WO2015151818A1 - Cooling liquid - Google Patents

Cooling liquid Download PDF

Info

Publication number
WO2015151818A1
WO2015151818A1 PCT/JP2015/058076 JP2015058076W WO2015151818A1 WO 2015151818 A1 WO2015151818 A1 WO 2015151818A1 JP 2015058076 W JP2015058076 W JP 2015058076W WO 2015151818 A1 WO2015151818 A1 WO 2015151818A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
weight
coolant
coolant composition
cooling liquid
Prior art date
Application number
PCT/JP2015/058076
Other languages
French (fr)
Japanese (ja)
Inventor
朋生 久保
誠一 仲野
拓也 片山
直樹 服部
伸行 加賀
俊大 長岡
Original Assignee
日産自動車株式会社
シーシーアイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, シーシーアイ株式会社 filed Critical 日産自動車株式会社
Publication of WO2015151818A1 publication Critical patent/WO2015151818A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/10Liquid materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids

Definitions

  • the present invention relates to a coolant composition.
  • the invention described in Patent Document 1 arranges an adsorbent that adsorbs moisture in the circulation path of the silicone oil coolant, so that the adsorbent adsorbs water at a low temperature so that the coolant does not contain moisture. It is an invention of a cooling liquid in which the water adsorbed by the adsorbent is desorbed at a high temperature to form a water phase and a silicone oil phase, and the water does not exist in the cooling liquid even at high and low temperatures. Furthermore, it is not intended to make the viscosity of the coolant low.
  • the invention described in Patent Document 2 is an invention related to a cooling liquid containing water and an organic solvent.
  • the cooling liquid can be quickly brought to a predetermined temperature. It is intended to be reached, and is never intended to reduce the viscosity of the coolant.
  • an electric pump is used to circulate liquid in a motor / control unit cooling system, but the electric power consumption of the electric pump is large and the cruising distance of the vehicle is short.
  • the present invention is not described in these patent documents, and has the same thermal characteristics as that of a conventional glycol-based coolant, and lowers the viscosity of the coolant, thereby reducing the power consumption of the electric pump. It is an object to provide a low-viscosity coolant composition that can be reduced.
  • a coolant composition comprising 20 to 70% by weight of formamide and / or methylformamide, 80 to 30% by weight of water, and 0.1 to 10% by weight of a rust inhibitor.
  • the rust inhibitor is at least one selected from boric acid, borate, silicic acid, silicate, phosphoric acid, phosphate, nitrite, nitrate, molybdate, triazole, diazole and thiazole 1 or 2.
  • the viscosity of the coolant can be further lowered while having the same thermal characteristics as the conventional glycol compound-containing coolant.
  • the power consumption of the electric pump for circulating the liquid in the motor / control unit cooling system in the electric vehicle can be reduced, and the cruising distance of the vehicle can be further increased.
  • the coolant composition of the present invention can be used for cooling a motor / control unit in an electric vehicle and further for a cooling system of an internal combustion engine, a fuel cell, a motor and the like.
  • the present invention will be specifically described below.
  • the present invention is a coolant composition containing 20 to 70% by weight of formamide and / or methylformamide, 80 to 30% by weight of water, and 0.1 to 10% by weight of a rust inhibitor.
  • the content of formamide and / or methylformamide in the coolant composition is 20 to 70% by weight as described above, preferably 30 to 60% by weight, and more preferably 40 to 50% by weight.
  • the viscosity can be lowered at a lower temperature than when other organic compounds are contained.
  • formamide has a higher effect of lowering the kinematic viscosity than methylformamide.
  • aliphatic monocarboxylic acid aromatic monocarboxylic acid, aliphatic dicarboxylic acid, aromatic dicarboxylic acid or salts thereof, borate, silicate, silicic acid, phosphoric acid At least one selected from a salt, phosphoric acid, nitrite, nitrate, molybdate, triazole, and thiazole can be used.
  • the content of these rust preventives in the coolant composition is 0.1 to 10% by weight, more preferably 1.0 to 5.0% by weight. When the content is less than 0.1% by weight, the rust prevention property cannot be sufficiently exhibited, and even when the content exceeds 10% by weight, the rust prevention property is not further improved.
  • the antirust agent which can be used below is demonstrated.
  • Aliphatic monocarboxylic acids include pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, 2-ethylhexanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, oleic acid, linoleic acid, linolenic acid, ricinoleic acid , Stearic acid and the like, and alkali metal salts, amine salts and ammonium salts thereof are used.
  • aromatic monocarboxylic acids include benzoic acids such as benzoic acid, nitrobenzoic acid, and hydroxybenzoic acid, p-toluic acid, p-ethylbenzoic acid, p-propylbenzoic acid, p-isopropylbenzoic acid, and p-tertbutyl.
  • Alkylbenzoic acid such as benzoic acid, alkoxybenzoic acid represented by the general formula RO—C 6 H 4 —COOH (R is an alkyl group of C1 to 5), general formula R—C 6 H 4 —CH ⁇ COOH (R is Cinnamic acid, alkylcinnamic acid, alkoxycinnamic acid represented by (C1-5 alkyl group or alkoxy group), and alkali metal salts, amine salts and ammonium salts thereof are used.
  • Aliphatic dicarboxylic acids include maleic acid, fumaric acid, itaconic acid, citraconic acid, mesaconic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, piperic acid, suberic acid, azelaic acid, sebacic acid, undecane Acid, dodecanedioic acid, brassic acid, tabitic acid and the like, and alkali metal salts, amine salts and ammonium salts thereof are used.
  • Aromatic dicarboxylic acid As the aromatic dicarboxylic acid, isophthalic acid, phthalic anhydride, terephthalic acid and the like, and alkali metal salts, amine salts and ammonium salts thereof are used.
  • boric acid, borate As the boric acid and borate, alkali metal salts, alkaline earth metal salts, amine salts, ammonium salts and the like are used.
  • Silicic acid, silicate As the silicic acid and silicate, alkali metal salts, alkaline earth metal salts, amine salts, ammonium salts and the like are used.
  • Phosphoric acid, phosphate Examples of phosphoric acid and phosphate include alkali metal salts such as orthophosphoric acid, pyrophosphoric acid, trimetaphosphoric acid, and tetraphosphoric acid, alkaline earth metal salts, amine salts, and ammonium salts.
  • nitrite As the nitrite, alkali metal salts, alkaline earth metal salts, amine salts, ammonium salts and the like are used.
  • nitrate As nitrates, alkali metal salts, alkaline earth metal salts, amine salts, ammonium salts, and the like are used.
  • Molybdate As the molybdate, alkali metal salts, alkaline earth metal salts, amine salts, ammonium salts and the like are used.
  • Triazole As the triazole, benzotriazole, tolyltriazole, 4-phenyl-1,2,3-triazole, 2-naphthotriazole, 4-nitrobenzotriazole and the like can be used.
  • Diazole Imidazoline, imidazole, mercaptoimidazoline, mercaptoimidazole, benzimidazole, methylimidazole and the like can be used.
  • Thiazole As thiazole, benzothiazole, mercaptobenzothiazole, and its alkali metal salt can be used.
  • the coolant composition of the present invention preferably has a kinematic viscosity of 2.5 mm 2 / s or less, more preferably 2.3 mm 2 / s or less, still more preferably 2.0 mm 2 / s or less, and further 1 .8 mm 2 / s or less is preferable.
  • antioxidant As the antioxidant, cycloalkylamine and derivatives thereof, thiourea and derivatives thereof, polyamine and derivatives thereof, piperidine and derivatives thereof, amino alcohols and aminophenols, carbon allotropes, sugar alcohols, and the like can be used. . These antioxidants have excellent antioxidant properties and can be contained in the cooling liquid composition of the present invention. As a result, generation of ionic substances in the coolant composition can be suppressed.
  • the content of these antioxidants in the cooling liquid composition is 10% by weight or less, and more preferably 5.0% by weight or less. Even if it exceeds 10% by weight, the antioxidant property is not further improved.
  • cycloalkylamine and its derivatives As the cycloalkylamine and derivatives thereof, cyclopropylamine, cyclobutylamine, cyclopentylamine, cyclohexylamine, cyclooctylamine and cyclododecylamine and derivatives thereof can be used.
  • Thiourea and its derivatives include thiourea, methylthiourea, diotylthiourea, trimethylthiourea, tetramethylthiourea, diethylthiourea, diisopropylthiourea, dibutylthiourea, allylthiourea, allylhydroxyethylthiourea, acetylthiourea, cyanodimethylthio.
  • Urea amidinothiourea, thiourea dioxide, dicyclohexylthiourea, phenylthiourea, methylphenylthiourea, benzoylthiourea, ditolylthiourea, diphenylthiourea, naphthylthiourea, adamantylthiourea, thiosemicarbaside, methylthiosequcarbaside, dimethyl Thiosecarbaside, isopropylthiosequcarbaside, phenylthiosequcarbaside, diphenylthiosequcarbaside and the like can be used.
  • Polyamine and its derivatives As the polyamine and derivatives thereof, hydrazine, guanidine and derivatives thereof can be used.
  • the group bonded to the ring of piperidine is selected from an oxo group, a hydroxyl group, an amino group, a hydrocarbon group having 1 to 20 carbon atoms, a hydroxyl group, an amino group, and an alkoxycarbonyl group.
  • One or more substituted hydrocarbon groups can be used.
  • 2,6-dimethylpiperidine, 2-pipecholine, 2,2,6,6-tetramethylpiperidine, 4-hydroxy-2,2,6,6-tetramethylpiperidine, 4-amino-2, 2,6,6-tetramethylpiperidine, 1-piperidineethanol, 1-methylpiperidine, 4-hydroxy-1-methylpiperidine, 1-methyl-4-piperidone, and 1-benzyl-4-piperidone may be used. it can.
  • amino alcohols and aminophenols examples include aminopropanol, aminomethylpropanol, dimethylaminopropanol, aminoethylpropanol, diethylaminopropanol, aminopropanediol, aminomethylpropanediol, aminoethylpropanediol, aminohydroxymethylpropanediol, (dimethyl Amino) propanediol, aminobutanol, aminomethylbutanol, dimethylaminobutanol, aminoethylbutanol, aminopentanol, aminohexanol, aminoheptanol, aminooctal, dimethylaminooctal, (aminoethylamino) ethanol, (aminoethyl) Amino) propanol, aminoethoxyethanol, (tert-butylamino) ethanol Diethylaminoethoxyethanol, aminopropeno
  • Carbon allotrope As the carbon allotrope, graphite, diamond, fullerene, carbon nanotube, bucky onion, heterofullerene, fullerene hydroxide, hydride, fluoride, bromide can be used.
  • sugar alcohol As the sugar alcohol, erythritol, xylitol, sorbitol, mannitol, inositol, quercitol, palatinit, lactitol, maltitol, sucrose, raffinose, gentianose, melezitose, planteose, stachyose and the like can be used.
  • the coolant composition of the present invention includes one or more lubricants, antiwear agents, antifoaming agents, extreme pressure agents, colorants, and pH adjusting agents such as sodium hydroxide and potassium hydroxide, depending on applications. Can be contained.
  • Example 1 Based on the description in Table 1 below, the cooling liquid compositions of Examples 1 and 2 of the present invention and the cooling liquid compositions of Comparative Examples 1 and 2 were prepared, and kinematic viscosity and freezing were performed on these cooling liquid compositions. The temperature was measured. The composition of the coolant composition used in these examples and comparative examples and the test results are shown in Table 1 below. The numerical values in Table 1 indicate parts by weight.
  • the kinematic viscosity of the coolant composition was measured based on JIS K2283.
  • the resulting coolant composition has a sufficiently low freezing temperature and at the same time its kinematic viscosity.
  • the use of formamide gave better results than the use of methylformamide.
  • Such a low kinematic viscosity can reduce the load on the circulation motor when used as a coolant composition.
  • the kinematic viscosity is not as low as 3.3 and 2.8 mm 2 / s, and when such a cooling liquid composition is used, circulation is achieved. It can be said that the load applied to the motor is high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

The present invention addresses the problem of providing a cooling liquid composition that has a lower viscosity. The present invention provides, as a solution, a cooling liquid composition which contains 20-70% by weight of formamide and/or methyl formamide, 80-30% by weight of water and 0.1-10% by weight of a rust inhibitor.

Description

冷却液Coolant
 本発明は、冷却液組成物に関する。 The present invention relates to a coolant composition.
 特許文献1及び2に記載されるように、シリコーンオイル又は水に対して、1種以上の有機溶媒を含む冷却液において、その有機溶媒としては、極めて広範囲のものが使用できるとされている。
 これらの特許文献には、その広範囲な有機溶媒として、単に炭化水素類、ハロゲン化炭化水素類、およびアルコール類、エーテル類、ケトン・アルデヒド類、エステル類、フェノール類などの含酸素化合物、および含窒素化合物、シリコーン系溶媒、フロン系溶媒が列挙され、これらの有機溶媒が同等に使用されることが示されている。
 また、内燃機関の冷却系統に使用される冷却液は、エンジンを冷却することによって温度が上昇され、ラジエータによって冷却されるようにウォーターポンプにより循環される。
 そして、このような内燃機関の冷却液としては、エチレングリコール水溶液やプロピレングリコール水溶液が使用されてきた。
 ところが、これらの冷却液は外気温が低下することにより粘度が高くなるので、ウォーターポンプへの負担が大きくなり、ひいてはウォーターポンプの寿命が短くなっていた。
As described in Patent Documents 1 and 2, in a cooling liquid containing one or more organic solvents with respect to silicone oil or water, an extremely wide range of organic solvents can be used.
In these patent documents, as a wide range of organic solvents, hydrocarbons, halogenated hydrocarbons, and oxygen-containing compounds such as alcohols, ethers, ketones / aldehydes, esters, phenols, and the like are included. Nitrogen compounds, silicone solvents, and chlorofluorocarbon solvents are listed, indicating that these organic solvents are equally used.
The coolant used in the cooling system of the internal combustion engine is circulated by a water pump so that the temperature of the coolant is increased by cooling the engine, and the coolant is cooled by the radiator.
And as a cooling fluid of such an internal combustion engine, ethylene glycol aqueous solution and propylene glycol aqueous solution have been used.
However, since the viscosity of these cooling liquids increases as the outside air temperature decreases, the burden on the water pump increases, and the life of the water pump is shortened.
特開2013-142149号公報JP 2013-142149 A 特開2013-057036号公報JP 2013-057036 A
 特許文献1に記載の発明は、シリコーンオイル冷却液の循環経路に水分を吸着する吸着剤を配置することにより、低温時には吸着剤が水を吸着して冷却液中に水分を含有しないようにし、高温時には吸着剤が吸着していた水分が脱着されて水相とシリコーンオイル相となる冷却液の発明であって、冷却液が高温下および低温下においても冷却液内に水を存在させるものではなく、さらに、冷却液の粘度を低粘度とすることを意図していない。
 特許文献2に記載の発明は、水と有機溶媒を含有する冷却液に係る発明ではあるが、高温域にて冷却液の見掛け比熱を増加させることにより、冷却液をより迅速に所定の温度に到達させることを目的としており、決して、冷却液の粘度を低粘度とすることを意図していない。
 電気自動車においては、モータ/コントロールユニット冷却システムに液を循環させるために電動ポンプを使用しているが、電動ポンプの消費電力が大きく、車輌の航続距離が短くなっていた。
 そして、本発明はこれらの特許文献には記載されていない、従来のグリコール系冷却液と同等の熱特性を持ち、かつ冷却液の粘度をより低粘度とすることによって、電動ポンプの消費電力を低下させることができる低粘度の冷却液組成物の提供を課題とする。
The invention described in Patent Document 1 arranges an adsorbent that adsorbs moisture in the circulation path of the silicone oil coolant, so that the adsorbent adsorbs water at a low temperature so that the coolant does not contain moisture. It is an invention of a cooling liquid in which the water adsorbed by the adsorbent is desorbed at a high temperature to form a water phase and a silicone oil phase, and the water does not exist in the cooling liquid even at high and low temperatures. Furthermore, it is not intended to make the viscosity of the coolant low.
The invention described in Patent Document 2 is an invention related to a cooling liquid containing water and an organic solvent. However, by increasing the apparent specific heat of the cooling liquid in a high temperature range, the cooling liquid can be quickly brought to a predetermined temperature. It is intended to be reached, and is never intended to reduce the viscosity of the coolant.
In an electric vehicle, an electric pump is used to circulate liquid in a motor / control unit cooling system, but the electric power consumption of the electric pump is large and the cruising distance of the vehicle is short.
The present invention is not described in these patent documents, and has the same thermal characteristics as that of a conventional glycol-based coolant, and lowers the viscosity of the coolant, thereby reducing the power consumption of the electric pump. It is an object to provide a low-viscosity coolant composition that can be reduced.
1.ホルムアミド及び/又はメチルホルムアミド20~70重量%、水80~30重量%、防錆剤0.1~10重量%含有する冷却液組成物。
2.前記防錆剤が脂肪族モノカルボン酸、芳香族モノカルボン酸、脂肪族ジカルボン酸、芳香族ジカルボン酸またはそれらの塩から選ばれる少なくとも1種である1に記載の冷却液組成物。
3.前記防錆剤が、ホウ酸、ホウ酸塩、ケイ酸、ケイ酸塩、リン酸、リン酸塩、亜硝酸塩、硝酸塩、モリブデン酸塩、トリアゾール、ジアゾール及びチアゾールから選ばれる少なくとも一種である1又は2に記載の冷却液組成物。
4.20℃における動粘度が2.5mm2/s以下である1~3のいずれかに記載の冷却液組成物。
1. A coolant composition comprising 20 to 70% by weight of formamide and / or methylformamide, 80 to 30% by weight of water, and 0.1 to 10% by weight of a rust inhibitor.
2. 2. The coolant composition according to 1, wherein the rust inhibitor is at least one selected from aliphatic monocarboxylic acids, aromatic monocarboxylic acids, aliphatic dicarboxylic acids, aromatic dicarboxylic acids, or salts thereof.
3. The rust inhibitor is at least one selected from boric acid, borate, silicic acid, silicate, phosphoric acid, phosphate, nitrite, nitrate, molybdate, triazole, diazole and thiazole 1 or 2. The coolant composition according to 2.
4. The coolant composition according to any one of 1 to 3, wherein the kinematic viscosity at 20 ° C. is 2.5 mm 2 / s or less.
 本発明によれば、従来のグリコール化合物含有冷却液と同等の熱特性を持ちながら、冷却液をより低粘度化させることができる。その結果、電気自動車における、モータ/コントロールユニット冷却システムに液を循環させるための電動ポンプの消費電力を低下させることができ、ひいては車輌の航続距離をより長くすることができる。 According to the present invention, the viscosity of the coolant can be further lowered while having the same thermal characteristics as the conventional glycol compound-containing coolant. As a result, the power consumption of the electric pump for circulating the liquid in the motor / control unit cooling system in the electric vehicle can be reduced, and the cruising distance of the vehicle can be further increased.
(冷却液組成物の用途)
 本発明の冷却液組成物は、電気自動車における、モータ/コントロールユニットの冷却、さらに、内燃機関、燃料電池、モータ等の冷却系に用いることができる。
 以下、具体的に本発明について述べる。
(Use of coolant composition)
The coolant composition of the present invention can be used for cooling a motor / control unit in an electric vehicle and further for a cooling system of an internal combustion engine, a fuel cell, a motor and the like.
The present invention will be specifically described below.
 本発明はホルムアミド及び/又はメチルホルムアミド20~70重量%、水80~30重量%、防錆剤0.1~10重量%含有する冷却液組成物である。
[ホルムアミド及び/又はメチルホルムアミド]
 冷却液組成物中のホルムアミド及び/又はメチルホルムアミドの含有量は上記の通り20~70重量%であるが、30~60重量%が好ましく、40~50重量%がより好ましい。20~70重量%の範囲とすることにより、他の有機化合物を含有させたときよりも、低温時において低粘度化させることができる。
 冷却液組成物中に同じ含有量で含有させる場合、メチルホルムアミドよりも、ホルムアミドの方が、動粘度を低くする効果が高い。
The present invention is a coolant composition containing 20 to 70% by weight of formamide and / or methylformamide, 80 to 30% by weight of water, and 0.1 to 10% by weight of a rust inhibitor.
[Formamide and / or methylformamide]
The content of formamide and / or methylformamide in the coolant composition is 20 to 70% by weight as described above, preferably 30 to 60% by weight, and more preferably 40 to 50% by weight. By setting the content in the range of 20 to 70% by weight, the viscosity can be lowered at a lower temperature than when other organic compounds are contained.
When the same content is contained in the coolant composition, formamide has a higher effect of lowering the kinematic viscosity than methylformamide.
[防錆剤]
 本発明において使用される防錆剤として、脂肪族モノカルボン酸、芳香族モノカルボン酸、脂肪族ジカルボン酸、芳香族ジカルボン酸またはそれらの塩、ホウ酸塩、ケイ酸塩、ケイ酸、リン酸塩、リン酸、亜硝酸塩、硝酸塩、モリブデン酸塩、トリアゾール、及びチアゾールから選ばれる少なくとも一種を使用することができる。
 これらの防錆剤の冷却液組成物中の含有量としては0.1~10重量%であり、1.0~5.0重量%がより好ましい。0.1重量%未満であると、十分に防錆性を発揮することができず、10重量%を超えて含有させてもさらに防錆性が良くなることはない。
 以下に使用できる防錆剤について説明する。
[anti-rust]
As the rust preventive used in the present invention, aliphatic monocarboxylic acid, aromatic monocarboxylic acid, aliphatic dicarboxylic acid, aromatic dicarboxylic acid or salts thereof, borate, silicate, silicic acid, phosphoric acid At least one selected from a salt, phosphoric acid, nitrite, nitrate, molybdate, triazole, and thiazole can be used.
The content of these rust preventives in the coolant composition is 0.1 to 10% by weight, more preferably 1.0 to 5.0% by weight. When the content is less than 0.1% by weight, the rust prevention property cannot be sufficiently exhibited, and even when the content exceeds 10% by weight, the rust prevention property is not further improved.
The antirust agent which can be used below is demonstrated.
(脂肪族モノカルボン酸)
 脂肪族モノカルボン酸としては、ペンタン酸、ヘキサン酸、へプタン酸、オクタン酸、2-エチルヘキサン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、オレイン酸、リノール酸、リノレン酸、リシノール酸、ステアリン酸等、及びそれらのアルカリ金属塩、アミン塩、アンモニウム塩が使用される。
(芳香族モノカルボン酸)
 芳香族モノカルボン酸としては、安息香酸、ニトロ安息香酸、ヒドロキシ安息香酸等の安息香酸類、p-トルイル酸、p-エチル安息香酸、p-プロピル安息香酸、p-イソプロピル安息香酸、p-tertブチル安息香酸等のアルキル安息香酸、一般式RO-C64-COOH(RはC1~5のアルキル基)で示されるアルコキシ安息香酸、一般式R-C64-CH=COOH(RはC1~5のアルキル基又はアルコキシ基)で示されるケイヒ酸、アルキルケイヒ酸、アルコキシケイヒ酸、及びこれらのアルカリ金属塩、アミン塩、アンモニウム塩が使用される。
(脂肪族ジカルボン酸)
 脂肪族ジカルボン酸としては、マレイン酸、フマル酸、イタコン酸、シトラコン酸、メサコン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピペリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン酸、ドデカン2酸、ブラシル酸、タブチン酸等、及びそれらのアルカリ金属塩、アミン塩、アンモニウム塩が使用される。
(芳香族ジカルボン酸)
 芳香族ジカルボン酸としては、イソフタル酸、無水フタル酸又はテレフタル酸等、及びそれらのアルカリ金属塩、アミン塩、アンモニウム塩が使用される。
(Aliphatic monocarboxylic acid)
Aliphatic monocarboxylic acids include pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, 2-ethylhexanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, oleic acid, linoleic acid, linolenic acid, ricinoleic acid , Stearic acid and the like, and alkali metal salts, amine salts and ammonium salts thereof are used.
(Aromatic monocarboxylic acid)
Examples of aromatic monocarboxylic acids include benzoic acids such as benzoic acid, nitrobenzoic acid, and hydroxybenzoic acid, p-toluic acid, p-ethylbenzoic acid, p-propylbenzoic acid, p-isopropylbenzoic acid, and p-tertbutyl. Alkylbenzoic acid such as benzoic acid, alkoxybenzoic acid represented by the general formula RO—C 6 H 4 —COOH (R is an alkyl group of C1 to 5), general formula R—C 6 H 4 —CH═COOH (R is Cinnamic acid, alkylcinnamic acid, alkoxycinnamic acid represented by (C1-5 alkyl group or alkoxy group), and alkali metal salts, amine salts and ammonium salts thereof are used.
(Aliphatic dicarboxylic acid)
Aliphatic dicarboxylic acids include maleic acid, fumaric acid, itaconic acid, citraconic acid, mesaconic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, piperic acid, suberic acid, azelaic acid, sebacic acid, undecane Acid, dodecanedioic acid, brassic acid, tabitic acid and the like, and alkali metal salts, amine salts and ammonium salts thereof are used.
(Aromatic dicarboxylic acid)
As the aromatic dicarboxylic acid, isophthalic acid, phthalic anhydride, terephthalic acid and the like, and alkali metal salts, amine salts and ammonium salts thereof are used.
(ホウ酸、ホウ酸塩)
 ホウ酸、及びホウ酸塩としては、アルカリ金属塩、アルカリ土類金属塩、アミン塩、アンモニウム塩等が使用される。
(ケイ酸、ケイ酸塩)
 ケイ酸、及びケイ酸塩としては、アルカリ金属塩、アルカリ土類金属塩、アミン塩、アンモニウム塩等が使用される。
(リン酸、リン酸塩)
 リン酸、及びリン酸塩としては、正リン酸、ピロリン酸、トリメタリン酸、テトラリン酸等のアルカリ金属塩、アルカリ土類金属塩、アミン塩、アンモニウム塩が使用される。
(亜硝酸塩)
 亜硝酸塩としては、アルカリ金属塩、アルカリ土類金属塩、アミン塩、アンモニウム塩等が使用される。
(硝酸塩)
 硝酸塩としては、アルカリ金属塩、アルカリ土類金属塩、アミン塩、アンモニウム塩等が使用される。
(モリブデン酸塩)
 モリブデン酸塩としては、アルカリ金属塩、アルカリ土類金属塩、アミン塩、アンモニウム塩等が使用される。
(Boric acid, borate)
As the boric acid and borate, alkali metal salts, alkaline earth metal salts, amine salts, ammonium salts and the like are used.
(Silicic acid, silicate)
As the silicic acid and silicate, alkali metal salts, alkaline earth metal salts, amine salts, ammonium salts and the like are used.
(Phosphoric acid, phosphate)
Examples of phosphoric acid and phosphate include alkali metal salts such as orthophosphoric acid, pyrophosphoric acid, trimetaphosphoric acid, and tetraphosphoric acid, alkaline earth metal salts, amine salts, and ammonium salts.
(Nitrite)
As the nitrite, alkali metal salts, alkaline earth metal salts, amine salts, ammonium salts and the like are used.
(nitrate)
As nitrates, alkali metal salts, alkaline earth metal salts, amine salts, ammonium salts, and the like are used.
(Molybdate)
As the molybdate, alkali metal salts, alkaline earth metal salts, amine salts, ammonium salts and the like are used.
(トリアゾール)
 トリアゾールとしては、ベンゾトリアゾール、トリルトリアゾール、4-フェニル-1,2,3-トリアゾール、2-ナフトトリアゾール、4-ニトロベンゾトリアゾール等を使用することができる。
(ジアゾール)
 イミダゾリン、イミダゾール、メルカプトイミダゾリン、メルカプトイミダゾール、ベンズイミダゾール、メチルイミダゾール等を使用することができる。
(チアゾール)
 チアゾールとしては、ベンゾチアゾール、メルカプトベンゾチアゾール、及びそのアルカリ金属塩を使用することができる。
(Triazole)
As the triazole, benzotriazole, tolyltriazole, 4-phenyl-1,2,3-triazole, 2-naphthotriazole, 4-nitrobenzotriazole and the like can be used.
(Diazole)
Imidazoline, imidazole, mercaptoimidazoline, mercaptoimidazole, benzimidazole, methylimidazole and the like can be used.
(Thiazole)
As thiazole, benzothiazole, mercaptobenzothiazole, and its alkali metal salt can be used.
(動粘度)
 本発明の冷却液組成物は、好ましくは動粘度が2.5mm2/s以下であり、2.3mm2/s以下がより好ましく、2.0mm2/s以下がさらに好ましく、それ以上に1.8mm2/s以下が好ましい。
(Kinematic viscosity)
The coolant composition of the present invention preferably has a kinematic viscosity of 2.5 mm 2 / s or less, more preferably 2.3 mm 2 / s or less, still more preferably 2.0 mm 2 / s or less, and further 1 .8 mm 2 / s or less is preferable.
(酸化防止剤)
 酸化防止剤としては、シクロアルキルアミン及びその誘導体、チオ尿素及びその誘導体、ポリアミン及びその誘導体、ピペリジン及びその誘導体、アミノアルコール類及びアミノフェノール類、炭素同素体、及び糖アルコール等を使用することができる。これらの酸化防止剤は優れた抗酸化性を有し、本発明の冷却液組成物中に含有させることができる。その結果、冷却液組成物中にイオン物質の発生を抑制することができる。
 これらの酸化防止剤の冷却液組成物中の含有量としては10重量%以下であり、5.0重量%以下がより好ましい。10重量%を超えて含有させてもさらに酸化防止性が良くなることはない。
(Antioxidant)
As the antioxidant, cycloalkylamine and derivatives thereof, thiourea and derivatives thereof, polyamine and derivatives thereof, piperidine and derivatives thereof, amino alcohols and aminophenols, carbon allotropes, sugar alcohols, and the like can be used. . These antioxidants have excellent antioxidant properties and can be contained in the cooling liquid composition of the present invention. As a result, generation of ionic substances in the coolant composition can be suppressed.
The content of these antioxidants in the cooling liquid composition is 10% by weight or less, and more preferably 5.0% by weight or less. Even if it exceeds 10% by weight, the antioxidant property is not further improved.
(シクロアルキルアミン及びその誘導体)
 シクロアルキルアミン及びその誘導体としては、シクロプロピルアミン、シクロブチルアミン、シクロペンチルアミン、シクロヘキシルアミン、シクロオクチルアミン及びシクロドデシルアミン及びその誘導体を使用することができる。
(チオ尿素及びその誘導体)
 チオ尿素及びその誘導体としては、チオ尿素、メチルチオ尿素、ジオチルチオ尿素、トリメチルチオ尿素、テトラメチルチオ尿素、ジエチルチオ尿素、ジイソプロピルチオ尿素、ジブチルチオ尿素、アリルチオ尿素、アリルヒドロキシエチルチオ尿素、アセチルチオ尿素、シアノジメチルチオ尿素、アミジノチオ尿素、二酸化チオ尿素、ジシクロヘキシルチオ尿素、フェニルチオ尿素、メチルフェニルチオ尿素、ベンゾイルチオ尿素、ジトリルチオ尿素、ジフェニルチオ尿素、ナフチルチオ尿素、アダマンチルチオ尿素、チオセミカルバシド、メチルチオセキカルバシド、ジメチルチオセキカルバシド、イソプロピルチオセキカルバシド、フェニルチオセキカルバシド、ジフェニルチオセキカルバシド等を使用することができる。
(ポリアミン及びその誘導体)
 ポリアミン及びその誘導体としては、ヒドラジン、グアニジン及びこれらの誘導体を使用することができる。
(Cycloalkylamine and its derivatives)
As the cycloalkylamine and derivatives thereof, cyclopropylamine, cyclobutylamine, cyclopentylamine, cyclohexylamine, cyclooctylamine and cyclododecylamine and derivatives thereof can be used.
(Thiourea and its derivatives)
Thiourea and its derivatives include thiourea, methylthiourea, diotylthiourea, trimethylthiourea, tetramethylthiourea, diethylthiourea, diisopropylthiourea, dibutylthiourea, allylthiourea, allylhydroxyethylthiourea, acetylthiourea, cyanodimethylthio. Urea, amidinothiourea, thiourea dioxide, dicyclohexylthiourea, phenylthiourea, methylphenylthiourea, benzoylthiourea, ditolylthiourea, diphenylthiourea, naphthylthiourea, adamantylthiourea, thiosemicarbaside, methylthiosequcarbaside, dimethyl Thiosecarbaside, isopropylthiosequcarbaside, phenylthiosequcarbaside, diphenylthiosequcarbaside and the like can be used.
(Polyamine and its derivatives)
As the polyamine and derivatives thereof, hydrazine, guanidine and derivatives thereof can be used.
(ピペリジン及びその誘導体)
 ピペリジン及びその誘導体としては、ピペリジンの環に結合する基が、オキソ基、水酸基、アミノ基、炭素数が1~20の炭化水素基、さらに、水酸基、アミノ基、アルコキシカルボニル基から選ばれた1つ以上で置換された炭化水素基を使用することができる。
 具体的には、2,6―ジメチルピペリジン、2-ピペコリン、2,2,6,6-テトラメチルピペリジン、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン、4-アミノ-2,2,6,6-テトラメチルピペリジン、1-ピペリジンエタノール、1-メチルピペリジン、4-ヒドロキシ-1-メチルピペリジン、1-メチル-4-ピペリドン、及び1-ベンジル-4-ピペリドンを使用することができる。
(アミノアルコール類及びアミノフェノール類)
 アミノアルコール類及びアミノフェノール類としては、アミノプロパノール、アミノメチルプロパノール、ジメチルアミノプロパノール、アミノエチルプロパノール、ジエチルアミノプロパノール、アミノプロパンジオール、アミノメチルプロパンジオール、アミノエチルプロパンジオール、アミノヒドロキシメチルプロパンジオール、(ジメチルアミノ)プロパンジオール、アミノブタノール、アミノメチルブタノール、ジメチルアミノブタノール、アミノエチルブタノール、アミノペンタノール、アミノヘキサノール、アミノヘプタノール、アミノオクタール、ジメチルアミノオクタール、(アミノエチルアミノ)エタノール、(アミノエチルアミノ)プロパノール、アミノエトキシエタノール、(tert-ブチルアミノ)エタノール、ジエチルアミノエトキシエタノール、アミノプロペノール、メチルアミノプロペノール、アミノプロピノール、メチルアミノプロピノール、アミノブテノール、メチルアミノブテノール、アミノブチノール、メチルアミノブチノール、ジメチルアミノブチノール、メチルアミノブチノール、(ベンジルアミノ)エタノール、アミノベンジルエタノール、(メチルアミノメチル)ベンジルアルコール、アミノシクロヘキサノール、アミノフェニルエタノール、アミノフェニルプロパノール、アミノクレゾール、アミノナフトール、アミノフェノール、アミノニトロフェノール、アミノメチルフェノール、ジメチルアミノフェノール、アミノエチルフェノール、ジエチルアミノフェノール等から選ばれる1種以上を使用することができる。
(Piperidine and its derivatives)
As piperidine and derivatives thereof, the group bonded to the ring of piperidine is selected from an oxo group, a hydroxyl group, an amino group, a hydrocarbon group having 1 to 20 carbon atoms, a hydroxyl group, an amino group, and an alkoxycarbonyl group. One or more substituted hydrocarbon groups can be used.
Specifically, 2,6-dimethylpiperidine, 2-pipecholine, 2,2,6,6-tetramethylpiperidine, 4-hydroxy-2,2,6,6-tetramethylpiperidine, 4-amino-2, 2,6,6-tetramethylpiperidine, 1-piperidineethanol, 1-methylpiperidine, 4-hydroxy-1-methylpiperidine, 1-methyl-4-piperidone, and 1-benzyl-4-piperidone may be used. it can.
(Amino alcohols and aminophenols)
Examples of amino alcohols and aminophenols include aminopropanol, aminomethylpropanol, dimethylaminopropanol, aminoethylpropanol, diethylaminopropanol, aminopropanediol, aminomethylpropanediol, aminoethylpropanediol, aminohydroxymethylpropanediol, (dimethyl Amino) propanediol, aminobutanol, aminomethylbutanol, dimethylaminobutanol, aminoethylbutanol, aminopentanol, aminohexanol, aminoheptanol, aminooctal, dimethylaminooctal, (aminoethylamino) ethanol, (aminoethyl) Amino) propanol, aminoethoxyethanol, (tert-butylamino) ethanol Diethylaminoethoxyethanol, aminopropenol, methylaminopropenol, aminopropinol, methylaminopropinol, aminobutenol, methylaminobutenol, aminobutynol, methylaminobutynol, dimethylaminobutynol, methylaminobutynol, (Benzylamino) ethanol, aminobenzylethanol, (methylaminomethyl) benzyl alcohol, aminocyclohexanol, aminophenylethanol, aminophenylpropanol, aminocresol, aminonaphthol, aminophenol, aminonitrophenol, aminomethylphenol, dimethylaminophenol One or more selected from aminoethylphenol, diethylaminophenol, and the like can be used.
(炭素同素体)
 炭素同素体としては、グラファイト、ダイヤモンド、フラーレン、炭素ナノチューブ、バッキーオニオン、ヘテロフラーレン、フラーレンの水酸化物、水素化物、フッ化物、臭素化物を使用することができる。
(糖アルコール)
 糖アルコールとしては、エリスリトール、キシリトール、ソルビトール、マンニトール、イノシトール、クエルシトール、パラチニット、ラクチトール、マルチトール、スクロース、ラフィノース、ゲンチアノース、メレジトース、プランテオース、スタキオース等を使用することができる。
(Carbon allotrope)
As the carbon allotrope, graphite, diamond, fullerene, carbon nanotube, bucky onion, heterofullerene, fullerene hydroxide, hydride, fluoride, bromide can be used.
(Sugar alcohol)
As the sugar alcohol, erythritol, xylitol, sorbitol, mannitol, inositol, quercitol, palatinit, lactitol, maltitol, sucrose, raffinose, gentianose, melezitose, planteose, stachyose and the like can be used.
[その他添加剤]
 本発明の冷却液組成物には、用途等に応じて潤滑剤、耐磨耗剤、消泡剤、極圧剤、着色剤、水酸化ナトリウムや水酸化カリウム等のpH調整剤の1種以上を含有させることができる。
[Other additives]
The coolant composition of the present invention includes one or more lubricants, antiwear agents, antifoaming agents, extreme pressure agents, colorants, and pH adjusting agents such as sodium hydroxide and potassium hydroxide, depending on applications. Can be contained.
(実施例)
 下記表1の記載に基づいて、本発明の実施例1及び2の冷却液組成物及び比較例1及び2の冷却液組成物を調製し、これらの冷却液組成物に対して動粘度及び凍結温度を測定した。
 これらの実施例及び比較例にて使用した冷却液組成物の組成と、これらの試験結果を以下の表1に示す。表1中の数値は重量部を示す。
(Example)
Based on the description in Table 1 below, the cooling liquid compositions of Examples 1 and 2 of the present invention and the cooling liquid compositions of Comparative Examples 1 and 2 were prepared, and kinematic viscosity and freezing were performed on these cooling liquid compositions. The temperature was measured.
The composition of the coolant composition used in these examples and comparative examples and the test results are shown in Table 1 below. The numerical values in Table 1 indicate parts by weight.
(動粘度の測定)
 JIS K2283に基づいて冷却液組成物の動粘度を測定した。
(Measurement of kinematic viscosity)
The kinematic viscosity of the coolant composition was measured based on JIS K2283.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記の表に示されているように、本発明に沿った例である実施例1及び2によれば、得られた冷却液組成物は、十分に低い凍結温度を有すると同時に、その動粘度は2.2mm2/s及び1.5mm2/sであり、十分に低い動粘度となった。また、特にホルムアミドを使用した場合のほうが、メチルホルムアミドを使用するよりも良好な結果となった。これらのような低い動粘度であれば、冷却液組成物として使用したときに循環用モータにかかる負荷を低減させることができる。
 しかしながら、エチレングリコールやジメチルホルムアミドを使用した比較例1及び2によれば、動粘度は3.3及び2.8mm2/sと低い動粘度ではなく、このような冷却液組成物を使用すると循環用モータにかかる負荷は高いといえる。
As shown in the above table, according to Examples 1 and 2, which are examples in accordance with the present invention, the resulting coolant composition has a sufficiently low freezing temperature and at the same time its kinematic viscosity. Were 2.2 mm 2 / s and 1.5 mm 2 / s, and the kinematic viscosity was sufficiently low. In particular, the use of formamide gave better results than the use of methylformamide. Such a low kinematic viscosity can reduce the load on the circulation motor when used as a coolant composition.
However, according to Comparative Examples 1 and 2 using ethylene glycol or dimethylformamide, the kinematic viscosity is not as low as 3.3 and 2.8 mm 2 / s, and when such a cooling liquid composition is used, circulation is achieved. It can be said that the load applied to the motor is high.

Claims (4)

  1.  ホルムアミド及び/又はメチルホルムアミド20~70重量%、水80~30重量%、防錆剤0.1~10重量%含有する冷却液組成物。 A coolant composition containing 20 to 70% by weight of formamide and / or methylformamide, 80 to 30% by weight of water, and 0.1 to 10% by weight of a rust inhibitor.
  2.  前記防錆剤が脂肪族モノカルボン酸、芳香族モノカルボン酸、脂肪族ジカルボン酸、芳香族ジカルボン酸またはそれらの塩から選ばれる少なくとも1種である請求項1に記載の冷却液組成物。 The coolant composition according to claim 1, wherein the rust inhibitor is at least one selected from aliphatic monocarboxylic acids, aromatic monocarboxylic acids, aliphatic dicarboxylic acids, aromatic dicarboxylic acids, or salts thereof.
  3.  前記防錆剤が、ホウ酸、ホウ酸塩、ケイ酸、ケイ酸塩、リン酸、リン酸塩、亜硝酸塩、硝酸塩、モリブデン酸塩、トリアゾール、ジアゾール及びチアゾールから選ばれる少なくとも一種である請求項1又は2に記載の冷却液組成物。 The rust inhibitor is at least one selected from boric acid, borate, silicic acid, silicate, phosphoric acid, phosphate, nitrite, nitrate, molybdate, triazole, diazole and thiazole. The coolant composition according to 1 or 2.
  4.  20℃における動粘度が2.5mm2/s以下である請求項1~3のいずれかに記載の冷却液組成物。 The coolant composition according to any one of claims 1 to 3, which has a kinematic viscosity at 20 ° C of 2.5 mm 2 / s or less.
PCT/JP2015/058076 2014-03-31 2015-03-18 Cooling liquid WO2015151818A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014073231A JP6570217B2 (en) 2014-03-31 2014-03-31 Coolant
JP2014-073231 2014-03-31

Publications (1)

Publication Number Publication Date
WO2015151818A1 true WO2015151818A1 (en) 2015-10-08

Family

ID=54240149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058076 WO2015151818A1 (en) 2014-03-31 2015-03-18 Cooling liquid

Country Status (2)

Country Link
JP (1) JP6570217B2 (en)
WO (1) WO2015151818A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019116569A (en) * 2017-12-27 2019-07-18 株式会社デンソー Heat transport medium and heat transport system
CN113278405A (en) * 2021-06-07 2021-08-20 凌渡(南京)科技有限公司 Energy-saving cooling liquid and application thereof
CN114574276A (en) * 2020-12-01 2022-06-03 中国石油化工股份有限公司 Electric insulation medium composition and preparation method and application thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6729453B2 (en) 2017-03-07 2020-07-22 株式会社デンソー Base material for heat medium, and heat transport system and heat pump system using the same
JP7261563B2 (en) * 2018-11-02 2023-04-20 谷川油化興業株式会社 heat exchange medium
KR20220057325A (en) * 2020-10-29 2022-05-09 주식회사 케이디파인켐 Coolant composition for electric vehicles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113276A1 (en) * 2009-03-31 2010-10-07 本田技研工業株式会社 Cooling liquid composition
JP2013057036A (en) * 2011-09-09 2013-03-28 Toyota Motor Corp Coolant whose apparent specific heat is increased in high-temperature region, and method of circulating the coolant
JP2013142149A (en) * 2012-01-12 2013-07-22 Toyota Motor Corp Coolant circulation method using adsorbent

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1687094A (en) * 1925-07-09 1928-10-09 Isermann Samuel Freezing-point depressant
US2308246A (en) * 1939-06-01 1943-01-12 H S Polin Lab Inc Antifreezing medium
US2767145A (en) * 1954-01-29 1956-10-16 Atlas Powder Co Low freezing liquid
US2841560A (en) * 1954-12-02 1958-07-01 Atlas Powder Co Pressure transmitting fluids
US3108075A (en) * 1959-05-11 1963-10-22 Peter J Hearst Formamide mixtures as de-icing materials
DE3590348T1 (en) * 1984-07-18 1986-06-26 Komáromi Köolajipari Vállalat, Komárom Heat transfer fluid
US5104562A (en) * 1988-11-03 1992-04-14 Eszakmagyarorszagi Vegyimuvek Coolant composition containing potassium formate and potassium acetate and method of use

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113276A1 (en) * 2009-03-31 2010-10-07 本田技研工業株式会社 Cooling liquid composition
JP2013057036A (en) * 2011-09-09 2013-03-28 Toyota Motor Corp Coolant whose apparent specific heat is increased in high-temperature region, and method of circulating the coolant
JP2013142149A (en) * 2012-01-12 2013-07-22 Toyota Motor Corp Coolant circulation method using adsorbent

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019116569A (en) * 2017-12-27 2019-07-18 株式会社デンソー Heat transport medium and heat transport system
CN114574276A (en) * 2020-12-01 2022-06-03 中国石油化工股份有限公司 Electric insulation medium composition and preparation method and application thereof
CN114574276B (en) * 2020-12-01 2023-03-14 中国石油化工股份有限公司 Electric insulation medium composition and preparation method and application thereof
CN113278405A (en) * 2021-06-07 2021-08-20 凌渡(南京)科技有限公司 Energy-saving cooling liquid and application thereof

Also Published As

Publication number Publication date
JP6570217B2 (en) 2019-09-04
JP2015193765A (en) 2015-11-05

Similar Documents

Publication Publication Date Title
JP6570217B2 (en) Coolant
JP6739473B2 (en) Heat transfer fluids and corrosion inhibitor formulations using same
JP6480329B2 (en) Heat transfer fluid and corrosion inhibitor formulation using the same
JPS62158778A (en) Monobasic-dibasic acid salt antifreeze liquid/corrosion inhibitor and its production
JP5917972B2 (en) Coolant composition
CN108350345B (en) Silicate-containing coolant concentrate
TW201418438A (en) Heat transfer fluid concentrate
JP4214314B2 (en) Heat medium liquid composition
JP6092685B2 (en) Coolant composition
WO2010113276A1 (en) Cooling liquid composition
JP7198101B2 (en) heat exchange medium
JP5577067B2 (en) Heat transport medium composition
EP2778208B1 (en) Engine coolant additive
JP2023538745A (en) New coolant with low conductivity
JP6537847B2 (en) Coolant composition
JP4785734B2 (en) Heat medium composition
JP6339442B2 (en) Colored coolant composition
JP2005187748A (en) Cooling liquid composition
JP6391481B2 (en) Coolant composition
EP4015596B1 (en) Novel coolants with improved storage stability
JP4796507B2 (en) Heat medium composition
JP4981263B2 (en) Coolant composition for fuel cell
JP2018044057A (en) Viscometric properties improver
JP2023538744A (en) Novel coolant showing improved storage stability

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15772454

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15772454

Country of ref document: EP

Kind code of ref document: A1