WO2015151721A1 - Hybrid work machine - Google Patents

Hybrid work machine Download PDF

Info

Publication number
WO2015151721A1
WO2015151721A1 PCT/JP2015/056682 JP2015056682W WO2015151721A1 WO 2015151721 A1 WO2015151721 A1 WO 2015151721A1 JP 2015056682 W JP2015056682 W JP 2015056682W WO 2015151721 A1 WO2015151721 A1 WO 2015151721A1
Authority
WO
WIPO (PCT)
Prior art keywords
regenerative
hydraulic
motor
valve
electric motor
Prior art date
Application number
PCT/JP2015/056682
Other languages
French (fr)
Japanese (ja)
Inventor
貢 小島
秀二 江川
泰典 太田
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Publication of WO2015151721A1 publication Critical patent/WO2015151721A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/0833Improving access, e.g. for maintenance, steps for improving driver's access, handrails
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/0858Arrangement of component parts installed on superstructures not otherwise provided for, e.g. electric components, fenders, air-conditioning units
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/0858Arrangement of component parts installed on superstructures not otherwise provided for, e.g. electric components, fenders, air-conditioning units
    • E02F9/0883Tanks, e.g. oil tank, urea tank, fuel tank
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2095Control of electric, electro-mechanical or mechanical equipment not otherwise provided for, e.g. ventilators, electro-driven fans
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2217Hydraulic or pneumatic drives with energy recovery arrangements, e.g. using accumulators, flywheels
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2282Systems using center bypass type changeover valves
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps

Definitions

  • the present invention relates to a work machine such as a hydraulic excavator or a wheel-type hydraulic excavator, and more particularly to a hybrid work machine that uses an engine and an electric motor (electric motor) as a power source.
  • a work machine such as a hydraulic excavator or a wheel-type hydraulic excavator
  • a hybrid work machine that uses an engine and an electric motor (electric motor) as a power source.
  • a hydraulic excavator which is a typical example of a work machine, includes an engine as a power source for traveling and working, and a hydraulic pump is driven by the engine.
  • This hydraulic excavator performs excavation work of earth and sand by operating hydraulic actuators such as a hydraulic motor and a hydraulic cylinder by pressure oil supplied from a hydraulic pump.
  • the excavation work of earth and sand using a hydraulic excavator is not only a work that always requires the maximum output of the engine, but there are many work that can be covered with an output of about 80% of the maximum output of the engine, for example.
  • a hybrid hydraulic excavator has been proposed that includes an assist electric motor that assists the engine and a power storage device that stores electric power supplied to the assist electric motor while reducing the size of the engine.
  • This hybrid hydraulic excavator when the output torque of the engine is larger than the driving torque of the hydraulic pump, drives the assist electric motor as a generator with the surplus torque and stores the generated power from the assist electric motor in the power storage device.
  • the assist electric motor when the output torque of the engine is smaller than the driving torque of the hydraulic pump, the assist electric motor is driven by the electric power supplied from the power storage device.
  • the driving force of the hydraulic pump is assisted (assisted) by the driving force of the assist electric motor in addition to the driving force of the engine.
  • a hybrid work machine includes a regenerative hydraulic motor that is rotated by return oil that returns from the hydraulic actuator of the work device to the hydraulic oil tank during excavation work, and a regenerative electric motor that is driven by this regenerative hydraulic motor. Has been.
  • the regenerative hydraulic motor is rotated by the return oil from the hydraulic actuator, and the regenerative electric motor is driven as a generator by the rotation of the regenerative hydraulic motor.
  • the electric power generated by the regenerative electric motor can be stored in the power storage device (see Patent Document 1).
  • the regenerative hydraulic motor is attached to the power take-off device (PTO) provided in the engine, and the regenerative electric motor is separated from the regenerative hydraulic motor. It is configured to be attached to another power take-off device provided.
  • PTO power take-off device
  • the regenerative hydraulic motor and the regenerative electric motor are arranged at positions separated from each other via the engine, and workability when performing maintenance work on the regenerative hydraulic motor and the regenerative electric motor is reduced. There is a problem of end.
  • the present invention has been made in view of the above-described problems of the prior art, and can improve workability when performing maintenance work on a regenerative unit including a regenerative hydraulic motor and a regenerative electric motor.
  • the purpose is to provide a hybrid work machine.
  • the present invention is provided with a self-propelled lower traveling body, an upper revolving body that is mounted on the lower traveling body and revolves by a revolving motor, and the upper revolving body is provided so as to be able to move up and down.
  • the upper revolving structure comprises a revolving frame that forms a support structure, a prime mover that is installed horizontally on the revolving frame in a left and right direction, and a left and right one of the prime mover.
  • a hydraulic pump that discharges pressure oil toward the swing motor and the actuator of the work device by being driven by the prime mover, and is supplied to the swing motor and the actuator of the work device that is provided in the swing frame
  • a hydraulic oil tank that stores the hydraulic oil to be stored, a power storage device that is provided in the swivel frame and stores power, and that rotates by the power from the power storage device and moves Assist electric motor for assisting driving of the hydraulic pump by the regenerative hydraulic motor rotating by return oil returning to the hydraulic oil tank from the swing motor or the actuator of the working device, and the power storage device driven by the regenerative hydraulic motor
  • the present invention is applied to a hybrid work machine including a regenerative unit that includes a regenerative electric motor that generates stored electric power.
  • a feature of the present invention is that the hydraulic oil tank is located on the front side of the hydraulic pump and is provided in the revolving frame, and the regenerative hydraulic motor and the regenerative electric motor constituting the regenerative unit are located in the vicinity of the hydraulic oil tank.
  • the configuration is to be positioned.
  • the regenerative unit including the regenerative hydraulic motor and the regenerative electric motor can be collectively arranged in the vicinity of the hydraulic oil tank.
  • the maintenance work for the regenerative hydraulic motor and the maintenance work for the regenerative electric motor are performed in one common work place. Can be done from.
  • workability when performing maintenance work on the regenerative unit can be improved.
  • the oil path connecting the regenerative unit and the hydraulic oil tank can be shortened. As a result, the pressure loss of the return oil returning from the regenerative unit to the hydraulic oil tank can be reduced, and the regeneration efficiency can be increased.
  • FIG. 1 is a front view showing a hydraulic excavator as a hybrid work machine according to a first embodiment of the present invention. It is the top view which looked at the upper turning body which removed the working apparatus from upper direction. It is a top view which shows the state which mounted the regeneration unit, engine, hydraulic pump, hydraulic oil tank, etc. by 1st Embodiment on the turning frame. It is the perspective view which looked at the state which opened the right front door and right rear door of the building cover from the right rear. 1 is a hydraulic circuit diagram including a regenerative hydraulic motor, a regenerative electric motor, a hydraulic pump, and the like according to a first embodiment.
  • FIG. 1 is a hydraulic circuit diagram including a regenerative hydraulic motor, a regenerative electric motor, a hydraulic pump, and the like according to a first embodiment.
  • FIG. 6 is a plan view showing a state in which a regenerative unit, an engine, a hydraulic pump, a hydraulic oil tank, and the like are mounted on a swing frame in a hydraulic excavator as a hybrid work machine according to a second embodiment.
  • FIG. 6 is a hydraulic circuit diagram including a regenerative hydraulic motor, a regenerative electric motor, a regenerative assist pump, and a hydraulic pump according to a second embodiment. It is a top view similar to FIG. 3 which shows the modification of arrangement
  • a hydraulic excavator 1 is a hybrid work machine.
  • the hydraulic excavator 1 is mounted on a crawler type lower traveling body 2 capable of self-propelling and capable of turning on the lower traveling body 2 via a swirling wheel 3.
  • the upper revolving body 4 and the working device 5 provided on the front side of the upper revolving body 4 so as to be able to move up and down are configured.
  • the working device 5 performs excavation work of earth and sand.
  • the working device 5 is attached to a swing frame 6 to be described later so as to be able to move up and down, and is attached to the tip side of the boom 5A so as to be rotatable.
  • the turning frame 6 is a base of the upper turning body 4. As shown in FIG. 3, the swivel frame 6 is formed in a thick flat plate shape and extends in the front and rear directions, and the front and rear sides of the swivel frame 6 standing on the bottom plate 6A and facing left and right. Left vertical plate 6B and right vertical plate 6C extending in the direction, a plurality of left extending beams 6D extending from the left vertical plate 6B to the left, and a plurality extending from the right vertical plate 6C to the right.
  • Right extending beam 6E a left side frame 6F which is fixed to the front end side of each left extending beam 6D and extending rearward, and a right side which is fixed to the front end side of each right extending beam 6E and extends rightward and rearward.
  • the side frame 6G is included.
  • the base end part (foot part) of the boom 5A is rotatably connected to the front end side of the left and right vertical plates 6B and 6C constituting the revolving frame 6.
  • a cab 7 that defines a cab is provided on the left side of the front portion of the revolving frame 6.
  • a counterweight 8 is provided on the rear end side of the revolving frame 6 to balance the weight with the work device 5.
  • the engine 9 as a prime mover is positioned on the front side of the counterweight 8 and is disposed on the rear side of the turning frame 6.
  • the engine 9 is disposed on the revolving frame 6 in a horizontal state in which an axis of a crankshaft (not shown) extends leftward and rightward.
  • a hydraulic pump 14 and an assist electric motor 15, which will be described later, are attached to the right side of the engine 9. The hydraulic pump 14 and the assist electric motor 15 are driven by the engine 9.
  • the heat exchange device 10 is mounted on the revolving frame 6 on the left side of the engine 9.
  • the heat exchanging device 10 is formed as one unit including a radiator 11 that cools engine coolant and an oil cooler 12 that cools hydraulic oil.
  • the heat exchange device 10 cools engine cooling water, hydraulic oil, and the like by supplying cooling air from a cooling fan 9 ⁇ / b> A attached to the engine 9 to the radiator 11 and the oil cooler 12.
  • the power storage device 13 is mounted on the turning frame 6 so as to be positioned on the front side of the heat exchange device 10.
  • the power storage device 13 stores power for assist supplied to an assist electric motor 15 described later.
  • the power storage device 13 is composed of, for example, a lithium ion battery, and charges and discharges power with the assist electric motor 15.
  • the hydraulic pump 14 is attached to the right side of the engine 9 with the assist electric motor 15 interposed therebetween.
  • the hydraulic pump 14 is driven by the engine 9 to supply operating hydraulic oil to various hydraulic actuators mounted on the excavator 1.
  • the assist electric motor 15 is attached to the output side of the engine 9 together with the hydraulic pump 14.
  • the assist electric motor 15 is disposed between the engine 9 and the hydraulic pump 14, and the motor shaft of the assist electric motor 15 is connected to the output shaft of the engine 9 and the input shaft of the hydraulic pump 14.
  • the assist electric motor 15 is electrically connected to the inverter 16, and the inverter 16 is electrically connected to the power storage device 13.
  • the assist electric motor 15 generates electric power by being driven by the engine 9, and the AC power generated by the assist electric motor 15 is stored in the power storage device 13 in a state converted into DC power by the inverter 16. On the other hand, the assist electric motor 15 is driven by the electric power from the power storage device 13 to assist the driving of the hydraulic pump 14 by the engine 9.
  • the inverter 16 is configured by using a plurality of switching elements, and by controlling on / off of the switching elements, the AC power from the assist electric motor 15 is converted into DC power when the assist electric motor 15 generates power. And supplied to the power storage device 13.
  • the inverter 16 when assisting the drive of the hydraulic pump 14 by the assist electric motor 15, the inverter 16 generates three-phase AC power from the DC power of the power storage device 13 and supplies the three-phase AC power to the assist electric motor 15.
  • the partition member 17 is erected on the revolving frame 6 with the front side of the engine 9 extending leftward and rightward.
  • the partition member 17 is located between the intermediate partition plate 17 ⁇ / b> A disposed on the front side of the engine 9 and the assist electric motor 15, the heat exchange device 10 and the power storage device 13, and the left disposed on the front side of the heat exchange device 10.
  • the partition plate 17 ⁇ / b> B and the right partition plate 17 ⁇ / b> C disposed on the front side of the hydraulic pump 14 are configured.
  • the intermediate partition plate 17A prevents heat and noise generated from the engine 9 from leaking from the front side of the engine 9 to the outside.
  • the left partition plate 17B suppresses the heat generated from the heat exchange device 10 from being transmitted to the power storage device 13, and the right partition plate 17C suppresses the heat generated from the hydraulic pump 14 from being transmitted to the hydraulic oil tank 20 described later. It is.
  • the control valve 18 is disposed on the front side of the partition member 17.
  • the control valve 18 is disposed on the opposite side (front side) from the engine 9 with the intermediate partition plate 17A interposed therebetween. That is, the control valve 18 is provided on the bottom plate 6A of the revolving frame 6 between the left vertical plate 6B and the right vertical plate 6C.
  • the control valve 18 is a collection of a number of directional control valves including a turning directional control valve 36 and a boom directional control valve 55 which will be described later, and pressure oil supplied to various hydraulic actuators mounted on the hydraulic excavator 1. It controls the flow direction.
  • the turning motor 19 is disposed on the front side of the control valve 18.
  • the turning motor 19 is provided on the bottom plate 6A of the turning frame 6 so as to be positioned between the left and right vertical plates 6B and 6C.
  • the turning motor 19 is constituted by a hydraulic motor, and the upper turning body 4 is turned on the lower traveling body 2 by being supplied with pressure oil from the hydraulic pump 14.
  • a swing regenerative valve 40 described later is integrally attached to the swing motor 19.
  • a boom regenerative valve 59 described later is provided on the bottom plate 6A of the turning frame 6 on the front side of the turning motor 19 so as to be positioned between the vertical plates 6B and 6C.
  • the hydraulic oil tank 20 is disposed on the front side of the hydraulic pump 14 with the partition member 17 interposed therebetween.
  • the hydraulic oil tank 20 stores hydraulic oil supplied to a hydraulic actuator mounted on the hydraulic excavator 1.
  • the hydraulic oil tank 20 is formed as a hollow box having a rectangular parallelepiped shape as a whole, and is disposed between the right vertical plate 6C and the right side frame 6G of the revolving frame 6.
  • a regenerative unit accommodation space 21 for accommodating a regenerative unit 25 described later is formed between the rear surface 20A of the hydraulic oil tank 20 and the right partition plate 17C.
  • a fuel tank 22 that stores fuel supplied to the engine 9 is provided on the front side of the hydraulic oil tank 20.
  • the regenerative hydraulic motor 23 is provided adjacent to the vicinity (rear side) of the hydraulic oil tank 20 at a position spaced forward from the hydraulic pump 14.
  • the regenerative hydraulic motor 23 is mounted on the right overhanging beam 6E of the revolving frame 6 with a motor shaft (not shown) horizontally placed extending leftward and rightward.
  • the regenerative hydraulic motor 23 is rotated by return oil from the turning motor 19 or the boom cylinder 5B.
  • the regenerative electric motor 24 is provided adjacent to the vicinity of the hydraulic oil tank 20 at a position separated from the hydraulic pump 14 together with the regenerative hydraulic motor 23.
  • the regenerative electric motor 24 is mounted on the right extending beam 6E of the swivel frame 6 in a horizontal state in which a motor shaft (not shown) extends leftward and rightward.
  • the motor shaft of the regenerative electric motor 24 is connected to the motor shaft of the regenerative hydraulic motor 23 via a power transmission mechanism (not shown).
  • the regenerative hydraulic motor 23 and the regenerative electric motor 24 constitute a regenerative unit 25 separated from the engine 9.
  • the regenerative hydraulic motor 23 and the regenerative electric motor 24 are provided between the hydraulic pump 14 and the hydraulic oil tank 20, more specifically, the right partition plate 17C of the partition member 17 provided on the front side of the hydraulic pump 14 and the hydraulic oil tank. 20 are accommodated side by side in the left and right directions in a regenerative unit accommodation space 21 formed between them.
  • the regenerative electric motor 24 is electrically connected to the inverter 26, and the inverter 26 is electrically connected to the power storage device 13.
  • the regenerative electric motor 24 generates power by being driven by the regenerative hydraulic motor 23.
  • the AC power generated by the regenerative electric motor 24 is converted into DC power by the inverter 26 and stored in the power storage device 13.
  • the regenerative hydraulic motor 23 and the regenerative electric motor 24 that constitute the regenerative unit 25 are separated from the hydraulic pump 14 to the front side, and are disposed adjacent to the left and right directions at positions near the hydraulic oil tank 20. . Accordingly, the regenerative hydraulic motor 23 and the regenerative electric motor 24 are collectively arranged at a position separated from the engine 9. Therefore, the maintenance work for the regenerative hydraulic motor 23 and the maintenance work for the regenerative electric motor 24 can be performed from a common work place.
  • the building cover 27 is located on the front side of the counterweight 8 and is provided on the revolving frame 6.
  • the building cover 27 accommodates onboard equipment including the engine 9, the power storage device 13, the hydraulic pump 14, the assist electric motor 15, the regenerative hydraulic motor 23, and the regenerative electric motor 24.
  • the building cover 27 includes a left side cover 28, an upper surface cover 29, an engine cover 30, and a right side door 31, which will be described later.
  • the left side cover 28 constitutes the left side of the building cover 27, and the left side cover 28 is provided between the left end of the counterweight 8 and the cab 7.
  • the left side cover 28 rises upward from the left side frame 6F and extends forward and rearward along the left side frame 6F.
  • the left side cover 28 covers the heat exchange device 10, the power storage device 13 and the like so that they can be opened and closed from the left side.
  • the upper surface cover 29 constitutes the upper surface of the building cover 27, and the upper surface cover 29 extends leftward and rightward between an upper end portion of the left side cover 28 and an upper end portion of a right side door 31 described later. ing.
  • the upper surface cover 29 covers mounted devices including the engine 9 and the heat exchange device 10 from above.
  • An opening (not shown) for work is formed in the upper surface cover 29, and this opening is covered with an engine cover 30 so as to be openable and closable. Therefore, when performing maintenance work on the engine 9 and the heat exchange device 10, the operator can open the engine cover 30 and access the building cover 27 through the work opening.
  • the right side door 31 constitutes the right side of the building cover 27, and the right side door 31 is provided between the right end of the counterweight 8 and the fuel tank 22.
  • the right side door 31 is located on the counterweight 8 side and covers the right rear side door 31A that covers the hydraulic pump 14 and the like from the right side, and the regenerative hydraulic motor 23 and the regenerative electric motor 24 located on the fuel tank 22 side on the right side. It is comprised by the right front side door 31B covered from the direction.
  • the rear end portion of the right rear side door 31A is rotatably supported by a support member provided on the revolving frame 6 via a hinge mechanism (both not shown).
  • the front end portion of the right front side door 31B is rotatably supported on the rear surface of the fuel tank 22 via a hinge mechanism (not shown), for example.
  • the regenerative unit accommodation space 21 can be opened to the outside.
  • the regenerative hydraulic motor 23 and the regenerative electric motor accommodated in the regenerative unit accommodation space 21 are provided.
  • the workability at the time of performing the maintenance work for 24 can be improved.
  • the hydraulic pump 14 provided in the upper swing body 4 constitutes a hydraulic pressure source together with the hydraulic oil tank 20, and supplies the hydraulic oil in the hydraulic oil tank 20 to the delivery line 14A as high pressure oil.
  • the pressure oil supplied from the hydraulic pump 14 to the delivery pipeline 14A is supplied to the swing motor 19 and the boom cylinder 5B through a swing direction control valve 36 and a boom direction control valve 55, which will be described later, constituting the control valve 18.
  • the control valve 18 representatively shows two directional control valves, a turning directional control valve 36 and a boom directional control valve 55.
  • the control valve 18 includes an arm directional control valve and a bucket. A directional control valve or the like is also included.
  • a center bypass line 32 that connects between the delivery line 14A and the return line 32A (the hydraulic oil tank 20).
  • a turning direction control valve 36 and a boom direction control valve 55 are provided in parallel connection.
  • a branch pipe 33 ⁇ / b> A branching from the center bypass pipe 32 is provided, and the branch pipe 33 ⁇ / b> A is connected to the high-pressure side port of the turning direction control valve 36.
  • Another branch conduit 33B is provided on the upstream side of the boom direction control valve 55, and the branch conduit 33B is connected to the high-pressure side port of the boom direction control valve 55.
  • a tank line 34A for returning the return oil from the turning motor 19 to the hydraulic oil tank 20 is provided.
  • a tank line 34B for circulating the return oil from the boom cylinder 5B to the hydraulic oil tank 20 is provided.
  • a pair of main pipes 35A and 35B for supplying and discharging pressure oil to the turning motor 19 are connected.
  • Each of the main pipelines 35A and 35B is connected to the branch pipeline 33A or the tank pipeline 34A according to the switching position of the turning direction control valve 36.
  • the turning direction control valve 36 is connected to the center bypass conduit 32.
  • the turning direction control valve 36 is one of many direction control valves constituting the control valve 18.
  • the turning direction control valve 36 is a 6-port 3-position direction control valve having pilot portions 36A and 36B. Pilot pressures are supplied to the pilot portions 36A and 36B of the turning direction control valve 36 through pilot pipelines 36A1 and 36B1 in accordance with the operation of an operation lever (not shown) of a hydraulic pilot valve disposed in the cab 7. Is done.
  • the turning direction control valve 36 has a neutral position (A) for stopping the supply and discharge of the pressure oil to the turning motor 19, and a switching position (B) for supplying and discharging the pressure oil to the turning motor 19. (C).
  • a pair of make-up check valves 37A and 37B are connected in the middle of the main pipelines 35A and 35B.
  • the check valves 37A and 37B has a negative pressure in the main pipeline 35A or 35B due to the inertial rotation of the swing motor 19, the hydraulic oil in the hydraulic oil tank 20 is fed into the main pipelines 35A and 35B through the tank pipeline 38. Replenish.
  • the pair of relief valves 39A and 39B are connected in the middle of the main pipelines 35A and 35B.
  • Each relief valve 39A, 39B has a function of relieving this excessive pressure and protecting the hydraulic equipment when an excessive pressure is generated in one main conduit 35A (35B) by the inertial rotation of the swing motor 19. Yes.
  • the turning regenerative valve 40 is located between the turning motor 19 and the turning direction control valve 36 and is provided in the middle of the main pipelines 35A and 35B.
  • the swing regenerative valve 40 supplies pressure oil (return oil from the swing motor 19) discharged by the pump action of the swing motor 19 to the regenerative hydraulic motor 23 when the swing motor 19 performs inertial rotation.
  • the swivel regenerative valve 40 includes check valves 42A and 42B, which will be described later, a swivel regenerative main switching valve 45, a swivel regenerative pilot valve 49, and an electromagnetic pilot valve 51.
  • connection pipeline 41 is connected to the main pipeline 35A and the main pipeline 35B.
  • a pair of check valves 42 ⁇ / b> A and 42 ⁇ / b> B are connected in the middle of the connection pipe 41. These check valves 42A and 42B allow the flow of pressure oil from the main pipelines 35A and 35B toward the connection pipeline 41, and prevent the reverse flow.
  • One end side of the swivel regeneration conduit 43 is connected to the connection portion 43A in the middle of the connection conduit 41 located between the check valves 42A and 42B.
  • the other end side of the turning regeneration pipeline 43 is connected to a boom regeneration pipeline 68 described later.
  • a check valve 44 is connected in the middle of the swivel regenerative pipe 43, and this check valve 44 allows the flow of pressure oil toward the regenerative hydraulic motor 23 and prevents the reverse flow.
  • the turning regeneration main switching valve 45 is provided in the middle of the turning regeneration pipeline 43.
  • This turning regeneration main switching valve 45 is connected between a check valve 44 and a connection portion 43 ⁇ / b> A between the connection pipe 41 and the turning regeneration pipe 43.
  • the swivel regeneration main switching valve 45 is a two-port, two-position switching valve, and normally maintains the shut-off position (A) to shut off the swivel regeneration conduit 43.
  • the turning regeneration main switching valve 45 is switched to the communication position (B) when the pilot pressure is supplied to the pilot section 45 ⁇ / b> A, and makes the turning regeneration pipeline 43 communicate.
  • the pilot portion 45 ⁇ / b> A of the turning regeneration main switching valve 45 and the turning regeneration pipeline 43 are connected via a pilot pipeline 46.
  • a one-way throttle valve 47 composed of a check valve and a throttle is provided in the middle of the pilot line 46.
  • the bypass pipe line 48 connects the connection pipe line 41 and the swivel regeneration pipe line 43.
  • One end of the bypass conduit 48 is connected to the connection conduit 41 at the connection portion 48A.
  • the other end side of the bypass pipe 48 is connected to the turning regeneration pipe 43 between the check valve 44 and the turning regeneration main switching valve 45.
  • the turning regeneration pilot valve 49 is connected in the middle of the bypass line 48.
  • the regenerative pilot valve 49 is composed of a 2-port 2-position switching valve, and normally maintains the shut-off position (A) and shuts off the bypass line 48.
  • the swivel regeneration pilot valve 49 is switched to the communication position (B) when the pilot pressure is supplied to the pilot section 49A, and communicates the bypass pipe line 48 via the throttle 49B.
  • the bypass pipe 48 and the pilot portion 49A of the swivel regenerative pilot valve 49 are connected via a pilot pipe 50.
  • An electromagnetic pilot valve 51 at a 3-port 2-position is connected in the middle of the pilot pipe line 50.
  • the electromagnetic pilot valve 51 always maintains the shut-off position (A), thereby shutting off the pilot conduit 50 and connecting the pilot portion 49A of the revolving regenerative pilot valve 49 to the hydraulic oil tank 20.
  • a regenerative valve pilot conduit 52 is connected to the pilot portion 51 ⁇ / b> A of the electromagnetic pilot valve 51.
  • the electromagnetic pilot valve 51 is switched to the communication position (B) by supplying pilot pressure through the regenerative valve pilot line 52 in accordance with a control signal from a controller (not shown), and the pilot line 50 is Communicate.
  • the pilot pressure supplied to the pilot portions 36A and 36B of the turning direction control valve 36 is detected by the pressure sensors 53A and 53B.
  • the pressure in the main pipelines 35A and 35B is detected by pressure sensors 53C and 53D.
  • a controller (not shown) controls the electromagnetic pilot valve 51 of the swivel regenerative valve 40 based on detection signals from the pressure sensors 53A, 53B, 53C, 53D and a pressure sensor 76C described later.
  • a pair of main pipelines 54A and 54B are connected between a boom cylinder 5B constituting the working device 5 and a boom direction control valve 55 described later.
  • These main pipelines 54A and 54B supply and discharge pressure oil to and from the bottom side oil chamber 5B1 and the rod side oil chamber 5B2 of the boom cylinder 5B.
  • the main pipelines 54A and 54B are connected to the branch pipeline 33B or the tank pipeline 34B according to the switching position of the boom direction control valve 55.
  • the boom direction control valve 55 is connected to the center bypass pipe 32 on the downstream side of the turning direction control valve 36.
  • the boom directional control valve 55 is also one of many directional control valves constituting the control valve 18.
  • the boom direction control valve 55 is a 6-port 3-position direction control valve having pilot portions 55A and 55B.
  • a pilot pressure is applied to pilot portions 55A and 55B of the boom direction control valve 55 through pilot pipelines 74 and 75, which will be described later, in response to an operation of an operation lever (not shown) of a hydraulic pilot valve disposed in the cab 7. Supplied.
  • the boom direction control valve 55 has a neutral position (A) for stopping supply and discharge of pressure oil to the boom cylinder 5B, and a switching position (B) for supplying and discharging pressure oil to and from the boom cylinder 5B. (C).
  • a pair of make-up check valves 56A and 56B are provided between the main pipelines 54A and 54B and the return pipeline 32A, respectively.
  • Each check valve 56A, 56B replenishes the hydraulic oil in the hydraulic oil tank 20 into the main pipelines 54A, 54B through the return pipeline 32A when the pressure in the main pipeline 54A or 54B becomes negative.
  • the pair of relief valves 57A and 57B are provided between the main pipelines 54A and 54B and the return pipeline 32A, respectively.
  • Each relief valve 57A, 57B has a function of relieving the excessive pressure when the excessive pressure is generated in the main pipelines 54A, 54B and protecting the hydraulic equipment.
  • the pilot operated check valve 58 is provided in the middle of the main pipeline 54A.
  • the check valve 58 is connected to a later-described check valve pilot pipe 74B.
  • the check valve 58 prevents the flow of pressure oil from the boom cylinder 5B toward the boom direction control valve 55 when the pilot pressure is not supplied through the check valve pilot pipe line 74B.
  • the check valve 58 allows the flow of pressure oil from the boom cylinder 5B toward the boom direction control valve 55 when the pilot pressure is supplied through the check valve pilot line 74B.
  • the boom regenerative valve 59 is provided in the middle of the main pipelines 54A and 54B.
  • the boom regenerative valve 59 supplies pressure oil (return oil from the boom cylinder 5B) discharged from the bottom side oil chamber 5B1 of the boom cylinder 5B when the boom cylinder 5B is contracted and the boom 5A is rotated downward.
  • the regenerative hydraulic motor 23 is supplied.
  • the boom regenerative valve 59 includes a pipe switching valve 60, a control valve return valve 61, a communication valve 64, a residual pressure adjusting valve 67, and a regenerative switching valve 70 which will be described later.
  • the pipeline switching valve 60 is provided in the middle of the main pipeline 54B.
  • This pipeline switching valve 60 is a three-port 2-position switching valve having a pilot portion 60A, and is connected to the main pipeline 54B and the return pipeline 32A.
  • the pilot section 60A of the pipe switching valve 60 is connected to a switching valve pilot pipe 74G described later.
  • the pipeline switching valve 60 always maintains a communication position (A) that allows the main pipeline 54B to communicate.
  • the pipeline switching valve 60 is switched to the switching position (B) when the pilot pressure is supplied to the pilot section 60A through the switching valve pilot pipeline 74G, and connects the main pipeline 54B to the return pipeline 32A. It is.
  • the control valve return valve 61 is provided in the middle of the main pipeline 54A.
  • the control valve return valve 61 is a 3-port 2-position switching valve having a pilot portion 61A.
  • the control valve return valve 61 is connected in the middle of the main pipeline 54A, and is connected at one end to the other end of the connection pipeline 62 connected to the main pipeline 54B.
  • the pilot portion 61A of the control valve return valve 61 is connected to a return valve pilot pipe 74C described later.
  • the control valve return valve 61 always maintains the communication position (A), allows the main pipeline 54A to communicate, and part of the pressure oil flowing through the main pipeline 54A to the connection pipeline 62 via the check valve 61B. Lead.
  • the control valve return valve 61 is switched to the throttle position (B) when the pilot pressure is supplied to the pilot section 61A through the return valve pilot pipe 74C, and communicates with the main pipe 54A via the throttle 61C.
  • the communication pipeline 63 is provided by connecting the main pipelines 54A and 54B.
  • the communication pipeline 63 connects the main pipelines 54A and 54B closer to the boom cylinder 5B than the pipeline switching valve 60 and the control valve return valve 61.
  • the communication valve 64 is provided in the middle of the communication pipe 63.
  • the communication valve 64 is a two-port 2-position switching valve having a pilot portion 64A, and the pilot portion 64A of the communication valve 64 is connected to a communication valve pilot pipe 74D described later.
  • the communication valve 64 always maintains the blocking position (A) and blocks the communication pipe 63.
  • the communication valve 64 is switched to the communication position (B) when the pilot pressure is supplied to the pilot section 64A through the communication valve pilot pipe 74D, and the communication pipe 63 is communicated.
  • a check valve 65 is provided in the middle of the communication pipe 63, and this check valve 65 allows the flow of pressure oil from the main pipe 54 ⁇ / b> A to the main pipe 54 ⁇ / b> B via the communication valve 64, and prevents the reverse flow. To do.
  • a residual pressure adjusting valve 67 is connected in the middle of the tank conduit 66.
  • the residual pressure adjusting valve 67 is a two-port 2-position switching valve having a pilot portion 67A, and the pilot portion 67A of the residual pressure adjusting valve 67 is connected to an after-mentioned adjusting valve pilot conduit 74E.
  • the residual pressure adjusting valve 67 normally maintains the shut-off position (A) and shuts off the tank conduit 66.
  • the residual pressure adjusting valve 67 is switched to the communication position (B) when the pilot pressure is supplied to the pilot portion 67A through the adjusting valve pilot pipe 74E, and the tank pipe 66 is connected.
  • the boom regenerative pipe 68 has one end connected to the main pipe 54A between the control valve return valve 61 and the boom cylinder 5B, and the other end connected to the regenerative hydraulic motor 23.
  • the regenerative hydraulic motor 23 and the hydraulic oil tank 20 are connected via a tank line 69.
  • a regeneration switching valve 70 is connected in the middle of the boom regeneration pipe 68.
  • the regenerative switching valve 70 is a 2-port 2-position switching valve having a pilot portion 70A, and the pilot portion 70A of the regenerative switching valve 70 is connected to a regenerative valve pilot conduit 74F described later.
  • the regenerative switching valve 70 normally maintains the shut-off position (A) and shuts off the boom regenerative pipe 68.
  • the regenerative switching valve 70 is switched to the communication position (B) when the pilot pressure is supplied to the pilot portion 70A through the regenerative valve pilot line 74F, and the boom regenerative line 68 is communicated via the throttle 70B. Is.
  • a check valve 71 is provided in the middle of the boom regenerative pipe 68, and this check valve 71 is provided between the regenerative switching valve 70 and the regenerative hydraulic motor 23.
  • the check valve 71 allows the flow of pressure oil from the regenerative switching valve 70 toward the regenerative hydraulic motor 23 and prevents the reverse flow.
  • the bypass line 72 bypasses the control valve return valve 61 and connects between the main line 54A and the boom regenerative line 68.
  • a check valve 73 is provided in the middle of the bypass line 72. The check valve 73 allows the flow of pressure oil from the main pipeline 54A toward the boom regeneration pipeline 68 and prevents the reverse flow.
  • the pilot pipelines 74 and 75 are connected to the pilot portions 55A and 55B of the boom direction control valve 55, respectively. These pilot conduits 74 and 75 supply pilot pressure to the pilot portions 55A and 55B of the boom direction control valve 55 in accordance with the operation of an operation lever (not shown) disposed in the cab 7. .
  • the pilot pipe line 74 includes a directional control valve pilot pipe line 74A connected to the pilot section 55A of the boom directional control valve 55, a check valve pilot pipe line 74B connected to the check valve 58, and a control.
  • a return valve pilot line 74C connected to the pilot part 61A of the valve return valve 61, a communication valve pilot line 74D connected to the pilot part 64A of the communication valve 64, and a pilot part 67A of the residual pressure adjusting valve 67.
  • pilot line 74F for regenerative valve connected to the pilot part 70A of the regenerative switching valve 70, and the pilot part 60A of the regenerative switching valve 70 Branches to the pilot line 74G.
  • pilot pressure is supplied to the pilot portion 55A of the boom direction control valve 55 through the direction control valve pilot line 74A, this pilot pressure is supplied to the check valve 58.
  • the control valve return valve 61, the communication valve 64, the residual pressure adjusting valve 67, the regenerative switching valve 70, and the pilot sections 61A, 64A, 67A, 70A, 60A of the pipe switching valve 60 are respectively supplied with control signals from the controller. Accordingly, pilot pressure is supplied.
  • the pressure of the pilot pressure supplied to the pilot section 55A of the boom direction control valve 55 is detected by the pressure sensor 74H.
  • the pressures in the main pipelines 54A and 54B are detected by pressure sensors 76A and 76B.
  • the pressure on the inflow side of the regenerative hydraulic motor 23 is detected by the pressure sensor 76C.
  • a controller (not shown) controls the pipe switching valve 60, the control valve return valve 61, the communication valve 64, the remaining valve, and the like that constitute the boom regenerative valve 59.
  • the pressure regulating valve 67 and the regeneration switching valve 70 are controlled.
  • the hybrid excavator 1 according to the present embodiment has the above-described configuration, and the operation thereof will be described next.
  • the hydraulic pump 14 and the assist electric motor 15 are driven by the engine 9.
  • the hydraulic pump 14 sucks and pressurizes the hydraulic oil in the hydraulic oil tank 20 and discharges it toward various hydraulic actuators.
  • the excavator 1 performs a traveling operation by the lower traveling body 2, a turning operation by the upper revolving body 4, excavation work by the work device 5, and the like.
  • the assist electric motor 15 when the output torque of the engine 9 is larger than the driving torque of the hydraulic pump 14, the assist electric motor 15 is driven as a generator by the surplus torque. Thereby, the assist electric motor 15 generates AC power, and this AC power is converted into DC power by the inverter 16 and stored in the power storage device 13.
  • the assist electric motor 15 is driven as an electric motor by the electric power from the power storage device 13. Accordingly, the assist electric motor 15 can assist (assist) the engine 9 to drive the hydraulic pump 14.
  • the regenerative hydraulic motor 23 uses the return oil that returns from the swing motor 19 to the hydraulic oil tank 20 when the upper swing body 4 rotates inertially on the lower traveling body 2. Rotating regenerative operation to drive is performed. Further, the hydraulic excavator 1 drives the regenerative hydraulic motor 23 using the return oil that returns from the bottom side oil chamber 5B1 of the boom cylinder 5B to the hydraulic oil tank 20 when the boom 5A of the working device 5 rotates downward. Perform boom regeneration operation.
  • pilot pressure is supplied to the pilot portion 51A of the electromagnetic pilot valve 51 in accordance with a control signal from a controller (not shown), and the electromagnetic pilot valve 51 is switched to the communication position (B).
  • the pressure oil that has flowed into the connection pipe 41 is supplied to the pilot portion 49 ⁇ / b> A of the turning regeneration pilot valve 49 through the pilot pipe 50.
  • the swivel regenerative pilot valve 49 is switched to the communication position (B), and the pressure oil in the connection pipe 41 passes through the throttle 49B of the swivel regenerative pilot valve 49, and the bypass line 48, the pilot line 46,
  • the directional throttle valve 47 is supplied to the pilot section 45A of the turning regeneration main switching valve 45.
  • the turning regeneration main switching valve 45 is switched to the communication position (B), and the pressure oil that has flowed into the connection pipe 41 is supplied to the regeneration hydraulic motor 23 through the turning regeneration pipe 43, the boom regeneration pipe 68, and the like. Is done.
  • the regenerative hydraulic motor 23 can be rotated using the return oil from the turning motor 19, and the regenerative electric motor 24 can be driven by the regenerative hydraulic motor 23.
  • AC power generated by the regenerative electric motor 24 is converted into DC power by the inverter 26 and stored in the power storage device 13.
  • the pressure oil from the hydraulic pump 14 is supplied to the bottom side oil chamber 5B1 of the boom cylinder 5B through the boom direction control valve 55, the main pipeline 54A, the bypass pipeline 72, and the like.
  • the pressure oil in the rod side oil chamber 5B2 of the boom cylinder 5B circulates to the hydraulic oil tank 20 through the main pipeline 54B, the pipeline switching valve 60, the boom direction control valve 55, the return pipeline 32A, and the like.
  • the boom cylinder 5B extends, and the boom 5A rotates upward.
  • the pilot pressure is supplied to the pilot portion 55A of the boom direction control valve 55 according to the operation of the operation lever arranged in the cab 7.
  • the boom direction control valve 55 is switched to the switching position (B).
  • the pilot pressure is supplied to the check valve 58 through the check valve pilot pipe 74B, so that the pilot operated check valve 58 is opened.
  • pilot pressure is supplied to the pilot section 60A of the pipeline switching valve 60 in accordance with a control signal from a controller (not shown), and the pipeline switching valve 60 is switched to the switching position (B).
  • the pressure oil supplied from the hydraulic pump 14 is returned to the hydraulic oil tank 20 through the boom direction control valve 55, the pipe switching valve 60, and the return pipe 32A without being supplied to the boom cylinder 5B.
  • the pressure oil that has passed through the check valve 61B of the control valve return valve 61 is guided to the main pipeline 54B through the connection pipeline 62, and flows into the rod-side oil chamber 5B2 of the boom cylinder 5B through the main pipeline 54B.
  • the pressure oil guided to the main line 54A through the control valve return valve 61 is returned to the hydraulic oil tank 20 through the check valve 58, the boom direction control valve 55, the tank line 34B, the return line 32A, and the like.
  • the boom cylinder 5B is reduced, and the return oil from the boom cylinder 5B (bottom side oil chamber 5B1) flows back to the hydraulic oil tank 20 without being supplied to the regenerative hydraulic motor 23.
  • the pilot portion of the boom direction control valve 55 is operated according to the operation of the operation lever arranged in the cab 7.
  • the pilot pressure is supplied to 55A, and the boom direction control valve 55 is switched to the switching position (B).
  • the pilot pressure is supplied to the check valve 58 through the check valve pilot pipe 74B, so that the pilot operated check valve 58 is opened.
  • pilot pressure is supplied to the pilot section 60A of the pipeline switching valve 60 in accordance with a control signal from a controller (not shown), and the pipeline switching valve 60 is switched to the switching position (B).
  • the pressure oil supplied from the hydraulic pump 14 is returned to the hydraulic oil tank 20 through the boom direction control valve 55, the pipe switching valve 60, and the return pipe 32A without being supplied to the boom cylinder 5B.
  • pilot pressure is supplied to the control valve return valve 61, the communication valve 64, and the pilot portions 61A, 64A, and 70A of the regenerative switching valve 70 according to control signals from a controller (not shown).
  • the control valve return valve 61 is switched to the throttle position (B)
  • the communication valve 64 is switched to the communication position (B)
  • the regeneration switching valve 70 is switched to the communication position (B).
  • the pressure oil guided from the main pipe line 54A to the communication pipe line 63 flows into the rod side oil chamber 5B2 of the boom cylinder 5B through the communication valve 64 and the main pipe line 54B, and the pressure in the bottom side oil chamber 5B1 increases.
  • the pressure oil led from the main pipeline 54 ⁇ / b> A to the boom regeneration pipeline 68 is supplied to the regeneration hydraulic motor 23 through the regeneration switching valve 70, the check valve 71, and the boom regeneration pipeline 68.
  • the boom cylinder 5B is reduced, and at the same time, the regenerative hydraulic motor 23 is rotated using the return oil from the boom cylinder 5B, and the regenerative electric motor 24 can be driven by the regenerative hydraulic motor 23.
  • AC power generated by the regenerative electric motor 24 is converted into DC power by the inverter 26 and stored in the power storage device 13.
  • a part of the pressure oil led from the main pipeline 54A to the boom regeneration pipeline 68 passes through the control valve return valve 61, the main pipeline 54A, the check valve 58, the boom direction control valve 55, the tank pipeline 34B, and the return pipeline 32A. Returned to the hydraulic oil tank 20.
  • the pilot pressure is supplied to the pilot portion 67A of the residual pressure adjustment valve 67 according to the control signal from the controller.
  • the residual pressure adjusting valve 67 is switched to the communication position (B), and the residual oil pressure in the rod side oil chamber 5B2 of the boom cylinder 5B is supplied to the hydraulic oil tank through the tank line 66 and the return line 32A. 20 can be discharged.
  • the hydraulic excavator 1 drives the regenerative hydraulic motor 23 using the return oil that returns from the swing motor 19 to the hydraulic oil tank 20 when the upper swing body 4 rotates inertially on the lower traveling body 2. Rotating regenerative operation can be performed.
  • a boom regenerative operation for driving the regenerative hydraulic motor 23 is performed using return oil that returns from the bottom oil chamber 5B1 of the boom cylinder 5B to the hydraulic oil tank 20. be able to. Since the regenerative energy obtained by the boom regenerative operation is larger than the regenerative energy obtained by the turning regenerative operation, the boom regenerative operation is performed with priority over the turning regenerative operation.
  • the regenerative hydraulic motor 23 and the regenerative electric motor 24 mounted on the upper swing body 4 are located between the hydraulic pump 14 and the hydraulic oil tank 20 and operated.
  • the oil tank 20 is arranged in the vicinity of the oil tank 20.
  • the tank line 69 connecting the regenerative hydraulic motor 23 and the hydraulic oil tank 20 can be shortened.
  • the pressure loss of the return oil that returns from the regenerative hydraulic motor 23 to the hydraulic oil tank 20 can be reduced, and the regeneration efficiency can be increased.
  • the regenerative hydraulic motor 23 and the regenerative electric motor 24 are arranged side by side in the left and right directions between the hydraulic pump 14 and the hydraulic oil tank 20. Thereby, the regenerative hydraulic motor 23 and the regenerative electric motor 24 can be efficiently arranged in the space formed between the hydraulic pump 14 and the hydraulic oil tank 20.
  • the partition unit 17 is provided on the front side of the hydraulic pump 14 so as to extend leftward and rightward, so that the regenerative unit accommodating space 21 is provided between the hydraulic oil tank 20 and the partition member 17. Is formed. Therefore, the regenerative hydraulic motor 23 and the regenerative electric motor 24 can be accommodated in a compact manner by accommodating the regenerative hydraulic motor 23 and the regenerative electric motor 24 side by side in the regenerative unit accommodation space 21 in the left and right directions. it can.
  • the excavator 1 is provided with a right side door 31 at a position corresponding to the regenerative unit 25 in the building cover 27.
  • the right side door 31 includes a right rear side door 31A that covers the hydraulic pump 14 and the like so that it can be opened and closed from the right side, and a right front side door that covers the regenerative hydraulic motor 23 and the regenerative electric motor 24 so that they can be opened and closed from the right side. 31B.
  • the regeneration unit accommodation space 21 can be opened outside by opening the right rear side door 31A and the right front side door 31B.
  • maintenance workability for the regenerative hydraulic motor 23 and the regenerative electric motor 24 accommodated in the regenerative unit accommodation space 21 can be improved.
  • FIG. 6 and FIG. 7 show a second embodiment of the present invention.
  • the feature of this embodiment is that a regenerative assist pump that is driven by return oil that returns from the turning device or the working device to the hydraulic oil tank is additionally provided in the regenerative unit.
  • the same components as those in the first embodiment described above are denoted by the same reference numerals, and the description thereof is omitted.
  • the regeneration unit 77 is applied to the second embodiment.
  • the regenerative unit 77 is obtained by adding a regenerative hydraulic pump 78 as a regenerative assist pump described later in addition to the regenerative hydraulic motor 23 and the regenerative electric motor 24 constituting the regenerative unit 25 according to the first embodiment.
  • the regenerative hydraulic pump 78 constitutes the regenerative unit 77 and is composed of a variable displacement hydraulic pump.
  • the regenerative hydraulic pump 78 is driven by the regenerative hydraulic motor 23 to supply pressure oil, and joins the pressure oil to the pressure oil supplied from the hydraulic pump 14.
  • the regenerative hydraulic pump 78 is adjacent to the vicinity (rear side) of the hydraulic oil tank 20, together with the regenerative hydraulic motor 23 and the regenerative electric motor 24, at a position spaced forward from the hydraulic pump 14. It is provided in the state.
  • the pump shaft of the regenerative hydraulic pump 78 is connected to the motor shaft of the regenerative hydraulic motor 23 via a power transmission mechanism (not shown).
  • the regenerative hydraulic motor 23, the regenerative electric motor 24, and the regenerative hydraulic pump 78 constitute a regenerative unit 77 separated from the engine 9.
  • the regenerative hydraulic motor 23, the regenerative electric motor 24, and the regenerative hydraulic pump 78 are arranged between the hydraulic pump 14 and the hydraulic oil tank 20, more specifically, the right partition plate 17C of the partition member 17 provided on the front side of the hydraulic pump 14. Are accommodated side by side in the left and right directions in a regenerative unit housing space 21 formed between the hydraulic oil tank 20 and the hydraulic oil tank 20.
  • the discharge side of the regenerative hydraulic pump 78 is connected to the delivery line 14 ⁇ / b> A via a confluence line 79, and a suction line 80 is provided between the regenerative hydraulic pump 78 and the hydraulic oil tank 20.
  • a junction valve 81 is connected in the middle of the junction line 79.
  • the merging valve 81 is a two-port two-position switching valve having a pilot portion 81A, and always maintains the blocking position (A) to block the merging pipe line 79.
  • the merging valve 81 is switched to the communication position (B) when a pilot signal is supplied to the pilot section 81A, and communicates the merging pipe line 79 via the throttle 81B.
  • a check valve 82 is provided in the middle of the merge line 79 between the delivery line 14 ⁇ / b> A and the merge valve 81.
  • the check valve 82 allows the flow of pressure oil from the regenerative hydraulic pump 78 toward the delivery pipeline 14A and prevents the reverse flow.
  • the hydraulic excavator according to the second embodiment includes a regenerative unit 77 to which a regenerative hydraulic pump 78 as described above is added. Therefore, as in the first embodiment, the pressure oil discharged from the turning motor 19 during the inertial rotation of the upper swing body 4 or the pressure oil discharged from the bottom side oil chamber 5B1 when the boom cylinder 5B is reduced, The regenerative hydraulic motor 23 rotates by being supplied to the regenerative hydraulic motor 23 through the turning regenerative pipeline 43, the boom regenerative pipeline 68, and the like.
  • the regenerative hydraulic motor 23 drives the regenerative electric motor 24 and the regenerative hydraulic pump 78, the regenerative electric motor 24 generates electric power stored in the power storage device 13, and the regenerative hydraulic pump 78 is in the hydraulic oil tank 20. Hydraulic oil is discharged as pressure oil.
  • the controller determines whether or not the pressure oil discharged from the regenerative hydraulic pump 78 is merged with the pressure oil discharged from the hydraulic pump 14.
  • a pilot signal is output to 81.
  • the merging valve 81 is switched to the communication position (B), and the pressure oil discharged from the regenerative hydraulic pump 78 can be merged with the pressure oil discharged from the hydraulic pump 14 in the delivery pipeline 14A.
  • the pump flow rate of the hydraulic pump 14 can be reduced by the pump flow rate of the regenerative hydraulic pump 78, and the power for driving the hydraulic pump 14 can be reduced.
  • the controller switches the merging valve 81 to the cutoff position (A) and regenerative hydraulic pump 78. Set the discharge capacity to zero.
  • the regenerative hydraulic pump 78 is added to the regenerative hydraulic motor 23 and the regenerative electric motor 24. Accordingly, the regenerative electric motor 24 is driven not only by using the return oil that returns from the swing motor 19 when the upper swing body 4 rotates by inertia, or the return oil that returns from the bottom-side oil chamber 5B1 when the boom cylinder 5B is reduced.
  • the hydraulic pump 78 can be driven.
  • the pressure oil discharged from the regenerative hydraulic pump 78 can be merged with the pressure oil discharged from the hydraulic pump 14.
  • the pump flow rate of the hydraulic pump 14 can be reduced, and the power for driving the hydraulic pump 14 can be reduced.
  • the regenerative hydraulic pump 78 is placed between the hydraulic pump 14 and the hydraulic oil tank 20 (position near the hydraulic oil tank 20) together with the regenerative hydraulic motor 23 and the regenerative electric motor 24. Are arranged together. Thereby, the maintenance work for the regenerative hydraulic motor 23, the maintenance work for the regenerative electric motor 24, and the maintenance work for the regenerative hydraulic pump 78 can be performed from one common work place. As a result, the workability of the maintenance work for the regenerative unit 77 including the regenerative hydraulic motor 23, the regenerative electric motor 24, and the regenerative hydraulic pump 78 can be improved.
  • the regenerative unit 25 including the regenerative hydraulic motor 23 and the regenerative electric motor 24 is disposed between the hydraulic pump 14 and the hydraulic oil tank 20 .
  • the present invention is not limited to this.
  • a regenerative unit accommodation space 83 is formed between the hydraulic oil tank 20 and the fuel tank 22 as in the modification shown in FIG.
  • the regeneration unit 25 may be housed inside.
  • the regenerative hydraulic motor 23 and the regenerative electric motor 24 can be collectively disposed so as to be separated from the hydraulic pump 14 and adjacent to the front side of the hydraulic oil tank 20.
  • the pipe line length of the tank pipe line 69 connecting the regenerative hydraulic motor 23 and the hydraulic oil tank 20 can be shortened.
  • the regenerative hydraulic motor 23, the regenerative electric motor 24, and the regenerative hydraulic pump 78 according to the second embodiment.
  • the hydraulic excavator 1 is illustrated as the hybrid work machine.
  • the present invention is not limited to this, and can be applied to other hybrid work machines such as a wheel hydraulic excavator. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Operation Control Of Excavators (AREA)
  • Component Parts Of Construction Machinery (AREA)

Abstract

A hydraulic shovel (1) that is a hybrid-type work machine comprises: a hydraulic pump (14) that discharges pressurized oil and that is driven by an engine (9); a hydraulic oil tank (20) that stores hydraulic oil to be supplied to a hydraulic actuator that includes a swing motor (19) and a boom cylinder (5B); a regenerative hydraulic motor (23) that rotates by way of return oil that is returned from the hydraulic actuators to the hydraulic oil tank (20); and a regenerative electric motor (24) that generates power to be stored in an electrical storage device (13) by way of being driven by the regenerative hydraulic motor (23). The hydraulic oil tank (20) is provided on a swing frame (6) located on the front side of the hydraulic pump (14), and the regenerative hydraulic motor (23) and the regenerative electric motor (24) that constitute a regenerative unit (25) are disposed in the vicinity of the hydraulic oil tank (20).

Description

ハイブリッド式作業機械Hybrid work machine
 本発明は、油圧ショベル、ホイール式油圧ショベル等の作業機械に関し、特に、動力源としてエンジンと電動機(電動モータ)とを併用したハイブリッド式作業機械に関する。 The present invention relates to a work machine such as a hydraulic excavator or a wheel-type hydraulic excavator, and more particularly to a hybrid work machine that uses an engine and an electric motor (electric motor) as a power source.
 一般に、作業機械の代表例である油圧ショベルは、走行用、作業用の動力源としてエンジンを備え、このエンジンによって油圧ポンプを駆動する。この油圧ショベルは、油圧ポンプから供給された圧油によって油圧モータ、油圧シリンダ等の油圧アクチュエータを作動させることにより、土砂の掘削作業等を行うものである。 Generally, a hydraulic excavator, which is a typical example of a work machine, includes an engine as a power source for traveling and working, and a hydraulic pump is driven by the engine. This hydraulic excavator performs excavation work of earth and sand by operating hydraulic actuators such as a hydraulic motor and a hydraulic cylinder by pressure oil supplied from a hydraulic pump.
 ところで、油圧ショベルを用いた土砂の掘削作業は、常にエンジンの最大出力を必要とする作業ばかりではなく、例えばエンジンの最大出力の8割程度の出力で賄える作業も多い。このため、エンジンを小型化すると共に、このエンジンをアシストするアシスト電動モータと、アシスト電動モータに供給される電力を蓄える蓄電装置とを備えたハイブリッド式油圧ショベルが提案されている。 By the way, the excavation work of earth and sand using a hydraulic excavator is not only a work that always requires the maximum output of the engine, but there are many work that can be covered with an output of about 80% of the maximum output of the engine, for example. For this reason, a hybrid hydraulic excavator has been proposed that includes an assist electric motor that assists the engine and a power storage device that stores electric power supplied to the assist electric motor while reducing the size of the engine.
 このハイブリッド式油圧ショベルは、エンジンの出力トルクが油圧ポンプの駆動トルクよりも大きいときには、余剰のトルクによってアシスト電動モータを発電機として駆動し、アシスト電動モータからの発電電力を蓄電装置に蓄える。一方、エンジンの出力トルクが油圧ポンプの駆動トルクよりも小さいときには、蓄電装置から供給される電力によってアシスト電動モータを駆動する。これにより、油圧ポンプの駆動力を、エンジンの駆動力に加えてアシスト電動モータの駆動力によって助勢(アシスト)する。 This hybrid hydraulic excavator, when the output torque of the engine is larger than the driving torque of the hydraulic pump, drives the assist electric motor as a generator with the surplus torque and stores the generated power from the assist electric motor in the power storage device. On the other hand, when the output torque of the engine is smaller than the driving torque of the hydraulic pump, the assist electric motor is driven by the electric power supplied from the power storage device. Thus, the driving force of the hydraulic pump is assisted (assisted) by the driving force of the assist electric motor in addition to the driving force of the engine.
 さらに、掘削作業時に作業装置の油圧アクチュエータから作動油タンクへと戻る戻り油によって回転駆動される回生油圧モータと、この回生油圧モータによって駆動される回生電動モータとを備えたハイブリッド式作業機械が提案されている。 Furthermore, a hybrid work machine is proposed that includes a regenerative hydraulic motor that is rotated by return oil that returns from the hydraulic actuator of the work device to the hydraulic oil tank during excavation work, and a regenerative electric motor that is driven by this regenerative hydraulic motor. Has been.
 このハイブリッド式作業機械は、油圧アクチュエータからの戻り油によって回生油圧モータが回転し、この回生油圧モータの回転によって回生電動モータを発電機として駆動する。これにより、回生電動モータによって発電される発電電力を、蓄電装置に蓄えることができる(特許文献1参照)。 In this hybrid work machine, the regenerative hydraulic motor is rotated by the return oil from the hydraulic actuator, and the regenerative electric motor is driven as a generator by the rotation of the regenerative hydraulic motor. Thereby, the electric power generated by the regenerative electric motor can be stored in the power storage device (see Patent Document 1).
特開2004-169465号公報JP 2004-169465 A
 ところで、上述した従来技術によるハイブリッド式作業機械は、回生油圧モータが、エンジンに設けられた動力取出装置(PTO)に取付けられると共に、回生電動モータが、回生油圧モータから離間した位置で、エンジンに設けられた他の動力取出装置に取付けられる構成となっている。 By the way, in the hybrid work machine according to the conventional technology described above, the regenerative hydraulic motor is attached to the power take-off device (PTO) provided in the engine, and the regenerative electric motor is separated from the regenerative hydraulic motor. It is configured to be attached to another power take-off device provided.
 このため、回生油圧モータと回生電動モータとが、エンジンを介して互いに離れた位置に配置されることになり、これら回生油圧モータと回生電動モータに対するメンテナンス作業を行うときの作業性が低下してしまうという問題がある。 For this reason, the regenerative hydraulic motor and the regenerative electric motor are arranged at positions separated from each other via the engine, and workability when performing maintenance work on the regenerative hydraulic motor and the regenerative electric motor is reduced. There is a problem of end.
 本発明は上述した従来技術の問題に鑑みなされたもので、回生油圧モータと回生電動モータとを含んで構成される回生ユニットに対し、メンテナンス作業を行うときの作業性を高めることができるようにしたハイブリッド式作業機械を提供することを目的としている。 The present invention has been made in view of the above-described problems of the prior art, and can improve workability when performing maintenance work on a regenerative unit including a regenerative hydraulic motor and a regenerative electric motor. The purpose is to provide a hybrid work machine.
 上述した課題を解決するため本発明は、自走可能な下部走行体と、該下部走行体上に搭載され旋回モータによって旋回する上部旋回体と、該上部旋回体に俯仰動可能に設けられた作業装置とからなり、前記上部旋回体は、支持構造体をなす旋回フレームと、該旋回フレームに左,右方向に延びる横置き状態で設けられた原動機と、該原動機の左,右方向の一側に設けられ前記原動機によって駆動されることにより前記旋回モータおよび前記作業装置のアクチュエータに向けて圧油を吐出する油圧ポンプと、前記旋回フレームに設けられ前記旋回モータおよび前記作業装置のアクチュエータに供給される作動油を蓄える作動油タンクと、前記旋回フレームに設けられ電力を蓄電する蓄電装置と、該蓄電装置からの電力によって回転し前記原動機による前記油圧ポンプの駆動をアシストするアシスト電動モータと、前記旋回モータまたは前記作業装置のアクチュエータから前記作動油タンクに戻る戻り油によって回転する回生油圧モータおよび該回生油圧モータにより駆動され前記蓄電装置に蓄えられる電力を発生する回生電動モータを含んで構成された回生ユニットとを備えてなるハイブリッド式作業機械に適用される。 In order to solve the above-described problems, the present invention is provided with a self-propelled lower traveling body, an upper revolving body that is mounted on the lower traveling body and revolves by a revolving motor, and the upper revolving body is provided so as to be able to move up and down. The upper revolving structure comprises a revolving frame that forms a support structure, a prime mover that is installed horizontally on the revolving frame in a left and right direction, and a left and right one of the prime mover. And a hydraulic pump that discharges pressure oil toward the swing motor and the actuator of the work device by being driven by the prime mover, and is supplied to the swing motor and the actuator of the work device that is provided in the swing frame A hydraulic oil tank that stores the hydraulic oil to be stored, a power storage device that is provided in the swivel frame and stores power, and that rotates by the power from the power storage device and moves Assist electric motor for assisting driving of the hydraulic pump by the regenerative hydraulic motor rotating by return oil returning to the hydraulic oil tank from the swing motor or the actuator of the working device, and the power storage device driven by the regenerative hydraulic motor The present invention is applied to a hybrid work machine including a regenerative unit that includes a regenerative electric motor that generates stored electric power.
 本発明の特徴は、前記作動油タンクは前記油圧ポンプの前側に位置して前記旋回フレームに設け、前記回生ユニットを構成する前記回生油圧モータと前記回生電動モータは、前記作動油タンクの近傍に位置して配置する構成としたことにある。 A feature of the present invention is that the hydraulic oil tank is located on the front side of the hydraulic pump and is provided in the revolving frame, and the regenerative hydraulic motor and the regenerative electric motor constituting the regenerative unit are located in the vicinity of the hydraulic oil tank. The configuration is to be positioned.
 この構成によれば、回生油圧モータと回生電動モータとを含む回生ユニットを、作動油タンクの近傍にまとめて配置することができる。これにより、例えば回生油圧モータと回生電動モータとを、互いに離れた位置に配置する場合に比較して、回生油圧モータに対するメンテナンス作業と、回生電動モータに対するメンテナンス作業とを、共通な1つの作業場所から行うことができる。この結果、回生ユニットに対するメンテナンス作業を行うときの作業性を高めることができる。また、回生ユニットを作動油タンクに近接した位置に配置することにより、回生ユニットと作動油タンクとの間を接続する油路を短くすることができる。この結果、回生ユニットから作動油タンクに戻る戻り油の圧力損失を低減することができ、回生効率を高めることができる。 According to this configuration, the regenerative unit including the regenerative hydraulic motor and the regenerative electric motor can be collectively arranged in the vicinity of the hydraulic oil tank. Thereby, for example, compared with the case where the regenerative hydraulic motor and the regenerative electric motor are arranged at positions separated from each other, the maintenance work for the regenerative hydraulic motor and the maintenance work for the regenerative electric motor are performed in one common work place. Can be done from. As a result, workability when performing maintenance work on the regenerative unit can be improved. Further, by arranging the regenerative unit at a position close to the hydraulic oil tank, the oil path connecting the regenerative unit and the hydraulic oil tank can be shortened. As a result, the pressure loss of the return oil returning from the regenerative unit to the hydraulic oil tank can be reduced, and the regeneration efficiency can be increased.
本発明の第1の実施の形態によるハイブリッド式作業機械としての油圧ショベルを示す正面図である。1 is a front view showing a hydraulic excavator as a hybrid work machine according to a first embodiment of the present invention. 作業装置を取外した上部旋回体を上方からみた平面図である。It is the top view which looked at the upper turning body which removed the working apparatus from upper direction. 旋回フレーム上に第1の実施の形態による回生ユニット、エンジン、油圧ポンプ、作動油タンク等を搭載した状態を示す平面図である。It is a top view which shows the state which mounted the regeneration unit, engine, hydraulic pump, hydraulic oil tank, etc. by 1st Embodiment on the turning frame. 建屋カバーの右前ドアと右後ドアを開いた状態を右後方からみた斜視図である。It is the perspective view which looked at the state which opened the right front door and right rear door of the building cover from the right rear. 第1の実施の形態による回生油圧モータ、回生電動モータ、油圧ポンプ等を含む油圧回路図である。1 is a hydraulic circuit diagram including a regenerative hydraulic motor, a regenerative electric motor, a hydraulic pump, and the like according to a first embodiment. 第2の実施の形態によるハイブリッド式作業機械としての油圧ショベルに係り、回生ユニット、エンジン、油圧ポンプ、作動油タンク等を旋回フレーム上に搭載した状態を示す平面図である。FIG. 6 is a plan view showing a state in which a regenerative unit, an engine, a hydraulic pump, a hydraulic oil tank, and the like are mounted on a swing frame in a hydraulic excavator as a hybrid work machine according to a second embodiment. 第2の実施の形態による回生油圧モータ、回生電動モータ、回生アシストポンプ、油圧ポンプを含む油圧回路図である。FIG. 6 is a hydraulic circuit diagram including a regenerative hydraulic motor, a regenerative electric motor, a regenerative assist pump, and a hydraulic pump according to a second embodiment. 第1の実施の形態による回生ユニットの配置の変形例を示す図3と同様な平面図である。It is a top view similar to FIG. 3 which shows the modification of arrangement | positioning of the regeneration unit by 1st Embodiment.
 以下、本発明に係る建設機械の実施の形態を、油圧ショベルに適用した場合を例に挙げ、添付図面を参照しつつ詳細に説明する。まず、図1ないし図5は本発明の第1の実施の形態による油圧ショベルを示している。 Hereinafter, embodiments of the construction machine according to the present invention will be described in detail with reference to the accompanying drawings, taking as an example a case where the construction machine is applied to a hydraulic excavator. 1 to 5 show a hydraulic excavator according to a first embodiment of the present invention.
 図中、油圧ショベル1は、ハイブリッド式作業機械であり、この油圧ショベル1は、自走可能なクローラ式の下部走行体2と、下部走行体2上に旋回輪3を介して旋回可能に搭載された上部旋回体4と、上部旋回体4の前部側に俯仰動可能に設けられた作業装置5とにより構成されている。 In the drawing, a hydraulic excavator 1 is a hybrid work machine. The hydraulic excavator 1 is mounted on a crawler type lower traveling body 2 capable of self-propelling and capable of turning on the lower traveling body 2 via a swirling wheel 3. The upper revolving body 4 and the working device 5 provided on the front side of the upper revolving body 4 so as to be able to move up and down are configured.
 作業装置5は、土砂の掘削作業を行うもので、この作業装置5は、後述する旋回フレーム6に俯仰動可能に取付けられたブーム5Aと、該ブーム5Aの先端側に回動可能に取付けられたアーム(図示せず)と、該アームの先端側に回動可能に取付けられたバケット(図示せず)と、ブームシリンダ5B、アームシリンダ、バケットシリンダ(いずれも図示せず)を含むアクチュエータとにより構成されている。 The working device 5 performs excavation work of earth and sand. The working device 5 is attached to a swing frame 6 to be described later so as to be able to move up and down, and is attached to the tip side of the boom 5A so as to be rotatable. An arm (not shown), a bucket (not shown) rotatably attached to the tip side of the arm, and an actuator including a boom cylinder 5B, an arm cylinder, and a bucket cylinder (all not shown) It is comprised by.
 旋回フレーム6は、上部旋回体4のベースとなるものである。図3に示すように、旋回フレーム6は、厚肉な平板状に形成され前,後方向に延びた底板6Aと、該底板6A上に立設され左,右方向で対面しつつ前,後方向に延びた左縦板6B及び右縦板6Cと、左縦板6Bから左側方に張出して設けられた複数の左張出しビーム6Dと、右縦板6Cから右側方に張出して設けられた複数の右張出しビーム6Eと、各左張出しビーム6Dの先端側に固着され前,後方向に延びた左サイドフレーム6Fと、各右張出しビーム6Eの先端側に固着され前,後方向に延びた右サイドフレーム6Gとを含んで構成されている。 The turning frame 6 is a base of the upper turning body 4. As shown in FIG. 3, the swivel frame 6 is formed in a thick flat plate shape and extends in the front and rear directions, and the front and rear sides of the swivel frame 6 standing on the bottom plate 6A and facing left and right. Left vertical plate 6B and right vertical plate 6C extending in the direction, a plurality of left extending beams 6D extending from the left vertical plate 6B to the left, and a plurality extending from the right vertical plate 6C to the right. Right extending beam 6E, a left side frame 6F which is fixed to the front end side of each left extending beam 6D and extending rearward, and a right side which is fixed to the front end side of each right extending beam 6E and extends rightward and rearward. The side frame 6G is included.
 旋回フレーム6を構成する左,右の縦板6B,6Cの前端側には、ブーム5Aの基端部(フート部)が回動可能にピン結合されている。旋回フレーム6の前部左側には、運転室を画成するキャブ7が設けられている。一方、旋回フレーム6の後端側には、作業装置5との重量バランスをとるカウンタウエイト8が設けられている。 The base end part (foot part) of the boom 5A is rotatably connected to the front end side of the left and right vertical plates 6B and 6C constituting the revolving frame 6. A cab 7 that defines a cab is provided on the left side of the front portion of the revolving frame 6. On the other hand, a counterweight 8 is provided on the rear end side of the revolving frame 6 to balance the weight with the work device 5.
 原動機としてのエンジン9は、カウンタウエイト8の前側に位置して旋回フレーム6の後部側に配設されている。エンジン9は、クランク軸(図示せず)の軸線が左,右方向に延びる横置き状態で、旋回フレーム6上に配置されている。エンジン9の右側には、後述の油圧ポンプ14とアシスト電動モータ15とが取付けられ、これら油圧ポンプ14とアシスト電動モータ15とは、エンジン9によって駆動されるものである。 The engine 9 as a prime mover is positioned on the front side of the counterweight 8 and is disposed on the rear side of the turning frame 6. The engine 9 is disposed on the revolving frame 6 in a horizontal state in which an axis of a crankshaft (not shown) extends leftward and rightward. A hydraulic pump 14 and an assist electric motor 15, which will be described later, are attached to the right side of the engine 9. The hydraulic pump 14 and the assist electric motor 15 are driven by the engine 9.
 熱交換装置10は、エンジン9の左側に位置して旋回フレーム6上に搭載されている。この熱交換装置10は、エンジン冷却水を冷却するラジエータ11、作動油を冷却するオイルクーラ12を含む1つのユニットとして形成されている。熱交換装置10は、エンジン9に取付けられた冷却ファン9Aによる冷却風がラジエータ11、オイルクーラ12に供給されることにより、エンジン冷却水、作動油等を冷却するものである。 The heat exchange device 10 is mounted on the revolving frame 6 on the left side of the engine 9. The heat exchanging device 10 is formed as one unit including a radiator 11 that cools engine coolant and an oil cooler 12 that cools hydraulic oil. The heat exchange device 10 cools engine cooling water, hydraulic oil, and the like by supplying cooling air from a cooling fan 9 </ b> A attached to the engine 9 to the radiator 11 and the oil cooler 12.
 蓄電装置13は、熱交換装置10の前側に位置して旋回フレーム6上に搭載されている。この蓄電装置13は、後述するアシスト電動モータ15に供給するアシスト用の電力を蓄電するものである。この蓄電装置13は、例えばリチウムイオン電池により構成され、アシスト電動モータ15との間で電力の充電と放電を行うものである。 The power storage device 13 is mounted on the turning frame 6 so as to be positioned on the front side of the heat exchange device 10. The power storage device 13 stores power for assist supplied to an assist electric motor 15 described later. The power storage device 13 is composed of, for example, a lithium ion battery, and charges and discharges power with the assist electric motor 15.
 油圧ポンプ14は、アシスト電動モータ15を挟んでエンジン9の右側に取付けられている。この油圧ポンプ14は、エンジン9によって駆動されることにより、油圧ショベル1に搭載された各種の油圧アクチュエータに向けて作動用の圧油を供給するものである。 The hydraulic pump 14 is attached to the right side of the engine 9 with the assist electric motor 15 interposed therebetween. The hydraulic pump 14 is driven by the engine 9 to supply operating hydraulic oil to various hydraulic actuators mounted on the excavator 1.
 アシスト電動モータ15は、油圧ポンプ14と共にエンジン9の出力側に取付けられている。このアシスト電動モータ15は、エンジン9と油圧ポンプ14との間に配置され、アシスト電動モータ15のモータ軸は、エンジン9の出力軸と油圧ポンプ14の入力軸とに連結されている。ここで、図5に示すように、アシスト電動モータ15は、インバータ16に電気的に接続され、該インバータ16は蓄電装置13に電気的に接続されている。 The assist electric motor 15 is attached to the output side of the engine 9 together with the hydraulic pump 14. The assist electric motor 15 is disposed between the engine 9 and the hydraulic pump 14, and the motor shaft of the assist electric motor 15 is connected to the output shaft of the engine 9 and the input shaft of the hydraulic pump 14. Here, as shown in FIG. 5, the assist electric motor 15 is electrically connected to the inverter 16, and the inverter 16 is electrically connected to the power storage device 13.
 アシスト電動モータ15は、エンジン9によって駆動されることにより発電するもので、アシスト電動モータ15が発電した交流電力は、インバータ16により直流電力に変換された状態で蓄電装置13に蓄えられる。一方、アシスト電動モータ15は、蓄電装置13からの電力によって駆動されることにより、エンジン9よる油圧ポンプ14の駆動を助勢(アシスト)するものである。 The assist electric motor 15 generates electric power by being driven by the engine 9, and the AC power generated by the assist electric motor 15 is stored in the power storage device 13 in a state converted into DC power by the inverter 16. On the other hand, the assist electric motor 15 is driven by the electric power from the power storage device 13 to assist the driving of the hydraulic pump 14 by the engine 9.
 ここで、インバータ16は、複数のスイッチング素子を用いて構成され、スイッチング素子のオン/オフを制御することにより、アシスト電動モータ15の発電時には、アシスト電動モータ15からの交流電力を直流電力に変換して蓄電装置13に供給する。一方、アシスト電動モータ15によって油圧ポンプ14の駆動をアシストするときには、インバータ16は、蓄電装置13の直流電力から三相交流電力を生成し、この三相交流電力をアシスト電動モータ15に供給する。 Here, the inverter 16 is configured by using a plurality of switching elements, and by controlling on / off of the switching elements, the AC power from the assist electric motor 15 is converted into DC power when the assist electric motor 15 generates power. And supplied to the power storage device 13. On the other hand, when assisting the drive of the hydraulic pump 14 by the assist electric motor 15, the inverter 16 generates three-phase AC power from the DC power of the power storage device 13 and supplies the three-phase AC power to the assist electric motor 15.
 仕切り部材17は、エンジン9の前側を左,右方向に延びた状態で旋回フレーム6に立設されている。仕切り部材17は、エンジン9とアシスト電動モータ15の前側に配置された中間仕切り板17Aと、熱交換装置10と蓄電装置13との間に位置して熱交換装置10の前側に配置された左仕切り板17Bと、油圧ポンプ14の前側に配置された右仕切り板17Cとにより構成されている。 The partition member 17 is erected on the revolving frame 6 with the front side of the engine 9 extending leftward and rightward. The partition member 17 is located between the intermediate partition plate 17 </ b> A disposed on the front side of the engine 9 and the assist electric motor 15, the heat exchange device 10 and the power storage device 13, and the left disposed on the front side of the heat exchange device 10. The partition plate 17 </ b> B and the right partition plate 17 </ b> C disposed on the front side of the hydraulic pump 14 are configured.
 中間仕切り板17Aは、エンジン9から発生する熱、騒音がエンジン9の前側から外部に漏れるのを防止している。左仕切り板17Bは、熱交換装置10から発生する熱が蓄電装置13に伝わるのを抑え、右仕切り板17Cは、油圧ポンプ14から発生する熱が後述の作動油タンク20に伝わるのを抑えるものである。 The intermediate partition plate 17A prevents heat and noise generated from the engine 9 from leaking from the front side of the engine 9 to the outside. The left partition plate 17B suppresses the heat generated from the heat exchange device 10 from being transmitted to the power storage device 13, and the right partition plate 17C suppresses the heat generated from the hydraulic pump 14 from being transmitted to the hydraulic oil tank 20 described later. It is.
 コントロールバルブ18は、仕切り部材17の前側に配置されている。コントロールバルブ18は、中間仕切り板17Aを挟んでエンジン9とは反対側(前側)に配置されている。即ち、コントロールバルブ18は、左縦板6Bと右縦板6Cとの間で旋回フレーム6の底板6A上に設けられている。コントロールバルブ18は、後述する旋回用方向制御弁36、ブーム用方向制御弁55を含む多数の方向制御弁の集合体からなり、油圧ショベル1に搭載された各種の油圧アクチュエータに供給される圧油の流れ方向を制御するものである。 The control valve 18 is disposed on the front side of the partition member 17. The control valve 18 is disposed on the opposite side (front side) from the engine 9 with the intermediate partition plate 17A interposed therebetween. That is, the control valve 18 is provided on the bottom plate 6A of the revolving frame 6 between the left vertical plate 6B and the right vertical plate 6C. The control valve 18 is a collection of a number of directional control valves including a turning directional control valve 36 and a boom directional control valve 55 which will be described later, and pressure oil supplied to various hydraulic actuators mounted on the hydraulic excavator 1. It controls the flow direction.
 旋回モータ19は、コントロールバルブ18の前側に配置されている。この旋回モータ19は、左,右の縦板6B,6C間に位置して旋回フレーム6の底板6A上に設けられている。旋回モータ19は油圧モータにより構成され、油圧ポンプ14からの圧油が供給されることにより、下部走行体2上で上部旋回体4を旋回させるものである。ここで、旋回モータ19には、後述する旋回回生弁40が一体的に取付けられている。また、旋回モータ19よりも前側となる旋回フレーム6の底板6A上には、縦板6B,6C間に位置して後述のブーム回生弁59が設けられている。 The turning motor 19 is disposed on the front side of the control valve 18. The turning motor 19 is provided on the bottom plate 6A of the turning frame 6 so as to be positioned between the left and right vertical plates 6B and 6C. The turning motor 19 is constituted by a hydraulic motor, and the upper turning body 4 is turned on the lower traveling body 2 by being supplied with pressure oil from the hydraulic pump 14. Here, a swing regenerative valve 40 described later is integrally attached to the swing motor 19. A boom regenerative valve 59 described later is provided on the bottom plate 6A of the turning frame 6 on the front side of the turning motor 19 so as to be positioned between the vertical plates 6B and 6C.
 作動油タンク20は、仕切り部材17を挟んで油圧ポンプ14の前側に配置されている。この作動油タンク20は、油圧ショベル1に搭載された油圧アクチュエータに供給される作動油を貯溜するものである。ここで、作動油タンク20は、全体として直方体状をなす中空な箱体として形成され、旋回フレーム6の右縦板6Cと右サイドフレーム6Gとの間に配置されている。 The hydraulic oil tank 20 is disposed on the front side of the hydraulic pump 14 with the partition member 17 interposed therebetween. The hydraulic oil tank 20 stores hydraulic oil supplied to a hydraulic actuator mounted on the hydraulic excavator 1. Here, the hydraulic oil tank 20 is formed as a hollow box having a rectangular parallelepiped shape as a whole, and is disposed between the right vertical plate 6C and the right side frame 6G of the revolving frame 6.
 また、図4に示すように、作動油タンク20の後面20Aと右仕切り板17Cとの間には、後述する回生ユニット25を収容するための回生ユニット収容空間21が形成されている。一方、作動油タンク20の前側には、エンジン9に供給される燃料を貯溜する燃料タンク22が設けられている。 Further, as shown in FIG. 4, a regenerative unit accommodation space 21 for accommodating a regenerative unit 25 described later is formed between the rear surface 20A of the hydraulic oil tank 20 and the right partition plate 17C. On the other hand, a fuel tank 22 that stores fuel supplied to the engine 9 is provided on the front side of the hydraulic oil tank 20.
 次に、本実施の形態に用いられる回生油圧モータ23および回生電動モータ24について説明する。 Next, the regenerative hydraulic motor 23 and the regenerative electric motor 24 used in the present embodiment will be described.
 回生油圧モータ23は、油圧ポンプ14から前側に離間した位置で作動油タンク20の近傍(後側)に隣接して設けられている。この回生油圧モータ23は、モータ軸(図示せず)が左,右方向に延びる横置き状態で旋回フレーム6の右張出しビーム6E上に取付けられている。ここで、回生油圧モータ23は、旋回モータ19またはブームシリンダ5Bからの戻り油によって回転するものである。 The regenerative hydraulic motor 23 is provided adjacent to the vicinity (rear side) of the hydraulic oil tank 20 at a position spaced forward from the hydraulic pump 14. The regenerative hydraulic motor 23 is mounted on the right overhanging beam 6E of the revolving frame 6 with a motor shaft (not shown) horizontally placed extending leftward and rightward. Here, the regenerative hydraulic motor 23 is rotated by return oil from the turning motor 19 or the boom cylinder 5B.
 回生電動モータ24は、回生油圧モータ23と共に油圧ポンプ14から前側に離間した位置で作動油タンク20の近傍に隣接して設けられている。この回生電動モータ24は、モータ軸(図示せず)が左,右方向に延びる横置き状態で、旋回フレーム6の右張出しビーム6E上に取付けられている。 The regenerative electric motor 24 is provided adjacent to the vicinity of the hydraulic oil tank 20 at a position separated from the hydraulic pump 14 together with the regenerative hydraulic motor 23. The regenerative electric motor 24 is mounted on the right extending beam 6E of the swivel frame 6 in a horizontal state in which a motor shaft (not shown) extends leftward and rightward.
 ここで、回生電動モータ24のモータ軸は、動力伝達機構(図示せず)を介して回生油圧モータ23のモータ軸に接続されている。これにより、回生油圧モータ23と回生電動モータ24とは、エンジン9から分離した回生ユニット25を構成している。これら回生油圧モータ23と回生電動モータ24とは、油圧ポンプ14と作動油タンク20との間、さらに詳しくは、油圧ポンプ14の前側に設けられた仕切り部材17の右仕切り板17Cと作動油タンク20との間に形成された回生ユニット収容空間21内に、左,右方向に並べて収容されている。 Here, the motor shaft of the regenerative electric motor 24 is connected to the motor shaft of the regenerative hydraulic motor 23 via a power transmission mechanism (not shown). Thus, the regenerative hydraulic motor 23 and the regenerative electric motor 24 constitute a regenerative unit 25 separated from the engine 9. The regenerative hydraulic motor 23 and the regenerative electric motor 24 are provided between the hydraulic pump 14 and the hydraulic oil tank 20, more specifically, the right partition plate 17C of the partition member 17 provided on the front side of the hydraulic pump 14 and the hydraulic oil tank. 20 are accommodated side by side in the left and right directions in a regenerative unit accommodation space 21 formed between them.
 一方、図5に示すように、回生電動モータ24はインバータ26に電気的に接続され、該インバータ26は蓄電装置13に電気的に接続されている。回生電動モータ24は、回生油圧モータ23によって駆動されることにより発電する。回生電動モータ24が発電した交流電力は、インバータ26により直流電力に変換されて蓄電装置13に蓄えられる。 On the other hand, as shown in FIG. 5, the regenerative electric motor 24 is electrically connected to the inverter 26, and the inverter 26 is electrically connected to the power storage device 13. The regenerative electric motor 24 generates power by being driven by the regenerative hydraulic motor 23. The AC power generated by the regenerative electric motor 24 is converted into DC power by the inverter 26 and stored in the power storage device 13.
 回生ユニット25を構成する回生油圧モータ23と回生電動モータ24とは、油圧ポンプ14から前側に離間し、かつ作動油タンク20の近傍位置に、左,右方向に隣り合う状態で配置されている。これにより、回生油圧モータ23と回生電動モータ24とは、エンジン9から離間した位置にまとめて配置される。従って、回生油圧モータ23に対するメンテナンス作業と、回生電動モータ24に対するメンテナンス作業とを、共通な1つの作業場所から行うことができる構成となっている。 The regenerative hydraulic motor 23 and the regenerative electric motor 24 that constitute the regenerative unit 25 are separated from the hydraulic pump 14 to the front side, and are disposed adjacent to the left and right directions at positions near the hydraulic oil tank 20. . Accordingly, the regenerative hydraulic motor 23 and the regenerative electric motor 24 are collectively arranged at a position separated from the engine 9. Therefore, the maintenance work for the regenerative hydraulic motor 23 and the maintenance work for the regenerative electric motor 24 can be performed from a common work place.
 建屋カバー27は、カウンタウエイト8の前側に位置して旋回フレーム6上に設けられている。建屋カバー27は、その内部にエンジン9、蓄電装置13、油圧ポンプ14、アシスト電動モータ15、回生油圧モータ23、回生電動モータ24を含む搭載機器を収容するものである。建屋カバー27は、後述する左側面カバー28と、上面カバー29と、エンジンカバー30と、右側面ドア31とにより構成されている。 The building cover 27 is located on the front side of the counterweight 8 and is provided on the revolving frame 6. The building cover 27 accommodates onboard equipment including the engine 9, the power storage device 13, the hydraulic pump 14, the assist electric motor 15, the regenerative hydraulic motor 23, and the regenerative electric motor 24. The building cover 27 includes a left side cover 28, an upper surface cover 29, an engine cover 30, and a right side door 31, which will be described later.
 左側面カバー28は、建屋カバー27の左側面を構成するもので、この左側面カバー28は、カウンタウエイト8の左端部とキャブ7との間に設けられている。ここで、左側面カバー28は、左サイドフレーム6Fから上方に立上り、左サイドフレーム6Fに沿って前,後方向に延びている。これにより、左側面カバー28は、熱交換装置10、蓄電装置13等を左側方から開,閉可能に覆っている。 The left side cover 28 constitutes the left side of the building cover 27, and the left side cover 28 is provided between the left end of the counterweight 8 and the cab 7. Here, the left side cover 28 rises upward from the left side frame 6F and extends forward and rearward along the left side frame 6F. Thereby, the left side cover 28 covers the heat exchange device 10, the power storage device 13 and the like so that they can be opened and closed from the left side.
 上面カバー29は、建屋カバー27の上面を構成するもので、この上面カバー29は、左側面カバー28の上端部と、後述する右側面ドア31の上端部との間を左,右方向に延びている。上面カバー29は、エンジン9、熱交換装置10を含む搭載機器を上方から覆っている。上面カバー29には、作業用の開口部(図示せず)が形成され、この開口部はエンジンカバー30によって開,閉可能に覆われている。従って、エンジン9、熱交換装置10に対するメンテナンス作業を行うときには、作業者は、エンジンカバー30を開き、作業用開口を通じて建屋カバー27内にアクセス可能になっている。 The upper surface cover 29 constitutes the upper surface of the building cover 27, and the upper surface cover 29 extends leftward and rightward between an upper end portion of the left side cover 28 and an upper end portion of a right side door 31 described later. ing. The upper surface cover 29 covers mounted devices including the engine 9 and the heat exchange device 10 from above. An opening (not shown) for work is formed in the upper surface cover 29, and this opening is covered with an engine cover 30 so as to be openable and closable. Therefore, when performing maintenance work on the engine 9 and the heat exchange device 10, the operator can open the engine cover 30 and access the building cover 27 through the work opening.
 右側面ドア31は、建屋カバー27の右側面を構成するもので、この右側面ドア31は、カウンタウエイト8の右端部と燃料タンク22との間に設けられている。ここで、右側面ドア31は、カウンタウエイト8側に位置し油圧ポンプ14等を右側方から覆う右後側面ドア31Aと、燃料タンク22側に位置し回生油圧モータ23、回生電動モータ24を右側方から覆う右前側面ドア31Bとにより構成されている。 The right side door 31 constitutes the right side of the building cover 27, and the right side door 31 is provided between the right end of the counterweight 8 and the fuel tank 22. Here, the right side door 31 is located on the counterweight 8 side and covers the right rear side door 31A that covers the hydraulic pump 14 and the like from the right side, and the regenerative hydraulic motor 23 and the regenerative electric motor 24 located on the fuel tank 22 side on the right side. It is comprised by the right front side door 31B covered from the direction.
 右後側面ドア31Aの後端部は、旋回フレーム6に設けられたサポート部材にヒンジ機構(いずれも図示せず)を介して回動可能に支持されている。一方、右前側面ドア31Bの前端部は、例えば燃料タンク22の後面にヒンジ機構(図示せず)を介して回動可能に支持されている。 The rear end portion of the right rear side door 31A is rotatably supported by a support member provided on the revolving frame 6 via a hinge mechanism (both not shown). On the other hand, the front end portion of the right front side door 31B is rotatably supported on the rear surface of the fuel tank 22 via a hinge mechanism (not shown), for example.
 従って、右後側面ドア31Aおよび右前側面ドア31Bを開くことにより、回生ユニット収容空間21を外部に開放することができ、この回生ユニット収容空間21内に収容された回生油圧モータ23、回生電動モータ24に対するメンテナンス作業を行うときの作業性を高めることができる。 Therefore, by opening the right rear side door 31A and the right front side door 31B, the regenerative unit accommodation space 21 can be opened to the outside. The regenerative hydraulic motor 23 and the regenerative electric motor accommodated in the regenerative unit accommodation space 21 are provided. The workability at the time of performing the maintenance work for 24 can be improved.
 次に、本実施の形態による回生油圧モータ23、回生電動モータ24を含む油圧回路について、図5を参照して説明する。 Next, a hydraulic circuit including the regenerative hydraulic motor 23 and the regenerative electric motor 24 according to the present embodiment will be described with reference to FIG.
 上部旋回体4に設けられた油圧ポンプ14は、作動油タンク20と共に油圧源を構成し、作動油タンク20内の作動油を高圧の圧油としてデリベリ管路14Aに供給する。油圧ポンプ14からデリベリ管路14Aに供給された圧油は、コントロールバルブ18を構成する後述の旋回用方向制御弁36、ブーム用方向制御弁55を介して旋回モータ19、ブームシリンダ5Bに供給される。なお、コントロールバルブ18は、旋回用方向制御弁36とブーム用方向制御弁55の2個の方向制御弁を代表的に図示しているが、コントロールバルブ18には、アーム用方向制御弁、バケット用方向制御弁等も含まれるものである。 The hydraulic pump 14 provided in the upper swing body 4 constitutes a hydraulic pressure source together with the hydraulic oil tank 20, and supplies the hydraulic oil in the hydraulic oil tank 20 to the delivery line 14A as high pressure oil. The pressure oil supplied from the hydraulic pump 14 to the delivery pipeline 14A is supplied to the swing motor 19 and the boom cylinder 5B through a swing direction control valve 36 and a boom direction control valve 55, which will be described later, constituting the control valve 18. The The control valve 18 representatively shows two directional control valves, a turning directional control valve 36 and a boom directional control valve 55. The control valve 18 includes an arm directional control valve and a bucket. A directional control valve or the like is also included.
 コントロールバルブ18内には、デリベリ管路14Aと戻し管路32A(作動油タンク20)との間を接続するセンタバイパス管路32が設けられている。センタバイパス管路32には、旋回用方向制御弁36、ブーム用方向制御弁55がパラレル接続で設けられている。旋回用方向制御弁36の上流側には、センタバイパス管路32から分岐する分岐管路33Aが設けられ、該分岐管路33Aは旋回用方向制御弁36の高圧側ポートに接続されている。ブーム用方向制御弁55の上流側には他の分岐管路33Bが設けられ、該分岐管路33Bはブーム用方向制御弁55の高圧側ポートに接続されている。旋回用方向制御弁36と戻し管路32Aとの間には、旋回モータ19からの戻り油を作動油タンク20に環流させるタンク管路34Aが設けられている。ブーム用方向制御弁55と戻し管路32Aとの間には、ブームシリンダ5Bからの戻り油を作動油タンク20に環流させるタンク管路34Bが設けられている。 In the control valve 18, there is provided a center bypass line 32 that connects between the delivery line 14A and the return line 32A (the hydraulic oil tank 20). In the center bypass pipe 32, a turning direction control valve 36 and a boom direction control valve 55 are provided in parallel connection. On the upstream side of the turning direction control valve 36, a branch pipe 33 </ b> A branching from the center bypass pipe 32 is provided, and the branch pipe 33 </ b> A is connected to the high-pressure side port of the turning direction control valve 36. Another branch conduit 33B is provided on the upstream side of the boom direction control valve 55, and the branch conduit 33B is connected to the high-pressure side port of the boom direction control valve 55. Between the turning direction control valve 36 and the return line 32A, a tank line 34A for returning the return oil from the turning motor 19 to the hydraulic oil tank 20 is provided. Between the boom direction control valve 55 and the return line 32A, a tank line 34B for circulating the return oil from the boom cylinder 5B to the hydraulic oil tank 20 is provided.
 旋回モータ19と旋回用方向制御弁36との間には、旋回モータ19に対して圧油を供給、排出する一対の主管路35A,35Bが接続されている。各主管路35A,35Bは、旋回用方向制御弁36の切換位置に応じて分岐管路33Aまたはタンク管路34Aに接続される。 Between the turning motor 19 and the turning direction control valve 36, a pair of main pipes 35A and 35B for supplying and discharging pressure oil to the turning motor 19 are connected. Each of the main pipelines 35A and 35B is connected to the branch pipeline 33A or the tank pipeline 34A according to the switching position of the turning direction control valve 36.
 旋回用方向制御弁36は、センタバイパス管路32に接続されている。この旋回用方向制御弁36は、コントロールバルブ18を構成する多数の方向制御弁の1つである。旋回用方向制御弁36は、パイロット部36A,36Bを有する6ポート3位置の方向制御弁からなっている。旋回用方向制御弁36のパイロット部36A,36Bには、キャブ7内に配置された油圧パイロット弁の操作レバー(図示せず)の操作に応じて、パイロット管路36A1,36B1を通じてパイロット圧が供給される。これにより、旋回用方向制御弁36は、旋回モータ19に対する圧油の供給、排出を停止する中立位置(A)と、旋回モータ19に対して圧油を供給、排出する切換位置(B),(C)とに切換えられる。 The turning direction control valve 36 is connected to the center bypass conduit 32. The turning direction control valve 36 is one of many direction control valves constituting the control valve 18. The turning direction control valve 36 is a 6-port 3-position direction control valve having pilot portions 36A and 36B. Pilot pressures are supplied to the pilot portions 36A and 36B of the turning direction control valve 36 through pilot pipelines 36A1 and 36B1 in accordance with the operation of an operation lever (not shown) of a hydraulic pilot valve disposed in the cab 7. Is done. As a result, the turning direction control valve 36 has a neutral position (A) for stopping the supply and discharge of the pressure oil to the turning motor 19, and a switching position (B) for supplying and discharging the pressure oil to the turning motor 19. (C).
 メイクアップ用の一対のチェック弁37A,37Bは、主管路35A,35Bの途中に接続されている。各チェック弁37A,37Bは、旋回モータ19が慣性回転を行うことにより主管路35Aまたは35B内が負圧になると、タンク管路38を通じて主管路35A,35B内に作動油タンク20内の作動油を補給する。 A pair of make-up check valves 37A and 37B are connected in the middle of the main pipelines 35A and 35B. When each of the check valves 37A and 37B has a negative pressure in the main pipeline 35A or 35B due to the inertial rotation of the swing motor 19, the hydraulic oil in the hydraulic oil tank 20 is fed into the main pipelines 35A and 35B through the tank pipeline 38. Replenish.
 一対のリリーフ弁39A,39Bは、主管路35A,35Bの途中に接続されている。各リリーフ弁39A,39Bは、旋回モータ19が慣性回転を行うことにより一方の主管路35A(35B)内に過剰圧が発生するとこの過剰圧をリリーフし、油圧機器を保護する機能を有している。 The pair of relief valves 39A and 39B are connected in the middle of the main pipelines 35A and 35B. Each relief valve 39A, 39B has a function of relieving this excessive pressure and protecting the hydraulic equipment when an excessive pressure is generated in one main conduit 35A (35B) by the inertial rotation of the swing motor 19. Yes.
 旋回回生弁40は、旋回モータ19と旋回用方向制御弁36との間に位置して主管路35A,35Bの途中に設けられている。この旋回回生弁40は、旋回モータ19が慣性回転を行うときに、旋回モータ19のポンプ作用によって吐出される圧油(旋回モータ19からの戻り油)を回生油圧モータ23に供給するものである。旋回回生弁40は、後述の各チェック弁42A,42B、旋回回生メイン切換弁45、旋回回生パイロット弁49、電磁パイロット弁51を含んで構成されている。 The turning regenerative valve 40 is located between the turning motor 19 and the turning direction control valve 36 and is provided in the middle of the main pipelines 35A and 35B. The swing regenerative valve 40 supplies pressure oil (return oil from the swing motor 19) discharged by the pump action of the swing motor 19 to the regenerative hydraulic motor 23 when the swing motor 19 performs inertial rotation. . The swivel regenerative valve 40 includes check valves 42A and 42B, which will be described later, a swivel regenerative main switching valve 45, a swivel regenerative pilot valve 49, and an electromagnetic pilot valve 51.
 接続管路41は、主管路35Aと主管路35Bとに接続されている。この接続管路41の途中には、一対のチェック弁42A,42Bが接続されている。これらチェック弁42A,42Bは、主管路35A,35Bから接続管路41に向かう圧油の流れを許し、逆向きの流れを阻止する。各チェック弁42A,42B間に位置する接続管路41の途中には、旋回回生管路43の一端側が接続部43Aにおいて接続されている。旋回回生管路43の他端側は、後述するブーム回生管路68に接続されている。旋回回生管路43の途中には、チェック弁44が接続され、このチェック弁44は、回生油圧モータ23に向かう圧油の流れを許し、逆向きの流れを阻止する。 The connection pipeline 41 is connected to the main pipeline 35A and the main pipeline 35B. A pair of check valves 42 </ b> A and 42 </ b> B are connected in the middle of the connection pipe 41. These check valves 42A and 42B allow the flow of pressure oil from the main pipelines 35A and 35B toward the connection pipeline 41, and prevent the reverse flow. One end side of the swivel regeneration conduit 43 is connected to the connection portion 43A in the middle of the connection conduit 41 located between the check valves 42A and 42B. The other end side of the turning regeneration pipeline 43 is connected to a boom regeneration pipeline 68 described later. A check valve 44 is connected in the middle of the swivel regenerative pipe 43, and this check valve 44 allows the flow of pressure oil toward the regenerative hydraulic motor 23 and prevents the reverse flow.
 旋回回生メイン切換弁45は、旋回回生管路43の途中に設けられている。この旋回回生メイン切換弁45は、接続管路41と旋回回生管路43との接続部43Aと、チェック弁44との間に接続されている。ここで、旋回回生メイン切換弁45は、2ポート2位置の切換弁からなり、常時は遮断位置(A)を保持して旋回回生管路43を遮断する。一方、旋回回生メイン切換弁45は、パイロット部45Aにパイロット圧が供給されることにより連通位置(B)に切換えられ、旋回回生管路43を連通させる。旋回回生メイン切換弁45のパイロット部45Aと旋回回生管路43との間は、パイロット管路46を介して接続されている。パイロット管路46の途中には、チェック弁と絞りとによって構成された一方向絞り弁47が設けられている。 The turning regeneration main switching valve 45 is provided in the middle of the turning regeneration pipeline 43. This turning regeneration main switching valve 45 is connected between a check valve 44 and a connection portion 43 </ b> A between the connection pipe 41 and the turning regeneration pipe 43. Here, the swivel regeneration main switching valve 45 is a two-port, two-position switching valve, and normally maintains the shut-off position (A) to shut off the swivel regeneration conduit 43. On the other hand, the turning regeneration main switching valve 45 is switched to the communication position (B) when the pilot pressure is supplied to the pilot section 45 </ b> A, and makes the turning regeneration pipeline 43 communicate. The pilot portion 45 </ b> A of the turning regeneration main switching valve 45 and the turning regeneration pipeline 43 are connected via a pilot pipeline 46. A one-way throttle valve 47 composed of a check valve and a throttle is provided in the middle of the pilot line 46.
 バイパス管路48は、接続管路41と旋回回生管路43との間を接続している。このバイパス管路48の一端側は、接続部48Aにおいて接続管路41に接続されている。一方、バイパス管路48の他端側は、チェック弁44と旋回回生メイン切換弁45との間で旋回回生管路43に接続されている。 The bypass pipe line 48 connects the connection pipe line 41 and the swivel regeneration pipe line 43. One end of the bypass conduit 48 is connected to the connection conduit 41 at the connection portion 48A. On the other hand, the other end side of the bypass pipe 48 is connected to the turning regeneration pipe 43 between the check valve 44 and the turning regeneration main switching valve 45.
 旋回回生パイロット弁49は、バイパス管路48の途中に接続されている。この旋回回生パイロット弁49は2ポート2位置の切換弁からなり、常時は遮断位置(A)を保持してバイパス管路48を遮断する。一方、旋回回生パイロット弁49は、パイロット部49Aにパイロット圧が供給されることにより連通位置(B)に切換えられ、絞り49Bを介してバイパス管路48を連通させる。 The turning regeneration pilot valve 49 is connected in the middle of the bypass line 48. The regenerative pilot valve 49 is composed of a 2-port 2-position switching valve, and normally maintains the shut-off position (A) and shuts off the bypass line 48. On the other hand, the swivel regeneration pilot valve 49 is switched to the communication position (B) when the pilot pressure is supplied to the pilot section 49A, and communicates the bypass pipe line 48 via the throttle 49B.
 バイパス管路48と旋回回生パイロット弁49のパイロット部49Aとの間は、パイロット管路50を介して接続されている。パイロット管路50の途中には3ポート2位置の電磁パイロット弁51が接続されている。この電磁パイロット弁51は、常時は遮断位置(A)を保持することにより、パイロット管路50を遮断すると共に旋回回生パイロット弁49のパイロット部49Aを作動油タンク20に接続している。電磁パイロット弁51のパイロット部51Aには、回生弁用パイロット管路52が接続されている。電磁パイロット弁51は、コントローラ(図示せず)からの制御信号に応じて回生弁用パイロット管路52を通じてパイロット圧が供給されることにより、連通位置(B)に切換えられ、パイロット管路50を連通させる。 The bypass pipe 48 and the pilot portion 49A of the swivel regenerative pilot valve 49 are connected via a pilot pipe 50. An electromagnetic pilot valve 51 at a 3-port 2-position is connected in the middle of the pilot pipe line 50. The electromagnetic pilot valve 51 always maintains the shut-off position (A), thereby shutting off the pilot conduit 50 and connecting the pilot portion 49A of the revolving regenerative pilot valve 49 to the hydraulic oil tank 20. A regenerative valve pilot conduit 52 is connected to the pilot portion 51 </ b> A of the electromagnetic pilot valve 51. The electromagnetic pilot valve 51 is switched to the communication position (B) by supplying pilot pressure through the regenerative valve pilot line 52 in accordance with a control signal from a controller (not shown), and the pilot line 50 is Communicate.
 旋回用方向制御弁36のパイロット部36A,36Bに供給されるパイロット圧の圧力は、圧力センサ53A,53Bによって検出される。主管路35A,35B内の圧力は、圧力センサ53C,53Dによって検出される。コントローラ(図示せず)は、これら圧力センサ53A,53B,53C,53D、後述する圧力センサ76Cからの検出信号に基づいて、旋回回生弁40の電磁パイロット弁51を制御する。 The pilot pressure supplied to the pilot portions 36A and 36B of the turning direction control valve 36 is detected by the pressure sensors 53A and 53B. The pressure in the main pipelines 35A and 35B is detected by pressure sensors 53C and 53D. A controller (not shown) controls the electromagnetic pilot valve 51 of the swivel regenerative valve 40 based on detection signals from the pressure sensors 53A, 53B, 53C, 53D and a pressure sensor 76C described later.
 一方、作業装置5を構成するブームシリンダ5Bと後述するブーム用方向制御弁55との間には、一対の主管路54A,54Bが接続されている。これら各主管路54A,54Bは、ブームシリンダ5Bのボトム側油室5B1、ロッド側油室5B2に対して圧油を供給、排出するものである。各主管路54A,54Bは、ブーム用方向制御弁55の切換位置に応じて分岐管路33Bまたはタンク管路34Bに接続される。 On the other hand, a pair of main pipelines 54A and 54B are connected between a boom cylinder 5B constituting the working device 5 and a boom direction control valve 55 described later. These main pipelines 54A and 54B supply and discharge pressure oil to and from the bottom side oil chamber 5B1 and the rod side oil chamber 5B2 of the boom cylinder 5B. The main pipelines 54A and 54B are connected to the branch pipeline 33B or the tank pipeline 34B according to the switching position of the boom direction control valve 55.
 ブーム用方向制御弁55は、旋回用方向制御弁36よりも下流側でセンタバイパス管路32に接続されている。このブーム用方向制御弁55も、コントロールバルブ18を構成する多数の方向制御弁の1つである。ブーム用方向制御弁55は、パイロット部55A,55Bを有する6ポート3位置の方向制御弁からなっている。ブーム用方向制御弁55のパイロット部55A,55Bには、キャブ7内に配置された油圧パイロット弁の操作レバー(図示せず)の操作に応じて後述のパイロット管路74,75を通じてパイロット圧が供給される。これにより、ブーム用方向制御弁55は、ブームシリンダ5Bに対する圧油の供給、排出を停止する中立位置(A)と、ブームシリンダ5Bに対して圧油を供給、排出する切換位置(B),(C)とに切換えられる。 The boom direction control valve 55 is connected to the center bypass pipe 32 on the downstream side of the turning direction control valve 36. The boom directional control valve 55 is also one of many directional control valves constituting the control valve 18. The boom direction control valve 55 is a 6-port 3-position direction control valve having pilot portions 55A and 55B. A pilot pressure is applied to pilot portions 55A and 55B of the boom direction control valve 55 through pilot pipelines 74 and 75, which will be described later, in response to an operation of an operation lever (not shown) of a hydraulic pilot valve disposed in the cab 7. Supplied. As a result, the boom direction control valve 55 has a neutral position (A) for stopping supply and discharge of pressure oil to the boom cylinder 5B, and a switching position (B) for supplying and discharging pressure oil to and from the boom cylinder 5B. (C).
 メイクアップ用の一対のチェック弁56A,56Bは、主管路54A,54Bと戻し管路32Aとの間にそれぞれ設けられている。各チェック弁56A,56Bは、主管路54Aまたは54B内が負圧になると、戻し管路32Aを通じて主管路54A,54B内に作動油タンク20内の作動油を補給するものである。 A pair of make-up check valves 56A and 56B are provided between the main pipelines 54A and 54B and the return pipeline 32A, respectively. Each check valve 56A, 56B replenishes the hydraulic oil in the hydraulic oil tank 20 into the main pipelines 54A, 54B through the return pipeline 32A when the pressure in the main pipeline 54A or 54B becomes negative.
 一対のリリーフ弁57A,57Bは、主管路54A,54Bと戻し管路32Aとの間にそれぞれ設けられている。各リリーフ弁57A,57Bは、主管路54A,54B内に過剰圧が発生したときにこの過剰圧をリリーフし、油圧機器を保護する機能を有している。 The pair of relief valves 57A and 57B are provided between the main pipelines 54A and 54B and the return pipeline 32A, respectively. Each relief valve 57A, 57B has a function of relieving the excessive pressure when the excessive pressure is generated in the main pipelines 54A, 54B and protecting the hydraulic equipment.
 パイロット操作式のチェック弁58は、主管路54Aの途中に設けられている。このチェック弁58は、後述のチェック弁用パイロット管路74Bに接続されている。チェック弁58は、チェック弁用パイロット管路74Bを通じてパイロット圧が供給されないときには、ブームシリンダ5Bからブーム用方向制御弁55に向かう圧油の流れを阻止する。一方、チェック弁58は、チェック弁用パイロット管路74Bを通じてパイロット圧が供給されたときには、ブームシリンダ5Bからブーム用方向制御弁55に向かう圧油の流れを許すものである。 The pilot operated check valve 58 is provided in the middle of the main pipeline 54A. The check valve 58 is connected to a later-described check valve pilot pipe 74B. The check valve 58 prevents the flow of pressure oil from the boom cylinder 5B toward the boom direction control valve 55 when the pilot pressure is not supplied through the check valve pilot pipe line 74B. On the other hand, the check valve 58 allows the flow of pressure oil from the boom cylinder 5B toward the boom direction control valve 55 when the pilot pressure is supplied through the check valve pilot line 74B.
 ブーム回生弁59は、主管路54A,54Bの途中に設けられている。ブーム回生弁59は、ブームシリンダ5Bを縮小させてブーム5Aを下向きに回動させたときに、ブームシリンダ5Bのボトム側油室5B1から排出される圧油(ブームシリンダ5Bからの戻り油)を回生油圧モータ23に供給するものである。ここで、ブーム回生弁59は、後述の管路切換弁60、制御弁戻し弁61、連通弁64、残圧調整弁67、回生切換弁70を含んで構成されている。 The boom regenerative valve 59 is provided in the middle of the main pipelines 54A and 54B. The boom regenerative valve 59 supplies pressure oil (return oil from the boom cylinder 5B) discharged from the bottom side oil chamber 5B1 of the boom cylinder 5B when the boom cylinder 5B is contracted and the boom 5A is rotated downward. The regenerative hydraulic motor 23 is supplied. Here, the boom regenerative valve 59 includes a pipe switching valve 60, a control valve return valve 61, a communication valve 64, a residual pressure adjusting valve 67, and a regenerative switching valve 70 which will be described later.
 管路切換弁60は、主管路54Bの途中に設けられている。この管路切換弁60は、パイロット部60Aを有する3ポート2位置の切換弁からなり、主管路54Bと戻し管路32Aとに接続されている。管路切換弁60のパイロット部60Aは、後述の切換弁用パイロット管路74Gに接続されている。管路切換弁60は、常時は主管路54Bを連通させる連通位置(A)を保持する。一方、管路切換弁60は、切換弁用パイロット管路74Gを通じてパイロット部60Aにパイロット圧が供給されることにより切換位置(B)に切換り、主管路54Bを戻し管路32Aに接続するものである。 The pipeline switching valve 60 is provided in the middle of the main pipeline 54B. This pipeline switching valve 60 is a three-port 2-position switching valve having a pilot portion 60A, and is connected to the main pipeline 54B and the return pipeline 32A. The pilot section 60A of the pipe switching valve 60 is connected to a switching valve pilot pipe 74G described later. The pipeline switching valve 60 always maintains a communication position (A) that allows the main pipeline 54B to communicate. On the other hand, the pipeline switching valve 60 is switched to the switching position (B) when the pilot pressure is supplied to the pilot section 60A through the switching valve pilot pipeline 74G, and connects the main pipeline 54B to the return pipeline 32A. It is.
 制御弁戻し弁61は、主管路54Aの途中に設けられている。この制御弁戻し弁61は、パイロット部61Aを有する3ポート2位置の切換弁からなっている。制御弁戻し弁61は、主管路54Aの途中に接続されると共に、一端側が主管路54Bに接続された接続管路62の他端側に接続されている。制御弁戻し弁61のパイロット部61Aは、後述の戻し弁用パイロット管路74Cに接続されている。制御弁戻し弁61は、常時は連通位置(A)を保持し、主管路54Aを連通させると共に、主管路54Aを流通する圧油の一部をチェック弁61Bを介して接続管路62へと導く。一方、制御弁戻し弁61は、戻し弁用パイロット管路74Cを通じてパイロット部61Aにパイロット圧が供給されることにより絞り位置(B)に切換えられ、絞り61Cを介して主管路54Aを連通させる。 The control valve return valve 61 is provided in the middle of the main pipeline 54A. The control valve return valve 61 is a 3-port 2-position switching valve having a pilot portion 61A. The control valve return valve 61 is connected in the middle of the main pipeline 54A, and is connected at one end to the other end of the connection pipeline 62 connected to the main pipeline 54B. The pilot portion 61A of the control valve return valve 61 is connected to a return valve pilot pipe 74C described later. The control valve return valve 61 always maintains the communication position (A), allows the main pipeline 54A to communicate, and part of the pressure oil flowing through the main pipeline 54A to the connection pipeline 62 via the check valve 61B. Lead. On the other hand, the control valve return valve 61 is switched to the throttle position (B) when the pilot pressure is supplied to the pilot section 61A through the return valve pilot pipe 74C, and communicates with the main pipe 54A via the throttle 61C.
 連通管路63は、主管路54A,54B間を接続して設けられている。この場合、連通管路63は、管路切換弁60、制御弁戻し弁61よりもブームシリンダ5B側で主管路54A,54B間を接続している。連通弁64は、連通管路63の途中に設けられている。連通弁64は、パイロット部64Aを有する2ポート2位置の切換弁からなり、連通弁64のパイロット部64Aは、後述の連通弁用パイロット管路74Dに接続されている。連通弁64は、常時は遮断位置(A)を保持し、連通管路63を遮断する。一方、連通弁64は、連通弁用パイロット管路74Dを通じてパイロット部64Aにパイロット圧が供給されることにより連通位置(B)に切換り、連通管路63を連通させるものである。連通管路63の途中には、チェック弁65が設けられ、このチェック弁65は、連通弁64を介して主管路54Aから主管路54Bに向かう圧油の流れを許し、逆向きの流れを阻止する。 The communication pipeline 63 is provided by connecting the main pipelines 54A and 54B. In this case, the communication pipeline 63 connects the main pipelines 54A and 54B closer to the boom cylinder 5B than the pipeline switching valve 60 and the control valve return valve 61. The communication valve 64 is provided in the middle of the communication pipe 63. The communication valve 64 is a two-port 2-position switching valve having a pilot portion 64A, and the pilot portion 64A of the communication valve 64 is connected to a communication valve pilot pipe 74D described later. The communication valve 64 always maintains the blocking position (A) and blocks the communication pipe 63. On the other hand, the communication valve 64 is switched to the communication position (B) when the pilot pressure is supplied to the pilot section 64A through the communication valve pilot pipe 74D, and the communication pipe 63 is communicated. A check valve 65 is provided in the middle of the communication pipe 63, and this check valve 65 allows the flow of pressure oil from the main pipe 54 </ b> A to the main pipe 54 </ b> B via the communication valve 64, and prevents the reverse flow. To do.
 タンク管路66は、一端側が管路切換弁60とブームシリンダ5Bとの間で主管路54Bに接続され、該タンク管路66の他端側は戻し管路32Aに接続されている。タンク管路66の途中には、残圧調整弁67が接続されている。残圧調整弁67は、パイロット部67Aを有する2ポート2位置の切換弁からなり、残圧調整弁67のパイロット部67Aは、後述の調整弁用パイロット管路74Eに接続されている。残圧調整弁67は、常時は遮断位置(A)を保持し、タンク管路66を遮断する。一方、残圧調整弁67は、調整弁用パイロット管路74Eを通じてパイロット部67Aにパイロット圧が供給されることにより連通位置(B)に切換えられ、タンク管路66を連通させるものである。 One end of the tank conduit 66 is connected to the main conduit 54B between the conduit switching valve 60 and the boom cylinder 5B, and the other end of the tank conduit 66 is connected to the return conduit 32A. A residual pressure adjusting valve 67 is connected in the middle of the tank conduit 66. The residual pressure adjusting valve 67 is a two-port 2-position switching valve having a pilot portion 67A, and the pilot portion 67A of the residual pressure adjusting valve 67 is connected to an after-mentioned adjusting valve pilot conduit 74E. The residual pressure adjusting valve 67 normally maintains the shut-off position (A) and shuts off the tank conduit 66. On the other hand, the residual pressure adjusting valve 67 is switched to the communication position (B) when the pilot pressure is supplied to the pilot portion 67A through the adjusting valve pilot pipe 74E, and the tank pipe 66 is connected.
 ブーム回生管路68は、一端側が制御弁戻し弁61とブームシリンダ5Bとの間で主管路54Aに接続され、他端側が回生油圧モータ23に接続されている。回生油圧モータ23と作動油タンク20との間はタンク管路69を介して接続されている。ブーム回生管路68の途中には、回生切換弁70が接続されている。回生切換弁70は、パイロット部70Aを有する2ポート2位置の切換弁からなり、回生切換弁70のパイロット部70Aは、後述の回生弁用パイロット管路74Fに接続されている。回生切換弁70は、常時は遮断位置(A)を保持し、ブーム回生管路68を遮断する。一方、回生切換弁70は、回生弁用パイロット管路74Fを通じてパイロット部70Aにパイロット圧が供給されることにより連通位置(B)に切換えられ、絞り70Bを介してブーム回生管路68を連通させるものである。 The boom regenerative pipe 68 has one end connected to the main pipe 54A between the control valve return valve 61 and the boom cylinder 5B, and the other end connected to the regenerative hydraulic motor 23. The regenerative hydraulic motor 23 and the hydraulic oil tank 20 are connected via a tank line 69. A regeneration switching valve 70 is connected in the middle of the boom regeneration pipe 68. The regenerative switching valve 70 is a 2-port 2-position switching valve having a pilot portion 70A, and the pilot portion 70A of the regenerative switching valve 70 is connected to a regenerative valve pilot conduit 74F described later. The regenerative switching valve 70 normally maintains the shut-off position (A) and shuts off the boom regenerative pipe 68. On the other hand, the regenerative switching valve 70 is switched to the communication position (B) when the pilot pressure is supplied to the pilot portion 70A through the regenerative valve pilot line 74F, and the boom regenerative line 68 is communicated via the throttle 70B. Is.
 ブーム回生管路68の途中には、チェック弁71が設けられ、このチェック弁71は、回生切換弁70と回生油圧モータ23との間に位置して設けられている。チェック弁71は、回生切換弁70から回生油圧モータ23に向かう圧油の流れを許し、逆向きの流れを阻止する。バイパス管路72は、制御弁戻し弁61をバイパスして主管路54Aとブーム回生管路68との間を接続している。バイパス管路72の途中には、チェック弁73が設けられている。チェック弁73は、主管路54Aからブーム回生管路68に向かう圧油の流れを許し、逆向きの流れを阻止する。 A check valve 71 is provided in the middle of the boom regenerative pipe 68, and this check valve 71 is provided between the regenerative switching valve 70 and the regenerative hydraulic motor 23. The check valve 71 allows the flow of pressure oil from the regenerative switching valve 70 toward the regenerative hydraulic motor 23 and prevents the reverse flow. The bypass line 72 bypasses the control valve return valve 61 and connects between the main line 54A and the boom regenerative line 68. A check valve 73 is provided in the middle of the bypass line 72. The check valve 73 allows the flow of pressure oil from the main pipeline 54A toward the boom regeneration pipeline 68 and prevents the reverse flow.
 パイロット管路74,75は、ブーム用方向制御弁55のパイロット部55A,55Bにそれぞれ接続されている。これらパイロット管路74,75は、キャブ7内に配置された操作レバー(図示せず)の操作に応じて、ブーム用方向制御弁55のパイロット部55A,55Bにパイロット圧を供給するものである。 The pilot pipelines 74 and 75 are connected to the pilot portions 55A and 55B of the boom direction control valve 55, respectively. These pilot conduits 74 and 75 supply pilot pressure to the pilot portions 55A and 55B of the boom direction control valve 55 in accordance with the operation of an operation lever (not shown) disposed in the cab 7. .
 ここで、パイロット管路74は、ブーム用方向制御弁55のパイロット部55Aに接続される方向制御弁用パイロット管路74Aと、チェック弁58に接続されるチェック弁用パイロット管路74Bと、制御弁戻し弁61のパイロット部61Aに接続される戻し弁用パイロット管路74Cと、連通弁64のパイロット部64Aに接続される連通弁用パイロット管路74Dと、残圧調整弁67のパイロット部67Aに接続される調整弁用パイロット管路74Eと、回生切換弁70のパイロット部70Aに接続される回生弁用パイロット管路74Fと、管路切換弁60のパイロット部60Aに接続される切換弁用パイロット管路74Gとに分岐している。ブーム用方向制御弁55のパイロット部55Aに方向制御弁用パイロット管路74Aを通じてパイロット圧が供給されたときには、このパイロット圧は、チェック弁58に供給される。一方、制御弁戻し弁61,連通弁64,残圧調整弁67,回生切換弁70,管路切換弁60のパイロット部61A,64A,67A,70A,60Aには、それぞれコントローラからの制御信号に応じてパイロット圧が供給される。 Here, the pilot pipe line 74 includes a directional control valve pilot pipe line 74A connected to the pilot section 55A of the boom directional control valve 55, a check valve pilot pipe line 74B connected to the check valve 58, and a control. A return valve pilot line 74C connected to the pilot part 61A of the valve return valve 61, a communication valve pilot line 74D connected to the pilot part 64A of the communication valve 64, and a pilot part 67A of the residual pressure adjusting valve 67. For control valve connected to the pilot part 60A of the regenerative valve 60A, the pilot line 74F for regenerative valve connected to the pilot part 70A of the regenerative switching valve 70, and the pilot part 60A of the regenerative switching valve 70 Branches to the pilot line 74G. When pilot pressure is supplied to the pilot portion 55A of the boom direction control valve 55 through the direction control valve pilot line 74A, this pilot pressure is supplied to the check valve 58. On the other hand, the control valve return valve 61, the communication valve 64, the residual pressure adjusting valve 67, the regenerative switching valve 70, and the pilot sections 61A, 64A, 67A, 70A, 60A of the pipe switching valve 60 are respectively supplied with control signals from the controller. Accordingly, pilot pressure is supplied.
 ブーム用方向制御弁55のパイロット部55Aに供給されるパイロット圧の圧力は、圧力センサ74Hによって検出される。主管路54A,54B内の圧力は、圧力センサ76A,76Bによって検出される。また、回生油圧モータ23の流入側の圧力は圧力センサ76Cによって検出される。コントローラ(図示せず)は、これら圧力センサ74H,76A,76B,76Cからの検出信号に基づいて、ブーム回生弁59を構成する管路切換弁60、制御弁戻し弁61、連通弁64、残圧調整弁67、回生切換弁70をそれぞれ制御する。 The pressure of the pilot pressure supplied to the pilot section 55A of the boom direction control valve 55 is detected by the pressure sensor 74H. The pressures in the main pipelines 54A and 54B are detected by pressure sensors 76A and 76B. Further, the pressure on the inflow side of the regenerative hydraulic motor 23 is detected by the pressure sensor 76C. Based on detection signals from these pressure sensors 74H, 76A, 76B, and 76C, a controller (not shown) controls the pipe switching valve 60, the control valve return valve 61, the communication valve 64, the remaining valve, and the like that constitute the boom regenerative valve 59. The pressure regulating valve 67 and the regeneration switching valve 70 are controlled.
 本実施の形態によるハイブリッド式の油圧ショベル1は、上述の如き構成を有するもので、次に、その動作について説明する。 The hybrid excavator 1 according to the present embodiment has the above-described configuration, and the operation thereof will be described next.
 油圧ショベル1のエンジン9を作動させると、エンジン9によって油圧ポンプ14とアシスト電動モータ15が駆動される。油圧ポンプ14は、作動油タンク20内の作動油を吸込んで加圧し、各種の油圧アクチュエータに向けて吐出する。これにより、油圧ショベル1は、下部走行体2による走行動作、上部旋回体4の旋回動作、作業装置5による掘削作業等を行う。 When the engine 9 of the hydraulic excavator 1 is operated, the hydraulic pump 14 and the assist electric motor 15 are driven by the engine 9. The hydraulic pump 14 sucks and pressurizes the hydraulic oil in the hydraulic oil tank 20 and discharges it toward various hydraulic actuators. As a result, the excavator 1 performs a traveling operation by the lower traveling body 2, a turning operation by the upper revolving body 4, excavation work by the work device 5, and the like.
 この場合、エンジン9の出力トルクが油圧ポンプ14の駆動トルクよりも大きいときには、余剰トルクによってアシスト電動モータ15が発電機として駆動される。これにより、アシスト電動モータ15は交流電力を発生し、この交流電力はインバータ16により直流電力に変換され、蓄電装置13に蓄えられる。 In this case, when the output torque of the engine 9 is larger than the driving torque of the hydraulic pump 14, the assist electric motor 15 is driven as a generator by the surplus torque. Thereby, the assist electric motor 15 generates AC power, and this AC power is converted into DC power by the inverter 16 and stored in the power storage device 13.
 一方、エンジン9の出力トルクが油圧ポンプ14の駆動トルクよりも小さいときには、アシスト電動モータ15は、蓄電装置13からの電力によって電動機として駆動される。これにより、エンジン9が油圧ポンプ14を駆動するのをアシスト電動モータ15によって助勢(アシスト)することができる。 On the other hand, when the output torque of the engine 9 is smaller than the driving torque of the hydraulic pump 14, the assist electric motor 15 is driven as an electric motor by the electric power from the power storage device 13. Accordingly, the assist electric motor 15 can assist (assist) the engine 9 to drive the hydraulic pump 14.
 ここで、本実施の形態による油圧ショベル1は、上部旋回体4が下部走行体2上で慣性回転するときに、旋回モータ19から作動油タンク20に戻る戻り油を利用して回生油圧モータ23を駆動する旋回回生動作を行う。さらに、油圧ショベル1は、作業装置5のブーム5Aが下向きに回動するときに、ブームシリンダ5Bのボトム側油室5B1から作動油タンク20に戻る戻り油を利用して回生油圧モータ23を駆動するブーム回生動作を行う。 Here, in the hydraulic excavator 1 according to the present embodiment, the regenerative hydraulic motor 23 uses the return oil that returns from the swing motor 19 to the hydraulic oil tank 20 when the upper swing body 4 rotates inertially on the lower traveling body 2. Rotating regenerative operation to drive is performed. Further, the hydraulic excavator 1 drives the regenerative hydraulic motor 23 using the return oil that returns from the bottom side oil chamber 5B1 of the boom cylinder 5B to the hydraulic oil tank 20 when the boom 5A of the working device 5 rotates downward. Perform boom regeneration operation.
 そこで、上部旋回体4の慣性回転時に、旋回モータ19からの戻り油を利用して回生油圧モータ23を駆動する旋回回生動作について説明する。 Therefore, a turning regenerative operation for driving the regenerative hydraulic motor 23 using the return oil from the turning motor 19 during the inertia rotation of the upper turning body 4 will be described.
 上部旋回体4が下部走行体2上で旋回動作を行う状態において、旋回用方向制御弁36が切換位置(B)または(C)から中立位置(A)に切換えられると、上部旋回体4が下部走行体2上で慣性回転を行う。これにより、旋回モータ19は慣性回転によるポンプ作用を行い、旋回モータ19は、主管路35A,35Bの一方に圧油を吐出する。この圧油はチェック弁42Aまたはチェック弁42Bを通じて接続管路41内に流入する。 In a state where the upper swing body 4 performs a swing operation on the lower traveling body 2, when the turning direction control valve 36 is switched from the switching position (B) or (C) to the neutral position (A), the upper swing body 4 is moved. Inertia rotation is performed on the lower traveling body 2. Thereby, the turning motor 19 performs a pump action by inertia rotation, and the turning motor 19 discharges the pressure oil to one of the main pipelines 35A and 35B. The pressure oil flows into the connection pipe 41 through the check valve 42A or the check valve 42B.
 このとき、電磁パイロット弁51のパイロット部51Aに対し、コントローラ(図示せず)からの制御信号に応じてパイロット圧が供給され、電磁パイロット弁51は連通位置(B)に切換えられる。これにより、接続管路41内に流入した圧油は、パイロット管路50を通じて旋回回生パイロット弁49のパイロット部49Aに供給される。従って、旋回回生パイロット弁49が連通位置(B)に切換り、接続管路41内の圧油は、旋回回生パイロット弁49の絞り49Bを通過し、バイパス管路48、パイロット管路46、一方向絞り弁47を通じて、旋回回生メイン切換弁45のパイロット部45Aに供給される。 At this time, pilot pressure is supplied to the pilot portion 51A of the electromagnetic pilot valve 51 in accordance with a control signal from a controller (not shown), and the electromagnetic pilot valve 51 is switched to the communication position (B). As a result, the pressure oil that has flowed into the connection pipe 41 is supplied to the pilot portion 49 </ b> A of the turning regeneration pilot valve 49 through the pilot pipe 50. Accordingly, the swivel regenerative pilot valve 49 is switched to the communication position (B), and the pressure oil in the connection pipe 41 passes through the throttle 49B of the swivel regenerative pilot valve 49, and the bypass line 48, the pilot line 46, The directional throttle valve 47 is supplied to the pilot section 45A of the turning regeneration main switching valve 45.
 これにより、旋回回生メイン切換弁45が連通位置(B)に切換えられ、接続管路41内に流入した圧油は、旋回回生管路43、ブーム回生管路68等を通じて回生油圧モータ23に供給される。この結果、旋回モータ19からの戻り油を利用して回生油圧モータ23を回転させることができ、この回生油圧モータ23によって回生電動モータ24を駆動することができる。回生電動モータ24によって発電された交流電力は、インバータ26により直流電力に変換され、蓄電装置13に蓄えられる。 As a result, the turning regeneration main switching valve 45 is switched to the communication position (B), and the pressure oil that has flowed into the connection pipe 41 is supplied to the regeneration hydraulic motor 23 through the turning regeneration pipe 43, the boom regeneration pipe 68, and the like. Is done. As a result, the regenerative hydraulic motor 23 can be rotated using the return oil from the turning motor 19, and the regenerative electric motor 24 can be driven by the regenerative hydraulic motor 23. AC power generated by the regenerative electric motor 24 is converted into DC power by the inverter 26 and stored in the power storage device 13.
 次に、作業装置5のブーム5Aを上向きに回動させるときのブームシリンダ5Bの作動について説明する。 Next, the operation of the boom cylinder 5B when the boom 5A of the work device 5 is turned upward will be described.
 ブーム5Aを上向きに回動させるためにブームシリンダ5Bを伸長させる場合には、キャブ7内に配置された操作レバー(図示せず)の操作に応じて、ブーム用方向制御弁55のパイロット部55Bにパイロット圧が供給され、ブーム用方向制御弁55は切換位置(C)に切換えられる。 When the boom cylinder 5B is extended to rotate the boom 5A upward, the pilot portion 55B of the boom direction control valve 55 is operated in accordance with an operation of an operation lever (not shown) disposed in the cab 7. The pilot pressure is supplied to the boom, and the boom direction control valve 55 is switched to the switching position (C).
 これにより、油圧ポンプ14からの圧油は、ブーム用方向制御弁55、主管路54A、バイパス管路72等を通じてブームシリンダ5Bのボトム側油室5B1に供給される。一方、ブームシリンダ5Bのロッド側油室5B2内の圧油は、主管路54B、管路切換弁60、ブーム用方向制御弁55、戻し管路32A等を通じて作動油タンク20に環流する。この結果、ブームシリンダ5Bは伸長し、ブーム5Aは上向きに回動動作を行う。 Thereby, the pressure oil from the hydraulic pump 14 is supplied to the bottom side oil chamber 5B1 of the boom cylinder 5B through the boom direction control valve 55, the main pipeline 54A, the bypass pipeline 72, and the like. On the other hand, the pressure oil in the rod side oil chamber 5B2 of the boom cylinder 5B circulates to the hydraulic oil tank 20 through the main pipeline 54B, the pipeline switching valve 60, the boom direction control valve 55, the return pipeline 32A, and the like. As a result, the boom cylinder 5B extends, and the boom 5A rotates upward.
 次に、ブーム5Aを下向きに回動させるときのブームシリンダ5Bの作動について説明する。 Next, the operation of the boom cylinder 5B when the boom 5A is rotated downward will be described.
 ブーム5Aを下向きに回動させるためにブームシリンダ5Bを縮小させる場合には、キャブ7内に配置された操作レバーの操作に応じて、ブーム用方向制御弁55のパイロット部55Aにパイロット圧が供給され、ブーム用方向制御弁55は切換位置(B)に切換えられる。このとき、チェック弁用パイロット管路74Bを通じてチェック弁58にパイロット圧が供給されることにより、パイロット操作式のチェック弁58が開弁する。一方、管路切換弁60のパイロット部60Aに対し、コントローラ(図示せず)からの制御信号に応じてパイロット圧が供給され、管路切換弁60は切換位置(B)に切換えられる。 When the boom cylinder 5B is contracted to rotate the boom 5A downward, the pilot pressure is supplied to the pilot portion 55A of the boom direction control valve 55 according to the operation of the operation lever arranged in the cab 7. The boom direction control valve 55 is switched to the switching position (B). At this time, the pilot pressure is supplied to the check valve 58 through the check valve pilot pipe 74B, so that the pilot operated check valve 58 is opened. On the other hand, pilot pressure is supplied to the pilot section 60A of the pipeline switching valve 60 in accordance with a control signal from a controller (not shown), and the pipeline switching valve 60 is switched to the switching position (B).
 これにより、油圧ポンプ14から供給された圧油は、ブームシリンダ5Bに供給されることなく、ブーム用方向制御弁55、管路切換弁60、戻し管路32Aを通じて作動油タンク20に戻される。 Thus, the pressure oil supplied from the hydraulic pump 14 is returned to the hydraulic oil tank 20 through the boom direction control valve 55, the pipe switching valve 60, and the return pipe 32A without being supplied to the boom cylinder 5B.
 この状態において、ブームシリンダ5Bが自重によって縮小すると、ボトム側油室5B1内の圧油が主管路54Aに排出される。排出された圧油は、主管路54Aから制御弁戻し弁61を通過した後、ブームシリンダ5Bのロッド側油室5B2に向かう流れと、作動油タンク20に向かう流れに分かれる。 In this state, when the boom cylinder 5B is reduced by its own weight, the pressure oil in the bottom side oil chamber 5B1 is discharged to the main conduit 54A. The discharged pressure oil passes through the control valve return valve 61 from the main pipeline 54A, and then is divided into a flow toward the rod side oil chamber 5B2 of the boom cylinder 5B and a flow toward the hydraulic oil tank 20.
 即ち、制御弁戻し弁61のチェック弁61Bを通過した圧油は、接続管路62を介して主管路54Bに導かれ、該主管路54Bを通じてブームシリンダ5Bのロッド側油室5B2に流入する。一方、制御弁戻し弁61を通って主管路54Aに導かれた圧油は、チェック弁58、ブーム用方向制御弁55、タンク管路34B、戻し管路32A等を通じて作動油タンク20に戻される。この結果、ブームシリンダ5Bは縮小し、ブームシリンダ5B(ボトム側油室5B1)からの戻り油は、回生油圧モータ23に供給されることなく作動油タンク20に環流する。 That is, the pressure oil that has passed through the check valve 61B of the control valve return valve 61 is guided to the main pipeline 54B through the connection pipeline 62, and flows into the rod-side oil chamber 5B2 of the boom cylinder 5B through the main pipeline 54B. On the other hand, the pressure oil guided to the main line 54A through the control valve return valve 61 is returned to the hydraulic oil tank 20 through the check valve 58, the boom direction control valve 55, the tank line 34B, the return line 32A, and the like. . As a result, the boom cylinder 5B is reduced, and the return oil from the boom cylinder 5B (bottom side oil chamber 5B1) flows back to the hydraulic oil tank 20 without being supplied to the regenerative hydraulic motor 23.
 次に、ブーム5Aが下向きに回動するときに、ブームシリンダ5Bのボトム側油室5B1からの戻り油を利用して回生油圧モータ23を駆動するブーム回生動作について説明する。 Next, a boom regenerative operation for driving the regenerative hydraulic motor 23 using the return oil from the bottom side oil chamber 5B1 of the boom cylinder 5B when the boom 5A rotates downward will be described.
 ブームシリンダ5Bのボトム側油室5B1からの戻り油を利用してブーム回生動作を行う場合には、キャブ7内に配置された操作レバーの操作に応じて、ブーム用方向制御弁55のパイロット部55Aにパイロット圧が供給され、ブーム用方向制御弁55は切換位置(B)に切換えられる。このとき、チェック弁用パイロット管路74Bを通じてチェック弁58にパイロット圧が供給されることにより、パイロット操作式のチェック弁58が開弁する。一方、管路切換弁60のパイロット部60Aに対し、コントローラ(図示せず)からの制御信号に応じてパイロット圧が供給され、管路切換弁60は切換位置(B)に切換えられる。 When the boom regeneration operation is performed using the return oil from the bottom side oil chamber 5B1 of the boom cylinder 5B, the pilot portion of the boom direction control valve 55 is operated according to the operation of the operation lever arranged in the cab 7. The pilot pressure is supplied to 55A, and the boom direction control valve 55 is switched to the switching position (B). At this time, the pilot pressure is supplied to the check valve 58 through the check valve pilot pipe 74B, so that the pilot operated check valve 58 is opened. On the other hand, pilot pressure is supplied to the pilot section 60A of the pipeline switching valve 60 in accordance with a control signal from a controller (not shown), and the pipeline switching valve 60 is switched to the switching position (B).
 これにより、油圧ポンプ14から供給された圧油は、ブームシリンダ5Bに供給されることなく、ブーム用方向制御弁55、管路切換弁60、戻し管路32Aを通じて作動油タンク20に戻される。 Thus, the pressure oil supplied from the hydraulic pump 14 is returned to the hydraulic oil tank 20 through the boom direction control valve 55, the pipe switching valve 60, and the return pipe 32A without being supplied to the boom cylinder 5B.
 一方、制御弁戻し弁61、連通弁64、回生切換弁70のパイロット部61A,64A,70Aに対し、それぞれコントローラ(図示せず)からの制御信号に応じてパイロット圧が供給される。これにより、制御弁戻し弁61は絞り位置(B)に切換えられ、連通弁64は連通位置(B)に切換えられ、回生切換弁70は連通位置(B)に切換えられる。 Meanwhile, pilot pressure is supplied to the control valve return valve 61, the communication valve 64, and the pilot portions 61A, 64A, and 70A of the regenerative switching valve 70 according to control signals from a controller (not shown). As a result, the control valve return valve 61 is switched to the throttle position (B), the communication valve 64 is switched to the communication position (B), and the regeneration switching valve 70 is switched to the communication position (B).
 この状態において、ブームシリンダ5Bが自重によって縮小すると、ボトム側油室5B1内の圧油が主管路54Aに排出される。排出された圧油は、連通管路63を通じてブームシリンダ5Bのロッド側油室5B2に向かう流れと、ブーム回生管路68を通じて回生油圧モータ23に向かう流れに分かれる。 In this state, when the boom cylinder 5B is reduced by its own weight, the pressure oil in the bottom side oil chamber 5B1 is discharged to the main conduit 54A. The discharged pressure oil is divided into a flow toward the rod side oil chamber 5B2 of the boom cylinder 5B through the communication conduit 63 and a flow toward the regenerative hydraulic motor 23 through the boom regeneration conduit 68.
 即ち、主管路54Aから連通管路63に導かれた圧油は、連通弁64、主管路54Bを通じてブームシリンダ5Bのロッド側油室5B2に流入し、ボトム側油室5B1の圧力が増大する。一方、主管路54Aからブーム回生管路68に導かれた圧油は、回生切換弁70、チェック弁71、ブーム回生管路68を通じて回生油圧モータ23に供給される。この結果、ブームシリンダ5Bは縮小し、同時にブームシリンダ5Bからの戻り油を利用して回生油圧モータ23を回転させ、この回生油圧モータ23によって回生電動モータ24を駆動することができる。回生電動モータ24によって発電された交流電力は、インバータ26により直流電力に変換され、蓄電装置13に蓄えられる。 That is, the pressure oil guided from the main pipe line 54A to the communication pipe line 63 flows into the rod side oil chamber 5B2 of the boom cylinder 5B through the communication valve 64 and the main pipe line 54B, and the pressure in the bottom side oil chamber 5B1 increases. On the other hand, the pressure oil led from the main pipeline 54 </ b> A to the boom regeneration pipeline 68 is supplied to the regeneration hydraulic motor 23 through the regeneration switching valve 70, the check valve 71, and the boom regeneration pipeline 68. As a result, the boom cylinder 5B is reduced, and at the same time, the regenerative hydraulic motor 23 is rotated using the return oil from the boom cylinder 5B, and the regenerative electric motor 24 can be driven by the regenerative hydraulic motor 23. AC power generated by the regenerative electric motor 24 is converted into DC power by the inverter 26 and stored in the power storage device 13.
 主管路54Aからブーム回生管路68に導かれる圧油の一部は、制御弁戻し弁61、主管路54A、チェック弁58、ブーム用方向制御弁55、タンク管路34B、戻し管路32Aを通じて作動油タンク20に戻される。上述したブーム回生動作が終了した後には、残圧調整弁67のパイロット部67Aに対し、コントローラからの制御信号に応じてパイロット圧が供給される。これにより、残圧調整弁67が連通位置(B)に切換えられ、ブームシリンダ5Bのロッド側油室5B2内の残圧(こもり圧)を、タンク管路66、戻し管路32Aを通じて作動油タンク20に排出することができる。 A part of the pressure oil led from the main pipeline 54A to the boom regeneration pipeline 68 passes through the control valve return valve 61, the main pipeline 54A, the check valve 58, the boom direction control valve 55, the tank pipeline 34B, and the return pipeline 32A. Returned to the hydraulic oil tank 20. After the boom regeneration operation described above is completed, the pilot pressure is supplied to the pilot portion 67A of the residual pressure adjustment valve 67 according to the control signal from the controller. As a result, the residual pressure adjusting valve 67 is switched to the communication position (B), and the residual oil pressure in the rod side oil chamber 5B2 of the boom cylinder 5B is supplied to the hydraulic oil tank through the tank line 66 and the return line 32A. 20 can be discharged.
 第1の実施の形態による油圧ショベル1は、上部旋回体4が下部走行体2上で慣性回転するときには、旋回モータ19から作動油タンク20に戻る戻り油を利用して回生油圧モータ23を駆動する旋回回生動作を行うことができる。一方、作業装置5のブーム5Aが下向きに回動するときには、ブームシリンダ5Bのボトム側油室5B1から作動油タンク20に戻る戻り油を利用して回生油圧モータ23を駆動するブーム回生動作を行うことができる。なお、ブーム回生動作によって得られる回生エネルギは、旋回回生動作によって得られる回生エネルギよりも大きいため、ブーム回生動作は旋回回生動作に優先して行なわれる構成となっている。 The hydraulic excavator 1 according to the first embodiment drives the regenerative hydraulic motor 23 using the return oil that returns from the swing motor 19 to the hydraulic oil tank 20 when the upper swing body 4 rotates inertially on the lower traveling body 2. Rotating regenerative operation can be performed. On the other hand, when the boom 5A of the working device 5 rotates downward, a boom regenerative operation for driving the regenerative hydraulic motor 23 is performed using return oil that returns from the bottom oil chamber 5B1 of the boom cylinder 5B to the hydraulic oil tank 20. be able to. Since the regenerative energy obtained by the boom regenerative operation is larger than the regenerative energy obtained by the turning regenerative operation, the boom regenerative operation is performed with priority over the turning regenerative operation.
 ここで、第1の実施の形態によれば、上部旋回体4に搭載される回生油圧モータ23と回生電動モータ24とを、油圧ポンプ14と作動油タンク20との間に位置し、かつ作動油タンク20の近傍位置にまとめて配置している。これにより、回生油圧モータ23に対するメンテナンス作業と、回生電動モータ24に対するメンテナンス作業とを、共通な1つの作業場所から行うことができる。この結果、回生油圧モータ23と回生電動モータ24とを含む回生ユニット25に対するメンテナンス作業の作業性を高めることができる。 Here, according to the first embodiment, the regenerative hydraulic motor 23 and the regenerative electric motor 24 mounted on the upper swing body 4 are located between the hydraulic pump 14 and the hydraulic oil tank 20 and operated. The oil tank 20 is arranged in the vicinity of the oil tank 20. Thereby, the maintenance work for the regenerative hydraulic motor 23 and the maintenance work for the regenerative electric motor 24 can be performed from one common work place. As a result, the workability of the maintenance work for the regenerative unit 25 including the regenerative hydraulic motor 23 and the regenerative electric motor 24 can be improved.
 しかも、回生ユニット25を作動油タンク20に近接した位置に配置することにより、回生油圧モータ23と作動油タンク20との間を接続するタンク管路69を短くすることができる。この結果、回生油圧モータ23から作動油タンク20に戻る戻り油の圧力損失を低減し、回生効率を高めることができる。 In addition, by disposing the regenerative unit 25 at a position close to the hydraulic oil tank 20, the tank line 69 connecting the regenerative hydraulic motor 23 and the hydraulic oil tank 20 can be shortened. As a result, the pressure loss of the return oil that returns from the regenerative hydraulic motor 23 to the hydraulic oil tank 20 can be reduced, and the regeneration efficiency can be increased.
 第1の実施の形態では、回生油圧モータ23と回生電動モータ24とを、油圧ポンプ14と作動油タンク20との間で左,右方向に並べて配置している。これにより、油圧ポンプ14と作動油タンク20との間に形成されるスペース内に、回生油圧モータ23と回生電動モータ24とを効率良く配置することができる。 In the first embodiment, the regenerative hydraulic motor 23 and the regenerative electric motor 24 are arranged side by side in the left and right directions between the hydraulic pump 14 and the hydraulic oil tank 20. Thereby, the regenerative hydraulic motor 23 and the regenerative electric motor 24 can be efficiently arranged in the space formed between the hydraulic pump 14 and the hydraulic oil tank 20.
 第1の実施の形態では、油圧ポンプ14の前側に、左,右方向に延びた状態で仕切り部材17を設けることにより、作動油タンク20と仕切り部材17との間に回生ユニット収容空間21が形成されている。従って、回生油圧モータ23と回生電動モータ24とを、回生ユニット収容空間21内に左,右方向に並べて収容することにより、これら回生油圧モータ23と回生電動モータ24とをコンパクトに収容することができる。 In the first embodiment, the partition unit 17 is provided on the front side of the hydraulic pump 14 so as to extend leftward and rightward, so that the regenerative unit accommodating space 21 is provided between the hydraulic oil tank 20 and the partition member 17. Is formed. Therefore, the regenerative hydraulic motor 23 and the regenerative electric motor 24 can be accommodated in a compact manner by accommodating the regenerative hydraulic motor 23 and the regenerative electric motor 24 side by side in the regenerative unit accommodation space 21 in the left and right directions. it can.
 さらに、第1の実施の形態による油圧ショベル1は、建屋カバー27のうち回生ユニット25に対応する位置に右側面ドア31を設けている。この右側面ドア31は、油圧ポンプ14等を右側方から開,閉可能に覆う右後側面ドア31Aと、回生油圧モータ23、回生電動モータ24を右側方から開,閉可能に覆う右前側面ドア31Bとを備えている。これにより、回生ユニット25に対するメンテナンスを行うときには、右後側面ドア31Aおよび右前側面ドア31Bを開くことにより、回生ユニット収容空間21を外部に開放することができる。この結果、回生ユニット収容空間21内に収容された回生油圧モータ23、回生電動モータ24に対するメンテナンスの作業性を高めることができる。 Further, the excavator 1 according to the first embodiment is provided with a right side door 31 at a position corresponding to the regenerative unit 25 in the building cover 27. The right side door 31 includes a right rear side door 31A that covers the hydraulic pump 14 and the like so that it can be opened and closed from the right side, and a right front side door that covers the regenerative hydraulic motor 23 and the regenerative electric motor 24 so that they can be opened and closed from the right side. 31B. Thereby, when performing the maintenance with respect to the regeneration unit 25, the regeneration unit accommodation space 21 can be opened outside by opening the right rear side door 31A and the right front side door 31B. As a result, maintenance workability for the regenerative hydraulic motor 23 and the regenerative electric motor 24 accommodated in the regenerative unit accommodation space 21 can be improved.
 次に、図6および図7は本発明の第2の実施の形態を示している。本実施の形態の特徴は、旋回装置または作業装置から作動油タンクに戻る戻り油により駆動される回生アシストポンプを、回生ユニットに追加して設けたことにある。なお、本実施の形態では、上述した第1の実施の形態と同一の構成要素に同一符号を付し、その説明を省略する。 Next, FIG. 6 and FIG. 7 show a second embodiment of the present invention. The feature of this embodiment is that a regenerative assist pump that is driven by return oil that returns from the turning device or the working device to the hydraulic oil tank is additionally provided in the regenerative unit. In the present embodiment, the same components as those in the first embodiment described above are denoted by the same reference numerals, and the description thereof is omitted.
 図において、回生ユニット77は、第2の実施の形態に適用されるものである。この回生ユニット77は、第1の実施の形態による回生ユニット25を構成する回生油圧モータ23、回生電動モータ24に加え、後述する回生アシストポンプとしての回生油圧ポンプ78を追加したものである。 In the figure, the regeneration unit 77 is applied to the second embodiment. The regenerative unit 77 is obtained by adding a regenerative hydraulic pump 78 as a regenerative assist pump described later in addition to the regenerative hydraulic motor 23 and the regenerative electric motor 24 constituting the regenerative unit 25 according to the first embodiment.
 回生油圧ポンプ78は、回生ユニット77を構成するもので、可変容量型の油圧ポンプからなっている。この回生油圧ポンプ78は、回生油圧モータ23によって駆動されることにより圧油を供給し、この圧油を油圧ポンプ14から供給された圧油に合流させるものである。 The regenerative hydraulic pump 78 constitutes the regenerative unit 77 and is composed of a variable displacement hydraulic pump. The regenerative hydraulic pump 78 is driven by the regenerative hydraulic motor 23 to supply pressure oil, and joins the pressure oil to the pressure oil supplied from the hydraulic pump 14.
 ここで、図6に示すように、回生油圧ポンプ78は、回生油圧モータ23、回生電動モータ24と共に、油圧ポンプ14から前側に離間した位置で作動油タンク20の近傍(後側)に隣合う状態で設けられている。回生油圧ポンプ78のポンプ軸は、動力伝達機構(図示せず)を介して回生油圧モータ23のモータ軸に接続されている。これにより、回生油圧モータ23と、回生電動モータ24と、回生油圧ポンプ78とは、エンジン9から分離した回生ユニット77を構成している。これら回生油圧モータ23、回生電動モータ24、回生油圧ポンプ78は、油圧ポンプ14と作動油タンク20との間、さらに詳しくは、油圧ポンプ14の前側に設けられた仕切り部材17の右仕切り板17Cと作動油タンク20との間に形成された回生ユニット収容空間21内に、左,右方向に並べて収容されている。 Here, as shown in FIG. 6, the regenerative hydraulic pump 78 is adjacent to the vicinity (rear side) of the hydraulic oil tank 20, together with the regenerative hydraulic motor 23 and the regenerative electric motor 24, at a position spaced forward from the hydraulic pump 14. It is provided in the state. The pump shaft of the regenerative hydraulic pump 78 is connected to the motor shaft of the regenerative hydraulic motor 23 via a power transmission mechanism (not shown). Thus, the regenerative hydraulic motor 23, the regenerative electric motor 24, and the regenerative hydraulic pump 78 constitute a regenerative unit 77 separated from the engine 9. The regenerative hydraulic motor 23, the regenerative electric motor 24, and the regenerative hydraulic pump 78 are arranged between the hydraulic pump 14 and the hydraulic oil tank 20, more specifically, the right partition plate 17C of the partition member 17 provided on the front side of the hydraulic pump 14. Are accommodated side by side in the left and right directions in a regenerative unit housing space 21 formed between the hydraulic oil tank 20 and the hydraulic oil tank 20.
 一方、図7に示すように、回生油圧ポンプ78の吐出側は、合流管路79を介してデリベリ管路14Aに接続され、回生油圧ポンプ78と作動油タンク20との間は吸込管路80を介して接続されている。合流管路79の途中には合流弁81が接続されている。合流弁81は、パイロット部81Aを有する2ポート2位置の切換弁からなり、常時は遮断位置(A)を保持して合流管路79を遮断する。一方、合流弁81は、パイロット部81Aにパイロット信号が供給されることにより連通位置(B)に切換えられ、絞り81Bを介して合流管路79を連通させる。合流管路79の途中には、デリベリ管路14Aと合流弁81との間に位置して逆止弁82が設けられている。逆止弁82は、回生油圧ポンプ78からデリベリ管路14Aに向かう圧油の流れを許し、逆向きの流れを阻止するものである。 On the other hand, as shown in FIG. 7, the discharge side of the regenerative hydraulic pump 78 is connected to the delivery line 14 </ b> A via a confluence line 79, and a suction line 80 is provided between the regenerative hydraulic pump 78 and the hydraulic oil tank 20. Connected through. A junction valve 81 is connected in the middle of the junction line 79. The merging valve 81 is a two-port two-position switching valve having a pilot portion 81A, and always maintains the blocking position (A) to block the merging pipe line 79. On the other hand, the merging valve 81 is switched to the communication position (B) when a pilot signal is supplied to the pilot section 81A, and communicates the merging pipe line 79 via the throttle 81B. A check valve 82 is provided in the middle of the merge line 79 between the delivery line 14 </ b> A and the merge valve 81. The check valve 82 allows the flow of pressure oil from the regenerative hydraulic pump 78 toward the delivery pipeline 14A and prevents the reverse flow.
 第2の実施の形態による油圧ショベルは、上述の如き回生油圧ポンプ78が追加された回生ユニット77を備えるものである。従って、第1の実施の形態と同様に、上部旋回体4の慣性回転時に旋回モータ19から排出された圧油、あるいはブームシリンダ5Bの縮小時にボトム側油室5B1から排出された圧油が、旋回回生管路43、ブーム回生管路68等を通じて回生油圧モータ23に供給されることにより、回生油圧モータ23が回転する。これにより、回生油圧モータ23によって回生電動モータ24と回生油圧ポンプ78が駆動され、回生電動モータ24は、蓄電装置13に蓄えられる電力を発電し、回生油圧ポンプ78は、作動油タンク20内の作動油を圧油として吐出する。 The hydraulic excavator according to the second embodiment includes a regenerative unit 77 to which a regenerative hydraulic pump 78 as described above is added. Therefore, as in the first embodiment, the pressure oil discharged from the turning motor 19 during the inertial rotation of the upper swing body 4 or the pressure oil discharged from the bottom side oil chamber 5B1 when the boom cylinder 5B is reduced, The regenerative hydraulic motor 23 rotates by being supplied to the regenerative hydraulic motor 23 through the turning regenerative pipeline 43, the boom regenerative pipeline 68, and the like. As a result, the regenerative hydraulic motor 23 drives the regenerative electric motor 24 and the regenerative hydraulic pump 78, the regenerative electric motor 24 generates electric power stored in the power storage device 13, and the regenerative hydraulic pump 78 is in the hydraulic oil tank 20. Hydraulic oil is discharged as pressure oil.
 このとき、コントローラ(図示せず)は、回生油圧ポンプ78から吐出された圧油を、油圧ポンプ14から吐出された圧油に合流させるか否かを判断し、合流させる場合には、合流弁81に対してパイロット信号を出力する。これにより、合流弁81が連通位置(B)に切換えられ、回生油圧ポンプ78から吐出された圧油を、デリベリ管路14Aにおいて油圧ポンプ14から吐出された圧油に合流させることができる。この結果、回生油圧ポンプ78のポンプ流量分だけ油圧ポンプ14のポンプ流量を低減し、油圧ポンプ14を駆動するための動力を低減することができる。 At this time, the controller (not shown) determines whether or not the pressure oil discharged from the regenerative hydraulic pump 78 is merged with the pressure oil discharged from the hydraulic pump 14. A pilot signal is output to 81. Thereby, the merging valve 81 is switched to the communication position (B), and the pressure oil discharged from the regenerative hydraulic pump 78 can be merged with the pressure oil discharged from the hydraulic pump 14 in the delivery pipeline 14A. As a result, the pump flow rate of the hydraulic pump 14 can be reduced by the pump flow rate of the regenerative hydraulic pump 78, and the power for driving the hydraulic pump 14 can be reduced.
 一方、回生油圧ポンプ78から吐出された圧油を、油圧ポンプ14から吐出された圧油に合流させない場合には、コントローラは、合流弁81を遮断位置(A)に切換えると共に、回生油圧ポンプ78の吐出容量を零に設定する。 On the other hand, when the pressure oil discharged from the regenerative hydraulic pump 78 is not merged with the pressure oil discharged from the hydraulic pump 14, the controller switches the merging valve 81 to the cutoff position (A) and regenerative hydraulic pump 78. Set the discharge capacity to zero.
 かくして、第2の実施の形態においては、回生油圧モータ23と回生電動モータ24に、回生油圧ポンプ78を追加している。従って、上部旋回体4の慣性回転時に旋回モータ19から戻る戻り油、あるいはブームシリンダ5Bの縮小時にボトム側油室5B1から戻る戻り油を利用して回生電動モータ24を駆動するだけでなく、回生油圧ポンプ78を駆動することができる。この結果、蓄電装置13に電力を蓄えることに加え、回生油圧ポンプ78から吐出された圧油を、油圧ポンプ14から吐出された圧油に合流させることができる。この結果、油圧ポンプ14のポンプ流量を低減することができ、油圧ポンプ14を駆動するための動力を低減することができる。 Thus, in the second embodiment, the regenerative hydraulic pump 78 is added to the regenerative hydraulic motor 23 and the regenerative electric motor 24. Accordingly, the regenerative electric motor 24 is driven not only by using the return oil that returns from the swing motor 19 when the upper swing body 4 rotates by inertia, or the return oil that returns from the bottom-side oil chamber 5B1 when the boom cylinder 5B is reduced. The hydraulic pump 78 can be driven. As a result, in addition to storing electric power in the power storage device 13, the pressure oil discharged from the regenerative hydraulic pump 78 can be merged with the pressure oil discharged from the hydraulic pump 14. As a result, the pump flow rate of the hydraulic pump 14 can be reduced, and the power for driving the hydraulic pump 14 can be reduced.
 また、第2の実施の形態においては、回生油圧ポンプ78を、回生油圧モータ23および回生電動モータ24と一緒に、油圧ポンプ14と作動油タンク20との間(作動油タンク20の近傍位置)にまとめて配置している。これにより、回生油圧モータ23に対するメンテナンス作業と、回生電動モータ24に対するメンテナンス作業と、回生油圧ポンプ78に対するメンテナンス作業を、共通な1つの作業場所から行うことができる。この結果、回生油圧モータ23、回生電動モータ24、回生油圧ポンプ78を含む回生ユニット77に対するメンテナンス作業の作業性を高めることができる。 Further, in the second embodiment, the regenerative hydraulic pump 78 is placed between the hydraulic pump 14 and the hydraulic oil tank 20 (position near the hydraulic oil tank 20) together with the regenerative hydraulic motor 23 and the regenerative electric motor 24. Are arranged together. Thereby, the maintenance work for the regenerative hydraulic motor 23, the maintenance work for the regenerative electric motor 24, and the maintenance work for the regenerative hydraulic pump 78 can be performed from one common work place. As a result, the workability of the maintenance work for the regenerative unit 77 including the regenerative hydraulic motor 23, the regenerative electric motor 24, and the regenerative hydraulic pump 78 can be improved.
 なお、上述した第1の実施の形態では、回生油圧モータ23、回生電動モータ24を含む回生ユニット25を、油圧ポンプ14と作動油タンク20との間に配置した場合を例示している。しかし、本発明はこれに限るものではなく、例えば図8に示す変形例のように、作動油タンク20と燃料タンク22との間に回生ユニット収容空間83を形成し、この回生ユニット収容空間83内に回生ユニット25を収容してもよい。これにより、回生油圧モータ23と回生電動モータ24とを、油圧ポンプ14よりも前側に離間しかつ作動油タンク20の前側に隣接してまとめて配置することができる。この場合には、回生油圧モータ23と作動油タンク20との間を接続するタンク管路69の管路長を短縮化することができる。このことは、第2の実施の形態による回生油圧モータ23、回生電動モータ24、回生油圧ポンプ78についても同様である。 In the first embodiment described above, the case where the regenerative unit 25 including the regenerative hydraulic motor 23 and the regenerative electric motor 24 is disposed between the hydraulic pump 14 and the hydraulic oil tank 20 is illustrated. However, the present invention is not limited to this. For example, a regenerative unit accommodation space 83 is formed between the hydraulic oil tank 20 and the fuel tank 22 as in the modification shown in FIG. The regeneration unit 25 may be housed inside. As a result, the regenerative hydraulic motor 23 and the regenerative electric motor 24 can be collectively disposed so as to be separated from the hydraulic pump 14 and adjacent to the front side of the hydraulic oil tank 20. In this case, the pipe line length of the tank pipe line 69 connecting the regenerative hydraulic motor 23 and the hydraulic oil tank 20 can be shortened. The same applies to the regenerative hydraulic motor 23, the regenerative electric motor 24, and the regenerative hydraulic pump 78 according to the second embodiment.
 また、上述した実施の形態では、ハイブリッド式作業機械として油圧ショベル1を例示したが、本発明はこれに限らず、例えばホイール式油圧ショベル等の他のハイブリッド式作業機械にも適用することができる。 In the above-described embodiment, the hydraulic excavator 1 is illustrated as the hybrid work machine. However, the present invention is not limited to this, and can be applied to other hybrid work machines such as a wheel hydraulic excavator. .
 1 油圧ショベル(建設機械)
 2 下部走行体
 4 上部旋回体
 5 作業装置
 6 旋回フレーム
 9 エンジン(原動機)
 13 蓄電装置
 14 油圧ポンプ
 15 アシスト電動モータ
 19 旋回モータ
 20 作動油タンク
 23 回生油圧モータ
 24 回生電動モータ
 25,77 回生ユニット
 27 建屋カバー
 31 右側面ドア
 78 回生油圧ポンプ(回生アシストポンプ)
1 Excavator (construction machine)
2 Lower traveling body 4 Upper revolving body 5 Working device 6 Revolving frame 9 Engine (motor)
DESCRIPTION OF SYMBOLS 13 Power storage device 14 Hydraulic pump 15 Assist electric motor 19 Rotating motor 20 Hydraulic oil tank 23 Regenerative hydraulic motor 24 Regenerative electric motor 25,77 Regenerative unit 27 Building cover 31 Right side door 78 Regenerative hydraulic pump (regenerative assist pump)

Claims (6)

  1.  自走可能な下部走行体(2)と、該下部走行体(2)上に搭載され旋回モータ(19)によって旋回する上部旋回体(4)と、該上部旋回体(4)に俯仰動可能に設けられた作業装置(5)とからなり、
     前記上部旋回体(4)は、支持構造体をなす旋回フレーム(6)と、
     該旋回フレーム(6)に左,右方向に延びる横置き状態で設けられた原動機(9)と、
     該原動機(9)の左,右方向の一側に設けられ前記原動機(9)によって駆動されることにより前記旋回モータ(19)および前記作業装置(5)のアクチュエータに向けて圧油を吐出する油圧ポンプ(14)と、
     前記旋回フレーム(6)に設けられ前記旋回モータ(19)および前記作業装置(5)のアクチュエータに供給される作動油を蓄える作動油タンク(20)と、
     前記旋回フレーム(6)に設けられ電力を蓄電する蓄電装置(13)と、
     該蓄電装置(13)からの電力によって回転し前記原動機(9)による前記油圧ポンプ(14)の駆動をアシストするアシスト電動モータ(15)と、
     前記旋回モータ(19)または前記作業装置(5)のアクチュエータから前記作動油タンク(20)に戻る戻り油によって回転する回生油圧モータ(23)および該回生油圧モータ(23)により駆動され前記蓄電装置(13)に蓄えられる電力を発生する回生電動モータ(24)を含んで構成された回生ユニット(25,77)とを備えてなるハイブリッド式作業機械において、
     前記作動油タンク(20)は前記油圧ポンプ(14)の前側に位置して前記旋回フレーム(6)に設け、
     前記回生ユニット(25)を構成する前記回生油圧モータ(23)と前記回生電動モータ(24)は、前記作動油タンク(20)の近傍に位置して配置する構成としたことを特徴とするハイブリッド式作業機械。
    A self-propelled lower traveling body (2), an upper revolving body (4) mounted on the lower traveling body (2) and revolving by a revolving motor (19), and the upper revolving body (4) can be moved up and down. And the working device (5) provided in
    The upper swing body (4) includes a swing frame (6) forming a support structure,
    A prime mover (9) provided on the swivel frame (6) in a horizontally installed state extending in the left and right directions;
    Pressure oil is discharged toward the swing motor (19) and the actuator of the work device (5) by being provided on one side of the prime mover (9) in the left and right directions and driven by the prime mover (9). A hydraulic pump (14);
    A hydraulic oil tank (20) for storing hydraulic oil provided to the swing motor (19) and the actuator of the working device (5) provided on the swing frame (6);
    A power storage device (13) provided in the swivel frame (6) for storing electric power;
    An assist electric motor (15) that is rotated by electric power from the power storage device (13) and assists the driving of the hydraulic pump (14) by the prime mover (9);
    The regenerative hydraulic motor (23) rotated by return oil returning from the swing motor (19) or the actuator of the working device (5) to the hydraulic oil tank (20) and the power storage device driven by the regenerative hydraulic motor (23). In a hybrid work machine comprising a regenerative unit (25, 77) configured to include a regenerative electric motor (24) that generates electric power stored in (13),
    The hydraulic oil tank (20) is located on the front side of the hydraulic pump (14) and is provided on the turning frame (6).
    The hybrid characterized in that the regenerative hydraulic motor (23) and the regenerative electric motor (24) constituting the regenerative unit (25) are arranged in the vicinity of the hydraulic oil tank (20). Type work machine.
  2.  前記回生ユニット(25,77)を構成する前記回生油圧モータ(23)と前記回生電動モータ(24)は、前記油圧ポンプ(14)と前記作動油タンク(20)との間に配置する構成としてなる請求項1に記載のハイブリッド式作業機械。 The regenerative hydraulic motor (23) and the regenerative electric motor (24) constituting the regenerative unit (25, 77) are arranged between the hydraulic pump (14) and the hydraulic oil tank (20). The hybrid work machine according to claim 1.
  3.  前記回生ユニット(25,77)を構成する前記回生油圧モータ(23)と前記回生電動モータ(24)は、前記油圧ポンプ(14)と前記作動油タンク(20)との間に位置し、かつ左,右方向に並べて配置する構成としてなる請求項1に記載のハイブリッド式作業機械。 The regenerative hydraulic motor (23) and the regenerative electric motor (24) constituting the regenerative unit (25, 77) are located between the hydraulic pump (14) and the hydraulic oil tank (20), and The hybrid work machine according to claim 1, wherein the hybrid work machine is configured to be arranged side by side in a left direction and a right direction.
  4.  前記油圧ポンプ(14)の前側には左,右方向に延びた状態で前記旋回フレーム(6)に立設された仕切り部材(17)を設け、
     前記作動油タンク(20)と前記仕切り部材(17)との間には回生ユニット収容空間(21)を形成し、
     前記回生ユニット(25,77)を構成する前記回生油圧モータ(23)と前記回生電動モータ(24)は、前記回生ユニット収容空間(21)内に左,右方向に並べて収容する構成としてなる請求項1に記載のハイブリッド式作業機械。
    Provided on the front side of the hydraulic pump (14) is a partition member (17) erected on the swivel frame (6) in a state extending in the left and right directions,
    A regenerative unit accommodating space (21) is formed between the hydraulic oil tank (20) and the partition member (17),
    The regenerative hydraulic motor (23) and the regenerative electric motor (24) constituting the regenerative unit (25, 77) are configured to be accommodated side by side in the left and right directions in the regenerative unit accommodation space (21). Item 2. The hybrid work machine according to Item 1.
  5.  前記旋回フレーム(6)には、内部に前記原動機(9)、前記油圧ポンプ(14)および前記回生ユニット(25,77)を収容する建屋カバー(27)を設け、該建屋カバー(27)のうち前記回生ユニット(25,77)に対応する位置には、前記回生ユニット(25,77)に対するメンテナンス作業を行うときに開,閉されるドア(31B)を設ける構成としてなる請求項1に記載のハイブリッド式作業機械。 The swivel frame (6) is provided with a building cover (27) for accommodating the prime mover (9), the hydraulic pump (14), and the regenerative unit (25, 77), and the building cover (27) The position corresponding to the regeneration unit (25, 77) is provided with a door (31B) that is opened and closed when maintenance work is performed on the regeneration unit (25, 77). Hybrid work machine.
  6.  前記回生ユニット(77)には、前記旋回モータ(9)および前記作業装置(5)のアクチュエータから前記作動油タンク(20)に戻る戻り油により駆動され、前記油圧ポンプ(14)からの圧油に合流する圧油を吐出する回生アシストポンプ(78)を追加して設け、
     前記回生アシストポンプ(78)は、前記回生油圧モータ(23)および前記回生電動モータ(24)と一緒に、前記油圧ポンプ(14)と前記作動油タンク(20)との間に配置する構成としてなる請求項1に記載のハイブリッド式作業機械。
    The regenerative unit (77) is driven by return oil that returns to the hydraulic oil tank (20) from the actuators of the swing motor (9) and the work device (5), and pressure oil from the hydraulic pump (14). A regenerative assist pump (78) for discharging the pressure oil that joins the
    The regenerative assist pump (78) is arranged between the hydraulic pump (14) and the hydraulic oil tank (20) together with the regenerative hydraulic motor (23) and the regenerative electric motor (24). The hybrid work machine according to claim 1.
PCT/JP2015/056682 2014-04-03 2015-03-06 Hybrid work machine WO2015151721A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014077008A JP6270596B2 (en) 2014-04-03 2014-04-03 Hybrid work machine
JP2014-077008 2014-04-03

Publications (1)

Publication Number Publication Date
WO2015151721A1 true WO2015151721A1 (en) 2015-10-08

Family

ID=54240054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056682 WO2015151721A1 (en) 2014-04-03 2015-03-06 Hybrid work machine

Country Status (2)

Country Link
JP (1) JP6270596B2 (en)
WO (1) WO2015151721A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3733980A4 (en) * 2018-02-07 2021-04-21 Kobelco Construction Machinery Co., Ltd. Construction machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6534955B2 (en) * 2016-03-16 2019-06-26 ヤンマー株式会社 Work vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002227241A (en) * 2001-02-06 2002-08-14 Komatsu Ltd Hybrid construction equipment
JP2004169465A (en) * 2002-11-21 2004-06-17 Komatsu Ltd Device arrangement configuration for hybrid construction equipment
JP2010222814A (en) * 2009-03-23 2010-10-07 Sumitomo Heavy Ind Ltd Hybrid construction machinery
JP2011127569A (en) * 2009-12-21 2011-06-30 Kyb Co Ltd Assisted regeneration device
JP2012067523A (en) * 2010-09-24 2012-04-05 Hitachi Constr Mach Co Ltd Construction machine
JP2013165607A (en) * 2012-02-13 2013-08-22 Hitachi Constr Mach Co Ltd Power conversion device of work vehicle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5174875B2 (en) * 2010-09-17 2013-04-03 日立建機株式会社 Hybrid wheel loader

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002227241A (en) * 2001-02-06 2002-08-14 Komatsu Ltd Hybrid construction equipment
JP2004169465A (en) * 2002-11-21 2004-06-17 Komatsu Ltd Device arrangement configuration for hybrid construction equipment
JP2010222814A (en) * 2009-03-23 2010-10-07 Sumitomo Heavy Ind Ltd Hybrid construction machinery
JP2011127569A (en) * 2009-12-21 2011-06-30 Kyb Co Ltd Assisted regeneration device
JP2012067523A (en) * 2010-09-24 2012-04-05 Hitachi Constr Mach Co Ltd Construction machine
JP2013165607A (en) * 2012-02-13 2013-08-22 Hitachi Constr Mach Co Ltd Power conversion device of work vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3733980A4 (en) * 2018-02-07 2021-04-21 Kobelco Construction Machinery Co., Ltd. Construction machine

Also Published As

Publication number Publication date
JP2015197030A (en) 2015-11-09
JP6270596B2 (en) 2018-01-31

Similar Documents

Publication Publication Date Title
JP5687150B2 (en) Construction machinery
JP6106097B2 (en) Power regeneration device for work machine and work machine
JP6469381B2 (en) Hybrid work machine
JP4509877B2 (en) Hybrid system for work machines
WO2016017233A1 (en) Hybrid-type work machine
JP2006336844A (en) Working machine
JP5937613B2 (en) Construction machinery
JP2019049321A (en) Construction machine
JP6298716B2 (en) Work machine
JP6820051B2 (en) Motor cooling device
JP2012017553A (en) Construction machinery
JP6023391B2 (en) Construction machine drive
JP6190310B2 (en) Hybrid work machine
WO2015151721A1 (en) Hybrid work machine
JP2015172400A (en) Shovel
JP6009388B2 (en) Work machine
JP3659549B2 (en) Upper swing body for construction machinery
JP2006336849A (en) Turning drive device
JP2006349092A (en) Hybrid system of working machine
JP2006336307A (en) Work machine
JP6580301B2 (en) Excavator
JP2006336433A (en) Hydraulic pressure circuit of work machine
JP2012021311A (en) Hydraulic driving device for construction machine
JP6695257B2 (en) Oil passage switching control device for work vehicle
JP5948704B2 (en) Power regeneration circuit for hybrid construction machines

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15772905

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15772905

Country of ref document: EP

Kind code of ref document: A1