WO2015151815A1 - Thermosetting aromatic polyester composition and method for producing same - Google Patents

Thermosetting aromatic polyester composition and method for producing same Download PDF

Info

Publication number
WO2015151815A1
WO2015151815A1 PCT/JP2015/058056 JP2015058056W WO2015151815A1 WO 2015151815 A1 WO2015151815 A1 WO 2015151815A1 JP 2015058056 W JP2015058056 W JP 2015058056W WO 2015151815 A1 WO2015151815 A1 WO 2015151815A1
Authority
WO
WIPO (PCT)
Prior art keywords
aromatic polyester
group
thermosetting
aromatic
polyester composition
Prior art date
Application number
PCT/JP2015/058056
Other languages
French (fr)
Japanese (ja)
Inventor
中谷晃司
竹内秀一
坂本勝利
田口吉昭
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014076514A external-priority patent/JP2015196799A/en
Priority claimed from JP2014076513A external-priority patent/JP2015196798A/en
Priority claimed from JP2014076518A external-priority patent/JP6342202B2/en
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Publication of WO2015151815A1 publication Critical patent/WO2015151815A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/247Heating methods
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers

Definitions

  • thermosetting aromatic polyester composition thermosetting liquid crystal resin composition containing an aromatic polyester
  • thermosetting liquid crystal resin composition containing an aromatic polyester thermosetting liquid crystal resin composition containing an aromatic polyester
  • Liquid crystal polymers typified by liquid crystal polyester are excellent in various properties such as heat resistance, moldability, chemical resistance, and mechanical strength, and are therefore used in various applications such as electric / electronic parts and automobile parts.
  • thermosetting liquid crystal polyester As a method for producing a liquid crystal polyester, a method by transesterification involving acetylation and deacetylation of a monomer is known.
  • a method for producing a thermosetting liquid crystal polyester there is known a method in which a curing agent such as a thermosetting agent is added to the liquid crystal polyester and melt mixed. Transfer molding is known as a semiconductor sealing technique.
  • thermosetting liquid crystal polymer material for example, a material in which a liquid crystal oligomer such as a main chain thermotropic liquid crystal ester is end-capped with a phenylacetylene, phenylmaleimide, or nadiimide reactive end group is known (see Patent Documents 1 to 3). ).
  • a material obtained by reacting a thermosetting liquid crystal oligomer having one or more soluble structural units in the main chain and having a thermosetting group at one or more terminals of the main chain with a specific fluorine compound A material obtained by reacting the thermosetting liquid crystal oligomer with a nano filler whose surface is substituted with an alkoxide metal compound is known (see Patent Document 5).
  • thermosetting liquid crystal polymer material for example, a material in which a crosslinkable group is bonded to a terminal of a liquid crystal polymer via a spacer unit is also known (see Patent Document 6).
  • a material having radically polymerizable groups such as unsubstituted or substituted maleimide, unsubstituted or substituted nadiimide, ethynyl, and benzocyclobutene at both ends of the liquid crystal polyester is also known (see Patent Document 7).
  • thermosetting agents such as liquid crystal polyesters have very poor compatibility with thermosetting agents. Therefore, it is necessary to mix the aromatic polyester and the thermosetting agent in a liquid state at a high temperature for a long time.
  • a thermosetting agent is added to the aromatic polyester and heated and mixed for a long time at a temperature higher than the melting point, so that the viscosity of the thermosetting polyester composition is increased. May rise and become high viscosity. Therefore, molding such as transfer molding may be difficult.
  • the object of the present invention is to suppress the increase in viscosity of the thermosetting aromatic polyester composition by devising the mixing order of additives when the aromatic polyester and the thermosetting agent are melt-mixed.
  • Another object of the present invention is to provide a production method capable of easily obtaining a thermosetting aromatic polyester composition that is uniform and suitable for molding such as transfer molding.
  • Another object of the present invention is to add a maleimide derivative having a low melting point and / or a large difference between the melting point and the heat generation starting temperature as a thermosetting agent, so that a crosslinking reaction does not proceed (for example, 80 to 200). It is an object of the present invention to provide a method for producing a thermosetting aromatic polyester composition capable of mixing a maleimide derivative with a thermosetting aromatic polyester at a low temperature and uniformly dispersing the mixture.
  • aromatic polyester is a thermoplastic resin and cannot be used because it deforms in applications where it is exposed to a temperature higher than the molding temperature. Therefore, it is necessary to introduce a thermosetting functional group having crosslinkability into the aromatic polyester to form a thermosetting resin.
  • a solution method is often used, and productivity is generally poor.
  • a method (melt mixing) of heating and kneading a compound having an aromatic polyester and a crosslinkable group at a temperature equal to or higher than the melting point of the aromatic polyester is employed. ing.
  • aromatic polyesters generally have a very high melting point (for example, 280 ° C. or higher), and the viscosity increases due to the progress of the crosslinking reaction during melt mixing, which may make molding such as transfer molding difficult.
  • another object of the present invention is that aromatic polyester can be melt-mixed at a relatively low temperature (for example, 200 ° C. or less), the viscosity does not increase due to the progress of the crosslinking reaction during melt-mixing, and molding such as transfer molding. It is providing the thermosetting aromatic polyester composition excellent in property.
  • the inventors of the present invention blended an additive such as an inorganic filler first when an aromatic polyester having a specific structure and a thermosetting agent are melt-mixed, and then the thermosetting agent.
  • an additive such as an inorganic filler
  • the aromatic polyester in the system is diluted, the concentration of the thermosetting aromatic polyester generated after the addition of the thermosetting agent is lowered, and the thermosetting agent and the thermosetting aromatic polyester
  • the inventors have found that a time for heating can be reduced, an increase in viscosity due to a curing reaction (crosslinking reaction) can be suppressed, and a uniform and transfer-moldable thermosetting aromatic polyester composition can be easily produced, thereby completing the present invention. It was.
  • thermosetting aromatic polyester having a specific structure and a low melting point and / or a maleimide derivative having a large difference between the melting point and the heat generation start temperature.
  • the aromatic polyester and the maleimide derivative can be mixed in a temperature range where the cross-linking reaction does not proceed (for example, 80 to 200 ° C.), the viscosity increase of the thermosetting aromatic polyester composition can be suppressed, and a uniform composition can be obtained.
  • thermosetting aromatic polyester composition can be obtained by kneading in a relatively low temperature range (for example, 100 to 200 ° C.) where the crosslinking reaction does not proceed, and the present invention has been completed.
  • this invention is a manufacturing method of the thermosetting polyester composition containing aromatic polyester and a crosslinkable compound, Comprising: The process I which melt-mixes the following aromatic polyester (A) and an additive, and the said Provided is a method for producing a thermosetting aromatic polyester composition comprising a step II in which the following crosslinkable compound (B) is added to the mixture obtained in the step I and melt mixed.
  • Aromatic polyester (A) aromatic polyester having at least one group or structure selected from the group consisting of a hydroxyl group, an acyloxy group, an aromatic cyclic group, and a conjugated diene structure at the molecular chain terminal
  • Crosslinkable compound (B ) A functional group that reacts with a hydroxyl group, an acyloxy group, an aromatic cyclic group, or a conjugated diene structure, a functional group that reacts with the group or structure of the aromatic polyester (A), and a thermally polymerizable functional group.
  • the amount of the additive is 10 to 4000 parts by weight and the amount of the crosslinkable compound (B) is 10 to 400 parts by weight with respect to 100 parts by weight of the aromatic polyester (A).
  • a method for producing the thermosetting aromatic polyester composition is provided.
  • the present invention provides the production of the thermosetting aromatic polyester composition, wherein the mixing temperature when the aromatic polyester (A) and the additive are melt-mixed in the step I is 80 to 300 ° C. Provide a method.
  • the present invention provides the thermosetting aromatic compound according to the step II, wherein the crosslinking temperature (80) is 200 to 200 ° C. and the mixing time is 30 to 600 minutes when the crosslinkable compound (B) is added and melt mixed.
  • a method for producing a polyester composition is provided.
  • the present invention provides a method for producing the thermosetting aromatic polyester composition, wherein the additive is an inorganic filler.
  • the present invention provides a method for producing the thermosetting aromatic polyester composition, wherein the inorganic filler is a silica filler.
  • thermosetting aromatic polyester composition characterized by including the process of adding the following maleimide derivative (B ') to the following aromatic polyester (A), and mixing.
  • Aromatic polyester (A) aromatic polyester having at least one group or structure selected from the group consisting of a hydroxyl group, an acyloxy group, an aromatic cyclic group, and a conjugated diene structure at the molecular chain end
  • Maleimide derivative (B ′ ) Melting point of 150 ° C. or less and / or difference in heat generation start temperature between the melting point and the maleimide derivative is 30 ° C. or more, and a maleimide group that reacts with the aromatic polyester (A) in the molecule and a thermopolymerizable functional group
  • the present invention provides the above thermosetting aromatic polyester composition, wherein the blended amount of the maleimide derivative (B ′) is 10 to 400 parts by weight with respect to 100 parts by weight of the aromatic polyester (A). Provide a method.
  • the present invention relates to the thermosetting resin, wherein the maleimide derivative (B ′) is added to the aromatic polyester (A) and the mixing temperature is 80 to 200 ° C. and the mixing time is 30 to 600 minutes.
  • a method for producing an aromatic polyester composition is provided.
  • the present invention provides the thermosetting, wherein the maleimide derivative (B ′) is at least one compound selected from a compound represented by the following formula (i) and a compound represented by the formula (ii): A method for producing a conductive polyester composition is provided. [N in the above formula (i) represents an integer of 0 to 10]
  • the aromatic polyester (A) is a structural unit U derived from at least one aromatic compound selected from the group consisting of an aromatic hydroxycarboxylic acid, an aromatic dicarboxylic acid, and an aromatic diol.
  • the ratio of the structural unit U to the total structural units constituting the aromatic polyester (A) is 60 to 100 Provided is a method for producing the thermosetting aromatic polyester composition, which is in weight percent.
  • this invention provides the manufacturing method of the said thermosetting aromatic polyester composition whose melting
  • the present invention provides a method for producing the thermosetting aromatic polyester composition, wherein the aromatic polyester (A) has a molecular weight of 300 to 20000.
  • the ratio of the hydroxyl group is 5 to 100% and the ratio of the acyloxy group is 0 to 90% with respect to the entire terminal group at the molecular chain end of the aromatic polyester (A).
  • a method for producing the thermosetting aromatic polyester composition wherein the ratio of groups other than the hydroxyl group and the acyloxy group is 0 to 90%.
  • the present invention also provides a thermosetting aromatic polyester composition obtained by the above-described method for producing a thermosetting aromatic polyester composition.
  • this invention contains the following aromatic polyester (A) and the following crosslinkable compound (B), and the softening temperature of the said aromatic polyester (A) is 30 degreeC or more from the hardening temperature of the said crosslinkable compound (B).
  • a thermosetting aromatic polyester composition characterized by being low is provided.
  • Aromatic polyester (A) aromatic polyester having at least one group or structure selected from the group consisting of a hydroxyl group, an acyloxy group, an aromatic cyclic group, and a conjugated diene structure at the molecular chain terminal
  • Crosslinkable compound (B ) A functional group that reacts with a hydroxyl group, an acyloxy group, an aromatic cyclic group, or a conjugated diene structure, a functional group that reacts with the group or structure of the aromatic polyester (A), and a thermally polymerizable functional group.
  • the present invention provides the thermosetting aromatic polyester composition described above, wherein the aromatic polyester (A) has a softening temperature of 40 to 200 ° C.
  • thermosetting aromatic polyester composition wherein the curing temperature of the crosslinkable compound (B) is 70 to 250 ° C.
  • the present invention provides the thermosetting aromatic polyester composition, wherein the aromatic polyester (A) has an average degree of polymerization of 3 to 30.
  • thermosetting aromatic polyester composition wherein the crosslinkable compound (B) is a maleimide derivative.
  • the present invention provides the thermosetting aromatic polyester composition, wherein the amount of the crosslinkable compound (B) is 10 to 300 parts by weight with respect to 100 parts by weight of the aromatic polyester (A). provide.
  • the present invention also provides a cured product obtained by curing the thermosetting aromatic polyester composition.
  • the 5% weight reduction rate measured at a temperature rising rate of 10 ° C./min (in air) is 350 ° C. or higher, and the activation energy of the thermal decomposition reaction in air is 150 kJ / mol or higher.
  • the cured product is provided.
  • thermosetting polyester composition containing an aromatic polyester and a crosslinkable compound, which is obtained in Step I in which the aromatic polyester (A) and an additive are melt-mixed, and in Step I above.
  • a method for producing a thermosetting aromatic polyester composition comprising the step II of adding the crosslinkable compound (B) to the obtained mixture and melt-mixing the mixture.
  • the amount of the additive is 10 to 4000 parts by weight and the amount of the crosslinkable compound (B) is 10 to 400 parts by weight with respect to 100 parts by weight of the aromatic polyester (A).
  • the manufacturing method of the thermosetting aromatic polyester composition as described in [1].
  • thermosetting aromatic polyester composition according to [5], wherein the inorganic filler is a silica filler.
  • the melt viscosity (initial complex viscosity) of the thermosetting aromatic polyester composition after the crosslinkable compound (B) is added and melt mixed is 200 Pa or less at 1000 Pa ⁇ s or less.
  • a method for producing a thermosetting aromatic polyester composition comprising a step of adding and mixing a maleimide derivative (B ′) to the aromatic polyester (A).
  • thermosetting aromatic polyester composition according to [8], wherein the amount of the maleimide derivative (B ′) is 10 to 400 parts by weight with respect to 100 parts by weight of the aromatic polyester (A). Production method. [10] In [8] or [9], when the maleimide derivative (B ′) is added to the aromatic polyester (A) and mixed, the mixing temperature is 80 to 200 ° C. and the mixing time is 30 to 600 minutes. The manufacturing method of the thermosetting aromatic polyester composition of description. [11] The maleimide derivative (B ′) is at least one compound selected from the compound represented by the formula (i) and the compound represented by the formula (ii). The manufacturing method of the thermosetting polyester composition of any one.
  • thermosetting polyester composition according to any one of [8] to [11], wherein the maleimide derivative (B ′) has a molecular weight of 200 to 1,000.
  • the aromatic polyester (A) includes a structural unit U derived from at least one aromatic compound selected from the group consisting of an aromatic hydroxycarboxylic acid, an aromatic dicarboxylic acid, and an aromatic diol.
  • the ratio of the structural unit U to the total structural units constituting the aromatic polyester (A) is 60 to 100% by weight.
  • thermosetting aromatic polyester composition according to any one of [1] to [16], wherein the aromatic polyester (A) has a molecular weight of 300 to 20000.
  • the ratio of the hydroxyl group is 5 to 100% and the ratio of the acyloxy group is 0 to 90% with respect to the entire terminal group at the molecular chain end of the aromatic polyester (A).
  • thermosetting aromatic polyester composition It includes an aromatic polyester (A) and a crosslinkable compound (B), and the softening temperature of the aromatic polyester (A) is 30 ° C. or lower than the curing temperature of the crosslinkable compound (B).
  • a thermosetting aromatic polyester composition [21] The thermosetting aromatic polyester composition according to [20], wherein the aromatic polyester (A) has a softening temperature of 40 to 200 ° C. [22] The thermosetting aromatic polyester composition according to [20] or [21], wherein the curing temperature of the crosslinkable compound (B) is 70 to 250 ° C. [23] The thermosetting aromatic polyester composition according to any one of [20] to [22], wherein the average degree of polymerization of the aromatic polyester (A) is 3 to 30.
  • thermosetting aromatic polyester composition according to any one of [20] to [23], wherein the crosslinkable compound (B) is a maleimide derivative.
  • the amount of the crosslinkable compound (B) is 10 to 300 parts by weight with respect to 100 parts by weight of the aromatic polyester (A), according to any one of [20] to [24] Thermosetting aromatic polyester composition.
  • the 5% weight loss rate measured at a heating rate of 10 ° C./min (in air) is 350 ° C. or more, and the activation energy of the thermal decomposition reaction in air is 150 kJ / mol or more [26].
  • thermosetting aromatic polyester composition Since the 1st manufacturing method has the above-mentioned composition, it can control the viscosity rise of the thermosetting aromatic polyester composition by progress of hardening reaction of aromatic polyester and a thermosetting agent (crosslinkable compound), and is uniform. A simple thermosetting aromatic polyester composition can be obtained.
  • the second production method has the above-described configuration, it can be mixed in a temperature range (for example, 80 to 200 ° C.) where the crosslinking reaction does not proceed, and the increase in viscosity of the thermosetting aromatic polyester composition is suppressed and uniform. Composition is obtained.
  • thermosetting aromatic polyester composition of the present invention has the above-described configuration, the viscosity does not increase due to the progress of the crosslinking reaction during heating and kneading, and the thermosetting aromatic polyester composition has excellent moldability such as transfer molding. Can be obtained. Moreover, since aromatic polyester is included as an essential component, the obtained cured product is excellent in processability, dimensional stability, low linear expansion, high thermal conductivity, low hygroscopicity, and dielectric properties.
  • thermosetting aromatic polyester composition The method for producing the thermosetting aromatic polyester composition of the present invention (sometimes referred to as “the production method of the present invention”) is “the first production method” or “the second production method”.
  • the first production method and the second production method are independent production methods, but the increase in the viscosity of the thermosetting aromatic polyester composition can be suppressed, and a uniform composition can be obtained. Has a common effect.
  • a 1st manufacturing method is a manufacturing method of the thermosetting polyester composition containing an aromatic polyester, a crosslinkable compound, and an additive, Comprising: The process of melt-mixing the following aromatic polyester (A) and an additive I and a step II in which the following crosslinkable compound (B) is added to the mixture obtained in the step I and melt mixed.
  • Aromatic polyester (A) At least one group or structure selected from the group consisting of a hydroxyl group, an acyloxy group, an aromatic cyclic group, and a conjugated diene structure at the molecular chain terminal (particularly, a hydroxyl group and / or an acyloxy group)
  • a crosslinkable compound having a functional group that reacts with the group or structure of the aromatic polyester (A) and a thermopolymerizable functional group in the molecule Note that the above-mentioned “hydroxyl group and / or acyloxy group” means “hydroxyl group and acyloxy group” It means “one or both” and the same applies to the other.
  • the second production method includes a step of adding and mixing the following maleimide derivative (B ′) to the aromatic polyester (A).
  • Maleimide derivative (B ′) a maleimide group having a melting point of 150 ° C. or less and / or a difference in heat generation starting temperature between the melting point and the maleimide derivative of 30 ° C. or more and reacting with the aromatic polyester (A) in the molecule
  • a maleimide derivative having a maleimide group which is a thermopolymerizable functional group is 30 ° C.
  • the melting point of the maleimide derivative is only 150 ° C. or less. This means that the difference in the heat generation start temperature may be only 30 ° C. or more, the melting point may be 150 ° C. or less, and the difference between the melting point and the heat generation start temperature may be 30 ° C. or more.
  • the aromatic polyester (A) has at least one group or structure selected from the group consisting of a hydroxyl group, an acyloxy group, an aromatic cyclic group, and a conjugated diene structure at the molecular chain terminal (“reactivity”). It is an aromatic polyester having a functional group (sometimes referred to as “a”).
  • the aromatic polyester (A) is a polymer (polymer or oligomer) having a polyester structure, and its melt (for example, a melt at 450 ° C. or lower) exhibits a liquid crystal polyester (thermoplastic). Often a tropic liquid crystal polymer).
  • the aromatic polyester (A) has a hydroxyl group at the molecular chain end, it is not particularly limited, but it may have a hydroxyl group only at one end (one end) of the molecular chain, or both ends ( It may have a hydroxyl group at both ends. Moreover, the aromatic polyester (A) may have a hydroxyl group in a portion other than the molecular chain end.
  • the hydroxyl group that the aromatic polyester (A) has at the molecular chain end may be a phenolic hydroxyl group or an alcoholic hydroxyl group.
  • the hydroxyl group that the aromatic polyester (A) has at the molecular chain terminal is preferably a phenolic hydroxyl group.
  • the “phenolic hydroxyl group” in the present specification includes a hydroxyl group bonded to other aromatic rings (naphthalene ring, anthracene ring, etc.) in addition to a hydroxyl group bonded to a substituted or unsubstituted benzene ring. .
  • the aromatic polyester (A) has an acyloxy group at the molecular chain end, it is not particularly limited. However, the aromatic polyester (A) may have an acyloxy group only at one end (one end) of the molecular chain, or both of the molecular chains. The terminal (both terminals) may have an acyloxy group. In addition, the aromatic polyester (A) may have an acyloxy group in a portion other than the molecular chain end.
  • acyloxy group that the aromatic polyester (A) has at the molecular chain end examples include an acetyloxy group (acetoxy group), a propionyloxy group, and a butyryloxy group.
  • the acyloxy group which the aromatic polyester (A) has in the molecular chain terminal from the viewpoint of the versatility and the reactivity of the raw material to be used is an acetoxy group.
  • the aromatic polyester (A) has an aromatic cyclic group at the end of the molecular chain, it is not particularly limited, but it may have an aromatic cyclic group only at one end (one end) of the molecular chain. In addition, an aromatic cyclic group may be present at both ends (both ends) of the molecular chain. In addition, the aromatic polyester (A) may have an aromatic cyclic group at a portion other than the molecular chain end. In addition, the aromatic cyclic group which the aromatic polyester (A) has at the molecular chain end may be bonded with one or more substituents per ring. Examples of the substituent include publicly known or commonly used substituents, and are not particularly limited. Examples thereof include those exemplified as the substituents that the aromatic hydroxycarboxylic acid described later may have.
  • the aromatic polyester (A) When the aromatic polyester (A) has a phenolic hydroxyl group at the molecular chain end, the aromatic polyester (A) is also an aromatic polyester having a hydroxyl group at the molecular chain end and has an aromatic ring at the molecular chain end. It is also an aromatic polyester.
  • the aromatic polyester (A) has a conjugated diene structure at the end of the molecular chain, it is not particularly limited, but it may have a conjugated diene structure only at one end (one end) of the molecular chain, Both ends (both ends) may have a conjugated diene structure. In addition, the aromatic polyester (A) may have a conjugated diene structure in a portion other than the molecular chain end.
  • Examples of the conjugated diene structure that the aromatic polyester (A) has at the molecular chain end include a chain conjugated diene structure and a cyclic conjugated diene structure.
  • Examples of the chain conjugated diene structure include structures derived from 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, and the like. It is done.
  • Examples of the cyclic conjugated diene structure include structures derived from 1,3-cyclopentadiene, 1,3-cyclohexadiene, furan and derivatives thereof, thiophene and derivatives thereof, and the like.
  • the aromatic polyester (A) may have two or more selected from the group consisting of a hydroxyl group, an acyloxy group, an aromatic ring, and a conjugated diene structure at the molecular chain end.
  • the aromatic polyester (A) may have both a hydroxyl group and an acyloxy group at the molecular chain end.
  • the aromatic polyester (A) has a hydroxyl group at one end of the molecular chain and at the other end. It may have an acyloxy group.
  • the proportion of hydroxyl groups is 5 to 100%, the proportion of acyloxy groups is 0 to 90%, and the proportion of groups other than hydroxyl groups and acyloxy groups is 0 to 90% with respect to the entire terminal groups at the molecular chain terminals. %, More preferably the proportion of hydroxyl groups is 10 to 90%, the proportion of acyloxy groups is 10 to 90%, and the proportion of groups other than hydroxyl groups and acyloxy groups is more preferably 0 to 80%.
  • the aromatic polyester (A) includes at least a structural unit (repeating structural unit) derived from at least one aromatic compound selected from the group consisting of an aromatic hydroxycarboxylic acid, an aromatic dicarboxylic acid, and an aromatic diol.
  • An aromatic polyester is preferred.
  • aromatic hydroxycarboxylic acid examples include 4-hydroxybenzoic acid, 3-hydroxybenzoic acid, 1-hydroxy-2-naphthoic acid, 3-hydroxy-2-naphthoic acid, 6-hydroxy-2-naphthoic acid, Examples thereof include 5-hydroxy-1-naphthoic acid, 4′-hydroxy [1,1′-biphenyl] -4-carboxylic acid, and derivatives thereof.
  • the derivative include compounds in which the aromatic ring (aromatic ring) of the aromatic hydroxycarboxylic acid is substituted with a substituent having 0 to 20 carbon atoms (preferably 0 to 10 carbon atoms).
  • substituents examples include an alkyl group [eg, methyl group, ethyl group, etc.]; alkenyl group [eg, vinyl group, allyl group, etc.]; alkynyl group [eg, ethynyl group, propynyl group, etc.]; halogen atom [ For example, chlorine atom, bromine atom, iodine atom, etc.]; hydroxyl group; alkoxy group [eg, C 1-6 alkoxy group such as methoxy group, ethoxy group, propoxy group, isopropyloxy group, butoxy group, isobutyloxy group (preferably Is a C 1-4 alkoxy group, etc.]; an alkenyloxy group [for example, a C 2-6 alkenyloxy group such as an allyloxy group (preferably a C 2-4 alkenyloxy group), etc.]; an aryloxy group [eg, a phenoxy group , tolyloxy
  • C 6-14 arylthio group which may have a substituent such as an alkoxy group]; aralkylthio group [for example, benzylthio group, C 7-18 such phenethylthio group Aralkylthio group etc.]; carboxyl group; alkoxycarbonyl group [eg C 1-6 alkoxy-carbonyl group such as methoxycarbonyl group, ethoxycarbonyl group, propoxycarbonyl group, butoxycarbonyl group, etc.]; aryloxycarbonyl group [eg, C 6-14 aryloxy-carbonyl group such as phenoxycarbonyl group, tolyloxycarbonyl group, naphthyloxycarbonyl group, etc.]; Aralkyloxycarbonyl group [for example, C 7-18 aralkyloxy-carbonyl group such as benzyloxycarbonyl group, etc.
  • Amino group; mono- or dialkylamino [For example, methylamino group, ethylamino group, dimethylamino group, such as mono- or di -C 1-6 alkylamino group such as a diethylamino group]; mono- or diphenylamino group [such as phenylamino group]; an acylamino group [ For example, C 1-11 acylamino group such as acetylamino group, propionylamino group, benzoylamino group, etc.]; Epoxy group-containing group [eg, glycidyl group, glycidyloxy group, 3,4-epoxycyclohexyl group, etc.]; Oxetanyl group containing group [e.g., ethyloxetanyl group]; an acyl group [e.g., an acetyl group, a propionyl group, a benzoyl group]; these
  • aromatic dicarboxylic acid examples include phthalic acid, terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, [1,1′-biphenyl] -4,4′-dicarboxylic acid. And acid, 4,4′-oxybis (benzoic acid), 4,4′-thiobis (benzoic acid), 4- [2- (4-carboxyphenoxy) ethoxy] benzoic acid, and derivatives thereof.
  • the derivatives include compounds in which the aromatic ring of the aromatic dicarboxylic acid is substituted with a substituent having 0 to 20 carbon atoms (preferably 0 to 10 carbon atoms). As said substituent, the thing similar to the substituent in aromatic hydroxycarboxylic acid is illustrated.
  • aromatic polyester (A) may have 1 type of the structural unit derived from aromatic dicarboxylic acid, and may have 2 or more types.
  • aromatic diol examples include 4,4′-dihydroxybiphenyl, hydroquinone, resorcinol, 2,6-naphthalenediol, 1,5-naphthalenediol, [1,1′-biphenyl] -4,4′-diol. 4,4′-dihydroxydiphenyl ether, bis (4-hydroxyphenyl) methanone, bisphenol A, bisphenol F, bisphenol S, (phenylsulfonyl) benzene, [1,1′-biphenyl] -2,5-diol, and these And derivatives thereof.
  • aromatic polyester (A) may have 1 type of the structural unit derived from aromatic diol, and may have 2 or more types.
  • the aromatic polyester (A) is an aromatic polyester containing a structural unit U derived from at least one aromatic compound selected from the group consisting of an aromatic hydroxycarboxylic acid, an aromatic dicarboxylic acid, and an aromatic diol,
  • the ratio of the structural unit U to the total structural units constituting the aromatic polyester (A) is preferably 60 to 100% by weight, Is more preferably from 100 to 100% by weight, still more preferably from 90 to 100% by weight.
  • the aromatic polyester (A) is substantially composed only of structural units derived from the above-mentioned aromatic compounds (aromatic hydroxycarboxylic acid, aromatic dicarboxylic acid, aromatic diol).
  • the aromatic polyester (A) does not easily exhibit liquid crystallinity in the molten state due to the structural units derived from other monomers to be introduced, and the heat resistance and moisture resistance of the cured product The resistance (hydrolysis resistance) is not easily lowered.
  • the aromatic polyester (A) is composed of structural units other than the structural units described above (structural units derived from aromatic hydroxycarboxylic acids, structural units derived from aromatic dicarboxylic acids, structural units derived from aromatic diols) ("other structural units").
  • the other structural unit may be, for example, a structural unit derived from an aromatic diamine, a structural unit derived from an aromatic amine or aromatic amide having a phenolic hydroxyl group, and the like. Is mentioned.
  • aromatic diamine examples include 1,4-benzenediamine, 1,3-benzenediamine, 4-methyl-1,3-benzenediamine, 4- (4-aminobenzyl) phenylamine, 4- (4- Aminophenoxy) phenylamine, 3- (4-aminophenoxy) phenylamine, 4′-amino-3,3′-dimethyl [1,1′-biphenyl] -4-ylamine, 4′-amino-3,3 ′ -Bis (trifluoromethyl) [1,1'-biphenyl] -4-ylamine, 4-amino-N- (4-aminophenyl) benzamide, 4-[(4-aminophenyl) sulfonyl] phenylamine, bis ( 4-aminophenyl) methanone, and derivatives thereof.
  • aromatic polyester (A) may have 1 type of the structural unit derived from aromatic diamine, and may have 2 or more types.
  • Examples of the aromatic amine or aromatic amide having a phenolic hydroxyl group include 4-aminophenol, 4-acetamidophenol, 3-aminophenol, 3-acetamidophenol, 6-amino-2-naphthol, 5-amino- Examples thereof include 1-naphthol, 4′-hydroxy- [1,1′-biphenyl] -4-amine, 4-amino-4′-hydroxydiphenylmethane, and derivatives thereof.
  • Examples of the derivatives include compounds in which an aromatic ring of the aromatic amine having a phenolic hydroxyl group is substituted with a substituent having 0 to 20 carbon atoms (preferably 0 to 10 carbon atoms).
  • aromatic polyester (A) may have 1 type of the structural unit derived from the aromatic amine or aromatic amide which has a phenolic hydroxyl group, and may have 2 or more types. .
  • Ratio of the above-mentioned aromatic compound (aromatic diamine, aromatic amine or aromatic amide having a phenolic hydroxyl group) to all structural units constituting the aromatic polyester (A) (when the number of the structural units is two or more)
  • the ratio of the total amount thereof is not particularly limited, but is preferably 30% by weight or less (eg, 0 to 30% by weight), more preferably 10% by weight or less, and further preferably 5% by weight or less. When the ratio is 30% by weight or less, the hygroscopic resistance (hydrolysis resistance) of the cured product is difficult to decrease.
  • the aromatic polyester (A) can be produced by polymerizing the above-mentioned aromatic compound (monomer) by a known or conventional method, and the production method is not particularly limited.
  • the above-mentioned aromatic hydroxycarboxylic acid, aromatic diol, aromatic amine having a phenolic hydroxyl group, an aromatic compound having a hydroxyl group or an amino group, such as an aromatic diamine, an excess amount of fatty acid anhydride It can be produced by reacting the acylated product obtained by the reaction with an aromatic compound having a carboxyl group such as aromatic hydroxycarboxylic acid or aromatic dicarboxylic acid (transesterification reaction, amide exchange reaction). More specifically, for example, it can be produced by the method described in JP-A-2007-119610.
  • aromatic polyester (A) a commercial item can also be used.
  • an aromatic polyester (A) having a hydroxyl group at the molecular chain end for example, a method of controlling the monomer composition so that the hydroxyl group becomes excessive (for example, excess aromatic diol as a monomer component) Etc.) and the like.
  • a hydroxyl group and a functional group that undergoes a condensation reaction with the hydroxyl group derived from a carboxyl group or a carboxyl group.
  • the ratio of the group to be formed is not particularly limited.
  • the ratio of the aromatic diol to the total amount (100 mol%) of the monomer constituting the aromatic polyester (A) is not particularly limited, but is preferably 3 to 25 mol%, and preferably 4 to 25 mol. % Is more preferable.
  • an aromatic polyester (A) having an acyloxy group at the molecular chain terminal for example, the hydroxyl group of the aromatic polyester (A) having a hydroxyl group at the molecular chain terminal is converted to a known or conventional acylating agent (for example, a method of acylating using a fatty acid anhydride such as acetic anhydride, an acid halide, or the like.
  • a fatty acid anhydride such as acetic anhydride, an acid halide, or the like.
  • an aromatic polyester (A) having an aromatic cyclic group at the molecular chain end for example, a substantially aromatic compound (for example, the above-mentioned aromatic hydroxycarboxylic acid or aromatic dicarboxylic acid as a monomer) can be used.
  • Acid, aromatic diol, etc. and aromatic compounds with respect to the reactive functional group at the end of the aromatic polyester having a reactive functional group such as hydroxyl group or carboxyl group at the molecular chain end. Examples thereof include a method of forming an aromatic ring at the molecular chain terminal by reaction (for example, addition reaction).
  • an aromatic polyester (A) having a conjugated diene structure at the molecular chain terminal for example, for the reactive functional group of the aromatic polyester having a reactive functional group such as a hydroxyl group or a carboxyl group at the terminal And a method of reacting a compound having a conjugated diene structure and capable of reacting with the reactive functional group (for example, (1-methyl-2,4-cyclopentadien-1-yl) methanol).
  • the average degree of polymerization of the aromatic polyester (A) is not particularly limited, but is preferably 3 to 30, more preferably 4 to 25, and still more preferably 5 to 20. When the average degree of polymerization is within the above range, the curing reactivity is unlikely to decrease, and the reaction temperature at the time of curing does not become too high.
  • the average degree of polymerization of the aromatic polyester (A) can be determined, for example, by the amine decomposition HPLC method described in JP-A No. 5-271394.
  • the molecular weight of the aromatic polyester (A) is not particularly limited, but is preferably 300 to 20000, more preferably 400 to 15000, and still more preferably 500 to 15000. When the molecular weight is within the above range, the melting point of the aromatic polyester does not become too high, and the mixing can be performed in a temperature range where a crosslinking reaction hardly occurs when mixing with the thermosetting agent. In addition, the molecular weight of aromatic polyester (A) can be calculated
  • the glass transition temperature (Tg) of the aromatic polyester (A) is not particularly limited, but is preferably 30 to 150 ° C, more preferably 40 to 120 ° C, and further preferably 50 to 100 ° C.
  • the glass transition temperature is in the above range, the cured product is hardly inferior in heat resistance, and the aromatic polyester (A) and the crosslinkable compound (B) can be melt-mixed at a relatively low temperature (200 ° C. or lower).
  • the polymerization reaction of the thermally polymerizable functional group of the crosslinkable compound (B) hardly occurs during melt mixing.
  • the glass transition temperature of aromatic polyester (A) can be measured by thermal analysis and dynamic viscoelasticity measurement, such as DSC and TGA.
  • the melting point (Tm) of the aromatic polyester (A) is not particularly limited, but is preferably 250 ° C. or lower (eg, 80 to 250 ° C.), more preferably 220 ° C. or lower, further preferably 200 ° C. or lower, and 180 ° C. or lower. Particularly preferred.
  • the aromatic polyester (A) and the crosslinkable compound (B) can be melt-mixed at a relatively low temperature (200 ° C. or lower), and the viscosity increases rapidly due to the thermal polymerization reaction. Hard to wake up.
  • fusing point of aromatic polyester (A) can be measured by thermal analysis and dynamic viscoelasticity measurement, such as DSC and TGA, for example.
  • the crosslinkable compound (B) functions as a thermosetting agent, and as described above, the reactive functional group (a) (hydroxyl group, hydroxyl group, aromatic molecule (A) at the molecular chain terminal in the molecule (in one molecule).
  • a functional group (sometimes referred to as “reactive functional group (b)”) that reacts with an acyloxy group, an aromatic cyclic group, and at least one selected from the group consisting of conjugated diene structures; It is a compound having at least a functional group (thermosetting functional group).
  • the reactive functional group (b) is not particularly limited as long as it is a functional group capable of reacting with the reactive functional group (a) of the aromatic polyester (A), but from the viewpoint of the temperature at which the reaction proceeds.
  • An ⁇ , ⁇ -unsaturated carbonyl group eg, a ketone group having a carbon-carbon unsaturated bond between the ⁇ -position and the ⁇ -position of the carbonyl carbon, a carbon-carbon between the ⁇ -position and the ⁇ -position of the carbonyl carbon, An ester group having an unsaturated bond, an amide group having a carbon-carbon unsaturated bond between the ⁇ -position and the ⁇ -position of the carbonyl carbon, and an imide having a carbon-carbon unsaturated bond between the ⁇ -position and the ⁇ -position of the carbonyl carbon Group); epoxy group; maleimide group; ester group; acid anhydride group (for example, maleic anhydride group); carboxyl group and the like.
  • ⁇ , ⁇ -unsaturated carbonyl group, epoxy group, maleimide group, ester group, acid anhydride group, and carboxyl group are reactive functional groups that react with hydroxyl groups.
  • the carboxyl group is a reactive functional group that reacts with an acyloxy group (against an acyloxy group reactive functional group).
  • maleimide groups and acid anhydride groups are reactive to react with an aromatic ring (for example, cycloaddition reaction). It is a reactive functional group that reacts with a functional group and / or a conjugated diene structure (for example, cycloaddition reaction).
  • the number of reactive functional groups (b) in the crosslinkable compound (B) may be one or more, and is not particularly limited, but is preferably 1 to 10, more preferably 1 to 5.
  • thermopolymerizable functional group is not particularly limited as long as it is a functional group that can be polymerized by heating, but in terms of the temperature at which the polymerization reaction proceeds, for example, a maleimide group, a nadiimide group, a phthalimide group, a cyanate group, Examples thereof include a nitrile group, a phthalonitrile group, a styryl group, an ethynyl group, a propargyl ether group, a benzocyclobutene group, a biphenylene group, and substituted or derivative thereof.
  • guide_body the thermopolymerizable functional group etc.
  • thermopolymerizable functional group which the substituent (For example, the substituent in the above-mentioned aromatic hydroxycarboxylic acid etc.) couple
  • bonded with the said thermopolymerizable functional group are mentioned.
  • a maleimide group is preferable in that part or all of the structure functions also as the reactive functional group (b).
  • the crosslinkable compound (B) may have one of the above thermopolymerizable functional groups, or may have two or more.
  • the number of thermally polymerizable functional groups in the crosslinkable compound (B) may be one or more, and is not particularly limited, but is preferably 1 to 10, more preferably 1 to 5.
  • the crosslinkable compound (B) needs to have at least one reactive functional group (b) and at least one thermopolymerizable functional group.
  • the crosslinkable compound (B) has a maleimide group that functions as both a reactive functional group (b) and a thermopolymerizable functional group
  • the ⁇ carbon- ⁇ carbon double bond in the maleimide group disappears by reacting with the hydroxyl group, aromatic cyclic group, or conjugated diene structure of the aromatic polyester (A), and no longer functions as a thermopolymerizable functional group. It is because it becomes impossible.
  • Examples of the crosslinkable compound (B) include one or more reactive functional groups (b) and one or more thermopolymerizable functional groups in the molecule, and a carbon number of 100 or less (preferably 10 to 50). ).
  • Examples of such a crosslinkable compound (B) include a hydrocarbon group, a heterocyclic group, or two or more of these bonded via one or more of a linking group (a divalent group having one or more atoms). And compounds formed by the above groups.
  • Examples of the hydrocarbon group, the heterocyclic group, and a group in which two or more of these are bonded via one or more of the linking groups include, for example, groups exemplified as X 1 and X 2 in the following formula (i) (organic groups) ) And the like.
  • the crosslinkable compound (B) includes a compound represented by the following formula (i) ( ⁇ , ⁇ -unsaturated carbonyl group (when the unsaturated group is a double bond)) and a thermally polymerizable functional group. Compound).
  • X 1 and X 2 in the above formula (i) are the same or different and represent an organic group.
  • the organic group is not particularly limited, but includes a substituted or unsubstituted hydrocarbon group, a substituted or unsubstituted heterocyclic group, a group in which two or more of these groups are bonded via one or more linking groups, and the like. Can be mentioned.
  • hydrocarbon group examples include an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, and a group in which two or more of these are bonded.
  • aliphatic hydrocarbon group examples include an alkyl group, an alkenyl group, an alkynyl group, and a corresponding divalent or higher group.
  • alkyl group examples include C 1-20 alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, hexyl group, octyl group, isooctyl group, decyl group, and dodecyl group (preferably C 1 -10 alkyl group, more preferably C 1-4 alkyl group).
  • alkenyl group examples include vinyl group, allyl group, methallyl group, 1-propenyl group, isopropenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 1-pentenyl group and 2-pentenyl group.
  • C 2-20 alkenyl groups (preferably C 2-10 alkenyl groups, more preferably C 2-4 alkenyl groups) such as 3-pentenyl group, 4-pentenyl group and 5-hexenyl group.
  • alkynyl group include C 2-20 alkynyl groups such as ethynyl group and propynyl group (preferably C 2-10 alkynyl group, more preferably C 2-4 alkynyl group).
  • Examples of the alicyclic hydrocarbon group include a C 3-12 cycloalkyl group such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cyclododecyl group, and a corresponding divalent or higher group; a cyclohexenyl group.
  • C 3-12 cycloalkenyl groups and corresponding divalent or higher groups; bicycloheptanyl groups, bicycloheptenyl groups, and corresponding divalent or higher divalent groups such as C 4-15 bridged cyclic carbonization A hydrogen group etc. are mentioned.
  • aromatic hydrocarbon group examples include a C 6-14 aryl group (particularly a C 6-10 aryl group) such as a phenyl group and a naphthyl group, and a corresponding divalent or higher group.
  • hydrocarbon group examples include a group in which an aliphatic hydrocarbon group and an alicyclic hydrocarbon group such as a cyclohexylmethyl group, a methylcyclohexyl group, and a corresponding divalent or higher valent group are bonded; C 7-18 aralkyl groups such as benzyl and phenethyl groups (particularly C 7-10 aralkyl groups), C 6-10 aryl-C 2-6 alkenyl groups such as cinnamyl groups, C 1-4 alkyls such as tolyl groups Examples thereof include a C 2-4 alkenyl-substituted aryl group such as a substituted aryl group and a styryl group, and a group in which an aliphatic hydrocarbon group and an aromatic hydrocarbon group such as a corresponding divalent or higher valent group are bonded.
  • a substituent which the said hydrocarbon group may have, the group similar to the substituent in the above-mentioned aromatic hydroxy
  • heterocyclic group examples include a pyridyl group, a furyl group, a thienyl group, and a divalent or higher valent group corresponding thereto.
  • substituent which the said heterocyclic group may have the group similar to the substituent in the above-mentioned aromatic hydroxycarboxylic acid is mentioned, for example.
  • hydrocarbon group examples include two or more hydrocarbon groups having one or more linking groups [a divalent group having one or more atoms; for example, an ester bond, an ether bond, a carbonate bond, an amide bond, a thioether bond, And a group linked by a thioester bond, —NR— (R represents a hydroxyl group or an alkyl group), an imide bond, a group in which two or more of these are bonded, and the like.
  • the heterocyclic group also include a group in which two or more heterocyclic groups are directly bonded.
  • the organic group (X 1 , X 2 ) is a group in which one or more of the hydrocarbon groups and one or more of the heterocyclic groups are bonded directly and / or through one or more linking groups. May be.
  • X 1 and X 2 in the above formula (i) may be bonded to each other to form a ring together with the three carbon atoms shown in the formula.
  • examples of the ring structure formed by X 1 and X 2 and the three carbon atoms shown in the formula include a cycloalkenone ring, a cycloalkenedione ring, a flange-on ring (maleic anhydride ring).
  • a pyrrole dione ring maleimide ring
  • a lactone ring having a carbon-carbon unsaturated bond between the ⁇ -position and the ⁇ -position of the carbonyl carbon, and a carbon-carbon unsaturated bond between the ⁇ -position and the ⁇ -position of the carbonyl carbon.
  • a lactam ring is
  • R 1 and R 2 in the above formula (i) are the same or different and represent a hydrogen atom or an alkyl group which may have a substituent.
  • the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a s-butyl group, a t-butyl group, a pentyl group, a hexyl group, an octyl group, and a 2-ethylhexyl group.
  • a linear or branched alkyl group having 1 to 20 carbon atoms.
  • the substituent that the alkyl group may have include the same groups as the substituent in the above-described aromatic hydroxycarboxylic acid (excluding the alkyl group).
  • Y 1 and Y 2 in the above formula (i) are the same or different and represent a thermally polymerizable functional group.
  • the thermally polymerizable functional group include the above-described thermally polymerizable functional groups.
  • n1 and n2 in the above formula (i) are the same or different and represent an integer of 0 or more.
  • the sum of n1 and n2 (n1 + n2) represents an integer of 1 or more (that is, the compound represented by the formula (i) has one or more thermopolymerizable functional groups in the molecule).
  • the total of n1 and n2 is preferably, for example, an integer of 1 to 10 (more preferably an integer of 1 to 5).
  • bonding positions of Y 1 and Y 2 with respect to X 1 and X 2 are not particularly limited.
  • n1 (or n2) is an integer of 2 or more, plural Y 1 (or Y 2) may be the same or different.
  • crosslinkable compound (B) a compound represented by the following formula (ii) ( ⁇ , ⁇ -unsaturated carbonyl group (when the unsaturated group is a triple bond) and a compound having a thermopolymerizable functional group) Is mentioned.
  • X 3 and X 4 in the above formula (ii) are the same or different and represent an organic group.
  • Examples of the organic group include the same organic groups as those exemplified as X 1 and X 2 in formula (i).
  • X 3 and X 4 in the above formula (ii) are bonded to each other to form a ring together with the three carbon atoms shown in the formula. It may be.
  • Y 3 and Y 4 in the above formula (ii) are the same or different and represent a thermally polymerizable functional group.
  • the thermally polymerizable functional group include the above-described thermally polymerizable functional groups.
  • n3 and n4 in the above formula (ii) are the same or different and represent an integer of 0 or more.
  • the sum of n3 and n4 (n3 + n4) represents an integer of 1 or more (that is, the compound represented by the above formula (ii) has one or more thermopolymerizable functional groups in the molecule).
  • the total of n3 and n4 is preferably, for example, an integer of 1 to 10 (more preferably an integer of 1 to 5).
  • the bonding positions of Y 3 and Y 4 to X 3 and X 4 are not particularly limited. In the case n3 (or n4) is an integer of 2 or more, plural Y 3 (or Y 4) may be the same or different.
  • crosslinkable compound (B) the compound (The carboxylic acid which has a thermopolymerizable functional group, or its derivative (s)) represented by following formula (iii) is mentioned.
  • R a in the above formula (iii) represents a hydroxyl group (—OH), an alkoxy group, a halogen atom, or an acyloxy group.
  • alkoxy group include alkoxy groups having 1 to 20 carbon atoms such as a methoxy group, an ethoxy group, and a propoxy group, and derivatives thereof.
  • halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the acyloxy group include an acetyloxy group, a propionyloxy group, a butyryloxy group, and a group represented by the following formula.
  • X 5 , Y 5 and n5 in the following formula are the same as those in the above formula (iii).
  • X 5 in the above formula (iii) represents an organic group.
  • the organic group include the same organic groups as those exemplified as X 1 and X 2 in formula (i).
  • Y 5 in the above formula (iii) represents a thermally polymerizable functional group.
  • the thermally polymerizable functional group include the above-described thermally polymerizable functional groups.
  • n5 in the said formula (iii) shows an integer greater than or equal to 1.
  • n5 is preferably an integer of 1 to 10 (more preferably an integer of 1 to 5).
  • the bonding position of Y 5 to X 5 is not particularly limited. In the case n5 is an integer of 2 or more, the plurality of Y 5, may be the same or may be different.
  • crosslinkable compound (B) the compound (epoxy compound which has a thermopolymerizable functional group) represented by a following formula (iv) is mentioned.
  • X 6 in the above formula (iv) represents an organic group.
  • Examples of the organic group include the same organic groups as those exemplified as X 1 and X 2 in formula (i).
  • Y 6 in the above formula (iv) represents a thermally polymerizable functional group.
  • Examples of the thermally polymerizable functional group include the above-described thermally polymerizable functional groups.
  • N6 in the above formula (iv) represents an integer of 1 or more. As n6, for example, an integer of 1 to 10 (more preferably an integer of 1 to 5) is preferable. Further, the bonding position of Y 6 to X 6 is not particularly limited. In the case n6 is an integer of 2 or more, plural Y 6 may be the same or different.
  • R 3 to R 5 in the above formula (iv) are the same or different and each represents a hydrogen atom or an alkyl group which may have a substituent.
  • Examples of the alkyl group that may have a substituent include the same groups as those exemplified as R 1 and R 2 in the above formula (i).
  • crosslinkable compound (B) examples include 4,4′-diphenylmethane bismaleimide, m-phenylene bismaleimide, 2,2′-bis [4- (4-maleimidophenoxy) phenyl] propane.
  • the melting point (Tm) of the crosslinkable compound (B) is not particularly limited, but is preferably 250 ° C. or lower (60 to 250 ° C.), more preferably 230 ° C. or lower, and further preferably 210 ° C. or lower. Since the melting point is 250 ° C. or lower, the crosslinkable compound (B) can also be melted at a temperature at which the aromatic polyester (A) melts. In addition, the said melting
  • the heat generation starting temperature of the crosslinkable compound (B) is not particularly limited, but is preferably 300 ° C. or lower (100 to 300 ° C.), more preferably 280 ° C. or lower, and further preferably 260 ° C. or lower.
  • the exothermic start temperature is 300 ° C. or lower, the exothermic start temperature of the thermosetting aromatic polyester composition obtained by melt mixing with the aromatic polyester (A) is relatively low, and the curing temperature (curing temperature) is high. Not too much.
  • the heat generation start temperature is a temperature at which the curve starts to rise from the baseline in DSC.
  • the difference between the heat generation start temperature and the melting point (Tm) of the crosslinkable compound (B) is not particularly limited, but 50 ° C. or less is particularly useful (40 ° C. or less is more useful, and 30 ° C. or less is more useful).
  • the difference between the exothermic start temperature and the melting point (Tm) is 50 ° C. or less, the time during which melt mixing can be performed from the time when the crosslinkable compound (B) is melted until the curing reaction starts and the increase in viscosity starts is short, Viscosity is likely to increase. For this reason, the production method of the present invention has a great effect of suppressing an increase in viscosity.
  • the heat generation start temperature is higher than the melting point (Tm).
  • the maleimide derivative (B ′) has a melting point of 150 ° C. or less and / or a difference between the melting point and the exothermic starting temperature of the maleimide derivative is 30 ° C. or more, and the aromatic polyester (A) is a molecule in the molecule (in one molecule).
  • a maleimide group that reacts with the reactive functional group (a) at the chain end at least one selected from the group consisting of a hydroxyl group, an acyloxy group, an aromatic cyclic group, and a conjugated diene structure), and a thermopolymerizable functional group Having at least two maleimide groups.
  • the maleimide derivative (B ′) may be included in the crosslinkable compound (B), and the maleimide derivative (B ′) may be used as the crosslinkable compound (B).
  • the number of maleimide groups in the maleimide derivative (B ′) is not particularly limited as long as it is 2 or more, but is preferably 2 to 10, more preferably 2 to 5.
  • the maleimide derivative (B ′) needs to have at least one maleimide group that reacts with the reactive functional group (a) and at least one thermopolymerizable functional group.
  • the maleimide group in which the maleimide derivative (B ′) functions as both a reactive functional group and a thermopolymerizable functional group needs to have two or more maleimide groups.
  • the ⁇ carbon- ⁇ carbon double bond in the maleimide group disappears by reacting with the hydroxyl group, aromatic ring, or conjugated diene structure of the aromatic polyester (A), and can no longer function as a thermopolymerizable functional group. Because.
  • Examples of the maleimide derivative (B ′) include compounds having 100 or less (preferably 10 to 50) carbon atoms.
  • the maleimide derivative (B ′) is not particularly limited, but a compound that is a compound represented by the following formula (1) is preferable from the viewpoint of compatibility with the aromatic polyester (A).
  • R 1 in Formula (1) is a linear or branched alkylene group having 1 to 20 carbon atoms, a cycloalkylene group having 3 to 8 carbon atoms, an arylene group having 6 to 15 carbon atoms, or two or more thereof. Represents a group bonded via or without a linking group.
  • the linking group is not particularly limited, but is an ether bond (—O—), a thioether bond (—S—), a sulfonyl bond (—SO 2 —), an amide bond (—NHCO—), an ester bond (—COO—). ), An acyl bond (—CO—) and the like.
  • the alkylene group in the formula (1) preferably has 1 to 12 carbon atoms, and more preferably 2 to 8 carbon atoms.
  • the cycloalkylene group in the formula (1) preferably has 4 to 6 carbon atoms.
  • the arylene group in the formula (1) preferably has 6 carbon atoms (phenylene group).
  • maleimide derivative (B ′) examples include 2,2-bis [4- (4-maleimidophenoxy) as an aromatic bismaleimide compound containing three or more aromatic rings (phenylene groups) in one molecule.
  • 2,2-bis [4- (4-maleimidophenoxy) phenyl] propane, bis [4-maleimido (4-phenoxyphenyl)] sulfone, 1,3-bis (4-maleimidophenoxy) benzene, 1,3 -Bis (3-maleimidophenoxy) benzene is preferred.
  • maleimide derivative (B ′) specifically, as the aromatic bismaleimide compound containing two aromatic rings (phenylene groups) in one molecule, N, N ′-(4,4′-biphenylene) bis Maleimide, N, N ′-(sulfonyldi-p-phenylene) bismaleimide, N, N ′-(oxydi-p-phenylene) bismaleimide, N, N ′-(3,3′-dimethyl-4,4 ′ -Biphenylylene) bismaleimide, N, N '-(benzylidenedi-p-phenylene) bismaleimide, 3,3'-dichloro-4,4'-diphenylmethane bismaleimide, 3,3'-dimethyl-4,4'- Diphenylmethane bismaleimide, 3,3′-dimethoxy-4,4′-diphenylmethane bismaleimide, 4,4′-diphenyl sulfide bismaleimide
  • maleimide derivative (B ′) specifically, as an aromatic bismaleimide compound containing one aromatic ring (phenylene group) in one molecule, 4-methyl-1,3-phenylenebismaleimide, 1, Examples include 3-phenylene bismaleimide, 1,4-phenylene bismaleimide, 1,2-phenylene bismaleimide, naphthalene-1,5-dimaleimide, and 4-chloro-1,3-phenylene bismaleimide.
  • maleimide derivative (B ′) examples include 1,6-bismaleimide- (2,2,4-trimethyl) hexane and 1,6-bismaleimide- (2,4) as aliphatic bismaleimide compounds. , 4-trimethyl) hexane, N, N′-decamethylene bismaleimide, N, N′-decamethylene bismaleimide, N, N′-octamethylene bismaleimide, N, N′-heptamethylene bismaleimide, N, N '-Hexamethylene bismaleimide, N, N'-pentamethylene bismaleimide, N, N'-tetramethylene bismaleimide, N, N'-trimethylene bismaleimide, N, N'-ethylene bismaleimide, N, N' -(Oxydimethylene) bismaleimide, 1,13-bismaleimide-4,7,10-trioxatridecane, 1,11 Bis (maleimide) -3,6,9-like trio key sound decane
  • polyphenylmethane maleimide which is a compound represented by the following formula (i)
  • One of these maleimide derivatives (B ′) can be used alone, or two or more can be used in combination.
  • the maleimide derivative (B ′) As the maleimide derivative (B ′), a commercially available product can be used.
  • polyphenylmethanemaleimide which is a compound represented by the following formula (i)
  • polyphenylmethanemaleimide is a compound represented by the following formula (ii) because it has a low melting point and is easily mixed with the aromatic polyester (A) at a low temperature.
  • 1,6-Bismaleimide- (2,2,4-trimethyl) hexane is preferred.
  • N in the above formula (i) represents an integer of 0 to 10]
  • n is preferably an integer of 0 to 5 in terms of melt fluidity.
  • Maleimide derivatives (B ′) having different values of n may be used, and maleimide derivatives (B ′) having a distribution in the value of n may be used.
  • the molecular weight of the maleimide derivative (B ′) is not particularly limited, but is preferably 200 to 10000, more preferably 200 to 8000, and further preferably 250 to 6000. When the molecular weight is within the above range, it is easy to mix with the aromatic polyester (A) at a low temperature, and to mix uniformly.
  • the melting point (Tm) of the maleimide derivative (B ′) is preferably 150 ° C. or lower (60 to 150 ° C.), more preferably 130 ° C. or lower, still more preferably 110 ° C. or lower, and particularly preferably 90 ° C. or lower.
  • Tm melting point
  • the melting point is 150 ° C. or lower, mixing can be performed in a temperature region where the crosslinking reaction does not proceed, and a uniform composition can be obtained.
  • fusing point shows the endothermic peak of DSC.
  • the melting point (Tm) of the maleimide derivative (B ′) is polyphenylmethane maleimide (trade name “BMI-2300”, manufactured by Daiwa Kasei Co., Ltd.), which is a compound represented by the above formula (i). ) Is 63 ° C., a compound represented by the above formula (ii), 1,6-bismaleimide- (2,2,4-trimethyl) hexane (trade name “BMI-TMH”, manufactured by Daiwa Kasei Co., Ltd. ) Is 81 ° C., and m-phenylene bismaleimide (trade name “BMI-3000”, manufactured by Air Brown Co., Ltd.) is 62 ° C.
  • the heat generation starting temperature of the maleimide derivative (B ′) is not particularly limited, but is preferably 250 ° C. or lower (90 to 250 ° C.), more preferably 230 ° C. or lower, and further preferably 210 ° C. or lower.
  • the exothermic start temperature is 250 ° C. or less, the exothermic start temperature of the thermosetting aromatic polyester composition obtained by mixing with the aromatic polyester (A) is relatively low, and the curing temperature (curing temperature) becomes high. Not too much.
  • the heat generation start temperature is a temperature at which the curve starts to rise from the baseline in DSC.
  • the exothermic start temperature of the maleimide derivative (B ′) is specifically polyphenylmethane maleimide (trade name “BMI-2300”, manufactured by Daiwa Kasei Co., Ltd.), which is a compound represented by the above formula (i).
  • 1,6-bismaleimide- (2,2,4-trimethyl) hexane (trade name “BMI-TMH”, manufactured by Daiwa Kasei Co., Ltd.), which is a compound represented by the above formula (ii) at 120 ° C. Is 190 ° C.
  • m-phenylene bismaleimide (trade name “BMI-3000”, manufactured by Air Brown Co., Ltd.) is 230 ° C.
  • the difference between the heat generation starting temperature and the melting point (Tm) of the maleimide derivative (B ′) is particularly useful when it is 30 ° C. or higher (30 to 120 ° C.) (40 ° C. or higher is more useful, and 50 ° C. or higher is more useful). ).
  • the difference between the melting point and the heat generation start temperature is 30 ° C. or more, it is easy to maintain a long mixing time from the time when the maleimide derivative (B ′) is melted until the curing reaction starts and the viscosity starts to increase.
  • the heat generation start temperature is higher than the melting point (Tm).
  • the maleimide derivative (B ′) preferably has a melting point of 150 ° C. or lower and a difference between the melting point and the heat generation start temperature of 30 ° C. or higher.
  • the difference between the exothermic onset temperature and the melting point (Tm) of the maleimide derivative (B ′) is specifically the polyphenylmethane maleimide (trade name “BMI-2300”) which is a compound represented by the above formula (i).
  • BMI-2300 polyphenylmethane maleimide
  • 1,6-bismaleimide- (2,2,4-trimethyl) hexane (trade name “BMI-TMH”), which is a compound represented by the above formula (ii) at 57 ° C., manufactured by Daiwa Kasei Co., Ltd. Yamato Kasei Co., Ltd.) is 109 ° C.
  • m-phenylene bismaleimide (trade name “BMI-3000”, Air Brown Co., Ltd.) is 168 ° C.
  • thermosetting aromatic polyester composition in the present invention lowers the concentration of the aromatic polyester (A) to suppress the curing reaction at the time of adjusting the composition, and the performance of the cured product according to the purpose (use). Therefore, additives such as inorganic fillers are added. Among these, an inorganic filler is preferably used as the additive.
  • inorganic filler known or conventional inorganic fillers can be used, and are not particularly limited.
  • silica for example, natural silica, synthetic silica
  • aluminum oxide for example, ⁇ -alumina
  • oxidation Oxides such as titanium, zirconium oxide, magnesium oxide, cerium oxide, yttrium oxide, calcium oxide, zinc oxide and iron oxide
  • carbonates such as calcium carbonate and magnesium carbonate
  • sulfates such as barium sulfate, aluminum sulfate and calcium sulfate
  • Nitride such as aluminum nitride, silicon nitride, titanium nitride, boron nitride
  • hydroxide such as calcium hydroxide, aluminum hydroxide, magnesium hydroxide
  • the inorganic filler may have any structure such as a solid structure, a hollow structure, and a porous structure. Moreover, the said inorganic filler may be surface-treated with well-known surface treating agents, such as organosilicon compounds, such as organohalosilane, organoalkoxysilane, and organosilazane, for example.
  • organosilicon compounds such as organohalosilane, organoalkoxysilane, and organosilazane, for example.
  • an inorganic filler can also be used individually by 1 type, and can also be used in combination of 2 or more type.
  • thermosetting aromatic polyester composition for semiconductor sealing materials it is preferable to use a silica (silica filler) etc., and adjust the heat conductivity and heat dissipation characteristic of hardened
  • silica silicon filler
  • alumina alumina fine particles
  • Additives other than the above inorganic fillers are not particularly limited.
  • diamino compounds eg diaminodiphenylmethane etc.
  • diallyl compounds diallylbisphenol A etc.
  • triazines eg 1,3,5-tri-2] -Propenyl-1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione, 1,3,5-tris (2-methyl-2-propenyl) -1,3,5-triazine -2,4,6 (1H, 3H, 5H) -trione, 1,3,5-tris (2,3-epoxypropyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione, etc.].
  • diamino compounds eg diaminodiphenylmethane etc.
  • diallyl compounds diallylbisphenol A etc.
  • triazines eg 1,3,5-tri-2] -Propeny
  • additives other than the above inorganic filler other known or commonly used additives can be used as long as the effects of the present invention are not impaired.
  • organic resins such as silicone resins, epoxy resins, fluororesins; solvents; Stabilizers (antioxidants, ultraviolet absorbers, light stabilizers, heat stabilizers, etc.); flame retardants (phosphorous flame retardants, halogen flame retardants, inorganic flame retardants, etc.); flame retardant aids; reinforcing materials Nucleating agent; Coupling agent; Lubricant; Wax; Plasticizer; Release agent; Impact resistance improver; Hue improver; Fluidity improver; Colorant (dye, pigment, etc.); Dispersant; Defoaming agents; antibacterial agents; antiseptics; viscosity modifiers; thickeners can be used.
  • the said additive can also be used individually by 1 type, and can also be used in combination of 2 or more type.
  • a curing accelerator may be used to accelerate the curing reaction and lower the thermosetting start temperature.
  • the curing accelerator includes a radical generator described later.
  • the curing accelerator is not particularly limited as long as it is a compound having a function of promoting a curing reaction, and examples thereof include a radical generator, an imidazole derivative, an organic base and a salt thereof. These curing accelerators can be used singly or in combination of two or more.
  • the radical generator the following can be used as light or thermal radical generators.
  • photo radical generator examples include benzophenone, acetophenone benzyl, benzyl dimethyl ketone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, dimethoxyacetophenone, dimethoxyphenylacetophenone, diethoxyacetophenone, 2-hydroxy-2- Methyl propiophenone, diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide, diphenyl disulfite, methyl orthobenzoylbenzoate, ethyl 4-dimethylaminobenzoate (Nippon Kayaku Co., Ltd.
  • radical photopolymerization initiators can be used alone or in combination of two or more. Moreover, a photosensitizer can be added to the resin composition of this invention as needed.
  • the photo radical polymerization initiator for example, those activated by light having a wavelength of around 400 nm, such as diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide, are preferable.
  • thermal radical generator examples include organic peroxides.
  • organic peroxides examples include dialkyl peroxides, acyl peroxides, hydroperoxides, ketone peroxides, and peroxyesters.
  • specific examples of the organic peroxide include benzoyl peroxide, t-butylperoxy-2-ethylhexanate, 2,5-dimethyl-2,5-di (2-ethylhexanoyl) peroxyhexane, t- Butyl peroxybenzoate, t-butyl peroxide, cumene hydroperoxide, dicumyl peroxide, di-t-butyl peroxide, 2,5-dimethyl-2,5-dibutylperoxyhexane, 2,4-dichlorobenzoyl peroxide Oxide, di-t-butylperoxy-diisopropylbenzene, 1,1-bis (t-butylperoxy) -3,
  • radical generators include 2,3-dimethyl-2,3-diphenylbutane. Of these, dicumyl peroxide and 2,3-dimethyl-2,3-diphenylbutane are preferable. One of these radical generators can be used alone, or two or more thereof can be used in combination.
  • a metal salt such as naphthenic acid such as cobalt naphthenate, manganese naphthenate, zinc naphthenate, cobalt octenoate, cobalt octenoate, manganese, lead, zinc, vanadium, etc. it can.
  • tertiary amines such as dimethylaniline can be used.
  • imidazole derivatives examples include 2-methylimidazole, 2-ethylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 1 -Cyanoethyl-2-ethyl-4-methylimidazole and the like. These imidazole derivatives can be used alone or in combination of two or more.
  • organic base and salts thereof examples include 1,8-diazabicyclo [5.4.0] undecene-7 (DBU) and salts thereof (for example, phenol salts, octylates, p-toluenesulfonates, Formate, tetraphenylborate salt); 1,5-diazabicyclo [4.3.0] nonene-5 (DBN) and salts thereof (eg, phosphonium salts, sulfonium salts, quaternary ammonium salts, iodonium salts); benzyl Tertiary amines such as dimethylamine, 2,4,6-tris (dimethylaminomethyl) phenol, N, N-dimethylcyclohexylamine; 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-ethyl-4-methyl Imidazoles such as imidazole; Phosphates such as phosphate esters and triphenylphosphine;
  • organic base and salts thereof examples include U-CAT SA 506, U-CAT SA 102, U-CAT 5003, U-CAT 18X (above, manufactured by San Apro Co., Ltd.), TPP-K, TPP-MK ( As described above, commercially available products such as Hokuko Chemical Co., Ltd. and PX-4ET (Nihon Chemical Industry Co., Ltd.) can also be used.
  • the amount of the curing accelerator is not particularly limited, but is preferably 0.01 to 10 parts by weight and more preferably 0.05 to 5 parts by weight with respect to 100 parts by weight of the aromatic polyester (A).
  • Step I the aromatic polyester (A) and the additive are melt-mixed in Step I, and the mixture obtained in Step I is added with the crosslinkable compound (B) and melt-mixed.
  • the additive include the above additives (particularly inorganic fillers).
  • the reactive functional group (a) of the aromatic polyester (A) (hydroxyl group, Reaction (for example, addition reaction) mainly with the reactive functional group (b) of the crosslinkable compound (B) and at least one selected from the group consisting of an acyloxy group, an aromatic ring, and a conjugated diene structure) It progresses and the aromatic polyester composition which has thermosetting property is obtained.
  • the aromatic polyester (A) can be used alone or in combination of two or more.
  • the crosslinkable compound (B) can be used alone or in combination of two or more.
  • the blending amount (blending ratio) of the aromatic polyester (A) and the additive (particularly inorganic filler) varies depending on the type of the additive and the like and is not particularly limited.
  • the amount of the additive (particularly inorganic filler) is preferably 10 to 4000 parts by weight, more preferably 30 to 3000 parts by weight, and further 50 to 2000 parts by weight with respect to 100 parts by weight of the aromatic polyester (A). 100 to 1500 parts by weight is preferable.
  • the aromatic polyester (A) can be sufficiently diluted, the progress of the curing reaction can be suppressed, and the increase in the viscosity of the thermosetting aromatic polyester composition can be suppressed. Further, a large amount of the crosslinking agent does not remain in the thermosetting aromatic polyester composition, and the physical properties of the cured product are hardly adversely affected.
  • Step I It is preferable to add at least 50% by weight (more preferably 80% by weight or more, still more preferably 90% by weight, particularly preferably 100% by weight) of the additive (particularly inorganic filler) to be blended in Step I.
  • the blending amount (blending ratio) of the aromatic polyester (A) and the crosslinkable compound (B) varies depending on the types of the aromatic polyester (A) and the crosslinkable compound (B) and is not particularly limited.
  • the amount of the crosslinkable compound (B) is preferably 10 to 400 parts by weight, more preferably 20 to 300 parts by weight, and even more preferably 30 to 250 parts by weight with respect to 100 parts by weight of the aromatic polyester (A).
  • the blending amount of the crosslinkable compound (B) is within the above range, the curability of the thermosetting aromatic polyester composition is hardly lowered, and a large amount of the crosslinkable compound (B) may remain in the composition. There is no adverse effect on the physical properties of the cured product.
  • the crosslinkable compound (B) to be blended is preferably added in the whole amount in Step II, but a part (for example, 10% by weight or less of the total blended amount, preferably 5% by weight within the range not impairing the effects of the present invention) % Or less) may be added in step I.
  • the additive (especially inorganic filler) and the crosslinkable compound (B) are each added in an amount of 100 parts by weight of the aromatic polyester (A). 10 to 4000 parts by weight, the crosslinkable compound (B) is preferably 10 to 400 parts by weight, the additive is preferably 30 to 3000 parts by weight, and the crosslinkable compound (B) is more preferably 20 to 300 parts by weight.
  • the mixing temperature when the aromatic polyester (A) and the additive (particularly inorganic filler) are melt-mixed may be any temperature that can melt the aromatic polyester (A). Although not limited, it is preferably 300 ° C. or lower (for example, 80 to 300 ° C.), more preferably 250 ° C. or lower, and further preferably 200 ° C. or lower.
  • the temperature of melt mixing can be controlled to be constant during melt mixing, or can be controlled to vary stepwise or continuously.
  • the time for melting and mixing the aromatic polyester (A) and the additive (particularly inorganic filler) is not particularly limited, but is preferably 4 to 120 minutes, more preferably 6 to 60 minutes, and more preferably 8 to 30 minutes is more preferable.
  • the melt mixing time is within the above range, the productivity of the cured product does not decrease, and the additive can be more uniformly dispersed.
  • the mixing temperature at the time of melt mixing with the crosslinkable compound (B) is a temperature at which the aromatic polyester (A) and the crosslinkable compound (B) can be melted (in particular, the aromatic polyester (A)).
  • the melting point is not lower than 200 ° C. (for example, 80 to 200 ° C.), more preferably 190 ° C. or less, and even more preferably 180 ° C. or less.
  • the temperature at the time of melt mixing can be controlled so as to be constant during the melt mixing, or can be controlled so as to fluctuate stepwise or continuously.
  • the time for melt mixing with the crosslinkable compound (B) is not particularly limited, but is preferably 30 to 600 minutes, more preferably 40 to 400 minutes, and further preferably 50 to 200 minutes.
  • the melt mixing time is within the above range, the productivity of the cured product does not decrease, and the reaction between the aromatic polyester (A) and the crosslinkable compound (B) can proceed.
  • the mixing temperature when the aromatic polyester (A) and the additive (especially inorganic filler) are melt-mixed is 80 to 300 ° C.
  • the crosslinkable compound It is preferable that the mixing temperature at the time of adding and mixing B) is 80 to 200 ° C. and the mixing time is 30 to 600 minutes.
  • the melt viscosity of the thermosetting aromatic polyester composition when a uniform thermosetting aromatic polyester composition is obtained after the crosslinkable compound (B) is added and melt mixed.
  • the (initial complex viscosity) is preferably at most 1000 Pa ⁇ s, more preferably at most 500 Pa ⁇ s, further preferably at most 200 Pa ⁇ s, particularly preferably at most 100 Pa ⁇ s at 200 ° C. or less (for example, 180 ° C.).
  • the melt viscosity (initial complex viscosity) can be measured using a rheometer (viscoelasticity measuring device) (trade name “MCR-302”, manufactured by Anton Paar).
  • the additives other than the inorganic filler can be blended together when the aromatic polyester (A) in Step I and the inorganic filler are melt-mixed, and when melt-mixed with the crosslinkable compound (B) in Step II. Can also be blended.
  • the melt mixing can be performed under normal pressure, or can be performed under reduced pressure or under pressure. Moreover, the said melt mixing can also be performed in one step, and can also be performed by dividing into two or more steps.
  • the melt mixing can be performed using a known or conventional device (melt mixing device).
  • a known or conventional device melt mixing device
  • Extruders such as a single screw extruder and a twin screw extruder
  • Mixers such as a paddle mixer, a high-speed fluidized mixer, a ribbon mixer, a Banbury mixer, a Haake mixer, a static mixer
  • Kneader etc. Is mentioned.
  • thermosetting aromatic polyester composition in the present invention can be obtained by melt-mixing the aromatic polyester (A) and the crosslinkable compound (B).
  • the reactive functional group (a) at the molecular chain end of the aromatic polyester (A) and the reactive functional group (b) of the crosslinkable compound (B) are melted.
  • It is a composition which contains the reaction material formed by reacting at the time of mixing as an essential component.
  • the reaction product one or more of the aromatic polyester (A) and one or more of the crosslinkable compound (B) are bonded by the above-described reaction (for example, addition reaction).
  • the reaction product of the above-described aromatic polyester (A), additive, and crosslinkable compound (B) is, for example, when the aromatic polyester (A) has a hydroxyl group as the reactive functional group (a). And when the compound represented by the said Formula (i) is used as a crosslinkable compound (B), it represents with following formula (1).
  • L 1 in the above formula (1) represents an aromatic polyester skeleton.
  • the aromatic polyester skeleton include a skeleton obtained by removing one hydroxyl group (hydroxyl group at the end of the molecular chain) from the aromatic polyester (A), and two or more aromatic polyesters (A) having one or more crosslinkable compounds (B ) (A compound represented by the formula (i)) and a skeleton obtained by removing one hydroxyl group (hydroxyl group at the end of the molecular chain) from those formed by reacting and linking (reaction product).
  • X 1 , X 2 , R 1 , R 2 , Y 1 , Y 2 , n1, and n2 in the above formula (1) are the same as those in the above formula (i).
  • the reactant is, for example, a case where the aromatic polyester (A) has an aromatic cyclic group as the reactive functional group (a), and is represented by the formula (i) as the crosslinkable compound (B).
  • the aromatic ring of the aromatic polyester (A) and the carbon-carbon double bond of the crosslinkable compound (B) are formed by a cyclization reaction (for example, a cycloaddition reaction). May be a reaction product.
  • the reactant is, for example, a case where the aromatic polyester (A) has a conjugated diene structure as the reactive functional group (a), and is represented by the above formula (i) as the crosslinkable compound (B).
  • the conjugated diene structure of the aromatic polyester (A) and the carbon-carbon double bond of the crosslinkable compound (B) are formed by a cyclization reaction (for example, a cycloaddition reaction). It may be a reactant.
  • the reaction product of the aromatic polyester (A) and the crosslinkable compound (B) is, for example, a case where the aromatic polyester (A) has a hydroxyl group as the reactive functional group (a), and the crosslinkable compound
  • the compound represented by the above formula (ii) is used as (B), it is represented by the following formula (2).
  • L 2 in the above formula (2) represents an aromatic polyester skeleton.
  • the aromatic polyester skeleton include a skeleton obtained by removing one hydroxyl group (hydroxyl group at the end of the molecular chain) from the aromatic polyester (A), and two or more aromatic polyesters (A) having one or more crosslinkable compounds (B ) (A compound represented by the formula (ii)) and a skeleton obtained by removing one hydroxyl group (hydroxyl group at the end of the molecular chain) from those formed by reacting and linking (reaction product).
  • X 3 , X 4 , Y 3 , Y 4 , n3, and n4 in the above formula (2) are the same as those in the above formula (ii).
  • the reaction product of the aromatic polyester (A) and the crosslinkable compound (B) is, for example, a case where the aromatic polyester (A) has a hydroxyl group or an acyloxy group as the reactive functional group (a).
  • the compound represented by the above formula (iii) is used as the crosslinkable compound (B), it is represented by the following formula (3).
  • L 3 in the above formula (3) represents an aromatic polyester skeleton.
  • the aromatic polyester skeleton include a skeleton obtained by removing one hydroxyl group (hydroxyl group at the molecular chain terminal) or acyloxy group (acyloxy group at the molecular chain terminal) from the aromatic polyester (A), two or more aromatic polyesters ( One hydroxyl group (hydroxyl group at the end of the molecular chain) from one formed by reacting and linking A) with one or more crosslinkable compounds (B) (compound represented by formula (iii)) Alternatively, a skeleton excluding an acyloxy group (acyloxy group at the end of the molecular chain) may be used.
  • X 5 , Y 5 , and n5 in the above formula (3) are the same as those in the above formula (iii).
  • the reaction product of the aromatic polyester (A) and the crosslinkable compound (B) is, for example, a case where the aromatic polyester (A) has a hydroxyl group as a reactive functional group, and the crosslinkable compound (B).
  • the compound represented by the above formula (iv) is used, it is represented by the following formula (4) or the following formula (5).
  • L 4 in the above formulas (4) and (5) represents an aromatic polyester skeleton.
  • the aromatic polyester skeleton include a skeleton obtained by removing one hydroxyl group (hydroxyl group at the end of the molecular chain) from the aromatic polyester (A), and two or more aromatic polyesters (A) having one or more crosslinkable compounds (B ) (Compound represented by formula (iv)) and a skeleton obtained by removing one hydroxyl group (hydroxyl group at the end of the molecular chain) from those formed by reacting and linking (reaction product).
  • X 6 , Y 6 , R 3 to R 5 and n6 are the same as those in the above formula (iv).
  • the heat generation starting temperature of the thermosetting aromatic polyester composition is not particularly limited, but is preferably 250 ° C. or lower (eg, 100 to 250 ° C.), more preferably 230 ° C. or lower, and 210 ° C. or lower. Is more preferable.
  • the heat generation start temperature is 250 ° C. or lower, the curing temperature (curing temperature) does not become too high.
  • the heat generation start temperature is a temperature at which the curve starts to rise from the baseline in DSC.
  • the aromatic polyester (A) and the additive are melt-mixed, and the crosslinkable compound (B) is added to the mixture obtained in the step I and melt-mixed.
  • Step II to be performed the relative proportion of the aromatic polyester (A) in the thermosetting aromatic polyester composition at the time of melt mixing of the aromatic polyester (A) and the crosslinkable compound (B) is lowered.
  • the reaction rate of the crosslinking reaction thermal polymerization reaction
  • the heating time that the crosslinking compound (B) receives decreases, thereby suppressing the increase in viscosity of the thermosetting aromatic polyester composition.
  • the second production method is not particularly limited as long as it includes a step of adding and mixing the maleimide derivative (B ′) to the aromatic polyester (A).
  • the mixing may be performed in a state where at least a part of the aromatic polyester (A) and the maleimide derivative (B ′) is melted, or at least one of the aromatic polyester (A) and the maleimide derivative (B ′). You may carry out in the state which dissolved the part in the solvent.
  • the reactive functional group (a) of the aromatic polyester (A) (at least one selected from the group consisting of a hydroxyl group, an acyloxy group, an aromatic ring, and a conjugated diene structure) and a maleimide derivative (B ′ ) Reaction with a maleimide group (for example, an addition reaction) may proceed mainly to form a reaction product (for example, an adduct).
  • the aromatic polyester (A) in producing a thermosetting aromatic polyester composition, can be used alone or in combination of two or more. You can also.
  • the maleimide derivative (B ′) can be used alone or in combination of two or more.
  • the blending ratio (blending amount) of the aromatic polyester (A) and the maleimide derivative (B ′) varies depending on the types of the aromatic polyester (A) and the maleimide derivative (B ′) and is particularly limited. Not.
  • the blending amount of the maleimide derivative (B ′) is preferably 10 to 400 parts by weight, more preferably 20 to 300 parts by weight, and still more preferably 30 to 250 parts by weight with respect to 100 parts by weight of the aromatic polyester (A).
  • the blending amount of the maleimide derivative (B ′) is within the above range, the curability of the thermosetting aromatic polyester composition does not decrease, and a large amount of the maleimide derivative (B ′) remains in the composition. It is difficult to adversely affect the physical properties of the cured product.
  • the mixing temperature when mixing the maleimide derivative (B ′) with the aromatic polyester (A) is a temperature at which the aromatic polyester (A) and the maleimide derivative (B ′) can be melted or dissolved in a solvent.
  • it is preferably 200 ° C. or lower (80 to 200 ° C.), more preferably 160 ° C. or lower.
  • the temperature at the time of mixing can be controlled so that it may become constant during mixing, and can also be controlled so that it may fluctuate
  • the time for mixing the maleimide derivative (B ′) with the aromatic polyester (A) is not particularly limited, but is preferably 30 to 600 minutes, more preferably 50 to 480 minutes. When the mixing time is in the above range, the productivity of the cured product does not decrease, and the reaction progress of the aromatic polyester (A) and the maleimide derivative (B ′) can be sufficiently advanced.
  • the thermosetting aromatic polyester composition is obtained when the maleimide derivative (B ′) is added to the aromatic polyester (A), and after mixing, a uniform thermosetting aromatic polyester composition is obtained.
  • the melt viscosity is preferably not more than 80 Pa ⁇ s, more preferably not more than 50 Pa ⁇ s, still more preferably not more than 20 Pa ⁇ s, particularly preferably not more than 10 Pa ⁇ s at 200 ° C. or less (for example, 180 ° C.). preferable.
  • the initial complex viscosity is 80 Pa ⁇ s or less, molding such as transfer molding is facilitated.
  • the melt viscosity (initial complex viscosity) can be measured using a rheometer (viscoelasticity measuring device) (trade name “MCR-302”, manufactured by Anton Paar).
  • the heat generation starting temperature of the thermosetting aromatic polyester composition is not particularly limited, but is preferably 250 ° C. or lower (100 to 250 ° C.), more preferably 230 ° C. or lower, and further 210 ° C. or lower. preferable.
  • the heat generation start temperature is 250 ° C. or lower, the curing temperature (curing temperature) does not become too high.
  • the heat generation start temperature is a temperature at which the curve starts to rise from the baseline in DSC.
  • the heat generation starting temperature of the thermosetting aromatic polyester composition is, as the maleimide derivative (B ′), polyphenylmethane maleimide (trade name “BMI-”), which is a compound represented by the above formula (i). 2300 ”(manufactured by Daiwa Kasei Co., Ltd.) is 1,6-bismaleimide- (2,2,4-trimethyl) hexane, which is a compound represented by the above formula (ii) at 180 ° C.
  • the temperature is 200 ° C.
  • the composition in which the aromatic polyester (A) and the maleimide derivative (B ′) are mixed is higher in heat generation than the maleimide derivative (B ′) alone, and the composition is more thermally stabilized. It has become.
  • the above mixing can be performed under normal pressure, or can be performed under reduced pressure or under pressure. Moreover, the said mixing can also be performed in one step, and can also be divided and performed in two or more steps.
  • the above mixing can be carried out using a known or conventional apparatus (mixing apparatus).
  • a known or conventional apparatus mixing apparatus.
  • Extruders such as a single screw extruder and a twin screw extruder
  • Mixers such as a paddle mixer, a high-speed fluidity mixer, a ribbon mixer, a Banbury mixer, a Haake mixer, a static mixer; Can be mentioned.
  • the above mixing can also be performed in the presence of a solvent.
  • a solvent include, but are not limited to, pentafluorophenol (PFP), N, N-dimethylformamide (DMF), dimethylacetamide (DMA), o-dichlorobenzene, and the like.
  • the amount of the solvent used is not particularly limited, but is preferably 5 to 1000 parts by weight with respect to the total amount (100 parts by weight) of the aromatic polyester (A) and the maleimide derivative (B ′), and 10 to 800 parts by weight. Is more preferable.
  • thermosetting aromatic polyester composition of the present invention the reactive functional group (a) at the molecular chain end of the aromatic polyester (A) and the maleimide group of the maleimide derivative (B ′) are mixed with each other (for example, , An adduct) may be formed, or the aromatic polyester (A) and the maleimide derivative (B ′) may be dispersed.
  • the reaction product is obtained by bonding one or more aromatic polyesters (A) and one or more maleimide derivatives (B ′) by a reaction (for example, an addition reaction).
  • the additive such as an inorganic filler can be included in order to adjust the performance of the cured product according to the purpose (use).
  • an inorganic filler is preferably used as the additive.
  • the curing accelerator may be used to accelerate the curing reaction and lower the thermosetting start temperature.
  • thermosetting aromatic polyester composition of the present invention (sometimes referred to as “the composition of the present invention”) includes the aromatic polyester (A) and the crosslinkable compound (B), and includes an aromatic polyester (A ) Is lower by 30 ° C. or more than the curing temperature of the crosslinkable compound (B).
  • the composition of the present invention is not limited to the thermosetting aromatic polyester composition obtained by the production method (the first production method or the second production method) of the present invention.
  • the softening temperature of the aromatic polyester (A) in the composition of the present invention means a temperature at which the composition can be prepared by kneading the aromatic polyester (A) and the crosslinkable compound (B). It can measure by the method of an Example description using the polarization microscope which attached the stage.
  • the curing temperature of the crosslinkable compound (B) is the exothermic peak temperature by DSC measurement.
  • the average degree of polymerization of the aromatic polyester (A) in the composition of the present invention is not particularly limited, but is preferably 3 to 30, more preferably 3 to 25, and still more preferably 3 to 20. When the average degree of polymerization is in the above range, the softening temperature is easily adjusted appropriately.
  • the average degree of polymerization of the aromatic polyester (A) can be determined, for example, by the amine decomposition HPLC method described in JP-A No. 5-271394.
  • the molecular weight of the aromatic polyester (A) in the composition of the present invention is not particularly limited, but is preferably 500 to 20000, more preferably 500 to 10,000, and further preferably 500 to 5000. When the molecular weight is in the above range, the curing reactivity is unlikely to decrease, and the softening temperature can be easily adjusted appropriately. In addition, the molecular weight of aromatic polyester (A) can be calculated
  • the softening temperature of the aromatic polyester (A) in the composition of the present invention is not particularly limited, but is preferably 40 to 200 ° C, more preferably 50 to 180 ° C, and further preferably 80 to 160 ° C.
  • the aromatic polyester (A) and the crosslinkable compound (B) can be melt-mixed at a relatively low temperature (for example, 200 ° C. or less), and the crosslinkable compound ( The crosslinking reaction of B) does not occur easily.
  • the softening temperature of the aromatic polyester (A) is a temperature at which the composition can be prepared by kneading the aromatic polyester (A) and the crosslinkable compound (B). For example, a polarizing microscope equipped with a hot stage is used. And can be measured by the method described in the examples.
  • the softening temperature of the aromatic polyester (A) in the composition of the present invention can be controlled by changing the composition and degree of polymerization of the aromatic polyester.
  • the composition of the aromatic polyester among the above aromatic hydroxycarboxylic acids, aromatic dicarboxylic acids, and aromatic diols, the higher the ratio of the aromatic diol, the lower the softening temperature and the higher the ratio of the aromatic dicarboxylic acid. Then, the softening temperature tends to increase.
  • the softening temperature tends to increase.
  • the ratio of polycyclic aromatic rings such as naphthalene and anthracene in the aromatic polyester skeleton increases, the softening temperature tends to increase.
  • the softening temperature tends to increase as the degree of polymerization increases.
  • the softening temperature in the case of the pentamer is 90 to 100 ° C.
  • the softening temperature in the case of the 10-mer Is 140 to 150 ° C.
  • the softening temperature in the case of a 20-mer is 170 to 180 ° C.
  • the crosslinkable compound (B) in the composition of the present invention is not particularly limited, but a maleimide derivative is preferable.
  • a maleimide derivative is preferable.
  • the compounds mentioned as the maleimide derivative (B ′) are particularly preferable.
  • the molecular weight of the crosslinkable compound (B) (particularly the maleimide derivative) in the composition of the present invention is not particularly limited, but is preferably 200 to 10,000, more preferably 200 to 8000, and further preferably 250 to 6000. When the molecular weight is within the above range, it is easy to melt and mix with the aromatic polyester (A) at a low temperature, and to mix uniformly.
  • the melting point (Tm) of the crosslinkable compound (B) (particularly the maleimide derivative) in the composition of the present invention is preferably 200 ° C. or less (eg, 60 to 200 ° C.), more preferably 180 ° C. or less, and 160 ° C. or less. Is more preferable.
  • the melting point is 200 ° C. or less, it can be melt-mixed in a temperature region where the crosslinking reaction does not proceed, and a uniform composition can be obtained.
  • fusing point shows the endothermic peak temperature of DSC measurement.
  • the heat generation starting temperature of the crosslinkable compound (B) (particularly the maleimide derivative) in the composition of the present invention is not particularly limited, but is preferably 250 ° C. or lower (for example, 90 to 250 ° C.), more preferably 230 ° C. or lower. 210 ° C. or lower is more preferable.
  • the exothermic start temperature is 250 ° C. or less, the exothermic start temperature of the thermosetting aromatic polyester composition obtained by melt mixing with the aromatic polyester (A) is relatively low, and the curing temperature (curing temperature) is high. Not too much.
  • the heat generation start temperature indicates a temperature at which the curve starts to rise from the baseline in DSC measurement.
  • the curing temperature of the crosslinkable compound (B) (especially the maleimide derivative) in the composition of the present invention is not particularly limited, but is preferably 70 to 250 ° C, more preferably 80 to 240 ° C, and further preferably 90 to 230 ° C. preferable. When the curing temperature is within the above range, it is difficult for the viscosity to increase due to a crosslinking reaction during melt mixing.
  • the curing temperature of the maleimide derivative can be measured from the exothermic peak temperature of DSC measurement.
  • the curing temperature of the crosslinkable compound (B) (particularly the maleimide derivative) in the composition of the present invention is 2,2-bis [4- as an aromatic bismaleimide compound containing 3 or more aromatic rings in one molecule.
  • the temperature is 240 ° C.
  • an aromatic bismaleimide compound containing two aromatic rings in the case of 4,4′-diphenylmethane bismaleimide, the temperature is 202 ° C., and the aromatic ring is 1
  • the aromatic bismaleimide compound to be contained is 210 ° C.
  • polyphenylmethane maleimide which is a compound represented by the above formula (2), 226
  • 1,6-bismaleimide- (2,2,4-trimethyl) hexane which is a compound represented by the above formula (3) at 285 ° C.
  • the curing temperature of the crosslinkable compound (B) including the maleimide derivative tends to increase as the ratio of the aromatic cyclic group in the molecule increases, and in particular, polycyclic compounds such as naphthalene and anthracene.
  • the curing temperature tends to increase.
  • the curing temperature tends to decrease when the proportion of an aliphatic hydrocarbon chain such as an alkyl group increases in the molecule, and particularly when the proportion of a long-chain aliphatic hydrocarbon chain having 6 or more carbon atoms increases, the curing temperature decreases.
  • a compound having a long aliphatic chain such as the above formula (3) tends to increase the curing temperature.
  • the blending amount (blending ratio) when the crosslinkable compound (B) in the composition of the present invention is the maleimide derivative is not particularly limited, but is 10 to 300 weights per 100 weight parts of the aromatic polyester (A). Part by weight, preferably 10 to 250 parts by weight, more preferably 20 to 200 parts by weight.
  • the blending amount of the maleimide derivative is within the above range, the curability of the thermosetting aromatic polyester composition is hardly lowered, and the cured compound does not have a large amount of the crosslinkable compound (B) remaining in the composition. It is difficult to adversely affect the physical properties.
  • the curing temperature of the crosslinkable compound (B) in the composition of the present invention is not particularly limited, but is preferably 70 to 250 ° C, more preferably 80 to 240 ° C, and further preferably 90 to 230 ° C.
  • the curing temperature of the crosslinkable compound (B) is DSC (Differential Scanning Calorimeter, “DSC6200”, manufactured by Seiko Instruments Inc.) under a temperature rising condition of 20 ° C./min (under a nitrogen stream). The exothermic peak top temperature can be measured.
  • the composition of the present invention is characterized in that the softening temperature of the aromatic polyester (A) is lower by 30 ° C. or more than the curing temperature of the crosslinkable compound (B).
  • the softening temperature is preferably 40 ° C. or more lower than the curing temperature, more preferably 50 ° C. or more lower. Since the softening temperature is 30 ° C. or more lower than the curing temperature, it is difficult for the viscosity to increase due to a crosslinking reaction during melt mixing.
  • the difference between the softening temperature and the curing temperature is not particularly limited, but arises because the softening temperature of the aromatic polyester (A) is 140 to 150 ° C. and the curing temperature of the crosslinkable compound (B) is 200 to 250 ° C. It is preferable.
  • the blending amount (blending ratio) of the aromatic polyester (A) and the crosslinkable compound (B) in the composition of the present invention varies depending on the types of the aromatic polyester (A) and the crosslinkable compound (B) and is not particularly limited. .
  • the amount of the crosslinkable compound (B) is preferably 10 to 300 parts by weight, more preferably 15 to 250 parts by weight, and still more preferably 20 to 200 parts by weight with respect to 100 parts by weight of the aromatic polyester (A).
  • the blending amount of the crosslinkable compound (B) is within the above range, the curability of the thermosetting aromatic polyester composition is hardly lowered, and a large amount of the crosslinkable compound (B) may remain in the composition. There is no adverse effect on the physical properties of the cured product.
  • the composition of the present invention is inorganic in order to reduce the concentration of the aromatic polyester (A) to suppress the curing reaction at the time of adjusting the composition, and to adjust the performance of the cured product according to the purpose (use).
  • the additive such as a filler is preferably contained.
  • an inorganic filler is preferably used as the additive.
  • the additive (including the inorganic filler) in the composition of the present invention is prepared by melt-mixing the aromatic polyester (A) and the crosslinkable compound (B) when preparing the thermosetting aromatic polyester composition of the present invention.
  • the thermosetting aromatic polyester composition of the present invention can be blended once and then blended.
  • composition of the present invention is not particularly limited as long as it contains an aromatic polyester (A) and a crosslinkable compound (B), but is melted by adding the aromatic polyester (A), the crosslinkable compound (B), and other additives. It is preferable to mix.
  • the mixing temperature at the time of melt-mixing the aromatic polyester (A) and the crosslinkable compound (B) in the composition of the present invention is a temperature at which the aromatic polyester (A) and the crosslinkable compound (B) can be melted (
  • the melting point of the aromatic polyester (A) is not particularly limited and is not particularly limited, but is preferably 200 ° C. or lower (for example, 80 to 200 ° C.), more preferably 190 ° C. or lower, and further preferably 180 ° C. or lower.
  • the temperature of the melt mixing is 200 ° C. or less, the polymerization reaction of the thermally polymerizable functional group derived from the crosslinkable compound (B) can be suppressed, and a rapid increase in viscosity can be suppressed.
  • the temperature at the time of melt mixing can be controlled so as to be constant during the melt mixing, or can be controlled so as to fluctuate stepwise or continuously.
  • the time for melt mixing the aromatic polyester (A) and the crosslinkable compound (B) in the composition of the present invention is not particularly limited, but is preferably 3 to 600 minutes, more preferably 4 to 400 minutes, and still more preferably. Is 5 to 200 minutes.
  • the melt mixing time is within the above range, the productivity of the cured product does not decrease, and the reaction between the aromatic polyester (A) and the crosslinkable compound (B) can proceed.
  • the melt viscosity (initial complex viscosity) in the composition of the present invention is preferably 1000 Pa ⁇ s or less, more preferably 500 Pa ⁇ s or less, even more preferably 200 Pa ⁇ s or less, at 200 ° C. or less (eg, 180 ° C.), and 100 Pa. -S or less is particularly preferable.
  • the initial complex viscosity is 1000 Pa ⁇ s or less, molding such as transfer molding is facilitated.
  • the melt viscosity (initial complex viscosity) can be measured using a rheometer (viscoelasticity measuring device) (trade name “MCR-302”, manufactured by Anton Paar).
  • the melt mixing can be carried out using a known or conventional apparatus (melt mixing apparatus).
  • a known or conventional apparatus Melt mixing apparatus
  • Extruders such as a single screw extruder and a twin screw extruder
  • Mixers such as a paddle mixer, a high-speed fluidized mixer, a ribbon mixer, a Banbury mixer, a Haake mixer, a static mixer
  • Kneader etc. Is mentioned.
  • the composition of the present invention has a crosslinkable reactive functional group (a) at the end of the molecular chain of the aromatic polyester (A) in that higher performance (heat resistance, mechanical properties, etc.) can be obtained when cured. It is preferable that an adduct formed by reacting with the reactive functional group (b) of the functional compound (B) during melt mixing is included as a part of the composition.
  • the adduct is obtained by bonding one or more aromatic polyesters (A) and one or more crosslinkable compounds (B) by the above-described reaction (for example, addition reaction).
  • the softening temperature of the aromatic polyester (A) is 30 ° C. or more lower than the curing temperature of the crosslinkable compound (B), so that the crosslinking reaction of the crosslinkable compound (B) proceeds.
  • the aromatic polyester (A) and the crosslinkable compound (B) can be melt-mixed at a temperature that does not. Therefore, the thermosetting aromatic polyester composition can suppress an increase in viscosity and is excellent in moldability such as transfer molding.
  • thermosetting aromatic polyester composition obtained by the production method (first or second production method) of the present invention or the composition of the present invention by heating (advancing the curing reaction).
  • Product (sometimes referred to as “cured product of the present invention”).
  • a reaction polymerization reaction
  • crosslinkable compound (B) or maleimide derivative (B ′)
  • heating means known or conventional means can be used, and there is no particular limitation.
  • the heating temperature (curing temperature) for curing the thermosetting aromatic polyester composition is not particularly limited, but is preferably 170 to 250 ° C, more preferably 210 to 250 ° C, and further preferably 220 to 250 ° C.
  • the curing temperature can be controlled to be constant during curing, or can be controlled to vary stepwise or continuously.
  • the heating time (curing time) for curing the thermosetting aromatic polyester is not particularly limited, but is preferably 30 to 600 minutes, more preferably 50 to 480 minutes, and further preferably 60 to 360 minutes.
  • the curing time is within the above range, the productivity of the cured product does not decrease, the curing reaction proceeds sufficiently, and the physical properties of the cured product are unlikely to decrease.
  • thermosetting aromatic polyester can be performed under normal pressure, or can be performed under reduced pressure or under pressure.
  • said hardening can also be performed in one step, and can also be performed by dividing into two or more steps.
  • the 5% weight loss temperature (T d5 ) of the cured product of the present invention measured at a temperature elevation rate of 10 ° C./min (in air) is not particularly limited, but is 350 ° C. or higher (eg, 350 to 500 ° C.). It is preferably 380 ° C. or higher, more preferably 400 ° C. or higher. If the 5% weight loss temperature is less than 350 ° C., the heat resistance may be insufficient depending on the application.
  • the 5% weight loss temperature can be measured by, for example, TG / DTA (simultaneous measurement of differential heat and thermogravimetry).
  • the activation energy of the thermal decomposition reaction in the air of the cured product of the present invention is not particularly limited, but is preferably 150 kJ / mol or more (for example, 150 to 350 kJ / mol), more preferably 180 kJ / mol or more, and 200 kJ / mol. The above is more preferable. If the activation energy is less than 150 kJ / mol, the heat resistance may be insufficient depending on the application.
  • the activation energy can be calculated by, for example, the Ozawa method.
  • the Ozawa method is a method in which TG measurement (thermogravimetry) is performed at three or more types of temperature increase rates, and the activation energy of the thermal decomposition reaction is calculated from the obtained thermogravimetric reduction data.
  • the cured product of the present invention is a cured product obtained by curing the thermosetting aromatic polyester composition obtained by the production method of the present invention, it has excellent heat resistance and excellent processing. Properties, dimensional stability, low linear expansion, high thermal conductivity, low hygroscopicity, and dielectric properties. Furthermore, since the cured product of the present invention is obtained by heating the thermosetting aromatic polyester composition at a relatively low temperature of 250 ° C. or lower, it is excellent in productivity.
  • the cured product of the present invention can be used for various applications such as various members and various structural materials.
  • it since it is excellent in the above-mentioned various properties, it can be preferably used for applications such as films, prepregs, printed wiring boards, semiconductor encapsulants.
  • the thermosetting aromatic polyester composition obtained by the production method of the present invention is, in particular, a film thermosetting composition, a prepreg thermosetting composition, a printed wiring board thermosetting composition, and a semiconductor. It can be preferably used as a thermosetting composition for sealing materials.
  • Tg Glass transition temperature
  • Tm melting point
  • exothermic start temperature The melting point (Tm) and exothermic start temperature of the maleimide derivatives used in the above examples and comparative examples were increased by 20 ° C./min with a differential scanning calorimeter (“DSC6200”, manufactured by Seiko Instruments Inc.). The measurement was performed under conditions (under a nitrogen stream).
  • T d5 [5% weight loss temperature of cured product (T d5 )]
  • the 5% weight reduction temperature (T d5 ) of the cured product obtained in Example 1 and Comparative Example 1 was 10 ° C. at TG / DTA (“TG / DTA6300”, manufactured by Seiko Instruments Inc.). It was measured under the temperature rising condition (in air) per minute.
  • HBA 4-hydroxybenzoic acid
  • HNA 6-hydroxy-2-naphthoic acid
  • BP 4,4′-dihydroxybiphenyl
  • Example 1 4.61 g of aromatic polyester E obtained in Production Example 1 and 4.61 g of silica filler (trade name “FB-5SDC”, manufactured by Denki Kagaku Kogyo Co., Ltd.) as an additive were melt-mixed at 190 ° C. for 15 minutes, A melt was obtained (Step I). Thereafter, 9.22 g of the obtained melt and 2.50 g of 4,4′-diphenylmethane bismaleimide are melt-mixed at 170 ° C. for 60 minutes to obtain a uniform melt (thermosetting aromatic polyester composition). (Step II). Thereafter, the obtained melt was sandwiched between glass plates and heated to 240 ° C.
  • silica filler trade name “FB-5SDC”, manufactured by Denki Kagaku Kogyo Co., Ltd.
  • Table 2 shows the initial complex viscosity at 180 ° C. of the obtained melt and the 5% weight loss temperature (T d5 ) of the cured product.
  • Example 2 Melting and mixing 4.61 g of aromatic polyester F obtained in Production Example 2 and 4.61 g of silica filler (trade name “FB-5SDC”, manufactured by Denki Kagaku Kogyo Co., Ltd.) as an additive at 190 ° C. for 15 minutes, A melt was obtained (Step I). Thereafter, 9.22 g of the obtained melt and 2.50 g of 4,4′-diphenylmethane bismaleimide are melt-mixed at 170 ° C. for 60 minutes to obtain a uniform melt (thermosetting aromatic polyester composition). (Step II). Thereafter, the obtained melt was sandwiched between glass plates and heated to 240 ° C.
  • silica filler trade name “FB-5SDC”, manufactured by Denki Kagaku Kogyo Co., Ltd.
  • Table 2 shows the initial complex viscosity at 180 ° C. of the obtained melt and the 5% weight loss temperature (T d5 ) of the cured product.
  • Comparative Example 1 3.94 g of aromatic polyester E obtained in Production Example 1 and 2.13 g of 4,4′-diphenylmethane bismaleimide were melted and mixed at 170 ° C. for 60 minutes to obtain a melt (Step II). Thereafter, 6.07 g of the obtained melt and 3.93 g of silica filler (trade name “FB-5SDC”, manufactured by Denki Kagaku Kogyo Co., Ltd.) as an additive were melt-mixed at 190 ° C. for 10 minutes to obtain a uniform melt. A product (thermosetting aromatic polyester composition) was obtained (Step I). Thereafter, the obtained melt was sandwiched between glass plates and heated to 240 ° C.
  • silica filler trade name “FB-5SDC”, manufactured by Denki Kagaku Kogyo Co., Ltd.
  • Table 2 shows the initial complex viscosity at 180 ° C. of the obtained melt and the 5% weight loss temperature (T d5 ) of the cured product.
  • Example 3 29.12 g of the aromatic polyester E obtained in Production Example 1 and 43.78 g of polyphenylmethane maleimide (trade name “BMI-2300”, manufactured by Daiwa Kasei Co., Ltd.) were melt-mixed at 150 ° C. for 1 hour, A uniform melt (thermosetting aromatic polyester composition) was obtained. Thereafter, the obtained melt was sandwiched between glass plates and heated to 240 ° C. with a hot plate, and the curing reaction was allowed to proceed for 6 hours to obtain a uniform cured product.
  • the initial complex viscosity at 180 ° C. of the obtained melt and the 5% weight reduction temperature (T d5 ) of the cured product were as shown in Table 2.
  • the melting point (Tm) and exothermic start temperature of the polyphenylmethane maleimide used as the maleimide derivative (B) were as shown in Table 2.
  • thermosetting aromatic polyester composition was prepared in the same manner as in Example 1 except that the type and amount of the aromatic polyester (A), the type and amount of the maleimide derivative, and the mixing conditions were changed as shown in Table 3. Obtained.
  • the initial complex viscosity at 180 ° C. of these melts (thermosetting aromatic polyester composition) and the 5% weight loss temperature (T d5 ) of the cured product were as shown in Table 3.
  • the polyphenylmethane maleimide and 4,4′-diphenylmethane bismaleimide used had a melting point (Tm) and an exothermic onset temperature as shown in Table 3.
  • Tm melting point
  • Comparative Example 2 since the aromatic polyester and the maleimide derivative could not be uniformly dispersed and phase-separated, the initial complex viscosity could not be measured.
  • Example 7 29.1 g of the aromatic polyester E obtained in Production Example 1 was melted at 150 ° C., and melted for 4 hours with 43.8 g of polyphenylmethane maleimide (trade name “BMI-2300” manufactured by Daiwa Kasei Co., Ltd.) as a maleimide derivative. Mixing was performed to obtain a melt (thermosetting aromatic polyester composition).
  • polyphenylmethane maleimide trade name “BMI-2300” manufactured by Daiwa Kasei Co., Ltd.
  • Example 8 30.1 g of the aromatic polyester F obtained in Production Example 2 was melted at 100 ° C. and melted as a maleimide derivative with 48.0 g of polyphenylmethane maleimide (trade name “BMI-2300” manufactured by Daiwa Kasei Co., Ltd.) for 1 hour. Mixing was performed to obtain a melt (thermosetting aromatic polyester composition).
  • Example 9 44.0 g of the aromatic polyester G synthesized in Production Example 3 was melted at 170 ° C. and melt-mixed with 30.5 g of polyphenylmethane maleimide (trade name “BMI-2300” manufactured by Daiwa Kasei Co., Ltd.) as a maleimide derivative for 1 hour. As a result, a melt (thermosetting aromatic polyester composition) was obtained.
  • polyphenylmethane maleimide trade name “BMI-2300” manufactured by Daiwa Kasei Co., Ltd.
  • Comparative Example 4 44.0 g of the aromatic polyester H synthesized in Production Example 4 was melted at 265 ° C., and melt-mixed with 30.1 g of polyphenylmethane maleimide (trade name “BMI-2300” manufactured by Daiwa Kasei Co., Ltd.) as a maleimide derivative for 1 hour. As a result, a melt (thermosetting aromatic polyester composition) was obtained. The obtained melt was non-uniform and the maleimide derivative alone cured significantly.
  • polyphenylmethane maleimide trade name “BMI-2300” manufactured by Daiwa Kasei Co., Ltd.
  • Table 4 shows the initial complex viscosity at 180 ° C. and the 5% weight loss temperature (T d5 ) of the cured product of the thermosetting aromatic polyester compositions obtained in Examples 7 to 9 and Comparative Example 4. there were.
  • thermosetting aromatic polyester composition obtained by the method of the example was thermoset as compared with the thermosetting aromatic polyester composition of the comparative example.
  • the initial complex viscosity of the curable aromatic polyester composition was low, and an increase in the viscosity of the thermosetting aromatic polyester composition when the crosslinkable compound (B) was melt-mixed and uniformly dispersed could be suppressed.
  • the obtained cured product had a high 5% weight loss temperature and had very excellent heat resistance.
  • the aromatic is in a temperature range where the crosslinking reaction does not proceed.
  • Mixing with the polyester (A) was possible, and an increase in the viscosity of the aromatic polyester composition could be suppressed. Therefore, the thermosetting aromatic polyester composition obtained by the second production method can be easily molded by transfer molding or the like by suppressing an increase in the viscosity of the aromatic polyester composition. Further, the obtained cured product had a high 5% weight loss temperature and had very excellent heat resistance.
  • thermosetting aromatic polyester compositions (compositions of the present invention) obtained in the examples can be melt-mixed at a relatively low temperature, have a low initial complex viscosity, and are thermally cured. Increase in viscosity of the water-soluble aromatic polyester composition could be suppressed. Moreover, the obtained cured product had a high 5% weight loss temperature and had very excellent heat resistance.
  • thermosetting aromatic polyester composition obtained by the production method (the first production method or the second production method) of the present invention and the cured product obtained by curing the composition of the present invention include various members and various structural materials. It can be used for various applications such as. In particular, it is excellent in various properties such as processability, dimensional stability, low linear expansion, high thermal conductivity, low hygroscopicity, dielectric properties, etc., so it can be preferably used for applications such as films, prepregs, printed wiring boards, and semiconductor encapsulants .
  • thermosetting aromatic polyester composition in the present invention is, in particular, a thermosetting composition for a film, a thermosetting composition for a prepreg, a thermosetting composition for a printed wiring board, and a thermosetting for a semiconductor sealing material. It can be preferably used as an adhesive composition.

Abstract

The purpose of the present invention is to provide a production method with which it is possible to easily obtain a uniform thermosetting aromatic polyester composition suitable for molding such as transfer molding, and with which it is possible to suppress an increase in viscosity of the thermosetting aromatic polyester composition by adjusting the order of mixing additives, etc., at the time of melt-mixing an aromatic polyester and a thermosetting agent. This method for producing a thermosetting aromatic polyester composition is a method for producing a thermosetting polyester composition that includes an aromatic polyester and a cross-linking compound, the method comprising: a step (I) for melt-mixing an aromatic polyester (A) and an additive; and a step (II) for adding a cross-linking compound (B) to the mixture obtained at step (I), and melt-mixing the same.

Description

熱硬化性芳香族ポリエステル組成物及びその製造方法Thermosetting aromatic polyester composition and method for producing the same
 本発明は、熱硬化性芳香族ポリエステル組成物(芳香族ポリエステルを含む熱硬化性液晶樹脂組成物)及びその製造方法に関する。本願は、2014年4月2日に日本に出願した、特願2014-076513号、特願2014-076514号、及び特願2014-076518号の優先権を主張し、その内容をここに援用する。 The present invention relates to a thermosetting aromatic polyester composition (thermosetting liquid crystal resin composition containing an aromatic polyester) and a method for producing the same. This application claims the priority of Japanese Patent Application Nos. 2014-076513, 2014-076514, and 2014-076518, filed in Japan on April 2, 2014, the contents of which are incorporated herein by reference. .
 液晶ポリエステルに代表される液晶ポリマーは、耐熱性、成形性、耐薬品性、機械強度等の各種特性に優れるため、電気・電子部品、自動車部品等の様々な用途に使用されている。近年、特に、加熱により硬化させることによって非常に高い耐熱性を有する硬化物を形成できる熱硬化性液晶ポリマー材料に注目が集められている。 Liquid crystal polymers typified by liquid crystal polyester are excellent in various properties such as heat resistance, moldability, chemical resistance, and mechanical strength, and are therefore used in various applications such as electric / electronic parts and automobile parts. In recent years, attention has been focused on a thermosetting liquid crystal polymer material that can form a cured product having extremely high heat resistance by being cured by heating.
 液晶ポリエステルの製造方法としては、モノマーをアセチル化及び脱アセチル化を伴う、エステル交換反応による方法が知られている。また、熱硬化性液晶ポリエステルの製造方法として、液晶ポリエステルに熱硬化剤などの硬化剤を加えて、溶融混合する方法が知られている。半導体の封止技術として、トランスファー成形が知られている。 As a method for producing a liquid crystal polyester, a method by transesterification involving acetylation and deacetylation of a monomer is known. As a method for producing a thermosetting liquid crystal polyester, there is known a method in which a curing agent such as a thermosetting agent is added to the liquid crystal polyester and melt mixed. Transfer molding is known as a semiconductor sealing technique.
 熱硬化性液晶ポリマー材料としては、例えば、主鎖サーモトロピック液晶エステル等の液晶オリゴマーをフェニルアセチレン、フェニルマレイミド、ナジイミド反応性末端基でエンドキャップした材料が知られている(特許文献1~3参照)。また、主鎖に一つ以上の可溶性構造単位を有し且つ主鎖の末端の一つ以上に熱硬化性基を有する熱硬化性液晶オリゴマーと特定のフッ素化合物とを反応させて得られる材料(特許文献4参照)、上記熱硬化性液晶オリゴマーとアルコキシド金属化合物で表面を置換したナノ充填剤とを反応させて得られる材料が知られている(特許文献5参照)。 As a thermosetting liquid crystal polymer material, for example, a material in which a liquid crystal oligomer such as a main chain thermotropic liquid crystal ester is end-capped with a phenylacetylene, phenylmaleimide, or nadiimide reactive end group is known (see Patent Documents 1 to 3). ). In addition, a material obtained by reacting a thermosetting liquid crystal oligomer having one or more soluble structural units in the main chain and having a thermosetting group at one or more terminals of the main chain with a specific fluorine compound ( A material obtained by reacting the thermosetting liquid crystal oligomer with a nano filler whose surface is substituted with an alkoxide metal compound is known (see Patent Document 5).
 熱硬化性液晶ポリマー材料としては、例えば、液晶ポリマーの末端にスペーサー単位を介して架橋性基が結合した材料も知られている(特許文献6参照)。また、液晶ポリエステルの両末端に、無置換又は置換マレイミド、無置換又は置換ナジイミド、エチニル、ベンゾシクロブテンなどのラジカル重合性基を有する材料も知られている(特許文献7参照)。 As a thermosetting liquid crystal polymer material, for example, a material in which a crosslinkable group is bonded to a terminal of a liquid crystal polymer via a spacer unit is also known (see Patent Document 6). A material having radically polymerizable groups such as unsubstituted or substituted maleimide, unsubstituted or substituted nadiimide, ethynyl, and benzocyclobutene at both ends of the liquid crystal polyester is also known (see Patent Document 7).
特表2004-509190号公報JP-T-2004-509190 米国特許第6939940号明細書US Pat. No. 6,993,940 米国特許第7507784号明細書US Pat. No. 7,507,784 特開2011-111619号公報JP 2011-1111619 A 特開2011-084707号公報JP 2011-084707 A 特表2002-521354号公報Japanese translation of PCT publication No. 2002-521354 米国特許第5114612号明細書US Pat. No. 5,114,612
 しかしながら、液晶ポリエステル等の芳香族ポリエステルは、熱硬化剤等との相溶性が非常に悪い。そのため、芳香族ポリエステルと熱硬化剤、いずれも液体状態で高温かつ長時間混合する必要がある。しかし、芳香族ポリエステルに熱硬化剤を加え、融点以上の高温にて長時間加熱、混合する際に、熱重合性官能基の架橋反応が進行することにより、熱硬化性ポリエステル組成物の粘度が上昇し、高粘度となることがある。そのため、トランスファー成形等の成形が困難となる場合がある。 However, aromatic polyesters such as liquid crystal polyesters have very poor compatibility with thermosetting agents. Therefore, it is necessary to mix the aromatic polyester and the thermosetting agent in a liquid state at a high temperature for a long time. However, when a thermosetting agent is added to the aromatic polyester and heated and mixed for a long time at a temperature higher than the melting point, the crosslinking reaction of the thermopolymerizable functional group proceeds, so that the viscosity of the thermosetting polyester composition is increased. May rise and become high viscosity. Therefore, molding such as transfer molding may be difficult.
 従って、本発明の目的は、芳香族ポリエステルと熱硬化剤を溶融混合させる際、添加物などの混合順序を工夫することで、熱硬化性芳香族ポリエステル組成物の粘度上昇を抑制することができ、均一で且つトランスファー成形等の成形に適した熱硬化性芳香族ポリエステル組成物を簡易に得ることができる製造方法を提供することである。 Therefore, the object of the present invention is to suppress the increase in viscosity of the thermosetting aromatic polyester composition by devising the mixing order of additives when the aromatic polyester and the thermosetting agent are melt-mixed. Another object of the present invention is to provide a production method capable of easily obtaining a thermosetting aromatic polyester composition that is uniform and suitable for molding such as transfer molding.
 また、本発明の他の目的は、熱硬化剤として、低融点及び/又は融点と発熱開始温度の差が大きいマレイミド誘導体を配合することで、架橋反応が進行しない温度領域(例えば、80~200℃)で熱硬化性芳香族ポリエステルにマレイミド誘導体を混合し、低粘度かつ均一に分散することができる熱硬化性芳香族ポリエステル組成物の製造方法を提供することにある。 Another object of the present invention is to add a maleimide derivative having a low melting point and / or a large difference between the melting point and the heat generation starting temperature as a thermosetting agent, so that a crosslinking reaction does not proceed (for example, 80 to 200). It is an object of the present invention to provide a method for producing a thermosetting aromatic polyester composition capable of mixing a maleimide derivative with a thermosetting aromatic polyester at a low temperature and uniformly dispersing the mixture.
 さらに、芳香族ポリエステルは、熱可塑性樹脂であり、成形温度以上の温度にさらされる用途では、変形するため使用できない。そのため、芳香族ポリエステルに架橋性を有する熱硬化性官能基を導入し、熱硬化性樹脂とする必要がある。上記のような架橋性基を有する熱硬化性芳香族ポリエステルを得る方法としては、溶液法が用いられることが多く、一般的に生産性が悪い。生産性良く熱硬化性芳香族ポリエステルを得るためには、芳香族ポリエステルと架橋性基を有する化合物を芳香族ポリエステルの融点以上の温度にて長時間加熱、混練する方法(溶融混合)が採られている。しかしながら、芳香族ポリエステルは、一般的に融点が非常に高く(例えば、280℃以上)、溶融混合時に架橋反応の進行により粘度が上昇し、トランスファー成形等の成形が困難となる場合がある。 Furthermore, aromatic polyester is a thermoplastic resin and cannot be used because it deforms in applications where it is exposed to a temperature higher than the molding temperature. Therefore, it is necessary to introduce a thermosetting functional group having crosslinkability into the aromatic polyester to form a thermosetting resin. As a method for obtaining a thermosetting aromatic polyester having a crosslinkable group as described above, a solution method is often used, and productivity is generally poor. In order to obtain a thermosetting aromatic polyester with high productivity, a method (melt mixing) of heating and kneading a compound having an aromatic polyester and a crosslinkable group at a temperature equal to or higher than the melting point of the aromatic polyester is employed. ing. However, aromatic polyesters generally have a very high melting point (for example, 280 ° C. or higher), and the viscosity increases due to the progress of the crosslinking reaction during melt mixing, which may make molding such as transfer molding difficult.
 従って、本発明の他の目的は、比較的低温(例えば、200℃以下)にて、芳香族ポリエステルを溶融混合でき、溶融混合時に架橋反応の進行により粘度が上昇せず、トランスファー成形等の成形性に優れた熱硬化性芳香族ポリエステル組成物を提供することである。 Therefore, another object of the present invention is that aromatic polyester can be melt-mixed at a relatively low temperature (for example, 200 ° C. or less), the viscosity does not increase due to the progress of the crosslinking reaction during melt-mixing, and molding such as transfer molding. It is providing the thermosetting aromatic polyester composition excellent in property.
 本発明者らは、上記課題を解決するため鋭意検討した結果、特定構造の芳香族ポリエステルと熱硬化剤を溶融混合する際、無機フィラーなどの添加剤を先に配合し、その後に熱硬化剤(架橋性化合物)を配合すると、系内の芳香族ポリエステルが希釈され、熱硬化剤添加後に生成する熱硬化性芳香族ポリエステルの濃度が低下するとともに、熱硬化剤や熱硬化性芳香族ポリエステルの加熱を受ける時間を低減でき、硬化反応(架橋反応)による粘度の上昇を抑制でき、均一で且つトランスファー成形可能な熱硬化性芳香族ポリエステル組成物を簡易に製造できることを見出し、本発明を完成させた。 As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention blended an additive such as an inorganic filler first when an aromatic polyester having a specific structure and a thermosetting agent are melt-mixed, and then the thermosetting agent. When (crosslinkable compound) is blended, the aromatic polyester in the system is diluted, the concentration of the thermosetting aromatic polyester generated after the addition of the thermosetting agent is lowered, and the thermosetting agent and the thermosetting aromatic polyester The inventors have found that a time for heating can be reduced, an increase in viscosity due to a curing reaction (crosslinking reaction) can be suppressed, and a uniform and transfer-moldable thermosetting aromatic polyester composition can be easily produced, thereby completing the present invention. It was.
 また、本発明者らは、上記課題を解決するため鋭意検討した結果、特定構造の熱硬化性芳香族ポリエステルと低融点及び/又は融点と発熱開始温度の差が大きいマレイミド誘導体を配合することで、架橋反応が進行しない温度領域(例えば、80~200℃)で芳香族ポリエステルとマレイミド誘導体を混合でき、熱硬化性芳香族ポリエステル組成物の粘度上昇を抑え、均一な組成物が得られることを発見し本発明を完成させた。 In addition, as a result of intensive studies to solve the above problems, the present inventors have formulated a thermosetting aromatic polyester having a specific structure and a low melting point and / or a maleimide derivative having a large difference between the melting point and the heat generation start temperature. The aromatic polyester and the maleimide derivative can be mixed in a temperature range where the cross-linking reaction does not proceed (for example, 80 to 200 ° C.), the viscosity increase of the thermosetting aromatic polyester composition can be suppressed, and a uniform composition can be obtained. Discovered and completed the present invention.
 さらに、本発明者らは、上記課題を解決するため鋭意検討した結果、芳香族ポリエステルの軟化温度が架橋性基を有する化合物の硬化温度よりも30℃以上低い、特定の芳香族ポリエステルを用いることにより、架橋反応が進行しない比較的低い温度領域(例えば、100~200℃)で混練し、熱硬化性芳香族ポリエステル組成物を得ることできることを見出し、本発明を完成させた。 Furthermore, as a result of intensive studies to solve the above problems, the present inventors use a specific aromatic polyester in which the softening temperature of the aromatic polyester is 30 ° C. or lower than the curing temperature of the compound having a crosslinkable group. Thus, it was found that a thermosetting aromatic polyester composition can be obtained by kneading in a relatively low temperature range (for example, 100 to 200 ° C.) where the crosslinking reaction does not proceed, and the present invention has been completed.
 すなわち、本発明は、芳香族ポリエステルと架橋性化合物とを含有する熱硬化性ポリエステル組成物の製造方法であって、下記芳香族ポリエステル(A)と添加剤とを溶融混合する工程I、及び前記工程Iで得られた混合物に下記架橋性化合物(B)を加えて溶融混合する工程IIを含む熱硬化性芳香族ポリエステル組成物の製造方法を提供する。
 芳香族ポリエステル(A):分子鎖末端に水酸基、アシルオキシ基、芳香族環式基、及び共役ジエン構造からなる群より選択された少なくとも1種の基又は構造を有する芳香族ポリエステル
 架橋性化合物(B):水酸基、アシルオキシ基、芳香族環式基、又は共役ジエン構造と反応する官能基であって、芳香族ポリエステル(A)が有する基又は構造と反応する官能基、並びに熱重合性官能基を分子内に有する架橋性化合物
That is, this invention is a manufacturing method of the thermosetting polyester composition containing aromatic polyester and a crosslinkable compound, Comprising: The process I which melt-mixes the following aromatic polyester (A) and an additive, and the said Provided is a method for producing a thermosetting aromatic polyester composition comprising a step II in which the following crosslinkable compound (B) is added to the mixture obtained in the step I and melt mixed.
Aromatic polyester (A): aromatic polyester having at least one group or structure selected from the group consisting of a hydroxyl group, an acyloxy group, an aromatic cyclic group, and a conjugated diene structure at the molecular chain terminal Crosslinkable compound (B ): A functional group that reacts with a hydroxyl group, an acyloxy group, an aromatic cyclic group, or a conjugated diene structure, a functional group that reacts with the group or structure of the aromatic polyester (A), and a thermally polymerizable functional group. Crosslinkable compound in the molecule
 さらに、本発明は、前記芳香族ポリエステル(A)100重量部に対して、前記添加剤の配合量が10~4000重量部であり、前記架橋性化合物(B)の配合量が10~400重量部である前記の熱硬化性芳香族ポリエステル組成物の製造方法を提供する。 Further, according to the present invention, the amount of the additive is 10 to 4000 parts by weight and the amount of the crosslinkable compound (B) is 10 to 400 parts by weight with respect to 100 parts by weight of the aromatic polyester (A). A method for producing the thermosetting aromatic polyester composition is provided.
 さらに、本発明は、前記工程Iにおいて、前記芳香族ポリエステル(A)と前記添加剤とを溶融混合する際の混合温度が80~300℃である前記の熱硬化性芳香族ポリエステル組成物の製造方法を提供する。 Further, the present invention provides the production of the thermosetting aromatic polyester composition, wherein the mixing temperature when the aromatic polyester (A) and the additive are melt-mixed in the step I is 80 to 300 ° C. Provide a method.
 さらに、本発明は、前記工程IIにおいて、前記架橋性化合物(B)を加えて溶融混合する際の混合温度が80~200℃、混合時間が30~600分である前記の熱硬化性芳香族ポリエステル組成物の製造方法を提供する。 Further, the present invention provides the thermosetting aromatic compound according to the step II, wherein the crosslinking temperature (80) is 200 to 200 ° C. and the mixing time is 30 to 600 minutes when the crosslinkable compound (B) is added and melt mixed. A method for producing a polyester composition is provided.
 さらに、本発明は、前記添加剤が、無機フィラーである前記の熱硬化性芳香族ポリエステル組成物の製造方法を提供する。 Furthermore, the present invention provides a method for producing the thermosetting aromatic polyester composition, wherein the additive is an inorganic filler.
 さらに、本発明は、前記無機フィラーが、シリカフィラーである前記の熱硬化性芳香族ポリエステル組成物の製造方法を提供する。 Furthermore, the present invention provides a method for producing the thermosetting aromatic polyester composition, wherein the inorganic filler is a silica filler.
 また、本発明は、下記芳香族ポリエステル(A)に下記マレイミド誘導体(B’)を加え、混合する工程を含むことを特徴とする熱硬化性芳香族ポリエステル組成物の製造方法を提供する。
 芳香族ポリエステル(A):分子鎖末端に水酸基、アシルオキシ基、芳香族環式基、及び共役ジエン構造からなる群より選択された少なくとも1種の基又は構造を有する芳香族ポリエステル
 マレイミド誘導体(B’):融点が150℃以下及び/又は前記融点とマレイミド誘導体の発熱開始温度の差が30℃以上であり、分子内に、前記芳香族ポリエステル(A)と反応するマレイミド基と、熱重合性官能基であるマレイミド基とを有するマレイミド誘導体
Moreover, this invention provides the manufacturing method of the thermosetting aromatic polyester composition characterized by including the process of adding the following maleimide derivative (B ') to the following aromatic polyester (A), and mixing.
Aromatic polyester (A): aromatic polyester having at least one group or structure selected from the group consisting of a hydroxyl group, an acyloxy group, an aromatic cyclic group, and a conjugated diene structure at the molecular chain end Maleimide derivative (B ′ ): Melting point of 150 ° C. or less and / or difference in heat generation start temperature between the melting point and the maleimide derivative is 30 ° C. or more, and a maleimide group that reacts with the aromatic polyester (A) in the molecule and a thermopolymerizable functional group Maleimide derivative having a maleimide group as a group
 さらに、本発明は、前記芳香族ポリエステル(A)100重量部に対して、前記マレイミド誘導体(B’)の配合量が10~400重量部である前記の熱硬化性芳香族ポリエステル組成物の製造方法を提供する。 Further, the present invention provides the above thermosetting aromatic polyester composition, wherein the blended amount of the maleimide derivative (B ′) is 10 to 400 parts by weight with respect to 100 parts by weight of the aromatic polyester (A). Provide a method.
 さらに、本発明は、前記芳香族ポリエステル(A)に前記マレイミド誘導体(B’)を加え、混合する際の混合温度が80~200℃、混合時間が30~600分である前記の熱硬化性芳香族ポリエステル組成物の製造方法を提供する。 Furthermore, the present invention relates to the thermosetting resin, wherein the maleimide derivative (B ′) is added to the aromatic polyester (A) and the mixing temperature is 80 to 200 ° C. and the mixing time is 30 to 600 minutes. A method for producing an aromatic polyester composition is provided.
 さらに、本発明は、前記マレイミド誘導体(B’)が、下記式(i)で表される化合物及び式(ii)で表される化合物から選択された少なくとも1種の化合物である前記の熱硬化性ポリエステル組成物の製造方法を提供する。
Figure JPOXMLDOC01-appb-C000003
[上記式(i)中のnは、0~10の整数を表す]
Figure JPOXMLDOC01-appb-C000004
Furthermore, the present invention provides the thermosetting, wherein the maleimide derivative (B ′) is at least one compound selected from a compound represented by the following formula (i) and a compound represented by the formula (ii): A method for producing a conductive polyester composition is provided.
Figure JPOXMLDOC01-appb-C000003
[N in the above formula (i) represents an integer of 0 to 10]
Figure JPOXMLDOC01-appb-C000004
 さらに、本発明は、前記芳香族ポリエステル(A)が、芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸、及び芳香族ジオールからなる群より選択された少なくとも1種の芳香族化合物由来の構成単位Uを含む芳香族ポリエステルであって、芳香族ポリエステル(A)を構成する全構成単位に対する前記構成単位Uの割合(前記構成単位が2種以上の場合は、それらの総量の割合)が、60~100重量%である前記の熱硬化性芳香族ポリエステル組成物の製造方法を提供する。 Further, in the present invention, the aromatic polyester (A) is a structural unit U derived from at least one aromatic compound selected from the group consisting of an aromatic hydroxycarboxylic acid, an aromatic dicarboxylic acid, and an aromatic diol. The ratio of the structural unit U to the total structural units constituting the aromatic polyester (A) (the ratio of the total amount when there are two or more structural units) is 60 to 100 Provided is a method for producing the thermosetting aromatic polyester composition, which is in weight percent.
 さらに、本発明は、前記芳香族ポリエステル(A)の融点が、250℃以下である前記の熱硬化性芳香族ポリエステル組成物の製造方法を提供する。 Furthermore, this invention provides the manufacturing method of the said thermosetting aromatic polyester composition whose melting | fusing point of the said aromatic polyester (A) is 250 degrees C or less.
 さらに、本発明は、前記芳香族ポリエステル(A)の分子量が、300~20000である前記の熱硬化性芳香族ポリエステル組成物の製造方法を提供する。 Furthermore, the present invention provides a method for producing the thermosetting aromatic polyester composition, wherein the aromatic polyester (A) has a molecular weight of 300 to 20000.
 さらに、本発明は、前記芳香族ポリエステル(A)の分子鎖末端の末端基全体に対して、前記水酸基の割合が5~100%であり、前記アシルオキシ基の割合が0~90%であり、前記水酸基及び前記アシルオキシ基以外の基の割合が0~90%である前記の熱硬化性芳香族ポリエステル組成物の製造方法を提供する。 Further, in the present invention, the ratio of the hydroxyl group is 5 to 100% and the ratio of the acyloxy group is 0 to 90% with respect to the entire terminal group at the molecular chain end of the aromatic polyester (A). Provided is a method for producing the thermosetting aromatic polyester composition, wherein the ratio of groups other than the hydroxyl group and the acyloxy group is 0 to 90%.
 また、本発明は、前記の熱硬化性芳香族ポリエステル組成物の製造方法で得られた熱硬化性芳香族ポリエステル組成物を提供する。 The present invention also provides a thermosetting aromatic polyester composition obtained by the above-described method for producing a thermosetting aromatic polyester composition.
 また、本発明は、下記芳香族ポリエステル(A)と下記架橋性化合物(B)を含み、前記芳香族ポリエステル(A)の軟化温度が前記架橋性化合物(B)の硬化温度よりも30℃以上低いことを特徴とする熱硬化性芳香族ポリエステル組成物を提供する。
 芳香族ポリエステル(A):分子鎖末端に水酸基、アシルオキシ基、芳香族環式基、及び共役ジエン構造からなる群より選択された少なくとも1種の基又は構造を有する芳香族ポリエステル
 架橋性化合物(B):水酸基、アシルオキシ基、芳香族環式基、又は共役ジエン構造と反応する官能基であって、芳香族ポリエステル(A)が有する基又は構造と反応する官能基、並びに熱重合性官能基を分子内に有する架橋性化合物
Moreover, this invention contains the following aromatic polyester (A) and the following crosslinkable compound (B), and the softening temperature of the said aromatic polyester (A) is 30 degreeC or more from the hardening temperature of the said crosslinkable compound (B). A thermosetting aromatic polyester composition characterized by being low is provided.
Aromatic polyester (A): aromatic polyester having at least one group or structure selected from the group consisting of a hydroxyl group, an acyloxy group, an aromatic cyclic group, and a conjugated diene structure at the molecular chain terminal Crosslinkable compound (B ): A functional group that reacts with a hydroxyl group, an acyloxy group, an aromatic cyclic group, or a conjugated diene structure, a functional group that reacts with the group or structure of the aromatic polyester (A), and a thermally polymerizable functional group. Crosslinkable compound in the molecule
 さらに、本発明は、前記芳香族ポリエステル(A)の軟化温度が40~200℃である前記の熱硬化性芳香族ポリエステル組成物を提供する。 Furthermore, the present invention provides the thermosetting aromatic polyester composition described above, wherein the aromatic polyester (A) has a softening temperature of 40 to 200 ° C.
 さらに、本発明は、前記架橋性化合物(B)の硬化温度が70~250℃である前記の熱硬化性芳香族ポリエステル組成物を提供する。 Furthermore, the present invention provides the thermosetting aromatic polyester composition, wherein the curing temperature of the crosslinkable compound (B) is 70 to 250 ° C.
 さらに、本発明は、前記芳香族ポリエステル(A)の平均重合度が3~30である前記の熱硬化性芳香族ポリエステル組成物を提供する。 Furthermore, the present invention provides the thermosetting aromatic polyester composition, wherein the aromatic polyester (A) has an average degree of polymerization of 3 to 30.
 さらに、本発明は、前記架橋性化合物(B)がマレイミド誘導体である前記の熱硬化性芳香族ポリエステル組成物を提供する。 Furthermore, the present invention provides the thermosetting aromatic polyester composition, wherein the crosslinkable compound (B) is a maleimide derivative.
 さらに、本発明は、前記架橋性化合物(B)の配合量が、前記芳香族ポリエステル(A)100重量部に対して、10~300重量部である前記の熱硬化性芳香族ポリエステル組成物を提供する。 Furthermore, the present invention provides the thermosetting aromatic polyester composition, wherein the amount of the crosslinkable compound (B) is 10 to 300 parts by weight with respect to 100 parts by weight of the aromatic polyester (A). provide.
 また、本発明は、前記の熱硬化性芳香族ポリエステル組成物を硬化させることにより得られる硬化物を提供する。 The present invention also provides a cured product obtained by curing the thermosetting aromatic polyester composition.
 さらに、本発明は、昇温速度10℃/分(空気中)で測定される5%重量減少速度が350℃以上であり、空気中における熱分解反応の活性化エネルギーが150kJ/mol以上である前記の硬化物を提供する。 Furthermore, in the present invention, the 5% weight reduction rate measured at a temperature rising rate of 10 ° C./min (in air) is 350 ° C. or higher, and the activation energy of the thermal decomposition reaction in air is 150 kJ / mol or higher. The cured product is provided.
 すなわち、本発明は以下に関する。
[1] 芳香族ポリエステルと架橋性化合物とを含有する熱硬化性ポリエステル組成物の製造方法であって、芳香族ポリエステル(A)と添加剤とを溶融混合する工程I、及び前記工程Iで得られた混合物に架橋性化合物(B)を加えて溶融混合する工程IIを含む熱硬化性芳香族ポリエステル組成物の製造方法。
[2] 前記芳香族ポリエステル(A)100重量部に対して、前記添加剤の配合量が10~4000重量部であり、前記架橋性化合物(B)の配合量が10~400重量部である[1]に記載の熱硬化性芳香族ポリエステル組成物の製造方法。
[3] 前記工程Iにおいて、前記芳香族ポリエステル(A)と前記添加剤とを溶融混合する際の混合温度が80~300℃である[1]又は[2]に記載の熱硬化性芳香族ポリエステル組成物の製造方法。
[4] 前記工程IIにおいて、前記架橋性化合物(B)を加えて溶融混合する際の混合温度が80~200℃、混合時間が30~600分である[1]~[3]の何れか1項に記載の熱硬化性芳香族ポリエステル組成物の製造方法。
[5] 前記添加剤が、無機フィラーである[1]~[4]の何れか1項に記載の熱硬化性芳香族ポリエステル組成物の製造方法。
[6] 前記無機フィラーが、シリカフィラーである[5]に記載の熱硬化性芳香族ポリエステル組成物の製造方法。
[7] 前記工程IIにおいて、前記架橋性化合物(B)を加えて溶融混合後の熱硬化性芳香族ポリエステル組成物の溶融粘度(初期複素粘度)が、200℃以下において、1000Pa・s以下である[1]~[6]の何れか1項に記載の熱硬化性芳香族ポリエステル組成物の製造方法。
[8] 前記芳香族ポリエステル(A)にマレイミド誘導体(B’)を加え、混合する工程を含むことを特徴とする熱硬化性芳香族ポリエステル組成物の製造方法。
[9] 前記芳香族ポリエステル(A)100重量部に対して、前記マレイミド誘導体(B’)の配合量が10~400重量部である[8]に記載の熱硬化性芳香族ポリエステル組成物の製造方法。
[10] 前記芳香族ポリエステル(A)に前記マレイミド誘導体(B’)を加え、混合する際の混合温度が80~200℃、混合時間が30~600分である[8]又は[9]に記載の熱硬化性芳香族ポリエステル組成物の製造方法。
[11] 前記マレイミド誘導体(B’)が、式(i)で表される化合物及び式(ii)で表される化合物から選択された少なくとも1種の化合物である[8]~[10]の何れか1項に記載の熱硬化性ポリエステル組成物の製造方法。
[12] 前記マレイミド誘導体(B’)の分子量が、200~1000である[8]~[11]の何れか1項に記載の熱硬化性ポリエステル組成物の製造方法。
[13] 前記マレイミド誘導体(B’)の融点が、150℃以下である[8]~[12]の何れか1項に記載の熱硬化性ポリエステル組成物の製造方法。
[14] 前記マレイミド誘導体(B’)の発熱開始温度が、250℃以下である[8]~[13]の何れか1項に記載の熱硬化性ポリエステル組成物の製造方法。
[15] 前記芳香族ポリエステル(A)が、芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸、及び芳香族ジオールからなる群より選択された少なくとも1種の芳香族化合物由来の構成単位Uを含む芳香族ポリエステルであって、芳香族ポリエステル(A)を構成する全構成単位に対する前記構成単位Uの割合(前記構成単位が2種以上の場合は、それらの総量の割合)が、60~100重量%である[1]~[14]の何れか1項に記載の熱硬化性芳香族ポリエステル組成物の製造方法。
[16] 前記芳香族ポリエステル(A)の融点が、250℃以下である[1]~[15]の何れか1項に記載の熱硬化性芳香族ポリエステル組成物の製造方法。
[17] 前記芳香族ポリエステル(A)の分子量が、300~20000である[1]~[16]の何れか1項に記載の熱硬化性芳香族ポリエステル組成物の製造方法。
[18] 前記芳香族ポリエステル(A)の分子鎖末端の末端基全体に対して、前記水酸基の割合が5~100%であり、前記アシルオキシ基の割合が0~90%であり、前記水酸基及び前記アシルオキシ基以外の基の割合が0~90%である[1]~[17]の何れか1項に記載の熱硬化性芳香族ポリエステル組成物の製造方法。
[19][1]~[18]の何れか1項に記載の熱硬化性芳香族ポリエステル組成物の製造方法で得られた熱硬化性芳香族ポリエステル組成物。
[20] 芳香族ポリエステル(A)と架橋性化合物(B)を含み、前記芳香族ポリエステル(A)の軟化温度が前記架橋性化合物(B)の硬化温度よりも30℃以上低いことを特徴とする熱硬化性芳香族ポリエステル組成物。
[21] 前記芳香族ポリエステル(A)の軟化温度が40~200℃である[20]に記載の熱硬化性芳香族ポリエステル組成物。
[22] 前記架橋性化合物(B)の硬化温度が70~250℃である[20]又は[21]に記載の熱硬化性芳香族ポリエステル組成物。
[23] 前記芳香族ポリエステル(A)の平均重合度が3~30である[20]~[22]の何れか1項に記載の熱硬化性芳香族ポリエステル組成物。
[24] 前記架橋性化合物(B)がマレイミド誘導体である[20]~[23]の何れか1項に記載の熱硬化性芳香族ポリエステル組成物。
[25] 前記架橋性化合物(B)の配合量が、前記芳香族ポリエステル(A)100重量部に対して、10~300重量部である[20]~[24]の何れか1項に記載の熱硬化性芳香族ポリエステル組成物。
[26] [19]~[25]の何れか1項に記載の熱硬化性芳香族ポリエステル組成物を硬化させることにより得られる硬化物。
[27] 昇温速度10℃/分(空気中)で測定される5%重量減少速度が350℃以上であり、空気中における熱分解反応の活性化エネルギーが150kJ/mol以上である[26]に記載の硬化物。
That is, the present invention relates to the following.
[1] A method for producing a thermosetting polyester composition containing an aromatic polyester and a crosslinkable compound, which is obtained in Step I in which the aromatic polyester (A) and an additive are melt-mixed, and in Step I above. A method for producing a thermosetting aromatic polyester composition, comprising the step II of adding the crosslinkable compound (B) to the obtained mixture and melt-mixing the mixture.
[2] The amount of the additive is 10 to 4000 parts by weight and the amount of the crosslinkable compound (B) is 10 to 400 parts by weight with respect to 100 parts by weight of the aromatic polyester (A). The manufacturing method of the thermosetting aromatic polyester composition as described in [1].
[3] The thermosetting aromatic according to [1] or [2], wherein in the step I, the mixing temperature when the aromatic polyester (A) and the additive are melt-mixed is 80 to 300 ° C. A method for producing a polyester composition.
[4] Any one of [1] to [3], wherein in the step II, the mixing temperature is 80 to 200 ° C. and the mixing time is 30 to 600 minutes when the crosslinkable compound (B) is added and melt mixed. The manufacturing method of the thermosetting aromatic polyester composition of 1 item | term.
[5] The method for producing a thermosetting aromatic polyester composition according to any one of [1] to [4], wherein the additive is an inorganic filler.
[6] The method for producing a thermosetting aromatic polyester composition according to [5], wherein the inorganic filler is a silica filler.
[7] In the step II, the melt viscosity (initial complex viscosity) of the thermosetting aromatic polyester composition after the crosslinkable compound (B) is added and melt mixed is 200 Pa or less at 1000 Pa · s or less. The method for producing a thermosetting aromatic polyester composition according to any one of [1] to [6].
[8] A method for producing a thermosetting aromatic polyester composition comprising a step of adding and mixing a maleimide derivative (B ′) to the aromatic polyester (A).
[9] The thermosetting aromatic polyester composition according to [8], wherein the amount of the maleimide derivative (B ′) is 10 to 400 parts by weight with respect to 100 parts by weight of the aromatic polyester (A). Production method.
[10] In [8] or [9], when the maleimide derivative (B ′) is added to the aromatic polyester (A) and mixed, the mixing temperature is 80 to 200 ° C. and the mixing time is 30 to 600 minutes. The manufacturing method of the thermosetting aromatic polyester composition of description.
[11] The maleimide derivative (B ′) is at least one compound selected from the compound represented by the formula (i) and the compound represented by the formula (ii). The manufacturing method of the thermosetting polyester composition of any one.
[12] The method for producing a thermosetting polyester composition according to any one of [8] to [11], wherein the maleimide derivative (B ′) has a molecular weight of 200 to 1,000.
[13] The method for producing a thermosetting polyester composition according to any one of [8] to [12], wherein the maleimide derivative (B ′) has a melting point of 150 ° C. or lower.
[14] The method for producing a thermosetting polyester composition according to any one of [8] to [13], wherein the maleimide derivative (B ′) has an exothermic starting temperature of 250 ° C. or lower.
[15] The aromatic polyester (A) includes a structural unit U derived from at least one aromatic compound selected from the group consisting of an aromatic hydroxycarboxylic acid, an aromatic dicarboxylic acid, and an aromatic diol. The ratio of the structural unit U to the total structural units constituting the aromatic polyester (A) (the ratio of the total amount when there are two or more structural units) is 60 to 100% by weight. The method for producing a thermosetting aromatic polyester composition according to any one of [1] to [14].
[16] The process for producing a thermosetting aromatic polyester composition according to any one of [1] to [15], wherein the aromatic polyester (A) has a melting point of 250 ° C. or lower.
[17] The method for producing a thermosetting aromatic polyester composition according to any one of [1] to [16], wherein the aromatic polyester (A) has a molecular weight of 300 to 20000.
[18] The ratio of the hydroxyl group is 5 to 100% and the ratio of the acyloxy group is 0 to 90% with respect to the entire terminal group at the molecular chain end of the aromatic polyester (A). The method for producing a thermosetting aromatic polyester composition according to any one of [1] to [17], wherein the ratio of groups other than the acyloxy group is 0 to 90%.
[19] A thermosetting aromatic polyester composition obtained by the method for producing a thermosetting aromatic polyester composition according to any one of [1] to [18].
[20] It includes an aromatic polyester (A) and a crosslinkable compound (B), and the softening temperature of the aromatic polyester (A) is 30 ° C. or lower than the curing temperature of the crosslinkable compound (B). A thermosetting aromatic polyester composition.
[21] The thermosetting aromatic polyester composition according to [20], wherein the aromatic polyester (A) has a softening temperature of 40 to 200 ° C.
[22] The thermosetting aromatic polyester composition according to [20] or [21], wherein the curing temperature of the crosslinkable compound (B) is 70 to 250 ° C.
[23] The thermosetting aromatic polyester composition according to any one of [20] to [22], wherein the average degree of polymerization of the aromatic polyester (A) is 3 to 30.
[24] The thermosetting aromatic polyester composition according to any one of [20] to [23], wherein the crosslinkable compound (B) is a maleimide derivative.
[25] The amount of the crosslinkable compound (B) is 10 to 300 parts by weight with respect to 100 parts by weight of the aromatic polyester (A), according to any one of [20] to [24] Thermosetting aromatic polyester composition.
[26] A cured product obtained by curing the thermosetting aromatic polyester composition according to any one of [19] to [25].
[27] The 5% weight loss rate measured at a heating rate of 10 ° C./min (in air) is 350 ° C. or more, and the activation energy of the thermal decomposition reaction in air is 150 kJ / mol or more [26]. The cured product described in 1.
 第1の製造方法は、上記構成を有するため、芳香族ポリエステルと熱硬化剤(架橋性化合物)の硬化反応の進行による熱硬化性芳香族ポリエステル組成物の粘度上昇を抑制することができ、均一な熱硬化性芳香族ポリエステル組成物を簡易に得ることができる。 Since the 1st manufacturing method has the above-mentioned composition, it can control the viscosity rise of the thermosetting aromatic polyester composition by progress of hardening reaction of aromatic polyester and a thermosetting agent (crosslinkable compound), and is uniform. A simple thermosetting aromatic polyester composition can be obtained.
 第2の製造方法は、上記構成を有するため、架橋反応が進行しない温度領域(例えば、80~200℃)で混合することができ、熱硬化性芳香族ポリエステル組成物の粘度上昇を抑え、均一な組成物が得られる。 Since the second production method has the above-described configuration, it can be mixed in a temperature range (for example, 80 to 200 ° C.) where the crosslinking reaction does not proceed, and the increase in viscosity of the thermosetting aromatic polyester composition is suppressed and uniform. Composition is obtained.
 本発明の熱硬化性芳香族ポリエステル組成物は、上記構成を有するため、加熱混練時に架橋反応の進行により粘度が上昇せず、トランスファー成形等の成形性に優れた熱硬化性芳香族ポリエステル組成物を得ることができる。また、芳香族ポリエステルを必須の構成要素として含むため、得られる硬化物は、加工性、寸法安定性、低線膨張、高熱伝導、低吸湿性及び誘電特性にも優れる。 Since the thermosetting aromatic polyester composition of the present invention has the above-described configuration, the viscosity does not increase due to the progress of the crosslinking reaction during heating and kneading, and the thermosetting aromatic polyester composition has excellent moldability such as transfer molding. Can be obtained. Moreover, since aromatic polyester is included as an essential component, the obtained cured product is excellent in processability, dimensional stability, low linear expansion, high thermal conductivity, low hygroscopicity, and dielectric properties.
[熱硬化性芳香族ポリエステル組成物の製造方法]
 本発明の熱硬化性芳香族ポリエステル組成物の製造方法(「本発明の製造方法」と称する場合がある)は、「第1の製造方法」又は「第2の製造方法」のことである。第1の製造方法と第2の製造方法は、それぞれ独立した製造方法であるが、熱硬化性芳香族ポリエステル組成物の粘度上昇を抑制することができ、均一な組成物を得ることができるという共通の効果を有する。
[Method for producing thermosetting aromatic polyester composition]
The method for producing the thermosetting aromatic polyester composition of the present invention (sometimes referred to as “the production method of the present invention”) is “the first production method” or “the second production method”. The first production method and the second production method are independent production methods, but the increase in the viscosity of the thermosetting aromatic polyester composition can be suppressed, and a uniform composition can be obtained. Has a common effect.
 第1の製造方法は、芳香族ポリエステルと架橋性化合物と添加剤とを含有する熱硬化性ポリエステル組成物の製造方法であって、下記芳香族ポリエステル(A)と添加剤とを溶融混合する工程I、及び前記工程Iで得られた混合物に下記架橋性化合物(B)を加えて溶融混合する工程IIを含む。
 芳香族ポリエステル(A):分子鎖末端に水酸基、アシルオキシ基、芳香族環式基、及び共役ジエン構造からなる群より選択された少なくとも1種の基又は構造(特に、水酸基及び/又はアシルオキシ基)を有する芳香族ポリエステル
 架橋性化合物(B):水酸基、アシルオキシ基、芳香族環、又は共役ジエン構造と反応する官能基(特に、水酸基及び/又はアシルオキシ基と反応する官能基)であって、芳香族ポリエステル(A)が有する基又は構造と反応する官能基、並びに熱重合性官能基を分子内に有する架橋性化合物
 なお、上記「水酸基及び/又はアシルオキシ基」とは、「水酸基及びアシルオキシ基のいずれか一方又は両方」を意味し、他についても同様である。
A 1st manufacturing method is a manufacturing method of the thermosetting polyester composition containing an aromatic polyester, a crosslinkable compound, and an additive, Comprising: The process of melt-mixing the following aromatic polyester (A) and an additive I and a step II in which the following crosslinkable compound (B) is added to the mixture obtained in the step I and melt mixed.
Aromatic polyester (A): At least one group or structure selected from the group consisting of a hydroxyl group, an acyloxy group, an aromatic cyclic group, and a conjugated diene structure at the molecular chain terminal (particularly, a hydroxyl group and / or an acyloxy group) Aromatic polyester having a crosslinkable compound (B): a functional group that reacts with a hydroxyl group, an acyloxy group, an aromatic ring, or a conjugated diene structure (particularly a functional group that reacts with a hydroxyl group and / or an acyloxy group), A crosslinkable compound having a functional group that reacts with the group or structure of the aromatic polyester (A) and a thermopolymerizable functional group in the molecule. Note that the above-mentioned “hydroxyl group and / or acyloxy group” means “hydroxyl group and acyloxy group” It means “one or both” and the same applies to the other.
 第2の製造方法は、前記芳香族ポリエステル(A)に下記マレイミド誘導体(B’)を加え、混合する工程を含むことを特徴とする。
 マレイミド誘導体(B’):融点が150℃以下及び/又は前記融点とマレイミド誘導体の発熱開始温度の差が30℃以上であり、分子内に、前記芳香族ポリエステル(A)と反応するマレイミド基と、熱重合性官能基であるマレイミド基とを有するマレイミド誘導体。
 上記の「融点が150℃以下及び/又は前記融点とマレイミド誘導体の発熱開始温度の差が30℃以上」とは、マレイミド誘導体の融点が150℃以下のみであってもよく、マレイミド誘導体の融点と発熱開始温度の差が30℃以上のみであってもよく、融点が150℃以下、且つ融点と発熱開始温度の差が30℃以上であってもよいという意味である。
The second production method includes a step of adding and mixing the following maleimide derivative (B ′) to the aromatic polyester (A).
Maleimide derivative (B ′): a maleimide group having a melting point of 150 ° C. or less and / or a difference in heat generation starting temperature between the melting point and the maleimide derivative of 30 ° C. or more and reacting with the aromatic polyester (A) in the molecule And a maleimide derivative having a maleimide group which is a thermopolymerizable functional group.
The above “the melting point is 150 ° C. or less and / or the difference between the melting point and the exothermic starting temperature of the maleimide derivative is 30 ° C. or more” may be that the melting point of the maleimide derivative is only 150 ° C. or less. This means that the difference in the heat generation start temperature may be only 30 ° C. or more, the melting point may be 150 ° C. or less, and the difference between the melting point and the heat generation start temperature may be 30 ° C. or more.
[芳香族ポリエステル(A)]
 芳香族ポリエステル(A)は、上述のように、分子鎖末端に水酸基、アシルオキシ基、芳香族環式基、及び共役ジエン構造からなる群より選択された少なくとも1種の基又は構造(「反応性官能基(a)」と称する場合がある)を有する芳香族ポリエステルである。なお、芳香族ポリエステル(A)は、ポリエステル構造を有する重合体(ポリマー又はオリゴマー)であって、その溶融体(例えば、450℃以下における溶融体)が光学的異方性を示す液晶ポリエステル(サーモトロピック液晶ポリマー)である場合が多い。
[Aromatic polyester (A)]
As described above, the aromatic polyester (A) has at least one group or structure selected from the group consisting of a hydroxyl group, an acyloxy group, an aromatic cyclic group, and a conjugated diene structure at the molecular chain terminal (“reactivity”). It is an aromatic polyester having a functional group (sometimes referred to as “a”). The aromatic polyester (A) is a polymer (polymer or oligomer) having a polyester structure, and its melt (for example, a melt at 450 ° C. or lower) exhibits a liquid crystal polyester (thermoplastic). Often a tropic liquid crystal polymer).
 芳香族ポリエステル(A)が分子鎖末端に水酸基を有する場合、特に限定されないが、分子鎖の一方の末端(片末端)のみに水酸基を有していてもよいし、分子鎖の両方の末端(両末端)に水酸基を有していてもよい。また、芳香族ポリエステル(A)は、分子鎖末端以外の部分に水酸基を有するものであってもよい。 When the aromatic polyester (A) has a hydroxyl group at the molecular chain end, it is not particularly limited, but it may have a hydroxyl group only at one end (one end) of the molecular chain, or both ends ( It may have a hydroxyl group at both ends. Moreover, the aromatic polyester (A) may have a hydroxyl group in a portion other than the molecular chain end.
 芳香族ポリエステル(A)が分子鎖末端に有する水酸基は、フェノール性水酸基であってもよいし、アルコール性水酸基であってもよい。中でも、硬化物の耐熱性の観点で、芳香族ポリエステル(A)が分子鎖末端に有する水酸基は、フェノール性水酸基であることが好ましい。なお、本明細書における「フェノール性水酸基」には、置換又は無置換ベンゼン環に結合した水酸基に加え、その他の芳香族環(ナフタレン環、アントラセン環など)に結合した水酸基も含まれるものとする。 The hydroxyl group that the aromatic polyester (A) has at the molecular chain end may be a phenolic hydroxyl group or an alcoholic hydroxyl group. Among these, from the viewpoint of the heat resistance of the cured product, the hydroxyl group that the aromatic polyester (A) has at the molecular chain terminal is preferably a phenolic hydroxyl group. The “phenolic hydroxyl group” in the present specification includes a hydroxyl group bonded to other aromatic rings (naphthalene ring, anthracene ring, etc.) in addition to a hydroxyl group bonded to a substituted or unsubstituted benzene ring. .
 芳香族ポリエステル(A)が分子鎖末端にアシルオキシ基を有する場合、特に限定されないが、分子鎖の一方の末端(片末端)のみにアシルオキシ基を有していてもよいし、分子鎖の両方の末端(両末端)にアシルオキシ基を有していてもよい。また、芳香族ポリエステル(A)は、分子鎖末端以外の部分にアシルオキシ基を有するものであってもよい。 When the aromatic polyester (A) has an acyloxy group at the molecular chain end, it is not particularly limited. However, the aromatic polyester (A) may have an acyloxy group only at one end (one end) of the molecular chain, or both of the molecular chains. The terminal (both terminals) may have an acyloxy group. In addition, the aromatic polyester (A) may have an acyloxy group in a portion other than the molecular chain end.
 芳香族ポリエステル(A)が分子鎖末端に有するアシルオキシ基としては、例えば、アセチルオキシ基(アセトキシ基)、プロピオニルオキシ基、ブチリルオキシ基などが挙げられる。中でも、使用する原料の汎用性と反応性の観点で、芳香族ポリエステル(A)が分子鎖末端に有するアシルオキシ基は、アセトキシ基であることが好ましい。 Examples of the acyloxy group that the aromatic polyester (A) has at the molecular chain end include an acetyloxy group (acetoxy group), a propionyloxy group, and a butyryloxy group. Especially, it is preferable that the acyloxy group which the aromatic polyester (A) has in the molecular chain terminal from the viewpoint of the versatility and the reactivity of the raw material to be used is an acetoxy group.
 芳香族ポリエステル(A)が分子鎖末端に芳香族環式基を有する場合、特に限定されないが、分子鎖の一方の末端(片末端)のみに芳香族環式基を有していてもよいし、分子鎖の両方の末端(両末端)に芳香族環式基を有していてもよい。また、芳香族ポリエステル(A)は、分子鎖末端以外の部分に芳香族環式基を有するものであってもよい。なお、芳香族ポリエステル(A)が分子鎖末端に有する芳香族環式基には、環1個あたり1以上の置換基が結合していてもよい。上記置換基としては、公知乃至慣用の置換基が挙げられ、特に限定されないが、例えば、後述の芳香族ヒドロキシカルボン酸が有していてもよい置換基として例示したものなどが挙げられる。 When the aromatic polyester (A) has an aromatic cyclic group at the end of the molecular chain, it is not particularly limited, but it may have an aromatic cyclic group only at one end (one end) of the molecular chain. In addition, an aromatic cyclic group may be present at both ends (both ends) of the molecular chain. In addition, the aromatic polyester (A) may have an aromatic cyclic group at a portion other than the molecular chain end. In addition, the aromatic cyclic group which the aromatic polyester (A) has at the molecular chain end may be bonded with one or more substituents per ring. Examples of the substituent include publicly known or commonly used substituents, and are not particularly limited. Examples thereof include those exemplified as the substituents that the aromatic hydroxycarboxylic acid described later may have.
 芳香族ポリエステル(A)が分子鎖末端にフェノール性水酸基を有する場合、該芳香族ポリエステル(A)は、分子鎖末端に水酸基を有する芳香族ポリエステルでもあるし、分子鎖末端に芳香族環を有する芳香族ポリエステルでもある。 When the aromatic polyester (A) has a phenolic hydroxyl group at the molecular chain end, the aromatic polyester (A) is also an aromatic polyester having a hydroxyl group at the molecular chain end and has an aromatic ring at the molecular chain end. It is also an aromatic polyester.
 芳香族ポリエステル(A)が分子鎖末端に共役ジエン構造を有する場合、特に限定されないが、分子鎖の一方の末端(片末端)のみに共役ジエン構造を有していてもよいし、分子鎖の両方の末端(両末端)に共役ジエン構造を有していてもよい。また、芳香族ポリエステル(A)は、分子鎖末端以外の部分に共役ジエン構造を有するものであってもよい。 When the aromatic polyester (A) has a conjugated diene structure at the end of the molecular chain, it is not particularly limited, but it may have a conjugated diene structure only at one end (one end) of the molecular chain, Both ends (both ends) may have a conjugated diene structure. In addition, the aromatic polyester (A) may have a conjugated diene structure in a portion other than the molecular chain end.
 芳香族ポリエステル(A)が分子鎖末端に有する共役ジエン構造としては、例えば、鎖状共役ジエン構造、環状共役ジエン構造などが挙げられる。上記鎖状共役ジエン構造としては、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエンなどに由来する構造などが挙げられる。上記環状共役ジエン構造としては、例えば、1,3-シクロペンタジエン、1,3-シクロヘキサジエン、フラン及びその誘導体、チオフェン及びその誘導体などに由来する構造などが挙げられる。 Examples of the conjugated diene structure that the aromatic polyester (A) has at the molecular chain end include a chain conjugated diene structure and a cyclic conjugated diene structure. Examples of the chain conjugated diene structure include structures derived from 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, and the like. It is done. Examples of the cyclic conjugated diene structure include structures derived from 1,3-cyclopentadiene, 1,3-cyclohexadiene, furan and derivatives thereof, thiophene and derivatives thereof, and the like.
 芳香族ポリエステル(A)は、分子鎖末端に、水酸基、アシルオキシ基、芳香族環、及び共役ジエン構造からなる群より選択された2種以上を有するものであってもよい。例えば、芳香族ポリエステル(A)は、分子鎖末端に水酸基とアシルオキシ基の両方を有するものであってもよく、具体的には、分子鎖の一方の末端に水酸基を有し、他方の末端にアシルオキシ基を有するものであってもよい。 The aromatic polyester (A) may have two or more selected from the group consisting of a hydroxyl group, an acyloxy group, an aromatic ring, and a conjugated diene structure at the molecular chain end. For example, the aromatic polyester (A) may have both a hydroxyl group and an acyloxy group at the molecular chain end. Specifically, the aromatic polyester (A) has a hydroxyl group at one end of the molecular chain and at the other end. It may have an acyloxy group.
 芳香族ポリエステル(A)における分子鎖末端の末端基全体に対して、水酸基の割合が5~100%、アシルオキシ基の割合が0~90%、水酸基及びアシルオキシ基以外の基の割合が0~90%であることが好ましく、水酸基の割合が10~90%、アシルオキシ基の割合が10~90%、水酸基及びアシルオキシ基以外の基の割合が0~80%であることがより好ましい。 In the aromatic polyester (A), the proportion of hydroxyl groups is 5 to 100%, the proportion of acyloxy groups is 0 to 90%, and the proportion of groups other than hydroxyl groups and acyloxy groups is 0 to 90% with respect to the entire terminal groups at the molecular chain terminals. %, More preferably the proportion of hydroxyl groups is 10 to 90%, the proportion of acyloxy groups is 10 to 90%, and the proportion of groups other than hydroxyl groups and acyloxy groups is more preferably 0 to 80%.
 芳香族ポリエステル(A)としては、芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸、及び芳香族ジオールからなる群より選択された少なくとも1種の芳香族化合物由来の構成単位(繰り返し構成単位)を少なくとも含む芳香族ポリエステルであることが好ましい。 The aromatic polyester (A) includes at least a structural unit (repeating structural unit) derived from at least one aromatic compound selected from the group consisting of an aromatic hydroxycarboxylic acid, an aromatic dicarboxylic acid, and an aromatic diol. An aromatic polyester is preferred.
 上記芳香族ヒドロキシカルボン酸としては、例えば、4-ヒドロキシ安息香酸、3-ヒドロキシ安息香酸、1-ヒドロキシ-2-ナフトエ酸、3-ヒドロキシ-2-ナフトエ酸、6-ヒドロキシ-2-ナフトエ酸、5-ヒドロキシ-1-ナフトエ酸、4'-ヒドロキシ[1,1'-ビフェニル]-4-カルボン酸、及びこれらの誘導体などが挙げられる。上記誘導体としては、例えば、上記芳香族ヒドロキシカルボン酸の芳香環(芳香族環)に、炭素数0~20(好ましくは炭素数0~10)の置換基が置換した化合物等が挙げられる。上記置換基としては、例えば、アルキル基[例えば、メチル基、エチル基など];アルケニル基[例えば、ビニル基、アリル基など];アルキニル基[例えば、エチニル基、プロピニル基など];ハロゲン原子[例えば、塩素原子、臭素原子、ヨウ素原子など];ヒドロキシル基;アルコキシ基[例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロピルオキシ基、ブトキシ基、イソブチルオキシ基等のC1-6アルコキシ基(好ましくはC1-4アルコキシ基)など];アルケニルオキシ基[例えば、アリルオキシ基等のC2-6アルケニルオキシ基(好ましくはC2-4アルケニルオキシ基)など];アリールオキシ基[例えば、フェノキシ基、トリルオキシ基、ナフチルオキシ基等の、芳香環にC1-4アルキル基、C2-4アルケニル基、ハロゲン原子、C1-4アルコキシ基等の置換基を有していてもよいC6-14アリールオキシ基など];アラルキルオキシ基[例えば、ベンジルオキシ基、フェネチルオキシ基等のC7-18アラルキルオキシ基など];アシルオキシ基[例えば、アセチルオキシ基、プロピオニルオキシ基、(メタ)アクリロイルオキシ基、ベンゾイルオキシ基等のC1-12アシルオキシ基など];メルカプト基;アルキルチオ基[例えば、メチルチオ基、エチルチオ基等のC1-6アルキルチオ基(好ましくはC1-4アルキルチオ基)など];アルケニルチオ基[例えば、アリールチオ基等のC2-6アルケニルチオ基(好ましくはC2-4アルケニルチオ基)など];アリールチオ基[例えば、フェニルチオ基、トリルチオ基、ナフチルチオ基等の、芳香環にC1-4アルキル基、C2-4アルケニル基、ハロゲン原子、C1-4アルコキシ基等の置換基を有していてもよいC6-14アリールチオ基など];アラルキルチオ基[例えば、ベンジルチオ基、フェネチルチオ基等のC7-18アラルキルチオ基など];カルボキシル基;アルコキシカルボニル基[例えば、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、ブトキシカルボニル基等のC1-6アルコキシ-カルボニル基など];アリールオキシカルボニル基[例えば、フェノキシカルボニル基、トリルオキシカルボニル基、ナフチルオキシカルボニル基等のC6-14アリールオキシ-カルボニル基など];アラルキルオキシカルボニル基[例えば、ベンジルオキシカルボニル基などのC7-18アラルキルオキシ-カルボニル基など];アミノ基;モノ又はジアルキルアミノ基[例えば、メチルアミノ基、エチルアミノ基、ジメチルアミノ基、ジエチルアミノ基等のモノ又はジ-C1-6アルキルアミノ基など];モノ又はジフェニルアミノ基[例えば、フェニルアミノ基など];アシルアミノ基[例えば、アセチルアミノ基、プロピオニルアミノ基、ベンゾイルアミノ基等のC1-11アシルアミノ基など];エポキシ基含有基[例えば、グリシジル基、グリシジルオキシ基、3,4-エポキシシクロヘキシル基など];オキセタニル基含有基[例えば、エチルオキセタニルオキシ基など];アシル基[例えば、アセチル基、プロピオニル基、ベンゾイル基など];オキソ基;イソシアネート基;これらの2以上が必要に応じてC1-6アルキレン基を介して結合した基などが挙げられる。なお、芳香族ポリエステル(A)は、芳香族ヒドロキシカルボン酸由来の構成単位の1種を有するものであってもよいし、2種以上を有するものであってもよい。 Examples of the aromatic hydroxycarboxylic acid include 4-hydroxybenzoic acid, 3-hydroxybenzoic acid, 1-hydroxy-2-naphthoic acid, 3-hydroxy-2-naphthoic acid, 6-hydroxy-2-naphthoic acid, Examples thereof include 5-hydroxy-1-naphthoic acid, 4′-hydroxy [1,1′-biphenyl] -4-carboxylic acid, and derivatives thereof. Examples of the derivative include compounds in which the aromatic ring (aromatic ring) of the aromatic hydroxycarboxylic acid is substituted with a substituent having 0 to 20 carbon atoms (preferably 0 to 10 carbon atoms). Examples of the substituent include an alkyl group [eg, methyl group, ethyl group, etc.]; alkenyl group [eg, vinyl group, allyl group, etc.]; alkynyl group [eg, ethynyl group, propynyl group, etc.]; halogen atom [ For example, chlorine atom, bromine atom, iodine atom, etc.]; hydroxyl group; alkoxy group [eg, C 1-6 alkoxy group such as methoxy group, ethoxy group, propoxy group, isopropyloxy group, butoxy group, isobutyloxy group (preferably Is a C 1-4 alkoxy group, etc.]; an alkenyloxy group [for example, a C 2-6 alkenyloxy group such as an allyloxy group (preferably a C 2-4 alkenyloxy group), etc.]; an aryloxy group [eg, a phenoxy group , tolyloxy group, such as a naphthyloxy group, C 1-4 alkyl groups on the aromatic ring, C 2-4 alkenyl group, a halogen Child, such as good C 6-14 aryloxy group which may have a substituent such as C 1-4 alkoxy group]; aralkyloxy group [for example, benzyloxy group, C 7-18 aralkyloxycarbonyl such as phenethyloxy Group]; acyloxy group [eg, C 1-12 acyloxy group such as acetyloxy group, propionyloxy group, (meth) acryloyloxy group, benzoyloxy group, etc.]; mercapto group; alkylthio group [eg, methylthio group, ethylthio] A C 1-6 alkylthio group such as a group (preferably a C 1-4 alkylthio group)]; an alkenylthio group [eg, a C 2-6 alkenylthio group such as an arylthio group (preferably a C 2-4 alkenylthio group) etc.]; arylthio group [e.g., phenylthio group, tolylthio group, such as a naphthylthio group, C 1-4 alkyl groups on the aromatic ring, C 2-4 alkenyl Group, a halogen atom, C 1-4, etc. Good C 6-14 arylthio group which may have a substituent such as an alkoxy group]; aralkylthio group [for example, benzylthio group, C 7-18 such phenethylthio group Aralkylthio group etc.]; carboxyl group; alkoxycarbonyl group [eg C 1-6 alkoxy-carbonyl group such as methoxycarbonyl group, ethoxycarbonyl group, propoxycarbonyl group, butoxycarbonyl group, etc.]; aryloxycarbonyl group [eg, C 6-14 aryloxy-carbonyl group such as phenoxycarbonyl group, tolyloxycarbonyl group, naphthyloxycarbonyl group, etc.]; Aralkyloxycarbonyl group [for example, C 7-18 aralkyloxy-carbonyl group such as benzyloxycarbonyl group, etc. ]; Amino group; mono- or dialkylamino [For example, methylamino group, ethylamino group, dimethylamino group, such as mono- or di -C 1-6 alkylamino group such as a diethylamino group]; mono- or diphenylamino group [such as phenylamino group]; an acylamino group [ For example, C 1-11 acylamino group such as acetylamino group, propionylamino group, benzoylamino group, etc.]; Epoxy group-containing group [eg, glycidyl group, glycidyloxy group, 3,4-epoxycyclohexyl group, etc.]; Oxetanyl group containing group [e.g., ethyloxetanyl group]; an acyl group [e.g., an acetyl group, a propionyl group, a benzoyl group]; these two or more optionally C 1-6 alkylene group; oxo group; isocyanate group And a group bonded via each other. In addition, aromatic polyester (A) may have 1 type of the structural unit derived from aromatic hydroxycarboxylic acid, and may have 2 or more types.
 上記芳香族ジカルボン酸としては、例えば、フタル酸、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、[1,1'-ビフェニル]-4,4'-ジカルボン酸、4,4'-オキシビス(安息香酸)、4,4'-チオビス(安息香酸)、4-[2-(4-カルボキシフェノキシ)エトキシ]安息香酸、及びこれらの誘導体などが挙げられる。上記誘導体としては、例えば、上記芳香族ジカルボン酸の芳香環に、炭素数0~20(好ましくは炭素数0~10)の置換基が置換した化合物などが挙げられる。上記置換基としては、芳香族ヒドロキシカルボン酸における置換基と同様のものが例示される。なお、芳香族ポリエステル(A)は、芳香族ジカルボン酸由来の構成単位の1種を有するものであってもよいし、2種以上を有するものであってもよい。 Examples of the aromatic dicarboxylic acid include phthalic acid, terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, [1,1′-biphenyl] -4,4′-dicarboxylic acid. And acid, 4,4′-oxybis (benzoic acid), 4,4′-thiobis (benzoic acid), 4- [2- (4-carboxyphenoxy) ethoxy] benzoic acid, and derivatives thereof. Examples of the derivatives include compounds in which the aromatic ring of the aromatic dicarboxylic acid is substituted with a substituent having 0 to 20 carbon atoms (preferably 0 to 10 carbon atoms). As said substituent, the thing similar to the substituent in aromatic hydroxycarboxylic acid is illustrated. In addition, aromatic polyester (A) may have 1 type of the structural unit derived from aromatic dicarboxylic acid, and may have 2 or more types.
 上記芳香族ジオールとしては、例えば、4,4'-ジヒドロキシビフェニル、ヒドロキノン、レゾルシノール、2,6-ナフタレンジオール、1,5-ナフタレンジオール、[1,1'-ビフェニル]-4,4'-ジオール、4,4'-ジヒドロキシジフェニルエーテル、ビス(4-ヒドロキシフェニル)メタノン、ビスフェノールA、ビスフェノールF、ビスフェノールS、(フェニルスルホニル)ベンゼン、[1,1'-ビフェニル]-2,5-ジオール、及びこれらの誘導体などが挙げられる。上記誘導体としては、例えば、上記芳香族ジオールの芳香環に、炭素数0~20(好ましくは炭素数0~10)の置換基が置換した化合物などが挙げられる。上記置換基としては、芳香族ヒドロキシカルボン酸における置換基と同様のものが例示される。なお、芳香族ポリエステル(A)は、芳香族ジオール由来の構成単位の1種を有するものであってもよいし、2種以上を有するものであってもよい。 Examples of the aromatic diol include 4,4′-dihydroxybiphenyl, hydroquinone, resorcinol, 2,6-naphthalenediol, 1,5-naphthalenediol, [1,1′-biphenyl] -4,4′-diol. 4,4′-dihydroxydiphenyl ether, bis (4-hydroxyphenyl) methanone, bisphenol A, bisphenol F, bisphenol S, (phenylsulfonyl) benzene, [1,1′-biphenyl] -2,5-diol, and these And derivatives thereof. Examples of the derivative include compounds in which the aromatic ring of the aromatic diol is substituted with a substituent having 0 to 20 carbon atoms (preferably 0 to 10 carbon atoms). As said substituent, the thing similar to the substituent in aromatic hydroxycarboxylic acid is illustrated. In addition, aromatic polyester (A) may have 1 type of the structural unit derived from aromatic diol, and may have 2 or more types.
 芳香族ポリエステル(A)が、芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸、及び芳香族ジオールからなる群より選択された少なくとも1種の芳香族化合物由来の構成単位Uを含む芳香族ポリエステルであって、前記構成単位Uの、芳香族ポリエステル(A)を構成する全構成単位に対する割合(前記構成単位が2種以上の場合は、それらの総量の割合)は、60~100重量%が好ましく、80~100重量%がより好ましく、90~100重量%がさらに好ましい。特に、芳香族ポリエステル(A)が実質的に上述の芳香族化合物(芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸、芳香族ジオール)由来の構成単位のみからなることが好ましい。割合が上記範囲であると、導入される他の単量体由来の構成単位により、芳香族ポリエステル(A)が溶融状態で液晶性を発現しにくくなることがなく、硬化物の耐熱性や耐湿性(耐加水分解性)の低下が起きにくい。 The aromatic polyester (A) is an aromatic polyester containing a structural unit U derived from at least one aromatic compound selected from the group consisting of an aromatic hydroxycarboxylic acid, an aromatic dicarboxylic acid, and an aromatic diol, The ratio of the structural unit U to the total structural units constituting the aromatic polyester (A) (when the structural unit is two or more, the ratio of the total amount thereof) is preferably 60 to 100% by weight, Is more preferably from 100 to 100% by weight, still more preferably from 90 to 100% by weight. In particular, it is preferable that the aromatic polyester (A) is substantially composed only of structural units derived from the above-mentioned aromatic compounds (aromatic hydroxycarboxylic acid, aromatic dicarboxylic acid, aromatic diol). When the ratio is in the above range, the aromatic polyester (A) does not easily exhibit liquid crystallinity in the molten state due to the structural units derived from other monomers to be introduced, and the heat resistance and moisture resistance of the cured product The resistance (hydrolysis resistance) is not easily lowered.
 芳香族ポリエステル(A)は、上述の構成単位(芳香族ヒドロキシカルボン酸由来の構成単位、芳香族ジカルボン酸由来の構成単位、芳香族ジオール由来の構成単位)以外の構成単位(「その他の構成単位」と称する場合がある)を有していてもよく、上記その他の構成単位としては、例えば、芳香族ジアミン由来の構成単位、フェノール性水酸基を有する芳香族アミン又は芳香族アミド由来の構成単位などが挙げられる。 The aromatic polyester (A) is composed of structural units other than the structural units described above (structural units derived from aromatic hydroxycarboxylic acids, structural units derived from aromatic dicarboxylic acids, structural units derived from aromatic diols) ("other structural units"). The other structural unit may be, for example, a structural unit derived from an aromatic diamine, a structural unit derived from an aromatic amine or aromatic amide having a phenolic hydroxyl group, and the like. Is mentioned.
 上記芳香族ジアミンとしては、例えば、1,4-ベンゼンジアミン、1,3-ベンゼンジアミン、4-メチル-1,3-ベンゼンジアミン、4-(4-アミノベンジル)フェニルアミン、4-(4-アミノフェノキシ)フェニルアミン、3-(4-アミノフェノキシ)フェニルアミン、4'-アミノ-3,3'-ジメチル[1,1'-ビフェニル]-4-イルアミン、4'-アミノ-3,3'-ビス(トリフルオロメチル)[1,1'-ビフェニル]-4-イルアミン、4-アミノ-N-(4-アミノフェニル)ベンズアミド、4-[(4-アミノフェニル)スルホニル]フェニルアミン、ビス(4-アミノフェニル)メタノン、及びこれらの誘導体などが挙げられる。上記誘導体としては、例えば、上記芳香族ジアミンの芳香環に、炭素数0~20(好ましくは炭素数0~10)の置換基が置換した化合物などが挙げられる。上記置換基としては、芳香族ヒドロキシカルボン酸における置換基と同様のものが例示される。なお、芳香族ポリエステル(A)は、芳香族ジアミン由来の構成単位の1種を有するものであってもよいし、2種以上を有するものであってもよい。 Examples of the aromatic diamine include 1,4-benzenediamine, 1,3-benzenediamine, 4-methyl-1,3-benzenediamine, 4- (4-aminobenzyl) phenylamine, 4- (4- Aminophenoxy) phenylamine, 3- (4-aminophenoxy) phenylamine, 4′-amino-3,3′-dimethyl [1,1′-biphenyl] -4-ylamine, 4′-amino-3,3 ′ -Bis (trifluoromethyl) [1,1'-biphenyl] -4-ylamine, 4-amino-N- (4-aminophenyl) benzamide, 4-[(4-aminophenyl) sulfonyl] phenylamine, bis ( 4-aminophenyl) methanone, and derivatives thereof. Examples of the derivative include compounds in which the aromatic ring of the aromatic diamine is substituted with a substituent having 0 to 20 carbon atoms (preferably 0 to 10 carbon atoms). As said substituent, the thing similar to the substituent in aromatic hydroxycarboxylic acid is illustrated. In addition, aromatic polyester (A) may have 1 type of the structural unit derived from aromatic diamine, and may have 2 or more types.
 上記フェノール性水酸基を有する芳香族アミン又は芳香族アミドとしては、例えば、4-アミノフェノール、4-アセトアミドフェノール、3-アミノフェノール、3-アセトアミドフェノール、6-アミノ-2-ナフトール、5-アミノ-1-ナフトール、4'-ヒドロキシ-[1,1'-ビフェニル]-4-アミン、4-アミノ-4'-ヒドロキシジフェニルメタン、及びこれらの誘導体などが挙げられる。上記誘導体としては、例えば、上記フェノール性水酸基を有する芳香族アミンの芳香環に、炭素数0~20(好ましくは炭素数0~10)の置換基が置換した化合物などが挙げられる。上記置換基としては、芳香族ヒドロキシカルボン酸における置換基と同様のものが例示される。なお、芳香族ポリエステル(A)は、フェノール性水酸基を有する芳香族アミン又は芳香族アミド由来の構成単位の1種を有するものであってもよいし、2種以上を有するものであってもよい。 Examples of the aromatic amine or aromatic amide having a phenolic hydroxyl group include 4-aminophenol, 4-acetamidophenol, 3-aminophenol, 3-acetamidophenol, 6-amino-2-naphthol, 5-amino- Examples thereof include 1-naphthol, 4′-hydroxy- [1,1′-biphenyl] -4-amine, 4-amino-4′-hydroxydiphenylmethane, and derivatives thereof. Examples of the derivatives include compounds in which an aromatic ring of the aromatic amine having a phenolic hydroxyl group is substituted with a substituent having 0 to 20 carbon atoms (preferably 0 to 10 carbon atoms). As said substituent, the thing similar to the substituent in aromatic hydroxycarboxylic acid is illustrated. In addition, aromatic polyester (A) may have 1 type of the structural unit derived from the aromatic amine or aromatic amide which has a phenolic hydroxyl group, and may have 2 or more types. .
 上述の芳香族化合物(芳香族ジアミン、フェノール性水酸基を有する芳香族アミン又は芳香族アミド)の、芳香族ポリエステル(A)を構成する全構成単位に対する割合(前記構成単位が2種以上の場合は、それらの総量の割合)は、特に限定されないが、30重量%以下(例えば、0~30重量%)が好ましく、10重量%以下がより好ましく、5重量%以下がさらに好ましい。上記割合が30重量%以下であると、硬化物の耐吸湿性(耐加水分解性)が低下しにくい。 Ratio of the above-mentioned aromatic compound (aromatic diamine, aromatic amine or aromatic amide having a phenolic hydroxyl group) to all structural units constituting the aromatic polyester (A) (when the number of the structural units is two or more) The ratio of the total amount thereof is not particularly limited, but is preferably 30% by weight or less (eg, 0 to 30% by weight), more preferably 10% by weight or less, and further preferably 5% by weight or less. When the ratio is 30% by weight or less, the hygroscopic resistance (hydrolysis resistance) of the cured product is difficult to decrease.
 芳香族ポリエステル(A)は、上述の芳香族化合物(単量体)を公知乃至慣用の方法により重合することにより製造でき、その製造方法は特に限定されない。具体的には、例えば、上述の芳香族ヒドロキシカルボン酸、芳香族ジオール、フェノール性水酸基を有する芳香族アミン、芳香族ジアミン等のヒドロキシル基やアミノ基を有する芳香族化合物を過剰量の脂肪酸無水物によりアシル化し、得られたアシル化物と、芳香族ヒドロキシカルボン酸や芳香族ジカルボン酸などのカルボキシル基を有する芳香族化合物とを反応(エステル交換反応、アミド交換反応)させることにより製造できる。より具体的には、例えば、特開2007-119610号公報に記載の方法などにより製造できる。また、芳香族ポリエステル(A)としては、市販品を使用することもできる。 The aromatic polyester (A) can be produced by polymerizing the above-mentioned aromatic compound (monomer) by a known or conventional method, and the production method is not particularly limited. Specifically, for example, the above-mentioned aromatic hydroxycarboxylic acid, aromatic diol, aromatic amine having a phenolic hydroxyl group, an aromatic compound having a hydroxyl group or an amino group, such as an aromatic diamine, an excess amount of fatty acid anhydride It can be produced by reacting the acylated product obtained by the reaction with an aromatic compound having a carboxyl group such as aromatic hydroxycarboxylic acid or aromatic dicarboxylic acid (transesterification reaction, amide exchange reaction). More specifically, for example, it can be produced by the method described in JP-A-2007-119610. Moreover, as aromatic polyester (A), a commercial item can also be used.
 分子鎖末端に水酸基を有する芳香族ポリエステル(A)を生成させる方法としては、例えば、水酸基が過剰となるように単量体組成を制御する方法(例えば、単量体成分として芳香族ジオールを過剰に使用する方法など)などが挙げられる。具体的には、芳香族ポリエステル(A)を製造する際に使用する芳香族ポリエステル(A)を構成する単量体における、水酸基と該水酸基と縮合反応する官能基(カルボキシル基、カルボキシル基より誘導される基(エステル基、酸無水物基、酸ハロゲン化物基など)、アミノ基など)との割合は、特に限定されないが、水酸基と縮合反応する官能基1モルに対して水酸基は1.02モル以上(例えば、1.02~100モル)が好ましく、1.05モル以上がより好ましく、1.10モル以上がさらに好ましい。水酸基が1.02モル以上であると、分子量が高くなりすぎず、熱硬化反応に要する時間を抑えることができる。より具体的には、芳香族ポリエステル(A)を構成する単量体の全量(100モル%)に対する芳香族ジオールの割合は、特に限定されないが、3~25モル%が好ましく、4~25モル%がより好ましい。 As a method for producing an aromatic polyester (A) having a hydroxyl group at the molecular chain end, for example, a method of controlling the monomer composition so that the hydroxyl group becomes excessive (for example, excess aromatic diol as a monomer component) Etc.) and the like. Specifically, in the monomer constituting the aromatic polyester (A) used for producing the aromatic polyester (A), a hydroxyl group and a functional group that undergoes a condensation reaction with the hydroxyl group (derived from a carboxyl group or a carboxyl group). The ratio of the group to be formed (ester group, acid anhydride group, acid halide group, etc.), amino group, etc.) is not particularly limited. Mol or more (for example, 1.02 to 100 mol) is preferable, 1.05 mol or more is more preferable, and 1.10 mol or more is more preferable. When the hydroxyl group is 1.02 mol or more, the molecular weight does not become too high, and the time required for the thermosetting reaction can be suppressed. More specifically, the ratio of the aromatic diol to the total amount (100 mol%) of the monomer constituting the aromatic polyester (A) is not particularly limited, but is preferably 3 to 25 mol%, and preferably 4 to 25 mol. % Is more preferable.
 また、分子鎖末端にアシルオキシ基を有する芳香族ポリエステル(A)を生成させる方法としては、例えば、分子鎖末端に水酸基を有する芳香族ポリエステル(A)の当該水酸基を公知乃至慣用のアシル化剤(例えば、無水酢酸等の脂肪酸無水物、酸ハロゲン化物など)を用いてアシル化する方法などが挙げられる。 Moreover, as a method for producing an aromatic polyester (A) having an acyloxy group at the molecular chain terminal, for example, the hydroxyl group of the aromatic polyester (A) having a hydroxyl group at the molecular chain terminal is converted to a known or conventional acylating agent ( For example, a method of acylating using a fatty acid anhydride such as acetic anhydride, an acid halide, or the like.
 分子鎖末端に芳香族環式基を有する芳香族ポリエステル(A)を生成させる方法としては、例えば、単量体として実質的に芳香族化合物(例えば、上述の芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸、芳香族ジオールなど)のみを使用する方法や、ヒドロキシル基やカルボキシル基などの反応性官能基を分子鎖末端に有する芳香族ポリエステルの末端の当該反応性官能基に対して、芳香族化合物を反応(例えば、付加反応)させて分子鎖末端に芳香族環を形成する方法などが挙げられる。 As a method for producing an aromatic polyester (A) having an aromatic cyclic group at the molecular chain end, for example, a substantially aromatic compound (for example, the above-mentioned aromatic hydroxycarboxylic acid or aromatic dicarboxylic acid as a monomer) can be used. Acid, aromatic diol, etc.) and aromatic compounds with respect to the reactive functional group at the end of the aromatic polyester having a reactive functional group such as hydroxyl group or carboxyl group at the molecular chain end. Examples thereof include a method of forming an aromatic ring at the molecular chain terminal by reaction (for example, addition reaction).
 分子鎖末端に共役ジエン構造を有する芳香族ポリエステル(A)を生成させる方法としては、例えば、ヒドロキシル基やカルボキシル基などの反応性官能基を末端に有する芳香族ポリエステルの当該反応性官能基に対して、共役ジエン構造を有し、かつ上記反応性官能基に反応させることが可能な化合物(例えば、(1-メチル-2,4-シクロペンタジエン-1-イル)メタノールなど)を反応させる方法などが挙げられる。 As a method for producing an aromatic polyester (A) having a conjugated diene structure at the molecular chain terminal, for example, for the reactive functional group of the aromatic polyester having a reactive functional group such as a hydroxyl group or a carboxyl group at the terminal And a method of reacting a compound having a conjugated diene structure and capable of reacting with the reactive functional group (for example, (1-methyl-2,4-cyclopentadien-1-yl) methanol). Is mentioned.
 芳香族ポリエステル(A)の平均重合度は、特に限定されないが、3~30が好ましく、4~25がより好ましく、5~20がさらに好ましい。平均重合度が上記範囲であると、硬化反応性が低下しにくく、硬化時の反応温度が高くなり過ぎない。なお、芳香族ポリエステル(A)の平均重合度は、例えば、特開平5-271394号公報に記載のアミン分解HPLC法により求めることができる。 The average degree of polymerization of the aromatic polyester (A) is not particularly limited, but is preferably 3 to 30, more preferably 4 to 25, and still more preferably 5 to 20. When the average degree of polymerization is within the above range, the curing reactivity is unlikely to decrease, and the reaction temperature at the time of curing does not become too high. The average degree of polymerization of the aromatic polyester (A) can be determined, for example, by the amine decomposition HPLC method described in JP-A No. 5-271394.
 芳香族ポリエステル(A)の分子量は、特に制限されないが、300~20000であることが好ましく、400~15000がより好ましく、500~15000がさらに好ましい。分子量が、上記範囲であると、芳香族ポリエステルの融点が高くなりすぎず、熱硬化剤との混合時に、架橋反応が起こりにくい温度領域で混合できる。なお、芳香族ポリエステル(A)の分子量は、例えば、GPC測定により求めることができる。 The molecular weight of the aromatic polyester (A) is not particularly limited, but is preferably 300 to 20000, more preferably 400 to 15000, and still more preferably 500 to 15000. When the molecular weight is within the above range, the melting point of the aromatic polyester does not become too high, and the mixing can be performed in a temperature range where a crosslinking reaction hardly occurs when mixing with the thermosetting agent. In addition, the molecular weight of aromatic polyester (A) can be calculated | required by GPC measurement, for example.
 芳香族ポリエステル(A)のガラス転移温度(Tg)は、特に限定されないが、30~150℃が好ましく、40~120℃がより好ましく、50~100℃がさらに好ましい。ガラス転移温度が上記範囲であると、硬化物の耐熱性に劣りにくく、芳香族ポリエステル(A)と架橋性化合物(B)の溶融混合を比較的低温(200℃以下)で実施することができ、溶融混合時に架橋性化合物(B)の熱重合性官能基の重合反応が起こりにくい。なお、芳香族ポリエステル(A)のガラス転移温度は、例えば、DSC、TGA等の熱分析や動的粘弾性測定により測定できる。 The glass transition temperature (Tg) of the aromatic polyester (A) is not particularly limited, but is preferably 30 to 150 ° C, more preferably 40 to 120 ° C, and further preferably 50 to 100 ° C. When the glass transition temperature is in the above range, the cured product is hardly inferior in heat resistance, and the aromatic polyester (A) and the crosslinkable compound (B) can be melt-mixed at a relatively low temperature (200 ° C. or lower). The polymerization reaction of the thermally polymerizable functional group of the crosslinkable compound (B) hardly occurs during melt mixing. In addition, the glass transition temperature of aromatic polyester (A) can be measured by thermal analysis and dynamic viscoelasticity measurement, such as DSC and TGA.
 芳香族ポリエステル(A)の融点(Tm)は、特に限定されないが、250℃以下(例えば、80~250℃)が好ましく、220℃以下がより好ましく、200℃以下がさらに好ましく、180℃以下が特に好ましい。融点が250℃以下であると、芳香族ポリエステル(A)と架橋性化合物(B)の溶融混合を比較的低温(200℃以下)で実施することができ、熱重合反応による急激な粘度上昇を起こしにくい。なお、芳香族ポリエステル(A)の融点は、例えば、DSC、TGA等の熱分析や動的粘弾性測定により測定できる。 The melting point (Tm) of the aromatic polyester (A) is not particularly limited, but is preferably 250 ° C. or lower (eg, 80 to 250 ° C.), more preferably 220 ° C. or lower, further preferably 200 ° C. or lower, and 180 ° C. or lower. Particularly preferred. When the melting point is 250 ° C. or lower, the aromatic polyester (A) and the crosslinkable compound (B) can be melt-mixed at a relatively low temperature (200 ° C. or lower), and the viscosity increases rapidly due to the thermal polymerization reaction. Hard to wake up. In addition, melting | fusing point of aromatic polyester (A) can be measured by thermal analysis and dynamic viscoelasticity measurement, such as DSC and TGA, for example.
[架橋性化合物(B)]
 架橋性化合物(B)は、熱硬化剤として働き、上述のように、分子内(一分子中)に、芳香族ポリエステル(A)が分子鎖末端に有する反応性官能基(a)(水酸基、アシルオキシ基、芳香族環式基、及び共役ジエン構造からなる群より選択された少なくとも1種)と反応する官能基(「反応性官能基(b)」と称する場合がある)と、熱重合性官能基(熱硬化性官能基)とを少なくとも有する化合物である。
[Crosslinking Compound (B)]
The crosslinkable compound (B) functions as a thermosetting agent, and as described above, the reactive functional group (a) (hydroxyl group, hydroxyl group, aromatic molecule (A) at the molecular chain terminal in the molecule (in one molecule). A functional group (sometimes referred to as “reactive functional group (b)”) that reacts with an acyloxy group, an aromatic cyclic group, and at least one selected from the group consisting of conjugated diene structures; It is a compound having at least a functional group (thermosetting functional group).
 上記反応性官能基(b)としては、芳香族ポリエステル(A)の反応性官能基(a)と反応し得る官能基であればよく、特に限定されないが、上記反応が進行する温度の観点で、例えば、α,β-不飽和カルボニル基(例えば、カルボニル炭素のα位とβ位の間に炭素-炭素不飽和結合を有するケトン基、カルボニル炭素のα位とβ位の間に炭素-炭素不飽和結合を有するエステル基、カルボニル炭素のα位とβ位の間に炭素-炭素不飽和結合を有するアミド基、カルボニル炭素のα位とβ位の間に炭素-炭素不飽和結合を有するイミド基など);エポキシ基;マレイミド基;エステル基;酸無水物基(例えば、マレイン酸無水物基など);カルボキシル基などが挙げられる。なお、架橋性化合物(B)は、上記反応性官能基(b)の1種を有するものであってもよいし、2種以上を有するものであってもよい。 The reactive functional group (b) is not particularly limited as long as it is a functional group capable of reacting with the reactive functional group (a) of the aromatic polyester (A), but from the viewpoint of the temperature at which the reaction proceeds. An α, β-unsaturated carbonyl group (eg, a ketone group having a carbon-carbon unsaturated bond between the α-position and the β-position of the carbonyl carbon, a carbon-carbon between the α-position and the β-position of the carbonyl carbon, An ester group having an unsaturated bond, an amide group having a carbon-carbon unsaturated bond between the α-position and the β-position of the carbonyl carbon, and an imide having a carbon-carbon unsaturated bond between the α-position and the β-position of the carbonyl carbon Group); epoxy group; maleimide group; ester group; acid anhydride group (for example, maleic anhydride group); carboxyl group and the like. In addition, a crosslinkable compound (B) may have 1 type of the said reactive functional group (b), and may have 2 or more types.
 なお、上記で例示した反応性官能基(b)のうち、α,β-不飽和カルボニル基、エポキシ基、マレイミド基、エステル基、酸無水物基、カルボキシル基は、水酸基と反応する反応性官能基(対水酸基反応性官能基)である。また、上記で例示した反応性官能基(b)のうち、カルボキシル基は、アシルオキシ基と反応する反応性官能基(対アシルオキシ基反応性官能基)である。さらに、上記で例示した反応性官能基(b)のうち、マレイミド基、酸無水物基(特に、マレイン酸無水物基)は、芳香族環と反応(例えば、環化付加反応)する反応性官能基、及び/又は、共役ジエン構造と反応(例えば、環化付加反応)する反応性官能基である。 Of the reactive functional groups (b) exemplified above, α, β-unsaturated carbonyl group, epoxy group, maleimide group, ester group, acid anhydride group, and carboxyl group are reactive functional groups that react with hydroxyl groups. Group (functional group reactive with hydroxyl group). Moreover, among the reactive functional groups (b) exemplified above, the carboxyl group is a reactive functional group that reacts with an acyloxy group (against an acyloxy group reactive functional group). Furthermore, among the reactive functional groups (b) exemplified above, maleimide groups and acid anhydride groups (particularly maleic anhydride groups) are reactive to react with an aromatic ring (for example, cycloaddition reaction). It is a reactive functional group that reacts with a functional group and / or a conjugated diene structure (for example, cycloaddition reaction).
 架橋性化合物(B)における反応性官能基(b)の数は、1個以上であればよく、特に限定されないが、1~10個が好ましく、1~5個がより好ましい。 The number of reactive functional groups (b) in the crosslinkable compound (B) may be one or more, and is not particularly limited, but is preferably 1 to 10, more preferably 1 to 5.
 上記熱重合性官能基としては、加熱により重合し得る官能基であればよく、特に限定されないが、重合反応が進行する温度の観点で、例えば、マレイミド基、ナジイミド基、フタルイミド基、シアネート基、ニトリル基、フタロニトリル基、スチリル基、エチニル基、プロパルギルエーテル基、ベンゾシクロブテン基、ビフェニレン基、及びこれらの置換体又は誘導体などが挙げられる。なお、上記置換体又は誘導体としては、上記熱重合性官能基に置換基(例えば、上述の芳香族ヒドロキシカルボン酸における置換基等)が結合した熱重合性官能基などが挙げられる。中でも、構造の一部又は全部が上記反応性官能基(b)としても機能する点で、マレイミド基が好ましい。なお、架橋性化合物(B)は、上記熱重合性官能基の1種を有するものであってもよいし、2種以上を有するものであってもよい。 The thermopolymerizable functional group is not particularly limited as long as it is a functional group that can be polymerized by heating, but in terms of the temperature at which the polymerization reaction proceeds, for example, a maleimide group, a nadiimide group, a phthalimide group, a cyanate group, Examples thereof include a nitrile group, a phthalonitrile group, a styryl group, an ethynyl group, a propargyl ether group, a benzocyclobutene group, a biphenylene group, and substituted or derivative thereof. In addition, as said substituted body or derivative | guide_body, the thermopolymerizable functional group etc. which the substituent (For example, the substituent in the above-mentioned aromatic hydroxycarboxylic acid etc.) couple | bonded with the said thermopolymerizable functional group are mentioned. Among them, a maleimide group is preferable in that part or all of the structure functions also as the reactive functional group (b). In addition, the crosslinkable compound (B) may have one of the above thermopolymerizable functional groups, or may have two or more.
 架橋性化合物(B)における熱重合性官能基の数は、1個以上であればよく、特に限定されないが、1~10個が好ましく、1~5個がより好ましい。 The number of thermally polymerizable functional groups in the crosslinkable compound (B) may be one or more, and is not particularly limited, but is preferably 1 to 10, more preferably 1 to 5.
 なお、架橋性化合物(B)は、反応性官能基(b)を1個以上と熱重合性官能基を1個以上有する必要がある。例えば、架橋性化合物(B)が反応性官能基(b)としても熱重合性官能基としても機能するマレイミド基を有する場合には、マレイミド基を2個以上有する必要がある。当該マレイミド基におけるα炭素-β炭素二重結合は、芳香族ポリエステル(A)の水酸基、芳香族環式基、又は共役ジエン構造と反応することにより消失し、もはや熱重合性官能基としては機能できなくなるためである。 The crosslinkable compound (B) needs to have at least one reactive functional group (b) and at least one thermopolymerizable functional group. For example, when the crosslinkable compound (B) has a maleimide group that functions as both a reactive functional group (b) and a thermopolymerizable functional group, it is necessary to have two or more maleimide groups. The α carbon-β carbon double bond in the maleimide group disappears by reacting with the hydroxyl group, aromatic cyclic group, or conjugated diene structure of the aromatic polyester (A), and no longer functions as a thermopolymerizable functional group. It is because it becomes impossible.
 架橋性化合物(B)としては、例えば、分子内に1以上の反応性官能基(b)と1以上の熱重合性官能基とを有し、かつ炭素数が100以下(好ましくは10~50)の化合物が挙げられる。このような架橋性化合物(B)としては、例えば、炭化水素基、複素環式基、又はこれらの2以上が連結基(1以上の原子を有する2価の基)の1以上を介して結合した基により形成された化合物等が挙げられる。上記炭化水素基、複素環式基、これらの2以上が連結基の1以上を介して結合した基としては、例えば、下記式(i)中のX1、X2として例示した基(有機基)などが挙げられる。 Examples of the crosslinkable compound (B) include one or more reactive functional groups (b) and one or more thermopolymerizable functional groups in the molecule, and a carbon number of 100 or less (preferably 10 to 50). ). Examples of such a crosslinkable compound (B) include a hydrocarbon group, a heterocyclic group, or two or more of these bonded via one or more of a linking group (a divalent group having one or more atoms). And compounds formed by the above groups. Examples of the hydrocarbon group, the heterocyclic group, and a group in which two or more of these are bonded via one or more of the linking groups include, for example, groups exemplified as X 1 and X 2 in the following formula (i) (organic groups) ) And the like.
 具体的には、架橋性化合物(B)としては、下記式(i)で表される化合物(α,β-不飽和カルボニル基(不飽和基が二重結合の場合)及び熱重合性官能基を有する化合物)が挙げられる。
Figure JPOXMLDOC01-appb-C000005
Specifically, the crosslinkable compound (B) includes a compound represented by the following formula (i) (α, β-unsaturated carbonyl group (when the unsaturated group is a double bond)) and a thermally polymerizable functional group. Compound).
Figure JPOXMLDOC01-appb-C000005
 上記式(i)中のX1、X2は、同一又は異なって有機基を示す。上記有機基としては、特に限定されないが、置換又は無置換の炭化水素基、置換又は無置換の複素環式基、これらの基の2以上が1以上の連結基を介して結合した基などが挙げられる。 X 1 and X 2 in the above formula (i) are the same or different and represent an organic group. The organic group is not particularly limited, but includes a substituted or unsubstituted hydrocarbon group, a substituted or unsubstituted heterocyclic group, a group in which two or more of these groups are bonded via one or more linking groups, and the like. Can be mentioned.
 上記炭化水素基としては、例えば、脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基、これらが2以上結合した基が挙げられる。上記脂肪族炭化水素基としては、例えば、アルキル基、アルケニル基、アルキニル基及びこれらに対応する2価以上の基が挙げられる。上記アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ヘキシル基、オクチル基、イソオクチル基、デシル基、ドデシル基などのC1-20アルキル基(好ましくはC1-10アルキル基、さらに好ましくはC1-4アルキル基)などが挙げられる。上記アルケニル基としては、例えば、ビニル基、アリル基、メタリル基、1-プロペニル基、イソプロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、1-ペンテニル基、2-ペンテニル基、3-ペンテニル基、4-ペンテニル基、5-ヘキセニル基などのC2-20アルケニル基(好ましくはC2-10アルケニル基、さらに好ましくはC2-4アルケニル基)などが挙げられる。上記アルキニル基としては、例えば、エチニル基、プロピニル基などのC2-20アルキニル基(好ましくはC2-10アルキニル基、さらに好ましくはC2-4アルキニル基)などが挙げられる。 Examples of the hydrocarbon group include an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, and a group in which two or more of these are bonded. Examples of the aliphatic hydrocarbon group include an alkyl group, an alkenyl group, an alkynyl group, and a corresponding divalent or higher group. Examples of the alkyl group include C 1-20 alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, hexyl group, octyl group, isooctyl group, decyl group, and dodecyl group (preferably C 1 -10 alkyl group, more preferably C 1-4 alkyl group). Examples of the alkenyl group include vinyl group, allyl group, methallyl group, 1-propenyl group, isopropenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 1-pentenyl group and 2-pentenyl group. C 2-20 alkenyl groups (preferably C 2-10 alkenyl groups, more preferably C 2-4 alkenyl groups) such as 3-pentenyl group, 4-pentenyl group and 5-hexenyl group. Examples of the alkynyl group include C 2-20 alkynyl groups such as ethynyl group and propynyl group (preferably C 2-10 alkynyl group, more preferably C 2-4 alkynyl group).
 上記脂環式炭化水素基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロドデシル基などのC3-12のシクロアルキル基及び対応する2価以上の基;シクロヘキセニル基などのC3-12のシクロアルケニル基及び対応する2価以上の基;ビシクロヘプタニル基、ビシクロヘプテニル基、及びこれらに対応する2価以上の基などのC4-15の架橋環式炭化水素基などが挙げられる。 Examples of the alicyclic hydrocarbon group include a C 3-12 cycloalkyl group such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cyclododecyl group, and a corresponding divalent or higher group; a cyclohexenyl group. C 3-12 cycloalkenyl groups and corresponding divalent or higher groups; bicycloheptanyl groups, bicycloheptenyl groups, and corresponding divalent or higher divalent groups such as C 4-15 bridged cyclic carbonization A hydrogen group etc. are mentioned.
 上記芳香族炭化水素基としては、例えば、フェニル基、ナフチル基等のC6-14アリール基(特に、C6-10アリール基)及び対応する2価以上の基などが挙げられる。 Examples of the aromatic hydrocarbon group include a C 6-14 aryl group (particularly a C 6-10 aryl group) such as a phenyl group and a naphthyl group, and a corresponding divalent or higher group.
 また、上記炭化水素基としては、例えば、シクロへキシルメチル基、メチルシクロヘキシル基、及びこれらに対応する2価以上の基などの脂肪族炭化水素基と脂環式炭化水素基とが結合した基;ベンジル基、フェネチル基等のC7-18アラルキル基(特に、C7-10アラルキル基)、シンナミル基等のC6-10アリール-C2-6アルケニル基、トリル基等のC1-4アルキル置換アリール基、スチリル基等のC2-4アルケニル置換アリール基、及びこれらに対応する2価以上の基などの脂肪族炭化水素基と芳香族炭化水素基とが結合した基などが挙げられる。上記炭化水素基が有していてもよい置換基としては、例えば、上述の芳香族ヒドロキシカルボン酸における置換基と同様の基が挙げられる。 Examples of the hydrocarbon group include a group in which an aliphatic hydrocarbon group and an alicyclic hydrocarbon group such as a cyclohexylmethyl group, a methylcyclohexyl group, and a corresponding divalent or higher valent group are bonded; C 7-18 aralkyl groups such as benzyl and phenethyl groups (particularly C 7-10 aralkyl groups), C 6-10 aryl-C 2-6 alkenyl groups such as cinnamyl groups, C 1-4 alkyls such as tolyl groups Examples thereof include a C 2-4 alkenyl-substituted aryl group such as a substituted aryl group and a styryl group, and a group in which an aliphatic hydrocarbon group and an aromatic hydrocarbon group such as a corresponding divalent or higher valent group are bonded. As a substituent which the said hydrocarbon group may have, the group similar to the substituent in the above-mentioned aromatic hydroxycarboxylic acid is mentioned, for example.
 上記複素環式基としては、例えば、ピリジル基、フリル基、チエニル基、及びこれらに対応する2価以上の基などが挙げられる。上記複素環式基が有していてもよい置換基としては、例えば、上述の芳香族ヒドロキシカルボン酸における置換基と同様の基が挙げられる。 Examples of the heterocyclic group include a pyridyl group, a furyl group, a thienyl group, and a divalent or higher valent group corresponding thereto. As a substituent which the said heterocyclic group may have, the group similar to the substituent in the above-mentioned aromatic hydroxycarboxylic acid is mentioned, for example.
 上記炭化水素基としては、例えば、2以上の炭化水素基が1以上の連結基[1以上の原子を有する2価の基;例えば、エステル結合、エーテル結合、カーボネート結合、アミド結合、チオエーテル結合、チオエステル結合、-NR-(Rは水酸基又はアルキル基を示す)、イミド結合、これらの2以上が結合した基など]で連結された基なども挙げられる。また、上記複素環式基としては、2以上の複素環式基が直接結合した基なども挙げられる。また、上記有機基(X1、X2)は、上記炭化水素基の1以上と上記複素環式基の1以上とが、直接及び/又は1以上の連結基を介して結合した基であってもよい。 Examples of the hydrocarbon group include two or more hydrocarbon groups having one or more linking groups [a divalent group having one or more atoms; for example, an ester bond, an ether bond, a carbonate bond, an amide bond, a thioether bond, And a group linked by a thioester bond, —NR— (R represents a hydroxyl group or an alkyl group), an imide bond, a group in which two or more of these are bonded, and the like. Examples of the heterocyclic group also include a group in which two or more heterocyclic groups are directly bonded. The organic group (X 1 , X 2 ) is a group in which one or more of the hydrocarbon groups and one or more of the heterocyclic groups are bonded directly and / or through one or more linking groups. May be.
 上記式(i)中のX1、X2は、互いに結合して式中に示される3つの炭素原子とともに環を形成していてもよい。具体的には、X1及びX2と式中に示される3つの炭素原子とで形成される環構造としては、例えば、シクロアルケノン環、シクロアルケンジオン環、フランジオン環(マレイン酸無水物環)、ピロールジオン環(マレイミド環)、カルボニル炭素のα位とβ位の間に炭素-炭素不飽和結合を有するラクトン環、カルボニル炭素のα位とβ位の間に炭素-炭素不飽和結合を有するラクタム環などが挙げられる。 X 1 and X 2 in the above formula (i) may be bonded to each other to form a ring together with the three carbon atoms shown in the formula. Specifically, examples of the ring structure formed by X 1 and X 2 and the three carbon atoms shown in the formula include a cycloalkenone ring, a cycloalkenedione ring, a flange-on ring (maleic anhydride ring). ), A pyrrole dione ring (maleimide ring), a lactone ring having a carbon-carbon unsaturated bond between the α-position and the β-position of the carbonyl carbon, and a carbon-carbon unsaturated bond between the α-position and the β-position of the carbonyl carbon. And a lactam ring.
 上記式(i)中のR1、R2は、同一又は異なって、水素原子又は置換基を有していてもよいアルキル基を示す。上記アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、オクチル基、2-エチルヘキシル基などの炭素数1~20の直鎖又は分岐鎖状のアルキル基などが挙げられる。上記アルキル基が有していてもよい置換基としては、例えば、上述の芳香族ヒドロキシカルボン酸における置換基と同様の基(但し、アルキル基は除く)が挙げられる。 R 1 and R 2 in the above formula (i) are the same or different and represent a hydrogen atom or an alkyl group which may have a substituent. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a s-butyl group, a t-butyl group, a pentyl group, a hexyl group, an octyl group, and a 2-ethylhexyl group. And a linear or branched alkyl group having 1 to 20 carbon atoms. Examples of the substituent that the alkyl group may have include the same groups as the substituent in the above-described aromatic hydroxycarboxylic acid (excluding the alkyl group).
 上記式(i)中のY1、Y2は、同一又は異なって、熱重合性官能基を示す。上記熱重合性官能基としては、上述の熱重合性官能基が例示される。また、上記式(i)中のn1、n2は、同一又は異なって、0以上の整数を示す。但し、n1とn2の合計(n1+n2)は1以上の整数を示す(即ち、上記式(i)で表される化合物は、分子内に1以上の熱重合性官能基を有する)。n1とn2の合計としては、例えば、1~10の整数(より好ましくは1~5の整数)が好ましい。また、Y1、Y2のX1、X2に対する結合位置は、特に限定されない。なお、n1(又はn2)が2以上の整数である場合、複数のY1(又はY2)は、同一であってもよいし、異なっていてもよい。 Y 1 and Y 2 in the above formula (i) are the same or different and represent a thermally polymerizable functional group. Examples of the thermally polymerizable functional group include the above-described thermally polymerizable functional groups. Further, n1 and n2 in the above formula (i) are the same or different and represent an integer of 0 or more. However, the sum of n1 and n2 (n1 + n2) represents an integer of 1 or more (that is, the compound represented by the formula (i) has one or more thermopolymerizable functional groups in the molecule). The total of n1 and n2 is preferably, for example, an integer of 1 to 10 (more preferably an integer of 1 to 5). Further, the bonding positions of Y 1 and Y 2 with respect to X 1 and X 2 are not particularly limited. In the case n1 (or n2) is an integer of 2 or more, plural Y 1 (or Y 2) may be the same or different.
 また、架橋性化合物(B)としては、下記式(ii)で表される化合物(α,β-不飽和カルボニル基(不飽和基が三重結合の場合)及び熱重合性官能基を有する化合物)が挙げられる。
Figure JPOXMLDOC01-appb-C000006
In addition, as the crosslinkable compound (B), a compound represented by the following formula (ii) (α, β-unsaturated carbonyl group (when the unsaturated group is a triple bond) and a compound having a thermopolymerizable functional group) Is mentioned.
Figure JPOXMLDOC01-appb-C000006
 上記式(ii)中のX3、X4は、同一又は異なって有機基を示す。上記有機基としては、式(i)中のX1、X2として例示したものと同様の有機基が挙げられる。また、上記式(i)中のX1、X2と同様に、上記式(ii)中のX3、X4は、互いに結合して式中に示される3つの炭素原子とともに環を形成していてもよい。 X 3 and X 4 in the above formula (ii) are the same or different and represent an organic group. Examples of the organic group include the same organic groups as those exemplified as X 1 and X 2 in formula (i). Similarly to X 1 and X 2 in the above formula (i), X 3 and X 4 in the above formula (ii) are bonded to each other to form a ring together with the three carbon atoms shown in the formula. It may be.
 上記式(ii)中のY3、Y4は、同一又は異なって、熱重合性官能基を示す。上記熱重合性官能基としては、上述の熱重合性官能基が例示される。また、上記式(ii)中のn3、n4は、同一又は異なって、0以上の整数を示す。但し、n3とn4の合計(n3+n4)は1以上の整数を示す(即ち、上記式(ii)で表される化合物は、分子内に1以上の熱重合性官能基を有する)。n3とn4の合計としては、例えば、1~10の整数(より好ましくは1~5の整数)が好ましい。また、Y3、Y4のX3、X4に対する結合位置は、特に限定されない。なお、n3(又はn4)が2以上の整数である場合、複数のY3(又はY4)は、同一であってもよいし、異なっていてもよい。 Y 3 and Y 4 in the above formula (ii) are the same or different and represent a thermally polymerizable functional group. Examples of the thermally polymerizable functional group include the above-described thermally polymerizable functional groups. Moreover, n3 and n4 in the above formula (ii) are the same or different and represent an integer of 0 or more. However, the sum of n3 and n4 (n3 + n4) represents an integer of 1 or more (that is, the compound represented by the above formula (ii) has one or more thermopolymerizable functional groups in the molecule). The total of n3 and n4 is preferably, for example, an integer of 1 to 10 (more preferably an integer of 1 to 5). Further, the bonding positions of Y 3 and Y 4 to X 3 and X 4 are not particularly limited. In the case n3 (or n4) is an integer of 2 or more, plural Y 3 (or Y 4) may be the same or different.
 また、架橋性化合物(B)としては、下記式(iii)で表される化合物(熱重合性官能基を有するカルボン酸又はその誘導体)が挙げられる。
Figure JPOXMLDOC01-appb-C000007
Moreover, as a crosslinkable compound (B), the compound (The carboxylic acid which has a thermopolymerizable functional group, or its derivative (s)) represented by following formula (iii) is mentioned.
Figure JPOXMLDOC01-appb-C000007
 上記式(iii)中のRaは、水酸基(-OH)、アルコキシ基、ハロゲン原子、又はアシルオキシ基を示す。上記アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基などの炭素数1~20のアルコキシ基、及びその誘導体などが挙げられる。上記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子などが挙げられる。上記アシルオキシ基としては、例えば、アセチルオキシ基、プロピオニルオキシ基、ブチリルオキシ基、下記式で表される基などが挙げられる。なお、下記式におけるX5、Y5、n5は、上記式(iii)におけるものと同じである。
Figure JPOXMLDOC01-appb-C000008
R a in the above formula (iii) represents a hydroxyl group (—OH), an alkoxy group, a halogen atom, or an acyloxy group. Examples of the alkoxy group include alkoxy groups having 1 to 20 carbon atoms such as a methoxy group, an ethoxy group, and a propoxy group, and derivatives thereof. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Examples of the acyloxy group include an acetyloxy group, a propionyloxy group, a butyryloxy group, and a group represented by the following formula. X 5 , Y 5 and n5 in the following formula are the same as those in the above formula (iii).
Figure JPOXMLDOC01-appb-C000008
 上記式(iii)中のX5は有機基を示す。上記有機基としては、式(i)中のX1、X2として例示したものと同様の有機基が挙げられる。上記式(iii)中のY5は熱重合性官能基を示す。上記熱重合性官能基としては、上述の熱重合性官能基が例示される。また、上記式(iii)中のn5は1以上の整数を示す。n5としては、例えば、1~10の整数(より好ましくは1~5の整数)が好ましい。また、Y5のX5に対する結合位置は、特に限定されない。なお、n5が2以上の整数である場合、複数のY5は、同一であってもよいし、異なっていてもよい。 X 5 in the above formula (iii) represents an organic group. Examples of the organic group include the same organic groups as those exemplified as X 1 and X 2 in formula (i). Y 5 in the above formula (iii) represents a thermally polymerizable functional group. Examples of the thermally polymerizable functional group include the above-described thermally polymerizable functional groups. Moreover, n5 in the said formula (iii) shows an integer greater than or equal to 1. For example, n5 is preferably an integer of 1 to 10 (more preferably an integer of 1 to 5). Further, the bonding position of Y 5 to X 5 is not particularly limited. In the case n5 is an integer of 2 or more, the plurality of Y 5, may be the same or may be different.
 また、架橋性化合物(B)としては、下記式(iv)で表される化合物(熱重合性官能基を有するエポキシ化合物)が挙げられる。
Figure JPOXMLDOC01-appb-C000009
Moreover, as a crosslinkable compound (B), the compound (epoxy compound which has a thermopolymerizable functional group) represented by a following formula (iv) is mentioned.
Figure JPOXMLDOC01-appb-C000009
 上記式(iv)中のX6は有機基を示す。上記有機基としては、式(i)中のX1、X2として例示したものと同様の有機基が挙げられる。上記式(iv)中のY6は熱重合性官能基を示す。上記熱重合性官能基としては、上述の熱重合性官能基が例示される。また、上記式(iv)中のn6は1以上の整数を示す。n6としては、例えば、1~10の整数(より好ましくは1~5の整数)が好ましい。また、Y6のX6に対する結合位置は、特に限定されない。なお、n6が2以上の整数である場合、複数のY6は、同一であってもよいし、異なっていてもよい。 X 6 in the above formula (iv) represents an organic group. Examples of the organic group include the same organic groups as those exemplified as X 1 and X 2 in formula (i). Y 6 in the above formula (iv) represents a thermally polymerizable functional group. Examples of the thermally polymerizable functional group include the above-described thermally polymerizable functional groups. N6 in the above formula (iv) represents an integer of 1 or more. As n6, for example, an integer of 1 to 10 (more preferably an integer of 1 to 5) is preferable. Further, the bonding position of Y 6 to X 6 is not particularly limited. In the case n6 is an integer of 2 or more, plural Y 6 may be the same or different.
 上記式(iv)中のR3~R5は、同一又は異なって、水素原子又は置換基を有していてもよいアルキル基を示す。上記置換基を有していてもよいアルキル基としては、上記式(i)中のR1、R2として例示したものと同様の基が挙げられる。 R 3 to R 5 in the above formula (iv) are the same or different and each represents a hydrogen atom or an alkyl group which may have a substituent. Examples of the alkyl group that may have a substituent include the same groups as those exemplified as R 1 and R 2 in the above formula (i).
 架橋性化合物(B)としては、より具体的には、例えば、4,4'-ジフェニルメタンビスマレイミド、m-フェニレンビスマレイミド、2,2'-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン、エチレンビスマレイミド、o-フェニレンビスマレイミド、p-フェニレンビスマレイミド、m-トルイレンビスマレイミド、4,4'-ビフェニレンビスマレイミド、4,4'-[3,3'-ジメチル-ビフェニレン]ビスマレイミド、4,4'-[3,3'-ジメチルジフェニルメタン]ビスマレイミド、4,4'-[3,3'-ジエチルジフェニルメタン]ビスマレイミド、4,4'-ジフェニルプロパンビスマレイミド、4,4'-ジフェニルエーテルビスマレイミド、3,3'-ジフェニルスルホンビスマレイミド、4,4'-ジフェニルスルホンビスマレイミドなどのビスマレイミド化合物;4-マレイミド安息香酸;4-マレイミド安息香酸メチル;4-マレイミド安息香酸エチルなどが挙げられる。 More specifically, examples of the crosslinkable compound (B) include 4,4′-diphenylmethane bismaleimide, m-phenylene bismaleimide, 2,2′-bis [4- (4-maleimidophenoxy) phenyl] propane. , Ethylene bismaleimide, o-phenylene bismaleimide, p-phenylene bismaleimide, m-toluylene bismaleimide, 4,4'-biphenylene bismaleimide, 4,4 '-[3,3'-dimethyl-biphenylene] bismaleimide 4,4 ′-[3,3′-dimethyldiphenylmethane] bismaleimide, 4,4 ′-[3,3′-diethyldiphenylmethane] bismaleimide, 4,4′-diphenylpropane bismaleimide, 4,4′- Diphenyl ether bismaleimide, 3,3′-diphenylsulfone bismaleimide, 4,4′-diphe And bismaleimide compounds such as nylsulfone bismaleimide; 4-maleimidobenzoic acid; 4-maleimidobenzoic acid methyl; 4-maleimidobenzoic acid ethyl and the like.
 架橋性化合物(B)の融点(Tm)は、特に制限されないが、250℃以下(60~250℃)が好ましく、230℃以下がより好ましく、210℃以下がさらに好ましい。融点が250℃以下であるため、芳香族ポリエステル(A)が溶融する温度で、架橋性化合物(B)も溶融させることができる。なお、上記融点は、DSCの吸熱ピークを示す。 The melting point (Tm) of the crosslinkable compound (B) is not particularly limited, but is preferably 250 ° C. or lower (60 to 250 ° C.), more preferably 230 ° C. or lower, and further preferably 210 ° C. or lower. Since the melting point is 250 ° C. or lower, the crosslinkable compound (B) can also be melted at a temperature at which the aromatic polyester (A) melts. In addition, the said melting | fusing point shows the endothermic peak of DSC.
 架橋性化合物(B)の発熱開始温度は、特に制限されないが、300℃以下(100~300℃)が好ましく、280℃以下がより好ましく、260℃以下がさらに好ましい。発熱開始温度が300℃以下であると、芳香族ポリエステル(A)と溶融混合し得られた熱硬化性芳香族ポリエステル組成物の発熱開始温度が比較的低く、硬化させる温度(硬化温度)が高くなり過ぎない。なお、上記発熱開始温度は、DSCにて、曲線がベースラインから立ち上がり始める温度を示す。 The heat generation starting temperature of the crosslinkable compound (B) is not particularly limited, but is preferably 300 ° C. or lower (100 to 300 ° C.), more preferably 280 ° C. or lower, and further preferably 260 ° C. or lower. When the exothermic start temperature is 300 ° C. or lower, the exothermic start temperature of the thermosetting aromatic polyester composition obtained by melt mixing with the aromatic polyester (A) is relatively low, and the curing temperature (curing temperature) is high. Not too much. The heat generation start temperature is a temperature at which the curve starts to rise from the baseline in DSC.
 架橋性化合物(B)の上記発熱開始温度と融点(Tm)との差は、特に制限されないが、50℃以下が特に有用(40℃以下がより有用、30℃以下がさらに有用)である。発熱開始温度と融点(Tm)との差が、50℃以下であると、架橋性化合物(B)を溶融させてから硬化反応が開始し粘度上昇が始まるまでの溶融混合できる時間が短く、特に粘度上昇が起きやすい。このため、本発明の製造方法により、粘度上昇を抑える効果が大きい。なお、一般的に発熱開始温度の方が融点(Tm)よりも高い。 The difference between the heat generation start temperature and the melting point (Tm) of the crosslinkable compound (B) is not particularly limited, but 50 ° C. or less is particularly useful (40 ° C. or less is more useful, and 30 ° C. or less is more useful). When the difference between the exothermic start temperature and the melting point (Tm) is 50 ° C. or less, the time during which melt mixing can be performed from the time when the crosslinkable compound (B) is melted until the curing reaction starts and the increase in viscosity starts is short, Viscosity is likely to increase. For this reason, the production method of the present invention has a great effect of suppressing an increase in viscosity. In general, the heat generation start temperature is higher than the melting point (Tm).
[マレイミド誘導体(B’)]
 マレイミド誘導体(B’)は、融点が150℃以下及び/又は融点とマレイミド誘導体の発熱開始温度の差が30℃以上であり、分子内(一分子中)に、芳香族ポリエステル(A)が分子鎖末端に有する反応性官能基(a)(水酸基、アシルオキシ基、芳香族環式基、及び共役ジエン構造からなる群より選択された少なくとも1種)と反応するマレイミド基と、熱重合性官能基であるマレイミド基を有し、少なくとも2個のマレイミド基を有する。なお、マレイミド誘導体(B’)は、前記架橋性化合物(B)に含まれ、架橋性化合物(B)としてマレイミド誘導体(B’)を用いてもよい。
[Maleimide derivative (B ′)]
The maleimide derivative (B ′) has a melting point of 150 ° C. or less and / or a difference between the melting point and the exothermic starting temperature of the maleimide derivative is 30 ° C. or more, and the aromatic polyester (A) is a molecule in the molecule (in one molecule). A maleimide group that reacts with the reactive functional group (a) at the chain end (at least one selected from the group consisting of a hydroxyl group, an acyloxy group, an aromatic cyclic group, and a conjugated diene structure), and a thermopolymerizable functional group Having at least two maleimide groups. The maleimide derivative (B ′) may be included in the crosslinkable compound (B), and the maleimide derivative (B ′) may be used as the crosslinkable compound (B).
 マレイミド誘導体(B’)におけるマレイミド基の数は、2個以上であればく、特に限定されないが、2~10個が好ましく、より好ましくは2~5個である。 The number of maleimide groups in the maleimide derivative (B ′) is not particularly limited as long as it is 2 or more, but is preferably 2 to 10, more preferably 2 to 5.
 なお、マレイミド誘導体(B’)は、反応性官能基(a)と反応するマレイミド基を1個以上と熱重合性官能基を1個以上有する必要がある。例えば、マレイミド誘導体(B’)が反応性官能基としても熱重合性官能基としても機能するマレイミド基は、マレイミド基を2個以上有する必要がある。当該マレイミド基におけるα炭素-β炭素二重結合は、芳香族ポリエステル(A)の水酸基、芳香族環、又は共役ジエン構造と反応することにより消失し、もはや熱重合性官能基としては機能できなくなるためである。 The maleimide derivative (B ′) needs to have at least one maleimide group that reacts with the reactive functional group (a) and at least one thermopolymerizable functional group. For example, the maleimide group in which the maleimide derivative (B ′) functions as both a reactive functional group and a thermopolymerizable functional group needs to have two or more maleimide groups. The α carbon-β carbon double bond in the maleimide group disappears by reacting with the hydroxyl group, aromatic ring, or conjugated diene structure of the aromatic polyester (A), and can no longer function as a thermopolymerizable functional group. Because.
 マレイミド誘導体(B’)としては、例えば、炭素数が100以下(好ましくは10~50)の化合物が挙げられる。中でも、マレイミド誘導体(B’)としては、特に制限されないが、芳香族ポリエステル(A)との相溶性の点から、下記式(1)で表される化合物である化合物が好ましい。
Figure JPOXMLDOC01-appb-C000010
[式(1)中のR1は、炭素数1~20の直鎖状又は分岐鎖状アルキレン基、炭素数3~8のシクロアルキレン基、炭素数6~15のアリーレン基又はこれらが2以上、連結基を介して、又は介することなく結合した基を表す]
Examples of the maleimide derivative (B ′) include compounds having 100 or less (preferably 10 to 50) carbon atoms. Among them, the maleimide derivative (B ′) is not particularly limited, but a compound that is a compound represented by the following formula (1) is preferable from the viewpoint of compatibility with the aromatic polyester (A).
Figure JPOXMLDOC01-appb-C000010
[R 1 in Formula (1) is a linear or branched alkylene group having 1 to 20 carbon atoms, a cycloalkylene group having 3 to 8 carbon atoms, an arylene group having 6 to 15 carbon atoms, or two or more thereof. Represents a group bonded via or without a linking group.]
 上記連結基としては、特に限定されないが、エーテル結合(-O-)、チオエーテル結合(-S-)、スルホニル結合(-SO2-)、アミド結合(-NHCO-)、エステル結合(-COO-)、アシル結合(-CO-)などが挙げられる。前記式(1)中のアルキレン基は、炭素数が1~12が好ましく、炭素数が2~8がより好ましい。前記式(1)中のシクロアルキレン基は、炭素数4~6が好ましい。前記式(1)中のアリーレン基は、炭素数6(フェニレン基)が好ましい。 The linking group is not particularly limited, but is an ether bond (—O—), a thioether bond (—S—), a sulfonyl bond (—SO 2 —), an amide bond (—NHCO—), an ester bond (—COO—). ), An acyl bond (—CO—) and the like. The alkylene group in the formula (1) preferably has 1 to 12 carbon atoms, and more preferably 2 to 8 carbon atoms. The cycloalkylene group in the formula (1) preferably has 4 to 6 carbon atoms. The arylene group in the formula (1) preferably has 6 carbon atoms (phenylene group).
 マレイミド誘導体(B’)としては、具体的には、1分子中に芳香環(フェニレン基)を3個以上含む芳香族ビスマレイミド化合物として、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン、ビス[4-マレイミド(4-フェノキシフェニル)]スルホン、1,1'-[1,4-フェニレンビス(オキシ-4,1-フェニレン)]ビスマレイミド、1,1'-[スルホニルビス(4,1-フェニレンオキシ-3,1-フェニレン)]ビスマレイミド、ビス[4-(3-マレイミドフェノキシ)フェニル]ケトン、1,3-ビス(4-マレイミドフェノキシ)ベンゼン、1,3-ビス(3-マレイミドフェノキシ)ベンゼン、1,1’-[オキシビス(4,1-フェニレンチオ-4,1-フェニレン)]ビスマレイミド、1,1'-[(2,2',3,3',5,5',6,6'-オクタフルオロ[1,1'-ビフェニル]-4,4'-ジイル)ビス(オキシ-3,1-フェニレン)]ビスマレイミドなどが挙げられる。中でも、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン、ビス[4-マレイミド(4-フェノキシフェニル)]スルホン、1,3-ビス(4-マレイミドフェノキシ)ベンゼン、1,3-ビス(3-マレイミドフェノキシ)ベンゼンが好ましい。 Specific examples of the maleimide derivative (B ′) include 2,2-bis [4- (4-maleimidophenoxy) as an aromatic bismaleimide compound containing three or more aromatic rings (phenylene groups) in one molecule. Phenyl] propane, bis [4-maleimide (4-phenoxyphenyl)] sulfone, 1,1 ′-[1,4-phenylenebis (oxy-4,1-phenylene)] bismaleimide, 1,1 ′-[sulfonyl Bis (4,1-phenyleneoxy-3,1-phenylene)] bismaleimide, bis [4- (3-maleimidophenoxy) phenyl] ketone, 1,3-bis (4-maleimidophenoxy) benzene, 1,3- Bis (3-maleimidophenoxy) benzene, 1,1 ′-[oxybis (4,1-phenylenethio-4,1-phenylene)] bismaleimide, 1, '-[(2,2', 3,3 ', 5,5', 6,6'-octafluoro [1,1'-biphenyl] -4,4'-diyl) bis (oxy-3,1- Phenylene)] bismaleimide and the like. Among them, 2,2-bis [4- (4-maleimidophenoxy) phenyl] propane, bis [4-maleimido (4-phenoxyphenyl)] sulfone, 1,3-bis (4-maleimidophenoxy) benzene, 1,3 -Bis (3-maleimidophenoxy) benzene is preferred.
 マレイミド誘導体(B’)としては、具体的には、1分子中に芳香環(フェニレン基)を2個含む芳香族ビスマレイミド化合物としては、N,N’-(4,4’-ビフェニレン)ビスマレイミド、N,N’-(スルホニルジ-p-フェニレン)ビスマレイミド、N,N’-(オキシジ-p-フェニレン)ビスマレイミド、N,N’-(3,3’-ジメチル-4,4’-ビフェニリレン)ビスマレイミド、N,N’-(ベンジリデンジ-p-フェニレン)ビスマレイミド、3,3’-ジクロロ-4,4’-ジフェニルメタンビスマレイミド、3,3’-ジメチル-4,4’-ジフェニルメタンビスマレイミド、3,3’-ジメトキシ-4,4’-ジフェニルメタンビスマレイミド、4,4’-ジフェニルスルフィドビスマレイミド、4,4’-ジフェニルエーテルビスマレイミド、3,3’-ベンゾフェノンビスマレイミド、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド、1,1’-[1,4-ブタンジイルビス(オキシ-p-フェニレン)]ビスマレイミドなどが挙げられる。中でも、4,4’-ジフェニルスルフィドビスマレイミド、4,4’-ジフェニルエーテルビスマレイミドが好ましい。 As the maleimide derivative (B ′), specifically, as the aromatic bismaleimide compound containing two aromatic rings (phenylene groups) in one molecule, N, N ′-(4,4′-biphenylene) bis Maleimide, N, N ′-(sulfonyldi-p-phenylene) bismaleimide, N, N ′-(oxydi-p-phenylene) bismaleimide, N, N ′-(3,3′-dimethyl-4,4 ′ -Biphenylylene) bismaleimide, N, N '-(benzylidenedi-p-phenylene) bismaleimide, 3,3'-dichloro-4,4'-diphenylmethane bismaleimide, 3,3'-dimethyl-4,4'- Diphenylmethane bismaleimide, 3,3′-dimethoxy-4,4′-diphenylmethane bismaleimide, 4,4′-diphenyl sulfide bismaleimide, 4,4 ′ Diphenyl ether bismaleimide, 3,3′-benzophenone bismaleimide, 3,3′-dimethyl-5,5′-diethyl-4,4′-diphenylmethane bismaleimide, 1,1 ′-[1,4-butanediylbis (oxy- p-phenylene)] bismaleimide and the like. Of these, 4,4'-diphenyl sulfide bismaleimide and 4,4'-diphenyl ether bismaleimide are preferable.
 マレイミド誘導体(B’)としては、具体的には、1分子中に芳香環(フェニレン基)を1個含む芳香族ビスマレイミド化合物としては、4-メチル-1,3-フェニレンビスマレイミド、1,3-フェニレンビスマレイミド、1,4-フェニレンビスマレイミド、1,2-フェニレンビスマレイミド、ナフタレン-1,5-ジマレイミド、4-クロロ-1,3-フェニレンビスマレイミドなどが挙げられる。 As the maleimide derivative (B ′), specifically, as an aromatic bismaleimide compound containing one aromatic ring (phenylene group) in one molecule, 4-methyl-1,3-phenylenebismaleimide, 1, Examples include 3-phenylene bismaleimide, 1,4-phenylene bismaleimide, 1,2-phenylene bismaleimide, naphthalene-1,5-dimaleimide, and 4-chloro-1,3-phenylene bismaleimide.
 マレイミド誘導体(B’)としては、具体的には、脂肪族ビスマレイミド化合物として、1,6-ビスマレイミド-(2,2,4-トリメチル)ヘキサン、1,6-ビスマレイミド-(2,4,4-トリメチル)ヘキサン、N,N’-デカメチレンビスマレイミド、N,N’-デカメチレンビスマレイミド、N,N’-オクタメチレンビスマレイミド、N,N’-ヘプタメチレンビスマレイミド、N,N’-ヘキサメチレンビスマレイミド、N,N’-ペンタメチレンビスマレイミド、N,N’-テトラメチレンビスマレイミド、N,N’-トリメチレンビスマレイミド、N,N’-エチレンビスマレイミド、N,N’-(オキシジメチレン)ビスマレイミド、1,13-ビスマレイミド-4,7,10-トリオキサトリデカン、1,11-ビス(マレイミド)-3,6,9-トリオキサウンデカンなどが挙げられる。中でも、下記式(ii)で表される化合物である1,6-ビスマレイミド-(2,2,4-トリメチル)ヘキサン、N,N’-ヘキサメチレンビスマレイミドが好ましい。 Specific examples of the maleimide derivative (B ′) include 1,6-bismaleimide- (2,2,4-trimethyl) hexane and 1,6-bismaleimide- (2,4) as aliphatic bismaleimide compounds. , 4-trimethyl) hexane, N, N′-decamethylene bismaleimide, N, N′-decamethylene bismaleimide, N, N′-octamethylene bismaleimide, N, N′-heptamethylene bismaleimide, N, N '-Hexamethylene bismaleimide, N, N'-pentamethylene bismaleimide, N, N'-tetramethylene bismaleimide, N, N'-trimethylene bismaleimide, N, N'-ethylene bismaleimide, N, N' -(Oxydimethylene) bismaleimide, 1,13-bismaleimide-4,7,10-trioxatridecane, 1,11 Bis (maleimide) -3,6,9-like trio key sound decane. Of these, 1,6-bismaleimide- (2,2,4-trimethyl) hexane and N, N′-hexamethylene bismaleimide, which are compounds represented by the following formula (ii), are preferable.
 また、上記以外にも下記式(i)で表される化合物であるポリフェニルメタンマレイミドが挙げられる。これらのマレイミド誘導体(B’)は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。 In addition to the above, polyphenylmethane maleimide, which is a compound represented by the following formula (i), may be mentioned. One of these maleimide derivatives (B ′) can be used alone, or two or more can be used in combination.
 マレイミド誘導体(B’)は、市販品を用いることができ、商品名「BMI-1000」、商品名「BMI-1100」、商品名「BMI-2000」、商品名「BMI-2300」、商品名「BMI-TMH」(以上、大和化成(株)社製)、商品名「BMI-3000」、商品名「BMI-689」、商品名「BMI-1500」(以上、エア・ブラウン(株)社製)などが挙げられる。 As the maleimide derivative (B ′), a commercially available product can be used. The trade name “BMI-1000”, the trade name “BMI-1100”, the trade name “BMI-2000”, the trade name “BMI-2300”, the trade name “BMI-TMH” (manufactured by Daiwa Kasei Co., Ltd.), product name “BMI-3000”, product name “BMI-689”, product name “BMI-1500” (above, Air Brown Co., Ltd.) Manufactured).
 特に、融点が低く、芳香族ポリエステル(A)と低温で混合しやすい点から、下記式(i)で表される化合物であるポリフェニルメタンマレイミド、下記式(ii)で表される化合物である1,6-ビスマレイミド-(2,2,4-トリメチル)ヘキサンが好ましい。
Figure JPOXMLDOC01-appb-C000011
[上記式(i)中のnは、0~10の整数を表す]
Figure JPOXMLDOC01-appb-C000012
In particular, polyphenylmethanemaleimide, which is a compound represented by the following formula (i), is a compound represented by the following formula (ii) because it has a low melting point and is easily mixed with the aromatic polyester (A) at a low temperature. 1,6-Bismaleimide- (2,2,4-trimethyl) hexane is preferred.
Figure JPOXMLDOC01-appb-C000011
[N in the above formula (i) represents an integer of 0 to 10]
Figure JPOXMLDOC01-appb-C000012
 前記式(i)におけるnは、溶融流動性の点で0~5の整数が好ましい。nの値が異なるマレイミド誘導体(B’)を用いてもよく、nの値に分布をもつマレイミド誘導体(B’)を用いてもよい。 In the formula (i), n is preferably an integer of 0 to 5 in terms of melt fluidity. Maleimide derivatives (B ′) having different values of n may be used, and maleimide derivatives (B ′) having a distribution in the value of n may be used.
 マレイミド誘導体(B’)の分子量は、特に制限されないが、200~10000が好ましく、200~8000がより好ましく、250~6000がさらに好ましい。分子量が上記範囲であると、芳香族ポリエステル(A)と低温で混合しやすく、均一に混合しやすい。 The molecular weight of the maleimide derivative (B ′) is not particularly limited, but is preferably 200 to 10000, more preferably 200 to 8000, and further preferably 250 to 6000. When the molecular weight is within the above range, it is easy to mix with the aromatic polyester (A) at a low temperature, and to mix uniformly.
 マレイミド誘導体(B’)の融点(Tm)は、150℃以下(60~150℃)が好ましく、130℃以下がより好ましく、110℃以下がさらに好ましく、90℃以下が特に好ましい。融点が150℃以下であると、架橋反応が進行しない温度領域で混合することができ、均一な組成物が得られる。なお、上記融点は、DSCの吸熱ピークを示す。 The melting point (Tm) of the maleimide derivative (B ′) is preferably 150 ° C. or lower (60 to 150 ° C.), more preferably 130 ° C. or lower, still more preferably 110 ° C. or lower, and particularly preferably 90 ° C. or lower. When the melting point is 150 ° C. or lower, mixing can be performed in a temperature region where the crosslinking reaction does not proceed, and a uniform composition can be obtained. In addition, the said melting | fusing point shows the endothermic peak of DSC.
 マレイミド誘導体(B’)の融点(Tm)は、具体的には、上記式(i)で表される化合物であるポリフェニルメタンマレイミド(商品名「BMI-2300」、大和化成(株)社製)が63℃、上記式(ii)で表される化合物である1,6-ビスマレイミド-(2,2,4-トリメチル)ヘキサン(商品名「BMI-TMH」、大和化成(株)社製)が81℃であり、m-フェニレンビスマレイミド(商品名「BMI-3000」、エア・ブラウン(株)社製)が62℃である。 Specifically, the melting point (Tm) of the maleimide derivative (B ′) is polyphenylmethane maleimide (trade name “BMI-2300”, manufactured by Daiwa Kasei Co., Ltd.), which is a compound represented by the above formula (i). ) Is 63 ° C., a compound represented by the above formula (ii), 1,6-bismaleimide- (2,2,4-trimethyl) hexane (trade name “BMI-TMH”, manufactured by Daiwa Kasei Co., Ltd. ) Is 81 ° C., and m-phenylene bismaleimide (trade name “BMI-3000”, manufactured by Air Brown Co., Ltd.) is 62 ° C.
 マレイミド誘導体(B’)の発熱開始温度は、特に制限されないが、250℃以下(90~250℃)が好ましく、230℃以下がより好ましく、210℃以下がさらに好ましい。発熱開始温度が250℃以下であると、芳香族ポリエステル(A)と混合し得られた熱硬化性芳香族ポリエステル組成物の発熱開始温度が比較的低く、硬化させる温度(硬化温度)が高くなり過ぎない。なお、上記発熱開始温度は、DSCにて、曲線がベースラインから立ち上がり始める温度を示す。 The heat generation starting temperature of the maleimide derivative (B ′) is not particularly limited, but is preferably 250 ° C. or lower (90 to 250 ° C.), more preferably 230 ° C. or lower, and further preferably 210 ° C. or lower. When the exothermic start temperature is 250 ° C. or less, the exothermic start temperature of the thermosetting aromatic polyester composition obtained by mixing with the aromatic polyester (A) is relatively low, and the curing temperature (curing temperature) becomes high. Not too much. The heat generation start temperature is a temperature at which the curve starts to rise from the baseline in DSC.
 マレイミド誘導体(B’)の発熱開始温度は、具体的には、上記式(i)で表される化合物であるポリフェニルメタンマレイミド(商品名「BMI-2300」、大和化成(株)社製)が120℃、上記式(ii)で表される化合物である1,6-ビスマレイミド-(2,2,4-トリメチル)ヘキサン(商品名「BMI-TMH」、大和化成(株)社製)が190℃であり、m-フェニレンビスマレイミド(商品名「BMI-3000」、エア・ブラウン(株)社製)が230℃である。 The exothermic start temperature of the maleimide derivative (B ′) is specifically polyphenylmethane maleimide (trade name “BMI-2300”, manufactured by Daiwa Kasei Co., Ltd.), which is a compound represented by the above formula (i). 1,6-bismaleimide- (2,2,4-trimethyl) hexane (trade name “BMI-TMH”, manufactured by Daiwa Kasei Co., Ltd.), which is a compound represented by the above formula (ii) at 120 ° C. Is 190 ° C., and m-phenylene bismaleimide (trade name “BMI-3000”, manufactured by Air Brown Co., Ltd.) is 230 ° C.
 マレイミド誘導体(B’)の上記発熱開始温度と融点(Tm)との差は、30℃以上(30~120℃)である場合が特に有用(40℃以上がより有用、50℃以上がさらに有用)である。融点と発熱開始温度の差が、30℃以上であると、マレイミド誘導体(B’)を溶融させてから硬化反応が開始し粘度上昇が始まるまでの、混合できる時間を長く保ちやすい。なお、一般的に発熱開始温度の方が融点(Tm)よりも高い。中でも、マレイミド誘導体(B’)は、融点が150℃以下、且つ融点と発熱開始温度の差が30℃以上であることが好ましい。 The difference between the heat generation starting temperature and the melting point (Tm) of the maleimide derivative (B ′) is particularly useful when it is 30 ° C. or higher (30 to 120 ° C.) (40 ° C. or higher is more useful, and 50 ° C. or higher is more useful). ). When the difference between the melting point and the heat generation start temperature is 30 ° C. or more, it is easy to maintain a long mixing time from the time when the maleimide derivative (B ′) is melted until the curing reaction starts and the viscosity starts to increase. In general, the heat generation start temperature is higher than the melting point (Tm). Among these, the maleimide derivative (B ′) preferably has a melting point of 150 ° C. or lower and a difference between the melting point and the heat generation start temperature of 30 ° C. or higher.
 マレイミド誘導体(B’)の上記発熱開始温度と融点(Tm)との差は、具体的には、上記式(i)で表される化合物であるポリフェニルメタンマレイミド(商品名「BMI-2300」、大和化成(株)社製)が57℃、上記式(ii)で表される化合物である1,6-ビスマレイミド-(2,2,4-トリメチル)ヘキサン(商品名「BMI-TMH」、大和化成(株)社製)が109℃であり、m-フェニレンビスマレイミド(商品名「BMI-3000」、エア・ブラウン(株)社製)が168℃である。 Specifically, the difference between the exothermic onset temperature and the melting point (Tm) of the maleimide derivative (B ′) is specifically the polyphenylmethane maleimide (trade name “BMI-2300”) which is a compound represented by the above formula (i). 1,6-bismaleimide- (2,2,4-trimethyl) hexane (trade name “BMI-TMH”), which is a compound represented by the above formula (ii) at 57 ° C., manufactured by Daiwa Kasei Co., Ltd. Yamato Kasei Co., Ltd.) is 109 ° C., and m-phenylene bismaleimide (trade name “BMI-3000”, Air Brown Co., Ltd.) is 168 ° C.
[添加剤]
 本発明における熱硬化性芳香族ポリエステル組成物は、芳香族ポリエステル(A)の濃度を下げて、組成物調整時における硬化反応を抑制するため、また、硬化物の性能を目的(用途)に応じて調整するため、無機フィラーなどの添加剤を添加する。中でも、添加剤としては、無機フィラーが好ましく用いられる。
[Additive]
The thermosetting aromatic polyester composition in the present invention lowers the concentration of the aromatic polyester (A) to suppress the curing reaction at the time of adjusting the composition, and the performance of the cured product according to the purpose (use). Therefore, additives such as inorganic fillers are added. Among these, an inorganic filler is preferably used as the additive.
 上記無機フィラーとしては、公知乃至慣用の無機フィラーを使用することができ、特に限定されないが、例えば、シリカ(例えば、天然シリカ、合成シリカなど)、酸化アルミニウム(例えば、α-アルミナなど)、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化セリウム、酸化イットリウム、酸化カルシウム、酸化亜鉛、酸化鉄などの酸化物;炭酸カルシウム、炭酸マグネシウムなどの炭酸塩;硫酸バリウム、硫酸アルミニウム、硫酸カルシウムなどの硫酸塩;窒化アルミニウム、窒化ケイ素、窒化チタン、窒化ホウ素などの窒化物;水酸化カルシウム、水酸化アルミニウム、水酸化マグネシウムなどの水酸化物;マイカ、タルク、カオリン、カオリンクレー、カオリナイト、ハロイサイト、パイロフィライト、モンモリロナイト、セリサイト、アメサイト、ベントナイト、アスベスト、ウォラストナイト、セピオライト、ゾノライト、ゼオライト、ハイドロタルサイト、フライアッシュ、脱水汚泥、ガラスビーズ、ガラスファイバー、ケイ藻土、ケイ砂、カーボンブラック、センダスト、アルニコ磁石、各種フェライト等の磁性粉、水和石膏、ミョウバン、三酸化アンチモン、マグネシウムオキシサルフェイト、シリコンカーバイド、チタン酸カリウム、ケイ酸カルシウム、ケイ酸マグネシウム、ケイ酸アルミニウム、燐酸マグネシウム、銅、鉄などが挙げられる。上記無機フィラーは、中実構造、中空構造、多孔質構造等のいずれの構造を有していてもよい。また、上記無機フィラーは、例えば、オルガノハロシラン、オルガノアルコキシシラン、オルガノシラザン等の有機ケイ素化合物などの周知の表面処理剤により表面処理されたものであってもよい。なお、本発明の熱硬化性芳香族ポリエステル組成物の製造方法において無機フィラーは、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。中でも、特に、熱硬化性芳香族ポリエステル組成物を半導体封止材用に使用する場合には、シリカ(シリカフィラー)等を使用することが好ましく、硬化物の熱伝導性や放熱特性を調整する場合には、アルミナ(アルミナ微粒子)等を使用することが好ましい。 As the inorganic filler, known or conventional inorganic fillers can be used, and are not particularly limited. For example, silica (for example, natural silica, synthetic silica), aluminum oxide (for example, α-alumina), oxidation Oxides such as titanium, zirconium oxide, magnesium oxide, cerium oxide, yttrium oxide, calcium oxide, zinc oxide and iron oxide; carbonates such as calcium carbonate and magnesium carbonate; sulfates such as barium sulfate, aluminum sulfate and calcium sulfate; Nitride such as aluminum nitride, silicon nitride, titanium nitride, boron nitride; hydroxide such as calcium hydroxide, aluminum hydroxide, magnesium hydroxide; mica, talc, kaolin, kaolin clay, kaolinite, halloysite, pyrophyllite , Montmorillona , Sericite, amesite, bentonite, asbestos, wollastonite, sepiolite, zonolite, zeolite, hydrotalcite, fly ash, dehydrated sludge, glass beads, glass fiber, diatomaceous earth, silica sand, carbon black, sendust, Alnico magnet, magnetic powder such as various ferrites, hydrated gypsum, alum, antimony trioxide, magnesium oxysulfate, silicon carbide, potassium titanate, calcium silicate, magnesium silicate, aluminum silicate, magnesium phosphate, copper, iron Etc. The inorganic filler may have any structure such as a solid structure, a hollow structure, and a porous structure. Moreover, the said inorganic filler may be surface-treated with well-known surface treating agents, such as organosilicon compounds, such as organohalosilane, organoalkoxysilane, and organosilazane, for example. In addition, in the manufacturing method of the thermosetting aromatic polyester composition of this invention, an inorganic filler can also be used individually by 1 type, and can also be used in combination of 2 or more type. Especially, when using a thermosetting aromatic polyester composition for semiconductor sealing materials, it is preferable to use a silica (silica filler) etc., and adjust the heat conductivity and heat dissipation characteristic of hardened | cured material. In this case, it is preferable to use alumina (alumina fine particles) or the like.
 上記無機フィラー以外の添加剤としては、特に限定されないが、例えば、ジアミノ化合物[例えば、ジアミノジフェニルメタンなど]、ジアリル化合物[ジアリルビスフェノールAなど]、トリアジン類[例えば、1,3,5-トリ-2-プロペニル-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、1,3,5-トリス(2-メチル-2-プロペニル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、1,3,5-トリス(2,3-エポキシプロピル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオンなど]などが挙げられる。 Additives other than the above inorganic fillers are not particularly limited. For example, diamino compounds [eg diaminodiphenylmethane etc.], diallyl compounds [diallylbisphenol A etc.], triazines [eg 1,3,5-tri-2] -Propenyl-1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione, 1,3,5-tris (2-methyl-2-propenyl) -1,3,5-triazine -2,4,6 (1H, 3H, 5H) -trione, 1,3,5-tris (2,3-epoxypropyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione, etc.].
 上記無機フィラー以外の添加剤としては、他にも本発明の効果を損なわない範囲で、公知乃至慣用の添加剤を使用でき、例えば、シリコーン樹脂、エポキシ樹脂、フッ素樹脂等の有機樹脂;溶剤;安定化剤(酸化防止剤、紫外線吸収剤、耐光安定剤、熱安定化剤など);難燃剤(リン系難燃剤、ハロゲン系難燃剤、無機系難燃剤など);難燃助剤;補強材;核剤;カップリング剤;滑剤;ワックス;可塑剤;離型剤;耐衝撃性改良剤;色相改良剤;流動性改良剤;着色剤(染料、顔料など);分散剤;消泡剤;脱泡剤;抗菌剤;防腐剤;粘度調整剤;増粘剤などが使用できる。なお、上記添加剤は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。 As additives other than the above inorganic filler, other known or commonly used additives can be used as long as the effects of the present invention are not impaired. For example, organic resins such as silicone resins, epoxy resins, fluororesins; solvents; Stabilizers (antioxidants, ultraviolet absorbers, light stabilizers, heat stabilizers, etc.); flame retardants (phosphorous flame retardants, halogen flame retardants, inorganic flame retardants, etc.); flame retardant aids; reinforcing materials Nucleating agent; Coupling agent; Lubricant; Wax; Plasticizer; Release agent; Impact resistance improver; Hue improver; Fluidity improver; Colorant (dye, pigment, etc.); Dispersant; Defoaming agents; antibacterial agents; antiseptics; viscosity modifiers; thickeners can be used. In addition, the said additive can also be used individually by 1 type, and can also be used in combination of 2 or more type.
[硬化促進剤]
 本発明の熱硬化性芳香族ポリエステル組成物の製造方法では、硬化反応を促進し、熱硬化開始温度を下げるために、硬化促進剤を用いてもよい。硬化促進剤には、後述するラジカル発生剤も含まれるものとする。
[Curing accelerator]
In the method for producing the thermosetting aromatic polyester composition of the present invention, a curing accelerator may be used to accelerate the curing reaction and lower the thermosetting start temperature. The curing accelerator includes a radical generator described later.
 上記硬化促進剤としては、硬化反応を促進する機能を有する化合物であれば、特に制限されないが、ラジカル発生剤、イミダゾール誘導体、有機塩基及びその塩などが挙げられる。これらの硬化促進剤は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。ラジカル発生剤としては、光又は熱ラジカル発生剤として下記のものを用いることができる。 The curing accelerator is not particularly limited as long as it is a compound having a function of promoting a curing reaction, and examples thereof include a radical generator, an imidazole derivative, an organic base and a salt thereof. These curing accelerators can be used singly or in combination of two or more. As the radical generator, the following can be used as light or thermal radical generators.
 上記光ラジカル発生剤としては、例えば、ベンゾフェノン、アセトフェノンベンジル、ベンジルジメチルケトン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ジメトキシアセトフェノン、ジメトキシフェニルアセトフェノン、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキシド、ジフェニルジサルファイト、オルトベンゾイル安息香酸メチル、4-ジメチルアミノ安息香酸エチル(日本化薬(株)製 カヤキュアEPA等)、2,4-ジエチルチオキサンソン(日本化薬(株)製 カヤキュアDETX等)、2-メチル-1-[4-(メチル)フェニル]-2-モルホリノプロパノン-1(チバガイギ-(株)製 イルガキュア907等)、2-ジメチルアミノ-2-(4-モルホリノ)ベンゾイル-1-フェニルプロパン等の2-アミノ-2-ベンゾイル-1-フェニルアルカン化合物、テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン、ベンジル、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、4,4-ビスジエチルアミノベンゾフェノン等のアミノベンゼン誘導体、2,2’-ビス(2-クロロフェニル)-4,5,4’,5’-テトラフェニル-1,2’-ビイミダゾ-ル(保土谷化学(株)製 B-CIM等)等のイミダゾール化合物、2,6-ビス(トリクロロメチル)-4-(4-メトキシナフタレン-1-イル)-1,3,5-トリアジン等のハロメチル化トリアジン化合物、2-トリクロロメチル-5-(2-ベンゾフラン2-イル-エテニル)-1,3,4-オキサジアゾール等のハロメチルオキサジアゾール化合物などが挙げられる。これらの光ラジカル重合開始剤は単独で、又は2種以上を組み合わせて使用することができる。また、本発明の樹脂組成物には、必要に応じて、光増感剤を加えることができる。上記光ラジカル重合開始剤としては、例えば、ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキシドのように、波長400nm付近の光で活性化するものが好ましい。 Examples of the photo radical generator include benzophenone, acetophenone benzyl, benzyl dimethyl ketone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, dimethoxyacetophenone, dimethoxyphenylacetophenone, diethoxyacetophenone, 2-hydroxy-2- Methyl propiophenone, diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide, diphenyl disulfite, methyl orthobenzoylbenzoate, ethyl 4-dimethylaminobenzoate (Nippon Kayaku Co., Ltd. Sakai Kayacure EPA, etc.), 2,4-diethylthioxanthone (Nippon Kayaku Co., Ltd. Kayacure DETX etc.), 2-methyl-1- [4- (methyl) phenyl] -2-morpholinopropano 2-amino-2-benzoyl-1-phenylalkane compounds such as 2-methyl-1- (4-morpholino) benzoyl-1-phenylpropane, tetra-1, Aminobenzene derivatives such as (t-butylperoxycarbonyl) benzophenone, benzyl, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 4,4-bisdiethylaminobenzophenone, 2,2′-bis ( Imidazole compounds such as 2-chlorophenyl) -4,5,4 ′, 5′-tetraphenyl-1,2′-biimidazole (eg, Bodo-CIM manufactured by Hodogaya Chemical Co., Ltd.), 2,6-bis ( Halomethylated triazine compounds such as trichloromethyl) -4- (4-methoxynaphthalen-1-yl) -1,3,5-triazine And halomethyloxadiazole compounds such as 2-trichloromethyl-5- (2-benzofuran-2-yl-ethenyl) -1,3,4-oxadiazole. These radical photopolymerization initiators can be used alone or in combination of two or more. Moreover, a photosensitizer can be added to the resin composition of this invention as needed. As the photo radical polymerization initiator, for example, those activated by light having a wavelength of around 400 nm, such as diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide, are preferable.
 上記熱ラジカル発生剤としては、例えば、有機過酸化物類などが挙げられる。上記有機過酸化物類としては、例えば、ジアルキルパーオキサイド、アシルパーオキサイド、ハイドロパーオキサイド、ケトンパーオキサイド、パーオキシエステル等を使用することができる。有機過酸化物の具体例としては、ベンゾイルパーオキサイド、t-ブチルパーオキシ-2-エチルヘキサネート、2,5-ジメチル-2,5-ジ(2-エチルヘキサノイル)パーオキシヘキサン、t-ブチルパーオキシベンゾエート、t-ブチルパーオキサイド、クメンハイドロパーオキサイド、ジクミルパーオキサイド、ジーt-ブチルパーオキサイド、2,5-ジメチル-2,5-ジブチルパーオキシヘキサン、2,4-ジクロロベンゾイルパーオキサイド、ジ-t-ブチルパーオキシ-ジイソプロピルベンゼン、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、メチルエチルケトンパーオキシド、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート等が挙げられる。その他のラジカル発生剤としては、2,3-ジメチル-2,3-ジフェニルブタンが挙げられる。中でも、ジクミルパーオキサイド、2,3-ジメチル-2,3-ジフェニルブタンが好ましい。これらのラジカル発生剤は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。 Examples of the thermal radical generator include organic peroxides. Examples of the organic peroxides that can be used include dialkyl peroxides, acyl peroxides, hydroperoxides, ketone peroxides, and peroxyesters. Specific examples of the organic peroxide include benzoyl peroxide, t-butylperoxy-2-ethylhexanate, 2,5-dimethyl-2,5-di (2-ethylhexanoyl) peroxyhexane, t- Butyl peroxybenzoate, t-butyl peroxide, cumene hydroperoxide, dicumyl peroxide, di-t-butyl peroxide, 2,5-dimethyl-2,5-dibutylperoxyhexane, 2,4-dichlorobenzoyl peroxide Oxide, di-t-butylperoxy-diisopropylbenzene, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, methyl ethyl ketone peroxide, 1,1,3,3-tetramethylbutyl Peroxy-2-ethylhexanoate and the like. Other radical generators include 2,3-dimethyl-2,3-diphenylbutane. Of these, dicumyl peroxide and 2,3-dimethyl-2,3-diphenylbutane are preferable. One of these radical generators can be used alone, or two or more thereof can be used in combination.
 さらに、上記熱ラジカル発生剤とともに、ナフテン酸コバルト、ナフテン酸マンガン、ナフテン酸亜鉛、オクテン酸コバルト等のナフテン酸やオクテン酸のコバルト、マンガン、鉛、亜鉛、バナジウムなどの金属塩を併用することができる。同様に、ジメチルアニリン等の3級アミンも使用することができる。 Furthermore, together with the above thermal radical generator, a metal salt such as naphthenic acid such as cobalt naphthenate, manganese naphthenate, zinc naphthenate, cobalt octenoate, cobalt octenoate, manganese, lead, zinc, vanadium, etc. it can. Similarly, tertiary amines such as dimethylaniline can be used.
 上記イミダゾール誘導体としては、2-メチルイミダゾール、2-エチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾールなどが挙げられる。これらのイミダゾール誘導体は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。 Examples of the imidazole derivatives include 2-methylimidazole, 2-ethylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 1 -Cyanoethyl-2-ethyl-4-methylimidazole and the like. These imidazole derivatives can be used alone or in combination of two or more.
 上記有機塩基及びその塩としては、例えば、1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)、及びその塩(例えば、フェノール塩、オクチル酸塩、p-トルエンスルホン酸塩、ギ酸塩、テトラフェニルボレート塩);1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)、及びその塩(例えば、ホスホニウム塩、スルホニウム塩、4級アンモニウム塩、ヨードニウム塩);ベンジルジメチルアミン、2,4,6-トリス(ジメチルアミノメチル)フェノール、N,N-ジメチルシクロヘキシルアミンなどの3級アミン;2-エチル-4-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾールなどのイミダゾール;リン酸エステル、トリフェニルホスフィンなどのホスフィン類;テトラフェニルホスホニウムテトラ(p-トリル)ボレートなどのホスホニウム化合物などが挙げられる。これらの有機塩基及びその塩は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。 Examples of the organic base and salts thereof include 1,8-diazabicyclo [5.4.0] undecene-7 (DBU) and salts thereof (for example, phenol salts, octylates, p-toluenesulfonates, Formate, tetraphenylborate salt); 1,5-diazabicyclo [4.3.0] nonene-5 (DBN) and salts thereof (eg, phosphonium salts, sulfonium salts, quaternary ammonium salts, iodonium salts); benzyl Tertiary amines such as dimethylamine, 2,4,6-tris (dimethylaminomethyl) phenol, N, N-dimethylcyclohexylamine; 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-ethyl-4-methyl Imidazoles such as imidazole; Phosphates such as phosphate esters and triphenylphosphine; Tetra E sulfonyl phosphonium tetra (p- tolyl) phosphonium compounds such as borate and the like. These organic bases and salts thereof can be used singly or in combination of two or more.
 また、上記有機塩基及びその塩としては、U-CAT SA 506、U-CAT SA 102、U-CAT 5003、U-CAT 18X(以上、サンアプロ(株)製)、TPP-K、TPP-MK(以上、北興化学工業(株)製)、PX-4ET(日本化学工業(株)製)などの市販品を使用することもできる。 Examples of the organic base and salts thereof include U-CAT SA 506, U-CAT SA 102, U-CAT 5003, U-CAT 18X (above, manufactured by San Apro Co., Ltd.), TPP-K, TPP-MK ( As described above, commercially available products such as Hokuko Chemical Co., Ltd. and PX-4ET (Nihon Chemical Industry Co., Ltd.) can also be used.
 上記硬化促進剤の配合量は、特に制限されないが、芳香族ポリエステル(A)100重量部に対して、0.01~10重量部が好ましく、0.05~5重量部がより好ましい。 The amount of the curing accelerator is not particularly limited, but is preferably 0.01 to 10 parts by weight and more preferably 0.05 to 5 parts by weight with respect to 100 parts by weight of the aromatic polyester (A).
[第1の製造方法]
 第1の製造方法は、上述のように、芳香族ポリエステル(A)と添加剤とを溶融混合する工程I、及び前記工程Iで得られた混合物に架橋性化合物(B)を加えて溶融混合する工程IIを含む限り特に制限されない。添加剤としては、上記添加剤(特に、無機フィラー)が挙げられる。芳香族ポリエステル(A)と前記工程Iで得られた混合物に架橋性化合物(B)を加えて溶融混合することにより、主に芳香族ポリエステル(A)の反応性官能基(a)(水酸基、アシルオキシ基、芳香族環、及び共役ジエン構造からなる群より選択された少なくとも1種)と、架橋性化合物(B)の反応性官能基(b)との反応(例えば、付加反応)が主に進行し、熱硬化性を有する芳香族ポリエステル組成物が得られる。なお、熱硬化性芳香族ポリエステル組成物を製造するにあたり、芳香族ポリエステル(A)は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。同様に、架橋性化合物(B)は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
[First manufacturing method]
As described above, in the first production method, the aromatic polyester (A) and the additive are melt-mixed in Step I, and the mixture obtained in Step I is added with the crosslinkable compound (B) and melt-mixed. There is no particular limitation as long as it includes step II. Examples of the additive include the above additives (particularly inorganic fillers). By adding the crosslinkable compound (B) to the mixture obtained in the step I and the aromatic polyester (A) and melt-mixing, the reactive functional group (a) of the aromatic polyester (A) (hydroxyl group, Reaction (for example, addition reaction) mainly with the reactive functional group (b) of the crosslinkable compound (B) and at least one selected from the group consisting of an acyloxy group, an aromatic ring, and a conjugated diene structure) It progresses and the aromatic polyester composition which has thermosetting property is obtained. In producing a thermosetting aromatic polyester composition, the aromatic polyester (A) can be used alone or in combination of two or more. Similarly, the crosslinkable compound (B) can be used alone or in combination of two or more.
 芳香族ポリエステル(A)と添加剤(特に、無機フィラー)の配合量(配合割合)は、添加剤の種類等により異なり、特に限定されない。添加剤(特に、無機フィラー)の配合量は、芳香族ポリエステル(A)100重量部に対して、10~4000重量部が好ましく、30~3000重量部がより好ましく、50~2000重量部がさらに好ましく、100~1500重量部が特に好ましい。添加剤の配合量が上記範囲であると、芳香族ポリエステル(A)を十分に希釈することができ、硬化反応の進行を抑え、熱硬化性芳香族ポリエステル組成物の粘度上昇を抑えることができ、また、熱硬化性芳香族ポリエステル組成物中に架橋剤が多量に残存しすぎることがなく、硬化物の物性に悪影響が及びにくい。 The blending amount (blending ratio) of the aromatic polyester (A) and the additive (particularly inorganic filler) varies depending on the type of the additive and the like and is not particularly limited. The amount of the additive (particularly inorganic filler) is preferably 10 to 4000 parts by weight, more preferably 30 to 3000 parts by weight, and further 50 to 2000 parts by weight with respect to 100 parts by weight of the aromatic polyester (A). 100 to 1500 parts by weight is preferable. When the blending amount of the additive is within the above range, the aromatic polyester (A) can be sufficiently diluted, the progress of the curing reaction can be suppressed, and the increase in the viscosity of the thermosetting aromatic polyester composition can be suppressed. Further, a large amount of the crosslinking agent does not remain in the thermosetting aromatic polyester composition, and the physical properties of the cured product are hardly adversely affected.
 上記配合する添加剤(特に、無機フィラー)の少なくとも50重量%以上(より好ましくは80重量%以上、さらに好ましくは90重量%、特に好ましくは100重量%)を工程Iで添加することが好ましい。 It is preferable to add at least 50% by weight (more preferably 80% by weight or more, still more preferably 90% by weight, particularly preferably 100% by weight) of the additive (particularly inorganic filler) to be blended in Step I.
 芳香族ポリエステル(A)と架橋性化合物(B)の配合量(配合割合)は、芳香族ポリエステル(A)や架橋性化合物(B)の種類等により異なり、特に限定されない。架橋性化合物(B)の配合量は、芳香族ポリエステル(A)100重量部に対して、10~400重量部が好ましく、20~300重量部がより好ましく、30~250重量部がさらに好ましい。架橋性化合物(B)の配合量が上記範囲であると、熱硬化性芳香族ポリエステル組成物の硬化性が低下しにくく、組成物中に架橋性化合物(B)が多量に残存しすぎることがなく、硬化物の物性に悪影響が及びにくい。 The blending amount (blending ratio) of the aromatic polyester (A) and the crosslinkable compound (B) varies depending on the types of the aromatic polyester (A) and the crosslinkable compound (B) and is not particularly limited. The amount of the crosslinkable compound (B) is preferably 10 to 400 parts by weight, more preferably 20 to 300 parts by weight, and even more preferably 30 to 250 parts by weight with respect to 100 parts by weight of the aromatic polyester (A). When the blending amount of the crosslinkable compound (B) is within the above range, the curability of the thermosetting aromatic polyester composition is hardly lowered, and a large amount of the crosslinkable compound (B) may remain in the composition. There is no adverse effect on the physical properties of the cured product.
 上記配合する架橋性化合物(B)は、全量を工程IIで加えることが好ましいが、本発明の効果を損なわない範囲で、一部(例えば、全配合量の10重量%以下、好ましくは5重量%以下)を工程Iで加えてもよい。 The crosslinkable compound (B) to be blended is preferably added in the whole amount in Step II, but a part (for example, 10% by weight or less of the total blended amount, preferably 5% by weight within the range not impairing the effects of the present invention) % Or less) may be added in step I.
 本発明における熱硬化性芳香族ポリエステル組成物中の、芳香族ポリエステル(A)100重量部に対する、添加剤(特に、無機フィラー)及び架橋性化合物(B)のそれぞれの配合量は、添加剤が10~4000重量部、架橋性化合物(B)が10~400重量部が好ましく、添加剤が30~3000重量部、架橋性化合物(B)が20~300重量部がより好ましい。 In the thermosetting aromatic polyester composition of the present invention, the additive (especially inorganic filler) and the crosslinkable compound (B) are each added in an amount of 100 parts by weight of the aromatic polyester (A). 10 to 4000 parts by weight, the crosslinkable compound (B) is preferably 10 to 400 parts by weight, the additive is preferably 30 to 3000 parts by weight, and the crosslinkable compound (B) is more preferably 20 to 300 parts by weight.
 工程Iにおいて、上記芳香族ポリエステル(A)と添加剤(特に、無機フィラー)とを溶融混合する際の混合温度は、芳香族ポリエステル(A)を溶融させることができる温度であればよく、特に限定されないが、300℃以下(例えば、80~300℃)が好ましく、250℃以下がより好ましく、200℃以下がさらに好ましい。なお、溶融混合の温度は、溶融混合する間一定となるように制御することもできるし、段階的又は連続的に変動するように制御することもできる。 In Step I, the mixing temperature when the aromatic polyester (A) and the additive (particularly inorganic filler) are melt-mixed may be any temperature that can melt the aromatic polyester (A). Although not limited, it is preferably 300 ° C. or lower (for example, 80 to 300 ° C.), more preferably 250 ° C. or lower, and further preferably 200 ° C. or lower. The temperature of melt mixing can be controlled to be constant during melt mixing, or can be controlled to vary stepwise or continuously.
 工程Iにおいて、上記芳香族ポリエステル(A)と添加剤(特に、無機フィラー)とを溶融混合する時間は、特に限定されないが、4~120分が好ましく、6~60分がより好ましく、8~30分がさらに好ましい。溶融混合の時間が上記範囲であると、硬化物の生産性が低下せず、添加剤をより均一に分散させることができる。 In Step I, the time for melting and mixing the aromatic polyester (A) and the additive (particularly inorganic filler) is not particularly limited, but is preferably 4 to 120 minutes, more preferably 6 to 60 minutes, and more preferably 8 to 30 minutes is more preferable. When the melt mixing time is within the above range, the productivity of the cured product does not decrease, and the additive can be more uniformly dispersed.
 工程IIにおいて、上記架橋性化合物(B)と溶融混合する際の混合温度は、芳香族ポリエステル(A)及び架橋性化合物(B)を溶融させることができる温度(特に、芳香族ポリエステル(A)の融点以上)であればよく、特に限定されないが、200℃以下(例えば、80~200℃)が好ましく、190℃以下がより好ましく、180℃以下がさらに好ましい。溶融混合の温度が200℃以下であると、架橋性化合物(B)に由来する熱重合性官能基の重合反応を抑制でき、粘度の急激な上昇を抑えることができる。なお、溶融混合する際の温度は、溶融混合する間一定となるように制御することもできるし、段階的又は連続的に変動するように制御することもできる。 In step II, the mixing temperature at the time of melt mixing with the crosslinkable compound (B) is a temperature at which the aromatic polyester (A) and the crosslinkable compound (B) can be melted (in particular, the aromatic polyester (A)). The melting point is not lower than 200 ° C. (for example, 80 to 200 ° C.), more preferably 190 ° C. or less, and even more preferably 180 ° C. or less. When the temperature of the melt mixing is 200 ° C. or less, the polymerization reaction of the thermally polymerizable functional group derived from the crosslinkable compound (B) can be suppressed, and a rapid increase in viscosity can be suppressed. In addition, the temperature at the time of melt mixing can be controlled so as to be constant during the melt mixing, or can be controlled so as to fluctuate stepwise or continuously.
 工程IIにおいて、上記架橋性化合物(B)と溶融混合する時間は、特に限定されないが、30~600分が好ましく、より好ましくは40~400分であり、さらに好ましくは50~200分である。溶融混合の時間が上記範囲であると、硬化物の生産性が低下せず、芳香族ポリエステル(A)と架橋性化合物(B)の反応を進行させることができる。 In Step II, the time for melt mixing with the crosslinkable compound (B) is not particularly limited, but is preferably 30 to 600 minutes, more preferably 40 to 400 minutes, and further preferably 50 to 200 minutes. When the melt mixing time is within the above range, the productivity of the cured product does not decrease, and the reaction between the aromatic polyester (A) and the crosslinkable compound (B) can proceed.
 特に、第1の製造方法では、工程Iにおいて、芳香族ポリエステル(A)と添加剤(特に、無機フィラー)を溶融混合する際の混合温度が80~300℃、工程IIにおいて、架橋性化合物(B)を加え溶融混合する際の混合温度が80~200℃、混合時間が30~600分であることが好ましい。 In particular, in the first production method, in Step I, the mixing temperature when the aromatic polyester (A) and the additive (especially inorganic filler) are melt-mixed is 80 to 300 ° C., and in Step II, the crosslinkable compound ( It is preferable that the mixing temperature at the time of adding and mixing B) is 80 to 200 ° C. and the mixing time is 30 to 600 minutes.
 第1の製造方法では、工程IIにおいて、架橋性化合物(B)を加え溶融混合後、均一な熱硬化性芳香族ポリエステル組成物が得られたときの熱硬化性芳香族ポリエステル組成物の溶融粘度(初期複素粘度)は、200℃以下(例えば、180℃)において、1000Pa・s以下が好ましく、500Pa・s以下がより好ましく、200Pa・s以下がさらに好ましく、100Pa・s以下が特に好ましい。初期複素粘度が、1000Pa・s以下であると、トランスファー成形等の成形がしやすくなる。なお、溶融粘度(初期複素粘度)は、レオメーター(粘弾性測定装置)(商品名「MCR-302」、アントンパール社製)を用いて測定できる。 In the first production method, in Step II, the melt viscosity of the thermosetting aromatic polyester composition when a uniform thermosetting aromatic polyester composition is obtained after the crosslinkable compound (B) is added and melt mixed. The (initial complex viscosity) is preferably at most 1000 Pa · s, more preferably at most 500 Pa · s, further preferably at most 200 Pa · s, particularly preferably at most 100 Pa · s at 200 ° C. or less (for example, 180 ° C.). When the initial complex viscosity is 1000 Pa · s or less, molding such as transfer molding is facilitated. The melt viscosity (initial complex viscosity) can be measured using a rheometer (viscoelasticity measuring device) (trade name “MCR-302”, manufactured by Anton Paar).
 なお、上記無機フィラー以外の添加剤は、工程Iの芳香族ポリエステル(A)と無機フィラーを溶融混合する際にともに配合することができ、工程IIの架橋性化合物(B)とともに溶融混合する際にも配合することもできる。
Figure JPOXMLDOC01-appb-I000013
The additives other than the inorganic filler can be blended together when the aromatic polyester (A) in Step I and the inorganic filler are melt-mixed, and when melt-mixed with the crosslinkable compound (B) in Step II. Can also be blended.
Figure JPOXMLDOC01-appb-I000013
 工程I及び工程IIにおいて、上記溶融混合は、常圧下で行うこともできるし、減圧下又は加圧下で行うこともできる。また、上記溶融混合は、一段階で行うこともできるし、二段階以上の多段階に分けて行うこともできる。 In Step I and Step II, the melt mixing can be performed under normal pressure, or can be performed under reduced pressure or under pressure. Moreover, the said melt mixing can also be performed in one step, and can also be performed by dividing into two or more steps.
 工程I及び工程IIにおいて、上記溶融混合は、公知乃至慣用の装置(溶融混合装置)を使用して実施することができる。上記溶融混合装置としては、特に限定されないが、一軸押出機、二軸押出機などの押出機;パドルミキサー、高速流動式ミキサー、リボンミキサー、バンバリーミキサー、ハーケミキサー、スタティックミキサーなどのミキサー;ニーダーなどが挙げられる。 In Step I and Step II, the melt mixing can be performed using a known or conventional device (melt mixing device). Although it does not specifically limit as said melt-mixing apparatus, Extruders, such as a single screw extruder and a twin screw extruder; Mixers, such as a paddle mixer, a high-speed fluidized mixer, a ribbon mixer, a Banbury mixer, a Haake mixer, a static mixer; Kneader etc. Is mentioned.
 芳香族ポリエステル(A)と架橋性化合物(B)とを溶融混合することにより、本発明における熱硬化性芳香族ポリエステル組成物が得られる。本発明における熱硬化性芳香族ポリエステル組成物は、芳香族ポリエステル(A)の分子鎖末端の反応性官能基(a)と、架橋性化合物(B)の反応性官能基(b)とが溶融混合時に反応することにより形成される反応物を必須成分として含む組成物である。上記反応物は、芳香族ポリエステル(A)の1以上と架橋性化合物(B)の1以上とが上述の反応(例えば、付加反応)により結合したものである。 The thermosetting aromatic polyester composition in the present invention can be obtained by melt-mixing the aromatic polyester (A) and the crosslinkable compound (B). In the thermosetting aromatic polyester composition of the present invention, the reactive functional group (a) at the molecular chain end of the aromatic polyester (A) and the reactive functional group (b) of the crosslinkable compound (B) are melted. It is a composition which contains the reaction material formed by reacting at the time of mixing as an essential component. In the reaction product, one or more of the aromatic polyester (A) and one or more of the crosslinkable compound (B) are bonded by the above-described reaction (for example, addition reaction).
 具体的には、上述の芳香族ポリエステル(A)と添加剤と、架橋性化合物(B)の反応物は、例えば、芳香族ポリエステル(A)が反応性官能基(a)として水酸基を有する場合であって、架橋性化合物(B)として上記式(i)で表される化合物を用いた場合には、下記式(1)で表される。
Figure JPOXMLDOC01-appb-C000014
Specifically, the reaction product of the above-described aromatic polyester (A), additive, and crosslinkable compound (B) is, for example, when the aromatic polyester (A) has a hydroxyl group as the reactive functional group (a). And when the compound represented by the said Formula (i) is used as a crosslinkable compound (B), it represents with following formula (1).
Figure JPOXMLDOC01-appb-C000014
 上記式(1)におけるL1は、芳香族ポリエステル骨格を示す。当該芳香族ポリエステル骨格としては、例えば、芳香族ポリエステル(A)から1つの水酸基(分子鎖末端の水酸基)を除いた骨格、2以上の芳香族ポリエステル(A)が1以上の架橋性化合物(B)(式(i)で表される化合物)と反応して連結することにより形成されたもの(反応物)から1つの水酸基(分子鎖末端の水酸基)を除いた骨格などが挙げられる。 L 1 in the above formula (1) represents an aromatic polyester skeleton. Examples of the aromatic polyester skeleton include a skeleton obtained by removing one hydroxyl group (hydroxyl group at the end of the molecular chain) from the aromatic polyester (A), and two or more aromatic polyesters (A) having one or more crosslinkable compounds (B ) (A compound represented by the formula (i)) and a skeleton obtained by removing one hydroxyl group (hydroxyl group at the end of the molecular chain) from those formed by reacting and linking (reaction product).
 上記式(1)におけるX1、X2、R1、R2、Y1、Y2、n1、n2は、上記式(i)におけるものと同じである。 X 1 , X 2 , R 1 , R 2 , Y 1 , Y 2 , n1, and n2 in the above formula (1) are the same as those in the above formula (i).
 また、上記反応物は、例えば、芳香族ポリエステル(A)が反応性官能基(a)として芳香族環式基を有する場合であって、架橋性化合物(B)として上記式(i)で表される化合物を用いた場合には、芳香族ポリエステル(A)の芳香族環と架橋性化合物(B)の炭素-炭素二重結合とが環化反応(例えば、環化付加反応)して形成される反応物であってもよい。 The reactant is, for example, a case where the aromatic polyester (A) has an aromatic cyclic group as the reactive functional group (a), and is represented by the formula (i) as the crosslinkable compound (B). When the compound is used, the aromatic ring of the aromatic polyester (A) and the carbon-carbon double bond of the crosslinkable compound (B) are formed by a cyclization reaction (for example, a cycloaddition reaction). May be a reaction product.
 また、上記反応物は、例えば、芳香族ポリエステル(A)が反応性官能基(a)として共役ジエン構造を有する場合であって、架橋性化合物(B)として上記式(i)で表される化合物を用いた場合には、芳香族ポリエステル(A)の共役ジエン構造と架橋性化合物(B)の炭素-炭素二重結合とが環化反応(例えば、環化付加反応)して形成される反応物であってもよい。 The reactant is, for example, a case where the aromatic polyester (A) has a conjugated diene structure as the reactive functional group (a), and is represented by the above formula (i) as the crosslinkable compound (B). When the compound is used, the conjugated diene structure of the aromatic polyester (A) and the carbon-carbon double bond of the crosslinkable compound (B) are formed by a cyclization reaction (for example, a cycloaddition reaction). It may be a reactant.
 また、上述の芳香族ポリエステル(A)と架橋性化合物(B)の反応物は、例えば、芳香族ポリエステル(A)が反応性官能基(a)として水酸基を有する場合であって、架橋性化合物(B)として上記式(ii)で表される化合物を用いた場合には、下記式(2)で表される。
Figure JPOXMLDOC01-appb-C000015
The reaction product of the aromatic polyester (A) and the crosslinkable compound (B) is, for example, a case where the aromatic polyester (A) has a hydroxyl group as the reactive functional group (a), and the crosslinkable compound When the compound represented by the above formula (ii) is used as (B), it is represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000015
 上記式(2)におけるL2は、芳香族ポリエステル骨格を示す。当該芳香族ポリエステル骨格としては、例えば、芳香族ポリエステル(A)から1つの水酸基(分子鎖末端の水酸基)を除いた骨格、2以上の芳香族ポリエステル(A)が1以上の架橋性化合物(B)(式(ii)で表される化合物)と反応して連結することにより形成されたもの(反応物)から1つの水酸基(分子鎖末端の水酸基)を除いた骨格などが挙げられる。また、上記式(2)におけるX3、X4、Y3、Y4、n3、n4は、上記式(ii)におけるものと同じである。 L 2 in the above formula (2) represents an aromatic polyester skeleton. Examples of the aromatic polyester skeleton include a skeleton obtained by removing one hydroxyl group (hydroxyl group at the end of the molecular chain) from the aromatic polyester (A), and two or more aromatic polyesters (A) having one or more crosslinkable compounds (B ) (A compound represented by the formula (ii)) and a skeleton obtained by removing one hydroxyl group (hydroxyl group at the end of the molecular chain) from those formed by reacting and linking (reaction product). X 3 , X 4 , Y 3 , Y 4 , n3, and n4 in the above formula (2) are the same as those in the above formula (ii).
 また、上述の芳香族ポリエステル(A)と架橋性化合物(B)の反応物は、例えば、芳香族ポリエステル(A)が反応性官能基(a)として水酸基又はアシルオキシ基を有する場合であって、架橋性化合物(B)として上記式(iii)で表される化合物を用いた場合には、下記式(3)で表される。
Figure JPOXMLDOC01-appb-C000016
The reaction product of the aromatic polyester (A) and the crosslinkable compound (B) is, for example, a case where the aromatic polyester (A) has a hydroxyl group or an acyloxy group as the reactive functional group (a). When the compound represented by the above formula (iii) is used as the crosslinkable compound (B), it is represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000016
 上記式(3)におけるL3は、芳香族ポリエステル骨格を示す。当該芳香族ポリエステル骨格としては、例えば、芳香族ポリエステル(A)から1つの水酸基(分子鎖末端の水酸基)又はアシルオキシ基(分子鎖末端のアシルオキシ基)を除いた骨格、2以上の芳香族ポリエステル(A)が1以上の架橋性化合物(B)(式(iii)で表される化合物)と反応して連結することにより形成されたもの(反応物)から1つの水酸基(分子鎖末端の水酸基)又はアシルオキシ基(分子鎖末端のアシルオキシ基)を除いた骨格などが挙げられる。また、上記式(3)におけるX5、Y5、n5は、上記式(iii)におけるものと同じである。 L 3 in the above formula (3) represents an aromatic polyester skeleton. Examples of the aromatic polyester skeleton include a skeleton obtained by removing one hydroxyl group (hydroxyl group at the molecular chain terminal) or acyloxy group (acyloxy group at the molecular chain terminal) from the aromatic polyester (A), two or more aromatic polyesters ( One hydroxyl group (hydroxyl group at the end of the molecular chain) from one formed by reacting and linking A) with one or more crosslinkable compounds (B) (compound represented by formula (iii)) Alternatively, a skeleton excluding an acyloxy group (acyloxy group at the end of the molecular chain) may be used. X 5 , Y 5 , and n5 in the above formula (3) are the same as those in the above formula (iii).
 また、上述の芳香族ポリエステル(A)と架橋性化合物(B)の反応物は、例えば、芳香族ポリエステル(A)が反応性官能基として水酸基を有する場合であって、架橋性化合物(B)として上記式(iv)で表される化合物を用いた場合には、下記式(4)又は下記式(5)で表される。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
The reaction product of the aromatic polyester (A) and the crosslinkable compound (B) is, for example, a case where the aromatic polyester (A) has a hydroxyl group as a reactive functional group, and the crosslinkable compound (B). When the compound represented by the above formula (iv) is used, it is represented by the following formula (4) or the following formula (5).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
 上記式(4)及び式(5)におけるL4は、芳香族ポリエステル骨格を示す。当該芳香族ポリエステル骨格としては、例えば、芳香族ポリエステル(A)から1つの水酸基(分子鎖末端の水酸基)を除いた骨格、2以上の芳香族ポリエステル(A)が1以上の架橋性化合物(B)(式(iv)で表される化合物)と反応して連結することにより形成されたもの(反応物)から1つの水酸基(分子鎖末端の水酸基)を除いた骨格などが挙げられる。また、上記式(4)及び式(5)におけるX6、Y6、R3~R5、n6は、上記式(iv)におけるものと同じである。 L 4 in the above formulas (4) and (5) represents an aromatic polyester skeleton. Examples of the aromatic polyester skeleton include a skeleton obtained by removing one hydroxyl group (hydroxyl group at the end of the molecular chain) from the aromatic polyester (A), and two or more aromatic polyesters (A) having one or more crosslinkable compounds (B ) (Compound represented by formula (iv)) and a skeleton obtained by removing one hydroxyl group (hydroxyl group at the end of the molecular chain) from those formed by reacting and linking (reaction product). In the above formulas (4) and (5), X 6 , Y 6 , R 3 to R 5 and n6 are the same as those in the above formula (iv).
 第1の製造方法において、熱硬化性芳香族ポリエステル組成物の発熱開始温度は、特に制限されないが、250℃以下(例えば、100~250℃)が好ましく、230℃以下がより好ましく、210℃以下がさらに好ましい。発熱開始温度が250℃以下であると、硬化させる温度(硬化温度)が高くなり過ぎない。なお、上記発熱開始温度は、DSCにて、曲線がベースラインから立ち上がり始める温度を示す。 In the first production method, the heat generation starting temperature of the thermosetting aromatic polyester composition is not particularly limited, but is preferably 250 ° C. or lower (eg, 100 to 250 ° C.), more preferably 230 ° C. or lower, and 210 ° C. or lower. Is more preferable. When the heat generation start temperature is 250 ° C. or lower, the curing temperature (curing temperature) does not become too high. The heat generation start temperature is a temperature at which the curve starts to rise from the baseline in DSC.
 上述のように、第1の製造方法は、芳香族ポリエステル(A)と添加剤とを溶融混合する工程I、及び前記工程Iで得られた混合物に架橋性化合物(B)を加えて溶融混合する工程IIを含むことにより、芳香族ポリエステル(A)と架橋性化合物(B)の溶融混合時の熱硬化性芳香族ポリエステル組成物における、芳香族ポリエステル(A)の相対的な割合が低くなり、希釈されることにより架橋反応(熱重合反応)の反応速度が低下し、また、架橋性化合物(B)の受ける加熱時間が少なくなり、熱硬化性芳香族ポリエステル組成物の粘度上昇を抑えることができる。 As described above, in the first production method, the aromatic polyester (A) and the additive are melt-mixed, and the crosslinkable compound (B) is added to the mixture obtained in the step I and melt-mixed. By including Step II to be performed, the relative proportion of the aromatic polyester (A) in the thermosetting aromatic polyester composition at the time of melt mixing of the aromatic polyester (A) and the crosslinkable compound (B) is lowered. By diluting, the reaction rate of the crosslinking reaction (thermal polymerization reaction) decreases, and the heating time that the crosslinking compound (B) receives decreases, thereby suppressing the increase in viscosity of the thermosetting aromatic polyester composition. Can do.
[第2の製造方法]
 第2の製造方法は、上述のように、芳香族ポリエステル(A)にマレイミド誘導体(B’)を加え、混合する工程を含む限り、特に制限されない。上記混合は、芳香族ポリエステル(A)とマレイミド誘導体(B’)の少なくとも一部を溶融させた状態で行ってもよく、また、芳香族ポリエステル(A)とマレイミド誘導体(B’)の少なくとも一部を溶媒に溶解させた状態で行ってもよい。上記混合により、芳香族ポリエステル(A)の反応性官能基(a)(水酸基、アシルオキシ基、芳香族環、及び共役ジエン構造からなる群より選択された少なくとも1種)と、マレイミド誘導体(B’)のマレイミド基との反応(例えば、付加反応)が主に進行し、反応物(例えば、付加物)を形成してもよい。なお、本発明の製造方法では、熱硬化性芳香族ポリエステル組成物を製造するにあたり、芳香族ポリエステル(A)は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。同様に、マレイミド誘導体(B’)は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
[Second manufacturing method]
As described above, the second production method is not particularly limited as long as it includes a step of adding and mixing the maleimide derivative (B ′) to the aromatic polyester (A). The mixing may be performed in a state where at least a part of the aromatic polyester (A) and the maleimide derivative (B ′) is melted, or at least one of the aromatic polyester (A) and the maleimide derivative (B ′). You may carry out in the state which dissolved the part in the solvent. By the above mixing, the reactive functional group (a) of the aromatic polyester (A) (at least one selected from the group consisting of a hydroxyl group, an acyloxy group, an aromatic ring, and a conjugated diene structure) and a maleimide derivative (B ′ ) Reaction with a maleimide group (for example, an addition reaction) may proceed mainly to form a reaction product (for example, an adduct). In the production method of the present invention, in producing a thermosetting aromatic polyester composition, the aromatic polyester (A) can be used alone or in combination of two or more. You can also. Similarly, the maleimide derivative (B ′) can be used alone or in combination of two or more.
 第2の製造方法において、芳香族ポリエステル(A)とマレイミド誘導体(B’)の配合割合(配合量)は、芳香族ポリエステル(A)やマレイミド誘導体(B’)の種類等により異なり、特に限定されない。マレイミド誘導体(B’)の配合量は、芳香族ポリエステル(A)100重量部に対して、10~400重量部が好ましく、20~300重量部がより好ましく、30~250重量部がさらに好ましい。マレイミド誘導体(B’)の配合量が上記範囲であると、熱硬化性芳香族ポリエステル組成物の硬化性が低下せず、また、組成物中にマレイミド誘導体(B’)が多量に残存しすぎることがなく、硬化物の物性に悪影響が及びにくい。 In the second production method, the blending ratio (blending amount) of the aromatic polyester (A) and the maleimide derivative (B ′) varies depending on the types of the aromatic polyester (A) and the maleimide derivative (B ′) and is particularly limited. Not. The blending amount of the maleimide derivative (B ′) is preferably 10 to 400 parts by weight, more preferably 20 to 300 parts by weight, and still more preferably 30 to 250 parts by weight with respect to 100 parts by weight of the aromatic polyester (A). When the blending amount of the maleimide derivative (B ′) is within the above range, the curability of the thermosetting aromatic polyester composition does not decrease, and a large amount of the maleimide derivative (B ′) remains in the composition. It is difficult to adversely affect the physical properties of the cured product.
 芳香族ポリエステル(A)にマレイミド誘導体(B’)を混合する際の混合温度は、芳香族ポリエステル(A)とマレイミド誘導体(B’)を溶融、又は溶媒に溶解させることができる温度であればよく、特に限定されないが、200℃以下(80~200℃)が好ましく、160℃以下がより好ましい。混合の温度が200℃以下であると、架橋反応が進行せず、組成物の粘度の上昇を抑えることができる。なお、混合する際の温度は、混合する間一定となるように制御することもできるし、段階的又は連続的に変動するように制御することもできる。 The mixing temperature when mixing the maleimide derivative (B ′) with the aromatic polyester (A) is a temperature at which the aromatic polyester (A) and the maleimide derivative (B ′) can be melted or dissolved in a solvent. Although not particularly limited, it is preferably 200 ° C. or lower (80 to 200 ° C.), more preferably 160 ° C. or lower. When the mixing temperature is 200 ° C. or lower, the crosslinking reaction does not proceed, and an increase in the viscosity of the composition can be suppressed. In addition, the temperature at the time of mixing can be controlled so that it may become constant during mixing, and can also be controlled so that it may fluctuate | vary stepwise or continuously.
 芳香族ポリエステル(A)にマレイミド誘導体(B’)を混合する時間は、特に限定されないが、30~600分が好ましく、50~480分がより好ましい。混合の時間が上記範囲であると、硬化物の生産性が低下せず、芳香族ポリエステル(A)とマレイミド誘導体(B’)の反応進行を十分に進行させることができる。 The time for mixing the maleimide derivative (B ′) with the aromatic polyester (A) is not particularly limited, but is preferably 30 to 600 minutes, more preferably 50 to 480 minutes. When the mixing time is in the above range, the productivity of the cured product does not decrease, and the reaction progress of the aromatic polyester (A) and the maleimide derivative (B ′) can be sufficiently advanced.
 第2の製造方法では、芳香族ポリエステル(A)にマレイミド誘導体(B’)を加え、混合後、均一な熱硬化性芳香族ポリエステル組成物が得られたときの熱硬化性芳香族ポリエステル組成物の溶融粘度(初期複素粘度)は、200℃以下(例えば、180℃)において、80Pa・s以下が好ましく、50Pa・s以下がより好ましく、20Pa・s以下がさらに好ましく、10Pa・s以下が特に好ましい。初期複素粘度が、80Pa・s以下であると、トランスファー成形等の成形がしやすくなる。なお、溶融粘度(初期複素粘度)は、レオメーター(粘弾性測定装置)(商品名「MCR-302」、アントンパール社製)を用いて測定できる。 In the second production method, the thermosetting aromatic polyester composition is obtained when the maleimide derivative (B ′) is added to the aromatic polyester (A), and after mixing, a uniform thermosetting aromatic polyester composition is obtained. The melt viscosity (initial complex viscosity) is preferably not more than 80 Pa · s, more preferably not more than 50 Pa · s, still more preferably not more than 20 Pa · s, particularly preferably not more than 10 Pa · s at 200 ° C. or less (for example, 180 ° C.). preferable. When the initial complex viscosity is 80 Pa · s or less, molding such as transfer molding is facilitated. The melt viscosity (initial complex viscosity) can be measured using a rheometer (viscoelasticity measuring device) (trade name “MCR-302”, manufactured by Anton Paar).
 第2の製造方法において、熱硬化性芳香族ポリエステル組成物の発熱開始温度は、特に制限されないが、250℃以下(100~250℃)が好ましく、230℃以下がより好ましく、210℃以下がさらに好ましい。発熱開始温度が250℃以下であると、硬化させる温度(硬化温度)が高くなり過ぎない。なお、上記発熱開始温度は、DSCにて、曲線がベースラインから立ち上がり始める温度を示す。 In the second production method, the heat generation starting temperature of the thermosetting aromatic polyester composition is not particularly limited, but is preferably 250 ° C. or lower (100 to 250 ° C.), more preferably 230 ° C. or lower, and further 210 ° C. or lower. preferable. When the heat generation start temperature is 250 ° C. or lower, the curing temperature (curing temperature) does not become too high. The heat generation start temperature is a temperature at which the curve starts to rise from the baseline in DSC.
 上記熱硬化性芳香族ポリエステル組成物の発熱開始温度は、具体的には、マレイミド誘導体(B’)として、上記式(i)で表される化合物であるポリフェニルメタンマレイミド(商品名「BMI-2300」、大和化成(株)社製)を用いた場合、180℃であり、上記式(ii)で表される化合物である1,6-ビスマレイミド-(2,2,4-トリメチル)ヘキサン(商品名「BMI-TMH」、大和化成(株)社製)を用いた場合、200℃である。マレイミド誘導体(B’)単独よりも、芳香族ポリエステル(A)とマレイミド誘導体(B’)を混合した当該組成物の方が発熱開始温度は高くなっており、熱的により安定化された組成物となっている。 Specifically, the heat generation starting temperature of the thermosetting aromatic polyester composition is, as the maleimide derivative (B ′), polyphenylmethane maleimide (trade name “BMI-”), which is a compound represented by the above formula (i). 2300 ”(manufactured by Daiwa Kasei Co., Ltd.) is 1,6-bismaleimide- (2,2,4-trimethyl) hexane, which is a compound represented by the above formula (ii) at 180 ° C. When using (trade name “BMI-TMH”, manufactured by Daiwa Kasei Co., Ltd.), the temperature is 200 ° C. The composition in which the aromatic polyester (A) and the maleimide derivative (B ′) are mixed is higher in heat generation than the maleimide derivative (B ′) alone, and the composition is more thermally stabilized. It has become.
 上記混合は、常圧下で行うこともできるし、減圧下又は加圧下で行うこともできる。また、上記混合は、一段階で行うこともできるし、二段階以上の多段階に分けて行うこともできる。 The above mixing can be performed under normal pressure, or can be performed under reduced pressure or under pressure. Moreover, the said mixing can also be performed in one step, and can also be divided and performed in two or more steps.
 上記混合は、公知乃至慣用の装置(混合装置)を使用して実施することができる。上記混合装置としては、特に限定されないが、一軸押出機、二軸押出機などの押出機;パドルミキサー、高速流動式ミキサー、リボンミキサー、バンバリーミキサー、ハーケミキサー、スタティックミキサーなどのミキサー;ニーダーなどが挙げられる。 The above mixing can be carried out using a known or conventional apparatus (mixing apparatus). Although it does not specifically limit as said mixing apparatus, Extruders, such as a single screw extruder and a twin screw extruder; Mixers, such as a paddle mixer, a high-speed fluidity mixer, a ribbon mixer, a Banbury mixer, a Haake mixer, a static mixer; Can be mentioned.
 上記混合は、溶媒存在下で行うこともできる。溶媒の具体例としては、特に限定されないが、ペンタフルオロフェノール(PFP)、N,N-ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMA)、o-ジクロロベンゼン等が挙げられる。 The above mixing can also be performed in the presence of a solvent. Specific examples of the solvent include, but are not limited to, pentafluorophenol (PFP), N, N-dimethylformamide (DMF), dimethylacetamide (DMA), o-dichlorobenzene, and the like.
 上記溶媒の使用量は、特に制限されないが、芳香族ポリエステル(A)とマレイミド誘導体(B’)の合計量(100重量部)に対して、5~1000重量部が好ましく、10~800重量部がより好ましい。 The amount of the solvent used is not particularly limited, but is preferably 5 to 1000 parts by weight with respect to the total amount (100 parts by weight) of the aromatic polyester (A) and the maleimide derivative (B ′), and 10 to 800 parts by weight. Is more preferable.
 本発明における熱硬化性芳香族ポリエステル組成物は、芳香族ポリエステル(A)の分子鎖末端の反応性官能基(a)と、マレイミド誘導体(B’)のマレイミド基とが混合時に反応物(例えば、付加物)を形成してもよいし、芳香族ポリエステル(A)とマレイミド誘導体(B’)が、分散している状態でもよい。上記反応物は、芳香族ポリエステル(A)の1以上とマレイミド誘導体(B’)の1以上とが反応(例えば、付加反応)により結合したものである。 In the thermosetting aromatic polyester composition of the present invention, the reactive functional group (a) at the molecular chain end of the aromatic polyester (A) and the maleimide group of the maleimide derivative (B ′) are mixed with each other (for example, , An adduct) may be formed, or the aromatic polyester (A) and the maleimide derivative (B ′) may be dispersed. The reaction product is obtained by bonding one or more aromatic polyesters (A) and one or more maleimide derivatives (B ′) by a reaction (for example, an addition reaction).
 第2の製造方法では、硬化物の性能を目的(用途)に応じて調整するため、無機フィラーなどの上記添加剤を含めることができる。中でも、上記添加剤としては、無機フィラーが好ましく用いられる。また、第2の製造方法では、硬化反応を促進し、熱硬化開始温度を下げるために、上記硬化促進剤を用いてもよい。 In the second production method, the additive such as an inorganic filler can be included in order to adjust the performance of the cured product according to the purpose (use). Among these, an inorganic filler is preferably used as the additive. In the second production method, the curing accelerator may be used to accelerate the curing reaction and lower the thermosetting start temperature.
 [熱硬化性芳香族ポリエステル組成物]
 本発明の熱硬化性芳香族ポリエステル組成物(「本発明の組成物」と称する場合もある)は、前記芳香族ポリエステル(A)と前記架橋性化合物(B)を含み、芳香族ポリエステル(A)の軟化温度が架橋性化合物(B)の硬化温度よりも30℃以上低いことを特徴とする。本発明の組成物は、本発明の製造方法(第1の製造方法又は第2の製造方法)により得られた熱硬化性芳香族ポリエステル組成物に限定されない。なお、本発明の組成物における芳香族ポリエステル(A)の軟化温度とは、芳香族ポリエステル(A)と架橋性化合物(B)を混練して組成物を作製できる温度を意味し、例えば、ホットステージを取り付けた偏光顕微鏡を用いて実施例記載の方法で測定することができる。また、架橋性化合物(B)の硬化温度とは、DSC測定による発熱ピーク温度のことである。
[Thermosetting aromatic polyester composition]
The thermosetting aromatic polyester composition of the present invention (sometimes referred to as “the composition of the present invention”) includes the aromatic polyester (A) and the crosslinkable compound (B), and includes an aromatic polyester (A ) Is lower by 30 ° C. or more than the curing temperature of the crosslinkable compound (B). The composition of the present invention is not limited to the thermosetting aromatic polyester composition obtained by the production method (the first production method or the second production method) of the present invention. The softening temperature of the aromatic polyester (A) in the composition of the present invention means a temperature at which the composition can be prepared by kneading the aromatic polyester (A) and the crosslinkable compound (B). It can measure by the method of an Example description using the polarization microscope which attached the stage. The curing temperature of the crosslinkable compound (B) is the exothermic peak temperature by DSC measurement.
 本発明の組成物における芳香族ポリエステル(A)の平均重合度は、特に限定されないが、3~30が好ましく、3~25がより好ましく、3~20がさらに好ましい。平均重合度が上記範囲であると、軟化温度を適度に調整しやすくなる。なお、芳香族ポリエステル(A)の平均重合度は、例えば、特開平5-271394号公報に記載のアミン分解HPLC法により求めることができる。 The average degree of polymerization of the aromatic polyester (A) in the composition of the present invention is not particularly limited, but is preferably 3 to 30, more preferably 3 to 25, and still more preferably 3 to 20. When the average degree of polymerization is in the above range, the softening temperature is easily adjusted appropriately. The average degree of polymerization of the aromatic polyester (A) can be determined, for example, by the amine decomposition HPLC method described in JP-A No. 5-271394.
 本発明の組成物における芳香族ポリエステル(A)の分子量は、特に制限されないが、500~20000であることが好ましく、500~10000がより好ましく、500~5000がさらに好ましい。分子量が、上記範囲であると、硬化反応性が低下しにくく、軟化温度を適度に調整しやすくなる。なお、芳香族ポリエステル(A)の分子量は、例えば、GPC測定により求めることができる。 The molecular weight of the aromatic polyester (A) in the composition of the present invention is not particularly limited, but is preferably 500 to 20000, more preferably 500 to 10,000, and further preferably 500 to 5000. When the molecular weight is in the above range, the curing reactivity is unlikely to decrease, and the softening temperature can be easily adjusted appropriately. In addition, the molecular weight of aromatic polyester (A) can be calculated | required by GPC measurement, for example.
 本発明の組成物における芳香族ポリエステル(A)の軟化温度は、特に限定されないが、40~200℃が好ましく、50~180℃がより好ましく、80~160℃がさらに好ましい。軟化温度が上記範囲であると、芳香族ポリエステル(A)と架橋性化合物(B)の溶融混合を比較的低温(例えば、200℃以下)で実施することができ、溶融混合時に架橋性化合物(B)の架橋反応が起こりにくい。なお、芳香族ポリエステル(A)の軟化温度とは、芳香族ポリエステル(A)と架橋性化合物(B)を混練して組成物を作製できる温度であり、例えば、ホットステージを取り付けた偏光顕微鏡を用いて実施例記載の方法で測定することができる。 The softening temperature of the aromatic polyester (A) in the composition of the present invention is not particularly limited, but is preferably 40 to 200 ° C, more preferably 50 to 180 ° C, and further preferably 80 to 160 ° C. When the softening temperature is in the above range, the aromatic polyester (A) and the crosslinkable compound (B) can be melt-mixed at a relatively low temperature (for example, 200 ° C. or less), and the crosslinkable compound ( The crosslinking reaction of B) does not occur easily. The softening temperature of the aromatic polyester (A) is a temperature at which the composition can be prepared by kneading the aromatic polyester (A) and the crosslinkable compound (B). For example, a polarizing microscope equipped with a hot stage is used. And can be measured by the method described in the examples.
 本発明の組成物における芳香族ポリエステル(A)の軟化温度は、芳香族ポリエステルの組成や重合度を変更することにより制御できる。芳香族ポリエステルの組成としては、上記の芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸、及び芳香族ジオールのうち、芳香族ジオールの割合が高くなると軟化温度が低くなり、芳香族ジカルボン酸の割合が高くなると軟化温度が高くなる傾向がある。また、芳香族ポリエステル骨格中において、ナフタレンやアントラセンなどの多環式芳香族環の割合が多くなると、軟化温度が高くなる傾向がある。芳香族ポリエステルの重合度としては、重合度が増すにつれて軟化温度が高くなる傾向があり、例えば、5量体の場合の軟化温度は、90~100℃であり、10量体の場合の軟化温度は、140~150℃であり、20量体の場合の軟化温度は、170~180℃である。 The softening temperature of the aromatic polyester (A) in the composition of the present invention can be controlled by changing the composition and degree of polymerization of the aromatic polyester. As the composition of the aromatic polyester, among the above aromatic hydroxycarboxylic acids, aromatic dicarboxylic acids, and aromatic diols, the higher the ratio of the aromatic diol, the lower the softening temperature and the higher the ratio of the aromatic dicarboxylic acid. Then, the softening temperature tends to increase. Moreover, when the ratio of polycyclic aromatic rings such as naphthalene and anthracene in the aromatic polyester skeleton increases, the softening temperature tends to increase. As the degree of polymerization of the aromatic polyester, the softening temperature tends to increase as the degree of polymerization increases. For example, the softening temperature in the case of the pentamer is 90 to 100 ° C., and the softening temperature in the case of the 10-mer. Is 140 to 150 ° C., and the softening temperature in the case of a 20-mer is 170 to 180 ° C.
 本発明の組成物における前記架橋性化合物(B)としては、特に制限されないが、マレイミド誘導体が好ましい。中でもマレイミド誘導体としては、前記マレイミド誘導体(B’)で挙げた化合物が特に好ましい。 The crosslinkable compound (B) in the composition of the present invention is not particularly limited, but a maleimide derivative is preferable. Among these, as the maleimide derivative, the compounds mentioned as the maleimide derivative (B ′) are particularly preferable.
 本発明の組成物における架橋性化合物(B)(特に、上記マレイミド誘導体)の分子量は、特に制限されないが、200~10000が好ましく、200~8000がより好ましく、250~6000がさらに好ましい。分子量が上記範囲であると、芳香族ポリエステル(A)と低温で溶融混合しやすく、均一に混合しやすい。 The molecular weight of the crosslinkable compound (B) (particularly the maleimide derivative) in the composition of the present invention is not particularly limited, but is preferably 200 to 10,000, more preferably 200 to 8000, and further preferably 250 to 6000. When the molecular weight is within the above range, it is easy to melt and mix with the aromatic polyester (A) at a low temperature, and to mix uniformly.
 本発明の組成物における架橋性化合物(B)(特に、上記マレイミド誘導体)の融点(Tm)は、200℃以下(例えば、60~200℃)が好ましく、180℃以下がより好ましく、160℃以下がさらに好ましい。融点が200℃以下であると、架橋反応が進行しない温度領域で溶融混合することができ、均一な組成物が得られる。なお、上記融点は、DSC測定の吸熱ピーク温度を示す。 The melting point (Tm) of the crosslinkable compound (B) (particularly the maleimide derivative) in the composition of the present invention is preferably 200 ° C. or less (eg, 60 to 200 ° C.), more preferably 180 ° C. or less, and 160 ° C. or less. Is more preferable. When the melting point is 200 ° C. or less, it can be melt-mixed in a temperature region where the crosslinking reaction does not proceed, and a uniform composition can be obtained. In addition, the said melting | fusing point shows the endothermic peak temperature of DSC measurement.
 本発明の組成物における架橋性化合物(B)(特に、上記マレイミド誘導体)の発熱開始温度は、特に制限されないが、250℃以下(例えば、90~250℃)が好ましく、230℃以下がより好ましく、210℃以下がさらに好ましい。発熱開始温度が250℃以下であると、芳香族ポリエステル(A)と溶融混合し得られた熱硬化性芳香族ポリエステル組成物の発熱開始温度が比較的低く、硬化させる温度(硬化温度)が高くなり過ぎない。なお、上記発熱開始温度は、DSC測定にて、曲線がベースラインから立ち上がり始める温度を示す。 The heat generation starting temperature of the crosslinkable compound (B) (particularly the maleimide derivative) in the composition of the present invention is not particularly limited, but is preferably 250 ° C. or lower (for example, 90 to 250 ° C.), more preferably 230 ° C. or lower. 210 ° C. or lower is more preferable. When the exothermic start temperature is 250 ° C. or less, the exothermic start temperature of the thermosetting aromatic polyester composition obtained by melt mixing with the aromatic polyester (A) is relatively low, and the curing temperature (curing temperature) is high. Not too much. The heat generation start temperature indicates a temperature at which the curve starts to rise from the baseline in DSC measurement.
 本発明の組成物における架橋性化合物(B)(特に、上記マレイミド誘導体)の硬化温度は、特に制限されないが、70~250℃が好ましく、80~240℃がより好ましく、90~230℃がさらに好ましい。硬化温度が上記範囲であると、溶融混合時に架橋反応による粘度上昇を起こしにくい。なお、マレイミド誘導体の硬化温度は、DSC測定の発熱ピーク温度より測定できる。 The curing temperature of the crosslinkable compound (B) (especially the maleimide derivative) in the composition of the present invention is not particularly limited, but is preferably 70 to 250 ° C, more preferably 80 to 240 ° C, and further preferably 90 to 230 ° C. preferable. When the curing temperature is within the above range, it is difficult for the viscosity to increase due to a crosslinking reaction during melt mixing. The curing temperature of the maleimide derivative can be measured from the exothermic peak temperature of DSC measurement.
 本発明の組成物における架橋性化合物(B)(特に、上記マレイミド誘導体)の硬化温度は、1分子中に芳香環を3個以上含む芳香族ビスマレイミド化合物として、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパンの場合、240℃であり、芳香環を2個含む芳香族ビスマレイミド化合物として、4,4'-ジフェニルメタンビスマレイミドの場合、202℃であり、芳香環を1個含む芳香族ビスマレイミド化合物として、4-メチル-1,3-フェニレンビスマレイミドの場合、210℃であり、また、上記式(2)で表される化合物であるポリフェニルメタンマレイミドの場合、226℃であり、上記式(3)で表される化合物である1,6-ビスマレイミド-(2,2,4-トリメチル)ヘキサンの場合、285℃である。 The curing temperature of the crosslinkable compound (B) (particularly the maleimide derivative) in the composition of the present invention is 2,2-bis [4- as an aromatic bismaleimide compound containing 3 or more aromatic rings in one molecule. In the case of (4-maleimidophenoxy) phenyl] propane, the temperature is 240 ° C., and as an aromatic bismaleimide compound containing two aromatic rings, in the case of 4,4′-diphenylmethane bismaleimide, the temperature is 202 ° C., and the aromatic ring is 1 In the case of 4-methyl-1,3-phenylene bismaleimide, the aromatic bismaleimide compound to be contained is 210 ° C., and in the case of polyphenylmethane maleimide, which is a compound represented by the above formula (2), 226 In the case of 1,6-bismaleimide- (2,2,4-trimethyl) hexane which is a compound represented by the above formula (3) at 285 ° C. A.
 本発明の組成物では上記マレイミド誘導体を含め、架橋性化合物(B)の硬化温度は、分子内で芳香環式基の割合が高くなると高くなる傾向があり、特にナフタレンやアントラセンなどの多環式芳香族環の割合が多くなると硬化温度は高くなりやすい。また、分子中でアルキル基などの脂肪族炭化水素鎖の割合が高くなると硬化温度は低くなる傾向があり、特に炭素数6以上の長鎖脂肪族炭化水素鎖の割合が高くなると硬化温度は低くなりやすく、上記式(3)のような長鎖脂肪族鎖を有する化合物では、硬化温度が高くなる傾向がある。 In the composition of the present invention, the curing temperature of the crosslinkable compound (B) including the maleimide derivative tends to increase as the ratio of the aromatic cyclic group in the molecule increases, and in particular, polycyclic compounds such as naphthalene and anthracene. As the proportion of aromatic rings increases, the curing temperature tends to increase. In addition, the curing temperature tends to decrease when the proportion of an aliphatic hydrocarbon chain such as an alkyl group increases in the molecule, and particularly when the proportion of a long-chain aliphatic hydrocarbon chain having 6 or more carbon atoms increases, the curing temperature decreases. A compound having a long aliphatic chain such as the above formula (3) tends to increase the curing temperature.
 本発明の組成物における架橋性化合物(B)が上記マレイミド誘導体である場合の配合量(配合割合)は、特に限定されないが、芳香族ポリエステル(A)100重量部に対して、10~300重量部が好ましく、10~250重量部がより好ましく、20~200重量部がさらに好ましい。マレイミド誘導体の配合量が上記範囲であると、熱硬化性芳香族ポリエステル組成物の硬化性が低下しにくく、組成物中に架橋性化合物(B)が多量に残存しすぎることがなく、硬化物の物性に悪影響が及びにくい。 The blending amount (blending ratio) when the crosslinkable compound (B) in the composition of the present invention is the maleimide derivative is not particularly limited, but is 10 to 300 weights per 100 weight parts of the aromatic polyester (A). Part by weight, preferably 10 to 250 parts by weight, more preferably 20 to 200 parts by weight. When the blending amount of the maleimide derivative is within the above range, the curability of the thermosetting aromatic polyester composition is hardly lowered, and the cured compound does not have a large amount of the crosslinkable compound (B) remaining in the composition. It is difficult to adversely affect the physical properties.
 本発明の組成物における架橋性化合物(B)の硬化温度は、特に制限されないが、70~250℃が好ましく、80~240℃がより好ましく、90~230℃がさらに好ましい。架橋性化合物(B)の硬化温度が上記範囲であると、溶融混合時に架橋反応による粘度上昇を起こしにくい。なお、架橋性化合物(B)の硬化温度は、DSC(示差走査熱量分析装置、「DSC6200」、セイコーインスツル(株)製)にて、20℃/分の昇温条件(窒素気流下)での発熱ピークトップ温度より測定できる。 The curing temperature of the crosslinkable compound (B) in the composition of the present invention is not particularly limited, but is preferably 70 to 250 ° C, more preferably 80 to 240 ° C, and further preferably 90 to 230 ° C. When the curing temperature of the crosslinkable compound (B) is in the above range, it is difficult for the viscosity to increase due to a crosslinking reaction during melt mixing. The curing temperature of the crosslinkable compound (B) is DSC (Differential Scanning Calorimeter, “DSC6200”, manufactured by Seiko Instruments Inc.) under a temperature rising condition of 20 ° C./min (under a nitrogen stream). The exothermic peak top temperature can be measured.
 特に、本発明の組成物は、芳香族ポリエステル(A)の軟化温度が、架橋性化合物(B)の硬化温度よりも30℃以上低いことを特徴とする。上記軟化温度が硬化温度より、40℃以上低いことが好ましく、50℃以上低いことがより好ましい。上記軟化温度が硬化温度より30℃以上低いため、溶融混合時に架橋反応による粘度上昇を起こしにくい。上記軟化温度と硬化温度の差は、特に制限されないが、芳香族ポリエステル(A)の軟化温度が140~150℃であり、架橋性化合物(B)の硬化温度200~250℃であることから生じることが好ましい。 Particularly, the composition of the present invention is characterized in that the softening temperature of the aromatic polyester (A) is lower by 30 ° C. or more than the curing temperature of the crosslinkable compound (B). The softening temperature is preferably 40 ° C. or more lower than the curing temperature, more preferably 50 ° C. or more lower. Since the softening temperature is 30 ° C. or more lower than the curing temperature, it is difficult for the viscosity to increase due to a crosslinking reaction during melt mixing. The difference between the softening temperature and the curing temperature is not particularly limited, but arises because the softening temperature of the aromatic polyester (A) is 140 to 150 ° C. and the curing temperature of the crosslinkable compound (B) is 200 to 250 ° C. It is preferable.
 本発明の組成物における芳香族ポリエステル(A)と架橋性化合物(B)の配合量(配合割合)は、芳香族ポリエステル(A)や架橋性化合物(B)の種類等により異なり、特に限定されない。架橋性化合物(B)の配合量は、芳香族ポリエステル(A)100重量部に対して、10~300重量部が好ましく、15~250重量部がより好ましく、20~200重量部がさらに好ましい。架橋性化合物(B)の配合量が上記範囲であると、熱硬化性芳香族ポリエステル組成物の硬化性が低下しにくく、組成物中に架橋性化合物(B)が多量に残存しすぎることがなく、硬化物の物性に悪影響が及びにくい。 The blending amount (blending ratio) of the aromatic polyester (A) and the crosslinkable compound (B) in the composition of the present invention varies depending on the types of the aromatic polyester (A) and the crosslinkable compound (B) and is not particularly limited. . The amount of the crosslinkable compound (B) is preferably 10 to 300 parts by weight, more preferably 15 to 250 parts by weight, and still more preferably 20 to 200 parts by weight with respect to 100 parts by weight of the aromatic polyester (A). When the blending amount of the crosslinkable compound (B) is within the above range, the curability of the thermosetting aromatic polyester composition is hardly lowered, and a large amount of the crosslinkable compound (B) may remain in the composition. There is no adverse effect on the physical properties of the cured product.
 本発明の組成物は、芳香族ポリエステル(A)の濃度を下げて、組成物調整時における硬化反応を抑制するため、また、硬化物の性能を目的(用途)に応じて調整するため、無機フィラーなどの前記添加剤を含有することが好ましい。中でも、前記添加剤としては、無機フィラーが好ましく用いられる。 The composition of the present invention is inorganic in order to reduce the concentration of the aromatic polyester (A) to suppress the curing reaction at the time of adjusting the composition, and to adjust the performance of the cured product according to the purpose (use). The additive such as a filler is preferably contained. Among these, an inorganic filler is preferably used as the additive.
 本発明の組成物における前記添加剤(無機フィラーを含む)は、本発明の熱硬化性芳香族ポリエステル組成物を調製する際(芳香族ポリエステル(A)及び架橋性化合物(B)を溶融混合する際)にともに配合することもできるし、本発明の熱硬化性芳香族ポリエステル組成物をいったん調製した後に配合することもできる。 The additive (including the inorganic filler) in the composition of the present invention is prepared by melt-mixing the aromatic polyester (A) and the crosslinkable compound (B) when preparing the thermosetting aromatic polyester composition of the present invention. In this case, the thermosetting aromatic polyester composition of the present invention can be blended once and then blended.
 本発明の組成物は、芳香族ポリエステル(A)と架橋性化合物(B)を含む限り特に制限されないが、芳香族ポリエステル(A)と架橋性化合物(B)、その他前記添加剤を加えて溶融混合することが好ましい。 The composition of the present invention is not particularly limited as long as it contains an aromatic polyester (A) and a crosslinkable compound (B), but is melted by adding the aromatic polyester (A), the crosslinkable compound (B), and other additives. It is preferable to mix.
 本発明の組成物における芳香族ポリエステル(A)と架橋性化合物(B)と溶融混合する際の混合温度は、芳香族ポリエステル(A)及び架橋性化合物(B)を溶融させることができる温度(特に、芳香族ポリエステル(A)の融点以上)であればよく、特に限定されないが、200℃以下(例えば、80~200℃)が好ましく、190℃以下がより好ましく、180℃以下がさらに好ましい。溶融混合の温度が200℃以下であると、架橋性化合物(B)に由来する熱重合性官能基の重合反応を抑制でき、粘度の急激な上昇を抑えることができる。なお、溶融混合する際の温度は、溶融混合する間一定となるように制御することもできるし、段階的又は連続的に変動するように制御することもできる。 The mixing temperature at the time of melt-mixing the aromatic polyester (A) and the crosslinkable compound (B) in the composition of the present invention is a temperature at which the aromatic polyester (A) and the crosslinkable compound (B) can be melted ( The melting point of the aromatic polyester (A) is not particularly limited and is not particularly limited, but is preferably 200 ° C. or lower (for example, 80 to 200 ° C.), more preferably 190 ° C. or lower, and further preferably 180 ° C. or lower. When the temperature of the melt mixing is 200 ° C. or less, the polymerization reaction of the thermally polymerizable functional group derived from the crosslinkable compound (B) can be suppressed, and a rapid increase in viscosity can be suppressed. In addition, the temperature at the time of melt mixing can be controlled so as to be constant during the melt mixing, or can be controlled so as to fluctuate stepwise or continuously.
 本発明の組成物における芳香族ポリエステル(A)と架橋性化合物(B)と溶融混合する時間は、特に限定されないが、3~600分が好ましく、より好ましくは4~400分であり、さらに好ましくは5~200分である。溶融混合の時間が上記範囲であると、硬化物の生産性が低下せず、芳香族ポリエステル(A)と架橋性化合物(B)の反応を進行させることができる。 The time for melt mixing the aromatic polyester (A) and the crosslinkable compound (B) in the composition of the present invention is not particularly limited, but is preferably 3 to 600 minutes, more preferably 4 to 400 minutes, and still more preferably. Is 5 to 200 minutes. When the melt mixing time is within the above range, the productivity of the cured product does not decrease, and the reaction between the aromatic polyester (A) and the crosslinkable compound (B) can proceed.
 本発明の組成物における溶融粘度(初期複素粘度)は、200℃以下(例えば、180℃)において、1000Pa・s以下が好ましく、500Pa・s以下がより好ましく、200Pa・s以下がさらに好ましく、100Pa・s以下が特に好ましい。初期複素粘度が、1000Pa・s以下であると、トランスファー成形等の成形がしやすくなる。なお、溶融粘度(初期複素粘度)は、レオメーター(粘弾性測定装置)(商品名「MCR-302」、アントンパール社製)を用いて測定できる。 The melt viscosity (initial complex viscosity) in the composition of the present invention is preferably 1000 Pa · s or less, more preferably 500 Pa · s or less, even more preferably 200 Pa · s or less, at 200 ° C. or less (eg, 180 ° C.), and 100 Pa. -S or less is particularly preferable. When the initial complex viscosity is 1000 Pa · s or less, molding such as transfer molding is facilitated. The melt viscosity (initial complex viscosity) can be measured using a rheometer (viscoelasticity measuring device) (trade name “MCR-302”, manufactured by Anton Paar).
 上記溶融混合は、公知乃至慣用の装置(溶融混合装置)を使用して実施することができる。上記溶融混合装置としては、特に限定されないが、一軸押出機、二軸押出機などの押出機;パドルミキサー、高速流動式ミキサー、リボンミキサー、バンバリーミキサー、ハーケミキサー、スタティックミキサーなどのミキサー;ニーダーなどが挙げられる。 The melt mixing can be carried out using a known or conventional apparatus (melt mixing apparatus). Although it does not specifically limit as said melt-mixing apparatus, Extruders, such as a single screw extruder and a twin screw extruder; Mixers, such as a paddle mixer, a high-speed fluidized mixer, a ribbon mixer, a Banbury mixer, a Haake mixer, a static mixer; Kneader etc. Is mentioned.
 本発明の組成物は、硬化物としたときにより高い性能(耐熱性や機械特性など)が得られる点で、芳香族ポリエステル(A)の分子鎖末端の反応性官能基(a)と、架橋性化合物(B)の反応性官能基(b)とが溶融混合時に反応することにより形成される付加物を組成物の一部として含むことが好ましい。上記付加物は、芳香族ポリエステル(A)の1以上と架橋性化合物(B)の1以上とが上述の反応(例えば、付加反応)により結合したものである。 The composition of the present invention has a crosslinkable reactive functional group (a) at the end of the molecular chain of the aromatic polyester (A) in that higher performance (heat resistance, mechanical properties, etc.) can be obtained when cured. It is preferable that an adduct formed by reacting with the reactive functional group (b) of the functional compound (B) during melt mixing is included as a part of the composition. The adduct is obtained by bonding one or more aromatic polyesters (A) and one or more crosslinkable compounds (B) by the above-described reaction (for example, addition reaction).
 上述のように本発明の組成物は、芳香族ポリエステル(A)の軟化温度が、架橋性化合物(B)の硬化温度よりも30℃以上低いため、架橋性化合物(B)の架橋反応が進行しない温度で、芳香族ポリエステル(A)と架橋性化合物(B)を溶融混合することができる。そのため、熱硬化性芳香族ポリエステル組成物は、粘度上昇を抑えることができ、トランスファー成形などの成形性に優れる。 As described above, in the composition of the present invention, the softening temperature of the aromatic polyester (A) is 30 ° C. or more lower than the curing temperature of the crosslinkable compound (B), so that the crosslinking reaction of the crosslinkable compound (B) proceeds. The aromatic polyester (A) and the crosslinkable compound (B) can be melt-mixed at a temperature that does not. Therefore, the thermosetting aromatic polyester composition can suppress an increase in viscosity and is excellent in moldability such as transfer molding.
[硬化物]
 本発明の製造方法(第1又は第2の製造方法)で得られた熱硬化性芳香族ポリエステル組成物、又は本発明の組成物を加熱によって硬化させる(硬化反応を進行させる)ことにより、硬化物(「本発明の硬化物」と称する場合がある)が得られる。加熱によって主に架橋性化合物(B)(若しくは、マレイミド誘導体(B’))に起因する熱重合性官能基同士の反応(重合反応)が進行し、硬化物が形成される。加熱の手段としては、公知乃至慣用の手段を利用することができ、特に限定されない。
[Cured product]
Curing by curing the thermosetting aromatic polyester composition obtained by the production method (first or second production method) of the present invention or the composition of the present invention by heating (advancing the curing reaction). Product (sometimes referred to as “cured product of the present invention”). By heating, a reaction (polymerization reaction) between the thermally polymerizable functional groups mainly caused by the crosslinkable compound (B) (or maleimide derivative (B ′)) proceeds to form a cured product. As heating means, known or conventional means can be used, and there is no particular limitation.
 熱硬化性芳香族ポリエステル組成物を硬化させる際の加熱温度(硬化温度)は、特に限定されないが、170~250℃が好ましく、210~250℃がより好ましく、220~250℃がさらに好ましい。硬化温度が上記範囲であると、生産性が低下せず、硬化反応の進行が十分に進行し、物性の良い硬化物が得られる。なお、硬化温度は、硬化させる間一定となるように制御することもできるし、段階的又は連続的に変動するように制御することもできる。 The heating temperature (curing temperature) for curing the thermosetting aromatic polyester composition is not particularly limited, but is preferably 170 to 250 ° C, more preferably 210 to 250 ° C, and further preferably 220 to 250 ° C. When the curing temperature is in the above range, productivity does not decrease, the curing reaction proceeds sufficiently, and a cured product with good physical properties can be obtained. The curing temperature can be controlled to be constant during curing, or can be controlled to vary stepwise or continuously.
 上記熱硬化性芳香族ポリエステルを硬化させる際の加熱時間(硬化時間)は、特に限定されないが、30~600分が好ましく、50~480分がより好ましく、60~360分がさらに好ましい。硬化時間が上記範囲であると、硬化物の生産性が低下せず、硬化反応が十分に進行し、硬化物の物性が低下しにくい。 The heating time (curing time) for curing the thermosetting aromatic polyester is not particularly limited, but is preferably 30 to 600 minutes, more preferably 50 to 480 minutes, and further preferably 60 to 360 minutes. When the curing time is within the above range, the productivity of the cured product does not decrease, the curing reaction proceeds sufficiently, and the physical properties of the cured product are unlikely to decrease.
 上記熱硬化性芳香族ポリエステルの硬化は、常圧下で行うこともできるし、減圧下又は加圧下で行うこともできる。また、上記硬化は、一段階で行うこともできるし、二段階以上の多段階に分けて行うこともできる。 The curing of the thermosetting aromatic polyester can be performed under normal pressure, or can be performed under reduced pressure or under pressure. Moreover, the said hardening can also be performed in one step, and can also be performed by dividing into two or more steps.
 本発明の硬化物の、昇温速度10℃/分(空気中)で測定される5%重量減少温度(Td5)は、特に限定されないが、350℃以上(例えば、350~500℃)が好ましく、380℃以上がより好ましく、400℃以上がさらに好ましい。5%重量減少温度が350℃未満であると、用途によっては耐熱性が不十分となる場合がある。上記5%重量減少温度は、例えば、TG/DTA(示差熱・熱重量同時測定)などにより測定できる。 The 5% weight loss temperature (T d5 ) of the cured product of the present invention measured at a temperature elevation rate of 10 ° C./min (in air) is not particularly limited, but is 350 ° C. or higher (eg, 350 to 500 ° C.). It is preferably 380 ° C. or higher, more preferably 400 ° C. or higher. If the 5% weight loss temperature is less than 350 ° C., the heat resistance may be insufficient depending on the application. The 5% weight loss temperature can be measured by, for example, TG / DTA (simultaneous measurement of differential heat and thermogravimetry).
 本発明の硬化物の空気中における熱分解反応の活性化エネルギーは、特に限定されないが、150kJ/mol以上(例えば、150~350kJ/mol)が好ましく、180kJ/mol以上がより好ましく、200kJ/mol以上がさらに好ましい。上記活性化エネルギーが150kJ/mol未満であると、用途によっては耐熱性が不十分となる場合がある。なお、上記活性化エネルギーは、例えば、小沢法により算出することができる。小沢法とは、3種類以上の昇温速度でTG測定(熱重量測定)を行い、得られた熱重量減少のデータから熱分解反応の活性化エネルギーを算出する方法である。 The activation energy of the thermal decomposition reaction in the air of the cured product of the present invention is not particularly limited, but is preferably 150 kJ / mol or more (for example, 150 to 350 kJ / mol), more preferably 180 kJ / mol or more, and 200 kJ / mol. The above is more preferable. If the activation energy is less than 150 kJ / mol, the heat resistance may be insufficient depending on the application. The activation energy can be calculated by, for example, the Ozawa method. The Ozawa method is a method in which TG measurement (thermogravimetry) is performed at three or more types of temperature increase rates, and the activation energy of the thermal decomposition reaction is calculated from the obtained thermogravimetric reduction data.
 本発明の硬化物は、本発明の製造方法により得られた熱硬化性芳香族ポリエステル組成物を硬化させることにより得られる硬化物であるため、優れた耐熱性を有し、また、優れた加工性、寸法安定性、低線膨張、高熱伝導性、低吸湿性、誘電特性を有する。さらに、本発明の硬化物は、熱硬化性芳香族ポリエステル組成物を250℃以下の比較的低温で加熱することによって得られるため、生産性にも優れる。 Since the cured product of the present invention is a cured product obtained by curing the thermosetting aromatic polyester composition obtained by the production method of the present invention, it has excellent heat resistance and excellent processing. Properties, dimensional stability, low linear expansion, high thermal conductivity, low hygroscopicity, and dielectric properties. Furthermore, since the cured product of the present invention is obtained by heating the thermosetting aromatic polyester composition at a relatively low temperature of 250 ° C. or lower, it is excellent in productivity.
 本発明の硬化物は、各種部材や各種構造材等の種々の用途に使用することができる。特に、上述の各種特性に優れるため、フィルム、プリプレグ、プリント配線板、半導体封止材などの用途に好ましく使用できる。即ち、本発明の製造方法により得られた熱硬化性芳香族ポリエステル組成物は、特に、フィルム用熱硬化性組成物、プリプレグ用熱硬化性組成物、プリント配線板用熱硬化性組成物、半導体封止材用熱硬化性組成物などとして好ましく使用することができる。 The cured product of the present invention can be used for various applications such as various members and various structural materials. In particular, since it is excellent in the above-mentioned various properties, it can be preferably used for applications such as films, prepregs, printed wiring boards, semiconductor encapsulants. That is, the thermosetting aromatic polyester composition obtained by the production method of the present invention is, in particular, a film thermosetting composition, a prepreg thermosetting composition, a printed wiring board thermosetting composition, and a semiconductor. It can be preferably used as a thermosetting composition for sealing materials.
 以下、実施例により本発明をより具体的に説明するが、本発明はこれらの実施例により限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
[ガラス転移温度(Tg)・融点(Tm)・発熱開始温度]
 上記実施例及び比較例で使用したマレイミド誘導体の融点(Tm)及び発熱開始温度は、示差走査熱量分析装置(「DSC6200」、セイコーインスツル(株)製)にて、20℃/分の昇温条件(窒素気流下)で測定した。
[Glass transition temperature (Tg), melting point (Tm), exothermic start temperature]
The melting point (Tm) and exothermic start temperature of the maleimide derivatives used in the above examples and comparative examples were increased by 20 ° C./min with a differential scanning calorimeter (“DSC6200”, manufactured by Seiko Instruments Inc.). The measurement was performed under conditions (under a nitrogen stream).
[軟化温度]
 ホットステージ(商品名「METTLER TOLEDO FP82HT」、メトラー・トレド社製)を取り付けた偏光顕微鏡(商品名「Leica DM4000B」、Leica社製)を用い、乾燥させた紛体の試料(10mg)をスライドガラス2枚に挟んで、ホットステージ上に置き10℃/minで昇温した。試料をクロスニコルで観察し、暗視野に光が見えた温度(液晶性が発現した温度)を軟化温度とした。
[Softening temperature]
Using a polarizing microscope (trade name “Leica DM4000B”, manufactured by Leica) equipped with a hot stage (trade name “METTLER TOLEDO FP82HT”, manufactured by METTLER TOLEDO), a dried powder sample (10 mg) was placed on a slide glass 2 The sheet was placed on a hot stage and heated at 10 ° C./min. The sample was observed with crossed Nicols, and the temperature at which light was visible in the dark field (the temperature at which liquid crystallinity was manifested) was defined as the softening temperature.
[初期複素粘度]
 レオメーター(粘弾性測定装置)(商品名「MCR-302」、アントンパール社製)を用い、試料を昇温温度20℃/分で加熱しながら溶融させ、溶融後、粘度が最低となったときの粘度[Pa・s]を測定した。
[Initial complex viscosity]
Using a rheometer (viscoelasticity measuring device) (trade name “MCR-302”, manufactured by Anton Paar Co., Ltd.), the sample was melted while being heated at a temperature rising temperature of 20 ° C./min. The viscosity [Pa · s] was measured.
[硬化物の5%重量減少温度(Td5)]
 上記実施例1及び比較例1にて得られた硬化物の5%重量減少温度(Td5)は、TG/DTA(「TG/DTA6300」、セイコーインスツル(株)製)にて、10℃/分の昇温条件(空気中)で測定した。
[5% weight loss temperature of cured product (T d5 )]
The 5% weight reduction temperature (T d5 ) of the cured product obtained in Example 1 and Comparative Example 1 was 10 ° C. at TG / DTA (“TG / DTA6300”, manufactured by Seiko Instruments Inc.). It was measured under the temperature rising condition (in air) per minute.
製造例1
[芳香族ポリエステルE(10量体)の製造]
 コンデンサーと攪拌機を取り付けた500mLのフラスコに、表1に示すように、4-ヒドロキシ安息香酸94.3g(0.682mol)、6-ヒドロキシ-2-ナフトエ酸102.7g(0.546mol)、4,4'-ジヒドロキシビフェニル25.4g(0.136mol)、無水酢酸156.3g(1.53mol)、及び酢酸カリウム10.0mg(0.10mol)を入れ、窒素雰囲気下で140℃まで徐々に温度を上げた後、温度を維持しながら3時間反応させてアセチル化反応を完結させた。次いで、0.8℃/分の速度で340℃まで昇温しながら酢酸及び未反応の無水酢酸を留去した。その後、フラスコ内を徐々に1Torrまで減圧して揮発成分を留去することで、芳香族ユニット(芳香族化合物に由来する構成単位)のみからなる分子鎖の両末端に水酸基を有する芳香族ポリエステルEを得た。得られた芳香族ポリエステルEの熱分析結果[ガラス転移温度(Tg)、融点(Tm)]は、表1に示す通りであった。なお、得られた芳香族ポリエステルEは、芳香族ポリエステルEの末端数の算出(特開平5-271394号公報に記載のアミン分解HPLC法による)、及びGPC測定の結果、単量体の10量体であると見積もられた。
Production Example 1
[Production of Aromatic Polyester E (Decamer)]
In a 500 mL flask equipped with a condenser and a stirrer, as shown in Table 1, 94.3 g (0.682 mol) of 4-hydroxybenzoic acid, 102.7 g (0.546 mol) of 6-hydroxy-2-naphthoic acid, 4 , 4′-dihydroxybiphenyl, 26.3 g (0.136 mol), acetic anhydride 156.3 g (1.53 mol), and potassium acetate 10.0 mg (0.10 mol) were added and gradually heated to 140 ° C. under a nitrogen atmosphere. After raising the temperature, the reaction was continued for 3 hours while maintaining the temperature to complete the acetylation reaction. Subsequently, acetic acid and unreacted acetic anhydride were distilled off while heating up to 340 ° C. at a rate of 0.8 ° C./min. Thereafter, the inside of the flask is gradually depressurized to 1 Torr to distill off the volatile components, whereby an aromatic polyester E having hydroxyl groups at both ends of a molecular chain consisting only of aromatic units (constituent units derived from aromatic compounds). Got. The thermal analysis result [glass transition temperature (Tg), melting point (Tm)] of the obtained aromatic polyester E was as shown in Table 1. The obtained aromatic polyester E was calculated by calculating the number of terminals of the aromatic polyester E (by the amine decomposition HPLC method described in JP-A No. 5-271394), and as a result of GPC measurement, It was estimated to be a body.
製造例2
[芳香族ポリエステルF(5量体)の製造]
 表1に示すように、4-ヒドロキシ安息香酸の使用量を81.4g(0.589mol)、6-ヒドロキシ-2-ナフトエ酸の使用量を88.9g(0.472mol)、4,4'-ジヒドロキシビフェニルの使用量を49.4g(0.265mol)、無水酢酸の使用量を165.8g(1.62mol)、酢酸カリウムの使用量を10.0mg(0.10mol)としたこと以外は製造例1と同様の操作を行い、芳香族ユニット(芳香族化合物に由来する構成単位)のみからなる分子鎖の両末端に水酸基を有する芳香族ポリエステルFを得た。得られた芳香族ポリエステルFの熱分析結果は、表1に示す通りであった。なお、得られた芳香族ポリエステルFは、芳香族ポリエステルFの末端数の算出(特開平5-271394号公報に記載のアミン分解HPLC法による)、及びGPC測定の結果、単量体の5量体であると見積もられた。
Production Example 2
[Production of aromatic polyester F (pentamer)]
As shown in Table 1, the amount of 4-hydroxybenzoic acid used was 81.4 g (0.589 mol), the amount of 6-hydroxy-2-naphthoic acid used was 88.9 g (0.472 mol), 4,4 ′ -The amount of dihydroxybiphenyl used was 49.4 g (0.265 mol), the amount of acetic anhydride used was 165.8 g (1.62 mol), and the amount of potassium acetate used was 10.0 mg (0.10 mol). Operation similar to manufacture example 1 was performed, and the aromatic polyester F which has a hydroxyl group in the both ends of the molecular chain which consists only of an aromatic unit (structural unit derived from an aromatic compound) was obtained. The thermal analysis result of the obtained aromatic polyester F was as shown in Table 1. The obtained aromatic polyester F was obtained by calculating the number of terminals of the aromatic polyester F (by the amine decomposition HPLC method described in JP-A No. 5-271394) and by GPC measurement, It was estimated to be a body.
製造例3
[芳香族ポリエステルG(20量体)の合成]
 表1に示すように、4-ヒドロキシ安息香酸の使用量を100.9g(0.731mol)、6-ヒドロキシ-2-ナフトエ酸の使用量を110.0g(0.585mol)、4,4’-ジヒドロキシビフェニルの使用量を12.9g(0.069mol)、無水酢酸の使用量を151.4g(1.48mol)、酢酸カリウムの使用量を10.0mg(0.10mol)としたこと以外は合成例1と同様の操作を行い、芳香族ユニット(芳香族化合物に由来する構成単位)のみからなる分子鎖の両末端に水酸基を有する芳香族ポリエステルGを得た。得られた芳香族ポリエステルGの熱分析結果及び軟化温度は、表1に示す通りであった。なお、得られた芳香族ポリエステルGは、芳香族ポリエステルGの末端数の算出、及びGPC測定の結果、単量体の20量体であると見積もられた。
Production Example 3
[Synthesis of Aromatic Polyester G (20mer)]
As shown in Table 1, the amount of 4-hydroxybenzoic acid used was 100.9 g (0.731 mol), the amount of 6-hydroxy-2-naphthoic acid used was 110.0 g (0.585 mol), 4,4 ′ -The amount of dihydroxybiphenyl used was 12.9 g (0.069 mol), the amount of acetic anhydride used was 151.4 g (1.48 mol), and the amount of potassium acetate used was 10.0 mg (0.10 mol). Operation similar to the synthesis example 1 was performed, and the aromatic polyester G which has a hydroxyl group in the both ends of the molecular chain which consists only of an aromatic unit (structural unit derived from an aromatic compound) was obtained. The thermal analysis results and softening temperature of the obtained aromatic polyester G were as shown in Table 1. The obtained aromatic polyester G was estimated to be a monomeric 20mer as a result of calculation of the number of terminals of the aromatic polyester G and GPC measurement.
製造例4
[芳香族ポリエステルH(100量体)の合成]
 表1に示すように、4-ヒドロキシ安息香酸の使用量を106.5g(0.771mol)、6-ヒドロキシ-2-ナフトエ酸の使用量を118.7g(0.631mol)、無水酢酸の使用量を146.0g(1.43mol)、酢酸カリウムの使用量を10.0mg(0.10mol)としたこと以外は合成例1と同様の操作を行い、芳香族ユニット(芳香族化合物に由来する構成単位)のみからなる分子鎖の両末端に水酸基を有する芳香族ポリエステルHを得た。得られた芳香族ポリエステルHの熱分析結果及び軟化温度は、表1に示す通りであった。なお、得られた芳香族ポリエステルHは、芳香族ポリエステルHの末端数の算出、及びGPC測定の結果、単量体の100量体であると見積もられた。
Production Example 4
[Synthesis of Aromatic Polyester H (100-mer)]
As shown in Table 1, the amount of 4-hydroxybenzoic acid used was 106.5 g (0.771 mol), the amount of 6-hydroxy-2-naphthoic acid used was 118.7 g (0.631 mol), and acetic anhydride was used. The same procedure as in Synthesis Example 1 was conducted except that the amount was 146.0 g (1.43 mol) and the amount of potassium acetate used was 10.0 mg (0.10 mol), and the aromatic unit (derived from the aromatic compound) was obtained. Aromatic polyester H having hydroxyl groups at both ends of the molecular chain consisting only of the structural unit was obtained. The thermal analysis results and softening temperature of the obtained aromatic polyester H were as shown in Table 1. In addition, as a result of calculation of the number of terminals of the aromatic polyester H and GPC measurement, the obtained aromatic polyester H was estimated to be a monomer 100-mer.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 表1における略語の意味は、以下の通りである。
HBA : 4-ヒドロキシ安息香酸
HNA : 6-ヒドロキシ-2-ナフトエ酸
BP : 4,4'-ジヒドロキシビフェニル
The meanings of the abbreviations in Table 1 are as follows.
HBA: 4-hydroxybenzoic acid HNA: 6-hydroxy-2-naphthoic acid BP: 4,4′-dihydroxybiphenyl
実施例1
 製造例1で得られた芳香族ポリエステルE4.61gと添加剤としてシリカフィラー(商品名「FB-5SDC」、電気化学工業(株)製)4.61gとを190℃で15分間溶融混合し、溶融物を得た(工程I)。その後、得られた溶融物9.22gと4,4'-ジフェニルメタンビスマレイミド2.50gとを、170℃で60分間溶融混合し、均一な溶融物(熱硬化性芳香族ポリエステル組成物)を得た(工程II)。その後、得られた溶融物をガラス板に挟んでホットプレートで240℃に加熱し、6時間硬化反応を進行させて、均一な硬化物を得た。得られた溶融物の180℃での初期複素粘度及び上記硬化物の5%重量減少温度(Td5)は、表2に示す通りであった。
Example 1
4.61 g of aromatic polyester E obtained in Production Example 1 and 4.61 g of silica filler (trade name “FB-5SDC”, manufactured by Denki Kagaku Kogyo Co., Ltd.) as an additive were melt-mixed at 190 ° C. for 15 minutes, A melt was obtained (Step I). Thereafter, 9.22 g of the obtained melt and 2.50 g of 4,4′-diphenylmethane bismaleimide are melt-mixed at 170 ° C. for 60 minutes to obtain a uniform melt (thermosetting aromatic polyester composition). (Step II). Thereafter, the obtained melt was sandwiched between glass plates and heated to 240 ° C. with a hot plate, and the curing reaction was allowed to proceed for 6 hours to obtain a uniform cured product. Table 2 shows the initial complex viscosity at 180 ° C. of the obtained melt and the 5% weight loss temperature (T d5 ) of the cured product.
実施例2
 製造例2で得られた芳香族ポリエステルF4.61gと添加剤としてシリカフィラー(商品名「FB-5SDC」、電気化学工業(株)製)4.61gとを190℃で15分間溶融混合し、溶融物を得た(工程I)。その後、得られた溶融物9.22gと4,4'-ジフェニルメタンビスマレイミド2.50gとを、170℃で60分間溶融混合し、均一な溶融物(熱硬化性芳香族ポリエステル組成物)を得た(工程II)。その後、得られた溶融物をガラス板に挟んでホットプレートで240℃に加熱し、6時間硬化反応を進行させて、均一な硬化物を得た。得られた溶融物の180℃での初期複素粘度及び上記硬化物の5%重量減少温度(Td5)は、表2に示す通りであった。
Example 2
Melting and mixing 4.61 g of aromatic polyester F obtained in Production Example 2 and 4.61 g of silica filler (trade name “FB-5SDC”, manufactured by Denki Kagaku Kogyo Co., Ltd.) as an additive at 190 ° C. for 15 minutes, A melt was obtained (Step I). Thereafter, 9.22 g of the obtained melt and 2.50 g of 4,4′-diphenylmethane bismaleimide are melt-mixed at 170 ° C. for 60 minutes to obtain a uniform melt (thermosetting aromatic polyester composition). (Step II). Thereafter, the obtained melt was sandwiched between glass plates and heated to 240 ° C. with a hot plate, and the curing reaction was allowed to proceed for 6 hours to obtain a uniform cured product. Table 2 shows the initial complex viscosity at 180 ° C. of the obtained melt and the 5% weight loss temperature (T d5 ) of the cured product.
比較例1
 製造例1で得られた芳香族ポリエステルE3.94gと4,4'-ジフェニルメタンビスマレイミド2.13gとを、170℃で60分間溶融混合し、溶融物を得た(工程II)。その後、得られた溶融物6.07gと添加剤としてシリカフィラー(商品名「FB-5SDC」、電気化学工業(株)製)3.93gとを190℃で10分間溶融混合し、均一な溶融物(熱硬化性芳香族ポリエステル組成物)を得た(工程I)。その後、得られた溶融物をガラス板に挟んでホットプレートで240℃に加熱し、6時間硬化反応を進行させて、均一な硬化物を得た。得られた溶融物の180℃での初期複素粘度及び上記硬化物の5%重量減少温度(Td5)は、表2に示す通りであった。
Comparative Example 1
3.94 g of aromatic polyester E obtained in Production Example 1 and 2.13 g of 4,4′-diphenylmethane bismaleimide were melted and mixed at 170 ° C. for 60 minutes to obtain a melt (Step II). Thereafter, 6.07 g of the obtained melt and 3.93 g of silica filler (trade name “FB-5SDC”, manufactured by Denki Kagaku Kogyo Co., Ltd.) as an additive were melt-mixed at 190 ° C. for 10 minutes to obtain a uniform melt. A product (thermosetting aromatic polyester composition) was obtained (Step I). Thereafter, the obtained melt was sandwiched between glass plates and heated to 240 ° C. with a hot plate, and the curing reaction was allowed to proceed for 6 hours to obtain a uniform cured product. Table 2 shows the initial complex viscosity at 180 ° C. of the obtained melt and the 5% weight loss temperature (T d5 ) of the cured product.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
実施例3
 製造例1で得られた芳香族ポリエステルE29.12gとポリフェニルメタンマレイミド(商品名「BMI-2300」、大和化成(株)社製)43.78gとを、150℃で1時間溶融混合し、均一な溶融物(熱硬化性芳香族ポリエステル組成物)を得た。その後、得られた溶融物をガラス板に挟んでホットプレートで240℃に加熱し、6時間硬化反応を進行させて、均一な硬化物を得た。上記得られた溶融物の180℃での初期複素粘度及び上記硬化物の5%重量減少温度(Td5)は、表2に示す通りであった。使用したマレイミド誘導体(B)であるポリフェニルメタンマレイミドの融点(Tm)、発熱開始温度は、融点と発熱開始温度の差は、表2に示す通りであった。
Example 3
29.12 g of the aromatic polyester E obtained in Production Example 1 and 43.78 g of polyphenylmethane maleimide (trade name “BMI-2300”, manufactured by Daiwa Kasei Co., Ltd.) were melt-mixed at 150 ° C. for 1 hour, A uniform melt (thermosetting aromatic polyester composition) was obtained. Thereafter, the obtained melt was sandwiched between glass plates and heated to 240 ° C. with a hot plate, and the curing reaction was allowed to proceed for 6 hours to obtain a uniform cured product. The initial complex viscosity at 180 ° C. of the obtained melt and the 5% weight reduction temperature (T d5 ) of the cured product were as shown in Table 2. The melting point (Tm) and exothermic start temperature of the polyphenylmethane maleimide used as the maleimide derivative (B) were as shown in Table 2.
実施例4~6、比較例2~3
 芳香族ポリエステル(A)の種類及び量、マレイミド誘導体の種類及び量、混合の条件を表3に示すように変更したこと以外は実施例1と同様にして、熱硬化性芳香族ポリエステル組成物を得た。これらの溶融物(熱硬化性芳香族ポリエステル組成物)の180℃での初期複素粘度、及び硬化物の5%重量減少温度(Td5)は、表3に示す通りであった。使用したポリフェニルメタンマレイミド及び4,4’-ジフェニルメタンビスマレイミドの融点(Tm)、発熱開始温度は、融点と発熱開始温度の差は、表3に示す通りであった。なお、比較例2においては、芳香族ポリエステルとマレイミド誘導体を均一に分散できず、相分離していたため、初期複素粘度を測定することはできなかった。
Examples 4-6, Comparative Examples 2-3
The thermosetting aromatic polyester composition was prepared in the same manner as in Example 1 except that the type and amount of the aromatic polyester (A), the type and amount of the maleimide derivative, and the mixing conditions were changed as shown in Table 3. Obtained. The initial complex viscosity at 180 ° C. of these melts (thermosetting aromatic polyester composition) and the 5% weight loss temperature (T d5 ) of the cured product were as shown in Table 3. The polyphenylmethane maleimide and 4,4′-diphenylmethane bismaleimide used had a melting point (Tm) and an exothermic onset temperature as shown in Table 3. In Comparative Example 2, since the aromatic polyester and the maleimide derivative could not be uniformly dispersed and phase-separated, the initial complex viscosity could not be measured.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
実施例7
 製造例1で得られた芳香族ポリエステルE29.1gを150℃で溶融させ、マレイミド誘導体として、ポリフェニルメタンマレイミド(商品名「BMI-2300」大和化成(株)製)43.8gと1時間溶融混合し、溶融物(熱硬化性芳香族ポリエステル組成物)を得た。
Example 7
29.1 g of the aromatic polyester E obtained in Production Example 1 was melted at 150 ° C., and melted for 4 hours with 43.8 g of polyphenylmethane maleimide (trade name “BMI-2300” manufactured by Daiwa Kasei Co., Ltd.) as a maleimide derivative. Mixing was performed to obtain a melt (thermosetting aromatic polyester composition).
実施例8
 製造例2で得られた芳香族ポリエステルF30.1gを100℃で溶融させ、マレイミド誘導体として、ポリフェニルメタンマレイミド(商品名「BMI-2300」大和化成(株)製)48.0gと1時間溶融混合し、溶融物(熱硬化性芳香族ポリエステル組成物)を得た。
Example 8
30.1 g of the aromatic polyester F obtained in Production Example 2 was melted at 100 ° C. and melted as a maleimide derivative with 48.0 g of polyphenylmethane maleimide (trade name “BMI-2300” manufactured by Daiwa Kasei Co., Ltd.) for 1 hour. Mixing was performed to obtain a melt (thermosetting aromatic polyester composition).
実施例9
 製造例3で合成した芳香族ポリエステルG44.0gを170℃で溶融させ、マレイミド誘導体として、ポリフェニルメタンマレイミド(商品名「BMI-2300」大和化成(株)製)30.5gと1時間溶融混合し、溶融物(熱硬化性芳香族ポリエステル組成物)を得た。
Example 9
44.0 g of the aromatic polyester G synthesized in Production Example 3 was melted at 170 ° C. and melt-mixed with 30.5 g of polyphenylmethane maleimide (trade name “BMI-2300” manufactured by Daiwa Kasei Co., Ltd.) as a maleimide derivative for 1 hour. As a result, a melt (thermosetting aromatic polyester composition) was obtained.
比較例4
 製造例4で合成した芳香族ポリエステルH44.0gを265℃で溶融させ、マレイミド誘導体として、ポリフェニルメタンマレイミド(商品名「BMI-2300」大和化成(株)製)30.1gと1時間溶融混合し、溶融物(熱硬化性芳香族ポリエステル組成物)を得た。得られた溶融物は不均一で、マレイミド誘導体の単独硬化が顕著に進んだものであった。
Comparative Example 4
44.0 g of the aromatic polyester H synthesized in Production Example 4 was melted at 265 ° C., and melt-mixed with 30.1 g of polyphenylmethane maleimide (trade name “BMI-2300” manufactured by Daiwa Kasei Co., Ltd.) as a maleimide derivative for 1 hour. As a result, a melt (thermosetting aromatic polyester composition) was obtained. The obtained melt was non-uniform and the maleimide derivative alone cured significantly.
 実施例7~9及び比較例4で得られた熱硬化性芳香族ポリエステル組成物の180℃での初期複素粘度及び硬化物の5%重量減少温度(Td5)は、表4に示す通りであった。 Table 4 shows the initial complex viscosity at 180 ° C. and the 5% weight loss temperature (T d5 ) of the cured product of the thermosetting aromatic polyester compositions obtained in Examples 7 to 9 and Comparative Example 4. there were.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 表2に示すように、実施例の方法(第1の製造方法)で得られた熱硬化性芳香族ポリエステル組成物は、比較例の熱硬化性芳香族ポリエステル組成物と比較して、熱硬化性芳香族ポリエステル組成物の初期複素粘度が低く、架橋性化合物(B)を溶融混合し均一に分散させる際の熱硬化性芳香族ポリエステル組成物の粘度上昇を抑制することができた。また、得られた硬化物は、5%重量減少温度が高く、非常に優れた耐熱性を有していた。 As shown in Table 2, the thermosetting aromatic polyester composition obtained by the method of the example (first production method) was thermoset as compared with the thermosetting aromatic polyester composition of the comparative example. The initial complex viscosity of the curable aromatic polyester composition was low, and an increase in the viscosity of the thermosetting aromatic polyester composition when the crosslinkable compound (B) was melt-mixed and uniformly dispersed could be suppressed. Further, the obtained cured product had a high 5% weight loss temperature and had very excellent heat resistance.
 表3に示すように、低融点及び/又は融点と発熱開始温度の差が大きいマレイミド誘導体(B)を用いた場合(第2の製造方法の場合)、架橋反応が進行しない温度領域で芳香族ポリエステル(A)との混合ができ、芳香族ポリエステル組成物の粘度上昇を抑えることができた。よって、第2の製造方法で得られる熱硬化性芳香族ポリエステル組成物は、芳香族ポリエステル組成物の粘度上昇を抑えることにより、トランスファー成形等の成形が容易となる。また、得られた硬化物は、5%重量減少温度が高く、非常に優れた耐熱性を有していた。 As shown in Table 3, when the maleimide derivative (B) having a low melting point and / or a large difference between the melting point and the exothermic start temperature is used (in the case of the second production method), the aromatic is in a temperature range where the crosslinking reaction does not proceed. Mixing with the polyester (A) was possible, and an increase in the viscosity of the aromatic polyester composition could be suppressed. Therefore, the thermosetting aromatic polyester composition obtained by the second production method can be easily molded by transfer molding or the like by suppressing an increase in the viscosity of the aromatic polyester composition. Further, the obtained cured product had a high 5% weight loss temperature and had very excellent heat resistance.
 表4に示すように、実施例で得られた熱硬化性芳香族ポリエステル組成物(本発明の組成物)は、比較的低い温度で溶融混合することができ、初期複素粘度が小さく、熱硬化性芳香族ポリエステル組成物の粘度上昇を抑制することができた。なおかつ得られた硬化物は、5%重量減少温度が高く、非常に優れた耐熱性を有していた。 As shown in Table 4, the thermosetting aromatic polyester compositions (compositions of the present invention) obtained in the examples can be melt-mixed at a relatively low temperature, have a low initial complex viscosity, and are thermally cured. Increase in viscosity of the water-soluble aromatic polyester composition could be suppressed. Moreover, the obtained cured product had a high 5% weight loss temperature and had very excellent heat resistance.
 本発明の製造方法(第1の製造方法又は第2の製造方法)で得られる熱硬化性芳香族ポリエステル組成物、及び本発明の組成物を硬化させた硬化物は、各種部材や各種構造材等の種々の用途に使用することができる。特に、加工性、寸法安定性、低線膨張、高熱伝導性、低吸湿性、誘電特性等の各種特性に優れるため、フィルム、プリプレグ、プリント配線板、半導体封止材などの用途に好ましく使用できる。即ち、本発明における熱硬化性芳香族ポリエステル組成物は、特に、フィルム用熱硬化性組成物、プリプレグ用熱硬化性組成物、プリント配線板用熱硬化性組成物、半導体封止材用熱硬化性組成物などとして好ましく使用することができる。 The thermosetting aromatic polyester composition obtained by the production method (the first production method or the second production method) of the present invention and the cured product obtained by curing the composition of the present invention include various members and various structural materials. It can be used for various applications such as. In particular, it is excellent in various properties such as processability, dimensional stability, low linear expansion, high thermal conductivity, low hygroscopicity, dielectric properties, etc., so it can be preferably used for applications such as films, prepregs, printed wiring boards, and semiconductor encapsulants . That is, the thermosetting aromatic polyester composition in the present invention is, in particular, a thermosetting composition for a film, a thermosetting composition for a prepreg, a thermosetting composition for a printed wiring board, and a thermosetting for a semiconductor sealing material. It can be preferably used as an adhesive composition.

Claims (23)

  1.  芳香族ポリエステルと架橋性化合物とを含有する熱硬化性ポリエステル組成物の製造方法であって、下記芳香族ポリエステル(A)と添加剤とを溶融混合する工程I、及び前記工程Iで得られた混合物に下記架橋性化合物(B)を加えて溶融混合する工程IIを含む熱硬化性芳香族ポリエステル組成物の製造方法。
     芳香族ポリエステル(A):分子鎖末端に水酸基、アシルオキシ基、芳香族環式基、及び共役ジエン構造からなる群より選択された少なくとも1種の基又は構造を有する芳香族ポリエステル
     架橋性化合物(B):水酸基、アシルオキシ基、芳香族環式基、又は共役ジエン構造と反応する官能基であって、芳香族ポリエステル(A)が有する基又は構造と反応する官能基、並びに熱重合性官能基を分子内に有する架橋性化合物
    A method for producing a thermosetting polyester composition containing an aromatic polyester and a crosslinkable compound, which is obtained in Step I of melt-mixing the following aromatic polyester (A) and an additive, and in Step I above. The manufacturing method of the thermosetting aromatic polyester composition including the process II which melt-mixes the following crosslinkable compound (B) to a mixture.
    Aromatic polyester (A): aromatic polyester having at least one group or structure selected from the group consisting of a hydroxyl group, an acyloxy group, an aromatic cyclic group, and a conjugated diene structure at the molecular chain terminal Crosslinkable compound (B ): A functional group that reacts with a hydroxyl group, an acyloxy group, an aromatic cyclic group, or a conjugated diene structure, a functional group that reacts with the group or structure of the aromatic polyester (A), and a thermally polymerizable functional group. Crosslinkable compound in the molecule
  2.  前記芳香族ポリエステル(A)100重量部に対して、前記添加剤の配合量が10~4000重量部であり、前記架橋性化合物(B)の配合量が10~400重量部である請求項1に記載の熱硬化性芳香族ポリエステル組成物の製造方法。 The amount of the additive is 10 to 4000 parts by weight and the amount of the crosslinkable compound (B) is 10 to 400 parts by weight with respect to 100 parts by weight of the aromatic polyester (A). The manufacturing method of the thermosetting aromatic polyester composition as described in any one of.
  3.  前記工程Iにおいて、前記芳香族ポリエステル(A)と前記添加剤とを溶融混合する際の混合温度が80~300℃である請求項1又は2に記載の熱硬化性芳香族ポリエステル組成物の製造方法。 The production of the thermosetting aromatic polyester composition according to claim 1 or 2, wherein the mixing temperature when the aromatic polyester (A) and the additive are melt-mixed in the step I is 80 to 300 ° C. Method.
  4.  前記工程IIにおいて、前記架橋性化合物(B)を加えて溶融混合する際の混合温度が80~200℃、混合時間が30~600分である請求項1~3の何れか1項に記載の熱硬化性芳香族ポリエステル組成物の製造方法。 The mixing temperature according to any one of claims 1 to 3, wherein in the step II, the mixing temperature when the crosslinkable compound (B) is added and melt mixed is 80 to 200 ° C, and the mixing time is 30 to 600 minutes. A method for producing a thermosetting aromatic polyester composition.
  5.  前記添加剤が、無機フィラーである請求項1~4の何れか1項に記載の熱硬化性芳香族ポリエステル組成物の製造方法。 The method for producing a thermosetting aromatic polyester composition according to any one of claims 1 to 4, wherein the additive is an inorganic filler.
  6.  前記無機フィラーが、シリカフィラーである請求項5に記載の熱硬化性芳香族ポリエステル組成物の製造方法。 The method for producing a thermosetting aromatic polyester composition according to claim 5, wherein the inorganic filler is a silica filler.
  7.  下記芳香族ポリエステル(A)に下記マレイミド誘導体(B’)を加え、混合する工程を含むことを特徴とする熱硬化性芳香族ポリエステル組成物の製造方法。
     芳香族ポリエステル(A):分子鎖末端に水酸基、アシルオキシ基、芳香族環式基、及び共役ジエン構造からなる群より選択された少なくとも1種の基又は構造を有する芳香族ポリエステル
     マレイミド誘導体(B’):融点が150℃以下及び/又は前記融点とマレイミド誘導体の発熱開始温度の差が30℃以上であり、分子内に、前記芳香族ポリエステル(A)と反応するマレイミド基と、熱重合性官能基であるマレイミド基とを有するマレイミド誘導体
    The manufacturing method of the thermosetting aromatic polyester composition characterized by including the process of adding the following maleimide derivative (B ') to the following aromatic polyester (A), and mixing.
    Aromatic polyester (A): aromatic polyester having at least one group or structure selected from the group consisting of a hydroxyl group, an acyloxy group, an aromatic cyclic group, and a conjugated diene structure at the molecular chain end Maleimide derivative (B ′ ): Melting point of 150 ° C. or less and / or difference in heat generation start temperature between the melting point and the maleimide derivative is 30 ° C. or more, and a maleimide group that reacts with the aromatic polyester (A) in the molecule and a thermopolymerizable functional group Maleimide derivative having a maleimide group as a group
  8.  前記芳香族ポリエステル(A)100重量部に対して、前記マレイミド誘導体(B’)の配合量が10~400重量部である請求項7に記載の熱硬化性芳香族ポリエステル組成物の製造方法。 The method for producing a thermosetting aromatic polyester composition according to claim 7, wherein the amount of the maleimide derivative (B ') is 10 to 400 parts by weight with respect to 100 parts by weight of the aromatic polyester (A).
  9.  前記芳香族ポリエステル(A)に前記マレイミド誘導体(B’)を加え、混合する際の混合温度が80~200℃、混合時間が30~600分である請求項7又は8に記載の熱硬化性芳香族ポリエステル組成物の製造方法。 9. The thermosetting according to claim 7 or 8, wherein the maleimide derivative (B ′) is added to the aromatic polyester (A) and the mixing temperature is 80 to 200 ° C. and the mixing time is 30 to 600 minutes. A method for producing an aromatic polyester composition.
  10.  前記マレイミド誘導体(B’)が、下記式(i)で表される化合物及び式(ii)で表される化合物から選択された少なくとも1種の化合物である請求項7~9の何れか1項に記載の熱硬化性ポリエステル組成物の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    [上記式(i)中のnは、0~10の整数を表す]
    Figure JPOXMLDOC01-appb-C000002
    10. The maleimide derivative (B ′) is at least one compound selected from a compound represented by the following formula (i) and a compound represented by the formula (ii): The manufacturing method of the thermosetting polyester composition as described in any one of.
    Figure JPOXMLDOC01-appb-C000001
    [N in the above formula (i) represents an integer of 0 to 10]
    Figure JPOXMLDOC01-appb-C000002
  11.  前記芳香族ポリエステル(A)が、芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸、及び芳香族ジオールからなる群より選択された少なくとも1種の芳香族化合物由来の構成単位Uを含む芳香族ポリエステルであって、芳香族ポリエステル(A)を構成する全構成単位に対する前記構成単位Uの割合(前記構成単位が2種以上の場合は、それらの総量の割合)が、60~100重量%である請求項1~10の何れか1項に記載の熱硬化性芳香族ポリエステル組成物の製造方法。 The aromatic polyester (A) is an aromatic polyester containing a structural unit U derived from at least one aromatic compound selected from the group consisting of an aromatic hydroxycarboxylic acid, an aromatic dicarboxylic acid, and an aromatic diol. The ratio of the structural unit U to the total structural units constituting the aromatic polyester (A) (the ratio of the total amount when the structural unit is two or more) is 60 to 100% by weight. 11. The method for producing a thermosetting aromatic polyester composition according to any one of 1 to 10.
  12.  前記芳香族ポリエステル(A)の融点が、250℃以下である請求項1~11の何れか1項に記載の熱硬化性芳香族ポリエステル組成物の製造方法。 The method for producing a thermosetting aromatic polyester composition according to any one of claims 1 to 11, wherein the aromatic polyester (A) has a melting point of 250 ° C or lower.
  13.  前記芳香族ポリエステル(A)の分子量が、300~20000である請求項1~12の何れか1項に記載の熱硬化性芳香族ポリエステル組成物の製造方法。 The method for producing a thermosetting aromatic polyester composition according to any one of claims 1 to 12, wherein the aromatic polyester (A) has a molecular weight of 300 to 20000.
  14.  前記芳香族ポリエステル(A)の分子鎖末端の末端基全体に対して、前記水酸基の割合が5~100%であり、前記アシルオキシ基の割合が0~90%であり、前記水酸基及び前記アシルオキシ基以外の基の割合が0~90%である請求項1~13の何れか1項に記載の熱硬化性芳香族ポリエステル組成物の製造方法。 The ratio of the hydroxyl group is 5 to 100% and the ratio of the acyloxy group is 0 to 90% with respect to the entire terminal group at the molecular chain end of the aromatic polyester (A). The method for producing a thermosetting aromatic polyester composition according to any one of claims 1 to 13, wherein the ratio of groups other than is from 0 to 90%.
  15.  請求項1~14の何れか1項に記載の熱硬化性芳香族ポリエステル組成物の製造方法で得られた熱硬化性芳香族ポリエステル組成物。 A thermosetting aromatic polyester composition obtained by the method for producing a thermosetting aromatic polyester composition according to any one of claims 1 to 14.
  16.  下記芳香族ポリエステル(A)と下記架橋性化合物(B)を含み、前記芳香族ポリエステル(A)の軟化温度が前記架橋性化合物(B)の硬化温度よりも30℃以上低いことを特徴とする熱硬化性芳香族ポリエステル組成物。
     芳香族ポリエステル(A):分子鎖末端に水酸基、アシルオキシ基、芳香族環式基、及び共役ジエン構造からなる群より選択された少なくとも1種の基又は構造を有する芳香族ポリエステル
     架橋性化合物(B):水酸基、アシルオキシ基、芳香族環式基、又は共役ジエン構造と反応する官能基であって、芳香族ポリエステル(A)が有する基又は構造と反応する官能基、並びに熱重合性官能基を分子内に有する架橋性化合物
    The following aromatic polyester (A) and the following crosslinkable compound (B) are included, and the softening temperature of the aromatic polyester (A) is 30 ° C. or lower than the curing temperature of the crosslinkable compound (B). Thermosetting aromatic polyester composition.
    Aromatic polyester (A): aromatic polyester having at least one group or structure selected from the group consisting of a hydroxyl group, an acyloxy group, an aromatic cyclic group, and a conjugated diene structure at the molecular chain terminal Crosslinkable compound (B ): A functional group that reacts with a hydroxyl group, an acyloxy group, an aromatic cyclic group, or a conjugated diene structure, a functional group that reacts with the group or structure of the aromatic polyester (A), and a thermally polymerizable functional group. Crosslinkable compound in the molecule
  17.  前記芳香族ポリエステル(A)の軟化温度が40~200℃である請求項16に記載の熱硬化性芳香族ポリエステル組成物。 The thermosetting aromatic polyester composition according to claim 16, wherein the softening temperature of the aromatic polyester (A) is 40 to 200 ° C.
  18.  前記架橋性化合物(B)の硬化温度が70~250℃である請求項16又は17に記載の熱硬化性芳香族ポリエステル組成物。 The thermosetting aromatic polyester composition according to claim 16 or 17, wherein the curing temperature of the crosslinkable compound (B) is 70 to 250 ° C.
  19.  前記芳香族ポリエステル(A)の平均重合度が3~30である請求項16~18の何れか1項に記載の熱硬化性芳香族ポリエステル組成物。 The thermosetting aromatic polyester composition according to any one of claims 16 to 18, wherein the average degree of polymerization of the aromatic polyester (A) is 3 to 30.
  20.  前記架橋性化合物(B)がマレイミド誘導体である請求項16~19の何れか1項に記載の熱硬化性芳香族ポリエステル組成物。 The thermosetting aromatic polyester composition according to any one of claims 16 to 19, wherein the crosslinkable compound (B) is a maleimide derivative.
  21.  前記架橋性化合物(B)の配合量が、前記芳香族ポリエステル(A)100重量部に対して、10~300重量部である請求項16~20の何れか1項に記載の熱硬化性芳香族ポリエステル組成物。 The thermosetting fragrance according to any one of claims 16 to 20, wherein a blending amount of the crosslinkable compound (B) is 10 to 300 parts by weight with respect to 100 parts by weight of the aromatic polyester (A). Group polyester composition.
  22.  請求項15~21の何れか1項に記載の熱硬化性芳香族ポリエステル組成物を硬化させることにより得られる硬化物。 A cured product obtained by curing the thermosetting aromatic polyester composition according to any one of claims 15 to 21.
  23.  昇温速度10℃/分(空気中)で測定される5%重量減少速度が350℃以上であり、空気中における熱分解反応の活性化エネルギーが150kJ/mol以上である請求項22に記載の硬化物。 23. The 5% weight reduction rate measured at a temperature elevation rate of 10 ° C./min (in air) is 350 ° C. or higher, and the activation energy of the thermal decomposition reaction in air is 150 kJ / mol or higher. Cured product.
PCT/JP2015/058056 2014-04-02 2015-03-18 Thermosetting aromatic polyester composition and method for producing same WO2015151815A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014-076513 2014-04-02
JP2014076514A JP2015196799A (en) 2014-04-02 2014-04-02 Method for producing thermosetting aromatic polyester composition
JP2014-076514 2014-04-02
JP2014-076518 2014-04-02
JP2014076513A JP2015196798A (en) 2014-04-02 2014-04-02 Method of producing thermosetting aromatic polyester composition
JP2014076518A JP6342202B2 (en) 2014-04-02 2014-04-02 Thermosetting aromatic polyester composition

Publications (1)

Publication Number Publication Date
WO2015151815A1 true WO2015151815A1 (en) 2015-10-08

Family

ID=54240146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058056 WO2015151815A1 (en) 2014-04-02 2015-03-18 Thermosetting aromatic polyester composition and method for producing same

Country Status (1)

Country Link
WO (1) WO2015151815A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168005A1 (en) * 2017-03-13 2018-09-20 リンテック株式会社 Resin composition, resin sheet, laminate, and semiconductor element
CN110402269A (en) * 2017-03-13 2019-11-01 琳得科株式会社 Resin combination and resin sheet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61252267A (en) * 1985-05-02 1986-11-10 Mitsubishi Rayon Co Ltd Resin composition having excellent handleability, curability and thermal resistance
JPH0395258A (en) * 1989-09-08 1991-04-19 Tosoh Corp Aromatic polyester resin composition
JP2003504452A (en) * 1999-07-02 2003-02-04 ユセベ,ソシエテ アノニム Thermosetting compositions for powder coatings
WO2004056497A1 (en) * 2002-12-20 2004-07-08 Kansai Paint Co., Ltd. Method of forming coating film on aluminum substrate
JP2006528991A (en) * 2003-05-19 2006-12-28 ポリマーズ オーストラリア プロプライアタリー リミティド Polyester masterbatch composition
WO2014050850A1 (en) * 2012-09-28 2014-04-03 株式会社ダイセル Heat-curable liquid-crystal polyester composition and cured product thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61252267A (en) * 1985-05-02 1986-11-10 Mitsubishi Rayon Co Ltd Resin composition having excellent handleability, curability and thermal resistance
JPH0395258A (en) * 1989-09-08 1991-04-19 Tosoh Corp Aromatic polyester resin composition
JP2003504452A (en) * 1999-07-02 2003-02-04 ユセベ,ソシエテ アノニム Thermosetting compositions for powder coatings
WO2004056497A1 (en) * 2002-12-20 2004-07-08 Kansai Paint Co., Ltd. Method of forming coating film on aluminum substrate
JP2006528991A (en) * 2003-05-19 2006-12-28 ポリマーズ オーストラリア プロプライアタリー リミティド Polyester masterbatch composition
WO2014050850A1 (en) * 2012-09-28 2014-04-03 株式会社ダイセル Heat-curable liquid-crystal polyester composition and cured product thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168005A1 (en) * 2017-03-13 2018-09-20 リンテック株式会社 Resin composition, resin sheet, laminate, and semiconductor element
KR20190122738A (en) * 2017-03-13 2019-10-30 린텍 가부시키가이샤 Resin composition, resin sheet, laminated body, and semiconductor element
CN110402269A (en) * 2017-03-13 2019-11-01 琳得科株式会社 Resin combination and resin sheet
CN110418822A (en) * 2017-03-13 2019-11-05 琳得科株式会社 Resin combination, resin sheet, laminated body and semiconductor element
KR102398722B1 (en) * 2017-03-13 2022-05-16 린텍 가부시키가이샤 Resin composition, resin sheet, laminate, and semiconductor element
US11512200B2 (en) 2017-03-13 2022-11-29 Lintec Corporation Resin composition, resin sheet, laminate, and semiconductor element

Similar Documents

Publication Publication Date Title
JP6128804B2 (en) Thermosetting liquid crystal polyester composition and cured product thereof
JP7450488B2 (en) Polyamic acid resin, polyimide resin, and resin compositions containing these
EP3299355B1 (en) Phthalonitrile compound
JP6838604B2 (en) Cyanic acid ester compound, its manufacturing method, resin composition, cured product, prepreg, sealing material, fiber reinforced composite material, adhesive, metal foil-clad laminate, resin sheet and printed wiring board
JP6342202B2 (en) Thermosetting aromatic polyester composition
JP6412329B2 (en) Method for producing thermosetting aromatic ester
WO2015151815A1 (en) Thermosetting aromatic polyester composition and method for producing same
JP2015196799A (en) Method for producing thermosetting aromatic polyester composition
CN112088188B (en) polyimide resin composition
JP2015196802A (en) Thermosetting aromatic ester, composition thereof, cured product thereof and method for producing the cured product
WO2020095829A1 (en) Random copolymer compound, terminal-modified polymer compound, and resin composition including said compounds
JP6297892B2 (en) Thermosetting liquid crystal polyester composition and cured product thereof
JP2015196801A (en) Thermosetting aromatic ester composition, cured product thereof and method for producing cured product thereof
JP2015196798A (en) Method of producing thermosetting aromatic polyester composition
JP2017078180A (en) Production method of thermosetting liquid crystal polyester composition and production method of cured product
JP2021102566A (en) Compound, curable composition including the same and crosslinking agent for curable composition
WO2023089982A1 (en) Curable resin composition, varnish, prepreg, and cured product
JP6278799B2 (en) Method for producing thermosetting liquid crystal polyester composition and method for producing cured product
JPH05239155A (en) Low viscousity thermosetting resin composition
WO2022201619A1 (en) Thermally curable resin composition, cured object, resin sheet, prepreg, metal-clad laminate, multilayered printed wiring board, sealing material, fiber-reinforced composite material, adhesive, and semiconductor device
JPS58132010A (en) Thermosetting resin composition
JP3189254B2 (en) Low viscosity thermosetting resin composition
JP2022147022A (en) Thermosetting citraconimide resin composition
JP2006328177A (en) Method for producing multi-functional cyanic acid ester polymer
JP2023018240A (en) Thermosetting citraconimide resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15772577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15772577

Country of ref document: EP

Kind code of ref document: A1