WO2015151458A1 - Onboard system and onboard program - Google Patents

Onboard system and onboard program Download PDF

Info

Publication number
WO2015151458A1
WO2015151458A1 PCT/JP2015/001667 JP2015001667W WO2015151458A1 WO 2015151458 A1 WO2015151458 A1 WO 2015151458A1 JP 2015001667 W JP2015001667 W JP 2015001667W WO 2015151458 A1 WO2015151458 A1 WO 2015151458A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
inter
time
unit
distance
Prior art date
Application number
PCT/JP2015/001667
Other languages
French (fr)
Japanese (ja)
Inventor
哲郎 足立
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2015151458A1 publication Critical patent/WO2015151458A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects

Definitions

  • the present disclosure relates to an in-vehicle system and an in-vehicle program that perform a predetermined operation according to the distance between the host vehicle and a preceding vehicle.
  • Patent Document 1 discloses a method of using the lane width (white line) as known information and measuring the inter-vehicle distance based on the lane width of the place where the preceding vehicle is located.
  • Patent Document 2 discloses a technique for measuring a distance between vehicles based on the size of a license plate using a license plate of a preceding vehicle.
  • Patent Document 3 discloses a method of measuring an inter-vehicle distance based on the principle of triangulation using two (a pair of left and right) optical systems.
  • Patent Document 4 discloses a method of measuring the inter-vehicle distance based on the principle of triangulation using two cameras.
  • TTC Timesionto ⁇ ⁇ Collision
  • Patent Document 5 as an index of collision risk, TTC (Timesionto ⁇ ⁇ Collision) indicating the time from the current time until the vehicle collides with the preceding vehicle is calculated, and according to the inter-vehicle distance.
  • TTC Timesionto ⁇ ⁇ Collision
  • JP-A-7-77421 JP 61-219825 A Japanese Patent Laid-Open No. 3-195916 JP 2000-266539 A JP 2012-98776 A
  • Patent Document 1 the lane width may be different between a general road and an expressway, and there is a possibility that the inter-vehicle distance is erroneously measured.
  • Patent Document 2 when the number plate of the preceding vehicle cannot be recognized, the inter-vehicle distance cannot be measured.
  • Patent Documents 3 and 4 two optical systems and cameras are required, and the structure is complicated.
  • Patent Document 5 although the inter-vehicle distance can be measured without requiring a complicated structure as much as Patent Documents 1 to 4, it is not assumed that the speed of either the host vehicle or the preceding vehicle has changed. Therefore, there is a problem that when one of the own vehicle and the preceding vehicle changes in speed, the predetermined operation cannot be appropriately performed according to the inter-vehicle distance.
  • An object of the present invention is to provide an in-vehicle system and an in-vehicle program that can appropriately perform a predetermined operation in accordance with an inter-vehicle distance from a vehicle to a preceding vehicle.
  • the on-vehicle system of an example of the present disclosure includes an inter-vehicle distance measurement unit, a collision expected time calculation unit, a time change monitoring unit, and an operation control unit.
  • the inter-vehicle distance measurement unit measures the inter-vehicle distance from the host vehicle to the preceding vehicle.
  • the predicted collision time calculation unit calculates a predicted collision time when the inter-vehicle distance is zero.
  • the time change monitoring unit monitors the time change of the inter-vehicle distance based on the time change of the predicted collision time calculated by the predicted collision time calculation unit.
  • the operation control unit controls a predetermined operation performed by the operation unit based on the relationship between the inter-vehicle distance measured by the inter-vehicle distance measurement unit and the time change of the inter-vehicle distance monitored by the time change monitoring unit.
  • the own vehicle and the preceding vehicle travel at a constant speed and the speed of the own vehicle is faster than the speed of the preceding vehicle, the own vehicle approaches the preceding vehicle.
  • the speed difference between the speed of the own vehicle and the speed of the preceding vehicle is constant, the change in the inter-vehicle distance from the own vehicle to the preceding vehicle is constant. Therefore, the predicted collision time at which the inter-vehicle distance is zero is constant (does not change) with any time as a reference.
  • the predicted collision time changes with the passage of time.
  • the temporal change in the inter-vehicle distance is monitored based on the temporal change in the predicted collision time. And based on the relationship between the measured inter-vehicle distance and the time change of the inter-vehicle distance being monitored, the predetermined operation performed by the operation unit is controlled. That is, if the inter-vehicle distance monitoring the time change is larger than the measured inter-vehicle distance, it is determined that the possibility of collision is relatively small. On the other hand, if the inter-vehicle distance is smaller than the measured inter-vehicle distance, the possibility of collision is determined.
  • a predetermined operation such as notifying a warning or controlling the behavior of the vehicle is performed.
  • a predetermined operation is appropriately performed according to the distance between the own vehicle and the preceding vehicle, regardless of which of the own vehicle and the preceding vehicle changes the speed without requiring a complicated configuration. be able to.
  • An in-vehicle program includes a first procedure for measuring an inter-vehicle distance from the host vehicle to a preceding vehicle and a second procedure for calculating an estimated collision time at which the inter-vehicle distance is zero. And a third procedure for monitoring the temporal change of the inter-vehicle distance based on the temporal change of the predicted collision time calculated by the second procedure, and the inter-vehicle distance measured by the first procedure and the third procedure.
  • This is an in-vehicle program that executes a fourth procedure for controlling a predetermined operation performed by the operation unit (4 to 6) based on the relationship with the time change of the inter-vehicle distance.
  • the in-vehicle program may be stored in a non-temporary storage medium.
  • FIG. 1 is a functional block diagram illustrating an embodiment.
  • FIG. 2 is a diagram illustrating the principle of measuring the inter-vehicle distance.
  • FIG. 3 is a diagram illustrating the influence due to the difference in length of the object to be imaged.
  • FIG. 4 is a diagram illustrating the relationship between the length x of the camera image and the distance Z with respect to shooting objects having different lengths.
  • FIG. 5 is a diagram showing changes in the inter-vehicle distance.
  • FIG. 6 is a diagram showing a change in the inter-vehicle distance when both the host vehicle and the preceding vehicle are traveling at a constant speed.
  • FIG. 1 is a functional block diagram illustrating an embodiment.
  • FIG. 2 is a diagram illustrating the principle of measuring the inter-vehicle distance.
  • FIG. 3 is a diagram illustrating the influence due to the difference in length of the object to be imaged.
  • FIG. 4 is a diagram illustrating the relationship between the length x of the camera image and the distance
  • FIG. 7 is a diagram showing a change in allowable time when both the host vehicle and the preceding vehicle are traveling at a constant speed.
  • FIG. 8 is a diagram illustrating an example of a change in the inter-vehicle distance according to a change in the speed of the host vehicle or the preceding vehicle.
  • FIG. 9 is a diagram illustrating another example of the change in the inter-vehicle distance according to the change in the speed of the host vehicle or the preceding vehicle.
  • FIG. 10 is a diagram illustrating a classification of changes in the inter-vehicle distance.
  • FIG. 11 is a diagram illustrating an example of prediction of a change in the inter-vehicle distance.
  • FIG. 12 is a diagram illustrating another example of prediction of a change in the inter-vehicle distance.
  • FIG. 13 is a first flowchart.
  • FIG. 14 is a second flowchart.
  • FIG. 15 is a third flowchart.
  • FIG. 16 is a fourth flowchart
  • a vehicle equipped with the in-vehicle system 1 is the own vehicle, and a vehicle traveling in front of the own vehicle is a preceding vehicle.
  • the in-vehicle system 1 includes a camera 2 (imaging unit, imaging unit), a control unit 3 (control unit), a display unit 4 (display unit), a sound output unit 5 (sound output unit), and a vehicle behavior control unit 6. (Vehicle behavior control means, operation section, operation means).
  • the camera 2 is a single-lens camera.
  • the camera 2 is a CCD (Charge Coupled Device) image sensor that captures the front of the host vehicle, acquires a captured image at a frame period of a predetermined number of seconds (for example, 1/10 second), and acquires the captured image. Is output to the control unit 3.
  • the camera 2 may be a CMOS (Complementary Metal Metal Oxide Semiconductor) image sensor.
  • the display unit 4 is an example of an operation unit, an operation unit, a notification unit, and a notification unit.
  • the sound output unit 5 is an example of an operation unit, an operation unit, a notification unit, and a notification unit.
  • the control unit 3 is mainly composed of a microcomputer having a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
  • the control unit 3 controls the overall operation of the in-vehicle system 1 by the CPU executing a control program (including the in-vehicle program) stored in the ROM.
  • the control unit 3 includes an inter-vehicle distance measuring unit 3a (an inter-vehicle distance measuring unit), an image size calculating unit 3b (an image size calculating unit), and an estimated collision time calculating unit 3c (an estimated collision time calculating unit). ),
  • a time change monitoring unit 3d time change monitoring means
  • an operation control unit 3e operation control means).
  • the image size calculation unit 3b, the predicted collision time calculation unit 3c, the time change monitoring unit 3d, the inter-vehicle distance measurement unit 3a, and the motion control unit 3e are configured by software.
  • the inter-vehicle distance measuring unit 3a measures the inter-vehicle distance from the host vehicle to the preceding vehicle.
  • the image size calculation unit 3 b calculates the image size of the preceding vehicle that occupies the captured image acquired by the camera 2.
  • the predicted collision time calculation unit 3c uses the image size calculated by the image size calculation unit 3b and the shooting time when the camera 2 shots the front of the host vehicle, and the speed of the host vehicle and the speed of the preceding vehicle at the shooting time. When the host vehicle continues to travel at a relative speed that is a difference from the above, a predicted collision time at which the inter-vehicle distance from the host vehicle to the preceding vehicle becomes zero is calculated.
  • the time change monitoring unit 3d monitors the time change of the inter-vehicle distance from the host vehicle to the preceding vehicle based on the time change of the predicted collision time calculated by the predicted collision time calculation unit 3c. Based on the relationship between the inter-vehicle distance measured by the inter-vehicle distance measuring unit 3a and the time change of the inter-vehicle distance monitored by the time change monitoring unit 3d, the operation control unit 3e displays the display unit 4, the sound output unit 5, and the vehicle behavior. The operation of the control unit 6 is controlled.
  • the display unit 4 displays various screens such as a warning screen (draws) based on the input display command signal.
  • the sound output unit 5 outputs various sounds such as a warning sound based on the input sound output command signal.
  • the vehicle behavior control unit 6 controls various vehicle behaviors such as brake control based on the input vehicle behavior command signal.
  • each term is defined as follows.
  • 2W 0 Length of object to be photographed (vehicle width of preceding vehicle) Z 1 , Z 2 : Distance from the origin O (the center of the lens of the camera 2) to the object to be photographed (distance between the vehicles) 2x 1: origin O distance to the object to be shot from the length of the shooting target on the CCD imaging plane when the "Z 1" (the vehicle width of the preceding vehicle) length equivalent camera image 2x 2: Origin The length of the camera image corresponding to the length of the object to be photographed on the CCD image plane (vehicle width of the preceding vehicle) when the distance from O to the object to be photographed is “Z 2 ” R x , R y : CCD Resolution in the x and y directions ⁇ x , ⁇ y : CCD viewing angle on the x and y axes l: Distance from the origin O to the CCD image plane In this case, the distance from the origin O to the CCD image plane is ,
  • Fig. 3 shows the effect of the vehicle width difference of the preceding vehicle.
  • Each term is defined as follows.
  • the length of the image on the CCD image plane of the other imaging object length (2W 2 ) is set to the length of the image on the CCD image plane of the reference imaging object length (2W 1 ).
  • the inter-vehicle distance can be measured under the same conditions regardless of the length (size) of the subject.
  • Equation (18) is expressed as follows: a size x (t ⁇ t) and x (t) when an arbitrary object changes on the screen of the camera 2 in a unit time ⁇ t from time (t ⁇ t) to t.
  • TTC Time to Collision
  • FIG. 6 shows the change in the inter-vehicle distance when both the host vehicle and the preceding vehicle are traveling at a constant speed, and the host vehicle is approaching the preceding vehicle
  • FIG. 7 shows the change in TTC.
  • Va own vehicle speed
  • Vb own vehicle speed
  • Z inter-vehicle distance
  • both the own vehicle and the preceding vehicle are traveling at a constant speed and the preceding vehicle is traveling at a speed slower than the own vehicle, the own vehicle Approaches the preceding car.
  • the speed difference between the speed of the own vehicle and the speed of the preceding vehicle is constant, the change in the inter-vehicle distance from the own vehicle to the preceding vehicle is constant.
  • both the own vehicle and the preceding vehicle do not always travel at a constant speed.
  • t p when either the speed of the host vehicle and the preceding vehicle has changed.
  • both the vehicle and the preceding vehicle is traveling at a constant speed of t p value when either of the (own speed of the vehicle speed> the preceding vehicle) of the vehicle or the preceding vehicle starts accelerating or decelerating
  • the change is shown in FIG.
  • a straight line passing through the two points BA indicates a case where both the host vehicle and the preceding vehicle are traveling at a constant speed.
  • the change in the inter-vehicle distance is always constant, is a t p is constant.
  • a straight line passing through the two points BA 1 indicates a case where the host vehicle starts to decelerate or a preceding vehicle starts to accelerate. In this case, the change in distance between the vehicles, since both the vehicle and the preceding vehicle becomes smaller than when the vehicle travels at a constant speed (constant-speed traveling), t p is a value greater than the constant-speed running Become.
  • a straight line passing through the two points BA 2 indicates a case where the host vehicle starts to accelerate or a preceding vehicle starts to decelerate. In this case, the change in distance between the vehicles, since larger than during constant speed running, t p becomes smaller than the constant-speed running.
  • the inter-vehicle distance Change is not constant. Specifically, if the inter-vehicle distances at (t ⁇ 2 ⁇ t), (t ⁇ t) and t are Z (t ⁇ 2 ⁇ t), Z (t ⁇ t) and Z (t), The relationship shown in FIG. Less than, (1) When the host vehicle approaches the preceding vehicle and starts decelerating (2) The case where the host vehicle starts decelerating after the preceding vehicle starts decelerating will be sequentially described.
  • T p in this case refers to a certain time.
  • FIG. 11 shows the prediction of the change in the inter-vehicle distance when the host vehicle approaches the preceding vehicle and starts deceleration.
  • equation (26) if deceleration is started so that the following relational expression is established in the section AB, a safe inter-vehicle distance can be secured.
  • FIG. 12 shows a prediction of a change in the inter-vehicle distance when the host vehicle starts decelerating after the preceding vehicle starts decelerating.
  • Z A at 2 + c (29)
  • Z B [Z A (0) ⁇ Z A (t 1 )] (t t c ) 2 / t 1 2 (33)
  • dZ A / dt 2 [Z A (t 1 ) ⁇ Z A (0)] t / t 1 2
  • dZ B / dt 2 [Z A (0) ⁇ Z A (t 1 )] (tt c ) / t 1 2 ...
  • the host vehicle If the host vehicle is decelerated so as to satisfy Z (t) ⁇ Z B (t) in the section of t c / 2 ⁇ t ⁇ t c , it reaches a stop (or the same speed) state without colliding with the preceding vehicle. be able to.
  • a safe inter-vehicle distance can be secured by starting deceleration so that the following expression (48) or (49) is satisfied from the expression (32). It is possible to continue.
  • a safe inter-vehicle distance can be secured by starting deceleration so that the equation (32) or the following equation (50) is satisfied. .
  • the control part 3 is related to this embodiment, and performs a collision determination process regularly with a predetermined period.
  • the control unit 3 performs initial setting (S1) and determines whether or not the engine is stopped (S2). If it is determined that the engine is not stopped (running) (S2: NO), the controller 3 determines whether ⁇ T seconds have elapsed ( ⁇ T seconds have passed) or not (S3). If the controller 3 determines that it is ⁇ T seconds later (S3: YES), it inputs (captures) a captured image from the camera 3 (S4). And the control part 3 detects a preceding vehicle in the input picked-up image (S5), and determines whether a preceding vehicle exists in the picked-up image (S6). When the control unit 3 determines that there is no preceding vehicle in the captured image (S6: NO), the control unit 3 returns to step S1 described above, and repeatedly executes step S1 and subsequent steps.
  • the control unit 3 determines whether or not the following first relationship is established (S9).
  • control part 3 determines with the 1st relationship not being materialized (S9: NO), it will return to above-described step S1.
  • control unit 3 determines whether or not the following second relationship is established (S10).
  • Control unit 3 when both the host vehicle and the preceding vehicle is determined to be traveling at a constant speed, it is determined whether the already calculated t c (S12). Control unit 3 determines that not been calculated t c (S12: NO), (14) or (18) time using equation t, calculates a t p in (t- ⁇ t) (S13) . Then, the control unit 3 calculates the time from the current time up to t p where the calculated, compares the time and limit time from the current time of the calculated until t p (S14). The limit time is the maximum time that can wait for warning notification.
  • Control unit 3 when the time from the current time until t p is determined not less than the critical hours (S14: NO), a normal range can afford the inter-vehicle distance, is a possibility that the vehicle will collide with the preceding vehicle It determines with it being relatively low, outputs the signal of a normal range (S15), and returns to above-mentioned step S2.
  • the control unit 3 when the time from the current time until t p is determined to be equal to or less than the limit hours (S14: YES), there is no margin in the inter-vehicle distance, a possibility that the vehicle will collide with the preceding vehicle relative Is determined to be high, an approach warning signal is output (S16), and the process returns to step S2.
  • control unit 3 outputs an approaching caution display command signal indicating that the host vehicle is approaching the preceding vehicle to the display unit 4, and outputs an approaching caution sound output command signal to the sound output unit 5.
  • the process returns to step S2.
  • the display unit 4 displays a warning screen when a display command signal for approaching attention is input from the control unit 3.
  • the sound output unit 5 outputs a warning sound when receiving a display command signal for approaching attention from the control unit 3. Thereby, it is possible to notify the driver that the possibility that the host vehicle will collide with the preceding vehicle is relatively high.
  • the control unit 3 determines whether the following third relationship is established (S11). Z (t ⁇ 2 ⁇ t) + Z (t)> 2Z (t ⁇ t) (third relation)
  • the controller 3 determines that the preceding vehicle is traveling at a constant speed and that the host vehicle has started to decelerate. The control unit 3 determines the preceding vehicle is traveling at a constant speed, when it is determined that the vehicle has started decelerating, whether it is already calculated t p (S17).
  • Control unit 3 determines that not been calculated t p (S17: NO), determines whether the already calculated t c (S18). Control unit 3 determines that not been calculated t c (S18: NO), (13) or (18) time using equation t, calculates a t p in (t- ⁇ t) (S19) (Second procedure).
  • the control unit 3 determines whether the expression (27) or (28) is established at the current time t (S20) (third procedure). When it is determined that the expression (27) or (28) is established at the current time t (S20: YES), the control unit 3 determines that it is in the normal range, and outputs a signal in the normal range (S21). Return to step S2. On the other hand, when the control unit 3 determines that the equations (27) and (28) are not satisfied at the current time t (S20: NO), the control unit 3 determines that the possibility that the host vehicle collides with the preceding vehicle is relatively high. Then, an approach warning signal is output (S22) (fourth procedure), and the process returns to step S2.
  • the display unit 4 displays a warning screen when the display instruction signal for approaching attention is input from the control unit 3.
  • the sound output unit 5 outputs a warning sound when receiving a display command signal for approaching attention from the control unit 3. Thereby, it is possible to notify the driver that the possibility that the host vehicle will collide with the preceding vehicle is relatively high.
  • control unit 3 determines that the preceding vehicle starts decelerating and the host vehicle is traveling at a constant speed.
  • Control unit 3 the preceding vehicle starts decelerating, the vehicle is determined to be traveling at a constant speed, it is determined whether the already calculated t c (S23).
  • Control unit 3 determines that not been calculated t c (S23: NO), the following relation determines whether satisfied (S24).
  • Control unit 3 determines that the relationship is satisfied (S24: YES), obtains the t c using (41) Equation (S25). Next, the control unit 3 determines whether or not t 1 ⁇ t ⁇ t c / 2 is satisfied (S26). If it is determined that t 1 ⁇ t ⁇ t c / 2 is not satisfied (S26: NO), the control unit 3 determines whether t c / 2 ⁇ t ⁇ t c is satisfied (S27).
  • Control unit 3 determines that t c / 2 ⁇ t ⁇ t c is satisfied (S27: YES), (44) or (47) determines whether the expression is satisfied (S28). When it is determined that the formula (44) or the formula (47) is established (S28: YES), the control unit 3 determines that the range is in the normal range, outputs a signal in the normal range (S29), and returns to step S2 described above. . On the other hand, if the control unit 3 determines that neither the formula (44) nor the formula (47) is established (S28: NO), the control unit 3 determines that the possibility that the host vehicle collides with the preceding vehicle is relatively high, and approaches. A caution signal is output (S30), and the process returns to step S2.
  • the display unit 4 displays a warning screen when the display instruction signal for approaching attention is input from the control unit 3.
  • the sound output unit 5 outputs a warning sound when receiving a display command signal for approaching attention from the control unit 3. Thereby, it is possible to notify the driver that the possibility that the host vehicle will collide with the preceding vehicle is relatively high.
  • the controller 3 determines whether or not the expression (48) or (49) is satisfied (S31). When it is determined that the formula (48) or the formula (49) is established (S31: YES), the control unit 3 determines that the range is in the normal range, outputs a signal in the normal range (S29), and returns to step S2 described above. On the other hand, if the control unit 3 determines that neither the formula (48) nor the formula (49) is established (S31: NO), the control unit 3 determines that the possibility that the host vehicle collides with the preceding vehicle is relatively high, and approaches.
  • a caution signal is output (S30), and the process returns to step S2. Also in this case, the display unit 4 displays a warning screen when the display instruction signal for approaching attention is input from the control unit 3.
  • the sound output unit 5 outputs a warning sound when receiving a display command signal for approaching attention from the control unit 3. Thereby, it is possible to notify the driver that the possibility that the host vehicle will collide with the preceding vehicle is relatively high.
  • the expected collision time changes as time elapses.
  • the time change of the inter-vehicle distance is monitored based on the time change.
  • the notification operation is controlled based on the relationship between the measured inter-vehicle distance and the time variation of the monitored inter-vehicle distance. That is, if the inter-vehicle distance monitoring the time change is larger than the measured inter-vehicle distance, it is determined that the possibility of collision is relatively small. On the other hand, if the inter-vehicle distance is smaller than the measured inter-vehicle distance, the possibility of collision is determined.
  • the notification operation is appropriately performed according to the inter-vehicle distance from the own vehicle to the preceding vehicle regardless of which of the own vehicle and the preceding vehicle changes the speed without requiring a complicated configuration. be able to.
  • Embodiments are not limited to the above-described embodiments, but include embodiments modified or expanded as follows.
  • the inter-vehicle distance may be measured using a two-lens camera or a distance measuring sensor such as a radar. That is, the estimated collision time when the distance between vehicles measured using a distance measuring sensor such as a two-lens camera or a radar is zero is calculated, and the time variation of the distance between vehicles is monitored based on the time variation of the calculated estimated collision time. You may do it.
  • the display unit 4 displays a warning screen and the sound output unit 5 outputs a warning sound as a predetermined operation.
  • vehicle control such as brake control may be performed so that the vehicle behavior control unit 6 avoids a collision.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Traffic Control Systems (AREA)

Abstract

This onboard system (1) is equipped with: an inter-vehicle distance measurement section (3a) that measures an inter-vehicle distance to a preceding vehicle from the host vehicle; an anticipated collision time calculation section (3b) that calculates an anticipated collision time at which the inter-vehicle distance becomes zero; a temporal change monitoring section (3d) that monitors temporal changes in the inter-vehicle distance on the basis of temporal changes in the anticipated collision time calculated by the anticipated collision time calculation section; and an operation control section (3e) for controlling predetermined operations to be performed by operation units (4-6) on the basis of the relationship between the inter-vehicle distance measured by the inter-vehicle distance measurement section and the temporal changes in the inter-vehicle distance being monitored by the temporal change monitoring section.

Description

車載システム及び車載プログラムIn-vehicle system and in-vehicle program 関連出願の相互参照Cross-reference of related applications
 本出願は、2014年3月31日に出願された日本国特許出願2014-72297号に基づくものであり、この開示をここに参照により援用する。 This application is based on Japanese Patent Application No. 2014-72297 filed on March 31, 2014, the disclosure of which is incorporated herein by reference.
 本開示は、自車両から先行車までの車間距離に応じて所定動作を行う車載システム及び車載プログラムに関する。 The present disclosure relates to an in-vehicle system and an in-vehicle program that perform a predetermined operation according to the distance between the host vehicle and a preceding vehicle.
 従来より、自車両から先行車までの車間距離を計測し、その計測した車間距離に応じて例えば警告を報知する等の所定動作を行う車載システムが供されている。車間距離を計測する手法として、特許文献1には、車線幅(白線)を既知の情報として用い、先行車が位置する場所の車線幅に基づいて車間距離を計測する手法が開示されている。特許文献2には、先行車のナンバープレートを用い、ナンバープレートのサイズに基づいて車間距離を計測する手法が開示されている。特許文献3には、2つの(左右一対の)光学系を用い、三角測量の原理により車間距離を計測する手法が開示されている。特許文献4には、2つのカメラを用い、三角測量の原理により車間距離を計測する手法が開示されている。又、特許文献5には、衝突リスクの指標として、現在の時刻から自車両が先行車に衝突するまでの時間を示すTTC(Time to Collision、衝突余裕時間)を算出し、車間距離に応じて所定動作を行う構成が開示されている。 2. Description of the Related Art Conventionally, an in-vehicle system that measures a distance between a host vehicle and a preceding vehicle and performs a predetermined operation such as, for example, a warning according to the measured distance between vehicles is provided. As a method of measuring the inter-vehicle distance, Patent Document 1 discloses a method of using the lane width (white line) as known information and measuring the inter-vehicle distance based on the lane width of the place where the preceding vehicle is located. Patent Document 2 discloses a technique for measuring a distance between vehicles based on the size of a license plate using a license plate of a preceding vehicle. Patent Document 3 discloses a method of measuring an inter-vehicle distance based on the principle of triangulation using two (a pair of left and right) optical systems. Patent Document 4 discloses a method of measuring the inter-vehicle distance based on the principle of triangulation using two cameras. In Patent Document 5, as an index of collision risk, TTC (Timesionto 示 す Collision) indicating the time from the current time until the vehicle collides with the preceding vehicle is calculated, and according to the inter-vehicle distance. A configuration for performing a predetermined operation is disclosed.
特開平7-77421号公報JP-A-7-77421 特開昭61-219825号公報JP 61-219825 A 特開平3-195916号公報Japanese Patent Laid-Open No. 3-195916 特開2000-266539号公報JP 2000-266539 A 特開2012-98776号公報JP 2012-98776 A
 上述の技術に関し本願発明者は、以下を見出した。
特許文献1では、一般道路と高速道路とでは車線幅が異なる場合があり、車間距離を誤って計測する可能性がある。特許文献2では、先行車のナンバープレートを認識することができない場合には車間距離を計測することができない。特許文献3や4では、2つの光学系やカメラが必要となり、構造が複雑である。特許文献5では、特許文献1から4ほど複雑な構成を必要とせずに車間距離を計測可能であるが、自車両及び先行車のうちどちらかの速度が変化した場合を想定していない。そのため、自車両及び先行車のうちどちらかの速度が変化すると、車間距離に応じて所定動作を適切に行うことができないという問題がある。
The inventor of the present application has found the following regarding the above-described technique.
In Patent Document 1, the lane width may be different between a general road and an expressway, and there is a possibility that the inter-vehicle distance is erroneously measured. In Patent Document 2, when the number plate of the preceding vehicle cannot be recognized, the inter-vehicle distance cannot be measured. In Patent Documents 3 and 4, two optical systems and cameras are required, and the structure is complicated. In Patent Document 5, although the inter-vehicle distance can be measured without requiring a complicated structure as much as Patent Documents 1 to 4, it is not assumed that the speed of either the host vehicle or the preceding vehicle has changed. Therefore, there is a problem that when one of the own vehicle and the preceding vehicle changes in speed, the predetermined operation cannot be appropriately performed according to the inter-vehicle distance.
 本開示は、上記した事情に鑑みてなされたものであり、その目的は、複雑な構成を必要とすることなく、自車両及び先行車のうちどちらが速度を変化させた場合であっても、自車両から先行車までの車間距離に応じて所定動作を適切に行うことができる車載システム及び車載プログラムを提供することにある。 The present disclosure has been made in view of the above-described circumstances, and the object thereof is not to require a complicated configuration, and whichever of the own vehicle and the preceding vehicle changes the speed. An object of the present invention is to provide an in-vehicle system and an in-vehicle program that can appropriately perform a predetermined operation in accordance with an inter-vehicle distance from a vehicle to a preceding vehicle.
 本開示の一例の車載システムは、車間距離計測部と、衝突予想時刻算出部と、時間変化監視部と、動作制御部と、を備える。車間距離計測部は、自車両から先行車までの車間距離を計測する。衝突予想時刻算出部は、車間距離がゼロとなる衝突予想時刻を算出する。時間変化監視部は、衝突予想時刻算出部により算出された衝突予想時刻の時間変化に基づいて車間距離の時間変化を監視する。動作制御部は、車間距離計測部により計測された車間距離と時間変化監視部により監視されている車間距離の時間変化との関係に基づいて、動作部が行う所定動作を制御する。 The on-vehicle system of an example of the present disclosure includes an inter-vehicle distance measurement unit, a collision expected time calculation unit, a time change monitoring unit, and an operation control unit. The inter-vehicle distance measurement unit measures the inter-vehicle distance from the host vehicle to the preceding vehicle. The predicted collision time calculation unit calculates a predicted collision time when the inter-vehicle distance is zero. The time change monitoring unit monitors the time change of the inter-vehicle distance based on the time change of the predicted collision time calculated by the predicted collision time calculation unit. The operation control unit controls a predetermined operation performed by the operation unit based on the relationship between the inter-vehicle distance measured by the inter-vehicle distance measurement unit and the time change of the inter-vehicle distance monitored by the time change monitoring unit.
 自車両及び先行車の双方が定速で走行し、自車両の速度が先行車の速度よりも速い場合には、自車両が先行車に近づく。このとき、自車両の速度と先行車の速度との速度差が一定であるので、自車両から先行車までの車間距離の変化は一定となる。そのため、車間距離がゼロとなる衝突予想時刻はどの時刻を基準としても一定である(変化しない)。これに対し、自車両及び先行車のうちどちらが速度を変化させると、衝突予想時刻は時間経過にしたがって変化する。そこで、衝突予想時刻が時間経過にしたがって変化することに着目し、衝突予想時刻の時間変化に基づいて車間距離の時間変化を監視する。そして、計測した車間距離と、その監視している車間距離の時間変化との関係に基づいて、動作部が行う所定動作を制御するようにした。即ち、時間変化を監視している車間距離が、計測した車間距離よりも大きければ、衝突する可能性が相対的に小さいと判定し、一方、計測した車間距離よりも小さければ、衝突する可能性が相対的に大きいと判定し、警告を報知したり車両の挙動を制御したりする等の所定動作を行う。これにより、複雑な構成を必要とすることなく、自車両及び先行車のうちどちらが速度を変化させた場合であっても、自車両から先行車までの車間距離に応じて所定動作を適切に行うことができる。 When both the own vehicle and the preceding vehicle travel at a constant speed and the speed of the own vehicle is faster than the speed of the preceding vehicle, the own vehicle approaches the preceding vehicle. At this time, since the speed difference between the speed of the own vehicle and the speed of the preceding vehicle is constant, the change in the inter-vehicle distance from the own vehicle to the preceding vehicle is constant. Therefore, the predicted collision time at which the inter-vehicle distance is zero is constant (does not change) with any time as a reference. On the other hand, when either the own vehicle or the preceding vehicle changes the speed, the predicted collision time changes with the passage of time. Therefore, paying attention to the fact that the predicted collision time changes with time, the temporal change in the inter-vehicle distance is monitored based on the temporal change in the predicted collision time. And based on the relationship between the measured inter-vehicle distance and the time change of the inter-vehicle distance being monitored, the predetermined operation performed by the operation unit is controlled. That is, if the inter-vehicle distance monitoring the time change is larger than the measured inter-vehicle distance, it is determined that the possibility of collision is relatively small. On the other hand, if the inter-vehicle distance is smaller than the measured inter-vehicle distance, the possibility of collision is determined. Is determined to be relatively large, and a predetermined operation such as notifying a warning or controlling the behavior of the vehicle is performed. Thus, a predetermined operation is appropriately performed according to the distance between the own vehicle and the preceding vehicle, regardless of which of the own vehicle and the preceding vehicle changes the speed without requiring a complicated configuration. be able to.
 本開示の一例の車載プログラムは、車載システムの制御部に、自車両から先行車までの車間距離を計測する第1の手順と、車間距離がゼロとなる衝突予想時刻を算出する第2の手順と、第2の手順により算出した衝突予想時刻の時間変化に基づいて車間距離の時間変化を監視する第3の手順と、第1の手順により計測した車間距離と第3の手順により監視している車間距離の時間変化との関係に基づいて、動作部(4~6)が行う所定動作を制御する第4の手順と、を実行させる車載プログラムである。 An in-vehicle program according to an example of the present disclosure includes a first procedure for measuring an inter-vehicle distance from the host vehicle to a preceding vehicle and a second procedure for calculating an estimated collision time at which the inter-vehicle distance is zero. And a third procedure for monitoring the temporal change of the inter-vehicle distance based on the temporal change of the predicted collision time calculated by the second procedure, and the inter-vehicle distance measured by the first procedure and the third procedure. This is an in-vehicle program that executes a fourth procedure for controlling a predetermined operation performed by the operation unit (4 to 6) based on the relationship with the time change of the inter-vehicle distance.
 このような車載プログラムであっても、上述の車載システムと同様な効果をすることができる。なお、車載プログラムは、非一時的な記憶媒体に記憶されても良い。 Even with such an in-vehicle program, the same effect as the above-mentioned in-vehicle system can be achieved. Note that the in-vehicle program may be stored in a non-temporary storage medium.
 本開示についての上記および他の目的、特徴や利点は、添付の図面を参照した下記の詳細な説明から、より明確になる。添付図面において
図1は、一実施形態を示す機能ブロック図である。 図2は、車間距離を計測する原理を示す図である。 図3は、撮影対象物の長さの差による影響を示す図である。 図4は、長さが異なる撮影対象物について、カメラ画像の長さxと距離Zとの関係を示す図である。 図5は、車間距離の変化を示す図である。 図6は、自車両及び先行車の双方が定速で走行している場合の車間距離の変化を示す図である。 図7は、自車両及び先行車の双方が定速で走行している場合の許容時間の変化を示す図である。 図8は、自車両又は先行車の速度変化に応じた車間距離の変化の一例を示す図である。 図9は、自車両又は先行車の速度変化に応じた車間距離の変化の他の例を示す図である。 図10は、車間距離の変化の区分を示す図である。 図11は、車間距離の変化の予測の一例を示す図である。 図12は、車間距離の変化の予測の他の例を示す図である。 図13は、第1のフローチャートである。 図14は、第2のフローチャートである。 図15は、第3のフローチャートである。 図16は、第4のフローチャートである。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. In the attached drawings
FIG. 1 is a functional block diagram illustrating an embodiment. FIG. 2 is a diagram illustrating the principle of measuring the inter-vehicle distance. FIG. 3 is a diagram illustrating the influence due to the difference in length of the object to be imaged. FIG. 4 is a diagram illustrating the relationship between the length x of the camera image and the distance Z with respect to shooting objects having different lengths. FIG. 5 is a diagram showing changes in the inter-vehicle distance. FIG. 6 is a diagram showing a change in the inter-vehicle distance when both the host vehicle and the preceding vehicle are traveling at a constant speed. FIG. 7 is a diagram showing a change in allowable time when both the host vehicle and the preceding vehicle are traveling at a constant speed. FIG. 8 is a diagram illustrating an example of a change in the inter-vehicle distance according to a change in the speed of the host vehicle or the preceding vehicle. FIG. 9 is a diagram illustrating another example of the change in the inter-vehicle distance according to the change in the speed of the host vehicle or the preceding vehicle. FIG. 10 is a diagram illustrating a classification of changes in the inter-vehicle distance. FIG. 11 is a diagram illustrating an example of prediction of a change in the inter-vehicle distance. FIG. 12 is a diagram illustrating another example of prediction of a change in the inter-vehicle distance. FIG. 13 is a first flowchart. FIG. 14 is a second flowchart. FIG. 15 is a third flowchart. FIG. 16 is a fourth flowchart.
 以下、一実施形態について図面を参照して説明する。車載システム1を搭載している車両が自車両であり、自車両の前方を走行する車両が先行車である。車載システム1は、カメラ2(撮影部、撮影手段)と、制御部3(制御手段)と、表示部4(表示手段)と、音出力部5(音出力手段)と、車両挙動制御部6(車両挙動制御手段、動作部、動作手段)とを有する。カメラ2は、1眼のカメラからなる。カメラ2は、自車両の前方を撮影するCCD(Charge Coupled Device)イメ-ジセンサであり、所定秒数(例えば1/10秒)のフレ-ム周期で撮影画像を取得し、その取得した撮影画像を制御部3に出力する。尚、カメラ2は、CMOS(Complementary Metal Oxide Semiconductor)イメ-ジセンサであっても良い。表示部4は、動作部、動作手段、報知部、および報知手段の一例である。音出力部5は、動作部、動作手段、報知部、および報知手段の一例である。 Hereinafter, an embodiment will be described with reference to the drawings. A vehicle equipped with the in-vehicle system 1 is the own vehicle, and a vehicle traveling in front of the own vehicle is a preceding vehicle. The in-vehicle system 1 includes a camera 2 (imaging unit, imaging unit), a control unit 3 (control unit), a display unit 4 (display unit), a sound output unit 5 (sound output unit), and a vehicle behavior control unit 6. (Vehicle behavior control means, operation section, operation means). The camera 2 is a single-lens camera. The camera 2 is a CCD (Charge Coupled Device) image sensor that captures the front of the host vehicle, acquires a captured image at a frame period of a predetermined number of seconds (for example, 1/10 second), and acquires the captured image. Is output to the control unit 3. The camera 2 may be a CMOS (Complementary Metal Metal Oxide Semiconductor) image sensor. The display unit 4 is an example of an operation unit, an operation unit, a notification unit, and a notification unit. The sound output unit 5 is an example of an operation unit, an operation unit, a notification unit, and a notification unit.
 制御部3は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等を有するマイクロコンピュ-タを主体として構成されている。制御部3は、ROMに記憶されている制御プログラム(車載プログラムを含む)をCPUが実行することで、車載システム1の動作全般を制御する。制御部3は、実行する機能に基づいて、車間距離計測部3a(車間距離計測手段)と、画像サイズ算出部3b(画像サイズ算出手段)と、衝突予想時刻算出部3c(衝突予想時刻算出手段)と、時間変化監視部3d(時間変化監視手段)と、動作制御部3e(動作制御手段)とを有する。これら画像サイズ算出部3b、衝突予想時刻算出部3c、時間変化監視部3d、車間距離計測部3a及び動作制御部3eは、ソフトウェアにより構成されている。 The control unit 3 is mainly composed of a microcomputer having a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like. The control unit 3 controls the overall operation of the in-vehicle system 1 by the CPU executing a control program (including the in-vehicle program) stored in the ROM. Based on the function to be executed, the control unit 3 includes an inter-vehicle distance measuring unit 3a (an inter-vehicle distance measuring unit), an image size calculating unit 3b (an image size calculating unit), and an estimated collision time calculating unit 3c (an estimated collision time calculating unit). ), A time change monitoring unit 3d (time change monitoring means), and an operation control unit 3e (operation control means). The image size calculation unit 3b, the predicted collision time calculation unit 3c, the time change monitoring unit 3d, the inter-vehicle distance measurement unit 3a, and the motion control unit 3e are configured by software.
 車間距離計測部3aは、自車両から先行車までの車間距離を計測する。画像サイズ算出部3bは、カメラ2により取得された撮影画像内に占める先行車の画像サイズを算出する。衝突予想時刻算出部3cは、画像サイズ算出部3bが算出した画像サイズと、カメラ2が自車両の前方を撮影した撮影時刻とを用い、その撮影時刻での自車両の速度と先行車の速度との差である相対速度で自車両が走行し続けた場合に当該自車両から先行車までの車間距離がゼロとなる衝突予想時刻を算出する。時間変化監視部3dは、衝突予想時刻算出部3cが算出した衝突予想時刻の時間変化に基づいて自車両から先行車までの車間距離の時間変化を監視する。動作制御部3eは、車間距離計測部3aが計測した車間距離と時間変化監視部3dが監視している車間距離の時間変化との関係に基づいて、表示部4、音出力部5及び車両挙動制御部6の動作を制御する。 The inter-vehicle distance measuring unit 3a measures the inter-vehicle distance from the host vehicle to the preceding vehicle. The image size calculation unit 3 b calculates the image size of the preceding vehicle that occupies the captured image acquired by the camera 2. The predicted collision time calculation unit 3c uses the image size calculated by the image size calculation unit 3b and the shooting time when the camera 2 shots the front of the host vehicle, and the speed of the host vehicle and the speed of the preceding vehicle at the shooting time. When the host vehicle continues to travel at a relative speed that is a difference from the above, a predicted collision time at which the inter-vehicle distance from the host vehicle to the preceding vehicle becomes zero is calculated. The time change monitoring unit 3d monitors the time change of the inter-vehicle distance from the host vehicle to the preceding vehicle based on the time change of the predicted collision time calculated by the predicted collision time calculation unit 3c. Based on the relationship between the inter-vehicle distance measured by the inter-vehicle distance measuring unit 3a and the time change of the inter-vehicle distance monitored by the time change monitoring unit 3d, the operation control unit 3e displays the display unit 4, the sound output unit 5, and the vehicle behavior. The operation of the control unit 6 is controlled.
 表示部4は、制御部3から表示指令信号を入力すると、その入力した表示指令信号に基づいて例えば警告画面等の各種画面の表示を行う(描画を行う)。音出力部5は、制御部3から音出力指令信号を入力すると、その入力した音出力指令信号に基づいて例えば警告音等の各種音の音出力を行う。車両挙動制御部6は、制御部3から車両挙動指令信号を入力すると、その入力した車両挙動指令信号に基づいて例えばブレ-キ制御等の各種車両挙動の制御を行う。 When the display command signal is input from the control unit 3, the display unit 4 displays various screens such as a warning screen (draws) based on the input display command signal. When the sound output command signal is input from the control unit 3, the sound output unit 5 outputs various sounds such as a warning sound based on the input sound output command signal. When a vehicle behavior command signal is input from the control unit 3, the vehicle behavior control unit 6 controls various vehicle behaviors such as brake control based on the input vehicle behavior command signal.
 次に、本発明の原理を説明する。最初に自車両から先行車までの車間距離を計測する原理を図2に示す。この場合、各項を以下のように定義する。 Next, the principle of the present invention will be described. First, the principle of measuring the inter-vehicle distance from the host vehicle to the preceding vehicle is shown in FIG. In this case, each term is defined as follows.
 2W:撮影対象物の長さ(先行車の車幅)
 Z,Z:原点O(カメラ2のレンズの中心)から撮影対象物までの距離(車間距離)
 2x:原点Oから撮影対象物までの距離が「Z」のときのCCD結像面上の撮影対象物の長さ(先行車の車幅)相当のカメラ画像の長さ
 2x:原点Oから撮影対象物までの距離が「Z」のときのCCD結像面上の撮影対象物の長さ(先行車の車幅)相当のカメラ画像の長さ
 R,R:CCDのx方向,y方向の解像度
 φ,φ:x軸,y軸上のCCDの視野角
 l:原点OからCCD結像面までの距離
 この場合、原点OからCCD結像面までの距離は、
2W 0 : Length of object to be photographed (vehicle width of preceding vehicle)
Z 1 , Z 2 : Distance from the origin O (the center of the lens of the camera 2) to the object to be photographed (distance between the vehicles)
2x 1: origin O distance to the object to be shot from the length of the shooting target on the CCD imaging plane when the "Z 1" (the vehicle width of the preceding vehicle) length equivalent camera image 2x 2: Origin The length of the camera image corresponding to the length of the object to be photographed on the CCD image plane (vehicle width of the preceding vehicle) when the distance from O to the object to be photographed is “Z 2 ” R x , R y : CCD Resolution in the x and y directions φ x , φ y : CCD viewing angle on the x and y axes l: Distance from the origin O to the CCD image plane In this case, the distance from the origin O to the CCD image plane is ,
Figure JPOXMLDOC01-appb-M000001
となる。又、原点Oから撮影対象物までの距離とCCD結像面上の大きさとの関係は、
 x/l=W/Z・・・(2)
 x/l=W/Z・・・(3)
となる。よって、(2)式及び(3)式から、
 x/x=Z/Z・・・(4)
 ∴Z=x/x・・・(5)となる。(5)式において、予めZに対するxが基準値として求められている場合、任意のxに対する車間距離をZとすると、
 Z=x/x・・・(6)
となる。
Figure JPOXMLDOC01-appb-M000001
It becomes. The relationship between the distance from the origin O to the object to be photographed and the size on the CCD image plane is
x 1 / l = W 0 / Z l ··· (2)
x 2 / l = W 0 / Z 2 (3)
It becomes. Therefore, from the equations (2) and (3),
x 1 / x 2 = Z 2 / Z l ··· (4)
∴Z 2 = x 1 Z 1 / x 2 (5) In the equation (5), when x 1 with respect to Z 1 is obtained in advance as a reference value, if the inter-vehicle distance for any x is Z,
Z = x 1 Z 1 / x (6)
It becomes.
 次に、先行車の車幅の差による影響を図3に示す。各項を以下のように定義する。 Next, Fig. 3 shows the effect of the vehicle width difference of the preceding vehicle. Each term is defined as follows.
 2W:基準の撮影対象物の長さ
 2W:他の撮影対象物の長さ
 Z:原点Oから基準の撮影対象物までの距離
 Z:原点Oから他の撮影対象物までの距離
 この場合、他の撮影対象物の長さ(2W)のCCD結像面上の画像の長さを、基準の撮影対象物の長さ(2W)のCCD結像面上の画像の長さ(2x)に揃えるように配置した場合、以下の関係が成立する。
2W 1 : Length of the reference imaging object 2W 2 : Length of the other imaging object Z 1 : Distance from the origin O to the reference imaging object Z 2 : Distance from the origin O to another imaging object In this case, the length of the image on the CCD image plane of the other imaging object length (2W 2 ) is set to the length of the image on the CCD image plane of the reference imaging object length (2W 1 ). When arranged so as to be aligned to (2 × 1 ), the following relationship is established.
 2W/Z=2W/Z・・・(7)
 ∴Z=(W/W)Z・・・(8)
 即ち、図4に示すように、常に基準の撮影対象物のZのW/W倍の距離が、原点Oから他の撮影対象物までの距離となる。1台のカメラ2で撮影した撮影画像を用いて距離を計測する場合、このように長さが異なる撮影対象物についてCCD結像面上の画像の長さが一致する場合があり得るので、撮影対象物までの距離が時間で変化しない場合には、形状の異なる撮影対象物までの距離を計測することは不可能となる。
2W 1 / Z l = 2W 2 / Z 2 ··· (7)
∴Z 2 = (W 2 / W 1 ) Z l (8)
That is, as shown in FIG. 4, always W 2 / W 1 × distance of Z 1 of the standard photography object becomes the distance from the origin O to the other of the object to be shot. When the distance is measured using a photographed image photographed by one camera 2, the length of the image on the CCD image plane may be the same for the photographing objects having different lengths as described above. When the distance to the object does not change with time, it is impossible to measure the distance to the imaging object having a different shape.
 これに対し、撮影対象物までの距離が時間で変化する場合を想定する。単位時間△t(例えば1秒)間隔で、そのときの撮影画像から撮影対象物までの距離を(6)式により求める。時刻tにおける距離Z(t)の地点Aと、時刻(t-△t)における距離Z(t-△t)の地点Bとを通る直線式Z=at+bは図5のようになる。この直線式で時刻tにおける速度で一定に走行(定速走行)し続けた場合にZ=0となる時刻tは、t=-b/aとなる。(t-t)は、時刻tの時点での速度(相対速度)により定速で走行した場合に、(t-t)秒後に撮影対象物までの距離がゼロとなることを示す。 On the other hand, it is assumed that the distance to the object to be photographed changes with time. At intervals of unit time Δt (for example, 1 second), the distance from the photographed image to the object to be photographed at that time is obtained by equation (6). A linear equation Z = at + b passing through a point A at a distance Z (t) at time t and a point B at a distance Z (t−Δt) at time (t−Δt) is as shown in FIG. In this linear equation, when the vehicle continuously travels at a speed at time t (constant speed travel), the time t p when Z = 0 becomes t p = −b / a. (T p -t) indicates that the distance to the object to be photographed becomes zero after (t p -t) seconds when the vehicle travels at a constant speed based on the speed (relative speed) at time t.
 一般的に2点(x1,y1)(x2,y2)を通る直線y=ax+bのa、bの値は以下のように求まる。 Generally, the values of a and b of a straight line y = ax + b passing through two points (x1, y1) (x2, y2) are obtained as follows.
 a=(y1-y2)/(x1-x2)・・・(9)
 b=(x1y2-x2y1)/(x1-x2)・・・(10)
 (9)式及び(10)式を図5に適用すると、2点ABを通る直線の式は以下のようになる。
a = (y1-y2) / (x1-x2) (9)
b = (x1y2-x2y1) / (x1-x2) (10)
When the formulas (9) and (10) are applied to FIG. 5, the formula of the straight line passing through the two points AB is as follows.
 a=-[Z(t-△t)-Z(t)]/△t・・・(11)
 b=-[(t-△t)Z(t)-tZ(t-△t)]/△t・・・(12)
 又、Z=0となるt=tの値は以下の通りになる。
a = − [Z (t−Δt) −Z (t)] / Δt (11)
b = − [(t−Δt) Z (t) −tZ (t−Δt)] / Δt (12)
The value of the Z = 0 t = t p is as follows.
 t=-[(t-△t)Z(t)-tZ(t-△t)]/
    [Z(t-△t)-Z(t)]・・・(13)
 図3に示したように、長さ2Wの基準の撮影対象物のtをtp1とし、長さ2Wの他の撮影対象物のtをtp2とすると、tp1、tp2はそれぞれ以下の通りになる。
t p = − [(t−Δt) Z (t) −tZ (t−Δt)] /
[Z (t−Δt) −Z (t)] (13)
As shown in FIG. 3, when the t p of the standard photography object length 2W 1 and t p1, the t p other shooting target length 2W 2 and t p2, t p1, t p2 Are as follows.
 tp1=-[(t-△t)Z(t)-tZ(t-△t)]/
    [Z(t-△t)-Z(t)]・・・(14)
 tp2=-[(t-△t)Z(t)-tZ(t-△t)]/
    [Z(t-△t)-Z(t)]・・・(15)
 又、(8)式より、Z(t)=(W/W)Z(t)=αZ(t)(αは係数)が成立するので、
 tp2=-[(t-△t)αZ(t)-tαZ(t-△t)]/
    [αZ(t-△t)-αZ(t)]
    =-[(t-△t)Z(t)-tZ(t-△t)]/
    [Z(t-△t)-Z(t)]
    =tp1・・・(16)
 ∴tp1=tp2・・・(17)
となる。
t p1 = − [(t−Δt) Z 1 (t) −tZ 1 (t−Δt)] /
[Z 1 (t−Δt) −Z 1 (t)] (14)
t p2 = − [(t−Δt) Z 2 (t) −tZ 2 (t−Δt)] /
[Z 2 (t−Δt) −Z 2 (t)] (15)
Further, from the equation (8), Z 2 (t) = (W 2 / W 1 ) Z 1 (t) = αZ 1 (t) (α is a coefficient)
t p2 = − [(t−Δt) αZ 1 (t) −tαZ 1 (t−Δt)] /
[ΑZ 1 (t- △ t) -αZ 1 (t)]
= − [(T−Δt) Z 1 (t) −tZ 1 (t−Δt)] /
[Z 1 (t−Δt) −Z 1 (t)]
= T p1 (16)
∴ t p1 = t p2 (17)
It becomes.
 (17)式は、ある任意の時刻tにおける速度で移動(又は相対移動)し続けた場合の撮影対象物までの距離がゼロとなる時刻tは、対象物の長さが基準の撮影対象物と異なっても同じであることを示している。この原理を用い、自車両から先行車までの車間距離の変化に着目することで、撮影対象物の長さ(サイズ)に関係なく同じ条件で車間距離を計測可能となる。 (17), the time t p the distance to the imaging target in the case where continues to move at a speed at an arbitrary time t (or relative movement) becomes zero, the length reference of the object imaging target Even if it is different from the thing, it shows that it is the same. By using this principle and paying attention to the change in the inter-vehicle distance from the host vehicle to the preceding vehicle, the inter-vehicle distance can be measured under the same conditions regardless of the length (size) of the subject.
 ここで、実際にシステム上で求めることができるのは、(8)式に示したように距離Zに対するカメラ2上の画像サイズxであるので、xを用いたtを求める式は、(13)式に(6)式を代入することで以下の通りになる。即ち、
 t=-[(t-△t)Z(t)-tZ(t-△t)]/
    [Z(t-△t)-Z(t)]
に、Z(t)=x/x(t)を代入すると、
 t=-[(t-△t)x(t-△t)-tx(t)]/
    [x(t)-x(t-△t)]・・・(18)
 (18)式は、ある任意の物体が時刻(t-△t)からtまでの単位時間△tにてカメラ2の画面上で変化した時の大きさx(t-△t)及びx(t)の情報を求めることで、その物体までの距離がゼロとなる時刻tが求まることを示す。又、同じ物体を画像に捉えることができれば、どのような形状の物体でもx(t)が求まれば、tは同じ式で計測可能であることを示す。
Here, it is possible to obtain practically on the system, since the image size x of the camera 2 relative to the distance Z, as shown in equation (8), equation for t p with x is ( Substituting equation (6) into equation 13) yields the following. That is,
t p = − [(t−Δt) Z (t) −tZ (t−Δt)] /
[Z (t−Δt) −Z (t)]
If Z (t) = x 1 Z 1 / x (t) is substituted into
t p = − [(t−Δt) x (t−Δt) −tx (t)] /
[X (t) −x (t−Δt)] (18)
Equation (18) is expressed as follows: a size x (t−Δt) and x (t) when an arbitrary object changes on the screen of the camera 2 in a unit time Δt from time (t−Δt) to t. by obtaining the information of t), indicating that the time t p the distance to the object becomes zero is obtained. Further, if it is possible to capture the same object image, if any in the object shape x (t) is obtained, indicating that t p is measurable with the same formula.
 次に、自車両が先行車に衝突する衝突リスクの指標であるTTC(Time to Collision、衝突余裕時間)について説明する。 Next, TTC (Time to Collision), which is an index of collision risk that the own vehicle collides with the preceding vehicle, will be described.
 まず、自車両及び先行車の双方が定速で走行しており、自車両が先行車に近づいている場合の車間距離の変化を図6に示し、TTCの変化を図7に示す。各項を以下のように定義する。
 
 Va:自車両の速度
 Vb:自車両の速度
 Z:車間距離
 自車両及び先行車の双方が定速で走行し、先行車が自車両の速度よりも遅い速度で走行していると、自車両が先行車に近づく。このとき、自車両の速度と先行車の速度との速度差が一定であるので、自車両から先行車までの車間距離の変化は一定となる。そのため、車間距離がゼロとなる時刻を「t」とし、現在の時刻を「t」とすると、どの時刻を基準としても「t」は変化することなく、「TTC」は「t」から「t」を差引いた値と一致する。例えば
 車間距離:100m(t=0)
 先行車の速度:15m/sec
 自車両の速度:20m/sec
とすると、tを(13)式を用い、t=1で算出すると、△△ t=-[(t-△t)Z(t)-tZ(t-△t)]/
    [Z(t-△t)-Z(t)]
   =-[(1-1)×95-1×100]/
    (100-95)=20・・・(19)
となる。
First, FIG. 6 shows the change in the inter-vehicle distance when both the host vehicle and the preceding vehicle are traveling at a constant speed, and the host vehicle is approaching the preceding vehicle, and FIG. 7 shows the change in TTC. Each term is defined as follows.

Va: own vehicle speed Vb: own vehicle speed Z: inter-vehicle distance When both the own vehicle and the preceding vehicle are traveling at a constant speed and the preceding vehicle is traveling at a speed slower than the own vehicle, the own vehicle Approaches the preceding car. At this time, since the speed difference between the speed of the own vehicle and the speed of the preceding vehicle is constant, the change in the inter-vehicle distance from the own vehicle to the preceding vehicle is constant. Therefore, if the time when the inter-vehicle distance becomes zero is “t p ” and the current time is “t”, “t p ” does not change and “TTC” is “t p ” regardless of the time. This is the same as the value obtained by subtracting “t” from. For example, the distance between vehicles: 100m (t = 0)
Speed of preceding vehicle: 15m / sec
Speed of own vehicle: 20m / sec
When, using a t p (13) equation, the calculated at t = 1, △△ t p = - [(t- △ t) Z (t) -tZ (t- △ t)] /
[Z (t−Δt) −Z (t)]
=-[(1-1) × 95-1 × 100] /
(100-95) = 20 (19)
It becomes.
 実際には、自車両及び先行車の双方が常に定速で走行するとは限らない。よって、自車両及び先行車のうちどちらかの速度が変化した場合のtについて分析する。自車両及び先行車の双方が定速で走行している状態(自車両の速度>先行車の速度)から自車両又は先行車のうちどちらかが加速又は減速を開始した場合のt値の変化を図8に示す。2点BAを通る直線は、自車両及び先行車の双方が定速で走行している場合を示す。この場合は、車間距離の変化が常に一定となり、tは一定である。これに対し、2点BAを通る直線は、自車両が減速を開始した又は先行車が加速を開始した場合を示す。この場合は、車間距離の変化が、自車両及び先行車の双方が定速で走行している時(定速走行時)よりも小さくなるので、tは定速走行時よりも大きい値になる。一方、2点BAを通る直線は、自車両が加速を開始した又は先行車が減速を開始した場合を示す。この場合は、車間距離の変化が、定速走行時よりも大きくなるので、tは定速走行時よりも小さい値になる。 Actually, both the own vehicle and the preceding vehicle do not always travel at a constant speed. Thus, we analyzed for t p when either the speed of the host vehicle and the preceding vehicle has changed. State in which both the vehicle and the preceding vehicle is traveling at a constant speed of t p value when either of the (own speed of the vehicle speed> the preceding vehicle) of the vehicle or the preceding vehicle starts accelerating or decelerating The change is shown in FIG. A straight line passing through the two points BA indicates a case where both the host vehicle and the preceding vehicle are traveling at a constant speed. In this case, the change in the inter-vehicle distance is always constant, is a t p is constant. On the other hand, a straight line passing through the two points BA 1 indicates a case where the host vehicle starts to decelerate or a preceding vehicle starts to accelerate. In this case, the change in distance between the vehicles, since both the vehicle and the preceding vehicle becomes smaller than when the vehicle travels at a constant speed (constant-speed traveling), t p is a value greater than the constant-speed running Become. On the other hand, a straight line passing through the two points BA 2 indicates a case where the host vehicle starts to accelerate or a preceding vehicle starts to decelerate. In this case, the change in distance between the vehicles, since larger than during constant speed running, t p becomes smaller than the constant-speed running.
 又、図9において、直線の傾きが正の場合は、(t-t)が負であることを示し、自車両が減速を開始した又は先行車が加速を開始したことで車間距離が広がっていることを示す。一方、直線の傾きが負の場合は、(t-t)が正であることを示し、自車両が加速を開始した又は先行車が減速を開始したことで車間距離が縮まっていることを示す。加減速が働いた場合は、単位時間での2点での速度の平均値で定速走行した場合のtを示すので、2点を結ぶ直線は常に変化することになる。このため、速度変化がある場合は、時間変化するtを車両衝突までの許容時間として扱うことはできないが、tの時間変化を用いることで、先行車への接近を注意喚起するシステムや車両挙動を制御するシステムとして利用し、利便性のある機能を実現することができる。 Further, in FIG. 9, when the slope of the straight line is positive, it indicates that (t p -t) is negative, and the inter-vehicle distance is widened because the own vehicle starts decelerating or the preceding vehicle starts accelerating. Indicates that On the other hand, if the slope of the straight line is negative, it indicates that (t p -t) is positive, indicating that the distance between the vehicles has been shortened because the host vehicle has started acceleration or the preceding vehicle has started to decelerate. Show. If the deceleration is activated, it indicates t p in the case of constant speed running at an average value of the speed at two points in the unit time, the line connecting the two points is always changing it. Therefore, if there is a change in speed, it is not possible to deal with t p time varying as the allowable time to a vehicle collision, by using a time variation of t p, attention arouse system Ya the approaching a preceding vehicle It can be used as a system for controlling vehicle behavior and realize convenient functions.
 自車両及び先行車の双方が定速で走行している場合には車間距離の変化が一定であるのに対し、自車両及び先行車のうちどちらかが減速を開始した場合には車間距離の変化は一定ではない。具体的には、(t-2△t)、(t-△t)、tにおける車間距離をZ(t-2△t)、Z(t-△t)、Z(t)とすると、図10に示す関係が成立する。以下、
 (1)自車両が先行車に近づいて減速を開始した場合
 (2)先行車が減速を開始した後に自車両が減速を開始した場合
について順次説明する。
When both the host vehicle and the preceding vehicle are traveling at a constant speed, the change in the inter-vehicle distance is constant, whereas when either the host vehicle or the preceding vehicle starts decelerating, the inter-vehicle distance Change is not constant. Specifically, if the inter-vehicle distances at (t−2Δt), (t−Δt) and t are Z (t−2Δt), Z (t−Δt) and Z (t), The relationship shown in FIG. Less than,
(1) When the host vehicle approaches the preceding vehicle and starts decelerating (2) The case where the host vehicle starts decelerating after the preceding vehicle starts decelerating will be sequentially described.
 (1)自車両が先行車に近づいて減速を開始した場合
 自車両及び先行車の双方が定速で走行しており、自車両が先行車に近づいた場合は、図10に示すNo.1の状態である。この場合のtは一定の時刻を指している。tが安全上減速を開始するべきある値になった時点(地点A)で、自車両が一定の加速度で減速した場合に衝突直前の車間距離を維持して地点Bで止まる(又は、先行車と同じ速度になる)限界の速度変化を二次関数の式で求める。図11は、自車両が先行車に近づいて減速を開始した場合の車間距離の変化の予測を示す。図11において、区間ABの二次元方程式を
 Z=a(t-t・・・(20)
とする。tはZ=0となる地点Bの時刻であり、aは係数である。
(1) When the host vehicle approaches the preceding vehicle and starts decelerating When both the host vehicle and the preceding vehicle are traveling at a constant speed and the host vehicle approaches the preceding vehicle, No. 1 shown in FIG. 1 state. T p in this case refers to a certain time. When the t p becomes a certain value to start the safety deceleration (point A), the vehicle stops at the point B to maintain the inter-vehicle distance immediately before collision when decelerating at a constant acceleration (or, prior Find the limit speed change with a quadratic function. FIG. 11 shows the prediction of the change in the inter-vehicle distance when the host vehicle approaches the preceding vehicle and starts deceleration. In FIG. 11, the two-dimensional equation of the section AB is expressed as Z = a (t−t c ) 2 (20)
And t c is the time at point B where Z = 0, and a is a coefficient.
 地点Aでの(20)式の傾きはdZ/dtであるが、減速しない場合の車間距離の変化(区間AC)の直線の傾きでもある。(20)式より、
 dZ/dt=2a(t-t)・・・(21)
となり、t=0のとき、
 dZ/dt=-2at・・・(22)
となる。したがって、線分ACの方程式は
 Z=-2att+at =-at(2t-t)・・・(23)
となる。Z=0となる地点Cの時刻tは(23)式より、
 t=t/2・・・(24)
となる。又、t=0でのZ(0)の値は(20)式より、
 a=Z(0)/t =Z(0)/4t ・・・(25)
となることから、(20)式は以下のようになる。
Although the slope of the equation (20) at the point A is dZ / dt, it is also the slope of the straight line of the change in the inter-vehicle distance (section AC) when not decelerating. From equation (20)
dZ / dt = 2a (t−t c ) (21)
And when t = 0,
dZ / dt = -2 at c (22)
It becomes. Therefore, the equation of the line segment AC is Z = −2 at c t + at c 2 = −at c (2 t−t c ) (23)
It becomes. Time t p of the point C as the Z = 0 than (23),
t p = t c / 2 (24)
It becomes. Also, the value of Z (0) at t = 0 is obtained from the equation (20).
a = Z (0) / t c 2 = Z (0) / 4t p 2 ··· (25)
Therefore, the equation (20) is as follows.
 Z(t)=Z(0)(t-2t/4t ・・・(26)
となる。
Z (t) = Z (0) (t−2t p ) 2 / 4t p 2 (26)
It becomes.
 (26)式において、区間ABにおいて下記の関係式が成立するように減速を開始すれば安全な車間距離を確保していくことが可能となる。 In equation (26), if deceleration is started so that the following relational expression is established in the section AB, a safe inter-vehicle distance can be secured.
 Z(t)>Z(0)(t-2t/4t ・・・(27)
 (27)式をxにて表すと以下のようになる。
Z (t)> Z (0) (t−2t p ) 2 / 4t p 2 (27)
The expression (27) is represented by x as follows.
 x(t)<4t x(0)/(t-2t・・・(28)
 ここで、tは(18)式より求められる。
x (t) <4t p 2 x (0) / (t−2t p ) 2 (28)
Here, t p is obtained from the equation (18).
 (2)先行車が減速を開始した後に自車両が減速を開始した場合
 自車両が先行車と同じ速度で追従している時に、先行車が減速を開始した場合は、図10に示すNo.3の状態である。図12は、先行車が減速を開始した後に自車両が減速を開始した場合の車間距離の変化の予測を示す。図12において、地点Aにて先行車が減速を開始した時刻をt=0とする。車間距離の変化が5%程度になった地点A2(時刻t=2△t)とした場合、時刻t=△tの地点をA1とすると、地点A、A1、A2での車間距離の関係は図10に示すNo.3の関係になる。先行車の減速の加速度を一定とした場合には、車間距離の変化は二次関数となるので、図12のようにA1、A2を通る放物線ABになる。
(2) When the host vehicle starts decelerating after the preceding vehicle starts decelerating When the preceding vehicle starts decelerating when the host vehicle is following at the same speed as the preceding vehicle, No. shown in FIG. 3 state. FIG. 12 shows a prediction of a change in the inter-vehicle distance when the host vehicle starts decelerating after the preceding vehicle starts decelerating. In FIG. 12, the time when the preceding vehicle starts decelerating at point A is set to t = 0. Assuming that the point A2 (time t = 2Δt) where the change in the inter-vehicle distance is about 5%, if the point at the time t = Δt is A1, the relationship between the inter-vehicle distances at the points A, A1, A2 is The relationship of No. 3 shown in FIG. When the acceleration of deceleration of the preceding vehicle is constant, the change in the inter-vehicle distance becomes a quadratic function, so that it becomes a parabola AB passing through A1 and A2 as shown in FIG.
 放物線の式を、
 Z=at+c・・・(29)
 t=0、t=2△tのときのZをZ(0)、Z(t)とすると、
 Z(t)=at +Z(0)・・・(30)
 a=[Z(t)-Z(0)]/t ・・・(31)
 Z(t)=[Z(t)-Z(0)]t/t +Z(0)・・・(32)となる。
Parabolic formula,
Z A = at 2 + c (29)
The Z A when the t = 0, t 1 = 2 △ t Z A (0), when the Z A (t 1),
Z A (t 1 ) = at 1 2 + Z A (0) (30)
a = [Z A (t 1 ) −Z A (0)] / t 1 2 (31)
Z A (t) = [Z A (t 1 ) −Z A (0)] t 2 / t 1 2 + Z A (0) (32)
 次に、(32)式と同じ大きさで方向逆の二次の項の係数を持ち、Z=0にて最小値を持つ放物線を想定する。最小値を持つtをtcとすると、その式Zは以下の通りになる。 Next, a parabola having the same magnitude as equation (32), a coefficient of a quadratic term in the opposite direction, and a minimum value at Z = 0 is assumed. Assuming that t having the minimum value is t c , the equation Z B is as follows.
 Z=[Z(0)-Z(t)](t-t/t ・・・(33)
 (32)式と(33)式がt>0の範囲で接するように(33)式を求めると、
 dZ/dt=2[Z(t)-Z(0)]t/t ・・・(34)
 dZ/dt=2[Z(0)-Z(t)](t-t)/t ・・・(35)より、dZ/dt=dZ/dtとなるtの値は、
 [Z(t)-Z(0)]t=[Z(0)-Z(t)](t-t)・・・(36)
 2[Z(t)-Z(0)]t=-[Z(0)-Z(t)]t・・・(37)
 t=t/2・・・(38)
 したがって、0からtまでの中間点に当たる地点Eにて接することが分かる。この時のtを求めると、
Z B = [Z A (0) −Z A (t 1 )] (t t c ) 2 / t 1 2 (33)
When the expression (33) is obtained so that the expression (32) and the expression (33) are in contact with each other in the range of t> 0,
dZ A / dt = 2 [Z A (t 1 ) −Z A (0)] t / t 1 2 (34)
dZ B / dt = 2 [Z A (0) −Z A (t 1 )] (tt c ) / t 1 2 ... (35) From t, dZ A / dt = dZ B / dt The value of
[Z A (t 1 ) −Z A (0)] t = [Z A (0) −Z A (t 1 )] (t−t c ) (36)
2 [Z A (t 1 ) −Z A (0)] t = − [Z A (0) −Z A (t 1 )] t c (37)
t = t c / 2 (38)
Therefore, it can be seen that contact at a point E which corresponds to the midpoint of from 0 to t c. When t c at this time is obtained,
Figure JPOXMLDOC01-appb-M000002
 t/2≦t≦tの区間において、Z(t)≧Z(t)となるように自車両を減速すれば、先行車に衝突することなく停止(又は同じ速度)状態に達することができる。
Figure JPOXMLDOC01-appb-M000002
If the host vehicle is decelerated so as to satisfy Z (t) ≧ Z B (t) in the section of t c / 2 ≦ t ≦ t c , it reaches a stop (or the same speed) state without colliding with the preceding vehicle. be able to.
Figure JPOXMLDOC01-appb-M000003
 α=Z(t)/Z(0)=x(0)/x(t
とすると、
Figure JPOXMLDOC01-appb-M000003
α = Z A (t 1 ) / Z A (0) = x A (0) / x A (t 1 )
Then,
Figure JPOXMLDOC01-appb-M000004
 又、Z(t)x(t)=Z(0)x(0)の関係が成立するので、
Figure JPOXMLDOC01-appb-M000004
Also, since the relationship Z (t) x (t) = Z A (0) x A (0) is established,
Figure JPOXMLDOC01-appb-M000005
 即ち、(41)式にてtが求まったのち、t/2≦t≦tの範囲では(44)式又は(47)式が成立するようにZ(t)又はx(t)が得られるように減速することで、先行車までの車間距離を衝突しないように維持することができる。
Figure JPOXMLDOC01-appb-M000005
That is, after t c is obtained by the equation (41), Z (t) or x (t) is satisfied so that the equation (44) or (47) is established in the range of t c / 2 ≦ t ≦ t c. By decelerating so as to obtain the following distance, the inter-vehicle distance to the preceding vehicle can be maintained so as not to collide.
 又、t≦t≦t/2の範囲においては、(32)式より、以下の(48)式又は(49)式が成立するように減速を開始すれば安全な車間距離を確保していくことが可能となる。 In the range of t 1 ≦ t ≦ t c / 2, a safe inter-vehicle distance can be secured by starting deceleration so that the following expression (48) or (49) is satisfied from the expression (32). It is possible to continue.
Figure JPOXMLDOC01-appb-M000006
 又、0≦t≦t/2の範囲においては、(32)式又は以下の(50)式が成立するように減速を開始すれば安全な車間距離を確保していくことが可能となる。
Figure JPOXMLDOC01-appb-M000006
In the range of 0 ≦ t ≦ t c / 2, a safe inter-vehicle distance can be secured by starting deceleration so that the equation (32) or the following equation (50) is satisfied. .
Figure JPOXMLDOC01-appb-M000007
 次に、上記した構成の作用について、図13から図16も参照して説明する。
Figure JPOXMLDOC01-appb-M000007
Next, the operation of the above-described configuration will be described with reference to FIGS.
 制御部3は、本実施形態に関連し、衝突判定処理を所定周期で定期的に実行する。制御部3は、衝突判定処理を開始すると、初期設定を行い(S1)、エンジン停止中であるか否かを判定する(S2)。制御部3は、エンジン停止中でない(走行中である)と判定すると(S2:NO)、△T秒後であるか(△T秒が経過したか)否かを判定する(S3)。制御部3は、△T秒後であると判定すると(S3:YES)、カメラ3から撮影画像を入力する(取り込む)(S4)。そして、制御部3は、入力した撮影画像内で先行車を検出し(S5)、その撮影画像内に先行車が存在するか否かを判定する(S6)。制御部3は、撮影画像内に先行車が存在しないと判定すると(S6:NO)、上記したステップS1に戻り、ステップS1以降を繰返して実行する。 The control part 3 is related to this embodiment, and performs a collision determination process regularly with a predetermined period. When the collision determination process is started, the control unit 3 performs initial setting (S1) and determines whether or not the engine is stopped (S2). If it is determined that the engine is not stopped (running) (S2: NO), the controller 3 determines whether ΔT seconds have elapsed (ΔT seconds have passed) or not (S3). If the controller 3 determines that it is ΔT seconds later (S3: YES), it inputs (captures) a captured image from the camera 3 (S4). And the control part 3 detects a preceding vehicle in the input picked-up image (S5), and determines whether a preceding vehicle exists in the picked-up image (S6). When the control unit 3 determines that there is no preceding vehicle in the captured image (S6: NO), the control unit 3 returns to step S1 described above, and repeatedly executes step S1 and subsequent steps.
 一方、制御部3は、撮影画像内に先行車が存在すると判定すると(S6:YES)、自車両から先行車までの車間距離Z(t)を計測して記録する(S7)(第1の手順)。このとき、制御部3は、撮影画像内に占める先行車の画像サイズを算出する(第5の手順)。次いで、制御部3は、Z(t-2△t)、Z(t-△t)、Z(t)を比較する(S8)。この場合、制御部3は、△t=n△Tとする(nは自然数)。 On the other hand, if the control unit 3 determines that the preceding vehicle is present in the captured image (S6: YES), it measures and records the inter-vehicle distance Z (t) from the host vehicle to the preceding vehicle (S7) (first) procedure). At this time, the control unit 3 calculates the image size of the preceding vehicle in the captured image (fifth procedure). Next, the control unit 3 compares Z (t−2Δt), Z (t−Δt), and Z (t) (S8). In this case, the control unit 3 sets Δt = nΔT (n is a natural number).
 制御部3は、以下に示す第1の関係が成立しているか否かを判定する(S9)。 The control unit 3 determines whether or not the following first relationship is established (S9).
 Z(t-2△t)>Z(t-△t)>Z(t)・・・(第1の関係)
 制御部3は、第1の関係が成立していないと判定すると(S9:NO)、上記したステップS1に戻る。
Z (t−2Δt)> Z (t−Δt)> Z (t) (first relation)
If the control part 3 determines with the 1st relationship not being materialized (S9: NO), it will return to above-described step S1.
 一方、制御部3は、第1の関係が成立していると判定すると(S9:YES)、以下に示す第2の関係が成立しているか否かを判定する(S10)。 On the other hand, when determining that the first relationship is established (S9: YES), the control unit 3 determines whether or not the following second relationship is established (S10).
 Z(t-2△t)+Z(t)=2Z(t-△t)・・・(第2の関係)
 制御部3は、第2の関係が成立していると判定すると(S10:YES)、自車両及び先行車の双方が定速で走行していると判定する。
Z (t−2Δt) + Z (t) = 2Z (t−Δt) (second relation)
When it is determined that the second relationship is established (S10: YES), the control unit 3 determines that both the host vehicle and the preceding vehicle are traveling at a constant speed.
 制御部3は、自車両及び先行車の双方が定速で走行していると判定すると、tを算出済みであるか否かを判定する(S12)。制御部3は、tを算出済みでないと判定すると(S12:NO)、(14)式又は(18)式を用いて時刻t、(t-△t)におけるtを算出する(S13)。次いで、制御部3は、現在の時刻から当該算出したtまでの時間を算出し、その算出した現在の時刻からtまでの時間と限界時間とを比較する(S14)。限界時間とは、警告の報知を待機し得る最大の時間である。 Control unit 3, when both the host vehicle and the preceding vehicle is determined to be traveling at a constant speed, it is determined whether the already calculated t c (S12). Control unit 3 determines that not been calculated t c (S12: NO), (14) or (18) time using equation t, calculates a t p in (t-△ t) (S13) . Then, the control unit 3 calculates the time from the current time up to t p where the calculated, compares the time and limit time from the current time of the calculated until t p (S14). The limit time is the maximum time that can wait for warning notification.
 制御部3は、現在の時刻からtまでの時間が限界時間以下でないと判定すると(S14:NO)、車間距離に余裕がある正常範囲であり、自車両が先行車に衝突する可能性が相対的に低いと判定し、正常範囲の信号を出力し(S15)、上記したステップS2に戻る。一方、制御部3は、現在の時刻からtまでの時間が限界時間以下であると判定すると(S14:YES)、車間距離に余裕がなく、自車両が先行車に衝突する可能性が相対的に高いと判定し、接近注意の信号を出力し(S16)、上記したステップS2に戻る。即ち、制御部3は、自車両が先行車に接近していることを示す接近注意の表示指令信号を表示部4に出力し、接近注意の音出力指令信号を音出力部5に出力し、上記したステップS2に戻る。表示部4は、制御部3から接近注意の表示指令信号を入力すると、警告画面の表示を行う。又、音出力部5は、制御部3から接近注意の表示指令信号を入力すると、警告音の音出力を行う。これにより、自車両が先行車に衝突する可能性が相対的に高いことを運転者に報知することができる。 Control unit 3, when the time from the current time until t p is determined not less than the critical hours (S14: NO), a normal range can afford the inter-vehicle distance, is a possibility that the vehicle will collide with the preceding vehicle It determines with it being relatively low, outputs the signal of a normal range (S15), and returns to above-mentioned step S2. On the other hand, the control unit 3, when the time from the current time until t p is determined to be equal to or less than the limit hours (S14: YES), there is no margin in the inter-vehicle distance, a possibility that the vehicle will collide with the preceding vehicle relative Is determined to be high, an approach warning signal is output (S16), and the process returns to step S2. That is, the control unit 3 outputs an approaching caution display command signal indicating that the host vehicle is approaching the preceding vehicle to the display unit 4, and outputs an approaching caution sound output command signal to the sound output unit 5. The process returns to step S2. The display unit 4 displays a warning screen when a display command signal for approaching attention is input from the control unit 3. The sound output unit 5 outputs a warning sound when receiving a display command signal for approaching attention from the control unit 3. Thereby, it is possible to notify the driver that the possibility that the host vehicle will collide with the preceding vehicle is relatively high.
 一方、制御部3は、上記した第2の関係が成立していないと判定すると(S10:NO)、以下に示す第3の関係が成立しているか否かを判定する(S11)
 Z(t-2△t)+Z(t)>2Z(t-△t)・・・(第3の関係)
 制御部3は、第3の関係が成立していると判定すると(S11:YES)、先行車が定速で走行しており、自車両が減速を開始したと判定する。制御部3は、先行車が定速で走行しており、自車両が減速を開始したと判定すると、tを算出済みであるか否かを判定する(S17)。制御部3は、tを算出済みでないと判定すると(S17:NO)、tを算出済みであるか否かを判定する(S18)。制御部3は、tを算出済みでないと判定すると(S18:NO)、(13)式又は(18)式を用いて時刻t、(t-△t)におけるtを算出する(S19)(第2の手順)。
On the other hand, when the control unit 3 determines that the above-described second relationship is not established (S10: NO), the control unit 3 determines whether the following third relationship is established (S11).
Z (t−2Δt) + Z (t)> 2Z (t−Δt) (third relation)
When determining that the third relationship is established (S11: YES), the controller 3 determines that the preceding vehicle is traveling at a constant speed and that the host vehicle has started to decelerate. The control unit 3 determines the preceding vehicle is traveling at a constant speed, when it is determined that the vehicle has started decelerating, whether it is already calculated t p (S17). Control unit 3 determines that not been calculated t p (S17: NO), determines whether the already calculated t c (S18). Control unit 3 determines that not been calculated t c (S18: NO), (13) or (18) time using equation t, calculates a t p in (t-△ t) (S19) (Second procedure).
 制御部3は、(27)式又は(28)式が現在の時刻tにおいて成立するか否かを判定する(S20)(第3の手順)。制御部3は、(27)式又は(28)式が現在の時刻tにおいて成立すると判定すると(S20:YES)、正常範囲であると判定し、正常範囲の信号を出力し(S21)、上記したステップS2に戻る。一方、制御部3は、(27)式及び(28)式が現在の時刻tにおいて成立しないと判定すると(S20:NO)、自車両が先行車に衝突する可能性が相対的に高いと判定し、接近注意の信号を出力し(S22)(第4の手順)、上記したステップS2に戻る。この場合も、表示部4は、制御部3から接近注意の表示指令信号を入力すると、警告画面の表示を行う。又、音出力部5は、制御部3から接近注意の表示指令信号を入力すると、警告音の音出力を行う。これにより、自車両が先行車に衝突する可能性が相対的に高いことを運転者に報知することができる。 The control unit 3 determines whether the expression (27) or (28) is established at the current time t (S20) (third procedure). When it is determined that the expression (27) or (28) is established at the current time t (S20: YES), the control unit 3 determines that it is in the normal range, and outputs a signal in the normal range (S21). Return to step S2. On the other hand, when the control unit 3 determines that the equations (27) and (28) are not satisfied at the current time t (S20: NO), the control unit 3 determines that the possibility that the host vehicle collides with the preceding vehicle is relatively high. Then, an approach warning signal is output (S22) (fourth procedure), and the process returns to step S2. Also in this case, the display unit 4 displays a warning screen when the display instruction signal for approaching attention is input from the control unit 3. The sound output unit 5 outputs a warning sound when receiving a display command signal for approaching attention from the control unit 3. Thereby, it is possible to notify the driver that the possibility that the host vehicle will collide with the preceding vehicle is relatively high.
 一方、制御部3は、第3の関係が成立していないと判定すると(S11:NO)、先行車が減速を開始し、自車両が定速で走行していると判定する。制御部3は、先行車が減速を開始し、自車両が定速で走行していると判定すると、tを算出済みであるか否かを判定する(S23)。制御部3は、tを算出済みでないと判定すると(S23:NO)、以下の関係が成立するか否かを判定する(S24)。 On the other hand, when determining that the third relationship is not established (S11: NO), the control unit 3 determines that the preceding vehicle starts decelerating and the host vehicle is traveling at a constant speed. Control unit 3, the preceding vehicle starts decelerating, the vehicle is determined to be traveling at a constant speed, it is determined whether the already calculated t c (S23). Control unit 3 determines that not been calculated t c (S23: NO), the following relation determines whether satisfied (S24).
 αZ(t-2△t)>Z(t)(1>α>0)
 制御部3は、上記した関係が成立すると判定すると(S24:YES)、(41)式を用いてtを求める(S25)。次いで、制御部3は、t≦t≦t/2が成立するか否かを判定する(S26)。制御部3は、t≦t≦t/2が成立しないと判定すると(S26:NO)、t/2≦t≦tが成立するか否かを判定する(S27)。制御部3は、t/2≦t≦tが成立すると判定すると(S27:YES)、(44)式又は(47)式が成立するか否かを判定する(S28)。制御部3は、(44)式又は(47)式が成立すると判定すると(S28:YES)、正常範囲であると判定し、正常範囲の信号を出力し(S29)、上記したステップS2に戻る。一方、制御部3は、(44)式及び(47)式の何れも成立しないと判定すると(S28:NO)、自車両が先行車に衝突する可能性が相対的に高いと判定し、接近注意の信号を出力し(S30)、上記したステップS2に戻る。この場合も、表示部4は、制御部3から接近注意の表示指令信号を入力すると、警告画面の表示を行う。又、音出力部5は、制御部3から接近注意の表示指令信号を入力すると、警告音の音出力を行う。これにより、自車両が先行車に衝突する可能性が相対的に高いことを運転者に報知することができる。
αZ (t−2Δt)> Z (t) (1>α> 0)
Control unit 3 determines that the relationship is satisfied (S24: YES), obtains the t c using (41) Equation (S25). Next, the control unit 3 determines whether or not t 1 ≦ t ≦ t c / 2 is satisfied (S26). If it is determined that t 1 ≦ t ≦ t c / 2 is not satisfied (S26: NO), the control unit 3 determines whether t c / 2 ≦ t ≦ t c is satisfied (S27). Control unit 3 determines that t c / 2 ≦ t ≦ t c is satisfied (S27: YES), (44) or (47) determines whether the expression is satisfied (S28). When it is determined that the formula (44) or the formula (47) is established (S28: YES), the control unit 3 determines that the range is in the normal range, outputs a signal in the normal range (S29), and returns to step S2 described above. . On the other hand, if the control unit 3 determines that neither the formula (44) nor the formula (47) is established (S28: NO), the control unit 3 determines that the possibility that the host vehicle collides with the preceding vehicle is relatively high, and approaches. A caution signal is output (S30), and the process returns to step S2. Also in this case, the display unit 4 displays a warning screen when the display instruction signal for approaching attention is input from the control unit 3. The sound output unit 5 outputs a warning sound when receiving a display command signal for approaching attention from the control unit 3. Thereby, it is possible to notify the driver that the possibility that the host vehicle will collide with the preceding vehicle is relatively high.
 又、制御部3は、t≦t≦t/2が成立すると判定すると(S26:YES)、(48)式又は(49)式が成立するか否かを判定する(S31)。制御部3は、(48)式又は(49)式が成立すると判定すると(S31:YES)、正常範囲であると判定し、正常範囲の信号を出力し(S29)、上記したステップS2に戻る。一方、制御部3は、(48)式及び(49)式の何れも成立しないと判定すると(S31:NO)、自車両が先行車に衝突する可能性が相対的に高いと判定し、接近注意の信号を出力し(S30)、上記したステップS2に戻る。この場合も、表示部4は、制御部3から接近注意の表示指令信号を入力すると、警告画面の表示を行う。又、音出力部5は、制御部3から接近注意の表示指令信号を入力すると、警告音の音出力を行う。これにより、自車両が先行車に衝突する可能性が相対的に高いことを運転者に報知することができる。 If it is determined that t 1 ≦ t ≦ t c / 2 is satisfied (S26: YES), the controller 3 determines whether or not the expression (48) or (49) is satisfied (S31). When it is determined that the formula (48) or the formula (49) is established (S31: YES), the control unit 3 determines that the range is in the normal range, outputs a signal in the normal range (S29), and returns to step S2 described above. . On the other hand, if the control unit 3 determines that neither the formula (48) nor the formula (49) is established (S31: NO), the control unit 3 determines that the possibility that the host vehicle collides with the preceding vehicle is relatively high, and approaches. A caution signal is output (S30), and the process returns to step S2. Also in this case, the display unit 4 displays a warning screen when the display instruction signal for approaching attention is input from the control unit 3. The sound output unit 5 outputs a warning sound when receiving a display command signal for approaching attention from the control unit 3. Thereby, it is possible to notify the driver that the possibility that the host vehicle will collide with the preceding vehicle is relatively high.
 以上に説明したように本実施形態によれば、車載システム1において、自車両及び先行車のうちどちらが速度を変化させると、衝突予想時刻が時間経過にしたがって変化することに着目し、衝突予想時刻の時間変化に基づいて車間距離の時間変化を監視する。そして、計測した車間距離と、その監視している車間距離の時間変化との関係に基づいて、報知動作を制御するようにした。即ち、時間変化を監視している車間距離が、計測した車間距離よりも大きければ、衝突する可能性が相対的に小さいと判定し、一方、計測した車間距離よりも小さければ、衝突する可能性が相対的に大きいと判定し、警告を報知するようにした。これにより、複雑な構成を必要とすることなく、自車両及び先行車のうちどちらが速度を変化させた場合であっても、自車両から先行車までの車間距離に応じて報知動作を適切に行うことができる。 As described above, according to the present embodiment, in the in-vehicle system 1, paying attention to which of the own vehicle and the preceding vehicle changes the speed, the expected collision time changes as time elapses. The time change of the inter-vehicle distance is monitored based on the time change. Then, the notification operation is controlled based on the relationship between the measured inter-vehicle distance and the time variation of the monitored inter-vehicle distance. That is, if the inter-vehicle distance monitoring the time change is larger than the measured inter-vehicle distance, it is determined that the possibility of collision is relatively small. On the other hand, if the inter-vehicle distance is smaller than the measured inter-vehicle distance, the possibility of collision is determined. Is determined to be relatively large, and a warning is notified. Thus, the notification operation is appropriately performed according to the inter-vehicle distance from the own vehicle to the preceding vehicle regardless of which of the own vehicle and the preceding vehicle changes the speed without requiring a complicated configuration. be able to.
 実施形態は、上記した実施形態にのみ限定されるものではなく、以下のように変形又は拡張した実施形態も含む。 Embodiments are not limited to the above-described embodiments, but include embodiments modified or expanded as follows.
 1眼のカメラを用いて車間距離を計測する構成を例示したが、2眼のカメラやレーダ等の測距センサを用いて車間距離を計測しても良い。即ち、2眼のカメラやレーダ等の測距センサを用いて計測した車間距離がゼロとなる衝突予想時刻を算出し、その算出した衝突予想時刻の時間変化に基づいて車間距離の時間変化を監視しても良い。 Although the configuration in which the inter-vehicle distance is measured using a single-lens camera is exemplified, the inter-vehicle distance may be measured using a two-lens camera or a distance measuring sensor such as a radar. That is, the estimated collision time when the distance between vehicles measured using a distance measuring sensor such as a two-lens camera or a radar is zero is calculated, and the time variation of the distance between vehicles is monitored based on the time variation of the calculated estimated collision time. You may do it.
 自車両が先行車に衝突する可能性が相対的に高いと判定した場合に、所定動作として表示部4が警告画面を表示すると共に音出力部5が警告音を音出力する構成を示したが、車両挙動制御部6が衝突を回避するように例えばブレーキ制御等の車両制御を行っても良い。 Although it has been determined that the possibility that the host vehicle collides with the preceding vehicle is relatively high, the display unit 4 displays a warning screen and the sound output unit 5 outputs a warning sound as a predetermined operation. For example, vehicle control such as brake control may be performed so that the vehicle behavior control unit 6 avoids a collision.

Claims (7)

  1.  自車両から先行車までの車間距離を計測する車間距離計測部(3a)と、
     前記車間距離がゼロとなる衝突予想時刻を算出する衝突予想時刻算出部(3c)と、
     前記衝突予想時刻算出部により算出された衝突予想時刻の時間変化に基づいて前記車間距離の時間変化を監視する時間変化監視部(3d)と、
     前記車間距離計測部により計測された前記車間距離と前記時間変化監視部により監視されている前記車間距離の時間変化との関係に基づいて、動作部(4~6)が行う所定動作を制御する動作制御部(3e)と、を備えた車載システム(1)。
    An inter-vehicle distance measuring unit (3a) for measuring an inter-vehicle distance from the host vehicle to a preceding vehicle;
    A predicted collision time calculation unit (3c) that calculates a predicted collision time when the inter-vehicle distance is zero;
    A time change monitoring unit (3d) for monitoring the time change of the inter-vehicle distance based on the time change of the predicted collision time calculated by the expected collision time calculation unit;
    Based on the relationship between the inter-vehicle distance measured by the inter-vehicle distance measuring unit and the time variation of the inter-vehicle distance monitored by the time variation monitoring unit, the predetermined operation performed by the operation unit (4 to 6) is controlled. An in-vehicle system (1) including an operation control unit (3e).
  2.  請求項1に記載した車載システムにおいて、
     自車両の前方を撮影して撮影画像を取得する撮影部(2)と、
     前記撮影部により取得された撮影画像内に占める先行車の画像サイズを算出する画像サイズ算出部(3b)と、を備え、
     前記衝突予想時刻算出部は、前記画像サイズ算出部により算出された画像サイズと前記撮影部により自車両の前方が撮影された撮影時刻とを用い、前記撮影時刻での自車両の速度と先行車の速度との差である相対速度で自車両が走行し続けた場合に前記車間距離がゼロとなる衝突予想時刻を算出する車載システム。
    In the in-vehicle system according to claim 1,
    A photographing unit (2) for photographing the front of the host vehicle and acquiring a photographed image;
    An image size calculation unit (3b) that calculates an image size of a preceding vehicle in the captured image acquired by the imaging unit;
    The predicted collision time calculation unit uses the image size calculated by the image size calculation unit and the shooting time when the front of the host vehicle was shot by the shooting unit, and the speed of the host vehicle at the shooting time and the preceding vehicle A vehicle-mounted system that calculates a predicted collision time at which the inter-vehicle distance becomes zero when the host vehicle continues to travel at a relative speed that is a difference from the speed of the vehicle.
  3.  請求項1又は2に記載した車載システムにおいて、
     前記動作部は、警告を報知する報知部(4、5)を含む車載システム。
    In the in-vehicle system according to claim 1 or 2,
    The said operation | movement part is a vehicle-mounted system containing the alerting | reporting part (4, 5) which alert | reports a warning.
  4.  請求項3に記載した車載システムにおいて、
     前記報知部は、警告を表示により報知する表示部(4)及び警告を音出力により報知する音出力部(5)のうち少なくとも何れかを含む車載システム。
    In the in-vehicle system according to claim 3,
    The said alerting | reporting part is a vehicle-mounted system containing at least any one of the display part (4) which alert | reports a warning by a display, and the sound output part (5) which alert | reports a warning by sound output.
  5.  請求項1又は2に記載した車載システムにおいて、
     前記動作部は、車両の挙動を制御する車両挙動制御部(6)を含む車載システム。
    In the in-vehicle system according to claim 1 or 2,
    The said operation | movement part is a vehicle-mounted system containing the vehicle behavior control part (6) which controls the behavior of a vehicle.
  6.  車載システム(1)の制御部(3)に、
     自車両から先行車までの車間距離を計測する第1の手順と、
     前記車間距離がゼロとなる衝突予想時刻を算出する第2の手順と、
     前記第2の手順により算出した衝突予想時刻の時間変化に基づいて前記車間距離の時間変化を監視する第3の手順と、
     前記第1の手順により計測した前記車間距離と前記第3の手順により監視している前記車間距離の時間変化との関係に基づいて、動作部(4~6)が行う所定動作を制御する第4の手順と、を実行させる車載プログラム。
    In the control unit (3) of the in-vehicle system (1)
    A first procedure for measuring an inter-vehicle distance from the host vehicle to a preceding vehicle;
    A second procedure for calculating a predicted collision time at which the inter-vehicle distance is zero;
    A third procedure for monitoring the time change of the inter-vehicle distance based on the time change of the predicted collision time calculated by the second procedure;
    Based on the relationship between the inter-vehicle distance measured by the first procedure and the time change of the inter-vehicle distance monitored by the third procedure, a predetermined operation performed by the operation unit (4 to 6) is controlled. The in-vehicle program which performs 4 procedures.
  7.  請求項6に記載した車載プログラムにおいて、
     自車両の前方を撮影する撮影部(2)により取得された撮影画像内に占める先行車の画像サイズを算出する第5の手順を含み、
     前記第2の手順において、前記第5の手順により算出した画像サイズと前記撮影部により自車両の前方が撮影された撮影時刻とを用い、前記撮影時刻での自車両の速度と先行車の速度との差である相対速度で自車両が走行し続けた場合に前記車間距離がゼロとなる衝突予想時刻を算出する車載プログラム。
    In the in-vehicle program according to claim 6,
    Including a fifth procedure for calculating the image size of the preceding vehicle in the captured image acquired by the imaging unit (2) that captures the front of the host vehicle,
    In the second procedure, using the image size calculated in the fifth procedure and the shooting time when the front of the host vehicle was shot by the shooting unit, the speed of the host vehicle and the speed of the preceding vehicle at the shooting time A vehicle-mounted program for calculating a predicted collision time at which the inter-vehicle distance becomes zero when the host vehicle continues to travel at a relative speed that is a difference from the vehicle.
PCT/JP2015/001667 2014-03-31 2015-03-24 Onboard system and onboard program WO2015151458A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-072297 2014-03-31
JP2014072297A JP2015194895A (en) 2014-03-31 2014-03-31 On-vehicle system and on-vehicle program

Publications (1)

Publication Number Publication Date
WO2015151458A1 true WO2015151458A1 (en) 2015-10-08

Family

ID=54239805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001667 WO2015151458A1 (en) 2014-03-31 2015-03-24 Onboard system and onboard program

Country Status (2)

Country Link
JP (1) JP2015194895A (en)
WO (1) WO2015151458A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0836697A (en) * 1994-07-21 1996-02-06 Daihatsu Motor Co Ltd Rear-end collision danger judgement method in rear-end collision prevention system
JPH1166496A (en) * 1997-08-27 1999-03-09 Nissan Motor Co Ltd Headway alarming device
US20120287276A1 (en) * 2011-05-12 2012-11-15 Delphi Technologies, Inc. Vision based night-time rear collision warning system, controller, and method of operating the same
JP2013114606A (en) * 2011-11-30 2013-06-10 Hitachi Automotive Systems Ltd Object detection device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0836697A (en) * 1994-07-21 1996-02-06 Daihatsu Motor Co Ltd Rear-end collision danger judgement method in rear-end collision prevention system
JPH1166496A (en) * 1997-08-27 1999-03-09 Nissan Motor Co Ltd Headway alarming device
US20120287276A1 (en) * 2011-05-12 2012-11-15 Delphi Technologies, Inc. Vision based night-time rear collision warning system, controller, and method of operating the same
JP2013114606A (en) * 2011-11-30 2013-06-10 Hitachi Automotive Systems Ltd Object detection device

Also Published As

Publication number Publication date
JP2015194895A (en) 2015-11-05

Similar Documents

Publication Publication Date Title
EP2985746B1 (en) Vehicle driving assistance apparatus
US9358976B2 (en) Method for operating a driver assistance system of a vehicle
EP2750118B1 (en) Driving support apparatus and driving support method
WO2014192137A1 (en) Movement trajectory prediction device, and movement trajectory prediction method
RU151809U1 (en) VIDEO SYSTEM FOR SECURITY OF VEHICLES
WO2017199529A1 (en) Driving assistance device and driving assistance program
WO2017111147A1 (en) Travel assistance device and travel assistance method
JP5938518B2 (en) Collision safety control device
WO2014132748A1 (en) Imaging device, and vehicle control device
US20160236681A1 (en) Vehicle driving situation determination apparatus and vehicle driving situation determination method
JP7244546B2 (en) Driving support method, control unit, driving support system, and operating device
JP2008003707A (en) Hazard prediction device
JP2018097515A (en) Drive assisting device, drive assisting method, and program thereof
CN111645674B (en) Vehicle control device
JP2013053962A (en) Camera system, collision prediction system, and parking guide system
JP5333604B2 (en) Brake control device and brake control method
EP3404911A1 (en) Imaging system and moving body control system
JP2018521401A (en) Improved calculation of time to collision for vehicles
WO2015151458A1 (en) Onboard system and onboard program
TWI573713B (en) Indicating device and method for driving distance with vehicles
JP2011118723A (en) Device for avoiding collision of vehicle
CN113173160B (en) Anti-collision device for vehicle and anti-collision method for vehicle
JP5443930B2 (en) Vehicle travel safety device
JP2022021517A (en) Dangerous driving determination device and dangerous driving determination method
JP2019191637A (en) Collision determination device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15773578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15773578

Country of ref document: EP

Kind code of ref document: A1