WO2015151628A1 - Method for producing conductive film and composition for forming conductive film - Google Patents

Method for producing conductive film and composition for forming conductive film Download PDF

Info

Publication number
WO2015151628A1
WO2015151628A1 PCT/JP2015/054571 JP2015054571W WO2015151628A1 WO 2015151628 A1 WO2015151628 A1 WO 2015151628A1 JP 2015054571 W JP2015054571 W JP 2015054571W WO 2015151628 A1 WO2015151628 A1 WO 2015151628A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive film
mass
oxide particles
less
composition
Prior art date
Application number
PCT/JP2015/054571
Other languages
French (fr)
Japanese (ja)
Inventor
美里 佐々田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2015151628A1 publication Critical patent/WO2015151628A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D171/00Coating compositions based on polyethers obtained by reactions forming an ether link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D171/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/08Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/14Decomposition by irradiation, e.g. photolysis, particle radiation or by mixed irradiation sources
    • C23C18/143Radiation by light, e.g. photolysis or pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/097Inks comprising nanoparticles and specially adapted for being sintered at low temperature
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/20Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern
    • H05K3/207Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern using a prefabricated paste pattern, ink pattern or powder pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/01Tools for processing; Objects used during processing
    • H05K2203/0104Tools for processing; Objects used during processing for patterning or coating
    • H05K2203/0108Male die used for patterning, punching or transferring
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1131Sintering, i.e. fusing of metal particles to achieve or improve electrical conductivity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1157Using means for chemical reduction

Definitions

  • the present invention relates to a method for producing a conductive film and a composition for forming a conductive film.
  • Patent Document 1 is a method of forming a conductive film, in which a film containing a plurality of copper nanoparticles is deposited on the surface of a substrate, and at least a part of the film is exposed, And making the exposed portion conductive.
  • the present inventors have reversed a composition for forming a conductive film containing copper oxide particles (A), a specific compound (B), and a specific organic solvent (C). It was found that a conductive film having excellent conductivity and few defects can be formed by transferring onto a base material by a printing method and irradiating light, and that transferability is also excellent.
  • the present inventor has a conductive film-forming composition containing copper oxide particles (A), a specific compound (B), and a specific organic solvent (C) in a predetermined amount, and has excellent conductivity.
  • the present invention was completed by discovering that a conductive film with few defects can be formed and transferability in the reverse printing method is excellent. That is, the present inventors have found that the above problem can be solved by the following configuration.
  • the content of the compound (B) is 6% by mass or more and 100% by mass or less with respect to the total amount of the copper oxide particles (A), according to any one of the above (1) to (4).
  • Manufacturing method of electrically conductive film (6) The method for producing a conductive film according to any one of (1) to (5), wherein the compound (B) includes at least one selected from the group consisting of polyethylene glycol, glycerin, and trimethylolpropane.
  • the content of the polyethylene glycol is 4% by mass or more and less than 50% by mass with respect to the total amount of the copper oxide particles (A), and the total amount of the glycerin and / or the trimethylolpropane is the copper oxide particles.
  • the manufacturing method of the electrically conductive film as described in said (7) which is 10 to 30 mass% with respect to the whole quantity of (A).
  • the conductive film-forming composition further comprises a metal catalyst (E) containing at least one metal element selected from the group consisting of Groups 8 to 11 of the periodic table.
  • (11) The method for forming a conductive film according to any one of (1) to (10), wherein the composition for forming a conductive film further contains water.
  • (12) The method for producing a conductive film according to any one of (1) to (11), wherein the substrate is a resin substrate.
  • (13) The method for producing a conductive film according to any one of (1) to (12), wherein the base material has an insulating film layer having a thickness of 0.1 ⁇ m or more and 1.5 ⁇ m or less on the surface thereof.
  • the polyethylene glycol and the glycerin and / or the trimethylolpropane wherein the content of the polyethylene glycol is 4% by mass or more and less than 50% by mass with respect to the total amount of the cupric oxide particles,
  • the content of glycerin and / or the trimethylolpropane is 10% by mass or more and less than 30% by mass with respect to the total amount of the cupric oxide particles, and is further selected from the group consisting of Groups 8 to 11 of the periodic table
  • a conductive film manufacturing method and a conductive film forming composition that can form a conductive film with excellent conductivity, few defects, and excellent transferability.
  • FIG. 1 is a schematic view showing a step of forming a conductive film by a reverse printing method.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • One of the features of the present invention is that the amount of each component in the composition, in particular, the oxidation with respect to the total mass of the copper oxide particles (A) and the compound (B) can be suitably used in the reverse printing method.
  • the point which has controlled the mass ratio in the electroconductive composition of the organic solvent (C) and the mass ratio of a copper particle (A) is mentioned.
  • a composition for forming a conductive film is once applied on a temporary support, a coating film is formed, a part of the coating film is removed, and then a predetermined substrate is applied. Transcription. Normally, when a part of the coating film is removed, a plate having a convex portion (also referred to as a punched plate) is pressed against the coating film to transfer the coating film to the surface of the convex portion.
  • the organic solvent (C) having a low boiling point described later volatilizes and other components remain in the coating film.
  • the hardness in the coating film is greatly influenced by the mass ratio of the copper oxide particles (A) to the total mass of the copper oxide particles (A) and the compound (B). Therefore, the present invention has found that by controlling the mass ratio within a predetermined range, the transfer from the coating film to the convex portion and the transfer from the temporary support to the substrate proceed well. ing. Furthermore, if it is the range of the said mass ratio, it has discovered that it is excellent also in the electroconductivity and ablation resistance of the electrically conductive film obtained.
  • the conductive film manufacturing method of the present invention includes a coating film forming step of forming a coating film by applying a conductive film forming composition described later on a temporary support, and a coating film At least a removal step of removing the portion and a transfer step of transferring the remaining coating film on the temporary support onto the substrate to form a precursor film of the conductive film.
  • a conductive film precursor film (a pattern of a conductive film forming composition) is formed on a substrate by reverse printing, and this is irradiated with light and sintered to form a conductive film.
  • the conductive film-forming composition of the present invention is excellent in transferability (printing and / or transfer to a substrate).
  • the electrically conductive film manufactured by the manufacturing method of this invention can also make a surface smooth with a thin film.
  • composition for forming conductive film Composition
  • a conductive film forming composition (composition) containing (B) and an organic solvent (C) having a boiling point of less than 100 ° C. is used.
  • the copper oxide particles (A) contained in the composition are not particularly limited as long as they are particulate copper oxide.
  • the particulate form refers to a small granular form, and specific examples thereof include a spherical shape and an ellipsoidal shape. It does not have to be a perfect sphere or ellipsoid, and some may be distorted.
  • the copper oxide particles (A) are preferably copper oxide (I) particles (Cu 2 O particles) or copper oxide (II) particles (CuO particles), and are excellent in conductivity and available at low cost. From the viewpoint of excellent stability in air and excellent reduction reactivity, copper (II) oxide particles are more preferable.
  • the average primary particle diameter of the copper oxide particles (A) is preferably 100 nm or less, and preferably 10 to 50 nm.
  • the lower limit of the average primary particle size is not particularly limited, but is preferably 1 nm or more, and more preferably 10 nm or more.
  • the copper oxide particles (A) are preferably cupric oxide particles having an average primary particle diameter of 100 nm or less, and more preferably cupric oxide particles having an average primary particle diameter of 50 nm or less.
  • the average primary particle size is a particle size (equivalent to a circle) of 1000 primary particles arbitrarily selected from an image taken using a transmission electron microscope TEM2010 (pressurized voltage 200 kV) manufactured by JEOL Ltd. (Diameter) are measured, and they are obtained by arithmetic averaging.
  • the equivalent circle diameter is the diameter of the circle when assuming a true circle having the same projected area as the projected area of the particles at the time of observation.
  • a part of the copper oxide particles (A) may be aggregated.
  • the copper oxide particles (A) are excellent in that the resulting conductive film has excellent smoothness and conductivity.
  • the degree of association of the copper oxide particles (A) is not particularly limited, but is obtained. In terms of the smoothness and conductivity of the conductive film, it is preferably more than 1.0 and 5.0 or less, and more preferably 1.5 to 3.0.
  • the content of the copper oxide particles (A) is 50 to 95% by mass of the total amount of the copper oxide particles (A) and the compound (B), and the effect of the present invention is more excellent. It is preferably from 90% by mass.
  • the quantity of a copper oxide particle (A) shall be the quantity containing the said aggregate.
  • the compound (B) contained in the composition has a boiling point of 250 ° C. or higher and at least one selected from the group consisting of an organic compound having at least one hydroxy group per molecule and a polyalkylene glycol. If it is, it will not be restrict
  • the composition contains the compound (B) the transferability is excellent, and the reduction from copper oxide to metallic copper proceeds more efficiently. As a result, a conductive film having excellent conductivity is obtained, and defects in the conductive film are obtained. Can be reduced.
  • the upper limit of the boiling point of the organic compound having at least one hydroxy group per molecule is not particularly limited, but is preferably 400 ° C. or lower because it is difficult to remain in the conductive film.
  • the polyalkylene glycol is preferably a substance that decomposes and volatilizes at 450 ° C. or lower when heated in an inert atmosphere in a state of being mixed with the copper oxide particles (A).
  • “boiling point” means a boiling point under a pressure of 1 atm.
  • the organic compound having a boiling point of 250 ° C. or more and having at least one hydroxy group per molecule is superior in at least one of transferability, conductivity of the conductive film, and defect generation suppressing property of the conductive film (hereinafter, It is preferable to have 2 or 3 hydroxy groups per molecule simply as “the point where the effect of the present invention is more excellent”.
  • alcohol is mentioned, for example.
  • specific examples of the alcohol include monohydric alcohols such as 1-eicosanol (boiling point 372 ° C.) and 1-tetracosanol (boiling point 395 ° C.); 1,6-hexanediol (boiling point 250 ° C.), 1,7 Divalent alcohols such as heptanediol (boiling point 259 ° C.), triethylene glycol (boiling point 287 ° C.), tripropylene glycol (boiling point 273 ° C.); glycerin (propane-1,2,3-triol) (boiling point 290 ° C.) Trivalent alcohols such as trimethylolpropane (boiling point 292 ° C.); tetravalent alcohols such as erythritol (boiling point 329 ° C.); pentavalent alcohols such as pentaeryth
  • the polyalkylene glycol is not particularly limited as long as it is a compound having an oxyalkylene repeating unit and having two hydroxy groups in one molecule.
  • the alkylene group is not particularly limited. Examples thereof include alkylene groups having 1 to 10 carbon atoms such as ethylene group and propylene group.
  • Examples of the polyalkylene glycol include polyethylene glycol and polypropylene glycol, and polyethylene glycol is preferably used.
  • the weight average molecular weight of the polyalkylene glycol is not particularly limited, but is preferably 1,000 or more, more preferably 3,000 to 500,000, and more preferably 4,000, in terms of more excellent effects of the present invention. More preferred is ⁇ 20,000.
  • the weight average molecular weight is a polystyrene equivalent value obtained by the GPC method (solvent: N-methylpyrrolidone).
  • the compound (B) is mentioned as one of preferable embodiments containing at least one selected from the group consisting of polyethylene glycol, glycerin and trimethylolpropane.
  • a compound (B) can be used individually or in combination of 2 types or more, respectively.
  • Examples of the combination of the compound (B) include the combined use of polyethylene glycol and a dihydric or higher alcohol in that the effect of the present invention is more excellent.
  • One of the preferred embodiments is that polyethylene glycol and trimethylolpropane are used in combination because of superior transferability.
  • the content of the compound (B) is preferably 6% by mass or more and 100% by mass or less with respect to the total amount of the copper oxide particles (A), and can be less than 100% by mass, and 8% by mass. % To 60% by mass is more preferable.
  • the content of the compound (B) is 6% by mass or more, transferability and conductivity can be further improved.
  • the defect of a electrically conductive film can be decreased more because content of a compound (B) is 100 mass% or less.
  • the compound (B) contains at least one selected from the group consisting of polyethylene glycol, glycerin and trimethylolpropane
  • the lower limit of the content of at least one selected from the group consisting of polyethylene glycol, glycerin and trimethylolpropane is
  • the total amount of the copper oxide particles (A) is preferably 6% by mass or more, and more preferably 8% by mass or more.
  • the upper limit of the content of at least one selected from the group consisting of polyethylene glycol, glycerin and trimethylolpropane can be 100% by mass or less or less than 100% by mass with respect to the total amount of the copper oxide particles (A). 60 mass% or less is preferable.
  • the content of polyalkylene glycol is preferably 0 to 50% by mass with respect to the total amount of the copper oxide particles (A), and is 4% by mass or more and less than 50% by mass. Is more preferable, and it is still more preferable that it is 4 mass% or more and 30 mass%.
  • the total amount of glycerin and / or trimethylolpropane (when both are combined, the total amount, the same shall apply hereinafter) is 0% by mass or more and less than 100% by mass with respect to the total amount of the copper oxide particles (A).
  • the content is preferably 0 to 50% by mass, more preferably 10% by mass or more and less than 30% by mass, and particularly preferably 10 to 20% by mass.
  • the content of polyethylene glycol is preferably less than 50% by mass with respect to the total amount of the copper oxide particles (A).
  • the content is more preferably 1 to 30% by mass, and further preferably 4 to 30% by mass.
  • the total amount of glycerin and / or trimethylolpropane is preferably less than 100% by mass with respect to the total amount of the copper oxide particles (A), and is from 1% by mass to less than 50% by mass. Is more preferably 1% by mass or more and less than 30% by mass, particularly preferably 5 to 20% by mass, and most preferably 10 to 15% by mass.
  • the total amount of polyethylene glycol and glycerin and / or trimethylolpropane is preferably 8% by mass or more based on the total amount of the copper oxide particles (A).
  • the organic solvent (C) contained in the composition is an organic solvent having a boiling point of less than 100 ° C.
  • the boiling point is preferably 90 ° C. or lower and more preferably 85 ° C. or lower in that the effect of the present invention is more excellent.
  • a minimum in particular is not restrict
  • the type of the organic solvent (C) is not particularly limited as long as it satisfies the above boiling point requirements.
  • alcohol solvents such as methanol and ethanol
  • ketone solvents such as acetone and methyl ethyl ketone
  • amide solvents acetonitrile and the like.
  • Nitrile solvents, ester solvents such as methyl acetate
  • carbonate solvents such as dimethyl carbonate
  • other solvents such as ether solvents, glycol solvents, amine solvents, thiol solvents, and halogen solvents.
  • ketone-based solvents and alcohol-based solvents are preferable because they are excellent in transferability (particularly transferability to a printing plate) and further improve the solubility of the metal catalyst (E) described later in the composition.
  • organic solvent (C) only 1 type may be used and 2 or more types may be used together.
  • the content of the organic solvent (C) is 10% by mass or more in the total amount of the composition for forming a conductive film.
  • paintability of the composition of this invention can be made excellent.
  • the content of the organic solvent (C) is preferably 10% by mass or more and 60% by mass or less, and preferably 10% by mass or more and 50% by mass or less in the total amount of the composition for forming a conductive film. The following is more preferable.
  • the composition can further improve the wettability to the temporary support by containing a surfactant.
  • the type of surfactant (D) contained in the composition is not particularly limited.
  • an anionic surfactant, a nonionic surfactant, a cationic surfactant, an amphoteric surfactant, etc. are mentioned.
  • anionic surfactant examples include fatty acid salts, alkyl sulfate esters, alkylbenzene sulfonates, alkyl naphthalene sulfonates, alkyl sulfosuccinates, alkyl diphenyl ether disulfonates, alkyl phosphates, polyoxyethylenes.
  • Alkyl sulfate ester salt, polyoxyethylene alkyl allyl sulfate ester salt, naphthalene sulfonic acid formalin condensate, polycarboxylic acid type polymer surfactant, polyoxyethylene alkyl phosphate ester and the like can be mentioned.
  • nonionic surfactants include polyoxyethylene alkyl ether, polyoxyethylene alkyl allyl ether, polyoxyethylene acetylenic glycol ether, polyoxyethylene derivatives (excluding polyethylene glycol), oxyethylene oxy Examples include propylene block copolymers, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene sorbitol fatty acid esters, glycerin fatty acid esters, polyoxyethylene fatty acid esters, polyoxyethylene alkylamines, and alkylalkanolamides. More specifically, polyoxyethylene oleyl ether, polyoxyethylene stearyl ether, polyoxyethylene lauryl ether and the like can be mentioned.
  • cationic surfactant and the amphoteric surfactant include alkylamine salts, quaternary ammonium salts, alkylbetaines, amine oxides and the like.
  • fluorine-based surfactants and silicon-based surfactants can also be used.
  • nonionic surfactants are preferable in that the conductivity of the conductive film to be formed is more excellent.
  • the surfactant (D) can be used alone or in combination of two or more.
  • the content of the surfactant (D) is not particularly limited, but is preferably 0.05 to 1.5% by mass, more preferably 0.05 to 1% by mass in the total amount of the composition, and 0.05 to 0.5% by mass is most preferred.
  • the total amount of the copper oxide particles (A) and the compound (B) is that the effects of the present invention are more excellent, and the copper oxide particles (A), the compound (B) and the surfactant (D).
  • the total amount is preferably 90 to 99.99% by mass, and more preferably 95 to 99.99% by mass.
  • the composition for forming a conductive film further includes a metal catalyst (E) containing at least one metal element selected from the group consisting of Groups 8 to 11 of the periodic table.
  • a metal catalyst (E) can contribute to the electroconductivity improvement of a electrically conductive film while improving the reducibility of the copper oxide particle (A) mentioned above.
  • the metal catalyst (E) contains at least one metal element (metal) selected from the group consisting of groups 8 to 11 of the periodic table.
  • the metal element is at least one metal element selected from the group consisting of gold, silver, copper, platinum, palladium, rhodium, iridium, ruthenium, osmium, and nickel in that the conductivity of the conductive film is more excellent.
  • it is at least one metal element selected from the group consisting of silver, platinum, palladium, and nickel, more preferably palladium or platinum, and most preferably palladium.
  • the metal catalyst (E) is preferably a metal catalyst containing palladium because the conductivity of the obtained conductive film is more excellent.
  • a metal catalyst As a suitable aspect of a metal catalyst (E), palladium salt and a palladium complex are mentioned, for example.
  • the kind of the palladium salt is not particularly limited, and specific examples thereof include palladium hydrochloride, nitrate, sulfate, carboxylate, sulfonate, phosphate, and phosphonate. Of these, carboxylate is preferable.
  • the number of carbon atoms of the carboxylic acid forming the carboxylate is not particularly limited, but is preferably 1 to 10, more preferably 1 to 5.
  • the carboxylic acid forming the carboxylate may have a halogen atom (preferably a fluorine atom).
  • the kind of the palladium complex is not particularly limited, and examples of the ligand include 2,2′-bipyridyl, 1,10-phenanthroline, methylenebisoxazoline, N, N, N′N′-tetramethylethylenediamine, Examples include triphenylphosphine, tolylphosphine, tributylphosphine, triphenoxyphosphine, 1,2-bisdiphenylphosphinoethane, 1,3-bisdiphenylphosphinopropane, and the like. Of these, triphenylphosphine is preferable.
  • the kind of palladium complex having triphenylphosphine as a ligand is not particularly limited, and specific examples thereof include tetrakis (triphenylphosphine) palladium and dichlorobis (triphenylphosphine) palladium. Of these, tetrakis (triphenylphosphine) palladium is preferable.
  • the palladium salt or palladium complex is preferably at least one compound selected from the group consisting of palladium acetate, palladium trifluoroacetate and tetrakis (triphenylphosphine) palladium, more preferably palladium acetate.
  • the content of the metal catalyst (E) in the composition is not particularly limited, the content of the metal catalyst (E) is based on the total amount of the copper oxide particles (A) in that the conductivity of the conductive film is more excellent. 0.1 to 10 mass% is preferable, 0.1 to 8 mass% is preferable, and 0.5 to 8 mass% is more preferable.
  • the composition may further contain a polymer compound (excluding polyalkylene glycol) from the viewpoint of superior transferability.
  • a polymer compound excluding polyalkylene glycol
  • the polymer compound include polyvinyl pyrrolidone and polyvinyl alcohol.
  • the content of the polymer compound is preferably 0 to 10% by mass or less based on the copper oxide particles (A), and 0 to 8%. The mass% or less is more preferable.
  • the weight average molecular weight is preferably 3,000 to 500,000, and more preferably 3,000 to 100,000. By using these polymer compounds, transferability can be improved.
  • the composition further includes water as one of preferred embodiments.
  • the water content is not particularly limited, but is preferably 1 to 80% by mass in the total amount of the conductive film-forming composition in terms of excellent transferability and excellent storage stability of the conductive film-forming composition. 60% by mass is more preferable, and 10 to 50% by mass is further preferable.
  • the composition may contain other components other than the above components.
  • an organic compound having a boiling point of less than 250 ° C. (excluding the above organic solvent), an organic compound having a functional group other than a hydroxy group, and a release agent may be mentioned.
  • the organic compound having a boiling point of less than 250 ° C. (excluding the organic solvent) is not particularly limited as long as it is an organic compound having a boiling point of 100 ° C. or more and less than 250 ° C. Examples thereof include 1-butanol and 1,2-hexanediol.
  • the method for preparing the composition is not particularly limited, and a known method can be adopted.
  • the components are mixed and then prepared by dispersing the components by a known means such as an ultrasonic method (for example, treatment with an ultrasonic homogenizer), a mixer method, a three-roll method, a ball mill method, or a bead mill method. be able to.
  • a known means such as an ultrasonic method (for example, treatment with an ultrasonic homogenizer), a mixer method, a three-roll method, a ball mill method, or a bead mill method.
  • the composition for electrically conductive film formation is provided on a temporary support body, and a coating film is formed on a temporary support body. More specifically, as shown to Fig.1 (a), the composition for electrically conductive film formation is provided to the temporary support body 10, and the temporary support body 1 which has the coating film 12 is formed. In addition, when forming a coating film, it is preferable to process so that most organic solvents mentioned above may volatilize.
  • a temporary support used in the reversal printing method for example, a blanket is mentioned as one of the preferred embodiments. Specifically, a silicone blanket is mentioned.
  • the temporary support may have a liquid repellent surface.
  • the material for forming the liquid repellent surface is not particularly limited. For example, a conventionally well-known thing is mentioned.
  • the method for applying the composition to the temporary support is not particularly limited.
  • a coating film having a predetermined film thickness can be formed by slit coating, bar coating, or spin coating.
  • the thickness of the applied coating film is preferably adjusted to 0.1 to 15 ⁇ m, more preferably 0.15 to 10 ⁇ m, from the viewpoint of conductivity obtained by subsequent fine pattern formation and drying properties.
  • a removal process is a process of removing a part of coating film obtained at the said coating-film formation process. A part of the coating film is removed to form a predetermined pattern, and this pattern is transferred to the substrate in a transfer step described later. This pattern becomes a precursor film of a conductive film described later.
  • the procedure in particular of a removal process is not restrict
  • the aspect which uses the board (cutting plate which has a convex part) which has a convex part from the point which productivity is more excellent is preferable. That is, as shown in FIG.
  • the punching plate 14 having a convex portion and the temporary support 1 are made to face each other, and the convex coating 16 of the punching plate 14 having a convex portion is included in the temporary support 1. (Not shown).
  • the punching plate 14 having the convex portion is separated from the temporary support 1, and the portion 18 in contact with the convex portion 16 is removed from the temporary support 1 having the coating film 12.
  • An embodiment in which the temporary support 3 having the pattern 20 is formed on the temporary support 10 is exemplified.
  • the material of the punching plate is not particularly limited as long as a part of the coating film can be removed from the temporary support, and for example, various metals such as glass, silicon, stainless steel, and various resins can be used.
  • the processing method of the surface of the punched plate is not particularly limited, and an optimum method can be selected according to the material, pattern accuracy, relief plate depth, and the like. For example, when glass or silicon is used as a material, a processing method such as wet etching or dry etching can be applied. In the case of metal, wet etching, electroforming, sandblasting, etc. can be applied. Further, when a resin is used as a material, a processing method such as photolithography etching, laser, or focused ion beam can be suitably applied.
  • the transfer step is a step of transferring the coating film (pattern) remaining on the temporary support obtained in the removing step onto the base material to form a precursor film of the conductive film on the base material. More specifically, first, the temporary support 3 and the base material 22 are opposed to each other as shown in FIG. 1 (d), and then the temporary support 3 and the base material 22 are set as shown in FIG. 1 (e). As shown in FIG. 1 (f), the pattern 20 on the temporary support 3 is transferred to the base material 22 to make the base material 5 having the pattern 20. That is, the coating film (pattern) remaining on the temporary support corresponds to the precursor film after transfer.
  • the procedure of the transfer process is not particularly limited, but usually, the coating film on the temporary support after the removal process is opposed to the substrate, and both are lightly pressed, and the coating film remaining on the temporary support is the substrate. It is preferable to transfer all the images to
  • the type of the substrate used in the reverse printing method is not particularly limited, and examples thereof include a metal substrate and a resin substrate, and a resin substrate is preferable from the viewpoint of handleability.
  • the resin base material include low-density polyethylene resin, high-density polyethylene resin, polyolefin resin such as polypropylene and polybutylene; methacrylic resin such as polymethyl methacrylate; polystyrene, ABS (acrylonitrile-butadiene-styrene copolymer), Polystyrene resin such as AS (acrylonitrile-styrene copolymer); acrylic resin; styrene resin; vinyl chloride resin; polyester resin (polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, poly 1,4-cyclohexyldimethylene terephthalate, etc.) Polyamide resin selected from nylon resin and nylon copolymer; polyvinyl chloride resin; polyoxymethylene; polycarbon
  • the base material may have an insulating film layer on its surface.
  • the material for the insulating film layer include polyvinylphenol, polyimide, and a crosslinked product of polyvinylphenol and melamine resin.
  • the thickness of the insulating film layer is preferably 0.1 ⁇ m or more and 1.5 ⁇ m or less.
  • the manufacturing method of this invention can further be equipped with the drying process which dries the temporary support body after a coating-film formation process between a coating-film formation process and a removal process.
  • the temperature in the drying step is preferably less than 110 ° C. By being within this temperature range, the organic solvent can be removed from the composition.
  • the precursor film is irradiated with light, and the conductive film is formed by reducing and fusing the copper oxide particles (A) in the precursor film.
  • the copper oxide in the copper oxide particles (A) is reduced and further fused to obtain metallic copper. More specifically, copper oxide is reduced to form metallic copper particles, the produced metallic copper particles are fused together to form grains, and the grains are bonded and fused together to contain copper. Forming a conductive thin film.
  • Light irradiation treatment enables reduction and sintering to metallic copper by irradiating light at a room temperature for a short time to the part to which the coating film is applied, and does not cause deterioration of the substrate due to prolonged heating.
  • the adhesion of the conductive film to the base material becomes better.
  • the light source used in the light irradiation treatment is not particularly limited, and examples thereof include a mercury lamp, a metal halide lamp, a xenon lamp, a chemical lamp, and a carbon arc lamp.
  • Examples of radiation include electron beams, X-rays, ion beams, and far infrared rays.
  • g-line, i-line, deep-UV light, and high-density energy beam (laser beam) are used.
  • Specific examples of preferred embodiments include scanning exposure with an infrared laser, high-illuminance flash exposure such as a xenon discharge lamp, and infrared lamp exposure.
  • the light irradiation is preferably light irradiation with a flash lamp, and more preferably pulsed light irradiation (eg, pulsed light irradiation with a Xe flash lamp).
  • Irradiation with high-energy pulsed light can concentrate and heat the surface of the portion to which the coating film has been applied in a very short time, so that the influence of heat on the substrate can be extremely reduced.
  • the irradiation energy of the pulse light is preferably 0.5 ⁇ 100J / cm 2, more preferably 1 ⁇ 30J / cm 2, more preferably 1 ⁇ 10J / cm 2.
  • the irradiation energy when light irradiation is performed a plurality of times is the sum of the irradiation energy of each light irradiation.
  • the pulse width is preferably 1 microsecond to 100 milliseconds, more preferably 10 microseconds to 10 milliseconds, and further preferably 0.1 milliseconds to 2 milliseconds.
  • the light irradiation treatment may be performed once or more using a flash lamp, but it is preferable to perform the light irradiation treatment twice or more with a pulse width of 2 milliseconds or less.
  • the number of times of light irradiation is preferably 2 to 10 times, and more preferably 2 to 4 times.
  • the atmosphere for performing the light irradiation treatment is not particularly limited, and examples thereof include an air atmosphere, an inert atmosphere, and a reducing atmosphere.
  • the inert atmosphere is, for example, an atmosphere filled with an inert gas such as argon, helium, neon, or nitrogen
  • the reducing atmosphere is a reducing gas such as hydrogen or carbon monoxide. Refers to the atmosphere.
  • a conductive film (metal copper film) containing metal copper is obtained.
  • the film thickness of the conductive film is not particularly limited, and an optimum film thickness is appropriately adjusted according to the intended use. Among these, from the viewpoint of thin film transistor use, 0.8 ⁇ m or less is preferable, and 0.05 to 0.3 ⁇ m is more preferable.
  • the film thickness is a value (average value) obtained by measuring three or more thicknesses at arbitrary points on the conductive film and arithmetically averaging the values.
  • the volume resistivity of the conductive film is preferably less than 100 ⁇ ⁇ cm, and more preferably less than 40 ⁇ ⁇ cm from the viewpoint of conductive characteristics. The volume resistivity can be calculated by multiplying the obtained surface resistivity by the film thickness after measuring the surface resistivity of the conductive film by the four-probe method.
  • the conductive film can be provided in a pattern on the substrate.
  • the patterned conductive film is useful as a conductor wiring (wiring) such as a printed wiring board.
  • an insulating layer (insulating resin layer, interlayer insulating film, solder resist) is further laminated on the surface of the patterned conductive film, and further wiring (metal) is formed on the surface. Pattern) may be formed.
  • the material of the insulating layer is not particularly limited.
  • epoxy resin glass epoxy resin, aramid resin, crystalline polyolefin resin, amorphous polyolefin resin, fluorine-containing resin (polytetrafluoroethylene, perfluorinated polyimide, perfluorinated) Amorphous resin), polyimide resin, polyether sulfone resin, polyphenylene sulfide resin, polyether ether ketone resin, liquid crystal resin, polyvinyl phenol, a crosslinked product of polyvinyl phenol and melamine resin, and the like.
  • an epoxy resin, a polyimide resin, or a crosslinked product of polyvinylphenol and a melamine resin is preferable.
  • Specific examples include ABF GX-13 manufactured by Ajinomoto Fine Techno Co., Ltd.
  • the base material (base material with a conductive film) having the conductive film obtained above can be used for various applications.
  • a printed wiring board, TFT, FPC, RFID, etc. are mentioned.
  • composition for forming a conductive film of the present invention is a composition for forming a conductive film used in the method for producing a conductive film of the present invention, Cupric oxide particles having an average primary particle size of 50 nm or less; At least one selected from the group consisting of polyethylene glycol, glycerin and trimethylolpropane; An organic solvent (C) having a boiling point of less than 100 ° C., Including water, The content of the copper oxide particles (A) is 50% by mass or more and 95% by mass or less in the total amount of the copper oxide particles (A) and the compound (B), The composition for electrically conductive film formation whose content of an organic solvent (C) is 10% or more in the whole quantity of the composition for electrically conductive film formation is mentioned. If it is this composition, it can be conveniently used by the reverse printing method mentioned above.
  • cupric oxide particles having an average primary particle diameter of 50 nm or less is as described above.
  • the content of at least one selected from the group consisting of polyethylene glycol, glycerin and trimethylolpropane is preferably 6% by mass or more and 100% by mass or less based on the total amount of the copper oxide particles (A).
  • the composition of the present invention contains polyethylene glycol, and the content of polyethylene glycol is preferably less than 50% by mass with respect to the total amount of cupric oxide particles, and is preferably 4% by mass or more and less than 50% by mass. More preferred.
  • the composition of the present invention contains glycerin and / or trimethylolpropane, and the content of glycerin and / or trimethylolpropane is preferably 100% by mass or less based on the total amount of cupric oxide particles, and is 100% by mass.
  • composition of the present invention contains polyethylene glycol and glycerin and / or trimethylolpropane, and the content of polyethylene glycol is less than 50% by mass with respect to the total amount of cupric oxide particles, and glycerin and / or trimethylolpropane.
  • the content of is preferably less than 50% by mass with respect to the total amount of cupric oxide particles.
  • polyethylene glycol and glycerin and / or trimethylolpropane contains polyethylene glycol and glycerin and / or trimethylolpropane, and the content of polyethylene glycol is 4% by mass or more and less than 50% by mass with respect to the total amount of cupric oxide particles, and glycerin and / or trimethylolpropane.
  • the content of is 10% by mass or more and less than 30% by mass with respect to the total amount of cupric oxide particles, and further contains at least one metal element selected from the group consisting of Groups 8 to 11 of the periodic table
  • One preferred embodiment includes the metal catalyst (E) and the amount of the metal catalyst (E) is 0.1% by mass or more and less than 8% by mass with respect to the total amount of the cupric oxide particles.
  • the conductive film-forming composition of the present invention can further contain a surfactant (D) and a polymer compound (excluding polyalkylene glycol).
  • the surfactant (D) and the polymer compound are the same as described above.
  • the liquid for measurement was prepared by diluting with ion-exchanged water so that the concentration of the copper oxide dispersion was 0.1% by mass.
  • this average particle diameter means not a primary particle diameter but a secondary particle diameter.
  • this average particle diameter is a volume average particle diameter.
  • Nanotrac particle size distribution analyzer UPA-EX150 manufactured by Nikkiso Co., Ltd. was used for the measurement.
  • the copper oxide dispersion a contains aggregates.
  • the temporary support body formed as mentioned above was dried at 23 degreeC for 60 second.
  • the base material used for the compositions in Table 1 is polyimide (Kapton 500H, manufactured by Toray DuPont, the same applies hereinafter).
  • the base material used for the composition of Table 2 is a base material in which an insulating film layer, which is a crosslinked product of polyvinylphenol, is formed on a polyimide (Kapton 500H) with a thickness of 500 nm.
  • the insulating film layer, which is a cross-linked product of the polyvinylphenol was produced as follows.
  • C When the volume resistivity was 40 ⁇ ⁇ cm or more and less than 100 ⁇ ⁇ cm, the evaluation result of conductivity was indicated as C.
  • D When the volume resistivity was 100 ⁇ ⁇ cm or more and less than 500 ⁇ ⁇ cm, the conductivity evaluation result was indicated as D.
  • E When the volume resistivity was 500 ⁇ ⁇ cm or more, the evaluation result of conductivity was indicated as E.
  • the area of any 0.25 mm 2 (0.5 mm length, 0.5 mm width) among the respective conductive films produced in the production of the conductive film for conductivity evaluation was observed at a magnification of 450 times using an optical microscope. .
  • the size of the defect within the area of 0.25 mm 2 was evaluated based on the following criteria. Practically, it is preferably A to B. “A”: When there was no defect or a defect with a size of less than 5 ⁇ m ⁇ but no defect with a size of 5 ⁇ m ⁇ or more, the evaluation result of the defect of the conductive film was indicated as A.
  • B When there was a defect with a size of 5 ⁇ m ⁇ or more and less than 20 ⁇ m ⁇ , but there was no defect with a size of 20 ⁇ m ⁇ or more, the evaluation result of the defect of the conductive film was indicated as B.
  • C When there was a defect of 20 ⁇ m ⁇ or more, the evaluation result of the defect of the conductive film was indicated as C.
  • Cupric oxide (A) Copper oxide dispersion a prepared as described above
  • Glycerin (boiling point: 290 ° C.) ⁇ Trimethylolpropane (boiling point: 292 ° C) ⁇ Ethanol (boiling point: 78 ° C) Acetone (boiling point: 56 ° C)
  • the conductive film has excellent transferability, excellent conductivity, and few defects. It was confirmed that can be formed. Moreover, even if a defect arises, it was confirmed that the magnitude
  • Examples 1 and 4 when polyethylene glycol is used as the compound (B), it is excellent in transferability, excellent in conductivity, even if there are fewer defects or defects in the conductive film. It was confirmed that the size was small.
  • Examples 1, 2, and 3 when polyethylene glycol and trimethylolpropane or glycerin were used in combination as the compound (B), the conductivity and transferability were superior.
  • Examples 1, 6, and 7 were compared, it was confirmed that the higher the weight average molecular weight of polyethylene glycol as the compound (B), the better the transferability.
  • Comparative Example 1 containing no compound (B) was inferior in transferability and conductivity.
  • Comparative Examples 2 and 3 in which the content of the copper oxide particles (A) is not 50 mass% or more and 95 mass% or less in the total amount of the copper oxide particles (A) and the compound (B) are transferred as compared with Example 1. It was confirmed that the conductivity and conductivity were inferior and the conductive film had large defects. It was confirmed that Comparative Example 4 which does not contain 10% by mass or more of the organic solvent (C) in the total amount of the conductive composition was inferior in transferability. It was confirmed that the comparative example 5 which does not contain a compound (B) and the boiling point of an organic compound is 100 degreeC or more and less than 250 degreeC is inferior in electroconductivity.

Abstract

The purpose of the present invention is to provide: a method for producing a conductive film, which is capable of producing a conductive film having excellent electrical conductivity and excellent transferability, while having less defects; and a composition for forming a conductive film. The present invention is a method for producing a conductive film, which comprises: a coating film formation step wherein a composition for forming a conductive film containing (A) copper oxide particles, (B) at least one compound selected from the group consisting of polyalkylene glycols and organic compounds having a boiling point of 250°C or more and containing at least one hydroxy group in each molecule and (C) an organic solvent having a boiling point less than 100°C is applied onto a temporary supporting body, thereby forming a coating film; a removal step wherein a part of the coating film is removed; a transfer step wherein the coating film remaining on the temporary supporting body is transferred to a base, thereby forming a precursor film of a conductive film; and a sintering step wherein the copper oxide particles (A) in the precursor film are reduced and fusion bonded by having the precursor film irradiated with light, thereby forming a conductive film. In this connection, the content of the copper oxide particles (A) is from 50% by mass to 95% by mass (inclusive) of the total mass of the copper oxide particles (A) and the compound (B), and the content of the organic solvent (C) is 10% by mass or more of the total mass of the composition for forming a conductive film.

Description

導電膜の製造方法及び導電膜形成用組成物Method for producing conductive film and composition for forming conductive film
 本発明は、導電膜の製造方法及び導電膜形成用組成物に関する。 The present invention relates to a method for producing a conductive film and a composition for forming a conductive film.
 基材上に金属酸化物粒子の分散体を印刷法により塗布し、その後焼結させることによって、基材上に配線などの導電膜を形成する技術が知られている。
 上記方法は、従来の高熱・真空プロセス(スパッタ)やめっき処理による配線形成法に比べて、簡便・省エネルギー・省資源であることから次世代エレクトロニクス開発において大きな期待を集めている。
 例えば、特許文献1においては、導電性フィルムを形成する方法であって、基板の表面上に複数の銅ナノ粒子を含有するフィルムを堆積させる段階と、上記フィルムの少なくとも一部を露光して、露光部分を導電性にする段階とを備えた方法が開示されている。
A technique for forming a conductive film such as a wiring on a base material by applying a dispersion of metal oxide particles on the base material by a printing method and then sintering it is known.
The above method is highly anticipated in the development of next-generation electronics because it is simpler, energy-saving, and resource-saving than the conventional high-heat / vacuum process (sputtering) or plating process.
For example, Patent Document 1 is a method of forming a conductive film, in which a film containing a plurality of copper nanoparticles is deposited on the surface of a substrate, and at least a part of the film is exposed, And making the exposed portion conductive.
特表2010-528428号公報Special table 2010-528428
 近年、各種デバイスの性能向上が求められており、それに伴って、デバイス中の配線基板などに使用される導電膜の導電性のより一層の向上が求められている。
 一方、数マイクロメートルの微細なパターンを形成する印刷法として、従来の一般的な凸版、凹版、平版、孔版とは異なる印刷法として、反転印刷法(例えば抜き版を用いるもの)が注目されている。
 このような中、本発明者らが、特許文献1を参考に、酸化銅ナノ粒子を含有する分散液を反転印刷法によって印刷し、光照射によって導電膜の作製を行ったところ、転写性や、得られた導電膜の導電性、導電膜の欠陥が少ないこと(耐アブレーション性)は昨今求められているレベルを必ずしも満たすものではないことが明らかになった。
 そこで、上記実情を鑑みて、導電性に優れ、欠陥が少ない導電膜を形成することができ、転写性にも優れる導電膜の製造方法、及び、これに用いる導電膜形成用組成物を提供することを課題とする。
In recent years, there has been a demand for improved performance of various devices. Along with this, there has been a demand for further improvement in the conductivity of conductive films used for wiring boards in devices.
On the other hand, as a printing method for forming a fine pattern of several micrometers, a reversal printing method (for example, using a printing plate) is attracting attention as a printing method different from conventional general relief printing, intaglio printing, planographic printing, and stencil printing. Yes.
Under these circumstances, the present inventors printed a dispersion containing copper oxide nanoparticles by reversal printing with reference to Patent Document 1, and produced a conductive film by light irradiation. It has been clarified that the conductivity of the obtained conductive film and the number of defects in the conductive film (ablation resistance) do not necessarily satisfy the level required recently.
Accordingly, in view of the above circumstances, a method for producing a conductive film that is excellent in conductivity, has few defects, and is excellent in transferability, and a conductive film forming composition used therefor are provided. This is the issue.
 本発明者は、上記課題を解決すべく鋭意研究した結果、酸化銅粒子(A)と、特定の化合物(B)と、特定の有機溶媒(C)とを含む導電膜形成用組成物を反転印刷法によって基材上に転写し、光を照射することによって、導電性に優れ、欠陥が少ない導電膜を形成することができ、転写性にも優れることを知見した。また、本発明者は、酸化銅粒子(A)と、特定の化合物(B)と、特定の有機溶媒(C)とを所定の量で含む導電膜形成用組成物が、導電性に優れ、欠陥が少ない導電膜を形成することができ、反転印刷法における転写性にも優れることを知見して、本発明を完成させた。すなわち、本発明者らは、以下の構成により上記課題が解決できることを見出した。 As a result of diligent research to solve the above problems, the present inventors have reversed a composition for forming a conductive film containing copper oxide particles (A), a specific compound (B), and a specific organic solvent (C). It was found that a conductive film having excellent conductivity and few defects can be formed by transferring onto a base material by a printing method and irradiating light, and that transferability is also excellent. In addition, the present inventor has a conductive film-forming composition containing copper oxide particles (A), a specific compound (B), and a specific organic solvent (C) in a predetermined amount, and has excellent conductivity. The present invention was completed by discovering that a conductive film with few defects can be formed and transferability in the reverse printing method is excellent. That is, the present inventors have found that the above problem can be solved by the following configuration.
 (1) 酸化銅粒子(A)と、沸点が250℃以上であり1分子当たり少なくとも1つのヒドロキシ基を有する有機化合物及びポリアルキレングリコールからなる群から選択される少なくとも1種の化合物(B)と、沸点100℃未満の有機溶媒(C)とを含む導電膜形成用組成物を仮支持体上に付与して、塗膜を形成する塗膜形成工程と、
 上記塗膜の一部を除去する除去工程と、
 上記仮支持体上の残存する上記塗膜を基材上に転写して、導電膜の前駆体膜を形成する転写工程と、
 上記前駆体膜に光を照射し上記前駆体膜中の酸化銅粒子(A)を還元及び融着させることによって、導電膜を形成する焼結工程とを備え、
 上記酸化銅粒子(A)の含有量が、上記酸化銅粒子(A)と上記化合物(B)との合計量中の50質量%以上95質量%以下であり、
 上記有機溶媒(C)の含有量が、上記導電膜形成用組成物の全量中の10質量%以上である、導電膜の製造方法。
 (2) 上記導電膜形成用組成物が、さらに界面活性剤(D)を含む、上記(1)に記載の導電膜の製造方法。
 (3) 上記酸化銅粒子(A)が酸化第二銅であり、上記酸化銅粒子(A)の平均一次粒子径が100nm以下である、上記(1)又は(2)に記載の導電膜の製造方法。
 (4) 上記沸点が250℃以上であり1分子当たり少なくとも1つのヒドロキシ基を有する有機化合物が、1分子当たり2つ又は3つのヒドロキシ基を有する、上記(1)~(3)のいずれかに記載の導電膜の製造方法。
 (5) 上記化合物(B)の含有量が、上記酸化銅粒子(A)の全量に対して6質量%以上100質量%以下である、上記(1)~(4)のいずれかに記載の導電膜の製造方法。
 (6) 上記化合物(B)が、ポリエチレングリコール、グリセリン及びトリメチロールプロパンからなる群から選ばれる少なくとも1種を含む、上記(1)~(5)のいずれかに記載の導電膜の製造方法。
 (7) 上記化合物(B)が、ポリエチレングリコールと、グリセリン及び/又はトリメチロールプロパンとを含む、上記(1)~(6)のいずれかに記載の導電膜の製造方法。
 (8) 上記ポリエチレングリコールの含有量が上記酸化銅粒子(A)の全量に対して4質量%以上50質量%未満であり、上記グリセリン及び/又は上記トリメチロールプロパンの合計量が上記酸化銅粒子(A)の全量に対して10質量%以上30質量%未満である、上記(7)に記載の導電膜の製造方法。
 (9) 上記ポリエチレングリコールの重量平均分子量が3000以上である、上記(6)~(8)のいずれかに記載の導電膜の製造方法。
 (10) 上記導電膜形成用組成物が、更に、周期律表の8族~11族からなる群から選択される少なくとも1種の金属元素を含む金属触媒(E)を含む、上記(1)~(9)のいずれかに記載の導電膜の製造方法。
 (11) 上記導電膜形成用組成物が更に水を含む、上記(1)~(10)のいずれかに記載の導電膜の形成方法。
 (12) 上記基材が、樹脂基材である、上記(1)~(11)のいずれかに記載の導電膜の製造方法。
 (13) 上記基材がその表面に、厚み0.1μm以上1.5μm以下の絶縁膜層を有する、上記(1)~(12)のいずれかに記載の導電膜の製造方法。
 (14) 上記焼結工程において、上記光の照射を、パルス光を用いて、パルス幅2ミリ秒以下で2回以上行う、上記(1)~(13)のいずれかに記載の導電膜の製造方法。
 (15) 上記(1)~(14)のいずれかに記載の導電膜の製造方法に用いられる導電膜形成用組成物であり、
 平均一次粒子径が50nm以下の酸化第二銅粒子と、
 ポリエチレングリコール、グリセリン及びトリメチロールプロパンからなる群から選ばれる少なくとも1種と、
 沸点100℃未満の有機溶媒(C)と、
 水とを含み、
 上記酸化銅粒子(A)の含有量が、上記酸化銅粒子(A)と上記化合物(B)との合計量中の50質量%以上95質量%以下であり、
 上記有機溶媒(C)の含有量が、上記導電膜形成用組成物の全量中の10質量%以上である、導電膜形成用組成物。
 (16) 上記ポリエチレングリコールと上記グリセリン及び/又は上記トリメチロールプロパンとを含み、上記ポリエチレングリコールの含有量が上記酸化第二銅粒子の全量に対して4質量%以上50質量%未満であり、上記グリセリン及び/又は上記トリメチロールプロパンの含有量が上記酸化第二銅粒子の全量に対して10質量%以上30質量%未満であり、更に周期律表の8族~11族からなる群から選択される少なくとも1種の金属元素を含む金属触媒(E)を含み、上記金属触媒(E)の量が上記酸化第二銅粒子の全量に対して0.1質量%以上8質量%未満である、上記(15)に記載の導電膜形成用組成物。
 (17) 更に界面活性剤(D)を含む、上記(15)又は(16)に記載の導電膜形成用組成物。
(1) Copper oxide particles (A), at least one compound (B) selected from the group consisting of an organic compound having a boiling point of 250 ° C. or higher and having at least one hydroxy group per molecule and polyalkylene glycol A coating film forming step of forming a coating film by applying a conductive film forming composition containing an organic solvent (C) having a boiling point of less than 100 ° C. on a temporary support;
A removal step of removing a part of the coating film;
A transfer step of transferring the remaining coating film on the temporary support onto a substrate to form a precursor film of a conductive film;
A process of forming a conductive film by irradiating the precursor film with light and reducing and fusing the copper oxide particles (A) in the precursor film,
Content of the said copper oxide particle (A) is 50 mass% or more and 95 mass% or less in the total amount of the said copper oxide particle (A) and the said compound (B),
The manufacturing method of the electrically conductive film whose content of the said organic solvent (C) is 10 mass% or more in the whole quantity of the said composition for electrically conductive film formation.
(2) The manufacturing method of the electrically conductive film as described in said (1) in which the said composition for electrically conductive film formation contains surfactant (D) further.
(3) The conductive film according to (1) or (2), wherein the copper oxide particles (A) are cupric oxide, and the average primary particle diameter of the copper oxide particles (A) is 100 nm or less. Production method.
(4) The organic compound according to any one of (1) to (3), wherein the organic compound having a boiling point of 250 ° C. or more and having at least one hydroxy group per molecule has two or three hydroxy groups per molecule. The manufacturing method of the electrically conductive film of description.
(5) The content of the compound (B) is 6% by mass or more and 100% by mass or less with respect to the total amount of the copper oxide particles (A), according to any one of the above (1) to (4). Manufacturing method of electrically conductive film.
(6) The method for producing a conductive film according to any one of (1) to (5), wherein the compound (B) includes at least one selected from the group consisting of polyethylene glycol, glycerin, and trimethylolpropane.
(7) The method for producing a conductive film according to any one of (1) to (6), wherein the compound (B) comprises polyethylene glycol and glycerin and / or trimethylolpropane.
(8) The content of the polyethylene glycol is 4% by mass or more and less than 50% by mass with respect to the total amount of the copper oxide particles (A), and the total amount of the glycerin and / or the trimethylolpropane is the copper oxide particles. The manufacturing method of the electrically conductive film as described in said (7) which is 10 to 30 mass% with respect to the whole quantity of (A).
(9) The method for producing a conductive film according to any one of (6) to (8), wherein the polyethylene glycol has a weight average molecular weight of 3000 or more.
(10) The above (1), wherein the conductive film-forming composition further comprises a metal catalyst (E) containing at least one metal element selected from the group consisting of Groups 8 to 11 of the periodic table. The manufacturing method of the electrically conductive film in any one of (9).
(11) The method for forming a conductive film according to any one of (1) to (10), wherein the composition for forming a conductive film further contains water.
(12) The method for producing a conductive film according to any one of (1) to (11), wherein the substrate is a resin substrate.
(13) The method for producing a conductive film according to any one of (1) to (12), wherein the base material has an insulating film layer having a thickness of 0.1 μm or more and 1.5 μm or less on the surface thereof.
(14) The conductive film according to any one of (1) to (13), wherein in the sintering step, the light irradiation is performed twice or more using pulsed light with a pulse width of 2 milliseconds or less. Production method.
(15) A composition for forming a conductive film used in the method for manufacturing a conductive film according to any one of (1) to (14),
Cupric oxide particles having an average primary particle size of 50 nm or less;
At least one selected from the group consisting of polyethylene glycol, glycerin and trimethylolpropane;
An organic solvent (C) having a boiling point of less than 100 ° C.,
Including water,
Content of the said copper oxide particle (A) is 50 mass% or more and 95 mass% or less in the total amount of the said copper oxide particle (A) and the said compound (B),
The composition for electrically conductive film formation whose content of the said organic solvent (C) is 10 mass% or more in the whole quantity of the said composition for electrically conductive film formation.
(16) The polyethylene glycol and the glycerin and / or the trimethylolpropane, wherein the content of the polyethylene glycol is 4% by mass or more and less than 50% by mass with respect to the total amount of the cupric oxide particles, The content of glycerin and / or the trimethylolpropane is 10% by mass or more and less than 30% by mass with respect to the total amount of the cupric oxide particles, and is further selected from the group consisting of Groups 8 to 11 of the periodic table A metal catalyst (E) containing at least one metal element, wherein the amount of the metal catalyst (E) is 0.1% by mass or more and less than 8% by mass with respect to the total amount of the cupric oxide particles. The composition for electrically conductive film formation as described in said (15).
(17) The composition for forming a conductive film according to the above (15) or (16), further comprising a surfactant (D).
 本発明によれば、導電性に優れ、欠陥が少ない導電膜を形成することができ、転写性にも優れる導電膜の製造方法、及び、導電膜形成用組成物を提供することができる。 According to the present invention, it is possible to provide a conductive film manufacturing method and a conductive film forming composition that can form a conductive film with excellent conductivity, few defects, and excellent transferability.
図1は、反転印刷法で導電膜を形成する工程を示す概略図である。FIG. 1 is a schematic view showing a step of forming a conductive film by a reverse printing method.
 本発明について以下詳細に説明する。
 なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本発明の特徴点の一つとしては、反転印刷法に好適に使用できるように、組成物中の各成分の量、特に、酸化銅粒子(A)と化合物(B)との合計質量に対する酸化銅粒子(A)の質量比と、有機溶媒(C)の導電性組成物中の質量%を制御している点が挙げられる。後述するように、反転印刷法においては導電膜形成用組成物を一旦仮支持体上に付与して、塗膜を形成し、その塗膜の一部を除去した後、所定の基材上に転写を行う。なお、通常、塗膜の一部を除去する際には、凸部を有する板(抜き版ともいう。)を塗膜に押圧し、凸部表面に塗膜を転写させる処理が実施される。本発明の導電膜形成用組成物を仮支持体上に付与して塗膜を作製する際、後述する沸点が低い有機溶媒(C)は揮発し、他の成分が塗膜中に残存する。特に、塗膜中の硬さは酸化銅粒子(A)と化合物(B)との合計質量に対する酸化銅粒子(A)の質量比が多く影響する。そこで、本発明は、その質量比を所定の範囲に制御することにより、塗膜から上記凸部への転写、及び、仮支持体上から基材への転写が良好に進行することを知見している。さらに、上記質量比の範囲であれば、得られる導電膜の導電性、及び、耐アブレーション性にも優れることを知見している。
The present invention will be described in detail below.
In the present specification, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
One of the features of the present invention is that the amount of each component in the composition, in particular, the oxidation with respect to the total mass of the copper oxide particles (A) and the compound (B) can be suitably used in the reverse printing method. The point which has controlled the mass ratio in the electroconductive composition of the organic solvent (C) and the mass ratio of a copper particle (A) is mentioned. As will be described later, in the reverse printing method, a composition for forming a conductive film is once applied on a temporary support, a coating film is formed, a part of the coating film is removed, and then a predetermined substrate is applied. Transcription. Normally, when a part of the coating film is removed, a plate having a convex portion (also referred to as a punched plate) is pressed against the coating film to transfer the coating film to the surface of the convex portion. When a coating film is prepared by applying the composition for forming a conductive film of the present invention on a temporary support, the organic solvent (C) having a low boiling point described later volatilizes and other components remain in the coating film. In particular, the hardness in the coating film is greatly influenced by the mass ratio of the copper oxide particles (A) to the total mass of the copper oxide particles (A) and the compound (B). Therefore, the present invention has found that by controlling the mass ratio within a predetermined range, the transfer from the coating film to the convex portion and the transfer from the temporary support to the substrate proceed well. ing. Furthermore, if it is the range of the said mass ratio, it has discovered that it is excellent also in the electroconductivity and ablation resistance of the electrically conductive film obtained.
 まず、本発明の導電膜の製造方法について説明する。
 本発明の導電膜の製造方法(本発明の製造方法)は、後述する導電膜形成用組成物を仮支持体上に付与して、塗膜を形成する塗膜形成工程と、塗膜の一部を除去する除去工程と、仮支持体上の残存する塗膜を基材上に転写して、導電膜の前駆体膜を形成する転写工程とを少なくとも備える。
 本発明の製造方法は、反転印刷法によって導電膜の前駆体膜(導電膜形成用組成物のパターン)を基材上に形成しこれに光を照射し焼結させて導電膜を形成することによって、導電性に優れ、欠陥が少ない導電膜を形成することができ、本発明の導電膜形成用組成物は転写性(抜き版及び/又は基材への転写性)に優れる。また、本発明の製造方法によって製造される導電膜は、薄膜で表面を平滑なものとすることもできる。
 以下では、まず、塗膜形成工程で使用される導電膜形成用組成物の態様について詳述した後、各工程の手順について詳述する。
First, the manufacturing method of the electrically conductive film of this invention is demonstrated.
The conductive film manufacturing method of the present invention (the manufacturing method of the present invention) includes a coating film forming step of forming a coating film by applying a conductive film forming composition described later on a temporary support, and a coating film At least a removal step of removing the portion and a transfer step of transferring the remaining coating film on the temporary support onto the substrate to form a precursor film of the conductive film.
In the manufacturing method of the present invention, a conductive film precursor film (a pattern of a conductive film forming composition) is formed on a substrate by reverse printing, and this is irradiated with light and sintered to form a conductive film. Thus, a conductive film having excellent conductivity and few defects can be formed, and the conductive film-forming composition of the present invention is excellent in transferability (printing and / or transfer to a substrate). Moreover, the electrically conductive film manufactured by the manufacturing method of this invention can also make a surface smooth with a thin film.
Below, after explaining in detail about the aspect of the composition for electrically conductive film formation used at a coating-film formation process first, the procedure of each process is explained in full detail.
[導電膜形成用組成物(組成物)]
 本発明の製造方法において、酸化銅粒子(A)と、沸点が250℃以上であり1分子当たり少なくとも1つのヒドロキシ基を有する有機化合物及びポリアルキレングリコールからなる群から選択される少なくとも1種の化合物(B)と、沸点100℃未満の有機溶媒(C)とを含む導電膜形成用組成物(組成物)が使用される。
[Composition for forming conductive film (composition)]
In the production method of the present invention, at least one compound selected from the group consisting of copper oxide particles (A), an organic compound having a boiling point of 250 ° C. or higher and having at least one hydroxy group per molecule and polyalkylene glycol A conductive film forming composition (composition) containing (B) and an organic solvent (C) having a boiling point of less than 100 ° C. is used.
<酸化銅粒子(A)>
 本発明において、組成物に含有される酸化銅粒子(A)は、粒子状の酸化銅であれば特に制限されない。
 粒子状とは小さい粒状を指し、その具体例としては、球状、楕円体状などが挙げられる。完全な球や楕円体である必要は無く、一部が歪んでいてもよい。
<Copper oxide particles (A)>
In the present invention, the copper oxide particles (A) contained in the composition are not particularly limited as long as they are particulate copper oxide.
The particulate form refers to a small granular form, and specific examples thereof include a spherical shape and an ellipsoidal shape. It does not have to be a perfect sphere or ellipsoid, and some may be distorted.
 酸化銅粒子(A)は、酸化銅(I)粒子(Cu2O粒子)または酸化銅(II)粒子(CuO粒子)であることが好ましく、導電性により優れる点、安価に入手可能である点、空気中での安定性に優れる点、および、還元反応性に優れる点から、酸化銅(II)粒子であることがより好ましい。 The copper oxide particles (A) are preferably copper oxide (I) particles (Cu 2 O particles) or copper oxide (II) particles (CuO particles), and are excellent in conductivity and available at low cost. From the viewpoint of excellent stability in air and excellent reduction reactivity, copper (II) oxide particles are more preferable.
 酸化銅粒子(A)の平均一次粒子径は100nm以下であるのが好ましく、10~50nmであることが好ましい。平均一次粒子径の下限は特に制限されないが、1nm以上であることが好ましく、10nm以上であることがさらに好ましい。酸化銅粒子の平均一次粒子径が100nmを超えると分散安定性が低下し、また、得られる導電膜の平滑性および導電性が不十分となる。
 酸化銅粒子(A)は、平均一次粒子径100nm以下の酸化第二銅粒子であるのが好ましく、平均一次粒子径50nm以下の酸化第二銅粒子であるのがより好ましい。
 なお、上記平均一次粒子径は、日本電子(株)社製の透過型電子顕微鏡TEM2010(加圧電圧200kV)を用いて撮影された画像から任意に選択した一次粒子1000個の粒子径(円相当径)を測定し、それらを算術平均して求める。なお、円相当径とは、観察時の粒子の投影面積と同じ投影面積をもつ真円を想定したときの当該円の直径である。
The average primary particle diameter of the copper oxide particles (A) is preferably 100 nm or less, and preferably 10 to 50 nm. The lower limit of the average primary particle size is not particularly limited, but is preferably 1 nm or more, and more preferably 10 nm or more. When the average primary particle diameter of the copper oxide particles exceeds 100 nm, the dispersion stability decreases, and the smoothness and conductivity of the obtained conductive film become insufficient.
The copper oxide particles (A) are preferably cupric oxide particles having an average primary particle diameter of 100 nm or less, and more preferably cupric oxide particles having an average primary particle diameter of 50 nm or less.
The average primary particle size is a particle size (equivalent to a circle) of 1000 primary particles arbitrarily selected from an image taken using a transmission electron microscope TEM2010 (pressurized voltage 200 kV) manufactured by JEOL Ltd. (Diameter) are measured, and they are obtained by arithmetic averaging. The equivalent circle diameter is the diameter of the circle when assuming a true circle having the same projected area as the projected area of the particles at the time of observation.
 本発明において、酸化銅粒子(A)は一部が凝集していてもよく、凝集している場合、得られる導電膜の平滑性に優れ、導電性がより優れる点で、酸化銅粒子(A)の体積平均二次粒子径は70~150nmが好ましく、80~130nmがより好ましい。
 また、酸化銅粒子(A)の一部が凝集している場合、酸化銅粒子(A)の会合度(上記体積平均二次粒子径/上記平均一次粒子径)は特に制限されないが、得られる導電膜の平滑性および導電性がより優れる点で、1.0超5.0以下が好ましく、1.5~3.0がより好ましい。
In the present invention, a part of the copper oxide particles (A) may be aggregated. When the copper oxide particles (A) are aggregated, the copper oxide particles (A) are excellent in that the resulting conductive film has excellent smoothness and conductivity. ) Is preferably 70 to 150 nm, more preferably 80 to 130 nm.
Further, when a part of the copper oxide particles (A) is aggregated, the degree of association of the copper oxide particles (A) (the volume average secondary particle diameter / the average primary particle diameter) is not particularly limited, but is obtained. In terms of the smoothness and conductivity of the conductive film, it is preferably more than 1.0 and 5.0 or less, and more preferably 1.5 to 3.0.
 本発明において、酸化銅粒子(A)の含有量は、酸化銅粒子(A)と化合物(B)との合計量の50~95質量%であり、本発明の効果がより優れる点で、60~90質量%であるのが好ましい。なお、酸化銅粒子(A)の一部が凝集している場合、酸化銅粒子(A)の量は当該凝集物を含んだ量とする。 In the present invention, the content of the copper oxide particles (A) is 50 to 95% by mass of the total amount of the copper oxide particles (A) and the compound (B), and the effect of the present invention is more excellent. It is preferably from 90% by mass. In addition, when a part of copper oxide particle (A) has aggregated, the quantity of a copper oxide particle (A) shall be the quantity containing the said aggregate.
<化合物(B)>
 本発明において、組成物に含有される化合物(B)は、沸点が250℃以上であり、1分子当たり少なくとも1つのヒドロキシ基を有する有機化合物及びポリアルキレングリコールからなる群から選択される少なくとも1種であれば特に制限されない。
 組成物が化合物(B)を含むことにより、転写性に優れると共に、酸化銅から金属銅への還元がより効率良く進行し、結果として導電性に優れた導電膜が得られ、導電膜の欠陥を少なくすることができる。
 1分子当たり少なくとも1つのヒドロキシ基を有する有機化合物の沸点の上限は特に制限されないが、導電膜中に残存しにくい点から、400℃以下が好ましい。
 また、ポリアルキレングリコールは、酸化銅粒子(A)と混合した状態で、不活性雰囲気下で加熱した場合に450℃以下で分解、揮発する物が好ましい。
 なお、本明細書において、“沸点”とは、圧力1atmのもとでの沸点を意味する。
<Compound (B)>
In the present invention, the compound (B) contained in the composition has a boiling point of 250 ° C. or higher and at least one selected from the group consisting of an organic compound having at least one hydroxy group per molecule and a polyalkylene glycol. If it is, it will not be restrict | limited in particular.
When the composition contains the compound (B), the transferability is excellent, and the reduction from copper oxide to metallic copper proceeds more efficiently. As a result, a conductive film having excellent conductivity is obtained, and defects in the conductive film are obtained. Can be reduced.
The upper limit of the boiling point of the organic compound having at least one hydroxy group per molecule is not particularly limited, but is preferably 400 ° C. or lower because it is difficult to remain in the conductive film.
The polyalkylene glycol is preferably a substance that decomposes and volatilizes at 450 ° C. or lower when heated in an inert atmosphere in a state of being mixed with the copper oxide particles (A).
In the present specification, “boiling point” means a boiling point under a pressure of 1 atm.
 沸点が250℃以上であり、1分子当たり少なくとも1つのヒドロキシ基を有する有機化合物は、転写性、導電膜の導電性、及び、導電膜の欠陥発生抑制性の少なくとも1つがより優れる点(以後、単に「本発明の効果がより優れる点」とも称する)で、1分子当たり2つ又は3つのヒドロキシ基を有するのが好ましい。 The organic compound having a boiling point of 250 ° C. or more and having at least one hydroxy group per molecule is superior in at least one of transferability, conductivity of the conductive film, and defect generation suppressing property of the conductive film (hereinafter, It is preferable to have 2 or 3 hydroxy groups per molecule simply as “the point where the effect of the present invention is more excellent”.
 有機化合物としては、例えば、アルコールが挙げられる。
 アルコールの具体例としては、例えば、1-エイコサノール(沸点372℃)、1-テトラコサノール(沸点395℃)等の1価のアルコール;1,6-ヘキサンジオール(沸点250℃)、1,7-ヘプタンジオール(沸点259℃)、トリエチレングリコール(沸点287℃)、トリプロピレングリコール(沸点273℃)等の2価のアルコール;グリセリン(プロパン-1,2,3-トリオール)(沸点290℃)、トリメチロールプロパン(沸点292℃)等の3価のアルコール;エリトリトール(沸点329℃)等の4価のアルコール;ペンタエリトリトール(沸点250℃以上)等の5価のアルコール;マンニトール(沸点290℃)等の6価のアルコールなどが挙げられる。
 なかでも、本発明の効果がより優れる点で、グリセリン及びトリメチロールプロパンからなる群から選ばれる少なくとも1種を含むのが好ましい。
As an organic compound, alcohol is mentioned, for example.
Specific examples of the alcohol include monohydric alcohols such as 1-eicosanol (boiling point 372 ° C.) and 1-tetracosanol (boiling point 395 ° C.); 1,6-hexanediol (boiling point 250 ° C.), 1,7 Divalent alcohols such as heptanediol (boiling point 259 ° C.), triethylene glycol (boiling point 287 ° C.), tripropylene glycol (boiling point 273 ° C.); glycerin (propane-1,2,3-triol) (boiling point 290 ° C.) Trivalent alcohols such as trimethylolpropane (boiling point 292 ° C.); tetravalent alcohols such as erythritol (boiling point 329 ° C.); pentavalent alcohols such as pentaerythritol (boiling point 250 ° C. or higher); mannitol (boiling point 290 ° C.) And hexavalent alcohols.
Especially, it is preferable that at least 1 sort (s) chosen from the group which consists of glycerol and a trimethylol propane is included at the point which the effect of this invention is more excellent.
 ポリアルキレングリコールは、オキシアルキレンの繰り返し単位を有し、1分子中ヒドロキシ基を2つ有する化合物であれば特に制限されない。アルキレン基は特に制限されない。例えば、エチレン基、プロピレン基のような炭素数1~10のアルキレン基が挙げられる。
 ポリアルキレングリコールとしては、例えば、ポリエチレングリコール、ポリプロピレングリコールが挙げられ、ポリエチレングリコールが好適に用いられる。
 ポリアルキレングリコールの重量平均分子量は特に制限されないが、本発明の効果がより優れる点で、1,000以上であるのが好ましく、3,000~500,000であるのがより好ましく、4,000~20,000であるのがさらに好ましい。なお、上記重量平均分子量は、GPC法(溶媒:N-メチルピロリドン)により得られたポリスチレン換算値である。
The polyalkylene glycol is not particularly limited as long as it is a compound having an oxyalkylene repeating unit and having two hydroxy groups in one molecule. The alkylene group is not particularly limited. Examples thereof include alkylene groups having 1 to 10 carbon atoms such as ethylene group and propylene group.
Examples of the polyalkylene glycol include polyethylene glycol and polypropylene glycol, and polyethylene glycol is preferably used.
The weight average molecular weight of the polyalkylene glycol is not particularly limited, but is preferably 1,000 or more, more preferably 3,000 to 500,000, and more preferably 4,000, in terms of more excellent effects of the present invention. More preferred is ˜20,000. The weight average molecular weight is a polystyrene equivalent value obtained by the GPC method (solvent: N-methylpyrrolidone).
 化合物(B)は、ポリエチレングリコール、グリセリン及びトリメチロールプロパンからなる群から選ばれる少なくとも1種を含むのが好ましい態様の1つとして挙げられる。
 化合物(B)はそれぞれ単独でまたは2種以上を組み合わせて使用することができる。
 化合物(B)の組み合わせとしては、本発明の効果がより優れる点で、ポリエチレングリコールと2価以上のアルコールとの併用が挙げられる。なかでも、ポリエチレングリコールと、グリセリン及び/又はトリメチロールプロパンとを含むのが好ましい。転写性により優れることから、ポリエチレングリコールとトリメチロールプロパンを併用するのが好ましい態様の1つとして挙げられる。
The compound (B) is mentioned as one of preferable embodiments containing at least one selected from the group consisting of polyethylene glycol, glycerin and trimethylolpropane.
A compound (B) can be used individually or in combination of 2 types or more, respectively.
Examples of the combination of the compound (B) include the combined use of polyethylene glycol and a dihydric or higher alcohol in that the effect of the present invention is more excellent. Among these, it is preferable to contain polyethylene glycol and glycerin and / or trimethylolpropane. One of the preferred embodiments is that polyethylene glycol and trimethylolpropane are used in combination because of superior transferability.
 本発明において、化合物(B)の含有量は、酸化銅粒子(A)の全量に対して6質量%以上100質量%以下であるのが好ましく、100質量%未満とすることができ、8質量%以上60質量%以下であるのがより好ましい。化合物(B)の含有量が6質量%以上であることによって、転写性、導電性をより優れたものとすることができる。また化合物(B)の含有量が100質量%以下であることによって、導電膜の欠陥をより少なくすることができる。
 化合物(B)が、ポリエチレングリコール、グリセリン及びトリメチロールプロパンからなる群から選ばれる少なくとも1種を含む場合、ポリエチレングリコール、グリセリン及びトリメチロールプロパンからなる群から選ばれる少なくとも1種の含有量の下限は、酸化銅粒子(A)の全量に対して、6質量%以上であるのが好ましく、8質量%以上であるのがより好ましい。ポリエチレングリコール、グリセリン及びトリメチロールプロパンからなる群から選ばれる少なくとも1種の含有量の上限は、酸化銅粒子(A)の全量に対して、100質量%以下又は100質量%未満とすることができ、60質量%以下であるのが好ましい。
In the present invention, the content of the compound (B) is preferably 6% by mass or more and 100% by mass or less with respect to the total amount of the copper oxide particles (A), and can be less than 100% by mass, and 8% by mass. % To 60% by mass is more preferable. When the content of the compound (B) is 6% by mass or more, transferability and conductivity can be further improved. Moreover, the defect of a electrically conductive film can be decreased more because content of a compound (B) is 100 mass% or less.
When the compound (B) contains at least one selected from the group consisting of polyethylene glycol, glycerin and trimethylolpropane, the lower limit of the content of at least one selected from the group consisting of polyethylene glycol, glycerin and trimethylolpropane is The total amount of the copper oxide particles (A) is preferably 6% by mass or more, and more preferably 8% by mass or more. The upper limit of the content of at least one selected from the group consisting of polyethylene glycol, glycerin and trimethylolpropane can be 100% by mass or less or less than 100% by mass with respect to the total amount of the copper oxide particles (A). 60 mass% or less is preferable.
 本発明において、ポリアルキレングリコール(例えばポリエチレングリコール)の含有量は、酸化銅粒子(A)の全量に対して0~50質量%であるのが好ましく、4質量%以上50質量%未満であるのがより好ましく、4質量%以上30質量%であるのが更に好ましい。
 グリセリン及び/又はトリメチロールプロパンの合計量(両者を併称する場合はその合計量。以下同様。)は、酸化銅粒子(A)の全量に対して0質量%以上100質量%未満であるのが好ましく、0~50質量%であるのがより好ましく、10質量%以上30質量%未満であるのが更に好ましく、10~20質量%であるのが特に好ましい。
In the present invention, the content of polyalkylene glycol (for example, polyethylene glycol) is preferably 0 to 50% by mass with respect to the total amount of the copper oxide particles (A), and is 4% by mass or more and less than 50% by mass. Is more preferable, and it is still more preferable that it is 4 mass% or more and 30 mass%.
The total amount of glycerin and / or trimethylolpropane (when both are combined, the total amount, the same shall apply hereinafter) is 0% by mass or more and less than 100% by mass with respect to the total amount of the copper oxide particles (A). The content is preferably 0 to 50% by mass, more preferably 10% by mass or more and less than 30% by mass, and particularly preferably 10 to 20% by mass.
 化合物(B)が、ポリエチレングリコールと、グリセリン及び/又はトリメチロールプロパンとを含む場合、ポリエチレングリコールの含有量は、酸化銅粒子(A)の全量に対して、50質量%未満であるのが好ましく、1~30質量%であるのがより好ましく、4~30質量%であるのが更に好ましい。また、この場合、グリセリン及び/又はトリメチロールプロパンの合計量は、酸化銅粒子(A)の全量に対して、100質量%未満であるのが好ましく、1質量%以上50質量%未満であるのがより好ましく、1質量%以上30質量%未満であるのが更に好ましく、5~20質量%であるのが特に好ましく、10~15質量%であるのがもっとも好ましい。また、この場合、ポリエチレングリコールと、グリセリン及び/又はトリメチロールプロパンとの合計量が、酸化銅粒子(A)の全量に対して、8質量%以上であることが好ましい。 When the compound (B) includes polyethylene glycol and glycerin and / or trimethylolpropane, the content of polyethylene glycol is preferably less than 50% by mass with respect to the total amount of the copper oxide particles (A). The content is more preferably 1 to 30% by mass, and further preferably 4 to 30% by mass. In this case, the total amount of glycerin and / or trimethylolpropane is preferably less than 100% by mass with respect to the total amount of the copper oxide particles (A), and is from 1% by mass to less than 50% by mass. Is more preferably 1% by mass or more and less than 30% by mass, particularly preferably 5 to 20% by mass, and most preferably 10 to 15% by mass. In this case, the total amount of polyethylene glycol and glycerin and / or trimethylolpropane is preferably 8% by mass or more based on the total amount of the copper oxide particles (A).
<有機溶媒(C)>
 本発明において、組成物に含有される有機溶媒(C)は、沸点100℃未満の有機溶媒である。本発明の効果がより優れる点で、沸点は90℃以下が好ましく、85℃以下がより好ましい。なお、下限は特に制限されないが、取扱い性により優れる点から、50℃以上が好ましく、55℃以上がより好ましい。
<Organic solvent (C)>
In the present invention, the organic solvent (C) contained in the composition is an organic solvent having a boiling point of less than 100 ° C. The boiling point is preferably 90 ° C. or lower and more preferably 85 ° C. or lower in that the effect of the present invention is more excellent. In addition, although a minimum in particular is not restrict | limited, From the point which is excellent by handleability, 50 degreeC or more is preferable and 55 degreeC or more is more preferable.
 有機溶媒(C)としては上記沸点の要件を満たしてれば特にその種類は限定されないが、例えば、メタノール、エタノールなどのアルコール系溶媒、アセトン、メチルエチルケトンなどのケトン系溶媒、アミド系溶媒、アセトニトリルなどのニトリル系溶媒、酢酸メチルなどのエステル系溶媒、ジメチルカーボネートなどのカーボネート系溶媒、この他にも、エーテル系溶媒、グリコール系溶媒、アミン系溶媒、チオール系溶媒、ハロゲン系溶媒などが挙げられる。
 なかでも、転写性(特に抜き版への転写性)により優れ、後述する金属触媒(E)の組成物中における溶解性がより向上する点で、ケトン系溶媒、アルコール系溶媒が好ましい。
 有機溶媒(C)としては、1種のみを使用してもよいし、2種以上を併用してもよい。
The type of the organic solvent (C) is not particularly limited as long as it satisfies the above boiling point requirements. For example, alcohol solvents such as methanol and ethanol, ketone solvents such as acetone and methyl ethyl ketone, amide solvents, acetonitrile and the like. Nitrile solvents, ester solvents such as methyl acetate, carbonate solvents such as dimethyl carbonate, and other solvents such as ether solvents, glycol solvents, amine solvents, thiol solvents, and halogen solvents.
Of these, ketone-based solvents and alcohol-based solvents are preferable because they are excellent in transferability (particularly transferability to a printing plate) and further improve the solubility of the metal catalyst (E) described later in the composition.
As an organic solvent (C), only 1 type may be used and 2 or more types may be used together.
 本発明において、有機溶媒(C)の含有量は、導電膜形成用組成物の全量中の10質量%以上である。このことによって本発明の組成物の塗布性を優れたものとすることができる。塗布性により優れるという観点から、有機溶媒(C)の含有量は、導電膜形成用組成物の全量中の、10質量%以上60質量%以下であるのが好ましく、10質量%以上50質量%以下であるのがより好ましい。 In the present invention, the content of the organic solvent (C) is 10% by mass or more in the total amount of the composition for forming a conductive film. By this, the applicability | paintability of the composition of this invention can be made excellent. From the viewpoint of superior coating properties, the content of the organic solvent (C) is preferably 10% by mass or more and 60% by mass or less, and preferably 10% by mass or more and 50% by mass or less in the total amount of the composition for forming a conductive film. The following is more preferable.
<界面活性剤(D)>
 本発明において、組成物は更に界面活性剤を含有することによって仮支持体への濡れ性を向上させることができる。
 本発明において、組成物に含有される界面活性剤(D)の種類は特に制限されない。例えば、陰イオン性界面活性剤、非イオン性界面活性剤、陽イオン性界面活性剤、両性界面活性剤等が挙げられる。
 陰イオン性界面活性剤の具体例としては、脂肪酸塩、アルキル硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、アルキルスルホコハク酸塩、アルキルジフェニルエーテルジスルホン酸塩、アルキルリン酸塩、ポリオキシエチレンアルキル硫酸エステル塩、ポリオキシエチレンアルキルアリル硫酸エステル塩、ナフタレンスルホン酸ホルマリン縮合物、ポリカルボン酸型高分子界面活性剤、ポリオキシエチレンアルキルリン酸エステル等が挙げられる。
<Surfactant (D)>
In the present invention, the composition can further improve the wettability to the temporary support by containing a surfactant.
In the present invention, the type of surfactant (D) contained in the composition is not particularly limited. For example, an anionic surfactant, a nonionic surfactant, a cationic surfactant, an amphoteric surfactant, etc. are mentioned.
Specific examples of the anionic surfactant include fatty acid salts, alkyl sulfate esters, alkylbenzene sulfonates, alkyl naphthalene sulfonates, alkyl sulfosuccinates, alkyl diphenyl ether disulfonates, alkyl phosphates, polyoxyethylenes. Alkyl sulfate ester salt, polyoxyethylene alkyl allyl sulfate ester salt, naphthalene sulfonic acid formalin condensate, polycarboxylic acid type polymer surfactant, polyoxyethylene alkyl phosphate ester and the like can be mentioned.
 非イオン性界面活性剤の具体例としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリルエーテル、ポリオキシエチレンアセチアレニック・グリコールエーテル、ポリオキシエチレン誘導体(ポリエチレングリコールを除く)、オキシエチレン・オキシプロピレンブロックコポリマー、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、グリセリン脂肪酸エステル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレンアルキルアミン、アルキルアルカノールアミド等が挙げられる。
 より具体的には、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンラウリルエーテル等が挙げられる。
Specific examples of nonionic surfactants include polyoxyethylene alkyl ether, polyoxyethylene alkyl allyl ether, polyoxyethylene acetylenic glycol ether, polyoxyethylene derivatives (excluding polyethylene glycol), oxyethylene oxy Examples include propylene block copolymers, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene sorbitol fatty acid esters, glycerin fatty acid esters, polyoxyethylene fatty acid esters, polyoxyethylene alkylamines, and alkylalkanolamides.
More specifically, polyoxyethylene oleyl ether, polyoxyethylene stearyl ether, polyoxyethylene lauryl ether and the like can be mentioned.
 陽イオン性界面活性剤および両性界面活性剤の具体例としては、アルキルアミン塩、第四級アンモニウム塩、アルキルベタイン、アミンオキサイド等が挙げられる。 Specific examples of the cationic surfactant and the amphoteric surfactant include alkylamine salts, quaternary ammonium salts, alkylbetaines, amine oxides and the like.
 また、これらのほかにもフッ素系界面活性剤や、シリコン系界面活性剤も用いることができる。上記の界面活性剤の中でも、形成される導電膜の導電性がより優れる点で、非イオン性界面活性剤が好ましい。 Besides these, fluorine-based surfactants and silicon-based surfactants can also be used. Among the above surfactants, nonionic surfactants are preferable in that the conductivity of the conductive film to be formed is more excellent.
 界面活性剤(D)はそれぞれ単独でまたは2種以上を組み合わせて使用することができる。
 界面活性剤(D)の含有量は特に制限されないが、組成物全量中の0.05~1.5質量%であるのが好ましく、0.05~1質量%がさらに好ましく、0.05~0.5質量%がもっとも好ましい。
The surfactant (D) can be used alone or in combination of two or more.
The content of the surfactant (D) is not particularly limited, but is preferably 0.05 to 1.5% by mass, more preferably 0.05 to 1% by mass in the total amount of the composition, and 0.05 to 0.5% by mass is most preferred.
 また本発明において、酸化銅粒子(A)と化合物(B)との合計量は、本発明の効果がより優れる点で、酸化銅粒子(A)と化合物(B)と界面活性剤(D)との合計量の90~99.99質量%であるのが好ましく、95~99.99質量%であるのがより好ましい。 In the present invention, the total amount of the copper oxide particles (A) and the compound (B) is that the effects of the present invention are more excellent, and the copper oxide particles (A), the compound (B) and the surfactant (D). The total amount is preferably 90 to 99.99% by mass, and more preferably 95 to 99.99% by mass.
<金属触媒(E)>
 本発明において、導電膜形成用組成物が、さらに、周期律表の8族~11族からなる群から選択される少なくとも1種の金属元素を含む金属触媒(E)を含むのが好ましい。
 金属触媒(E)は上述した酸化銅粒子(A)の還元性を高めると共に、導電膜の導電性向上に寄与することができる。
 金属触媒(E)は周期律表の8族~11族からなる群から選択される少なくとも1種の金属元素(金属)を含む。導電膜の導電性がより優れる点で、金属元素としては、金、銀、銅、白金、パラジウム、ロジウム、イリジウム、ルテニウム、オスミウム、および、ニッケルからなる群より選ばれる少なくとも1種の金属元素が好ましく、銀、白金、パラジウム、および、ニッケルからなる群より選択される少なくとも1種の金属元素であることがより好ましく、パラジウムまたは白金であることが特に好ましく、パラジウムであることが最も好ましい。すなわち、得られる導電膜の導電性がより優れる理由から、金属触媒(E)は、パラジウムを含む金属触媒であることが好ましい。
<Metal catalyst (E)>
In the present invention, it is preferable that the composition for forming a conductive film further includes a metal catalyst (E) containing at least one metal element selected from the group consisting of Groups 8 to 11 of the periodic table.
A metal catalyst (E) can contribute to the electroconductivity improvement of a electrically conductive film while improving the reducibility of the copper oxide particle (A) mentioned above.
The metal catalyst (E) contains at least one metal element (metal) selected from the group consisting of groups 8 to 11 of the periodic table. The metal element is at least one metal element selected from the group consisting of gold, silver, copper, platinum, palladium, rhodium, iridium, ruthenium, osmium, and nickel in that the conductivity of the conductive film is more excellent. Preferably, it is at least one metal element selected from the group consisting of silver, platinum, palladium, and nickel, more preferably palladium or platinum, and most preferably palladium. That is, the metal catalyst (E) is preferably a metal catalyst containing palladium because the conductivity of the obtained conductive film is more excellent.
 金属触媒(E)の好適な態様としては、例えば、パラジウム塩、パラジウム錯体が挙げられる。
 上記パラジウム塩の種類は特に制限されず、その具体例としては、パラジウムの塩酸塩、硝酸塩、硫酸塩、カルボン酸塩、スルホン酸塩、リン酸塩、ホスホン酸塩などが挙げられる。なかでも、カルボン酸塩であることが好ましい。
 上記カルボン酸塩を形成するカルボン酸の炭素数は特に制限されないが、1~10であることが好ましく、1~5であることがより好ましい。カルボン酸塩を形成するカルボン酸はハロゲン原子(好ましくはフッ素原子)を有してもよい。
As a suitable aspect of a metal catalyst (E), palladium salt and a palladium complex are mentioned, for example.
The kind of the palladium salt is not particularly limited, and specific examples thereof include palladium hydrochloride, nitrate, sulfate, carboxylate, sulfonate, phosphate, and phosphonate. Of these, carboxylate is preferable.
The number of carbon atoms of the carboxylic acid forming the carboxylate is not particularly limited, but is preferably 1 to 10, more preferably 1 to 5. The carboxylic acid forming the carboxylate may have a halogen atom (preferably a fluorine atom).
 上記パラジウム錯体の種類は特に制限されず、その配位子としては、例えば、2,2’-ビピリジル、1,10-フェナントロリン、メチレンビスオキサゾリン、N,N,N’N’-テトラメチルエチレンジアミン、トリフェニルホスフィン、トリトリルホスフィン、トリブチルホスフィン、トリフェノキシホスフィン、1,2-ビスジフェニルホスフィノエタン、1,3-ビスジフェニルホスフィノプロパンなどが挙げられる。
 なかでも、トリフェニルホスフィンであることが好ましい。
 トリフェニルホスフィンを配位子とするパラジウム錯体の種類は特に制限されないが、その具体例としては、テトラキス(トリフェニルホスフィン)パラジウム、ジクロロビス(トリフェニルホスフィン)パラジウムなどが挙げられる。なかでも、テトラキス(トリフェニルホスフィン)パラジウムが好ましい。
The kind of the palladium complex is not particularly limited, and examples of the ligand include 2,2′-bipyridyl, 1,10-phenanthroline, methylenebisoxazoline, N, N, N′N′-tetramethylethylenediamine, Examples include triphenylphosphine, tolylphosphine, tributylphosphine, triphenoxyphosphine, 1,2-bisdiphenylphosphinoethane, 1,3-bisdiphenylphosphinopropane, and the like.
Of these, triphenylphosphine is preferable.
The kind of palladium complex having triphenylphosphine as a ligand is not particularly limited, and specific examples thereof include tetrakis (triphenylphosphine) palladium and dichlorobis (triphenylphosphine) palladium. Of these, tetrakis (triphenylphosphine) palladium is preferable.
 パラジウム塩またはパラジウム錯体は、酢酸パラジウム、トリフルオロ酢酸パラジウムおよびテトラキス(トリフェニルホスフィン)パラジウムからなる群より選択される少なくとも1種の化合物であることが好ましく、酢酸パラジウムであることがより好ましい。 The palladium salt or palladium complex is preferably at least one compound selected from the group consisting of palladium acetate, palladium trifluoroacetate and tetrakis (triphenylphosphine) palladium, more preferably palladium acetate.
 組成物中における金属触媒(E)の含有量は特に制限されないが、導電膜の導電性がより優れる点で、金属触媒(E)の含有量は、酸化銅粒子(A)の全量に対して、0.1~10質量%が好ましく、0.1質量%以上8質量%未満が好ましく、0.5質量%以上8質量%未満がさらに好ましい。 Although the content of the metal catalyst (E) in the composition is not particularly limited, the content of the metal catalyst (E) is based on the total amount of the copper oxide particles (A) in that the conductivity of the conductive film is more excellent. 0.1 to 10 mass% is preferable, 0.1 to 8 mass% is preferable, and 0.5 to 8 mass% is more preferable.
 本発明において、組成物は、転写性により優れるという観点から、更に高分子化合物(ポリアルキレングリコールを除く。)を含むこともできる。高分子化合物としては例えば、ポリビニルピロリドン、ポリビニルアルコールが挙げられる。ただし、上記高分子化合物の添加量が多いと導電性が悪化するため、上記高分子化合物の含有量は、酸化銅粒子(A)に対して、0~10質量%以下が好ましく、0~8質量%以下がより好ましい。また、重量平均分子量は3000~50万であることが好ましく、3000~10万であることがさらに好ましい。
 これらの高分子化合物を用いることにより、転写性を向上させることができる。
In the present invention, the composition may further contain a polymer compound (excluding polyalkylene glycol) from the viewpoint of superior transferability. Examples of the polymer compound include polyvinyl pyrrolidone and polyvinyl alcohol. However, since the conductivity deteriorates when the amount of the polymer compound added is large, the content of the polymer compound is preferably 0 to 10% by mass or less based on the copper oxide particles (A), and 0 to 8%. The mass% or less is more preferable. The weight average molecular weight is preferably 3,000 to 500,000, and more preferably 3,000 to 100,000.
By using these polymer compounds, transferability can be improved.
 本発明において、組成物は、転写性により優れるという観点から、更に水を含むのが好ましい態様の1つとして挙げられる。
 水の含有量は特に制限されないが、転写性により優れ、導電膜形成用組成物の保存安定性が優れる点で、導電膜形成用組成物全量中の、1~80質量%が好ましく、5~60質量%がより好ましく、10~50質量%がさらに好ましい。
In the present invention, from the viewpoint that the composition is more excellent in transferability, the composition further includes water as one of preferred embodiments.
The water content is not particularly limited, but is preferably 1 to 80% by mass in the total amount of the conductive film-forming composition in terms of excellent transferability and excellent storage stability of the conductive film-forming composition. 60% by mass is more preferable, and 10 to 50% by mass is further preferable.
 組成物には、上記成分以外の他の成分が含まれてもよい。例えば、沸点が250℃未満の有機化合物(上記有機溶媒を除く)、ヒドロキシ基以外の官能基を有する有機化合物、離型剤が挙げられる。
 沸点が250℃未満の有機化合物(上記有機溶媒を除く)は、沸点100℃以上250℃未満の有機化合物であれば特に制限されない。例えば、1-ブタノール、1,2-ヘキサンジオールが挙げられる。
The composition may contain other components other than the above components. For example, an organic compound having a boiling point of less than 250 ° C. (excluding the above organic solvent), an organic compound having a functional group other than a hydroxy group, and a release agent may be mentioned.
The organic compound having a boiling point of less than 250 ° C. (excluding the organic solvent) is not particularly limited as long as it is an organic compound having a boiling point of 100 ° C. or more and less than 250 ° C. Examples thereof include 1-butanol and 1,2-hexanediol.
 組成物の調製方法は特に制限されず、公知の方法を採用できる。例えば、上記各成分を混合した後、超音波法(例えば、超音波ホモジナイザーによる処理)、ミキサー法、3本ロール法、ボールミル法、ビーズミル法などの公知の手段により成分を分散させることによって調製することができる。 The method for preparing the composition is not particularly limited, and a known method can be adopted. For example, the components are mixed and then prepared by dispersing the components by a known means such as an ultrasonic method (for example, treatment with an ultrasonic homogenizer), a mixer method, a three-roll method, a ball mill method, or a bead mill method. be able to.
[製造方法の各工程]
 以下、本発明の製造方法における各工程について、図面を参照して説明する。なお、以下で詳述する、基材上に前駆体膜を製造する方法は、いわゆる反転印刷法に該当する。
[Each step of the manufacturing method]
Hereinafter, each process in the manufacturing method of this invention is demonstrated with reference to drawings. In addition, the method of manufacturing a precursor film | membrane on a base material explained in full detail below corresponds to what is called a reverse printing method.
(塗膜形成工程)
 まず、塗膜形成工程において、導電膜形成用組成物を仮支持体上に付与して、仮支持体上に塗膜を形成する。より具体的には、図1(a)に示すように、導電膜形成用組成物を仮支持体10に付与して、塗膜12を有する仮支持体1を形成する。なお、塗膜を形成する際には、上述した有機溶媒の大部分が揮発するように処理することが好ましい。
 反転印刷法において使用される仮支持体としては、例えば、ブランケットが好ましい態様の1つとして挙げられる。具体的には、シリコーンブランケットが挙げられる。仮支持体は撥液表面を有してもよい。撥液表面を形成する材質は特に制限されない。例えば従来公知のものが挙げられる。
(Coating film formation process)
First, in a coating film formation process, the composition for electrically conductive film formation is provided on a temporary support body, and a coating film is formed on a temporary support body. More specifically, as shown to Fig.1 (a), the composition for electrically conductive film formation is provided to the temporary support body 10, and the temporary support body 1 which has the coating film 12 is formed. In addition, when forming a coating film, it is preferable to process so that most organic solvents mentioned above may volatilize.
As a temporary support used in the reversal printing method, for example, a blanket is mentioned as one of the preferred embodiments. Specifically, a silicone blanket is mentioned. The temporary support may have a liquid repellent surface. The material for forming the liquid repellent surface is not particularly limited. For example, a conventionally well-known thing is mentioned.
 本発明において、組成物を仮支持体に付与する方法は特に制限されない。例えば、スリットコート、バーコート、スピンコートで所定の膜厚の塗膜を形成することができる。
 付与された塗膜の膜厚は0.1μm~15μm、さらに好ましくは0.15μm~10μmで調整するのが、その後の微細パターン形成性、乾燥性により得られる導電性の観点から好ましい。
 なお、後述するように、塗膜形成工程と後述する除去工程との間に、塗膜を乾燥する乾燥工程を備えてもよい。
In the present invention, the method for applying the composition to the temporary support is not particularly limited. For example, a coating film having a predetermined film thickness can be formed by slit coating, bar coating, or spin coating.
The thickness of the applied coating film is preferably adjusted to 0.1 to 15 μm, more preferably 0.15 to 10 μm, from the viewpoint of conductivity obtained by subsequent fine pattern formation and drying properties.
In addition, you may provide the drying process which dries a coating film between a coating-film formation process and the removal process mentioned later so that it may mention later.
(除去工程)
 除去工程は、上記塗膜形成工程で得られた塗膜の一部を除去する工程である。塗膜の一部を除去して、所定のパターンを形成し、このパターンを後述する転写工程において基材に転写する。なお、このパターンは後述する導電膜の前駆体膜となる。
 なお、除去工程の手順は特に制限されず、公知の方法を採用できる。なかでも、生産性がより優れる点で、凸部を有する板(凸部を有する抜き版)を使用する態様が好ましい。つまり、図1(b)に示すように、凸部を有する抜き版14と仮支持体1とを対向させ、凸部を有する抜き版14の凸部16を仮支持体1が有する塗膜12に接触させる(図示せず)。次に、図1(c)に示すように、凸部を有する抜き版14を仮支持体1から離し、凸部16と接触した部分18を塗膜12を有する仮支持体1から除去して、仮支持体10上にパターン20を有する仮支持体3を形成する態様が挙げられる。
(Removal process)
A removal process is a process of removing a part of coating film obtained at the said coating-film formation process. A part of the coating film is removed to form a predetermined pattern, and this pattern is transferred to the substrate in a transfer step described later. This pattern becomes a precursor film of a conductive film described later.
In addition, the procedure in particular of a removal process is not restrict | limited, A well-known method is employable. Especially, the aspect which uses the board (cutting plate which has a convex part) which has a convex part from the point which productivity is more excellent is preferable. That is, as shown in FIG. 1B, the punching plate 14 having a convex portion and the temporary support 1 are made to face each other, and the convex coating 16 of the punching plate 14 having a convex portion is included in the temporary support 1. (Not shown). Next, as shown in FIG. 1 (c), the punching plate 14 having the convex portion is separated from the temporary support 1, and the portion 18 in contact with the convex portion 16 is removed from the temporary support 1 having the coating film 12. An embodiment in which the temporary support 3 having the pattern 20 is formed on the temporary support 10 is exemplified.
 抜き版の材質は、塗膜の一部を仮支持体から除去できるものであれば特に制限されず、例えば、ガラス、シリコン、ステンレス等の各種金属、各種樹脂が使用できる。
 また、抜き版の表面の加工方法も特に制限されず、材質、パターン精度、凸版深さ等によって最適な方法を選択できる。例えば、ガラス、シリコンを材質とする場合はウェットエッチング、ドライエッチング等の加工方法が適用できる。金属の場合はウェットエッチング、電鋳加工、サンドブラスト等が適用できる。また樹脂を材質とする場合はフォトリソエッチング、レーザー、収束イオンビーム等の加工方法が好適に適用できる。
The material of the punching plate is not particularly limited as long as a part of the coating film can be removed from the temporary support, and for example, various metals such as glass, silicon, stainless steel, and various resins can be used.
Further, the processing method of the surface of the punched plate is not particularly limited, and an optimum method can be selected according to the material, pattern accuracy, relief plate depth, and the like. For example, when glass or silicon is used as a material, a processing method such as wet etching or dry etching can be applied. In the case of metal, wet etching, electroforming, sandblasting, etc. can be applied. Further, when a resin is used as a material, a processing method such as photolithography etching, laser, or focused ion beam can be suitably applied.
 なお、図1においては、平行平版方式でネガパターンを有する凸版である抜き版と塗膜を有する仮支持体を接触させる方法を示したが、仮支持体にパターンを形成する方法に特に制限は無く、例えば、ロールに巻きつけた塗膜を有する仮支持体を平板の抜き版上を転がし接触させる方法、ロール側に抜き版を形成し平板の塗膜を有する仮支持体上を転がし接触させる方法、塗膜を有する仮支持体及び抜き版をロール上に形成し両者を接触させる方法等適用できる。 In addition, in FIG. 1, although the method of contacting the temporary support body which has the printing plate which is a relief printing plate which has a negative pattern with a parallel lithographic system, and a coating film was shown, especially the method of forming a pattern in a temporary support body has a restriction | limiting. No, for example, a method of rolling and contacting a temporary support having a coating film wound around a roll on a flat plate, a rolling plate on a temporary support having a flat coating film by forming a cutting plate on the roll side A method, a method of forming a temporary support having a coating film and a punching plate on a roll and bringing them into contact with each other can be applied.
(転写工程)
 転写工程は、上記除去工程で得られた仮支持体上に残存する塗膜(パターン)を基材上に転写して、基材に導電膜の前駆体膜を形成する工程である。より具体的には、まず図1(d)に示すように仮支持体3と基材22とを対向させて、次いで図1(e)に示すように仮支持体3と基材22とを接触させて、図1(f)に示すように仮支持体3上のパターン20を基材22に転写して、パターン20を有する基材5を作製する。つまり、仮支持体上に残存した塗膜(パターン)が、転写後の前駆体膜に該当する。
 転写工程の手順は特に制限されないが、通常、除去工程後の仮支持体上の塗膜と基材とを対向させて、両者を軽く押し当て、仮支持体上に残存する塗膜を基材へ全転写するのが好ましい。
(Transfer process)
The transfer step is a step of transferring the coating film (pattern) remaining on the temporary support obtained in the removing step onto the base material to form a precursor film of the conductive film on the base material. More specifically, first, the temporary support 3 and the base material 22 are opposed to each other as shown in FIG. 1 (d), and then the temporary support 3 and the base material 22 are set as shown in FIG. 1 (e). As shown in FIG. 1 (f), the pattern 20 on the temporary support 3 is transferred to the base material 22 to make the base material 5 having the pattern 20. That is, the coating film (pattern) remaining on the temporary support corresponds to the precursor film after transfer.
The procedure of the transfer process is not particularly limited, but usually, the coating film on the temporary support after the removal process is opposed to the substrate, and both are lightly pressed, and the coating film remaining on the temporary support is the substrate. It is preferable to transfer all the images to
 反転印刷法に使用される基材の種類は特に制限されず、金属基材、樹脂基材などが挙げられ、取扱い性の点から、樹脂基材が好ましく挙げられる。樹脂基材としては、例えば、低密度ポリエチレン樹脂、高密度ポリエチレン樹脂、ポリプロピレン、ポリブチレンなどのポリオレフィン系樹脂;ポリメチルメタクリレートなどのメタクリル系樹脂;ポリスチレン、ABS(アクリロニトリル-ブタジエン-スチレン共重合体)、AS(アクリロニトリル-スチレン共重合体)などのポリスチレン系樹脂;アクリル樹脂;スチレン樹脂;塩化ビニル樹脂;ポリエステル樹脂(ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリ1,4-シクロヘキシルジメチレンテレフタレートなど);ナイロン樹脂およびナイロン共重合体から選ばれるポリアミド樹脂;ポリ塩化ビニル樹脂;ポリオキシメチレン;ポリカーボネート樹脂;ポリフェニレンサルファイド樹脂;変性ポリフェニレンエーテル樹脂;ポリアセタール樹脂、ポリサルフォン樹脂、ポリエーテルスルホン樹脂;ポリケトン樹脂;ポリエーテルニトリル樹脂;ポリエーテルエーテルケトン樹脂;ポリエーテルイミド樹脂、ポリエーテルケトン樹脂、ポリエーテルケトンケトン樹脂;ポリイミド樹脂、ポリアミドイミド樹脂;フッ素樹脂;セルロース誘導体等が好ましく使用される。 The type of the substrate used in the reverse printing method is not particularly limited, and examples thereof include a metal substrate and a resin substrate, and a resin substrate is preferable from the viewpoint of handleability. Examples of the resin base material include low-density polyethylene resin, high-density polyethylene resin, polyolefin resin such as polypropylene and polybutylene; methacrylic resin such as polymethyl methacrylate; polystyrene, ABS (acrylonitrile-butadiene-styrene copolymer), Polystyrene resin such as AS (acrylonitrile-styrene copolymer); acrylic resin; styrene resin; vinyl chloride resin; polyester resin (polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, poly 1,4-cyclohexyldimethylene terephthalate, etc.) Polyamide resin selected from nylon resin and nylon copolymer; polyvinyl chloride resin; polyoxymethylene; polycarbonate resin; Modified polyphenylene ether resin; polyacetal resin, polysulfone resin, polyether sulfone resin; polyketone resin; polyether nitrile resin; polyether ether ketone resin; polyetherimide resin, polyether ketone resin, polyether ketone ketone resin; Resins, polyamideimide resins; fluororesins; cellulose derivatives and the like are preferably used.
 基材は、その表面に絶縁膜層を有してもよい。絶縁膜層の材料としては例えば、ポリビニルフェノール、ポリイミド、ポリビニルフェノールとメラミン樹脂の架橋物等が挙げられる。
 絶縁膜層の厚みは、0.1μm以上1.5μm以下であるのが好ましい。
The base material may have an insulating film layer on its surface. Examples of the material for the insulating film layer include polyvinylphenol, polyimide, and a crosslinked product of polyvinylphenol and melamine resin.
The thickness of the insulating film layer is preferably 0.1 μm or more and 1.5 μm or less.
(乾燥工程)
 また、本発明の製造方法は、塗膜形成工程と除去工程の間に、塗膜形成工程後の仮支持体を乾燥させる乾燥工程を更に備えることができる。乾燥工程を備えることによって、転写性をより優れたものとすることができる。
 乾燥工程における温度は110℃未満であるのが好ましい。この温度範囲であることによって有機溶媒を組成物から除去することができる。
(Drying process)
Moreover, the manufacturing method of this invention can further be equipped with the drying process which dries the temporary support body after a coating-film formation process between a coating-film formation process and a removal process. By providing the drying step, transferability can be further improved.
The temperature in the drying step is preferably less than 110 ° C. By being within this temperature range, the organic solvent can be removed from the composition.
(焼結工程)
 次に、焼結工程において、前駆体膜に光を照射し、前駆体膜中の酸化銅粒子(A)を還元及び融着させることによって、導電膜を形成する。
 光を照射すること(以下これを光照射処理ともいう)により、酸化銅粒子(A)中の酸化銅が還元され、さらに融着して金属銅が得られる。より具体的には、酸化銅が還元されて金属銅粒子が形成され、生成した金属銅粒子が互いに融着してグレインを形成し、さらにグレイン同士が接着・融着して銅を含有する導電性薄膜を形成する。
 光照射処理は、室温にて塗膜が付与された部分に対して光を短時間照射することで金属銅への還元および焼結が可能となり、長時間の加熱による基材の劣化が起こらず、導電膜の基材との密着性がより良好となる。
(Sintering process)
Next, in the sintering step, the precursor film is irradiated with light, and the conductive film is formed by reducing and fusing the copper oxide particles (A) in the precursor film.
By irradiating with light (hereinafter also referred to as light irradiation treatment), the copper oxide in the copper oxide particles (A) is reduced and further fused to obtain metallic copper. More specifically, copper oxide is reduced to form metallic copper particles, the produced metallic copper particles are fused together to form grains, and the grains are bonded and fused together to contain copper. Forming a conductive thin film.
Light irradiation treatment enables reduction and sintering to metallic copper by irradiating light at a room temperature for a short time to the part to which the coating film is applied, and does not cause deterioration of the substrate due to prolonged heating. The adhesion of the conductive film to the base material becomes better.
 光照射処理で使用される光源は特に制限されず、例えば、水銀灯、メタルハライドランプ、キセノンランプ、ケミカルランプ、カーボンアーク灯等がある。放射線としては、電子線、X線、イオンビーム、遠赤外線などがある。また、g線、i線、Deep-UV光、高密度エネルギービーム(レーザービーム)も使用される。
 具体的な態様としては、赤外線レーザーによる走査露光、キセノン放電灯などの高照度フラッシュ露光、赤外線ランプ露光などが好適に挙げられる。
The light source used in the light irradiation treatment is not particularly limited, and examples thereof include a mercury lamp, a metal halide lamp, a xenon lamp, a chemical lamp, and a carbon arc lamp. Examples of radiation include electron beams, X-rays, ion beams, and far infrared rays. Also, g-line, i-line, deep-UV light, and high-density energy beam (laser beam) are used.
Specific examples of preferred embodiments include scanning exposure with an infrared laser, high-illuminance flash exposure such as a xenon discharge lamp, and infrared lamp exposure.
 光照射は、フラッシュランプによる光照射が好ましく、パルス光照射(例:Xeフラッシュランプによるパルス光照射)であることがより好ましい。高エネルギーのパルス光の照射は、塗膜を付与した部分の表面を、極めて短い時間で集中して加熱することができるため、基材への熱の影響を極めて小さくすることができる。
 パルス光の照射エネルギーとしては、0.5~100J/cm2が好ましく、1~30J/cm2がより好ましく、1~10J/cm2がさらに好ましい。なお本発明において、光照射を複数回行った場合の照射エネルギーは、各光照射の照射エネルギーの合計とする。
 パルス幅としては1マイクロ秒~100ミリ秒が好ましく、10マイクロ秒~10ミリ秒がより好ましく、0.1ミリ秒~2ミリ秒がさらに好ましい。
The light irradiation is preferably light irradiation with a flash lamp, and more preferably pulsed light irradiation (eg, pulsed light irradiation with a Xe flash lamp). Irradiation with high-energy pulsed light can concentrate and heat the surface of the portion to which the coating film has been applied in a very short time, so that the influence of heat on the substrate can be extremely reduced.
The irradiation energy of the pulse light is preferably 0.5 ~ 100J / cm 2, more preferably 1 ~ 30J / cm 2, more preferably 1 ~ 10J / cm 2. In the present invention, the irradiation energy when light irradiation is performed a plurality of times is the sum of the irradiation energy of each light irradiation.
The pulse width is preferably 1 microsecond to 100 milliseconds, more preferably 10 microseconds to 10 milliseconds, and further preferably 0.1 milliseconds to 2 milliseconds.
 光照射処理は、フラッシュランプを用いて、1回以上行えばよいが、パルス幅2ミリ秒以下で2回以上行うのが好ましい態様の1つとして挙げられる。
 光照射の回数は、2~10回が好ましく、2~4回がより好ましい。
The light irradiation treatment may be performed once or more using a flash lamp, but it is preferable to perform the light irradiation treatment twice or more with a pulse width of 2 milliseconds or less.
The number of times of light irradiation is preferably 2 to 10 times, and more preferably 2 to 4 times.
 光照射処理を実施する雰囲気は特に制限されず、大気雰囲気下、不活性雰囲気下、または還元性雰囲気下などが挙げられる。なお、不活性雰囲気とは、例えば、アルゴン、ヘリウム、ネオン、窒素等の不活性ガスで満たされた雰囲気であり、また、還元性雰囲気とは、水素、一酸化炭素等の還元性ガスが存在する雰囲気を指す。 The atmosphere for performing the light irradiation treatment is not particularly limited, and examples thereof include an air atmosphere, an inert atmosphere, and a reducing atmosphere. The inert atmosphere is, for example, an atmosphere filled with an inert gas such as argon, helium, neon, or nitrogen, and the reducing atmosphere is a reducing gas such as hydrogen or carbon monoxide. Refers to the atmosphere.
[導電膜]
 上記工程を実施することにより、金属銅を含有する導電膜(金属銅膜)が得られる。
 導電膜の膜厚は特に制限されず、使用される用途に応じて適宜最適な膜厚が調整される。なかでも、薄膜トランジスタ用途の点からは、0.8μm以下が好ましく、0.05~0.3μmがより好ましい。
 なお、膜厚は、導電膜の任意の点における厚みを3箇所以上測定し、その値を算術平均して得られる値(平均値)である。
 導電膜の体積抵抗率は、導電特性の点から、100μΩ・cm未満が好ましく、40μΩ・cm未満がより好ましい。
 体積抵抗率は、導電膜の表面抵抗値を四探針法にて測定後、得られた表面抵抗率に膜厚を乗算することで算出することができる。
[Conductive film]
By carrying out the above steps, a conductive film (metal copper film) containing metal copper is obtained.
The film thickness of the conductive film is not particularly limited, and an optimum film thickness is appropriately adjusted according to the intended use. Among these, from the viewpoint of thin film transistor use, 0.8 μm or less is preferable, and 0.05 to 0.3 μm is more preferable.
The film thickness is a value (average value) obtained by measuring three or more thicknesses at arbitrary points on the conductive film and arithmetically averaging the values.
The volume resistivity of the conductive film is preferably less than 100 μΩ · cm, and more preferably less than 40 μΩ · cm from the viewpoint of conductive characteristics.
The volume resistivity can be calculated by multiplying the obtained surface resistivity by the film thickness after measuring the surface resistivity of the conductive film by the four-probe method.
 本発明において、導電膜を基材にパターン状に設けることができる。パターン状の導電膜は、プリント配線基板などの導体配線(配線)として有用である。 In the present invention, the conductive film can be provided in a pattern on the substrate. The patterned conductive film is useful as a conductor wiring (wiring) such as a printed wiring board.
 パターン状の導電膜を多層配線基板として構成する場合、パターン状の導電膜の表面に、さらに絶縁層(絶縁樹脂層、層間絶縁膜、ソルダーレジスト)を積層して、その表面にさらなる配線(金属パターン)を形成してもよい。 When a patterned conductive film is configured as a multilayer wiring board, an insulating layer (insulating resin layer, interlayer insulating film, solder resist) is further laminated on the surface of the patterned conductive film, and further wiring (metal) is formed on the surface. Pattern) may be formed.
 上記絶縁層の材料は特に制限されないが、例えば、エポキシ樹脂、ガラスエポキシ樹脂、アラミド樹脂、結晶性ポリオレフィン樹脂、非晶性ポリオレフィン樹脂、フッ素含有樹脂(ポリテトラフルオロエチレン、全フッ素化ポリイミド、全フッ素化アモルファス樹脂など)、ポリイミド樹脂、ポリエーテルスルフォン樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルエーテルケトン樹脂、液晶樹脂、ポリビニルフェノール、ポリビニルフェノールとメラミン樹脂の架橋物など挙げられる。
 これらの中でも、密着性の観点から、エポキシ樹脂、ポリイミド樹脂、またはポリビニルフェノールとメラミン樹脂の架橋物を含有するものであることが好ましい。具体的には、味の素ファインテクノ(株)製、ABF GX-13などが挙げられる。
The material of the insulating layer is not particularly limited. For example, epoxy resin, glass epoxy resin, aramid resin, crystalline polyolefin resin, amorphous polyolefin resin, fluorine-containing resin (polytetrafluoroethylene, perfluorinated polyimide, perfluorinated) Amorphous resin), polyimide resin, polyether sulfone resin, polyphenylene sulfide resin, polyether ether ketone resin, liquid crystal resin, polyvinyl phenol, a crosslinked product of polyvinyl phenol and melamine resin, and the like.
Among these, from the viewpoint of adhesion, an epoxy resin, a polyimide resin, or a crosslinked product of polyvinylphenol and a melamine resin is preferable. Specific examples include ABF GX-13 manufactured by Ajinomoto Fine Techno Co., Ltd.
 上記で得られた導電膜を有する基材(導電膜付き基材)は、種々の用途に使用することができる。例えば、プリント配線基板、TFT、FPC、RFIDなどが挙げられる。 The base material (base material with a conductive film) having the conductive film obtained above can be used for various applications. For example, a printed wiring board, TFT, FPC, RFID, etc. are mentioned.
 本発明の導電膜形成用組成物の好適態様の一つとして、本発明の導電膜の製造方法に用いられる導電膜形成用組成物であり、
 平均一次粒子径が50nm以下の酸化第二銅粒子と、
 ポリエチレングリコール、グリセリン及びトリメチロールプロパンからなる群から選ばれる少なくとも1種と、
 沸点100℃未満の有機溶媒(C)と、
 水とを含み、
 酸化銅粒子(A)の含有量が、酸化銅粒子(A)と化合物(B)との合計量中の50質量%以上95質量%以下であり、
 有機溶媒(C)の含有量が、導電膜形成用組成物の全量中の10%以上である、導電膜形成用組成物が挙げられる。該組成物であれば、上述した反転印刷法により好適に使用できる。
One preferred embodiment of the composition for forming a conductive film of the present invention is a composition for forming a conductive film used in the method for producing a conductive film of the present invention,
Cupric oxide particles having an average primary particle size of 50 nm or less;
At least one selected from the group consisting of polyethylene glycol, glycerin and trimethylolpropane;
An organic solvent (C) having a boiling point of less than 100 ° C.,
Including water,
The content of the copper oxide particles (A) is 50% by mass or more and 95% by mass or less in the total amount of the copper oxide particles (A) and the compound (B),
The composition for electrically conductive film formation whose content of an organic solvent (C) is 10% or more in the whole quantity of the composition for electrically conductive film formation is mentioned. If it is this composition, it can be conveniently used by the reverse printing method mentioned above.
 本発明の組成物において、平均一次粒子径が50nm以下の酸化第二銅粒子の態様は、上述の通りである。ポリエチレングリコール、グリセリン、トリメチロールプロパン、沸点100℃未満の有機溶媒(C)、水も同様である。 In the composition of the present invention, the aspect of the cupric oxide particles having an average primary particle diameter of 50 nm or less is as described above. The same applies to polyethylene glycol, glycerin, trimethylolpropane, organic solvent (C) having a boiling point of less than 100 ° C., and water.
 ポリエチレングリコール、グリセリン及びトリメチロールプロパンからなる群から選ばれる少なくとも1種の含有量は、酸化銅粒子(A)の全量に対して6質量%以上100質量%以下であるのが好ましい。
 本発明の組成物はポリエチレングリコールを含み、ポリエチレングリコールの含有量が、酸化第二銅粒子の全量に対して50質量%未満であるのが好ましく、4質量%以上50質量%未満であるのがより好ましい。
 本発明の組成物はグリセリン及び/又はトリメチロールプロパンを含み、グリセリン及び/又はトリメチロールプロパンの含有量が酸化第二銅粒子の全量に対して100質量%以下であるのが好ましく、100質量%未満であるのがより好ましく、1質量%以上50質量%未満であるのが更に好ましく、10質量%以上30質量%未満であるのが特に好ましい。
 本発明の組成物はポリエチレングリコールとグリセリン及び/又はトリメチロールプロパンをと含み、ポリエチレングリコールの含有量が酸化第二銅粒子の全量に対して50質量%未満であり、グリセリン及び/又はトリメチロールプロパンの含有量が酸化第二銅粒子の全量に対して50質量%未満であるのが好ましい態様の1つとして挙げられる。
 また、ポリエチレングリコールとグリセリン及び/又はトリメチロールプロパンとを含み、ポリエチレングリコールの含有量が酸化第二銅粒子の全量に対して4質量%以上50質量%未満であり、グリセリン及び/又はトリメチロールプロパンの含有量が酸化第二銅粒子の全量に対して10質量%以上30質量%未満であり、更に周期律表の8族~11族からなる群から選択される少なくとも1種の金属元素を含む金属触媒(E)を含み、金属触媒(E)の量が酸化第二銅粒子の全量に対して0.1質量%以上8質量%未満であるのが好ましい態様の1つとして挙げられる。
The content of at least one selected from the group consisting of polyethylene glycol, glycerin and trimethylolpropane is preferably 6% by mass or more and 100% by mass or less based on the total amount of the copper oxide particles (A).
The composition of the present invention contains polyethylene glycol, and the content of polyethylene glycol is preferably less than 50% by mass with respect to the total amount of cupric oxide particles, and is preferably 4% by mass or more and less than 50% by mass. More preferred.
The composition of the present invention contains glycerin and / or trimethylolpropane, and the content of glycerin and / or trimethylolpropane is preferably 100% by mass or less based on the total amount of cupric oxide particles, and is 100% by mass. More preferably, it is more preferably 1% by mass or more and less than 50% by mass, and particularly preferably 10% by mass or more and less than 30% by mass.
The composition of the present invention contains polyethylene glycol and glycerin and / or trimethylolpropane, and the content of polyethylene glycol is less than 50% by mass with respect to the total amount of cupric oxide particles, and glycerin and / or trimethylolpropane. The content of is preferably less than 50% by mass with respect to the total amount of cupric oxide particles.
Moreover, it contains polyethylene glycol and glycerin and / or trimethylolpropane, and the content of polyethylene glycol is 4% by mass or more and less than 50% by mass with respect to the total amount of cupric oxide particles, and glycerin and / or trimethylolpropane. The content of is 10% by mass or more and less than 30% by mass with respect to the total amount of cupric oxide particles, and further contains at least one metal element selected from the group consisting of Groups 8 to 11 of the periodic table One preferred embodiment includes the metal catalyst (E) and the amount of the metal catalyst (E) is 0.1% by mass or more and less than 8% by mass with respect to the total amount of the cupric oxide particles.
 本発明の導電膜形成用組成物は、更に、界面活性剤(D)、高分子化合物(ポリアルキレングリコールを除く。)を含むことができる。界面活性剤(D)、高分子化合物は上記と同様である。 The conductive film-forming composition of the present invention can further contain a surfactant (D) and a polymer compound (excluding polyalkylene glycol). The surfactant (D) and the polymer compound are the same as described above.
 以下、実施例により、本発明についてさらに詳細に説明するが、本発明はこれらに限定されない。 Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these.
<酸化銅分散体aの調製>
 酸化第二銅粒子(シーアイ化成(株)製、NanoTek CuO、平均一次粒子径(48nm))45質量部と、イオン交換水55質量部とを混合し、レディーミル分散機(アイメックス社製のビーズミル分散機)を用いて、ビーズ径0.05mmφのジルコニアビーズにより、平均粒子径が130nm以下になるまで分散し、酸化銅分散体を得た。得られた酸化銅分散体を酸化銅分散体aとする。上記平均粒子径は、マルバーン社製のゼータサイザーナノを用いて測定した。測定用の液は、酸化銅分散体の濃度が0.1質量%となるようにイオン交換水で希釈して作製した。なお、この平均粒子径は、1次粒子径ではなく、2次粒子径を意味する。またこの平均粒子径は、体積平均粒子径である。具体的にはナノトラック粒度分布測定装置 UPA-EX150 (日機装(株)社製)が測定に使用された。酸化銅分散体aは凝集物を含む。
<Preparation of copper oxide dispersion a>
45 parts by mass of cupric oxide particles (Cai Kasei Co., Ltd., NanoTek CuO, average primary particle size (48 nm)) and 55 parts by mass of ion-exchanged water were mixed, and a ready mill disperser (bead mill manufactured by IMEX Co., Ltd.) was mixed. Using a disperser), dispersion was performed with zirconia beads having a bead diameter of 0.05 mmφ until the average particle diameter became 130 nm or less to obtain a copper oxide dispersion. Let the obtained copper oxide dispersion be the copper oxide dispersion a. The average particle size was measured using a Zetasizer Nano manufactured by Malvern. The liquid for measurement was prepared by diluting with ion-exchanged water so that the concentration of the copper oxide dispersion was 0.1% by mass. In addition, this average particle diameter means not a primary particle diameter but a secondary particle diameter. Moreover, this average particle diameter is a volume average particle diameter. Specifically, Nanotrac particle size distribution analyzer UPA-EX150 (manufactured by Nikkiso Co., Ltd.) was used for the measurement. The copper oxide dispersion a contains aggregates.
<導電膜形成用組成物の製造>
 下記表1~2に示される成分を同表に示される配合量(質量%)で混合し、スターラーで10分間攪拌処理することで導電膜形成用組成物を調製した。なお、表中の酸化銅粒子(A)の量は、酸化銅分散体aに含まれる固形分(凝集物を含む。)の量であり、酸化銅粒子の量そのものである。
<Manufacture of the composition for electrically conductive film formation>
The components shown in Tables 1 and 2 below were mixed in the blending amounts (mass%) shown in the same table, and the mixture was stirred for 10 minutes with a stirrer to prepare a conductive film forming composition. In addition, the quantity of the copper oxide particle (A) in a table | surface is the quantity of solid content (an aggregate is included) contained in the copper oxide dispersion a, and is the quantity of copper oxide particle itself.
<転写性評価用導電膜の製造>
・塗膜形成工程
 上記のとおり製造した導電膜形成用組成物を焼結後の導電膜の厚みが表1及び2に記載の厚みとなるよう仮支持体(シリコーンブランケット)上にバー塗布して、塗膜を有する仮支持体を形成した。
<Manufacture of conductive film for transferability evaluation>
-Coating-film formation process Bar coating is applied on a temporary support (silicone blanket) so that the thickness of the conductive film after sintering the conductive film-forming composition produced as described above becomes the thickness described in Tables 1 and 2. A temporary support having a coating film was formed.
・乾燥工程
 上記のとおり形成された仮支持体を、23℃で60秒乾燥させた。
-Drying process The temporary support body formed as mentioned above was dried at 23 degreeC for 60 second.
・除去工程
 凸部を有するガラスの版(L/S=20μm/20μmの細線の凸部を有する版)を用いて、凸部を、上記のとおりにして得られた仮支持体上の塗膜へ押し当てた。次いで、ガラス版を仮支持体から離して塗膜の不要部分を仮支持体から除去し、L/S=20μm/20μmの細線(パターン)を仮支持体上に形成した。
Removal step Using a glass plate having projections (L / S = 20 μm / 20 μm fine-line projections), the projections on the temporary support obtained as described above were coated on the temporary support. Pressed against. Next, the glass plate was separated from the temporary support, unnecessary portions of the coating film were removed from the temporary support, and fine lines (patterns) of L / S = 20 μm / 20 μm were formed on the temporary support.
・転写工程
 次いで、上記のとおり細線が形成された仮支持体に被転写体となる基材を軽く押し付け仮支持体上のパターンを基材へ転写した。
 表1の組成物に対して使用された基材はポリイミド(カプトン500H、東レ・デュポン社製。以下同様。)である。
 表2の組成物に対して使用された基材はポリイミド(カプトン500H)上にポリビニルフェノールの架橋物である絶縁膜層を500nm膜厚で形成した基材である。
 上記ポリビニルフェノールの架橋物である絶縁膜層は、次のとおり作製された。まず、ポリ(4-ビニルフェノール)(日本曹達製、商品名VP-8000)9.1g、メラミン架橋剤(三和ケミカル製、商品名 ニカラックMW-100LM)3.9g)及び1-ブタノールとエタノールとの1:1混合物87gを混合して溶解し混合液を得た。次いで、基材をUV照射した後、この基材に上記のとおり得られた混合液をスピンコートで塗布し、180℃1時間加熱処理して基材の上にポリビニルフェノールの架橋物である絶縁膜層を作製した。
-Transfer process Next, the substrate to be transferred was lightly pressed against the temporary support on which the fine lines were formed as described above, and the pattern on the temporary support was transferred to the substrate.
The base material used for the compositions in Table 1 is polyimide (Kapton 500H, manufactured by Toray DuPont, the same applies hereinafter).
The base material used for the composition of Table 2 is a base material in which an insulating film layer, which is a crosslinked product of polyvinylphenol, is formed on a polyimide (Kapton 500H) with a thickness of 500 nm.
The insulating film layer, which is a cross-linked product of the polyvinylphenol, was produced as follows. First, 9.1 g of poly (4-vinylphenol) (manufactured by Nippon Soda, trade name VP-8000), melamine crosslinking agent (trade name: Nikalac MW-100LM, 3.9 g) by 1-butanol and ethanol Were mixed and dissolved to obtain a mixed solution. Next, after UV irradiation of the base material, the mixed liquid obtained as described above was applied to the base material by spin coating, and heat treatment was performed at 180 ° C. for 1 hour to insulate the base material as a crosslinked product of polyvinylphenol. A film layer was prepared.
・焼結工程
 上記のとおり得られた基材を23℃で60分乾燥させた後、これに対してXenon社製光焼結装置Sinteron2000を用いて、パルス光照射処理を行い、導電膜を製造し、観察した。上記パルス光照射処理においては、各表に示すパルス幅と照射回数とした場合に、光照射エネルギーが各表に記した光照射のエネルギーの量になるよう、ランプとサンプルの距離、コンデンサの充電電圧を調節して行った。照射回数が複数である場合、光照射のエネルギーの量は各光照射のエネルギーの合計量である。
-Sintering process After the base material obtained as described above was dried at 23 ° C for 60 minutes, this was subjected to pulsed light irradiation treatment using a Xenon light sintering apparatus Sinteron 2000 to produce a conductive film. And observed. In the above pulsed light irradiation process, when the pulse width and the number of irradiations shown in each table are used, the distance between the lamp and the sample and the capacitor charge so that the light irradiation energy becomes the amount of light irradiation energy described in each table. This was done by adjusting the voltage. When the number of times of irradiation is plural, the amount of light irradiation energy is the total amount of light irradiation energy.
<導電性評価用導電膜の製造>
 転写性評価用導電膜の製造で用いたものと同じ導電膜形成用組成物を、焼結後の導電膜の厚みが表1及び2に記載の厚みとなるよう仮支持体上にバー塗布し、23℃で60秒乾燥させた後、除去工程を経ずに上記転写工程と同様に基材に転写し、上記転写性評価用導電膜の製造における焼結工程と同様の方法でパルス光照射処理を行い、導電膜を製造した。
<Manufacture of conductive film for conductivity evaluation>
The same composition for forming a conductive film as that used in the manufacture of the conductive film for evaluation of transferability was bar-coated on the temporary support so that the thickness of the conductive film after sintering was the thickness described in Tables 1 and 2. , Dried at 23 ° C. for 60 seconds, transferred to the substrate in the same manner as in the transfer step without passing through the removal step, and irradiated with pulsed light in the same manner as in the sintering step in the production of the conductive film for evaluation of transferability. The process was performed and the electrically conductive film was manufactured.
<評価>
 上記のとおり製造された各導電膜を用いて以下の評価を行った。結果を各表に示す。
(導電性評価)
 導電性評価用導電膜の作製において製造された各導電膜について、四探針法抵抗計を用いて体積抵抗率を測定した。測定された体積抵抗率から、以下の基準に基づき、導電性を評価した。実用上、A~Dであることが好ましい。
・「A」:体積抵抗率が15μΩ・cm未満であった場合、導電性の評価結果をAと表示した。
・「B」:体積抵抗率が15μΩ・cm以上40μΩ・cm未満であった場合、導電性の評価結果をBと表示した。
・「C」:体積抵抗率が40μΩ・cm以上100μΩ・cm未満であった場合、導電性の評価結果をCと表示した。
・「D」:体積抵抗率が100μΩ・cm以上500μΩ・cm未満であった場合、導電性の評価結果をDと表示した。
・「E」:体積抵抗率が500μΩ・cm以上であった場合、導電性の評価結果をEと表示した。
<Evaluation>
The following evaluation was performed using each electrically conductive film manufactured as mentioned above. The results are shown in each table.
(Conductivity evaluation)
About each electrically conductive film manufactured in preparation of the electrically conductive film for electroconductivity evaluation, the volume resistivity was measured using the four-probe method resistance meter. From the measured volume resistivity, conductivity was evaluated based on the following criteria. Practically, it is preferably A to D.
“A”: When the volume resistivity was less than 15 μΩ · cm, the conductivity evaluation result was indicated as A.
“B”: When the volume resistivity was 15 μΩ · cm or more and less than 40 μΩ · cm, the evaluation result of conductivity was indicated as B.
“C”: When the volume resistivity was 40 μΩ · cm or more and less than 100 μΩ · cm, the evaluation result of conductivity was indicated as C.
“D”: When the volume resistivity was 100 μΩ · cm or more and less than 500 μΩ · cm, the conductivity evaluation result was indicated as D.
“E”: When the volume resistivity was 500 μΩ · cm or more, the evaluation result of conductivity was indicated as E.
(導電膜の欠陥)
 導電性評価用導電膜の作製において製造された各導電膜のうちの任意の0.25mm2(縦0.5mm、横0.5mm)の面積を、光学顕微鏡を用いて倍率450倍で観察した。当該0.25mm2の面積内における欠陥の大きさを以下の基準に基づき評価した。実用上、A~Bであることが好ましい。
・「A」:欠陥がなかった、又は、5μmφ未満の大きさの欠陥はあったが5μmφ以上の大きさの欠陥がなかった場合、導電膜の欠陥の評価結果をAと表示した。
・「B」:5μmφ以上20μmφ未満の大きさの欠陥はあったが、20μmφ以上の大きさの欠陥がなかった場合、導電膜の欠陥の評価結果をBと表示した。
・「C」:20μmφ以上の欠陥があった場合、導電膜の欠陥の評価結果をCと表示した。
(Defects in conductive film)
The area of any 0.25 mm 2 (0.5 mm length, 0.5 mm width) among the respective conductive films produced in the production of the conductive film for conductivity evaluation was observed at a magnification of 450 times using an optical microscope. . The size of the defect within the area of 0.25 mm 2 was evaluated based on the following criteria. Practically, it is preferably A to B.
“A”: When there was no defect or a defect with a size of less than 5 μmφ but no defect with a size of 5 μmφ or more, the evaluation result of the defect of the conductive film was indicated as A.
“B”: When there was a defect with a size of 5 μmφ or more and less than 20 μmφ, but there was no defect with a size of 20 μmφ or more, the evaluation result of the defect of the conductive film was indicated as B.
“C”: When there was a defect of 20 μmφ or more, the evaluation result of the defect of the conductive film was indicated as C.
(転写性)
 転写性評価用導電膜において細線が形成された基板のうちの任意の0.25mm2(縦0.5mm、横0.5mm)の面積を、光学顕微鏡を用いて倍率450倍で観察した。当該0.25mm2の面積内における転写性を以下の基準に基づき評価した。実用上、A~Cであることが好ましい。
・「A」:細線の転写率がほぼ100%であった場合、転写性の評価結果をAと表示した。
・「B」:細線の転写率が90%以上であった場合、転写性の評価結果をBと表示した。
・「C」:細線の転写率が70%以上90%未満であった場合、転写性の評価結果をCと表示した。
・「D」:細線の転写率が70%未満であるか、又は導電膜が細線形状をなしていなかった場合、転写性の評価結果をDと表示した。
(Transferability)
An arbitrary area of 0.25 mm 2 (0.5 mm length, 0.5 mm width) of the substrate on which fine lines were formed in the conductive film for transferability evaluation was observed at a magnification of 450 times using an optical microscope. The transferability within the 0.25 mm 2 area was evaluated based on the following criteria. Practically, it is preferably A to C.
“A”: When the transfer rate of fine lines was almost 100%, the evaluation result of transferability was indicated as A.
“B”: When the transfer rate of fine lines was 90% or more, the transferability evaluation result was indicated as B.
“C”: When the transfer rate of the thin line was 70% or more and less than 90%, the evaluation result of transferability was indicated as C.
“D”: When the transfer rate of thin lines was less than 70%, or when the conductive film was not in the form of thin lines, the transferability evaluation result was indicated as D.
Figure JPOXMLDOC01-appb-T000001

 
Figure JPOXMLDOC01-appb-T000001

 
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 各表に示す成分の詳細は以下のとおりである。
・酸化第二銅(A):上記のとおり調製した酸化銅分散体a
・ポリエチレングリコール(Mw:1000)、ポリエチレングリコール(Mw:4000)、ポリエチレングリコール(Mw:20000):「ポリエチレングリコール1000」、「ポリエチレングリコール4000」、「ポリエチレングリコール8000」、「ポリエチレングリコール20000」。いずれも和光純薬工業(株)社製である。表中のMwは重量平均分子量を示す。
・グリセリン:(沸点:290℃)
・トリメチロールプロパン(沸点:292℃)
・エタノール(沸点:78℃)
・アセトン(沸点:56℃)
・界面活性剤(D):オルフィンE1010、日信化学工業(株)社製
・1,2-ヘキサンジオール:沸点223-224℃
・酢酸パラジウム:(CH3COO)2Pd
・ポリビニルピロリドン(Mw.58000):Alfa Aesar社製である。
Details of the components shown in each table are as follows.
Cupric oxide (A): Copper oxide dispersion a prepared as described above
Polyethylene glycol (Mw: 1000), polyethylene glycol (Mw: 4000), polyethylene glycol (Mw: 20000): “polyethylene glycol 1000”, “polyethylene glycol 4000”, “polyethylene glycol 8000”, “polyethylene glycol 20000”. All are manufactured by Wako Pure Chemical Industries, Ltd. Mw in a table | surface shows a weight average molecular weight.
・ Glycerin: (boiling point: 290 ° C.)
・ Trimethylolpropane (boiling point: 292 ° C)
・ Ethanol (boiling point: 78 ° C)
Acetone (boiling point: 56 ° C)
Surfactant (D): Olfine E1010, manufactured by Nissin Chemical Industry Co., Ltd. 1,2-hexanediol: boiling point 223-224 ° C.
Palladium acetate: (CH 3 COO) 2 Pd
Polyvinylpyrrolidone (Mw. 58000): manufactured by Alfa Aesar.
 各表に示す結果から明らかなように、本発明の導電膜の製造方法、本発明の導電膜形成用組成物を使用した場合、転写性に優れると共に、導電性に優れ、欠陥が少ない導電膜を形成することができることが確認された。また、欠陥が生じたとしてもその大きさが小さいことが確認された。 As is clear from the results shown in the tables, when the method for producing a conductive film of the present invention and the composition for forming a conductive film of the present invention are used, the conductive film has excellent transferability, excellent conductivity, and few defects. It was confirmed that can be formed. Moreover, even if a defect arises, it was confirmed that the magnitude | size is small.
 なかでも、実施例1、4を比較すると、化合物(B)としてポリエチレングリコールを使用する場合、転写性に優れると共に、導電性により優れ、導電膜の欠陥がより少ないこと又は欠陥が生じたとしてもその大きさが小さいことが確認された。
 実施例1、2、3を比較すると、化合物(B)としてポリエチレングリコールとトリメチロールプロパンまたはグリセリンとを併用する場合、導電性、転写性により優れることが確認された。
 実施例1、6、7を比較すると、化合物(B)としてポリエチレングリコールの重量平均分子量が大きいほど、転写性により優れることが確認された。
Especially, when Examples 1 and 4 are compared, when polyethylene glycol is used as the compound (B), it is excellent in transferability, excellent in conductivity, even if there are fewer defects or defects in the conductive film. It was confirmed that the size was small.
When Examples 1, 2, and 3 were compared, it was confirmed that when polyethylene glycol and trimethylolpropane or glycerin were used in combination as the compound (B), the conductivity and transferability were superior.
When Examples 1, 6, and 7 were compared, it was confirmed that the higher the weight average molecular weight of polyethylene glycol as the compound (B), the better the transferability.
 実施例12、13、14を比較すると、導電膜形成用組成物がさらに金属触媒(E)を含む場合、導電性により優れることが確認された。 When Examples 12, 13, and 14 were compared, it was confirmed that when the composition for forming a conductive film further contained a metal catalyst (E), it was more excellent in conductivity.
 これに対して、化合物(B)を含まない比較例1は、転写性、導電性が劣ることが確認された。酸化銅粒子(A)の含有量が、酸化銅粒子(A)と化合物(B)の合計量中の50質量%以上95質量%以下では無い比較例2、3は実施例1と比べて転写性、導電性が劣り、導電膜の欠陥が大きいことが確認された。
 有機溶媒(C)を導電性組成物の全量中10質量%以上含まない比較例4は、転写性に劣ることが確認された。
 化合物(B)を含まず有機化合物の沸点が100℃以上250℃未満である比較例5は、導電性が劣ることが確認された。
On the other hand, it was confirmed that Comparative Example 1 containing no compound (B) was inferior in transferability and conductivity. Comparative Examples 2 and 3 in which the content of the copper oxide particles (A) is not 50 mass% or more and 95 mass% or less in the total amount of the copper oxide particles (A) and the compound (B) are transferred as compared with Example 1. It was confirmed that the conductivity and conductivity were inferior and the conductive film had large defects.
It was confirmed that Comparative Example 4 which does not contain 10% by mass or more of the organic solvent (C) in the total amount of the conductive composition was inferior in transferability.
It was confirmed that the comparative example 5 which does not contain a compound (B) and the boiling point of an organic compound is 100 degreeC or more and less than 250 degreeC is inferior in electroconductivity.
 1 塗膜を有する仮支持体
 3 パターンを有する仮支持体
 5 基材
 10 仮支持体
 12 導電膜形成用組成物、塗膜
 14 抜き版
 16 凸部
 18 部分
 20 パターン
 22 基材
DESCRIPTION OF SYMBOLS 1 Temporary support body which has coating film 3 Temporary support body which has pattern 5 Base material 10 Temporary support body 12 Composition for electrically conductive film formation, Coating film 14 Extraction plate 16 Convex part 18 Part 20 Pattern 22 Base material

Claims (17)

  1.  酸化銅粒子(A)と、沸点が250℃以上であり1分子当たり少なくとも1つのヒドロキシ基を有する有機化合物及びポリアルキレングリコールからなる群から選択される少なくとも1種の化合物(B)と、沸点100℃未満の有機溶媒(C)とを含む導電膜形成用組成物を仮支持体上に付与して、塗膜を形成する塗膜形成工程と、
     前記塗膜の一部を除去する除去工程と、
     前記仮支持体上の残存する前記塗膜を基材上に転写して、導電膜の前駆体膜を形成する転写工程と、
     前記前駆体膜に光を照射し前記前駆体膜中の酸化銅粒子(A)を還元及び融着させることによって、導電膜を形成する焼結工程とを備え、
     前記酸化銅粒子(A)の含有量が、前記酸化銅粒子(A)と前記化合物(B)との合計量中の50質量%以上95質量%以下であり、
     前記有機溶媒(C)の含有量が、前記導電膜形成用組成物の全量中の10質量%以上である、導電膜の製造方法。
    Copper oxide particles (A), at least one compound (B) selected from the group consisting of an organic compound having a boiling point of 250 ° C. or higher and having at least one hydroxy group per molecule and polyalkylene glycol, and a boiling point of 100 A coating film forming step of forming a coating film by applying a composition for forming a conductive film containing an organic solvent (C) of less than ° C. on a temporary support;
    A removal step of removing a part of the coating film;
    A transfer step of transferring the remaining coating film on the temporary support onto a substrate to form a precursor film of a conductive film;
    A process of forming a conductive film by irradiating the precursor film with light and reducing and fusing the copper oxide particles (A) in the precursor film,
    The content of the copper oxide particles (A) is 50% by mass or more and 95% by mass or less in the total amount of the copper oxide particles (A) and the compound (B),
    The manufacturing method of an electrically conductive film whose content of the said organic solvent (C) is 10 mass% or more in the whole quantity of the said composition for electrically conductive film formation.
  2.  前記導電膜形成用組成物が、さらに界面活性剤(D)を含む、請求項1に記載の導電膜の製造方法。 The method for producing a conductive film according to claim 1, wherein the composition for forming a conductive film further contains a surfactant (D).
  3.  前記酸化銅粒子(A)が酸化第二銅であり、前記酸化銅粒子(A)の平均一次粒子径が100nm以下である、請求項1又は2に記載の導電膜の製造方法。 The method for producing a conductive film according to claim 1 or 2, wherein the copper oxide particles (A) are cupric oxide, and the average primary particle diameter of the copper oxide particles (A) is 100 nm or less.
  4.  前記沸点が250℃以上であり1分子当たり少なくとも1つのヒドロキシ基を有する有機化合物が、1分子当たり2つ又は3つのヒドロキシ基を有する、請求項1~3のいずれか1項に記載の導電膜の製造方法。 The conductive film according to any one of claims 1 to 3, wherein the organic compound having a boiling point of 250 ° C or higher and having at least one hydroxy group per molecule has two or three hydroxy groups per molecule. Manufacturing method.
  5.  前記化合物(B)の含有量が、前記酸化銅粒子(A)の全量に対して6質量%以上100質量%以下である、請求項1~4のいずれか1項に記載の導電膜の製造方法。 The production of the conductive film according to any one of claims 1 to 4, wherein the content of the compound (B) is 6% by mass or more and 100% by mass or less with respect to the total amount of the copper oxide particles (A). Method.
  6.  前記化合物(B)が、ポリエチレングリコール、グリセリン及びトリメチロールプロパンからなる群から選ばれる少なくとも1種を含む、請求項1~5のいずれか1項に記載の導電膜の製造方法。 The method for producing a conductive film according to any one of claims 1 to 5, wherein the compound (B) contains at least one selected from the group consisting of polyethylene glycol, glycerin and trimethylolpropane.
  7.  前記化合物(B)が、ポリエチレングリコールと、グリセリン及び/又はトリメチロールプロパンとを含む、請求項1~6のいずれか1項に記載の導電膜の製造方法。 The method for producing a conductive film according to any one of claims 1 to 6, wherein the compound (B) comprises polyethylene glycol and glycerin and / or trimethylolpropane.
  8.  前記ポリエチレングリコールの含有量が前記酸化銅粒子(A)の全量に対して4質量%以上50質量%未満であり、前記グリセリン及び/又は前記トリメチロールプロパンの合計量が前記酸化銅粒子(A)の全量に対して10質量%以上30質量%未満である、請求項7に記載の導電膜の製造方法。 The polyethylene glycol content is 4% by mass or more and less than 50% by mass with respect to the total amount of the copper oxide particles (A), and the total amount of the glycerin and / or the trimethylolpropane is the copper oxide particles (A). The manufacturing method of the electrically conductive film of Claim 7 which is 10 to less than 30 mass% with respect to the whole quantity.
  9.  前記ポリエチレングリコールの重量平均分子量が3000以上である、請求項6~8のいずれか1項に記載の導電膜の製造方法。 The method for producing a conductive film according to any one of claims 6 to 8, wherein the polyethylene glycol has a weight average molecular weight of 3000 or more.
  10.  前記導電膜形成用組成物が、更に、周期律表の8族~11族からなる群から選択される少なくとも1種の金属元素を含む金属触媒(E)を含む、請求項1~9のいずれか1項に記載の導電膜の製造方法。 10. The conductive film forming composition further comprises a metal catalyst (E) containing at least one metal element selected from the group consisting of groups 8 to 11 of the periodic table. The manufacturing method of the electrically conductive film of Claim 1.
  11.  前記導電膜形成用組成物が更に水を含む、請求項1~10のいずれか1項に記載の導電膜の形成方法。 The method for forming a conductive film according to any one of claims 1 to 10, wherein the composition for forming a conductive film further contains water.
  12.  前記基材が、樹脂基材である、請求項1~11のいずれか1項に記載の導電膜の製造方法。 The method for producing a conductive film according to any one of claims 1 to 11, wherein the substrate is a resin substrate.
  13.  前記基材がその表面に、厚み0.1μm以上1.5μm以下の絶縁膜層を有する、請求項1~12のいずれか1項に記載の導電膜の製造方法。 13. The method for producing a conductive film according to claim 1, wherein the substrate has an insulating film layer having a thickness of 0.1 μm or more and 1.5 μm or less on the surface thereof.
  14.  前記焼結工程において、前記光の照射を、パルス光を用いて、パルス幅2ミリ秒以下で2回以上行う、請求項1~13のいずれか1項に記載の導電膜の製造方法。 The method for manufacturing a conductive film according to any one of claims 1 to 13, wherein, in the sintering step, the light irradiation is performed twice or more using pulsed light with a pulse width of 2 milliseconds or less.
  15.  請求項1~14のいずれか1項に記載の導電膜の製造方法に用いられる導電膜形成用組成物であり、
     平均一次粒子径が50nm以下の酸化第二銅粒子と、
     ポリエチレングリコール、グリセリン及びトリメチロールプロパンからなる群から選ばれる少なくとも1種と、
     沸点100℃未満の有機溶媒(C)と、
     水とを含み、
     前記酸化銅粒子(A)の含有量が、前記酸化銅粒子(A)と前記化合物(B)との合計量中の50質量%以上95質量%以下であり、
     前記有機溶媒(C)の含有量が、前記導電膜形成用組成物の全量中の10質量%以上である、導電膜形成用組成物。
    A composition for forming a conductive film used in the method for producing a conductive film according to any one of claims 1 to 14,
    Cupric oxide particles having an average primary particle size of 50 nm or less;
    At least one selected from the group consisting of polyethylene glycol, glycerin and trimethylolpropane;
    An organic solvent (C) having a boiling point of less than 100 ° C.,
    Including water,
    The content of the copper oxide particles (A) is 50% by mass or more and 95% by mass or less in the total amount of the copper oxide particles (A) and the compound (B),
    The composition for electrically conductive film formation whose content of the said organic solvent (C) is 10 mass% or more in the whole quantity of the said composition for electrically conductive film formation.
  16.  前記ポリエチレングリコールと前記グリセリン及び/又は前記トリメチロールプロパンとを含み、前記ポリエチレングリコールの含有量が前記酸化第二銅粒子の全量に対して4質量%以上50質量%未満であり、前記グリセリン及び/又は前記トリメチロールプロパンの含有量が前記酸化第二銅粒子の全量に対して10質量%以上30質量%未満であり、更に周期律表の8族~11族からなる群から選択される少なくとも1種の金属元素を含む金属触媒(E)を含み、前記金属触媒(E)の量が前記酸化第二銅粒子の全量に対して0.1質量%以上8質量%未満である、請求項15に記載の導電膜形成用組成物。 The polyethylene glycol and the glycerin and / or the trimethylolpropane, wherein the content of the polyethylene glycol is 4% by mass or more and less than 50% by mass with respect to the total amount of the cupric oxide particles. Or the content of the trimethylolpropane is 10% by mass or more and less than 30% by mass with respect to the total amount of the cupric oxide particles, and at least one selected from the group consisting of Groups 8 to 11 of the periodic table The metal catalyst (E) containing a seed metal element, wherein the amount of the metal catalyst (E) is 0.1% by mass or more and less than 8% by mass with respect to the total amount of the cupric oxide particles. The composition for electrically conductive film formation of description.
  17.  更に界面活性剤(D)を含む、請求項15又は16に記載の導電膜形成用組成物。 The composition for forming a conductive film according to claim 15 or 16, further comprising a surfactant (D).
PCT/JP2015/054571 2014-03-31 2015-02-19 Method for producing conductive film and composition for forming conductive film WO2015151628A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-073622 2014-03-31
JP2014073622A JP6016842B2 (en) 2014-03-31 2014-03-31 Method for producing conductive film and composition for forming conductive film

Publications (1)

Publication Number Publication Date
WO2015151628A1 true WO2015151628A1 (en) 2015-10-08

Family

ID=54239964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054571 WO2015151628A1 (en) 2014-03-31 2015-02-19 Method for producing conductive film and composition for forming conductive film

Country Status (3)

Country Link
JP (1) JP6016842B2 (en)
TW (1) TW201610224A (en)
WO (1) WO2015151628A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016136409A1 (en) * 2015-02-27 2016-09-01 富士フイルム株式会社 Composition for forming conductive film and method for producing conductive film

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102438513B1 (en) * 2016-04-22 2022-08-31 포항공과대학교 산학협력단 Manufacturing method of a flexible film formed metal patterns
JP7077261B2 (en) * 2019-03-26 2022-05-30 三菱製紙株式会社 Substrate for transfer
JP2020029020A (en) * 2018-08-22 2020-02-27 三菱製紙株式会社 Method of manufacturing pattern transfer material
WO2019225286A1 (en) * 2018-05-25 2019-11-28 三菱製紙株式会社 Pattern-transferred object manufacturing method
JP7144229B2 (en) * 2018-07-24 2022-09-29 三菱製紙株式会社 METHOD FOR MANUFACTURING METALLIC PATTERN TRANSFER
JP2019206164A (en) * 2018-05-25 2019-12-05 三菱製紙株式会社 Method for manufacturing pattern transcript
WO2020067011A1 (en) * 2018-09-25 2020-04-02 日産化学株式会社 Ink composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010528428A (en) * 2007-05-18 2010-08-19 アプライド・ナノテック・ホールディングス・インコーポレーテッド Metal ink
WO2012115475A2 (en) * 2011-02-25 2012-08-30 한화케미칼 주식회사 Conductive ink composition for offset or reverse-offset printing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010528428A (en) * 2007-05-18 2010-08-19 アプライド・ナノテック・ホールディングス・インコーポレーテッド Metal ink
WO2012115475A2 (en) * 2011-02-25 2012-08-30 한화케미칼 주식회사 Conductive ink composition for offset or reverse-offset printing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016136409A1 (en) * 2015-02-27 2016-09-01 富士フイルム株式会社 Composition for forming conductive film and method for producing conductive film
JPWO2016136409A1 (en) * 2015-02-27 2017-09-28 富士フイルム株式会社 Conductive film forming composition and conductive film manufacturing method

Also Published As

Publication number Publication date
JP6016842B2 (en) 2016-10-26
JP2015196841A (en) 2015-11-09
TW201610224A (en) 2016-03-16

Similar Documents

Publication Publication Date Title
JP6016842B2 (en) Method for producing conductive film and composition for forming conductive film
EP2952546B1 (en) Composition for forming electrically conductive film, and method for producing electrically conductive film
JP2020019963A (en) Dispersion
US20150194235A1 (en) Method of manufacturing conductive film and composition for forming conductive film
CN107113981B (en) Substrate for printed wiring board and method for manufacturing substrate for printed wiring board
TWI505296B (en) Conductive film forming method and sintering promoter
KR20140134304A (en) Liquid composition, metal film, conductive wiring line, and method for producing metal film
KR20140134305A (en) Liquid composition, copper metal film, conductive wiring line, and method for producing copper metal film
JP6543921B2 (en) Conductive substrate
TWI772428B (en) Manufacturing method of conductive ink and conductive substrate
JP2014175240A (en) Composition for forming electrically conductive film, and method for producing electrically conductive film using the same
WO2016047306A1 (en) Process for producing film of metal oxide particles and process for producing metal film
JP2017073415A (en) Base material for printed wiring board, printed wiring board and electronic component
JP5905845B2 (en) Method for manufacturing conductive film and conductive film
JP2015141752A (en) Conductive film-forming composition and method for producing conductive film
JP6410278B2 (en) Conductive film forming composition and conductive film manufacturing method
TWI401301B (en) Sintering composition and sintering method
JP2015144089A (en) Method for producing conductive film
JP2014044907A (en) Composition for forming conductive film and method for producing conductive film
JP2016160453A (en) Conductive film formation composition and method for manufacturing conductive film using the same
JP2012174375A (en) Method for producing conductive coating film and conductive coating film
JP4746897B2 (en) Printed circuit board wiring method and printed circuit board product
JPWO2016031404A1 (en) Conductive film forming composition and method for producing conductive film using the same
JP6718780B2 (en) Kit, method, and substrate for manufacturing printed wiring board
TWI481327B (en) Method for manufacturing a conductive circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15772212

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15772212

Country of ref document: EP

Kind code of ref document: A1