittle property leading to the failure is small when the plastic deformation is small. Specifically, it is possible to confirm that the ductility is high by comparing the tensile fracture strength to failure and the elongation (percentage).
  • the centrifugal compressor In the centrifugal compressor according to one aspect of the present invention, it is arranged coaxially with the rotor shaft on the outer peripheral side in the radial direction orthogonal to the axis than the guide cylinder and on the inner peripheral side in the radial direction than the scroll portion.
  • the configuration may include a cylindrical member. According to the centrifugal compressor of this configuration, when all or part of the impeller is broken or dropped, all or part of the impeller is scattered in the radial direction orthogonal to the axial direction of the rotor shaft and collides with the guide cylinder Do. A part of the impeller that has collided with the guide cylinder causes the guide cylinder to be brittlely broken and is further scattered outward in the radial direction to reach the cylindrical member.
  • the cylindrical member can suppress a problem in which a part of the impeller scatters to the outside due to plastic deformation, even when the guide cylinder is broken due to brittleness.
  • the end on the discharge port side of the cylindrical member and the end on the intake port side of the annular member overlap in the radial direction and are close in the radial direction It may be arranged in In this way, when the breaking member scatters to the outside and collides with either the cylindrical member or the annular member disposed on the inner peripheral side in the radial direction, one member that receives an impact is in the radial direction It moves toward the outer peripheral side of and collides with any other member. Thus, the formation of a gap between the cylindrical member and the annular member is restricted.
  • the cylindrical member is made of a material having a ductility higher than that of the guide cylinder, and the diameter of the annular member matches the diameter of the cylindrical member with respect to the axis.
  • the axial end face of the annular member and the axial end face of the cylindrical member may be separated by a predetermined distance in the axial direction.
  • the annular member and the cylindrical member form the same cylindrical surface surrounding the guide cylinder around the rotor axis. All or a part of the impeller that brittlely fractures the guide cylinder and scatters radially outward collides with either the annular member or the cylindrical member forming the same cylindrical surface. Since the same cylindrical surface is formed, no gap is formed when the diameter of the outer peripheral surface of the annular member is different from the diameter of the outer peripheral surface of the cylindrical member. Therefore, the problem that all or part of the impeller scatters from the gap formed due to the difference in diameter of the annular member and the outer peripheral surface of the cylindrical member to the outside is suppressed.
  • the end face in the axial direction of the annular member and the cylindrical member are separated at a predetermined distance in the axial direction.
  • the axial center of gravity position of the impeller may be present in the axial position range in which the annular member is disposed.
  • the axial center of gravity position of the impeller is present in the axial position range in which the annular member is disposed.
  • the annular member together with the guide cylinder, forms a flow path wall of a flow path through which the compressed fluid discharged from the discharge port flows, and the annular member is An annular projection projecting inward in the radial direction on the outer peripheral side in the radial direction orthogonal to the axis and on the flow passage side in the axial direction; and the guide cylinder at the connection position has an outer periphery in the radial direction
  • An annular step may be provided on the side and the flow path side in the axial direction, and the guide cylinder and the annular member may be connected in a state where the annular protrusion is disposed on the annular step.
  • the centrifugal compressor of this configuration As the rotation speed of the rotor shaft increases and the pressure of the compressed fluid discharged from the discharge port increases, the pressure received by the annular member from the compressed fluid increases.
  • the annular protrusion which an annular member has on the flow-path side is arrange
  • a supercharger is a centrifugal compressor according to any of the above, a turbine rotated about the axis by exhaust gas discharged from an internal combustion engine, and connected to the rotor shaft. Equipped with According to the turbocharger according to one aspect of the present invention, when all or a part in the vicinity of the center of gravity of the impeller is broken or dropped and scattered in the radial direction orthogonal to the axial direction of the rotor shaft, It is possible to suppress the problem that all or a part scatters to the outside.
  • a method of manufacturing a centrifugal compressor includes the steps of: attaching an impeller for compressing a fluid flowing in from an inlet and discharging the compressed fluid from an outlet to a rotor shaft; Forming a flow path through which a cylinder is attached to guide the fluid flowing in from the intake port to the discharge port; and a scroll portion into which the compressed fluid discharged from the discharge port flows in the rotor shaft rather than the guide cylinder And disposing an annular member at a connecting position between the guide cylinder and the scroll portion so as to surround the impeller around the axis line. It is characterized by: attaching an impeller for compressing a fluid flowing in from an inlet and discharging the compressed fluid from an outlet to a rotor shaft; Forming a flow path through which a cylinder is attached to guide the fluid flowing in from the intake port to the discharge port; and a scroll portion into which the compressed fluid discharged from the discharge port flows in the rotor shaft rather than the guide cylinder And disposing an annular member at a connecting
  • the centrifugal compressor manufactured by the manufacturing method according to one aspect of the present invention when all or a part in the vicinity of the center of gravity of the impeller is broken or dropped, the whole or a part of the impeller is the axis of the rotor shaft It is scattered in the radial direction orthogonal to the direction to reach the connecting position of the guide cylinder and the scroll portion.
  • the annular member In the connection position, the annular member is attached to surround the impeller, so that all or part of the scattered impeller collides with the annular member.
  • the annular member can suppress a problem that all or a part of the impeller scatters to the outside due to plastic deformation, even when the guide cylinder is broken due to brittleness.
  • the whole or a part of the impeller scatters to the outside It is possible to provide a centrifugal compressor capable of suppressing the above problems. Further, according to the present invention, it is possible to provide a supercharger equipped with the above-described centrifugal compressor, and a method of manufacturing the above-described centrifugal compressor.
  • the turbocharger 100 of the present embodiment is a device that raises the air (gas) supplied to a marine diesel engine (internal combustion engine) used for a ship to a pressure higher than atmospheric pressure to enhance the combustion efficiency of the marine diesel engine.
  • the turbocharger 100 of the present embodiment includes a centrifugal compressor 10 and a turbine 20.
  • the centrifugal compressor 10 and the turbine 20 are respectively connected to the rotor shaft 30.
  • the centrifugal compressor 10 compresses air flowing from the outside of the turbocharger 100, and compressed into an intake manifold (not shown) communicating with the inside of a cylinder liner (not shown) constituting a marine diesel engine (hereinafter referred to as “the air”). It is a device that supplies compressed air (compressed fluid).
  • the centrifugal compressor 10 includes an impeller 11, an air guide cylinder 12, a scroll portion 13, a first containment ring 14 (annular member), a second containment ring 15 (cylindrical member), and a silencer 16. Is equipped.
  • the air guide cylinder 12 and the scroll portion 13 are made of metal members manufactured by casting to form a complicated shape.
  • this metal member for example, cast iron which is an Fe—C based alloy containing iron as a main component and 2% or more of carbon is used. It is possible to use various materials such as gray cast iron if it is cast iron, but it is preferable to use ductile cast iron (FCD: Ferrum Casting Ductile) in which black smoke in base tissue is spheroidized. The cast metal material tends to form a complicated shape by casting, but has brittleness.
  • FCD Ferrum Casting Ductile
  • the first containment ring 14 and the second containment ring 15 are made of metal members manufactured by rolling.
  • the metal member for example, a steel material which is an Fe—C based alloy which contains iron as a main component and a slight amount (about 0.2%) of carbon is used.
  • SS400 JIS G 3101; ASTM A283
  • the metal material by rolling has a composition suitable for a rolling process, and retains ductility leading to fracture after large plastic deformation.
  • the metal material by casting consists of a composition suitable for a casting process, and the elongation to failure is smaller than the metal material by rolling.
  • the metal material by rolling has a greater elongation to failure than the metal material by casting, that is, the ductility is high. Therefore, the rolled metal material has the property of higher fracture strength to impact than the cast metal material.
  • the tensile strength at normal temperature is about 400 to 500 N / mm 2 for both ductile cast iron and SS400.
  • the elongation at break is about 10% of ductile cast iron material
  • SS400 material holds 20% or more. Therefore, the SS400 material has higher ductility than the ductile cast iron material.
  • the turbine 20 includes a turbine housing 21, a turbine blade 22, a turbine disk 23 and a turbine nozzle 24.
  • the turbine housing 21 is a hollow cylindrical member disposed around the axis X, and accommodates therein the turbine blade 22, the turbine disk 23, and the turbine nozzle 24. Exhaust gas exhausted from the marine diesel engine flows into the turbine housing 21 along the arrow shown on the right side of FIG.
  • the exhaust gas introduced to the turbine housing 21 is expanded by static pressure as it passes through the turbine nozzle 24 and is introduced to the turbine blade 22.
  • the turbine blades 22 are attached to the outer peripheral surface of the substantially disk-shaped turbine disk 23 fixed to the rotor shaft 30 at fixed intervals around the axis.
  • the turbine disk 23 is given rotational force about the axis X by passing the static pressure expanded exhaust gas through the turbine blade 22. This rotational force is a power for rotating the rotor shaft 30, and rotates the impeller 11 connected to the rotor shaft 30 about the axis X.
  • the turbocharger 100 guides the exhaust gas discharged from the marine diesel engine to the turbine 20 to rotate the turbine disk 23 on which the turbine blade 22 is attached around the axis X.
  • the impeller 11 connected via the rotor shaft 30 rotates with the rotation of the turbine disk 23, and the air flowing in from the inlet 11a is compressed, and the compressed air is discharged from the outlet 11b.
  • the compressed air discharged from the discharge port 11 b flows into the scroll portion 13 and is guided to the intake manifold of the marine diesel engine.
  • the silencer 16 is a device that reduces the level of noise generated in the centrifugal compressor 10. As shown in FIG. 1, the silencer 16 defines a flow path for guiding the air flowing in from the direction orthogonal to the axis X to the inlet 11 a of the air guide cylinder 12. A silencer material 16 a is disposed around the flow path. A part of the noise generated in the centrifugal compressor 10 is absorbed by the sound deadening material 16a, and the noise level is reduced.
  • the impeller 11 is attached to a rotor shaft 30 extending along the axis X, and rotates around the axis X as the rotor shaft 30 rotates around the axis X.
  • the impeller 11 rotates around the axis X to compress the air flowing in from the inlet 11 a and discharge the air from the outlet 11 b.
  • the impeller 11 has a hub 11c attached to the rotor shaft 30, a blade 11d attached on the outer peripheral surface of the hub 11c, and a flow passage 11e.
  • the impeller 11 is provided with a space formed by the outer peripheral surface of the hub 11c and the inner peripheral surface of the air guiding cylinder 12, and this space is partitioned into a plurality of spaces by a plurality of blades 11d. Then, the impeller 11 applies centrifugal force in the radial direction to the air flowing in from the intake port 11a along the axis X direction, and in a direction (inclined direction; radial direction of the impeller 11) orthogonal to the axis X direction.
  • the compressed air discharged from the discharge port 11b is made to flow into the diffuser 13a.
  • the air guide cylinder 12 is a member that accommodates the impeller 11 and discharges, from the discharge port 11 b, air flowing in from the intake port 11 a along the axis X direction of the rotor shaft 30.
  • the scroll unit 13 is a device for receiving the compressed air discharged from the discharge port 11b and converting kinetic energy (dynamic pressure) applied to the compressed air into pressure energy (static pressure).
  • the scroll portion 13 is disposed on the outer peripheral side in the radial direction orthogonal to the axial line X direction with respect to the air guide cylinder 12.
  • the scroll portion 13 includes a diffuser 13a, a diffuser disk 13b, an outer scroll casing 13c (see FIG. 1), an inner scroll casing 13d, and a spiral chamber 13e.
  • the spiral chamber 13e is a space defined by the outer scroll casing 13c and the inner scroll casing 13d.
  • the inner scroll casing 13 d is connected to the air guiding cylinder 12 by a fastening bolt 43.
  • the diffuser 13a is an airfoil-shaped member disposed on the downstream side of the discharge port 11b of the impeller 11, and forms a flow path for guiding the compressed air from the discharge port 11b to the spiral chamber 13e.
  • the diffusers 13 a are provided at a plurality of circumferential positions of the annular diffuser disc 13 b coaxially arranged with the rotor shaft 30.
  • the diffuser 13 a is provided so as to surround the discharge port 11 b of the compressed air provided around the entire circumference of the impeller 11. As shown in FIG. 2, the diffuser disk 13 b is coupled to the inner scroll casing 13 d by a fastening bolt 44.
  • the diffuser 13 a converts kinetic energy (dynamic pressure) imparted to the compressed air into pressure energy (static pressure) by decelerating the flow velocity of the compressed air discharged from the discharge port 11 b of the impeller 11.
  • the compressed air whose velocity is reduced when passing through the diffuser 13a flows into the vortex chamber 13e in communication with the diffuser 13a.
  • the working fluid having flowed into the spiral chamber 13e is discharged to a discharge pipe (not shown).
  • the first containment ring 14 is an annular member attached at a connecting position between the discharge port 11 b side of the air guiding cylinder 12 and the inner scroll casing 13 d so as to surround the impeller 11 around the axis X. As shown in FIG. 1, the first containment ring 14 is disposed coaxially with the rotor shaft 30. As shown in FIG. 2, the first containment ring 14 is connected to the air guiding cylinder 12 by a fastening bolt 41.
  • the second containment ring 15 is a cylindrical member disposed on the outer peripheral side in the radial direction than the air guide cylinder 12 and on the inner peripheral side in the radial direction than the scroll portion 13. As shown in FIG. 1, the second containment ring 15 is disposed coaxially with the rotor shaft 30. As shown in FIG. 2, the second containment ring 15 is connected to the air guiding cylinder 12 by a fastening bolt 42.
  • the first containment ring 14 and the second containment ring 15 are made of metal members manufactured by rolling and have higher ductility than the air guide cylinder 12 made of metal members manufactured by casting.
  • high ductility is accompanied by large plastic deformation until failure, and indicates that the brittle property leading to failure is small in a situation where plastic deformation is small.
  • a material with high ductility can be absorbed and restrained by plastic deformation of kinetic energy of impact. Therefore, it becomes possible to hold
  • the ductile cast iron material used as the metal material manufactured by casting has a tensile strength at normal temperature of about 400 to 500 N / mm 2 and an elongation of about 10%.
  • the SS400 material used as a metal member manufactured by rolling has a tensile strength at normal temperature of about 400 to 500 N / mm 2 and an elongation of 20% or more. Therefore, SS400 material can be confirmed as a material with higher ductility than ductile cast iron material from the difference in elongation.
  • the first containment ring 14 and the second containment ring 15 have higher ductility than the air guide cylinder 12. Therefore, even when the impeller 11 is damaged or dropped, the first containment ring 14 and the second containment ring 15 scatter all or part of the impeller 11 in the radial direction and collide with the air guide cylinder 12 In this case, scattering of all or part of the impeller 11 to the outside is suppressed. That is, even in the case where the air guide tube 12 is broken due to the collision of all or a part of the impeller 11, the impeller ring is caused by the plastic deformation of the first containment ring 14 and the second containment ring 15. It is possible to suppress the problem that all or a part of the material scatters to the outside.
  • the radius D1 of the outer peripheral surface of the first containment ring 14 and the radius D2 of the outer peripheral surface of the second containment ring 15 coincide with each other.
  • the reason why the radius D1 and the radius D2 are made to coincide is that a gap that is generated when the diameter of the outer peripheral surface of the first containment ring 14 and the diameter of the outer peripheral surface of the second containment ring 15 are different is not formed. It is for. If this gap is formed, all or part of the impeller 11 may be scattered to the outside.
  • the radius D1 of the outer circumferential surface of the first containment ring 14 and the radius D2 of the outer circumferential surface of the second containment ring 15 do not match, the end of the first containment ring 14 in the axial line X direction If the gap between the part and the end of the second containment ring 15 in the direction of the axis X is small, the possibility that all or part of the impeller 11 scattering in the radial direction scatters to the outside can be reduced. it can. Therefore, the radius D1 of the outer circumferential surface of the first containment ring 14 and the radius D2 of the outer circumferential surface of the second containment ring 15 do not have to be the same diameter.
  • an end face 14 a in the direction of the axis X of the first containment ring 14 and an end face 15 a in the direction of the axis X of the second containment ring 15 are separated by a predetermined distance W in the axis X direction. It is separated.
  • the first expansion ring 14 and the second expansion ring 15 are separated by a predetermined distance W in the direction of the axis X, so that the difference in thermal expansion due to the temperature difference is each member.
  • the first containment ring 14 and the second containment ring 15 do not cause any deformation or breakage.
  • the position in the direction of the axis X at which the first containment ring 14 is disposed is a position P1.
  • the position P1 coincides with the axial center of gravity of the impeller 11.
  • the outer diameter of the blade is larger on the discharge port 11b side than on the intake port 11a side. Therefore, the center-of-gravity position of the impeller 11 is a position P1 closer to the discharge port 11b side than the intake port 11a side.
  • the impeller 11 When the impeller 11 rotates at high speed around the axis X (for example, when it rotates at 10,000 revolutions per minute or more), all or part of the impeller 11 may break or drop off.
  • the impact force in the radial direction orthogonal to the axis X direction when the impeller 11 drops off is particularly large at the center of gravity.
  • the position P1 in the direction of the axis X at which the first containment ring 14 is disposed coincides with the position of the center of gravity of the impeller 11 in the axial direction.
  • the first containment ring 14 forms a flow passage wall on the outer peripheral side of the flow passage 11 e through which the compressed air discharged from the discharge port 11 b flows together with the air guide cylinder 12.
  • the first containment ring 14 has an annular protruding portion 14 b that protrudes radially inward on the outer peripheral side in the radial direction and on the flow path 11 e side in the axial direction X.
  • the air guiding cylinder 12 has an annular stepped portion 12 a on the outer peripheral side in the radial direction and on the flow path 11 e side in the axis X direction.
  • the air guiding cylinder 12 and the first containment ring 14 are connected in a state where the annular protrusion 14 b is disposed on the annular step 12 a.
  • a gap is provided between the annular step 12a and the annular projection 14b. Due to this gap, even if there is thermal expansion of the air guide cylinder 12, deformation can be prevented from propagating to the first containment ring 14 due to the thermal expansion.
  • An endless annular groove 13g extending in the circumferential direction about the axis X is formed in the inner peripheral end face 13f.
  • An O-ring 13 h (annular seal member) is fitted into the annular groove 13 g.
  • an endless annular groove portion 14d extending in the circumferential direction around the axis X is formed in the outer peripheral side end face 14c.
  • An O-ring 14e (annular seal member) is fitted into the annular groove 14d.
  • the manufacturing method of the centrifugal compressor 10 of this embodiment manufactures the centrifugal compressor 10 by the following processes.
  • the impeller 11 which compresses the air flowing in from the inlet 11 a and discharges it from the outlet 11 b is attached to the rotor shaft 30.
  • the air guide cylinder 12 is attached so as to accommodate the impeller 11, and the air flowing from the intake port 11a along the axis X direction of the rotor shaft 30 is guided in the direction inclined from the axis X direction.
  • a flow path leading to the discharge port 11 b is formed.
  • the scroll portion 13 into which the compressed air discharged from the discharge port 11 b flows is disposed on the outer peripheral side in the radial direction orthogonal to the axis X direction with respect to the air guide cylinder 12.
  • the steel material is mainly made of a steel material having a ductility higher than that of cast iron constituting the air guide cylinder 12 or the scroll portion 13 at the connecting position of the air guide cylinder 12 and the scroll portion 13 so as to surround the impeller 11 around the axis X Attach the first containment ring 14 configured.
  • a steel material having a ductility higher than that of cast iron constituting the air guide cylinder 12 or the scroll portion 13 on the outer peripheral side in the radial direction than the air guide cylinder 12 and on the inner peripheral side in the radial direction Attach the second main containment ring 15.
  • the centrifugal compressor 10 of the present embodiment is manufactured by the above steps.
  • the compressor provided in the turbocharger 100 of the present embodiment is a centrifugal compressor. Therefore, in the impeller 11, the outer diameter of the blade is larger on the discharge port 11b side than on the intake port 11a side. Therefore, the gravity center position of the impeller 11 is the position P1 on the discharge port 11b side.
  • the connection position between the discharge port 11 b side of the air guide cylinder 12 and the scroll portion 13 is the center of gravity of the impeller 11 at the axis X.
  • a first containment ring 14 (annular member) mainly made of a steel material having higher ductility than cast iron mainly composed of the air guide cylinder 12 and the scroll portion 13 is provided at this connection position. Even in the case of scattering in the radial direction orthogonal to the axis X direction from the position of the center of gravity of the impeller 11, all or part of the broken or dropped impeller 11 is disposed to collide. Even when the air guide cylinder 12 is broken due to the collision of all or part of the broken or dropped impeller 11, the collision with the high ductility first containment ring 14 does not lead to the brittle failure. Staying in plastic deformation. Therefore, it is possible to suppress the problem that all or part of the broken or dropped impeller 11 scatters to the outside of the turbocharger 100.
  • the diameter of the outer circumferential surface of the first containment ring 14 matches the diameter of the outer circumferential surface of the second containment ring 15. Therefore, the first containment ring 14 and the second containment ring 15 form the same cylindrical surface surrounding the air guiding cylinder 12 around the rotor shaft 30.
  • All or a part of the impeller 11 that brittlely breaks the air guide cylinder 12 and scatters outward in the radial direction is either the first containment ring 14 or the second containment ring 15 that forms the same cylindrical surface. collide. Since the same cylindrical surface is formed, no gap is formed when the diameter of the outer peripheral surface of the first containment ring 14 and the diameter of the outer peripheral surface of the second containment ring 15 are different. Therefore, the problem that all or a part of the impeller 11 scatters to the outside of the turbocharger 100 from the gap formed by the difference in diameter of the outer circumferential surface of the first containment ring 14 and the second containment ring 15 is suppressed. Be done.
  • the end face 14 a in the axial X direction of the first containment ring 14 and the end face 15 a in the axial X direction of the second containment ring 15 are It is separated by a predetermined distance W in the axis X direction.
  • the first containment ring 14 and the second containment ring 15 are configured as separate members, and are separated by a predetermined distance W in the axis X direction. As a result, even if a difference in thermal expansion amount caused by a temperature difference occurs in each member, neither deformation nor breakage occurs in any of the first containment ring 14 and the second containment ring 15.
  • the first containment ring 14 is compressed as the rotational speed of the rotor shaft 30 increases and the pressure of the compressed air discharged from the discharge port 11 b increases. The pressure from the air increases.
  • the annular projection 14b that the first containment ring 14 has on the flow passage 11e side is disposed in the annular step 12a that the air guiding cylinder 12 has on the flow passage 11e side. Therefore, as the pressure that the first containment ring 14 receives from the compressed air increases, the contact force between the annular protrusion 14 b and the annular step 12 a increases. Thereby, the problem that compressed air leaks out at the connection position of the first containment ring 14 and the air guiding cylinder 12 is suppressed.
  • the radially inner end face 13 f of the scroll portion 13 at the connection position and the radially outer end face 14 c of the first containment ring 14 are disposed between the two. In this way, the problem of compressed air leaking at the position where the scroll portion 13 and the first containment ring 14 face each other is suppressed.
  • the air guide cylinder 12 and the scroll portion 13 of the present embodiment are formed of metal members manufactured by casting.
  • this metal member it is preferable to use gray cast iron or ductile cast iron which is easy to manufacture a complicated shape.
  • the first containment ring 14 and the second containment ring 15 are formed of metal members manufactured by rolling.
  • this metal member it is preferable to use a general structural rolled steel material called SS400, which is higher in ductility than cast iron material and less likely to be damaged by plastic deformation even under impact load. By doing this, the ducts of the first containment ring 14 and the second containment ring 15, which are metal members manufactured by rolling, are compared with the air guide cylinder 12 and the scroll portion 13 which are metal members manufactured by casting. Can be higher than the ductility of the
  • turbocharger 200 of the second embodiment is a modification of the turbocharger 100 of the first embodiment. It shall be the same as that of supercharger 100 of a 1st embodiment except for the case where it explains especially below, and it omits explanation about what attached the same numerals.
  • the turbocharger 100 according to the first embodiment separates the first containment ring 14 and the second containment ring 15 by a predetermined distance W in the axis X direction.
  • the first containment ring 14 'and the second containment ring 15' are arranged so as to overlap in the radial direction and be in close proximity to each other in the radial direction. is there.
  • the centrifugal compressor 10 includes a first containment ring 14 ′ (annular member) and a second containment ring 15 ′ (cylindrical member).
  • the first containment ring 14 ′ and the second containment ring 15 ′ are made of the same metal members as the first containment ring 14 and the second containment ring 15 of the first embodiment.
  • the first containment ring 14 ′ is an annular ring attached to the connection position between the outlet 11 b side of the air guide cylinder 12 and the inner scroll casing 13 d so as to surround the impeller 11 around the axis X It is a member. As shown in FIG. 5, the first containment ring 14 ′ is disposed coaxially with the rotor shaft 30. As shown in FIG. 5, the first containment ring 14 ′ is connected to the air guiding cylinder 12 by a fastening bolt 41.
  • the second containment ring 15 ′ is a cylindrical member disposed on the outer peripheral side in the radial direction than the air guide cylinder 12 and on the inner peripheral side in the radial direction than the scroll portion 13. As shown in FIG. 4, the second containment ring 15 ′ is disposed coaxially with the rotor shaft 30. As shown in FIG. 5, the second containment ring 15 ′ is connected to the air guiding cylinder 12 by a fastening bolt 42.
  • the radius D1 of the outer circumferential surface of the first containment ring 14 'and the radius D2 of the outer circumferential surface of the second containment ring 15' coincide with each other.
  • the reason why the radius D1 and the radius D2 are matched is that a gap is not formed which occurs when the diameter of the outer peripheral surface of the first containment ring 14 'is different from the diameter of the outer peripheral surface of the second containment ring 15'. In order to If this gap is formed, all or part of the impeller 11 may be scattered to the outside.
  • an end 15a 'on the discharge opening 11b side of the second containment ring 15' and an end 14a 'on the intake opening 11a side of the first containment ring 14' are in the radial direction. And are arranged at positions close to each other in the radial direction.
  • the gap in the radial direction between the end portion 14a 'disposed on the inner circumferential side and the end portion 15a' disposed on the outer circumferential side is set so as to maintain such a distance that these members do not contact due to thermal expansion. It is done.
  • the end 14a 'of the first containment ring 14' and the end 15a 'of the second containment ring 15' disposed on the outer circumferential side are in contact due to thermal expansion, and each is deformed Alternatively, the failure to break can be prevented.
  • the radial gap between the end portion 14a 'disposed on the inner circumferential side and the end portion 15a' disposed on the outer circumferential side is formed when the end portion 14a 'is plastically deformed by the impact of the breaking member.
  • the distance is set such that the end 14 a ′ contacts the end 15 a ′.
  • the position in the direction of the axis X at which the first containment ring 14 'is disposed is the position P1.
  • the position P1 coincides with the axial center of gravity of the impeller 11.
  • the position P1 coincides with the end face of the annular projection 14b of the first containment ring 14 'shown in FIG. 6 on the intake port 11a side.
  • the outer diameter of the blade is larger on the discharge port 11b side than on the intake port 11a side. Therefore, the center-of-gravity position of the impeller 11 is a position P1 closer to the discharge port 11b side than the intake port 11a side.
  • the impeller 11 When the impeller 11 rotates at high speed around the axis X (for example, when it rotates at 10,000 revolutions per minute or more), all or part of the impeller 11 may break or drop off.
  • the impact force in the radial direction orthogonal to the axis X direction when the impeller 11 drops off is particularly large at the center of gravity.
  • the position P1 in the direction of the axis X at which the first containment ring 14 'is disposed coincides with the position of the center of gravity of the impeller 11 in the axial direction.
  • the impeller 11 when the impeller 11 broken or dropped at the center of gravity scatters in the radial direction to damage the air guide cylinder 12 and further scatters in the radial direction, the impeller 11 collides with the first containment ring 14 ' . And the defect which all or one part of the impeller 11 disperses outside can be suppressed by plastically deforming the 1st containment ring 14 'with high ductility.
  • the first containment ring 14 ′ together with the air guide cylinder 12, forms a flow passage wall on the outer peripheral side of the flow passage 11 e through which the compressed air discharged from the discharge port 11 b flows.
  • the first containment ring 14 ′ has an annular protruding portion 14 b protruding inward in the radial direction on the inner peripheral side in the radial direction and on the flow passage 11 e side in the axial direction X.
  • the air guiding cylinder 12 has an annular stepped portion 12 a on the outer peripheral side in the radial direction and on the flow path 11 e side in the axis X direction.
  • a gap is provided between the annular step 12a and the annular projection 14b. Due to this gap, even if there is thermal expansion of the air guide cylinder 12, deformation can be prevented from propagating to the first containment ring 14 'due to the thermal expansion.
  • the compressor provided in the turbocharger 200 of the present embodiment is a centrifugal compressor. Therefore, in the impeller 11, the outer diameter of the blade is larger on the discharge port 11b side than on the intake port 11a side. Therefore, the gravity center position of the impeller 11 is the position P1 on the discharge port 11b side.
  • the connection position between the discharge port 11 b side of the air guide cylinder 12 and the scroll portion 13 is the center of gravity of the impeller 11 at the axis X.
  • a first containment ring 14 '(annular member) mainly made of a steel material having higher ductility than cast iron mainly composed of the air guide cylinder 12 and the scroll portion 13 is provided at this connection position. Even in the case of scattering in the radial direction orthogonal to the axis X direction from the position of the center of gravity of the impeller 11, all or part (rupturing member) of the impeller 11 that has been broken or dropped is disposed to collide. Even when the air guide cylinder 12 is broken due to the collision of the fracture member, the collision with the high ductility first containment ring 14 'does not lead to the brittle failure and plastic deformation occurs. Accordingly, it is possible to suppress the problem that the breaking member scatters to the outside of the turbocharger 200.
  • a second containment made of a material having a ductility higher than that of the air guiding cylinder 12 on the outer peripheral side in the radial direction than the air guiding cylinder 12 and on the inner peripheral side in the radial direction than the scroll portion 13 I placed the ring 15 '.
  • the center-of-gravity position P1 in the direction of the axis X of the impeller 11 is present in the position range in the direction of the axis X in which the first containment ring 14 'is disposed.
  • the gravity center position P1 of the axial line X direction of the impeller 11 is made to exist in the position range of the axial line X direction in which 1st containment ring 14 'is arrange
  • the first containment ring 14 ' is used as the rotational speed of the rotor shaft 30 increases and the pressure of the compressed air discharged from the discharge port 11b increases.
  • the pressure received from the compressed air is increased.
  • the annular projection 14b that the first containment ring 14 'has on the flow passage 11e side is disposed in the annular step 12a that the air guiding cylinder 12 has on the flow passage 11e side. Therefore, as the pressure received from the compressed air by the first containment ring 14 'increases, the contact force between the annular protrusion 14b and the annular step 12a increases. Thereby, the problem that compressed air leaks out at the connection position of the first containment ring 14 ′ and the air guiding cylinder 12 is suppressed.
  • the radially inner end face 13 f of the scroll portion 13 at the connection position and the radially outer end face 14 c of the first containment ring 14 ′ are disposed between the two. In this way, the problem of compressed air leaking out at the position where the scroll portion 13 and the first containment ring 14 'face each other is suppressed.
  • the air guide cylinder 12 and the scroll portion 13 of the present embodiment are formed of metal members manufactured by casting.
  • this metal member it is preferable to use gray cast iron or ductile cast iron which is easy to manufacture a complicated shape.
  • 1st containment ring 14 'and 2nd containment ring 15' are formed with the metal member manufactured by rolling.
  • this metal member it is preferable to use a general structural rolled steel material called SS400, which is higher in ductility than cast iron material and less likely to be damaged by plastic deformation even under impact load.
  • the ducts of the first containment ring 14 'and the second containment ring 15' which are metal members manufactured by rolling, can be reduced by the air guide cylinder 12 and the scroll, which are metal members manufactured by casting.
  • the ductility of the part 13 can be made higher.
  • the rotor shaft 30 to which the impeller 11 provided in the centrifugal compressor 10 is connected is rotated about the axis X by the turbine 20 rotated by the exhaust gas discharged from the marine diesel engine. It may be another aspect.
  • the rotor shaft 30 may be rotated by another power source such as a motor connected to the rotor shaft 30.
  • the radius D1 of the outer circumferential surface of the first containment ring 14, 14 'and the radius D2 of the outer circumferential surface of the second containment ring 15, 15' coincide with each other.
  • "Match" in the above description does not mean that the radius D1 and the radius D2 exactly match. Even when the radius D1 and the radius D2 are different, a gap is provided between the first containment rings 14, 14 'and the second containment rings 15, 15' to such an extent that the breaking member does not pass through. In this case, it is assumed that the radius D1 and the radius D2 coincide with each other.
  • the shape of the first containment ring 14 'and the shape of the second containment ring 15' are as shown in FIG. 6, but may be other aspects.
  • the end portion 14a 'of the first containment ring 14' is tapered such that the outer diameter gradually decreases toward the intake port 11a, and the end portion of the second containment ring 15 '
  • the tapered shape may be such that the inner diameter gradually increases toward the discharge port 11b side.
  • the shape of the end 15a ′ of the second containment ring 15 ′ may be the same as the shape of the other portion than the end 15a ′.
  • the plate thickness in the radial direction orthogonal to the axis X is substantially constant from the end on the intake port 11a side to the end on the discharge port 11b side.
  • the end 14a 'of the first containment ring 14' is disposed on the outer circumferential side
  • the end 15a 'of the second containment ring 15' is disposed on the inner circumferential side. Good.

Abstract

Provided is a centrifugal compressor, provided with: an impeller (11) for compressing air flowing in from an intake port (11a) and discharging the air from a discharge port (11b), the impeller (11) being attached to a rotor shaft (30); an air-guiding cylinder (12) for accommodating the impeller (11); a scroll part (13) into which the compressed air discharged from the discharge port (11b) flows, the scroll part (13) being arranged farther out toward the periphery than is the air-guiding cylinder (12); and a first containment ring (14) attached to a linking position between the air-guiding cylinder (12) and the scroll part (13) so as to encircle the impeller (11) about an axis line (X) of the rotor shaft (30).

Description

遠心圧縮機、過給機、および遠心圧縮機の製造方法Centrifugal compressor, supercharger, and method of manufacturing centrifugal compressor
 本発明は、遠心圧縮機、過給機、および遠心圧縮機の製造方法に関する。 The present invention relates to a centrifugal compressor, a turbocharger, and a method of manufacturing the centrifugal compressor.
 従来、船舶等に用いられる内燃機関に供給する空気を大気圧以上に高める過給機の圧縮機として、遠心圧縮機が知られている(例えば、特許文献1参照。)。遠心圧縮機は、ロータ軸に取り付けられる羽根車と、羽根車を収容する案内筒と、案内筒から吐出される圧縮空気が流入するスクロール部とを備えている。遠心圧縮機は、取込口から軸線方向に流入する空気を圧縮しつつ軸線方向から傾斜した方向に案内して吐出口から圧縮空気を吐出する。 Conventionally, a centrifugal compressor is known as a compressor of a supercharger which raises air supplied to an internal combustion engine used for a ship etc. to atmospheric pressure or more (see, for example, Patent Document 1). The centrifugal compressor includes an impeller attached to a rotor shaft, a guide cylinder accommodating the impeller, and a scroll portion into which compressed air discharged from the guide cylinder flows. The centrifugal compressor compresses the air flowing in the axial direction from the intake port, guides it in the direction inclined from the axial direction, and discharges the compressed air from the discharge port.
 遠心圧縮機においては、高速回転による遠心力の影響によって、羽根車の全部または一部が破断あるいは脱落する不具合が発生する可能性がある。特許文献2には、羽根車(コンプレッサインペラー)の全部または一部が遠心力で外方に飛散した場合でも飛散した羽根車によって潤滑油が漏れ出さないように、潤滑油を収容するタンクを保護する衝撃吸収隔壁を設けた遠心圧縮機が開示されている。 In a centrifugal compressor, there is a possibility that all or part of the impeller may be broken or dropped due to the influence of centrifugal force due to high speed rotation. In Patent Document 2, a tank containing lubricating oil is protected so that lubricating oil is not leaked by the scattered impeller even when all or part of an impeller (compressor impeller) is scattered outward by centrifugal force. Discloses a centrifugal compressor provided with a shock absorbing partition wall.
特開2011-117417号公報JP 2011-117417 A 特開2001-132465号公報JP 2001-132465 A
 特許文献2に開示された遠心圧縮機では、高速回転による遠心力の影響によって羽根車の全部または一部が破断あるいは脱落する不具合が発生する場合に、潤滑油を収容するタンクが保護される。
 しかしながら、羽根車の全部または一部が破断あるいは脱落してロータ軸の軸線方向に直交する径方向に飛散する場合、羽根車の全部または一部が外側に位置する案内筒を破損させて外部に飛散する可能性がある。また、羽根車の全部または一部が案内筒と衝突することによって遠心圧縮機の一部に隙間(口開き)が生じ、その隙間から破損した羽根車の全部または一部が外部に飛散する可能性がある。
In the centrifugal compressor disclosed in Patent Document 2, when a failure occurs in which all or a part of the impeller is broken or dropped due to the influence of the centrifugal force due to high speed rotation, the tank containing the lubricating oil is protected.
However, when all or part of the impeller is broken or dropped and scattered in the radial direction orthogonal to the axial direction of the rotor shaft, the guide cylinder in which all or part of the impeller is located outside is broken and There is a possibility of splashing. In addition, when all or part of the impeller collides with the guide cylinder, a gap (opening) is generated in a part of the centrifugal compressor, and all or part of the broken impeller can be scattered outside from the gap. There is sex.
 本発明は、このような事情を鑑みてなされたものであり、羽根車の全部または一部が破断あるいは脱落してロータ軸の軸線方向に直交する径方向に飛散する場合に、羽根車の全部または一部が外部に飛散する不具合を抑制することが可能な遠心圧縮機を提供することを目的とする。
 また、本発明は、前述した遠心圧縮機を備えた過給機、および前述した遠心圧縮機の製造方法を提供することを目的とする。
The present invention has been made in view of such circumstances, and when all or part of the impeller is broken or dropped and scattered in the radial direction orthogonal to the axial direction of the rotor shaft, the entire impeller is An object of the present invention is to provide a centrifugal compressor capable of suppressing a problem in which a part of the dust scatters to the outside.
Another object of the present invention is to provide a supercharger including the above-described centrifugal compressor, and a method of manufacturing the above-described centrifugal compressor.
 上記目的を達成するために、本発明は、以下の手段を採用する。
 本発明の一態様に係る遠心圧縮機は、ロータ軸に取り付けられるとともに取込口から流入する流体を圧縮して吐出口から吐出する羽根車と、該羽根車を収容する案内筒と、該案内筒よりも外周側に配置されるとともに前記吐出口から吐出された圧縮流体が流入するスクロール部と、前記ロータ軸の軸線回りに前記羽根車を取り囲むように前記案内筒の前記吐出口側と前記スクロール部との連結位置に取り付けられる環状部材と、を備える。
In order to achieve the above object, the present invention adopts the following means.
In a centrifugal compressor according to one aspect of the present invention, an impeller mounted on a rotor shaft and compressing a fluid flowing in from an intake port and discharging the fluid from a discharge port, a guide cylinder housing the impeller, the guide The discharge port side of the guide cylinder and the scroll portion disposed on the outer peripheral side of the cylinder and in which the compressed fluid discharged from the discharge port flows and the impeller is surrounded around the axis of the rotor shaft And an annular member attached at a connecting position with the scroll portion.
 遠心圧縮機の羽根車は、取込口側よりも吐出口側の方が羽根の外径が大きくなっている。したがって、羽根車の重心は吐出口側に位置することになる。そして、案内筒の吐出口側とスクロール部との連結位置は、軸線において羽根車の重心に対応する位置(以下、重心位置という。)あるいは重心位置近傍となる。
 重心位置あるいは重心位置近傍において、羽根車の全部または一部が破断あるいは脱落した際は、その破断あるいは脱落した部分は重量が大きく、軸線方向に直交する径方向に飛散するときの衝撃力は大きいものとなる。
As for the impeller of the centrifugal compressor, the outer diameter of the blade is larger on the discharge port side than on the intake port side. Therefore, the center of gravity of the impeller is located on the discharge port side. The connection position between the discharge port side of the guide cylinder and the scroll portion is a position corresponding to the center of gravity of the impeller on the axis (hereinafter referred to as the center of gravity position) or a position near the center of gravity.
When all or part of the impeller is broken or dropped near the center of gravity or near the center of gravity, the weight of the broken or dropped part is large, and the impact force when scattered in the radial direction orthogonal to the axial direction is large It becomes a thing.
 そこで、本発明の一態様では、この連結位置に環状部材を設け、羽根車の重心位置から軸線方向に直交する径方向に飛散する場合にも、破断あるいは脱落した羽根車の全部または一部が衝突するように配置した。破断あるいは脱落した羽根車の全部または一部の衝突によって案内筒が脆性破壊してしまう場合であっても、環状部材への衝突では脆性破壊に至らずに塑性変形することにとどまる。よって、破断あるいは脱落した羽根車の全部または一部が外部に飛散する不具合を抑制することができる。
 本発明の一態様に係る遠心圧縮機において、前記環状部材は、前記案内筒よりも延性が高い材料で構成されていてもよい。
 このようにすることで、延性の高い環状部材に破断あるいは脱落した羽根車の全部または一部が衝突した場合に、環状部材が脆性破壊に至らずに塑性変形にとどまることをより確実にすることができる。
Therefore, in one aspect of the present invention, an annular member is provided at this connection position, and all or part of the broken or dropped impeller is broken even in the radial direction orthogonal to the axial direction from the center of gravity of the impeller. Arranged to collide. Even in the case where the guide cylinder is broken due to the collision of all or part of the broken or dropped impeller, the collision with the annular member does not lead to the brittle failure but only plastic deformation. Accordingly, it is possible to suppress the problem that all or part of the broken or dropped impeller is scattered to the outside.
In the centrifugal compressor according to one aspect of the present invention, the annular member may be made of a material higher in ductility than the guide cylinder.
In this way, when all or part of the broken or dropped impeller collides with the highly ductile annular member, it is more reliably ensured that the annular member remains in plastic deformation without reaching brittle fracture. Can.
 ここで延性が高いとは、破壊まで大きな塑性変形を伴う特性を有することを示すもので、塑性変形が少ない状況で破壊に至る脆性特性が少ないことを示す。具体的には、破損に至る引張破壊強度と伸び(率)を比較することで延性が高いことを確認することができる。 The term “high ductility” as used herein means having the property accompanied by large plastic deformation until failure, and indicates that the brittle property leading to the failure is small when the plastic deformation is small. Specifically, it is possible to confirm that the ductility is high by comparing the tensile fracture strength to failure and the elongation (percentage).
 本発明の一態様に係る遠心圧縮機において、前記案内筒よりも前記軸線に直交する径方向の外周側かつ前記スクロール部よりも前記径方向の内周側に前記ロータ軸と同軸に配置される円筒状部材を備える構成であってもよい。
 本構成の遠心圧縮機によれば、羽根車の全部または一部が破断あるいは脱落する場合、羽根車の全部または一部がロータ軸の軸線方向に直交する径方向に飛散して案内筒に衝突する。案内筒に衝突した羽根車の一部は、案内筒を脆性破壊させて径方向の外側に更に飛散し、円筒状部材に到達する。円筒状部材は、案内筒が脆性破壊してしまう場合であっても、塑性変形によって羽根車の一部が外部に飛散する不具合を抑制することができる。
 上記構成の遠心圧縮機においては、前記円筒状部材の前記吐出口側の端部と前記環状部材の前記取込口側の端部とが、前記径方向で重なり合うとともに前記径方向に近接した位置に配置されているものであってもよい。
 このようにすることで、破断部材が外部に飛散し、径方向の内周側に配置される円筒状部材または環状部材のいずれか一方に衝突する場合、衝撃を受けた一方の部材が径方向の外周側に向けて移動していずれか他方の部材に衝突する。これにより、円筒状部材と環状部材との間に隙間が生じることが規制される。
 上記構成の遠心圧縮機において、前記円筒状部材は、前記案内筒よりも延性が高い材料で構成されており、前記軸線に対して、前記環状部材の径と前記円筒状部材の径が一致しており、前記環状部材の前記軸線方向の端面と前記円筒状部材の前記軸線方向の端面とが、前記軸線方向に所定距離を空けて離間していてもよい。
In the centrifugal compressor according to one aspect of the present invention, it is arranged coaxially with the rotor shaft on the outer peripheral side in the radial direction orthogonal to the axis than the guide cylinder and on the inner peripheral side in the radial direction than the scroll portion. The configuration may include a cylindrical member.
According to the centrifugal compressor of this configuration, when all or part of the impeller is broken or dropped, all or part of the impeller is scattered in the radial direction orthogonal to the axial direction of the rotor shaft and collides with the guide cylinder Do. A part of the impeller that has collided with the guide cylinder causes the guide cylinder to be brittlely broken and is further scattered outward in the radial direction to reach the cylindrical member. The cylindrical member can suppress a problem in which a part of the impeller scatters to the outside due to plastic deformation, even when the guide cylinder is broken due to brittleness.
In the centrifugal compressor configured as described above, the end on the discharge port side of the cylindrical member and the end on the intake port side of the annular member overlap in the radial direction and are close in the radial direction It may be arranged in
In this way, when the breaking member scatters to the outside and collides with either the cylindrical member or the annular member disposed on the inner peripheral side in the radial direction, one member that receives an impact is in the radial direction It moves toward the outer peripheral side of and collides with any other member. Thus, the formation of a gap between the cylindrical member and the annular member is restricted.
In the centrifugal compressor configured as described above, the cylindrical member is made of a material having a ductility higher than that of the guide cylinder, and the diameter of the annular member matches the diameter of the cylindrical member with respect to the axis. The axial end face of the annular member and the axial end face of the cylindrical member may be separated by a predetermined distance in the axial direction.
 本構成の遠心圧縮機によれば、環状部材の径と円筒状部材の径が一致しているため、環状部材と円筒部材とは、ロータ軸回りに案内筒を取り囲む同一円筒面を形成する。案内筒を脆性破壊して径方向の外側に飛散する羽根車の全部または一部は、同一円筒面を形成する環状部材と円筒部材とのいずれかに衝突する。同一円筒面が形成されているため、環状部材の外周面の径と円筒状部材の外周面の径が相違する場合に生じる隙間が形成されない。そのため、羽根車の全部または一部が、環状部材と円筒部材の外周面の径の違いにより形成される隙間から外部に飛散する不具合が抑制される。 According to the centrifugal compressor of this configuration, since the diameter of the annular member and the diameter of the cylindrical member coincide with each other, the annular member and the cylindrical member form the same cylindrical surface surrounding the guide cylinder around the rotor axis. All or a part of the impeller that brittlely fractures the guide cylinder and scatters radially outward collides with either the annular member or the cylindrical member forming the same cylindrical surface. Since the same cylindrical surface is formed, no gap is formed when the diameter of the outer peripheral surface of the annular member is different from the diameter of the outer peripheral surface of the cylindrical member. Therefore, the problem that all or part of the impeller scatters from the gap formed due to the difference in diameter of the annular member and the outer peripheral surface of the cylindrical member to the outside is suppressed.
 また、本構成の遠心圧縮機によれば、環状部材の前記軸線方向の端面と前記円筒状部材とが、前記軸線方向に所定距離を空けて離間している。環状部材と円筒状部材とを連結し、あるいは一つの部材として形成する場合、この部材の軸線方向の両端部において温度差に起因する熱伸び量の差が生じると、部材が変形もしくは破損してしまうおそれがある。そこで、本態様では、環状部材と円筒状部材とを別部材として構成し、軸線方向に所定距離を空けて離間させることにより、温度差に起因する熱伸び量の差が各部材に生じたとしても、環状部材と円筒状部材のいずれにも変形もしくは破損を生じさせないようにしている。 Moreover, according to the centrifugal compressor of this configuration, the end face in the axial direction of the annular member and the cylindrical member are separated at a predetermined distance in the axial direction. When an annular member and a cylindrical member are connected or formed as a single member, if a difference in thermal expansion due to a temperature difference occurs at both axial ends of the member, the member is deformed or damaged. There is a risk of Therefore, in the present embodiment, by forming the annular member and the cylindrical member as separate members and separating them by a predetermined distance in the axial direction, a difference in the amount of thermal elongation due to a temperature difference is generated in each member Also, neither the annular member nor the cylindrical member is deformed or damaged.
 本発明の一態様に係る遠心圧縮機においては、前記環状部材が配置される前記軸線方向の位置範囲に、前記羽根車の前記軸線方向の重心位置が存在している構成であってもよい。
 羽根車の重心位置あるいは重心位置近傍の全部または一部が破断あるいは脱落した際は、その破断あるいは脱落した部分は重量が大きく、軸線方向に直交する径方向に飛散するときの衝撃力は大きいものとなる。
 そこで、本構成では、環状部材が配置される軸線方向の位置範囲に、羽根車の軸線方向の重心位置が存在するようにしている。これにより、羽根車の重心位置あるいは重心位置近傍の全部または一部が破断あるいは脱落した際に、その破断あるいは脱落した部分を環状部材に衝突させ、羽根車の全部または一部が外部に飛散する不具合を抑制することができる。
In the centrifugal compressor according to one aspect of the present invention, the axial center of gravity position of the impeller may be present in the axial position range in which the annular member is disposed.
When all or part of the center of gravity of the impeller or near or at the center of gravity is broken or dropped, the broken or dropped part is heavy, and the impact force when scattered in the radial direction perpendicular to the axial direction is large It becomes.
Therefore, in the present configuration, the axial center of gravity position of the impeller is present in the axial position range in which the annular member is disposed. Thus, when all or part of the center of gravity or the vicinity of the center of gravity of the impeller is broken or dropped, the broken or dropped part is made to collide with the annular member, and all or part of the impeller is scattered to the outside Problems can be suppressed.
 本発明の一態様に係る遠心圧縮機において、前記環状部材は、前記案内筒とともに前記吐出口から吐出される前記圧縮流体が流通する流路の流路壁を形成しており、前記環状部材は、前記軸線に直交する径方向の外周側かつ前記軸線方向の前記流路側に、前記径方向の内側に突出する環状突起部を有し、前記連結位置における前記案内筒は、前記径方向の外周側かつ前記軸線方向の前記流路側に環状段部を有し、前記案内筒と前記環状部材は、前記環状段部に前記環状突起部を配置した状態で接続されている構成であってもよい。 In the centrifugal compressor according to one aspect of the present invention, the annular member, together with the guide cylinder, forms a flow path wall of a flow path through which the compressed fluid discharged from the discharge port flows, and the annular member is An annular projection projecting inward in the radial direction on the outer peripheral side in the radial direction orthogonal to the axis and on the flow passage side in the axial direction; and the guide cylinder at the connection position has an outer periphery in the radial direction An annular step may be provided on the side and the flow path side in the axial direction, and the guide cylinder and the annular member may be connected in a state where the annular protrusion is disposed on the annular step. .
 本構成の遠心圧縮機によれば、ロータ軸の回転数が高まって吐出口から吐出される圧縮流体の圧力が高まるにつれて、環状部材が圧縮流体から受ける圧力が高まる。環状部材が流路側に有する環状突起部は、案内筒が流路側に有する環状段部に配置されている。そのため、環状部材が圧縮流体から受ける圧力が高まるにつれて、環状突起部と環状段部との接触力が高まる。これにより、環状部材と案内筒との接続位置において圧縮流体が漏れ出る不具合が抑制される。 According to the centrifugal compressor of this configuration, as the rotation speed of the rotor shaft increases and the pressure of the compressed fluid discharged from the discharge port increases, the pressure received by the annular member from the compressed fluid increases. The annular protrusion which an annular member has on the flow-path side is arrange | positioned at the annular step which a guide cylinder has on the flow-path side. Therefore, as the pressure that the annular member receives from the compressed fluid increases, the contact force between the annular protrusion and the annular step increases. Thus, the problem of leakage of the compressed fluid at the connection position of the annular member and the guide cylinder is suppressed.
 本発明の一態様に係る過給機は、上記のいずれかに記載の遠心圧縮機と、内燃機関から排出された排気ガスにより前記軸線回りに回転するとともに前記ロータ軸に連結されるタービンと、を備える。
 本発明の一態様に係る過給機によれば、羽根車の重心位置近傍の全部または一部が破断あるいは脱落してロータ軸の軸線方向に直交する径方向に飛散する場合に、羽根車の全部または一部が外部に飛散する不具合を抑制することができる。
A supercharger according to one aspect of the present invention is a centrifugal compressor according to any of the above, a turbine rotated about the axis by exhaust gas discharged from an internal combustion engine, and connected to the rotor shaft. Equipped with
According to the turbocharger according to one aspect of the present invention, when all or a part in the vicinity of the center of gravity of the impeller is broken or dropped and scattered in the radial direction orthogonal to the axial direction of the rotor shaft, It is possible to suppress the problem that all or a part scatters to the outside.
 本発明の一態様に係る遠心圧縮機の製造方法は、取込口から流入する流体を圧縮して吐出口から吐出する羽根車をロータ軸に取り付ける工程と、前記羽根車を収容するように案内筒を取り付けて前記取込口から流入する流体を前記吐出口へ導く流路を形成する工程と、前記吐出口から吐出された圧縮流体が流入するスクロール部を、前記案内筒よりも前記ロータ軸の軸線方向に直交する径方向の外周側に配置する工程と、前記軸線回りに前記羽根車を取り囲むように前記案内筒と前記スクロール部との連結位置に環状部材を取り付ける工程と、を備えることを特徴とする。 A method of manufacturing a centrifugal compressor according to an aspect of the present invention includes the steps of: attaching an impeller for compressing a fluid flowing in from an inlet and discharging the compressed fluid from an outlet to a rotor shaft; Forming a flow path through which a cylinder is attached to guide the fluid flowing in from the intake port to the discharge port; and a scroll portion into which the compressed fluid discharged from the discharge port flows in the rotor shaft rather than the guide cylinder And disposing an annular member at a connecting position between the guide cylinder and the scroll portion so as to surround the impeller around the axis line. It is characterized by
 本発明の一態様に係る製造方法により製造される遠心圧縮機によれば、羽根車の重心位置近傍の全部または一部が破断あるいは脱落する場合、羽根車の全部または一部がロータ軸の軸線方向に直交する径方向に飛散して、案内筒とスクロール部との連結位置に到達する。連結位置には、環状部材が羽根車を取り囲むように取り付けられているため、飛散した羽根車の全部または一部が環状部材に衝突する。環状部材は、案内筒が脆性破壊してしまう場合であっても、塑性変形によって羽根車の全部または一部が外部に飛散する不具合を抑制することができる。 According to the centrifugal compressor manufactured by the manufacturing method according to one aspect of the present invention, when all or a part in the vicinity of the center of gravity of the impeller is broken or dropped, the whole or a part of the impeller is the axis of the rotor shaft It is scattered in the radial direction orthogonal to the direction to reach the connecting position of the guide cylinder and the scroll portion. In the connection position, the annular member is attached to surround the impeller, so that all or part of the scattered impeller collides with the annular member. The annular member can suppress a problem that all or a part of the impeller scatters to the outside due to plastic deformation, even when the guide cylinder is broken due to brittleness.
 本発明によれば、羽根車の重心位置近傍の全部または一部が破断あるいは脱落してロータ軸の軸線方向に直交する径方向に飛散する場合に、羽根車の全部または一部が外部に飛散する不具合を抑制することが可能な遠心圧縮機を提供することができる。
 また、本発明によれば、前述した遠心圧縮機を備えた過給機、および前述した遠心圧縮機の製造方法を提供することができる。
According to the present invention, when all or a part of the vicinity of the center of gravity of the impeller is broken or dropped and scattered in the radial direction orthogonal to the axial direction of the rotor shaft, the whole or a part of the impeller scatters to the outside It is possible to provide a centrifugal compressor capable of suppressing the above problems.
Further, according to the present invention, it is possible to provide a supercharger equipped with the above-described centrifugal compressor, and a method of manufacturing the above-described centrifugal compressor.
第1実施形態の過給機を示す縦断面図である。It is a longitudinal cross-sectional view which shows the supercharger of 1st Embodiment. 図1に示す遠心圧縮機の要部拡大図である。It is a principal part enlarged view of the centrifugal compressor shown in FIG. 図2に示す第1コンテインメントリング近傍の要部拡大図である。It is a principal part enlarged view of the 1st containment ring vicinity shown in FIG. 第2実施形態の過給機を示す縦断面図である。It is a longitudinal cross-sectional view which shows the turbocharger of 2nd Embodiment. 図4に示す遠心圧縮機の要部拡大図である。It is a principal part enlarged view of the centrifugal compressor shown in FIG. 図5に示す吐出口近傍の要部拡大図である。It is a principal part enlarged view of the ejection opening vicinity shown in FIG. 第2実施形態の変形例の遠心圧縮機の吐出口近傍の要部拡大図である。It is a principal part enlarged view of the discharge port vicinity of the centrifugal compressor of the modification of 2nd Embodiment. 第2実施形態の変形例の遠心圧縮機の吐出口近傍の要部拡大図である。It is a principal part enlarged view of the discharge port vicinity of the centrifugal compressor of the modification of 2nd Embodiment. 第2実施形態の変形例の遠心圧縮機の吐出口近傍の要部拡大図である。It is a principal part enlarged view of the discharge port vicinity of the centrifugal compressor of the modification of 2nd Embodiment.
〔第1実施形態〕
 以下、第1実施形態の過給機について図面を参照して説明する。
 本実施形態の過給機100は、船舶に用いられる舶用ディーゼル機関(内燃機関)に供給する空気(気体)を大気圧以上に高めて、舶用ディーゼル機関の燃焼効率を高める装置である。
 図1に示すように、本実施形態の過給機100は、遠心圧縮機10と、タービン20とを備えている。遠心圧縮機10とタービン20とは、それぞれロータ軸30に連結されている。
First Embodiment
Hereinafter, the turbocharger according to the first embodiment will be described with reference to the drawings.
The turbocharger 100 of the present embodiment is a device that raises the air (gas) supplied to a marine diesel engine (internal combustion engine) used for a ship to a pressure higher than atmospheric pressure to enhance the combustion efficiency of the marine diesel engine.
As shown in FIG. 1, the turbocharger 100 of the present embodiment includes a centrifugal compressor 10 and a turbine 20. The centrifugal compressor 10 and the turbine 20 are respectively connected to the rotor shaft 30.
 遠心圧縮機10は、過給機100の外部から流入する空気を圧縮し、舶用ディーゼル機関を構成するシリンダライナ(図示略)の内部と連通する吸気マニホールド(図示略)に圧縮した空気(以下、圧縮空気(圧縮流体)という。)を供給する装置である。
 遠心圧縮機10は、羽根車11と、空気案内筒12と、スクロール部13と、第1コンテインメントリング14(環状部材)と、第2コンテインメントリング15(円筒状部材)と、サイレンサ16とを備えている。
The centrifugal compressor 10 compresses air flowing from the outside of the turbocharger 100, and compressed into an intake manifold (not shown) communicating with the inside of a cylinder liner (not shown) constituting a marine diesel engine (hereinafter referred to as “the air”). It is a device that supplies compressed air (compressed fluid).
The centrifugal compressor 10 includes an impeller 11, an air guide cylinder 12, a scroll portion 13, a first containment ring 14 (annular member), a second containment ring 15 (cylindrical member), and a silencer 16. Is equipped.
 空気案内筒12とスクロール部13は、複雑な形状を形成するために鋳造により製造された金属部材からなる。この金属部材として、例えば、鉄を主成分とし炭素を2%以上含有するFe-C系合金である鋳鉄が用いられる。鋳鉄であればねずみ鋳鉄など種々の材料を用いることが可能であるが、基地組織中の黒煙が球状化しているダクタイル鋳鉄(FCD:Ferrum Casting Ductile)を用いるのが好ましい。
 鋳造による金属材は、鋳込み形成により複雑な形状を形成しやすい反面、脆性特性を有する。
The air guide cylinder 12 and the scroll portion 13 are made of metal members manufactured by casting to form a complicated shape. As this metal member, for example, cast iron which is an Fe—C based alloy containing iron as a main component and 2% or more of carbon is used. It is possible to use various materials such as gray cast iron if it is cast iron, but it is preferable to use ductile cast iron (FCD: Ferrum Casting Ductile) in which black smoke in base tissue is spheroidized.
The cast metal material tends to form a complicated shape by casting, but has brittleness.
 第1コンテインメントリング14と第2コンテインメントリング15は、圧延により製造された金属部材からなる。この金属部材として、例えば、鉄を主成分とし炭素を微量(約0.2%)含有するFe-C系合金である鉄鋼材料が用いられる。鉄鋼材料であれば種々の材料を用いることが可能であるが、SS400と呼ばれる一般構造用圧延鋼材(JIS G 3101;ASTM A283)を用いるのが好ましい。 The first containment ring 14 and the second containment ring 15 are made of metal members manufactured by rolling. As the metal member, for example, a steel material which is an Fe—C based alloy which contains iron as a main component and a slight amount (about 0.2%) of carbon is used. Although various materials can be used in the case of steel materials, it is preferable to use a rolled steel material for general structure called SS400 (JIS G 3101; ASTM A283).
 圧延による金属材は、圧延工程に適した組成からなり、大きな塑性変形の後に破壊に至る延性を保有する。一方、鋳造による金属材は、鋳造工程に適した組成からなり、破壊に至る伸びが圧延による金属材よりも小さい。このように、圧延による金属材は、破壊に至る伸びが鋳造による金属材よりも大きい、すなわち、延性が高い。したがって、圧延による金属材は、鋳造による金属材よりも衝撃に対する破壊強度が高い特性を保有する。 The metal material by rolling has a composition suitable for a rolling process, and retains ductility leading to fracture after large plastic deformation. On the other hand, the metal material by casting consists of a composition suitable for a casting process, and the elongation to failure is smaller than the metal material by rolling. Thus, the metal material by rolling has a greater elongation to failure than the metal material by casting, that is, the ductility is high. Therefore, the rolled metal material has the property of higher fracture strength to impact than the cast metal material.
 たとえば、常温での引張強度は、ダクタイル鋳鉄材とSS400材とのいずれも400~500N/mm程度を保有する。一方、破壊時の伸びはダクタイル鋳鉄材が10%程度であるのに対して、SS400材が20%以上を保有する。したがって、SS400材の方が、ダクタイル鋳鉄材よりも延性が高い。 For example, the tensile strength at normal temperature is about 400 to 500 N / mm 2 for both ductile cast iron and SS400. On the other hand, while the elongation at break is about 10% of ductile cast iron material, SS400 material holds 20% or more. Therefore, the SS400 material has higher ductility than the ductile cast iron material.
 タービン20は、タービンハウジング21と、タービン翼22と、タービンディスク23と、タービンノズル24とを備えている。タービンハウジング21は、軸線X回りに配置される中空の筒状部材であり、その内部にタービン翼22と、タービンディスク23と、タービンノズル24とを収容している。タービンハウジング21には、図1の右方に示す矢印に沿って舶用ディーゼル機関から排出される排気ガスが流入する。 The turbine 20 includes a turbine housing 21, a turbine blade 22, a turbine disk 23 and a turbine nozzle 24. The turbine housing 21 is a hollow cylindrical member disposed around the axis X, and accommodates therein the turbine blade 22, the turbine disk 23, and the turbine nozzle 24. Exhaust gas exhausted from the marine diesel engine flows into the turbine housing 21 along the arrow shown on the right side of FIG.
 タービンハウジング21に導かれた排気ガスは、タービンノズル24を通過する際に静圧膨張し、タービン翼22に導かれる。タービン翼22は、ロータ軸30に固定された略円板状のタービンディスク23の外周面に軸線回りに一定間隔で取り付けられている。タービンディスク23には、静圧膨張した排気ガスがタービン翼22を通過することによって軸線X回りの回転力が与えられる。この回転力は、ロータ軸30を回転させる動力となり、ロータ軸30に連結された羽根車11を軸線X回りに回転させる。 The exhaust gas introduced to the turbine housing 21 is expanded by static pressure as it passes through the turbine nozzle 24 and is introduced to the turbine blade 22. The turbine blades 22 are attached to the outer peripheral surface of the substantially disk-shaped turbine disk 23 fixed to the rotor shaft 30 at fixed intervals around the axis. The turbine disk 23 is given rotational force about the axis X by passing the static pressure expanded exhaust gas through the turbine blade 22. This rotational force is a power for rotating the rotor shaft 30, and rotates the impeller 11 connected to the rotor shaft 30 about the axis X.
 このように本実施形態の過給機100は、舶用ディーゼル機関から排出される排気ガスをタービン20に導いてタービン翼22が取り付けられたタービンディスク23を軸線X回りに回転させる。タービンディスク23の回転に伴ってロータ軸30を介して連結された羽根車11が回転し、取込口11aから流入する空気が圧縮され、圧縮空気が吐出口11bから吐出される。吐出口11bから吐出された圧縮空気はスクロール部13に流入し、舶用ディーゼル機関の吸気マニホールドに導かれる。 As described above, the turbocharger 100 according to the present embodiment guides the exhaust gas discharged from the marine diesel engine to the turbine 20 to rotate the turbine disk 23 on which the turbine blade 22 is attached around the axis X. The impeller 11 connected via the rotor shaft 30 rotates with the rotation of the turbine disk 23, and the air flowing in from the inlet 11a is compressed, and the compressed air is discharged from the outlet 11b. The compressed air discharged from the discharge port 11 b flows into the scroll portion 13 and is guided to the intake manifold of the marine diesel engine.
 サイレンサ16は、遠心圧縮機10内で発生する騒音のレベルを低下させる装置である。図1に示すように、サイレンサ16は、軸線Xに直交する方向から流入する空気を、空気案内筒12の取込口11aに導く流路を画定する。流路の周囲には消音材16aが配置されている。この消音材16aによって、遠心圧縮機10内で発生する騒音の一部が吸収され、騒音のレベルが低下する。 The silencer 16 is a device that reduces the level of noise generated in the centrifugal compressor 10. As shown in FIG. 1, the silencer 16 defines a flow path for guiding the air flowing in from the direction orthogonal to the axis X to the inlet 11 a of the air guide cylinder 12. A silencer material 16 a is disposed around the flow path. A part of the noise generated in the centrifugal compressor 10 is absorbed by the sound deadening material 16a, and the noise level is reduced.
 次に、遠心圧縮機10が備える各構成について説明する。
 図2に示すように、羽根車11は、軸線Xに沿って延びるロータ軸30に取り付けられており、ロータ軸30が軸線X回りに回転するのに伴って、軸線X回りに回転する。羽根車11は、軸線X回りに回転することにより、取込口11aから流入する空気を圧縮して吐出口11bから吐出する。
Next, each component of the centrifugal compressor 10 will be described.
As shown in FIG. 2, the impeller 11 is attached to a rotor shaft 30 extending along the axis X, and rotates around the axis X as the rotor shaft 30 rotates around the axis X. The impeller 11 rotates around the axis X to compress the air flowing in from the inlet 11 a and discharge the air from the outlet 11 b.
 図2に示すように、羽根車11は、ロータ軸30に取り付けられるハブ11cと、ハブ11cの外周面上に取り付けられるブレード11dと、流路11eとをえる。羽根車11には、ハブ11cの外周面と空気案内筒12の内周面により形成される空間が設けられており、この空間が複数枚のブレード11dにより複数の空間に仕切られている。そして、羽根車11は、軸線X方向に沿って取込口11aから流入する空気に径方向の遠心力を与えて軸線X方向に直交した方向(傾斜した方向;羽根車11の半径方向)に吐出させ、吐出口11bから吐出された圧縮空気をディフューザ13aに流入させる。 As shown in FIG. 2, the impeller 11 has a hub 11c attached to the rotor shaft 30, a blade 11d attached on the outer peripheral surface of the hub 11c, and a flow passage 11e. The impeller 11 is provided with a space formed by the outer peripheral surface of the hub 11c and the inner peripheral surface of the air guiding cylinder 12, and this space is partitioned into a plurality of spaces by a plurality of blades 11d. Then, the impeller 11 applies centrifugal force in the radial direction to the air flowing in from the intake port 11a along the axis X direction, and in a direction (inclined direction; radial direction of the impeller 11) orthogonal to the axis X direction. The compressed air discharged from the discharge port 11b is made to flow into the diffuser 13a.
 空気案内筒12は、羽根車11を収容するとともにロータ軸30の軸線X方向に沿って取込口11aから流入する空気を吐出口11bから吐出する部材である。空気案内筒12は、羽根車11とともに、軸線Xに沿って取込口11aから流入する空気を、軸線Xに直交する径方向に案内して吐出口11bへ導く流路11eを形成する。 The air guide cylinder 12 is a member that accommodates the impeller 11 and discharges, from the discharge port 11 b, air flowing in from the intake port 11 a along the axis X direction of the rotor shaft 30. The air guide cylinder 12, together with the impeller 11, forms a flow passage 11e which guides the air flowing in from the inlet 11a along the axis X in the radial direction perpendicular to the axis X to the outlet 11b.
 スクロール部13は、吐出口11bから吐出された圧縮空気が流入するとともに、圧縮空気に付与された運動エネルギー(動圧)を圧力エネルギー(静圧)に変換する装置である。スクロール部13は、空気案内筒12よりも軸線X方向に直交する径方向の外周側に配置されている。 The scroll unit 13 is a device for receiving the compressed air discharged from the discharge port 11b and converting kinetic energy (dynamic pressure) applied to the compressed air into pressure energy (static pressure). The scroll portion 13 is disposed on the outer peripheral side in the radial direction orthogonal to the axial line X direction with respect to the air guide cylinder 12.
 スクロール部13は、ディフューザ13aと、ディフューザディスク13bと、外側スクロールケーシング13c(図1参照。)と、内側スクロールケーシング13dと、渦形室13eを備える。渦形室13eは、外側スクロールケーシング13cと、内側スクロールケーシング13dとによって画定される空間である。
 図2に示すように、内側スクロールケーシング13dは、締結ボルト43により空気案内筒12に連結されている。
The scroll portion 13 includes a diffuser 13a, a diffuser disk 13b, an outer scroll casing 13c (see FIG. 1), an inner scroll casing 13d, and a spiral chamber 13e. The spiral chamber 13e is a space defined by the outer scroll casing 13c and the inner scroll casing 13d.
As shown in FIG. 2, the inner scroll casing 13 d is connected to the air guiding cylinder 12 by a fastening bolt 43.
 ディフューザ13aは、羽根車11の吐出口11bの下流側に配置される翼形の部材であり、吐出口11bから渦形室13eに圧縮空気を導く流路を形成する。ディフューザ13aは、ロータ軸30と同軸に配置される円環形状のディフューザディスク13bの円周方向の複数箇所に設けられている。ディフューザ13aは、羽根車11の全周に設けられる圧縮空気の吐出口11bを囲むように設けられている。
 図2に示すように、ディフューザディスク13bは、締結ボルト44により内側スクロールケーシング13dに連結されている。
The diffuser 13a is an airfoil-shaped member disposed on the downstream side of the discharge port 11b of the impeller 11, and forms a flow path for guiding the compressed air from the discharge port 11b to the spiral chamber 13e. The diffusers 13 a are provided at a plurality of circumferential positions of the annular diffuser disc 13 b coaxially arranged with the rotor shaft 30. The diffuser 13 a is provided so as to surround the discharge port 11 b of the compressed air provided around the entire circumference of the impeller 11.
As shown in FIG. 2, the diffuser disk 13 b is coupled to the inner scroll casing 13 d by a fastening bolt 44.
 ディフューザ13aは、羽根車11の吐出口11bから吐出された圧縮空気の流速を減速させることにより、圧縮空気に付与された運動エネルギー(動圧)を圧力エネルギー(静圧)に変換する。ディフューザ13aを通過する際に流速が減速された圧縮空気は、ディフューザ13aと連通した渦形室13eに流入する。渦形室13eに流入した作動流体は、吐出配管(図示略)へと吐出される。 The diffuser 13 a converts kinetic energy (dynamic pressure) imparted to the compressed air into pressure energy (static pressure) by decelerating the flow velocity of the compressed air discharged from the discharge port 11 b of the impeller 11. The compressed air whose velocity is reduced when passing through the diffuser 13a flows into the vortex chamber 13e in communication with the diffuser 13a. The working fluid having flowed into the spiral chamber 13e is discharged to a discharge pipe (not shown).
 第1コンテインメントリング14は、軸線X回りに羽根車11を取り囲むように、空気案内筒12の吐出口11b側と内側スクロールケーシング13dとの連結位置に取り付けられる環状部材である。図1に示すように、第1コンテインメントリング14は、ロータ軸30と同軸に配置されている。図2に示すように、第1コンテインメントリング14は、締結ボルト41によって空気案内筒12に連結されている。 The first containment ring 14 is an annular member attached at a connecting position between the discharge port 11 b side of the air guiding cylinder 12 and the inner scroll casing 13 d so as to surround the impeller 11 around the axis X. As shown in FIG. 1, the first containment ring 14 is disposed coaxially with the rotor shaft 30. As shown in FIG. 2, the first containment ring 14 is connected to the air guiding cylinder 12 by a fastening bolt 41.
 第2コンテインメントリング15は、空気案内筒12よりも径方向の外周側かつスクロール部13よりも径方向の内周側に配置される円筒状部材である。図1に示すように、第2コンテインメントリング15は、ロータ軸30と同軸に配置されている。図2に示すように、第2コンテインメントリング15は、締結ボルト42によって空気案内筒12に連結されている。 The second containment ring 15 is a cylindrical member disposed on the outer peripheral side in the radial direction than the air guide cylinder 12 and on the inner peripheral side in the radial direction than the scroll portion 13. As shown in FIG. 1, the second containment ring 15 is disposed coaxially with the rotor shaft 30. As shown in FIG. 2, the second containment ring 15 is connected to the air guiding cylinder 12 by a fastening bolt 42.
 第1コンテインメントリング14および第2コンテインメントリング15は、圧延により製造された金属部材からなり、鋳造により製造された金属部材からなる空気案内筒12よりも延性が高い。
 ここで延性が高いとは、破壊まで大きな塑性変形を伴うもので、塑性変形が少ない状況で破壊に至る脆性特性が少ないことを示す。このため、衝撃荷重が発生した際に、延性が高い材料は、衝撃の運動エネルギーを塑性変形することで吸収して制止させることが可能になる。そのため、衝撃荷重に対しても破壊に至らずに塑性変形でとどめることが可能となる。
The first containment ring 14 and the second containment ring 15 are made of metal members manufactured by rolling and have higher ductility than the air guide cylinder 12 made of metal members manufactured by casting.
Here, high ductility is accompanied by large plastic deformation until failure, and indicates that the brittle property leading to failure is small in a situation where plastic deformation is small. For this reason, when an impact load occurs, a material with high ductility can be absorbed and restrained by plastic deformation of kinetic energy of impact. Therefore, it becomes possible to hold | maintain by plastic deformation, without becoming to destruction also to an impact load.
 本実施形態においては、鋳造により製造された金属材料として使用するダクタイル鋳鉄材は、常温での引張強度は400~500N/mm程度、伸び10%程度を保有する。一方、圧延により製造された金属部材として使用するSS400材は、常温での引張強度は同様に400~500N/mm程度、伸び20%以上を保有している。したがって、伸びの違いから、ダクタイル鋳鉄材よりもSS400材の方が延性の高い材料と確認することができる。 In the present embodiment, the ductile cast iron material used as the metal material manufactured by casting has a tensile strength at normal temperature of about 400 to 500 N / mm 2 and an elongation of about 10%. On the other hand, the SS400 material used as a metal member manufactured by rolling has a tensile strength at normal temperature of about 400 to 500 N / mm 2 and an elongation of 20% or more. Therefore, SS400 material can be confirmed as a material with higher ductility than ductile cast iron material from the difference in elongation.
 このように、第1コンテインメントリング14および第2コンテインメントリング15は、空気案内筒12よりも延性が高い。そのため、第1コンテインメントリング14および第2コンテインメントリング15は、羽根車11が破損や脱落した際でも、羽根車11の全部または一部が径方向に飛散して空気案内筒12に衝突する場合に、羽根車11の全部または一部が外部に飛散することを抑制する。
 つまり、空気案内筒12が羽根車11の全部または一部の衝突により脆性破壊してしまう場合であっても、第1コンテインメントリング14および第2コンテインメントリング15が塑性変形することによって羽根車の全部または一部が外部に飛散する不具合が抑制される。
Thus, the first containment ring 14 and the second containment ring 15 have higher ductility than the air guide cylinder 12. Therefore, even when the impeller 11 is damaged or dropped, the first containment ring 14 and the second containment ring 15 scatter all or part of the impeller 11 in the radial direction and collide with the air guide cylinder 12 In this case, scattering of all or part of the impeller 11 to the outside is suppressed.
That is, even in the case where the air guide tube 12 is broken due to the collision of all or a part of the impeller 11, the impeller ring is caused by the plastic deformation of the first containment ring 14 and the second containment ring 15. It is possible to suppress the problem that all or a part of the material scatters to the outside.
 図2に示すように、第1コンテインメントリング14の外周面の半径D1と、第2コンテインメントリング15の外周面の半径D2とは、一致している。半径D1と半径D2とを一致させているのは、第1コンテインメントリング14の外周面の径と第2コンテインメントリング15の外周面の径が相違する場合に生じる隙間が形成されないようにするためである。この隙間が形成されると、羽根車11の全部または一部が外部に飛散してしまう可能性がある。 As shown in FIG. 2, the radius D1 of the outer peripheral surface of the first containment ring 14 and the radius D2 of the outer peripheral surface of the second containment ring 15 coincide with each other. The reason why the radius D1 and the radius D2 are made to coincide is that a gap that is generated when the diameter of the outer peripheral surface of the first containment ring 14 and the diameter of the outer peripheral surface of the second containment ring 15 are different is not formed. It is for. If this gap is formed, all or part of the impeller 11 may be scattered to the outside.
 なお、第1コンテインメントリング14の外周面の半径D1と、第2コンテインメントリング15の外周面の半径D2とが一致しない場合であっても、軸線X方向における第1コンテインメントリング14の端部と、軸線X方向における第2コンテインメントリング15の端部との隙間が微小であれば、径方向に飛散する羽根車11の全部または一部が外部に飛散する可能性を低く抑えることができる。
 したがって、第1コンテインメントリング14の外周面の半径D1と、第2コンテインメントリング15の外周面の半径D2とは、必ずしも同一径に一致させなくてもよい。
Even when the radius D1 of the outer circumferential surface of the first containment ring 14 and the radius D2 of the outer circumferential surface of the second containment ring 15 do not match, the end of the first containment ring 14 in the axial line X direction If the gap between the part and the end of the second containment ring 15 in the direction of the axis X is small, the possibility that all or part of the impeller 11 scattering in the radial direction scatters to the outside can be reduced. it can.
Therefore, the radius D1 of the outer circumferential surface of the first containment ring 14 and the radius D2 of the outer circumferential surface of the second containment ring 15 do not have to be the same diameter.
 また、図3に示すように、第1コンテインメントリング14の軸線X方向の端面14aと、第2コンテインメントリング15の軸線X方向の端面15aとは、軸線X方向に所定距離Wを空けて離間している。第1コンテインメントリング14と第2コンテインメントリング15とを連結し、あるいは一つの部材として形成する場合、この部材の軸線X方向の両端部において温度差に起因する熱伸び量の差が生じると、部材が変形もしくは破損してしまうおそれがある。 Further, as shown in FIG. 3, an end face 14 a in the direction of the axis X of the first containment ring 14 and an end face 15 a in the direction of the axis X of the second containment ring 15 are separated by a predetermined distance W in the axis X direction. It is separated. When the first containment ring 14 and the second containment ring 15 are connected or formed as one member, if a difference in thermal elongation due to a temperature difference occurs at both ends in the axis X direction of this member There is a risk that the member may be deformed or broken.
 そこで、本実施形態では、第1コンテインメントリング14と第2コンテインメントリング15とを軸線X方向に所定距離Wを空けて離間させることにより、温度差に起因する熱伸び量の差が各部材に生じたとしても、第1コンテインメントリング14と第2コンテインメントリング15のいずれにも変形もしくは破損を生じさせないようにしている。 Therefore, in the present embodiment, the first expansion ring 14 and the second expansion ring 15 are separated by a predetermined distance W in the direction of the axis X, so that the difference in thermal expansion due to the temperature difference is each member. Of the first containment ring 14 and the second containment ring 15 do not cause any deformation or breakage.
 図2に示すように、第1コンテインメントリング14が配置される軸線X方向の位置は、位置P1となっている。この位置P1は、羽根車11の軸線方向の重心位置と一致している。
 図1および図2に示すように、本実施形態の遠心圧縮機10の羽根車11は、取込口11a側よりも吐出口11b側の方が羽根の外径が大きくなっている。したがって、羽根車11の重心位置は、取込口11a側よりも吐出口11b側に近接した位置P1となる。
As shown in FIG. 2, the position in the direction of the axis X at which the first containment ring 14 is disposed is a position P1. The position P1 coincides with the axial center of gravity of the impeller 11.
As shown in FIGS. 1 and 2, in the impeller 11 of the centrifugal compressor 10 of the present embodiment, the outer diameter of the blade is larger on the discharge port 11b side than on the intake port 11a side. Therefore, the center-of-gravity position of the impeller 11 is a position P1 closer to the discharge port 11b side than the intake port 11a side.
 羽根車11が軸線X回りに高速回転する場合(例えば、毎分1万回転以上で回転する場合)、羽根車11の全部または一部が破断あるいは脱落する場合がある。羽根車11の脱落時の軸線X方向に直交する径方向への衝撃力は、重心位置で特に大きくなる。本実施形態においては、第1コンテインメントリング14が配置される軸線X方向の位置P1が羽根車11の軸線方向の重心位置と一致している。 When the impeller 11 rotates at high speed around the axis X (for example, when it rotates at 10,000 revolutions per minute or more), all or part of the impeller 11 may break or drop off. The impact force in the radial direction orthogonal to the axis X direction when the impeller 11 drops off is particularly large at the center of gravity. In the present embodiment, the position P1 in the direction of the axis X at which the first containment ring 14 is disposed coincides with the position of the center of gravity of the impeller 11 in the axial direction.
 そのため、重心位置にて破断あるいは脱落した羽根車11が径方向に飛散しても、第1コンテインメントリング14に衝突する。そして、延性の高い第1コンテインメントリング14が塑性変形することによって羽根車11の全部または一部が外部に飛散する不具合を抑制することができる。 Therefore, even if the impeller 11 broken or dropped at the center of gravity scatters in the radial direction, the impeller 11 collides with the first containment ring 14. And the defect which all or one part of the impeller 11 disperses outside can be suppressed by plastic deformation of the 1st containment ring 14 with high ductility.
 図2に示すように、第1コンテインメントリング14は、空気案内筒12とともに吐出口11bから吐出される圧縮空気が流通する流路11eの外周側の流路壁を形成している。
 図3に示すように、第1コンテインメントリング14は、径方向の外周側かつ軸線X方向の流路11e側に、径方向の内側突出する環状突起部14bを有している。
As shown in FIG. 2, the first containment ring 14 forms a flow passage wall on the outer peripheral side of the flow passage 11 e through which the compressed air discharged from the discharge port 11 b flows together with the air guide cylinder 12.
As shown in FIG. 3, the first containment ring 14 has an annular protruding portion 14 b that protrudes radially inward on the outer peripheral side in the radial direction and on the flow path 11 e side in the axial direction X.
 また、図3に示すように、空気案内筒12は、径方向の外周側かつ軸線X方向の流路11e側に環状段部12aを有する。空気案内筒12と第1コンテインメントリング14は、環状段部12aに環状突起部14bを配置した状態で接続されている。この環状段部12aと環状突起部14bの間には、隙間が設けられている。この隙間により、空気案内筒12の熱膨張があっても熱膨張により変形が第1コンテインメントリング14に伝搬しないようにすることができる。 Further, as shown in FIG. 3, the air guiding cylinder 12 has an annular stepped portion 12 a on the outer peripheral side in the radial direction and on the flow path 11 e side in the axis X direction. The air guiding cylinder 12 and the first containment ring 14 are connected in a state where the annular protrusion 14 b is disposed on the annular step 12 a. A gap is provided between the annular step 12a and the annular projection 14b. Due to this gap, even if there is thermal expansion of the air guide cylinder 12, deformation can be prevented from propagating to the first containment ring 14 due to the thermal expansion.
 内側スクロールケーシング13dと空気案内筒12が連結される連結位置において、内側スクロールケーシング13dの内周側端面13fと、第1コンテインメントリング14の径方向の外周側端面14cとは、互いに対向するように配置されている。 In the connection position where the inner scroll casing 13d and the air guide cylinder 12 are connected, the inner peripheral end surface 13f of the inner scroll casing 13d and the outer peripheral end surface 14c in the radial direction of the first containment ring 14 face each other Is located in
 内周側端面13fには軸線X回りの周方向に延びる無端状の環状溝部13gが形成されている。環状溝部13gには、Oリング13h(環状シール部材)が嵌め込まれている。また、外周側端面14cには軸線X回りの周方向に延びる無端状の環状溝部14dが形成されている。環状溝部14dには、Oリング14e(環状シール部材)が嵌め込まれている。
 Oリング13hが外周側端面14cに接触し、Oリング14eが内周側端面13fに接触することにより、内周側端面13fと外周側端面14cとが対向する位置において、流路11eからの圧縮空気の流出が遮断される。
An endless annular groove 13g extending in the circumferential direction about the axis X is formed in the inner peripheral end face 13f. An O-ring 13 h (annular seal member) is fitted into the annular groove 13 g. Further, an endless annular groove portion 14d extending in the circumferential direction around the axis X is formed in the outer peripheral side end face 14c. An O-ring 14e (annular seal member) is fitted into the annular groove 14d.
The O-ring 13h contacts the outer peripheral end surface 14c, and the O-ring 14e contacts the inner peripheral end surface 13f, so that compression from the flow passage 11e occurs at the position where the inner peripheral end surface 13f and the outer peripheral end surface 14c face each other. Air flow is shut off.
 次に、本実施形態の遠心圧縮機の製造方法について説明する。
 本実施形態の遠心圧縮機10の製造方法は、以下の工程によって遠心圧縮機10を製造する。
 第1工程において、取込口11aから流入する空気を圧縮して吐出口11bから吐出する羽根車11をロータ軸30に取り付ける。
 第2工程において、羽根車11を収容するように空気案内筒12を取り付けてロータ軸30の軸線X方向に沿って取込口11aから流入する空気を軸線X方向から傾斜した方向に案内して吐出口11bへ導く流路を形成する。
Next, a method of manufacturing the centrifugal compressor according to the present embodiment will be described.
The manufacturing method of the centrifugal compressor 10 of this embodiment manufactures the centrifugal compressor 10 by the following processes.
In the first step, the impeller 11 which compresses the air flowing in from the inlet 11 a and discharges it from the outlet 11 b is attached to the rotor shaft 30.
In the second step, the air guide cylinder 12 is attached so as to accommodate the impeller 11, and the air flowing from the intake port 11a along the axis X direction of the rotor shaft 30 is guided in the direction inclined from the axis X direction. A flow path leading to the discharge port 11 b is formed.
 第3工程において、吐出口11bから吐出された圧縮空気が流入するスクロール部13を、空気案内筒12よりも軸線X方向に直交する径方向の外周側に配置する。
 第4工程において、軸線X回りに羽根車11を取り囲むように空気案内筒12とスクロール部13との連結位置に空気案内筒12もしくはスクロール部13を構成する鋳鉄よりも延性が高い鉄鋼材料で主構成される第1コンテインメントリング14を取り付ける。
 第5工程において、空気案内筒12よりも径方向の外周側かつスクロール部13よりも径方向の内周側に、空気案内筒12もしくはスクロール部13を構成する鋳鉄よりも延性が高い鉄鋼材料で主構成される第2コンテインメントリング15を取り付ける。
 以上の工程により、本実施形態の遠心圧縮機10が製造される。
In the third step, the scroll portion 13 into which the compressed air discharged from the discharge port 11 b flows is disposed on the outer peripheral side in the radial direction orthogonal to the axis X direction with respect to the air guide cylinder 12.
In the fourth step, the steel material is mainly made of a steel material having a ductility higher than that of cast iron constituting the air guide cylinder 12 or the scroll portion 13 at the connecting position of the air guide cylinder 12 and the scroll portion 13 so as to surround the impeller 11 around the axis X Attach the first containment ring 14 configured.
In the fifth step, a steel material having a ductility higher than that of cast iron constituting the air guide cylinder 12 or the scroll portion 13 on the outer peripheral side in the radial direction than the air guide cylinder 12 and on the inner peripheral side in the radial direction Attach the second main containment ring 15.
The centrifugal compressor 10 of the present embodiment is manufactured by the above steps.
 以上説明した本実施形態の過給機100が奏する作用および効果について説明する。
 本実施形態の過給機100が備える圧縮機は、遠心圧縮機である。そのため、羽根車11は、取込口11a側よりも吐出口11b側の方が羽根の外径が大きくなっている。したがって、羽根車11の重心位置は吐出口11b側の位置P1となる。そして、空気案内筒12の吐出口11b側とスクロール部13との連結位置は、軸線Xにおいて羽根車11の重心位置となる。
 重心位置において、羽根車の全部または一部が破断あるいは脱落した際は、その破断あるいは脱落した部分は重量が大きく、軸線方向に直交する径方向に飛散するときの衝撃力は大きいものとなる。
The operation and effects of the turbocharger 100 of the present embodiment described above will be described.
The compressor provided in the turbocharger 100 of the present embodiment is a centrifugal compressor. Therefore, in the impeller 11, the outer diameter of the blade is larger on the discharge port 11b side than on the intake port 11a side. Therefore, the gravity center position of the impeller 11 is the position P1 on the discharge port 11b side. The connection position between the discharge port 11 b side of the air guide cylinder 12 and the scroll portion 13 is the center of gravity of the impeller 11 at the axis X.
When all or part of the impeller is broken or dropped at the center of gravity position, the broken or dropped portion has a large weight, and the impact force when it is scattered in the radial direction perpendicular to the axial direction is large.
 そこで、本実施形態では、この連結位置に空気案内筒12およびスクロール部13を主体として構成する鋳鉄よりも延性が高い鉄鋼材料で主構成される第1コンテインメントリング14(環状部材)を設け、羽根車11の重心位置から軸線X方向に直交する径方向に飛散する場合にも、破断あるいは脱落した羽根車11の全部または一部が衝突するように配置した。破断あるいは脱落した羽根車11の全部または一部の衝突によって空気案内筒12が脆性破壊してしまう場合であっても、延性の高い第1コンテインメントリング14への衝突では脆性破壊に至らずに塑性変形することにとどまる。よって、破断あるいは脱落した羽根車11の全部または一部が過給機100の外部に飛散する不具合を抑制することができる。 Therefore, in the present embodiment, a first containment ring 14 (annular member) mainly made of a steel material having higher ductility than cast iron mainly composed of the air guide cylinder 12 and the scroll portion 13 is provided at this connection position. Even in the case of scattering in the radial direction orthogonal to the axis X direction from the position of the center of gravity of the impeller 11, all or part of the broken or dropped impeller 11 is disposed to collide. Even when the air guide cylinder 12 is broken due to the collision of all or part of the broken or dropped impeller 11, the collision with the high ductility first containment ring 14 does not lead to the brittle failure. Staying in plastic deformation. Therefore, it is possible to suppress the problem that all or part of the broken or dropped impeller 11 scatters to the outside of the turbocharger 100.
 本実施形態の遠心圧縮機10によれば、第1コンテインメントリング14の外周面の径と第2コンテインメントリング15の外周面の径が一致している。そのため、第1コンテインメントリング14と第2コンテインメントリング15とは、ロータ軸30回りに空気案内筒12を取り囲む同一円筒面を形成する。 According to the centrifugal compressor 10 of the present embodiment, the diameter of the outer circumferential surface of the first containment ring 14 matches the diameter of the outer circumferential surface of the second containment ring 15. Therefore, the first containment ring 14 and the second containment ring 15 form the same cylindrical surface surrounding the air guiding cylinder 12 around the rotor shaft 30.
 空気案内筒12を脆性破壊して径方向の外側に飛散する羽根車11の全部または一部は、同一円筒面を形成する第1コンテインメントリング14と第2コンテインメントリング15とのいずれかに衝突する。同一円筒面が形成されているため、第1コンテインメントリング14の外周面の径と第2コンテインメントリング15の外周面の径が相違する場合に生じる隙間が形成されない。そのため、羽根車11の全部または一部が、第1コンテインメントリング14と第2コンテインメントリング15の外周面の径の違いより形成される隙間から過給機100の外部に飛散する不具合が抑制される。 All or a part of the impeller 11 that brittlely breaks the air guide cylinder 12 and scatters outward in the radial direction is either the first containment ring 14 or the second containment ring 15 that forms the same cylindrical surface. collide. Since the same cylindrical surface is formed, no gap is formed when the diameter of the outer peripheral surface of the first containment ring 14 and the diameter of the outer peripheral surface of the second containment ring 15 are different. Therefore, the problem that all or a part of the impeller 11 scatters to the outside of the turbocharger 100 from the gap formed by the difference in diameter of the outer circumferential surface of the first containment ring 14 and the second containment ring 15 is suppressed. Be done.
 また、本実施形態の過給機100が備える遠心圧縮機10によれば、第1コンテインメントリング14の軸線X方向の端面14aと第2コンテインメントリング15の軸線X方向の端面15aとが、軸線X方向に所定距離Wを空けて離間している。第1コンテインメントリング14と第2コンテインメントリング15とを連結し、あるいは一つの部材として形成する場合、この部材の軸線X方向の両端部において温度差に起因する熱伸び量の差が生じると、部材が変形もしくは破損してしまうおそれがある。 Further, according to the centrifugal compressor 10 provided in the turbocharger 100 of the present embodiment, the end face 14 a in the axial X direction of the first containment ring 14 and the end face 15 a in the axial X direction of the second containment ring 15 are It is separated by a predetermined distance W in the axis X direction. When the first containment ring 14 and the second containment ring 15 are connected or formed as one member, if a difference in thermal elongation due to a temperature difference occurs at both ends in the axis X direction of this member There is a risk that the member may be deformed or broken.
 そこで、本実施形態では、第1コンテインメントリング14と第2コンテインメントリング15とを別部材として構成し、軸線X方向に所定距離Wを空けて離間させた。これにより、温度差に起因する熱伸び量の差が各部材に生じたとしても、第1コンテインメントリング14と第2コンテインメントリング15のいずれにも変形もしくは破損を生じさせないようにしている。 Therefore, in the present embodiment, the first containment ring 14 and the second containment ring 15 are configured as separate members, and are separated by a predetermined distance W in the axis X direction. As a result, even if a difference in thermal expansion amount caused by a temperature difference occurs in each member, neither deformation nor breakage occurs in any of the first containment ring 14 and the second containment ring 15.
 本実施形態の過給機100が備える遠心圧縮機10によれば、ロータ軸30の回転数が高まって吐出口11bから吐出される圧縮空気の圧力が高まるにつれて、第1コンテインメントリング14が圧縮空気から受ける圧力が高まる。第1コンテインメントリング14が流路11e側に有する環状突起部14bは、空気案内筒12が流路11e側に有する環状段部12aに配置されている。そのため、第1コンテインメントリング14が圧縮空気から受ける圧力が高まるにつれて、環状突起部14bと環状段部12aとの接触力が高まる。これにより、第1コンテインメントリング14と空気案内筒12との接続位置において圧縮空気が漏れ出る不具合が抑制される。 According to the centrifugal compressor 10 included in the turbocharger 100 of the present embodiment, the first containment ring 14 is compressed as the rotational speed of the rotor shaft 30 increases and the pressure of the compressed air discharged from the discharge port 11 b increases. The pressure from the air increases. The annular projection 14b that the first containment ring 14 has on the flow passage 11e side is disposed in the annular step 12a that the air guiding cylinder 12 has on the flow passage 11e side. Therefore, as the pressure that the first containment ring 14 receives from the compressed air increases, the contact force between the annular protrusion 14 b and the annular step 12 a increases. Thereby, the problem that compressed air leaks out at the connection position of the first containment ring 14 and the air guiding cylinder 12 is suppressed.
 本実施形態の過給機100が備える遠心圧縮機10によれば、連結位置におけるスクロール部13の径方向の内周側端面13fと、第1コンテインメントリング14の径方向の外周側端面14cとの間にOリング13hおよびOリング14e(環状シール部材)が配置される。このようにすることで、スクロール部13と第1コンテインメントリング14が対向する位置において圧縮空気が漏れ出る不具合が抑制される。 According to the centrifugal compressor 10 provided in the turbocharger 100 of the present embodiment, the radially inner end face 13 f of the scroll portion 13 at the connection position and the radially outer end face 14 c of the first containment ring 14 The O-ring 13h and the O-ring 14e (annular seal member) are disposed between the two. In this way, the problem of compressed air leaking at the position where the scroll portion 13 and the first containment ring 14 face each other is suppressed.
 本実施形態の空気案内筒12およびスクロール部13は、鋳造により製造された金属部材で形成されている。この金属部材として、複雑な形状を製造し易いねずみ鋳鉄やダクタイル鋳鉄を用いるのが好ましい。また、第1コンテインメントリング14および第2コンテインメントリング15は、圧延により製造された金属部材で形成されている。この金属部材として、鋳鉄材よりも延性が高く、衝撃荷重に対しても塑性変形することで破損に至りにくいSS400と呼ばれる一般構造用圧延鋼材を用いるのが好ましい。
 このようにすることで、圧延により製造された金属部材である第1コンテインメントリング14および第2コンテインメントリング15の延性を、鋳造により製造された金属部材である空気案内筒12およびスクロール部13の延性よりも高くすることができる。
The air guide cylinder 12 and the scroll portion 13 of the present embodiment are formed of metal members manufactured by casting. As this metal member, it is preferable to use gray cast iron or ductile cast iron which is easy to manufacture a complicated shape. The first containment ring 14 and the second containment ring 15 are formed of metal members manufactured by rolling. As this metal member, it is preferable to use a general structural rolled steel material called SS400, which is higher in ductility than cast iron material and less likely to be damaged by plastic deformation even under impact load.
By doing this, the ducts of the first containment ring 14 and the second containment ring 15, which are metal members manufactured by rolling, are compared with the air guide cylinder 12 and the scroll portion 13 which are metal members manufactured by casting. Can be higher than the ductility of the
〔第2実施形態〕
 以下、第2実施形態の過給機について図面を参照して説明する。
 第2実施形態の過給機200は、第1実施形態の過給機100を変形したものである。以下で特に説明する場合を除き第1実施形態の過給機100と同様であるものとし、同一の符号を付したものについての説明を省略する。
 第1実施形態の過給機100は、第1コンテインメントリング14および第2コンテインメントリング15を軸線X方向に所定距離Wを空けて離間させるものであった。それに対して第2実施形態の過給機200は、第1コンテインメントリング14’および第2コンテインメントリング15’が径方向で重なり合うとともに径方向に近接した位置に配置されるようにしたものである。
Second Embodiment
Hereinafter, a turbocharger according to a second embodiment will be described with reference to the drawings.
The turbocharger 200 of the second embodiment is a modification of the turbocharger 100 of the first embodiment. It shall be the same as that of supercharger 100 of a 1st embodiment except for the case where it explains especially below, and it omits explanation about what attached the same numerals.
The turbocharger 100 according to the first embodiment separates the first containment ring 14 and the second containment ring 15 by a predetermined distance W in the axis X direction. On the other hand, in the turbocharger 200 of the second embodiment, the first containment ring 14 'and the second containment ring 15' are arranged so as to overlap in the radial direction and be in close proximity to each other in the radial direction. is there.
 図4に示すように、遠心圧縮機10は、第1コンテインメントリング14’(環状部材)と、第2コンテインメントリング15’(円筒状部材)とを備えている。第1コンテインメントリング14’および第2コンテインメントリング15’は、第1実施形態の第1コンテインメントリング14および第2コンテインメントリング15と同様の金属部材からなる。 As shown in FIG. 4, the centrifugal compressor 10 includes a first containment ring 14 ′ (annular member) and a second containment ring 15 ′ (cylindrical member). The first containment ring 14 ′ and the second containment ring 15 ′ are made of the same metal members as the first containment ring 14 and the second containment ring 15 of the first embodiment.
 図5に示すように、第1コンテインメントリング14’は、軸線X回りに羽根車11を取り囲むように、空気案内筒12の吐出口11b側と内側スクロールケーシング13dとの連結位置に取り付けられる環状部材である。図5に示すように、第1コンテインメントリング14’は、ロータ軸30と同軸に配置されている。図5に示すように、第1コンテインメントリング14’は、締結ボルト41によって空気案内筒12に連結されている。 As shown in FIG. 5, the first containment ring 14 ′ is an annular ring attached to the connection position between the outlet 11 b side of the air guide cylinder 12 and the inner scroll casing 13 d so as to surround the impeller 11 around the axis X It is a member. As shown in FIG. 5, the first containment ring 14 ′ is disposed coaxially with the rotor shaft 30. As shown in FIG. 5, the first containment ring 14 ′ is connected to the air guiding cylinder 12 by a fastening bolt 41.
 第2コンテインメントリング15’は、空気案内筒12よりも径方向の外周側かつスクロール部13よりも径方向の内周側に配置される円筒状部材である。図4に示すように、第2コンテインメントリング15’は、ロータ軸30と同軸に配置されている。図5に示すように、第2コンテインメントリング15’は、締結ボルト42によって空気案内筒12に連結されている。 The second containment ring 15 ′ is a cylindrical member disposed on the outer peripheral side in the radial direction than the air guide cylinder 12 and on the inner peripheral side in the radial direction than the scroll portion 13. As shown in FIG. 4, the second containment ring 15 ′ is disposed coaxially with the rotor shaft 30. As shown in FIG. 5, the second containment ring 15 ′ is connected to the air guiding cylinder 12 by a fastening bolt 42.
 図5に示すように、第1コンテインメントリング14’の外周面の半径D1と、第2コンテインメントリング15’の外周面の半径D2とは、一致している。半径D1と半径D2とを一致させているのは、第1コンテインメントリング14’の外周面の径と第2コンテインメントリング15’の外周面の径が相違する場合に生じる隙間が形成されないようにするためである。この隙間が形成されると、羽根車11の全部または一部が外部に飛散してしまう可能性がある。 As shown in FIG. 5, the radius D1 of the outer circumferential surface of the first containment ring 14 'and the radius D2 of the outer circumferential surface of the second containment ring 15' coincide with each other. The reason why the radius D1 and the radius D2 are matched is that a gap is not formed which occurs when the diameter of the outer peripheral surface of the first containment ring 14 'is different from the diameter of the outer peripheral surface of the second containment ring 15'. In order to If this gap is formed, all or part of the impeller 11 may be scattered to the outside.
 また、図6に示すように、第2コンテインメントリング15’の吐出口11b側の端部15a’と第1コンテインメントリング14’の取込口11a側の端部14a’とが、径方向で重なり合うとともに径方向に近接した位置に配置されている。
 内周側に配置される端部14a’と、外周側に配置される端部15a’との間の径方向の隙間は、これらの部材が熱膨張により接触しない程度の距離を保つように設定されている。このようにすることで、第1コンテインメントリング14’の端部14a’と、外周側に配置される第2コンテインメントリング15’の端部15a’とが熱膨張により接触し、それぞれが変形あるいは破損する不具合が防止される。
Further, as shown in FIG. 6, an end 15a 'on the discharge opening 11b side of the second containment ring 15' and an end 14a 'on the intake opening 11a side of the first containment ring 14' are in the radial direction. And are arranged at positions close to each other in the radial direction.
The gap in the radial direction between the end portion 14a 'disposed on the inner circumferential side and the end portion 15a' disposed on the outer circumferential side is set so as to maintain such a distance that these members do not contact due to thermal expansion. It is done. By doing this, the end 14a 'of the first containment ring 14' and the end 15a 'of the second containment ring 15' disposed on the outer circumferential side are in contact due to thermal expansion, and each is deformed Alternatively, the failure to break can be prevented.
 また、内周側に配置される端部14a’と、外周側に配置される端部15a’との間の径方向の隙間は、端部14a’が破断部材による衝撃により塑性変形する際に端部14a’が端部15a’に接触する程度の距離となるように設定される。このようにすることで、端部14a’が破断部材による衝撃により塑性変形する際に端部14a’に接触し、第1コンテインメントリング14’と第2コンテインメントリング15’の双方により破断部材の衝撃を吸収することができる。 The radial gap between the end portion 14a 'disposed on the inner circumferential side and the end portion 15a' disposed on the outer circumferential side is formed when the end portion 14a 'is plastically deformed by the impact of the breaking member. The distance is set such that the end 14 a ′ contacts the end 15 a ′. By doing this, the end 14a 'contacts the end 14a' when it plastically deforms due to the impact of the breaking member, and both the first containment ring 14 'and the second containment ring 15' break the member. Shock can be absorbed.
 図5に示すように、第1コンテインメントリング14’が配置される軸線X方向の位置は位置P1となっている。この位置P1は、羽根車11の軸線方向の重心位置と一致している。位置P1は、図6に示す第1コンテインメントリング14’の環状突起部14bの取込口11a側の端面と一致した位置となっている。
 図5および図6に示すように、本実施形態の遠心圧縮機10の羽根車11は、取込口11a側よりも吐出口11b側の方が羽根の外径が大きくなっている。したがって、羽根車11の重心位置は、取込口11a側よりも吐出口11b側に近接した位置P1となる。
As shown in FIG. 5, the position in the direction of the axis X at which the first containment ring 14 'is disposed is the position P1. The position P1 coincides with the axial center of gravity of the impeller 11. The position P1 coincides with the end face of the annular projection 14b of the first containment ring 14 'shown in FIG. 6 on the intake port 11a side.
As shown in FIGS. 5 and 6, in the impeller 11 of the centrifugal compressor 10 of the present embodiment, the outer diameter of the blade is larger on the discharge port 11b side than on the intake port 11a side. Therefore, the center-of-gravity position of the impeller 11 is a position P1 closer to the discharge port 11b side than the intake port 11a side.
 羽根車11が軸線X回りに高速回転する場合(例えば、毎分1万回転以上で回転する場合)、羽根車11の全部または一部が破断あるいは脱落する場合がある。羽根車11の脱落時の軸線X方向に直交する径方向への衝撃力は、重心位置で特に大きくなる。本実施形態においては、第1コンテインメントリング14’が配置される軸線X方向の位置P1が羽根車11の軸線方向の重心位置と一致している。 When the impeller 11 rotates at high speed around the axis X (for example, when it rotates at 10,000 revolutions per minute or more), all or part of the impeller 11 may break or drop off. The impact force in the radial direction orthogonal to the axis X direction when the impeller 11 drops off is particularly large at the center of gravity. In the present embodiment, the position P1 in the direction of the axis X at which the first containment ring 14 'is disposed coincides with the position of the center of gravity of the impeller 11 in the axial direction.
 そのため、重心位置にて破断あるいは脱落した羽根車11が径方向に飛散して空気案内筒12を破損させ、更に径方向に飛散する場合、羽根車11が第1コンテインメントリング14’に衝突する。そして、延性の高い第1コンテインメントリング14’が塑性変形することによって羽根車11の全部または一部が外部に飛散する不具合を抑制することができる。 Therefore, when the impeller 11 broken or dropped at the center of gravity scatters in the radial direction to damage the air guide cylinder 12 and further scatters in the radial direction, the impeller 11 collides with the first containment ring 14 ' . And the defect which all or one part of the impeller 11 disperses outside can be suppressed by plastically deforming the 1st containment ring 14 'with high ductility.
 図5に示すように、第1コンテインメントリング14’は、空気案内筒12とともに吐出口11bから吐出される圧縮空気が流通する流路11eの外周側の流路壁を形成している。
 図6に示すように、第1コンテインメントリング14’は、径方向の内周側かつ軸線X方向の流路11e側に、径方向の内側突出する環状突起部14bを有している。
As shown in FIG. 5, the first containment ring 14 ′, together with the air guide cylinder 12, forms a flow passage wall on the outer peripheral side of the flow passage 11 e through which the compressed air discharged from the discharge port 11 b flows.
As shown in FIG. 6, the first containment ring 14 ′ has an annular protruding portion 14 b protruding inward in the radial direction on the inner peripheral side in the radial direction and on the flow passage 11 e side in the axial direction X.
 また、図6に示すように、空気案内筒12は、径方向の外周側かつ軸線X方向の流路11e側に環状段部12aを有する。空気案内筒12と第1コンテインメントリング14’は、環状段部12aに環状突起部14bを配置した状態で接続されている。この環状段部12aと環状突起部14bの間には、隙間が設けられている。この隙間により、空気案内筒12の熱膨張があっても熱膨張により変形が第1コンテインメントリング14’に伝搬しないようにすることができる。 Further, as shown in FIG. 6, the air guiding cylinder 12 has an annular stepped portion 12 a on the outer peripheral side in the radial direction and on the flow path 11 e side in the axis X direction. The air guide cylinder 12 and the first containment ring 14 'are connected in a state where the annular protrusion 14b is disposed on the annular step 12a. A gap is provided between the annular step 12a and the annular projection 14b. Due to this gap, even if there is thermal expansion of the air guide cylinder 12, deformation can be prevented from propagating to the first containment ring 14 'due to the thermal expansion.
 内側スクロールケーシング13dと空気案内筒12が連結される連結位置において、内側スクロールケーシング13dの内周側端面13fと第1コンテインメントリング14’の径方向の外周側端面14cとは、互いに対向するように配置されている。 In the connection position where the inner scroll casing 13d and the air guide cylinder 12 are connected, the inner peripheral end surface 13f of the inner scroll casing 13d and the radial outer peripheral end surface 14c of the first containment ring 14 'are opposed to each other Is located in
 以上説明した本実施形態の過給機200が奏する作用および効果について説明する。
 本実施形態の過給機200が備える圧縮機は、遠心圧縮機である。そのため、羽根車11は、取込口11a側よりも吐出口11b側の方が羽根の外径が大きくなっている。したがって、羽根車11の重心位置は吐出口11b側の位置P1となる。そして、空気案内筒12の吐出口11b側とスクロール部13との連結位置は、軸線Xにおいて羽根車11の重心位置となる。
 重心位置において、羽根車の全部または一部が破断あるいは脱落した際は、その破断あるいは脱落した部分は重量が大きく、軸線方向に直交する径方向に飛散するときの衝撃力は大きいものとなる。
The operation and effects of the turbocharger 200 of the present embodiment described above will be described.
The compressor provided in the turbocharger 200 of the present embodiment is a centrifugal compressor. Therefore, in the impeller 11, the outer diameter of the blade is larger on the discharge port 11b side than on the intake port 11a side. Therefore, the gravity center position of the impeller 11 is the position P1 on the discharge port 11b side. The connection position between the discharge port 11 b side of the air guide cylinder 12 and the scroll portion 13 is the center of gravity of the impeller 11 at the axis X.
When all or part of the impeller is broken or dropped at the center of gravity position, the broken or dropped portion has a large weight, and the impact force when it is scattered in the radial direction perpendicular to the axial direction is large.
 そこで、本実施形態では、この連結位置に空気案内筒12およびスクロール部13を主体として構成する鋳鉄よりも延性が高い鉄鋼材料で主構成される第1コンテインメントリング14’(環状部材)を設け、羽根車11の重心位置から軸線X方向に直交する径方向に飛散する場合にも、破断あるいは脱落した羽根車11の全部または一部(破断部材)が衝突するように配置した。破断部材の衝突によって空気案内筒12が脆性破壊してしまう場合であっても、延性の高い第1コンテインメントリング14’への衝突では脆性破壊に至らずに塑性変形することにとどまる。よって、破断部材が過給機200の外部に飛散する不具合を抑制することができる。 Therefore, in the present embodiment, a first containment ring 14 '(annular member) mainly made of a steel material having higher ductility than cast iron mainly composed of the air guide cylinder 12 and the scroll portion 13 is provided at this connection position. Even in the case of scattering in the radial direction orthogonal to the axis X direction from the position of the center of gravity of the impeller 11, all or part (rupturing member) of the impeller 11 that has been broken or dropped is disposed to collide. Even when the air guide cylinder 12 is broken due to the collision of the fracture member, the collision with the high ductility first containment ring 14 'does not lead to the brittle failure and plastic deformation occurs. Accordingly, it is possible to suppress the problem that the breaking member scatters to the outside of the turbocharger 200.
 また、本実施形態では、空気案内筒12よりも径方向の外周側かつスクロール部13よりも径方向の内周側に、空気案内筒12よりも延性が高い材料で構成される第2コンテインメントリング15’を配置した。この第2コンテインメントリング15’の吐出口11b側の端部15a’と第1コンテインメントリング14’の取込口11a側の端部14a’とが、軸線X方向で重なり合うとともに径方向に近接した位置に配置されている。 Further, in the present embodiment, a second containment made of a material having a ductility higher than that of the air guiding cylinder 12 on the outer peripheral side in the radial direction than the air guiding cylinder 12 and on the inner peripheral side in the radial direction than the scroll portion 13 I placed the ring 15 '. The end 15a 'on the discharge port 11b side of the second containment ring 15' and the end 14a 'on the intake port 11a side of the first containment ring 14' overlap in the axial line X direction and approach in the radial direction Are placed in the same position.
 そのため、破断部材が外部に飛散し、径方向の内周側に配置される第1コンテインメントリング14’に衝突する場合、衝撃を受けた端部14a’が径方向の外周側に向けて移動して第2コンテインメントリング15の端部15a’に衝突する。これにより、第2コンテインメントリング15’と第1コンテインメントリング14’との間に隙間が生じることが規制される。第2コンテインメントリング15’および第1コンテインメントリング14’のいずれも、空気案内筒12よりも延性が高いため、衝突による衝撃が第2コンテインメントリング15’および第1コンテインメントリング14’の双方が塑性変形することによって吸収される。 Therefore, when the breaking member scatters to the outside and collides with the first containment ring 14 'disposed on the inner circumferential side in the radial direction, the impacted end 14a' moves toward the outer circumferential side in the radial direction And collide with the end 15 a ′ of the second containment ring 15. Thus, the formation of a gap between the second containment ring 15 'and the first containment ring 14' is restricted. Since both the second containment ring 15 'and the first containment ring 14' have ductility higher than that of the air guide cylinder 12, the impact due to the collision is generated in the second containment ring 15 'and the first containment ring 14'. Both are absorbed by plastic deformation.
 本実施形態では、第1コンテインメントリング14’が配置される軸線X方向の位置範囲に、羽根車11の軸線X方向の重心位置P1が存在している。
 羽根車11の重心位置P1あるいは重心位置P1近傍の全部または一部が破断あるいは脱落した際は、その破断あるいは脱落した部分は重量が大きく、軸線X方向に直交する径方向に飛散するときの衝撃力は大きいものとなる。
 そこで、本実施形態では、第1コンテインメントリング14’が配置される軸線X方向の位置範囲に、羽根車11の軸線X方向の重心位置P1が存在するようにしている。これにより、羽根車11の重心位置P1あるいは重心位置P1近傍の全部または一部が破断あるいは脱落した際に、その破断あるいは脱落した部分を第1コンテインメントリング14’に衝突させ、羽根車11の全部または一部が外部に飛散する不具合を抑制することができる。
In the present embodiment, the center-of-gravity position P1 in the direction of the axis X of the impeller 11 is present in the position range in the direction of the axis X in which the first containment ring 14 'is disposed.
When all or part of the gravity center position P1 of the impeller 11 or the vicinity of the gravity center position P1 is broken or dropped, the broken or dropped portion has a large weight, and the impact when it is scattered in the radial direction orthogonal to the axis X direction The power is great.
So, in this embodiment, the gravity center position P1 of the axial line X direction of the impeller 11 is made to exist in the position range of the axial line X direction in which 1st containment ring 14 'is arrange | positioned. Thereby, when all or part of the gravity center position P1 of the impeller 11 or the vicinity of the gravity center position P1 is broken or dropped, the broken or dropped portion is made to collide with the first containment ring 14 '. It is possible to suppress the problem that all or a part scatters to the outside.
 本実施形態の過給機200が備える遠心圧縮機10によれば、ロータ軸30の回転数が高まって吐出口11bから吐出される圧縮空気の圧力が高まるにつれて、第1コンテインメントリング14’が圧縮空気から受ける圧力が高まる。第1コンテインメントリング14’が流路11e側に有する環状突起部14bは、空気案内筒12が流路11e側に有する環状段部12aに配置されている。そのため、第1コンテインメントリング14’が圧縮空気から受ける圧力が高まるにつれて、環状突起部14bと環状段部12aとの接触力が高まる。これにより、第1コンテインメントリング14’と空気案内筒12との接続位置において圧縮空気が漏れ出る不具合が抑制される。 According to the centrifugal compressor 10 included in the supercharger 200 of the present embodiment, the first containment ring 14 'is used as the rotational speed of the rotor shaft 30 increases and the pressure of the compressed air discharged from the discharge port 11b increases. The pressure received from the compressed air is increased. The annular projection 14b that the first containment ring 14 'has on the flow passage 11e side is disposed in the annular step 12a that the air guiding cylinder 12 has on the flow passage 11e side. Therefore, as the pressure received from the compressed air by the first containment ring 14 'increases, the contact force between the annular protrusion 14b and the annular step 12a increases. Thereby, the problem that compressed air leaks out at the connection position of the first containment ring 14 ′ and the air guiding cylinder 12 is suppressed.
 本実施形態の過給機200が備える遠心圧縮機10によれば、連結位置におけるスクロール部13の径方向の内周側端面13fと第1コンテインメントリング14’の径方向の外周側端面14cとの間にOリング13hおよびOリング14e(環状シール部材)が配置される。このようにすることで、スクロール部13と第1コンテインメントリング14’が対向する位置において圧縮空気が漏れ出る不具合が抑制される。 According to the centrifugal compressor 10 included in the turbocharger 200 of the present embodiment, the radially inner end face 13 f of the scroll portion 13 at the connection position and the radially outer end face 14 c of the first containment ring 14 ′ The O-ring 13h and the O-ring 14e (annular seal member) are disposed between the two. In this way, the problem of compressed air leaking out at the position where the scroll portion 13 and the first containment ring 14 'face each other is suppressed.
 本実施形態の空気案内筒12およびスクロール部13は、鋳造により製造された金属部材で形成されている。この金属部材として、複雑な形状を製造し易いねずみ鋳鉄やダクタイル鋳鉄を用いるのが好ましい。また、第1コンテインメントリング14’および第2コンテインメントリング15’は、圧延により製造された金属部材で形成されている。この金属部材として、鋳鉄材よりも延性が高く、衝撃荷重に対しても塑性変形することで破損に至りにくいSS400と呼ばれる一般構造用圧延鋼材を用いるのが好ましい。
 このようにすることで、圧延により製造された金属部材である第1コンテインメントリング14’および第2コンテインメントリング15’の延性を、鋳造により製造された金属部材である空気案内筒12およびスクロール部13の延性よりも高くすることができる。
The air guide cylinder 12 and the scroll portion 13 of the present embodiment are formed of metal members manufactured by casting. As this metal member, it is preferable to use gray cast iron or ductile cast iron which is easy to manufacture a complicated shape. Moreover, 1st containment ring 14 'and 2nd containment ring 15' are formed with the metal member manufactured by rolling. As this metal member, it is preferable to use a general structural rolled steel material called SS400, which is higher in ductility than cast iron material and less likely to be damaged by plastic deformation even under impact load.
By doing this, the ducts of the first containment ring 14 'and the second containment ring 15', which are metal members manufactured by rolling, can be reduced by the air guide cylinder 12 and the scroll, which are metal members manufactured by casting. The ductility of the part 13 can be made higher.
〔他の実施形態〕
 以上の説明において、遠心圧縮機10が備える羽根車11が連結されるロータ軸30は、舶用ディーゼル機関から排出される排気ガスにより回転するタービン20によって軸線X回りに回転するものであったが、他の態様であってもよい。例えば、ロータ軸30は、ロータ軸30に連結されたモータ等の他の動力源によって回転するものであってもよい。
Other Embodiments
In the above description, the rotor shaft 30 to which the impeller 11 provided in the centrifugal compressor 10 is connected is rotated about the axis X by the turbine 20 rotated by the exhaust gas discharged from the marine diesel engine. It may be another aspect. For example, the rotor shaft 30 may be rotated by another power source such as a motor connected to the rotor shaft 30.
 以上の説明において、第1コンテインメントリング14,14’が配置される軸線X方向の位置P1は、羽根車11の重心位置と一致する位置であるものとした。以上の説明における、”一致する”とは、位置P1と重心位置とが厳密に一致することを意味するものではない。位置P1が、重心位置近傍に配置される場合であっても、位置P1が羽根車11の重心位置と一致しているものとする。つまり、位置P1が、重心位置で特に大きくなる羽根車11による径方向への衝撃力を受け止めることが可能な位置であれば、位置P1が羽根車11の重心位置と一致しているものとする。
 また、以上の説明において、第1コンテインメントリング14,14’の外周面の半径D1と、第2コンテインメントリング15,15’の外周面の半径D2とは、一致するものとした。以上の説明における”一致する”とは、半径D1と半径D2とが厳密に一致することを意味するものではない。半径D1と半径D2とが相違する場合であっても、第1コンテインメントリング14,14’と第2コンテインメントリング15,15’との間に、破断部材が通過しない程度の隙間が設けられる場合は、半径D1と半径D2とが一致しているものとする。
In the above description, it is assumed that the position P1 in the direction of the axis X at which the first containment rings 14 and 14 'are disposed coincides with the center of gravity of the impeller 11. In the above description, "coincident" does not mean that the position P1 and the position of the center of gravity exactly coincide. Even when the position P1 is disposed in the vicinity of the center of gravity, it is assumed that the position P1 coincides with the center of gravity of the impeller 11. That is, if the position P1 is a position capable of receiving an impact force in the radial direction by the impeller 11, which is particularly large at the center of gravity, the position P1 is assumed to coincide with the center of gravity of the impeller 11. .
Further, in the above description, the radius D1 of the outer circumferential surface of the first containment ring 14, 14 'and the radius D2 of the outer circumferential surface of the second containment ring 15, 15' coincide with each other. "Match" in the above description does not mean that the radius D1 and the radius D2 exactly match. Even when the radius D1 and the radius D2 are different, a gap is provided between the first containment rings 14, 14 'and the second containment rings 15, 15' to such an extent that the breaking member does not pass through. In this case, it is assumed that the radius D1 and the radius D2 coincide with each other.
 第2実施形態において、第1コンテインメントリング14’の形状および第2コンテインメントリング15’の形状は、図6に示すものであったが、他の態様であってもよい。
 例えば、図7に示すように、第1コンテインメントリング14’の端部14a’を取込口11a側に向けて漸次外径が小さくなるテーパ形状とし、第2コンテインメントリング15’の端部15a’を吐出口11b側に向けて漸次内径が大きくなるテーパ形状としてもよい。このようにすることで、組み立てを容易に行うことができる。
In the second embodiment, the shape of the first containment ring 14 'and the shape of the second containment ring 15' are as shown in FIG. 6, but may be other aspects.
For example, as shown in FIG. 7, the end portion 14a 'of the first containment ring 14' is tapered such that the outer diameter gradually decreases toward the intake port 11a, and the end portion of the second containment ring 15 ' The tapered shape may be such that the inner diameter gradually increases toward the discharge port 11b side. By doing this, assembly can be easily performed.
 また例えば、図8に示すように、第2コンテインメントリング15’の端部15a’の形状を端部15a’以外の他の部分の形状と同じにしてもよい。この場合、第2コンテインメントリング15’は、取込口11a側の端部から吐出口11b側の端部に至るまで軸線Xに直交する径方向の板厚が略一定となる。
 このようにすることで、軸線X方向のいずれの位置に破断部材が衝突しても、衝突による衝撃力に応じた塑性変形量が同程度となる。よって、第2コンテインメントリング15’は、軸線X方向のいずれの位置においても一定の衝撃吸収性能を発揮することができる。
For example, as shown in FIG. 8, the shape of the end 15a ′ of the second containment ring 15 ′ may be the same as the shape of the other portion than the end 15a ′. In this case, in the second containment ring 15 ′, the plate thickness in the radial direction orthogonal to the axis X is substantially constant from the end on the intake port 11a side to the end on the discharge port 11b side.
By doing so, even if the breaking member collides with any position in the direction of the axis X, the amount of plastic deformation according to the impact force due to the collision becomes approximately the same. Therefore, the second containment ring 15 'can exhibit a certain shock absorbing performance at any position in the direction of the axis X.
 また例えば、図9に示すように、第1コンテインメントリング14’の端部14a’を外周側に配置し、第2コンテインメントリング15’の端部15a’を内周側に配置してもよい。 For example, as shown in FIG. 9, the end 14a 'of the first containment ring 14' is disposed on the outer circumferential side, and the end 15a 'of the second containment ring 15' is disposed on the inner circumferential side. Good.
10  遠心圧縮機
11  羽根車
11a 取込口
11b 吐出口
11e 流路
12  空気案内筒(案内筒)
12a 環状段部
13  スクロール部
13a ディフューザ
13c 外側スクロールケーシング
13d 内側スクロールケーシング
14,14’ 第1コンテインメントリング(環状部材)
14b 環状突起部
15,15’ 第2コンテインメントリング(円筒状部材)
30  ロータ軸
100,200 過給機
10 centrifugal compressor 11 impeller 11a intake 11b discharge 11e flow path 12 air guide cylinder (guide cylinder)
12a annular step 13 scroll 13a diffuser 13c outer scroll casing 13d inner scroll casing 14, 14 'first containment ring (annular member)
14b Annular projection 15, 15 'second containment ring (cylindrical member)
30 Rotor shaft 100, 200 Turbocharger

Claims (9)

  1.  ロータ軸に取り付けられるとともに取込口から流入する流体を圧縮して吐出口から吐出する羽根車と、
     該羽根車を収容する案内筒と、
     該案内筒よりも外周側に配置されるとともに前記吐出口から吐出された圧縮流体が流入するスクロール部と、
     前記ロータ軸の軸線回りに前記羽根車を取り囲むように前記案内筒の前記吐出口側と前記スクロール部との連結位置に取り付けられる環状部材と、を備える遠心圧縮機。
    An impeller attached to the rotor shaft and compressing fluid flowing in from the intake port and discharging the fluid from the discharge port;
    A guide cylinder that accommodates the impeller;
    A scroll portion which is disposed on the outer peripheral side with respect to the guide cylinder and into which the compressed fluid discharged from the discharge port flows;
    A centrifugal compressor comprising: an annular member attached to a connection position of the discharge port side of the guide cylinder and the scroll portion so as to surround the impeller around the axis of the rotor shaft.
  2.  前記環状部材は、前記案内筒よりも延性が高い材料で構成されている請求項1に記載の遠心圧縮機。 The centrifugal compressor according to claim 1, wherein the annular member is made of a material having higher ductility than the guide cylinder.
  3.  前記案内筒よりも前記軸線に直交する径方向の外周側かつ前記スクロール部よりも前記径方向の内周側に前記ロータ軸と同軸に配置される円筒状部材を備える請求項1または請求項2に記載の遠心圧縮機。 The cylindrical member is provided coaxially with the rotor shaft on the outer peripheral side in the radial direction orthogonal to the axis than the guide cylinder and on the inner peripheral side in the radial direction than the scroll portion. Centrifugal compressor as described in.
  4.  前記円筒状部材の前記吐出口側の端部と前記環状部材の前記取込口側の端部とが、前記径方向で重なり合うとともに前記径方向に近接した位置に配置されている請求項3に記載の遠心圧縮機。 The end portion on the discharge port side of the cylindrical member and the end portion on the intake port side of the annular member overlap in the radial direction and are disposed at a position close to the radial direction. Centrifugal compressor as described.
  5.  前記円筒状部材は、前記案内筒よりも延性が高い材料で構成されており、
     前記軸線に対して、前記環状部材の径と前記円筒状部材の径が一致しており、
     前記環状部材の前記軸線方向の端面と前記円筒状部材の前記軸線方向の端面とが、前記軸線方向に所定距離を空けて離間している請求項3に記載の遠心圧縮機。
    The cylindrical member is made of a material having higher ductility than the guide cylinder,
    The diameter of the annular member and the diameter of the cylindrical member coincide with each other with respect to the axis line,
    The centrifugal compressor according to claim 3, wherein the axial end face of the annular member and the axial end face of the cylindrical member are separated by a predetermined distance in the axial direction.
  6.  前記環状部材が配置される前記軸線方向の位置範囲に、前記羽根車の前記軸線方向の重心位置が存在する請求項1から請求項5のいずれか1項に記載の遠心圧縮機。 The centrifugal compressor according to any one of claims 1 to 5, wherein the axial center of gravity position of the impeller is present in the axial position range in which the annular member is disposed.
  7.  前記環状部材は、前記案内筒とともに前記吐出口から吐出される前記圧縮流体が流通する流路の流路壁を形成しており、
     前記環状部材は、前記軸線に直交する径方向の外周側かつ前記軸線方向の前記流路側に、前記径方向の内側に突出する環状突起部を有し、
     前記連結位置における前記案内筒は、前記径方向の外周側かつ前記軸線方向の前記流路側に環状段部を有し、
     前記案内筒と前記環状部材は、前記環状段部に前記環状突起部を配置した状態で接続されている請求項1から請求項6のいずれか1項に記載の遠心圧縮機。
    The annular member, together with the guide cylinder, forms a flow path wall of a flow path through which the compressed fluid discharged from the discharge port flows.
    The annular member has an annular projection projecting inward in the radial direction on the outer peripheral side in the radial direction orthogonal to the axis and on the flow passage side in the axial direction,
    The guide cylinder at the connection position has an annular step on the outer peripheral side in the radial direction and the flow path side in the axial direction,
    The centrifugal compressor according to any one of claims 1 to 6, wherein the guide cylinder and the annular member are connected in a state where the annular protrusion is disposed on the annular step.
  8.  請求項1から7のいずれか1項に記載の遠心圧縮機と、
     内燃機関から排出された排気ガスにより前記軸線回りに回転するとともに前記ロータ軸に連結されるタービンと、を備える過給機。
    The centrifugal compressor according to any one of claims 1 to 7,
    A turbine rotated about the axis by exhaust gas discharged from an internal combustion engine and coupled to the rotor shaft.
  9.  取込口から流入する流体を圧縮して吐出口から吐出する羽根車をロータ軸に取り付ける工程と、
     前記羽根車を収容するように案内筒を取り付けて前記取込口から流入する流体を前記吐出口へ導く流路を形成する工程と、
     前記吐出口から吐出された圧縮流体が流入するスクロール部を、前記案内筒よりも前記ロータ軸の軸線方向に直交する径方向の外周側に配置する工程と、
     前記軸線回りに前記羽根車を取り囲むように前記案内筒と前記スクロール部との連結位置に環状部材を取り付ける工程と、を備えることを特徴とする遠心圧縮機の製造方法。
    Attaching an impeller for compressing the fluid flowing in from the inlet and discharging the fluid from the outlet to the rotor shaft;
    Attaching a guide cylinder to accommodate the impeller and forming a flow path for guiding the fluid flowing in from the inlet to the outlet;
    Disposing a scroll portion, into which the compressed fluid discharged from the discharge port flows, at an outer peripheral side in a radial direction orthogonal to the axial direction of the rotor shaft with respect to the guide cylinder;
    And a step of attaching an annular member at a connection position between the guide cylinder and the scroll portion so as to surround the impeller around the axis.
PCT/JP2015/058355 2014-03-31 2015-03-19 Centrifugal compressor, supercharger, and method for manufacturing centrifugal compressor WO2015151844A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167016418A KR101884101B1 (en) 2014-03-31 2015-03-19 Centrifugal compressor, supercharger, and method for manufacturing centrifugal compressor
EP15774141.4A EP3067569B1 (en) 2014-03-31 2015-03-19 Centrifugal compressor, supercharger, and method for manufacturing centrifugal compressor
CN201580003047.6A CN106164497B (en) 2014-03-31 2015-03-19 The manufacturing method of centrifugal compressor, booster and centrifugal compressor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-074070 2014-03-31
JP2014074070A JP6456596B2 (en) 2014-03-31 2014-03-31 Centrifugal compressor, supercharger, and method of manufacturing centrifugal compressor
JP2014212793A JP6541956B2 (en) 2014-10-17 2014-10-17 Centrifugal compressor and turbocharger equipped with the same
JP2014-212793 2014-10-17

Publications (1)

Publication Number Publication Date
WO2015151844A1 true WO2015151844A1 (en) 2015-10-08

Family

ID=54240175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058355 WO2015151844A1 (en) 2014-03-31 2015-03-19 Centrifugal compressor, supercharger, and method for manufacturing centrifugal compressor

Country Status (4)

Country Link
EP (1) EP3067569B1 (en)
KR (1) KR101884101B1 (en)
CN (1) CN106164497B (en)
WO (1) WO2015151844A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180223871A1 (en) * 2016-03-30 2018-08-09 Mitsubishi Heavy Industries, Ltd. Compression device and supercharger
US11519423B1 (en) * 2021-11-11 2022-12-06 Progress Rail Locomotive Inc. Compressor joint

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018137137A1 (en) * 2017-01-24 2018-08-02 游涛 Vortex engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62243997A (en) * 1986-04-15 1987-10-24 Ebara Corp Control device for vane end gap of centrifugal impeller
JPH10110622A (en) * 1996-10-02 1998-04-28 Asea Brown Boveri Ag Crack/damage preventing device for radial-flow turbine of turbo charger
JP2012137091A (en) * 2012-03-12 2012-07-19 Ihi Corp Centrifugal compressor casing

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4359798B2 (en) 1999-11-05 2009-11-04 株式会社Ihi Exhaust turbine turbocharger
GB0912796D0 (en) * 2009-07-23 2009-08-26 Cummins Turbo Tech Ltd Compressor,turbine and turbocharger
JP5230590B2 (en) 2009-12-07 2013-07-10 三菱重工業株式会社 Exhaust inlet casing of exhaust turbine supercharger
DE102010027762B4 (en) * 2010-04-15 2015-06-25 Man Diesel & Turbo Se Insert for a turbomachine and thus equipped turbomachine
JP5905736B2 (en) * 2012-02-22 2016-04-20 トヨタ自動車株式会社 Exhaust turbine supercharger manufacturing method and exhaust turbine supercharger

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62243997A (en) * 1986-04-15 1987-10-24 Ebara Corp Control device for vane end gap of centrifugal impeller
JPH10110622A (en) * 1996-10-02 1998-04-28 Asea Brown Boveri Ag Crack/damage preventing device for radial-flow turbine of turbo charger
JP2012137091A (en) * 2012-03-12 2012-07-19 Ihi Corp Centrifugal compressor casing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180223871A1 (en) * 2016-03-30 2018-08-09 Mitsubishi Heavy Industries, Ltd. Compression device and supercharger
US11359647B2 (en) * 2016-03-30 2022-06-14 Mitsubishi Heavy Industries Marine Machinery & Equipment Co., Ltd. Compression device and supercharger
US11519423B1 (en) * 2021-11-11 2022-12-06 Progress Rail Locomotive Inc. Compressor joint

Also Published As

Publication number Publication date
EP3067569A1 (en) 2016-09-14
KR101884101B1 (en) 2018-07-31
KR20160088922A (en) 2016-07-26
CN106164497B (en) 2019-06-28
EP3067569A4 (en) 2016-12-21
EP3067569B1 (en) 2018-07-18
CN106164497A (en) 2016-11-23

Similar Documents

Publication Publication Date Title
JP6391970B2 (en) Centrifugal compressor, supercharger, centrifugal compressor manufacturing method, and silencer
WO2015151844A1 (en) Centrifugal compressor, supercharger, and method for manufacturing centrifugal compressor
JP6404087B2 (en) Centrifugal compressor and supercharger provided with the same
JP6272248B2 (en) Centrifugal compressor and supercharger provided with the same
KR20150005451A (en) Air inlet of a compressor of an exhaust gas turbocharger
KR101891903B1 (en) Compressor
JP6404082B2 (en) Centrifugal compressor and supercharger provided with the same
JP6847683B2 (en) Centrifugal compressor and turbocharger
JP6541956B2 (en) Centrifugal compressor and turbocharger equipped with the same
JP6517386B2 (en) Centrifugal compressor and supercharger
WO2022070654A1 (en) Rotary machine and maintenance method for rotary machine
JP6456596B2 (en) Centrifugal compressor, supercharger, and method of manufacturing centrifugal compressor
JP6133439B2 (en) Compressor and turbocharger
KR101904679B1 (en) Centrifugal compressor and supercharger with same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15774141

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015774141

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015774141

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167016418

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE