WO2015151353A1 - Vanadium oxide and manufacturing method therefor - Google Patents

Vanadium oxide and manufacturing method therefor Download PDF

Info

Publication number
WO2015151353A1
WO2015151353A1 PCT/JP2014/083706 JP2014083706W WO2015151353A1 WO 2015151353 A1 WO2015151353 A1 WO 2015151353A1 JP 2014083706 W JP2014083706 W JP 2014083706W WO 2015151353 A1 WO2015151353 A1 WO 2015151353A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
vanadium
vanadium oxide
oxide
partial pressure
Prior art date
Application number
PCT/JP2014/083706
Other languages
French (fr)
Japanese (ja)
Inventor
廣瀬 左京
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2016511326A priority Critical patent/JP6197948B2/en
Publication of WO2015151353A1 publication Critical patent/WO2015151353A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC

Definitions

  • the present invention relates to vanadium oxide and a method for producing the same.
  • V 2 O 3 It is known that various oxides such as V 2 O 3 , VO 2 , and V 2 O 5 exist as vanadium oxides.
  • VO 2 is known as a substance that undergoes an electronic phase transition, and its use as a heat storage material has been proposed using the latent heat associated with this electronic phase transition (Patent Document 1).
  • vanadium oxide used as a heat storage material as described above can be used for cooling electronic devices.
  • high-purity VO 2 with large latent heat is required.
  • vanadium oxide has phases with different oxygen contents and vanadium valences, such high-purity VO 2 Even if it can be produced on a small scale, it has been difficult to produce a large amount stably.
  • the present inventor has found that even in the case of VO 2 having high purity and powder X-ray diffraction measurement, the endothermic amount is greatly different, that is, the same single-phase VO 2. However, it has been found that there is a difference in the endothermic amount.
  • commercially available VO 2 is generally produced by heat-treating NH 4 VO 3 in an atmosphere in which tetravalent vanadium is stable, but is obtained by simply heating in such an atmosphere. It was found that the obtained VO 2 had a small endotherm for use in a cooling device.
  • the present inventors have also found that there is a problem that the endothermic property of vanadium oxide is lowered by passing through a pulverization step.
  • an object of the present invention is to provide a vanadium oxide having a large endothermic amount and a method capable of stably producing a large amount of such vanadium oxide.
  • the present inventor has a low melting point (about 800 ° C.) of V 2 O 5 which is an inexpensive and stable raw material, which melts during the synthesis of VO 2 . It was noticed that the inhibition of oxygen flow and the non-uniform atmosphere were the cause of the decrease in the purity of VO 2 (that is, the generation of a heterogeneous phase). And this inventor discovered that this problem could be solved by adjusting the oxygen partial pressure at the time of a synthesis
  • the present inventor has found that the endothermic property of vanadium oxide is affected by a difference in crystallinity that cannot be detected by powder X-ray diffraction (for example, a difference in oxygen defects). Then, it was found that this difference in crystallinity can be quantitatively evaluated by suggested thermo-thermogravimetry (TG-DTA), and the oxidation start temperature of vanadium oxide derived from TG-DTA (described in detail below). ) was found to exhibit excellent endothermic properties when it was 400 ° C. or higher.
  • TG-DTA thermo-thermogravimetry
  • vanadium oxide having an oxidation start temperature of 400 ° C. or higher and mainly composed of a tetravalent vanadium (V 4+ ) oxide.
  • a material containing the above vanadium oxide is provided.
  • a process for producing the above vanadium oxide comprising: (1) comprising at least one divalent to pentavalent oxide of vanadium and optionally at least one oxide of M (where M is selected from W, Ta, Mo and Nb)
  • a temperature raising step for heating the raw material to a temperature of 850 ° C. or higher and 1200 ° C. or lower; and (2) a high temperature holding step for holding the raw material at a temperature after the temperature rising, and in the temperature rising step, an oxygen partial pressure at 800 ° C.
  • 1 ⁇ is at 10 -11 MPa or less
  • the oxygen partial pressure, 1 ⁇ 10 -7 ⁇ method is 1 ⁇ 10 -10 MPa is provided.
  • FIG. 1 is a schematic perspective view of a “sheath” used in the examples.
  • FIG. 2 is a schematic cross-sectional view of the sheath of FIG. 1 filled with VO x for explaining a surface portion, a center portion, and a bottom surface portion in the embodiment.
  • FIG. 3 shows the results of powder X-ray diffraction measurement of VO 2 of sample number 2, VO 2 of sample number 28, and VO 2 of sample number 29.
  • FIG. 4 shows the suggested thermo-thermogravimetric results of sample number 2 VO 2 , sample number 28 VO 2 , and sample number 29 VO 2 .
  • FIG. 5 is a graph showing the relationship between the endothermic amounts of Sample Nos. 28 to 57 and the oxidation start temperature of unheated Dalian BNM VO 2 in different lots.
  • FIG. 6 is a diagram for explaining the definition of the oxidation start temperature.
  • the vanadium oxide of the present invention is mainly composed of tetravalent vanadium (V 4+ ) oxide, that is, VO 2 .
  • the main component means a component contained in vanadium oxide at 90% by mass or more, particularly 95% by mass or more, preferably 98% by mass or more, more preferably 98% by mass or more, for example, 98.0 to 99. Means 8% by mass or substantially 100% by mass.
  • the main component includes that vanadium oxide is substantially composed of the component.
  • Other components include oxides of vanadium other than tetravalent, specifically, but not limited to VO, V 2 O 3 , V 2 O 5 , V 3 O 7 , V 4 O 7 , V 5 O 9 , V 6 O 11 , V 6 O 13 and the like.
  • the vanadium oxide of the present invention may contain other atoms, for example, one or more atoms selected from the group consisting of W, Ta, Mo and Nb. By including (doping) such atoms, the temperature at which vanadium oxide undergoes phase transition can be adjusted.
  • the vanadium oxide of the present invention contains V and M (wherein M is at least one selected from W, Ta, Mo and Nb), and the total of V and M is 100 mol parts.
  • the content of M is an oxide containing 0 to about 5 parts by mole. Note that M is not an essential component, and the content molar part of M may be 0.
  • the vanadium oxide of the present invention has the formula: V 1-x M x O 2 (In the formula, M is W, Ta, Mo or Nb, and x is 0 or more and 0.05 or less) Or one or more oxides represented by:
  • the vanadium oxide of the present invention has an oxidation start temperature of 400 ° C. or higher, preferably 450 ° C. or higher, more preferably 500 ° C., and further preferably 550 ° C.
  • Vanadium oxide having an oxidation start temperature of 400 ° C. or higher has a large endothermic amount, and the endothermic amount increases as the oxidation start temperature increases (see FIG. 5).
  • the “oxidation start temperature” means a weight increase rate (%)-temperature (° C.) based on the weight at 200 ° C. by thermogravimetry / Differential Thermal Analysis (TG-DTA). ) In the graph, the temperature at which the straight line connecting the point where the weight increase rate is 4% and the point where it is 2% intersects the temperature axis is defined (see FIG. 6).
  • the vanadium oxide of the present invention when substantially composed of VO 2 , it may preferably have an endotherm of 50 J / g or more, more preferably 60 J / g or more.
  • the endotherm may vary, for example, preferably having an endotherm of 40 J / g or more, more preferably 50 J / g or more.
  • the endothermic amount can be measured by differential scanning calorimetry (DSC).
  • the present invention provides a material containing the above vanadium oxide.
  • a material is not particularly limited, but can be used for a cooling device of electronic equipment, a heat storage material, and the like.
  • the present invention provides a method for producing the above vanadium oxide.
  • the method of the present invention includes (1) a temperature raising step and (2) a high temperature holding step.
  • M is W, Ta, Mo and Nb.
  • the raw materials may contain various vanadium oxides, such as VO, V 2 O 3 , V 2 O 5 , V 3 O 7 , V 4 O 7 , V 5 O 9 , V 6 O 11 , and V 6 O 13 or the like may be included.
  • VO 2 in particular oxidation initiation temperature can also be used as a raw material VO 2 is less than 400 ° C..
  • the raw material may contain one or more elements selected from other elements such as W, Ta, Mo and Nb. These elements can preferably be included as oxides, for example as WO 3 , Ta 2 O 5 , MoO 3 , Nb 2 O 5 .
  • the molar ratio of V and O contained in the raw material is about 1: 2. With such a ratio, it is possible to prompt a change in the VO 2.
  • the above raw material is gradually heated (heated) in a reducing atmosphere.
  • the temperature rise is performed until the temperature of the raw material reaches a temperature of 850 ° C. or higher and 1200 ° C. or lower, preferably 900 ° C. or higher and 1100 ° C. or lower.
  • the temperature raising step is not particularly limited, but is performed, for example, for 1 to 10 hours, preferably 3 to 6 hours.
  • the temperature raising step is performed in a stronger reducing atmosphere, and the oxygen partial pressure is lower in the temperature raising step than in the high temperature holding step.
  • the oxygen partial pressure at 800 ° C. in the temperature raising step is 1 ⁇ 10 ⁇ 11 MPa or less, more preferably 1 ⁇ 10 ⁇ 12 MPa or less.
  • V 2 O 5 having a low melting point (about 800 ° C.) is likely to become a vanadium oxide having a higher melting point and a lower valence, such as VO 2 or V 2 O 3 .
  • the melting of the raw material in the temperature raising step can be prevented. As a result, necking or the like between the raw material particles is prevented, the oxygen concentration in the reaction system is kept more uniform, and vanadium oxide with high purity can be obtained.
  • the raw material includes V 2 O 5 .
  • the oxygen concentration in the temperature raising step may be lower than the oxygen concentration in the high temperature holding step, and may be an oxygen concentration at which vanadium is reduced to less than tetravalent at the temperature at that time, and is not necessarily constant.
  • the oxygen concentration may be relatively low, and the oxygen concentration may be gradually increased as the temperature increases, and vice versa.
  • the raw material heated in the temperature raising step is held at the temperature after the temperature elevation, that is, 850 ° C. to 1200 ° C.
  • the holding time is not particularly limited as long as the raw material reduced in the temperature raising step is sufficiently oxidized to VO 2 , and is, for example, 1 hour or longer, preferably 2 to 6 hours.
  • the high temperature holding step is performed in an atmosphere in which vanadium is tetravalent and stable, for example, under an oxygen partial pressure of 1 ⁇ 10 ⁇ 7 to 1 ⁇ 10 ⁇ 10 MPa for at least a part of the holding step.
  • the oxygen concentration is preferably controlled so as not to be in an oxidizing atmosphere where vanadium becomes pentavalent. By controlling in this way, vanadium becomes pentavalent and it is possible to prevent the melting point from being lowered.
  • vanadium oxide having a large endotherm can be obtained by the method of the present invention.
  • vanadium oxide having a large endotherm is considered as follows. First. By raising the temperature of the vanadium oxide raw material in a reducing atmosphere stronger than the high temperature holding step, vanadium is easily reduced and the amount of pentavalent vanadium is reduced. That is, in the process, V 2 O 5 having a low melting point (about 800 ° C.) is reduced, and the melting point of the raw material vanadium oxide becomes high (specifically, higher than 800 ° C.).
  • vanadium is more likely to proceed with a reaction that acquires oxygen (that is, an oxidation reaction) than a reaction that loses oxygen (that is, a reduction reaction), the vanadium is once reduced rather than the target tetravalent, and then to the tetravalent. It is considered that more uniform VO 2 can be obtained by oxidation.
  • the method of the present invention may include a temperature lowering step in which the oxygen concentration is controlled.
  • the oxygen partial pressure at 800 ° C. in the temperature lowering step is preferably 1 ⁇ 10 ⁇ 10 MPa or less, more preferably 1 ⁇ 10 ⁇ 11 MPa or less so that VO 2 obtained in the temperature lowering holding step is not oxidized. It is.
  • the oxygen partial pressure at 800 ° C. is preferably 1 ⁇ 10 ⁇ 13 MPa or more, preferably 1 ⁇ 10 ⁇ 12 MPa or more.
  • the temperature lowering step is not particularly limited, but is performed, for example, for 1 to 10 hours, preferably 3 to 6 hours.
  • the method for producing vanadium oxide of the present invention does not include a pulverization step, or when it includes a pulverization step, the pulverization time is 12 hours or less, preferably 6 hours or less.
  • the mixed slurry was dried, sized, put into a mullite sheath of 100 ⁇ 100 ⁇ 50 mm 3 (internal volume 90 ⁇ 90 ⁇ 40 mm 3 ) shown in FIG. Heat treatment was performed in a nitrogen atmosphere.
  • the heat treatment was performed by changing the oxygen partial pressure at 800 ° C. in the temperature raising step, the temperature and oxygen partial pressure in the high temperature holding step, and the oxygen partial pressure at 800 ° C. in the temperature lowering step. 1 to 23 (numbers marked with * are comparative examples).
  • the starting temperature in the temperature raising step was room temperature, and the temperature was raised to a predetermined temperature in 3.5 hours.
  • the high temperature holding process was 4 hours. In the temperature lowering step, it was allowed to stand until it reached room temperature for cooling.
  • the oxygen partial pressure was controlled by keeping the water vapor amount and nitrogen amount constant in the section of 150 ° C. or higher, monitoring the oxygen partial pressure, and adjusting the hydrogen amount.
  • the oxygen partial pressure was monitored by sampling the gas in the furnace and measuring with a zirconia oxygen partial pressure meter.
  • DSC differential scanning calorimetry
  • heterogeneous generation means that 20% or more of other vanadium oxide was present with respect to VO 2 as the main component from the diffraction intensity of XRD.
  • the temperature of the high temperature holding process is Sample number 20 (850 ° C.) and sample number 21 (1250 ° C.), which are outside the scope of the present invention, and sample number 5 (1.0 ⁇ 10 ⁇ 6 MPa), a heterogeneous phase was formed, and the endothermic amount was small.
  • sample number 20 850 ° C.
  • sample number 21 (1250 ° C.)
  • sample number 5 1.0 ⁇ 10 ⁇ 6 MPa
  • VO 2 of the present invention instead of the production of VO 2 of the present invention from VO 2 prepared in conventional method vanadium trioxide (V 2 O 3) and vanadium pentoxide (V 2 O 5), using a VO 2 of Sample No. 28 Except for the above, VO 2 of sample numbers 31 to 53 and V 0.995 W 0.005 O 2 of sample numbers 54 to 57 were produced in the same manner as sample numbers 1 to 27.
  • the obtained sample was subjected to powder X-ray diffraction measurement and differential scanning calorimetry in the same manner as described above. The results are shown in Table 6 below (numbers marked with * are comparative examples).
  • heterogeneous generation means that 20% or more of other vanadium oxide was present with respect to VO 2 as the main component from the diffraction intensity of XRD.
  • TG-DTA measurement was also performed on sample numbers 31 to 57 in order to confirm the relationship between the endothermic amount and the oxidation start temperature.
  • the straight line connecting the points where the weight increase rate is 4% and 2% is the temperature axis was defined as “oxidation start temperature” (see FIG. 6), and the oxidation start temperature was determined for each sample.
  • the results were plotted on a graph of endotherm (J / g) -oxidation start temperature (° C.) (FIG. 5).
  • the oxidation start temperature can be used as an index of the endothermic amount.
  • the relationship between the oxidation start temperature and the endothermic amount is not limited to VO 2 using vanadium oxide as a raw material, for example NH 4 VO 3 It is also applied to VO 2 produced by oxidizing a salt such as
  • sample number 2 (sample number 30) was used to investigate the influence of pulverization.
  • a sample was prepared by drying the resulting slurry.
  • the obtained samples Nos. 58 to 61 were subjected to DCS and TG-DTA measurement, and the endothermic amount and the oxidation start temperature were evaluated.
  • the results of DCS are shown in Table 6 below, and the results of TG-DTA are also shown in FIG.
  • the vanadium oxide of the present invention has a high latent heat, it can be suitably used for various applications such as a cooling device for electronic equipment.

Abstract

This invention provides a method for manufacturing vanadium oxide. Said method includes a temperature-raising step (1) in which a feedstock containing at least one oxide of vanadium having a valence of 2 to 5 and, as desired, at least one oxide of M (M being selected from among tungsten, tantalum, molybdenum, and niobium) is heated to a temperature between 850°C and 1,200°C, inclusive, and a temperature-holding step (2) in which the feedstock is held at the temperature that the feedstock is at after the temperature-raising step. During the temperature-raising step, the partial pressure of oxygen at 800°C is less than or equal to 1×10-11 MPa, and during at least part of the temperature-holding step, the partial pressure of oxygen is between 1×10-7 and 1×10-10 MPa, inclusive. This invention makes it possible to stably manufacture large amounts of a vanadium oxide that can absorb a large amount of heat.

Description

酸化バナジウムおよびその製造方法Vanadium oxide and method for producing the same
 本発明は、酸化バナジウムおよびその製造方法に関する。 The present invention relates to vanadium oxide and a method for producing the same.
 バナジウムの酸化物として、V、VO、V等の種々のものが存在することが知られている。中でもVOは、電子相転移する物質として知られており、この電子相転移に伴う潜熱を利用して、蓄熱材としての使用が提案されている(特許文献1)。 It is known that various oxides such as V 2 O 3 , VO 2 , and V 2 O 5 exist as vanadium oxides. Among these, VO 2 is known as a substance that undergoes an electronic phase transition, and its use as a heat storage material has been proposed using the latent heat associated with this electronic phase transition (Patent Document 1).
特開2010-163510号公報JP 2010-163510 A
 本発明者は、上記のように蓄熱材として用いられている酸化バナジウムを、電子機器の冷却に利用できることを見出した。効率良い冷却のために、潜熱の大きい高純度のVOが必要になるが、酸化バナジウムには、酸素含有量、バナジウム価数の異なる相が存在する為、このような高純度のVOは、小規模では製造可能であっても、多量に安定して製造することは困難であった。 The present inventor has found that vanadium oxide used as a heat storage material as described above can be used for cooling electronic devices. For efficient cooling, high-purity VO 2 with large latent heat is required. However, since vanadium oxide has phases with different oxygen contents and vanadium valences, such high-purity VO 2 Even if it can be produced on a small scale, it has been difficult to produce a large amount stably.
 さらに、本発明者は、高純度かつ粉末X線回折測定において、同程度の優れた結晶性を示すVOであっても、吸熱量が大きく異なること、即ち、同じ単相のVOであっても、吸熱量に差があることを見出した。特に、市販のVOは、一般的にNHVOを、4価のバナジウムが安定となる雰囲気下で熱処理することにより製造されているが、単にこのような雰囲気下で加熱することにより得られたVOは、冷却デバイスに用いるには吸熱量が小さいことが判った。 Further, the present inventor has found that even in the case of VO 2 having high purity and powder X-ray diffraction measurement, the endothermic amount is greatly different, that is, the same single-phase VO 2. However, it has been found that there is a difference in the endothermic amount. In particular, commercially available VO 2 is generally produced by heat-treating NH 4 VO 3 in an atmosphere in which tetravalent vanadium is stable, but is obtained by simply heating in such an atmosphere. It was found that the obtained VO 2 had a small endotherm for use in a cooling device.
 さらに、本発明者は、酸化バナジウムの吸熱性は、粉砕工程を経ることにより、低下するという問題があることも見出した。 Furthermore, the present inventors have also found that there is a problem that the endothermic property of vanadium oxide is lowered by passing through a pulverization step.
 従って、本発明の目的は、吸熱量が大きな酸化バナジウム、およびこのような酸化バナジウムを多量に安定して製造できる方法を提供することにある。 Therefore, an object of the present invention is to provide a vanadium oxide having a large endothermic amount and a method capable of stably producing a large amount of such vanadium oxide.
 本発明者は、上記問題を解消すべく鋭意検討した結果、安価で安定な原料であるVの融点(約800℃)が低く、VO合成時にこれが溶融し、原料の内部への酸素の出入りを阻害し、雰囲気が不均一化されることが、VOの純度の低下(つまり異相の生成)の原因であることに気づいた。そして、本発明者は、この問題を、合成時の酸素分圧を調整し、昇温過程において適切な還元雰囲気とすることにより解決できることを見出した。 As a result of intensive studies to solve the above problems, the present inventor has a low melting point (about 800 ° C.) of V 2 O 5 which is an inexpensive and stable raw material, which melts during the synthesis of VO 2 , It was noticed that the inhibition of oxygen flow and the non-uniform atmosphere were the cause of the decrease in the purity of VO 2 (that is, the generation of a heterogeneous phase). And this inventor discovered that this problem could be solved by adjusting the oxygen partial pressure at the time of a synthesis | combination, and setting it as a suitable reducing atmosphere in a temperature rising process.
 さらに、本発明者は、酸化バナジウムの吸熱性が、粉末X線回折では検出できない程度の結晶性の違い(例えば、酸素欠陥の違い)により影響を受けることを見出した。そして、この結晶性の違いが、示唆熱-熱重量測定(TG-DTA)により定量的に評価可能であることを見出し、TG-DTAにより導かれる酸化バナジウムの酸化開始温度(下記に詳しく説明する)が、400℃以上である場合に、優れた吸熱性を示すことを見出した。 Furthermore, the present inventor has found that the endothermic property of vanadium oxide is affected by a difference in crystallinity that cannot be detected by powder X-ray diffraction (for example, a difference in oxygen defects). Then, it was found that this difference in crystallinity can be quantitatively evaluated by suggested thermo-thermogravimetry (TG-DTA), and the oxidation start temperature of vanadium oxide derived from TG-DTA (described in detail below). ) Was found to exhibit excellent endothermic properties when it was 400 ° C. or higher.
 本発明の第1の要旨によれば、酸化開始温度が400℃以上であり、4価のバナジウム(V4+)の酸化物を主成分とする酸化バナジウムが提供される。 According to the first aspect of the present invention, there is provided vanadium oxide having an oxidation start temperature of 400 ° C. or higher and mainly composed of a tetravalent vanadium (V 4+ ) oxide.
 本発明の第2の要旨によれば、上記の酸化バナジウムを含む材料が提供される。 According to the second aspect of the present invention, a material containing the above vanadium oxide is provided.
 本発明の第3の要旨によれば、上記の酸化バナジウムの製造方法であって:
 (1)少なくとも1種の2価~5価のバナジウムの酸化物、および所望により少なくとも1種のM(ここに、Mは、W、Ta、MoおよびNbから選択される)の酸化物を含む原料を、850℃以上1200℃以下の温度にまで加熱する昇温工程;と
 (2)昇温後の温度で保持する高温保持工程と
を含み、昇温工程において、800℃での酸素分圧が、1×10-11MPa以下であり、高温保持工程の少なくとも一部期間において、酸素分圧が、1×10-7~1×10-10MPaである方法が提供される。
According to a third aspect of the present invention, there is provided a process for producing the above vanadium oxide comprising:
(1) comprising at least one divalent to pentavalent oxide of vanadium and optionally at least one oxide of M (where M is selected from W, Ta, Mo and Nb) A temperature raising step for heating the raw material to a temperature of 850 ° C. or higher and 1200 ° C. or lower; and (2) a high temperature holding step for holding the raw material at a temperature after the temperature rising, and in the temperature rising step, an oxygen partial pressure at 800 ° C. There, 1 × is at 10 -11 MPa or less, at least part time of the high temperature holding step, the oxygen partial pressure, 1 × 10 -7 ~ method is 1 × 10 -10 MPa is provided.
 本発明によれば、高純度かつ吸熱量の大きい酸化バナジウムを、大量に安定して合成することが可能になる。 According to the present invention, it is possible to stably synthesize high-purity and high endothermic vanadium oxide in a large amount.
図1は、実施例で用いた「さや」の概略斜視図である。FIG. 1 is a schematic perspective view of a “sheath” used in the examples. 図2は、実施例における表面部、中央部および底面部を説明する、VOを充填した図1のさやの概略断面図である。FIG. 2 is a schematic cross-sectional view of the sheath of FIG. 1 filled with VO x for explaining a surface portion, a center portion, and a bottom surface portion in the embodiment. 図3は、試料番号2のVO、試料番号28のVO、および試料番号29のVOの粉末X線回折測定の結果を示す。FIG. 3 shows the results of powder X-ray diffraction measurement of VO 2 of sample number 2, VO 2 of sample number 28, and VO 2 of sample number 29. 図4は、試料番号2のVO、試料番号28のVO、および試料番号29のVOの示唆熱-熱重量測定の結果を示す。FIG. 4 shows the suggested thermo-thermogravimetric results of sample number 2 VO 2 , sample number 28 VO 2 , and sample number 29 VO 2 . 図5は、試料番号28~57の吸熱量とロットの異なる未熱処理のDalian BNM社製VOの酸化開始温度の関係を示すグラフである。FIG. 5 is a graph showing the relationship between the endothermic amounts of Sample Nos. 28 to 57 and the oxidation start temperature of unheated Dalian BNM VO 2 in different lots. 図6は、酸化開始温度の定義を説明するための図である。FIG. 6 is a diagram for explaining the definition of the oxidation start temperature.
 本発明の酸化バナジウムは、4価のバナジウム(V4+)の酸化物、即ちVOを主成分とする。 The vanadium oxide of the present invention is mainly composed of tetravalent vanadium (V 4+ ) oxide, that is, VO 2 .
 ここで、主成分とは、酸化バナジウム中に90質量%以上含まれる成分を意味し、特に95質量%以上、好ましくは98質量%以上、より好ましくは98質量%以上、例えば98.0~99.8質量%または実質的に100質量%含むことを意味する。また、主成分とは、酸化バナジウムが実質的にその成分からなることも含む。その他の成分としては、4価以外のバナジウムの酸化物、具体的には、限定するものではないが、VO、V、V、V、V、V、V11、およびV13等が挙げられる。 Here, the main component means a component contained in vanadium oxide at 90% by mass or more, particularly 95% by mass or more, preferably 98% by mass or more, more preferably 98% by mass or more, for example, 98.0 to 99. Means 8% by mass or substantially 100% by mass. The main component includes that vanadium oxide is substantially composed of the component. Other components include oxides of vanadium other than tetravalent, specifically, but not limited to VO, V 2 O 3 , V 2 O 5 , V 3 O 7 , V 4 O 7 , V 5 O 9 , V 6 O 11 , V 6 O 13 and the like.
 一の態様において、本発明の酸化バナジウムは、他の原子、例えば、W、Ta、MoおよびNbから成る群から選択される1種またはそれ以上の原子を含んでいてもよい。このような原子を含ませる(ドープする)ことにより、酸化バナジウムが相転移する温度を調節することができる。 In one embodiment, the vanadium oxide of the present invention may contain other atoms, for example, one or more atoms selected from the group consisting of W, Ta, Mo and Nb. By including (doping) such atoms, the temperature at which vanadium oxide undergoes phase transition can be adjusted.
 好ましくは、本発明の酸化バナジウムは、VおよびM(ここに、Mは、W、Ta、MoおよびNbから選択される少なくとも一種である)を含み、VとMの合計を100モル部としたときのMの含有モル部が0モル部以上約5モル部以下である酸化物を含む。なお、Mは必須成分ではなく、Mの含有モル部は0であってもよい。 Preferably, the vanadium oxide of the present invention contains V and M (wherein M is at least one selected from W, Ta, Mo and Nb), and the total of V and M is 100 mol parts. In some cases, the content of M is an oxide containing 0 to about 5 parts by mole. Note that M is not an essential component, and the content molar part of M may be 0.
 別の好ましい態様において、本発明の酸化バナジウムは、式: V1-x
(式中、Mは、W、Ta、MoまたはNbであり、xは、0以上0.05以下である)
で表される1種またはそれ以上の酸化物を含む。
In another preferred embodiment, the vanadium oxide of the present invention has the formula: V 1-x M x O 2
(In the formula, M is W, Ta, Mo or Nb, and x is 0 or more and 0.05 or less)
Or one or more oxides represented by:
 本発明の酸化バナジウムは、酸化開始温度が400℃以上、好ましくは450℃以上、より好ましくは500℃、さらに好ましくは550℃である。酸化開始温度が400℃以上である酸化バナジウムは、吸熱量が大きく、酸化開始温度が高くなるに伴い、より吸熱量が大きくなる(図5参照)。 The vanadium oxide of the present invention has an oxidation start temperature of 400 ° C. or higher, preferably 450 ° C. or higher, more preferably 500 ° C., and further preferably 550 ° C. Vanadium oxide having an oxidation start temperature of 400 ° C. or higher has a large endothermic amount, and the endothermic amount increases as the oxidation start temperature increases (see FIG. 5).
 本明細書において、「酸化開始温度」とは、示唆熱-熱重量測定(TG-DTA:Thermogravimetry/Differential Thermal Analysis)による200℃における重量を基準とした、重量増加率(%)-温度(℃)グラフにおいて、重量増加率が4%である点と2%である点を結んだ直線が温度軸と交わる温度と定義される(図6参照)。重量増加率は、下記式:
   重量増加率(%)=W/W×100
(式中、Wは、基準重量であり、200℃における重量を意味し、Wは、温度Tにおける重量増加を意味する。)
から算出される。ここで200℃である理由は吸着した水などによる重量変化の影響を除去するためである。
In the present specification, the “oxidation start temperature” means a weight increase rate (%)-temperature (° C.) based on the weight at 200 ° C. by thermogravimetry / Differential Thermal Analysis (TG-DTA). ) In the graph, the temperature at which the straight line connecting the point where the weight increase rate is 4% and the point where it is 2% intersects the temperature axis is defined (see FIG. 6). The weight increase rate is expressed by the following formula:
Weight increase rate (%) = W t / W 0 × 100
(In the formula, W 0 is a reference weight, meaning a weight at 200 ° C., and W t means a weight increase at a temperature T.)
Is calculated from The reason why the temperature is 200 ° C. is to remove the influence of weight change due to adsorbed water or the like.
 本発明の酸化バナジウムは、実質的にVOからなる場合、好ましくは50J/g以上、より好ましくは60J/g以上の吸熱量を有し得る。他の元素、例えばWがドープされている場合は、吸熱量は変化し得、例えば、好ましくは40J/g以上、より好ましくは50J/g以上の吸熱量を有し得る。 When the vanadium oxide of the present invention is substantially composed of VO 2 , it may preferably have an endotherm of 50 J / g or more, more preferably 60 J / g or more. When other elements, such as W, are doped, the endotherm may vary, for example, preferably having an endotherm of 40 J / g or more, more preferably 50 J / g or more.
 吸熱量は、示差走査熱量測定(DSC:Differential scanning calorimetry)により測定することができる。 The endothermic amount can be measured by differential scanning calorimetry (DSC).
 一の要旨において、本発明は、上記の酸化バナジウムを含む材料を提供する。かかる材料は、特に限定されないが、電子機器の冷却デバイス、蓄熱材などに用いることができる。 In one aspect, the present invention provides a material containing the above vanadium oxide. Such a material is not particularly limited, but can be used for a cooling device of electronic equipment, a heat storage material, and the like.
 一の要旨において、本発明は、上記の酸化バナジウムの製造方法を提供する。 In one aspect, the present invention provides a method for producing the above vanadium oxide.
 本発明の方法は、(1)昇温工程と(2)高温保持工程を含む。 The method of the present invention includes (1) a temperature raising step and (2) a high temperature holding step.
 以下、昇温工程について説明する。 Hereinafter, the temperature raising process will be described.
 まず、2価~5価のバナジウムの酸化物および単体のバナジウムからなる群から選択される少なくとも1種、および所望により少なくとも1種のM(ここに、Mは、W、Ta、MoおよびNbから選択される)の酸化物を含む原料を準備する。この原料は、粉末であることが好ましい。 First, at least one selected from the group consisting of divalent to pentavalent oxides of vanadium and simple vanadium, and optionally at least one M (where M is W, Ta, Mo and Nb). A raw material containing a selected oxide). This raw material is preferably a powder.
 上記原料は、種々の酸化バナジウムを含んでいてもよく、例えば、VO、V、V、V、V、V、V11、およびV13等を含んでいてもよい。また、VO、特に酸化開始温度が400℃未満であるVOも原料として用いることができる。 The raw materials may contain various vanadium oxides, such as VO, V 2 O 3 , V 2 O 5 , V 3 O 7 , V 4 O 7 , V 5 O 9 , V 6 O 11 , and V 6 O 13 or the like may be included. Moreover, VO 2, in particular oxidation initiation temperature can also be used as a raw material VO 2 is less than 400 ° C..
 さらに、上記原料は、他の元素、例えばW、Ta、MoおよびNbから選択される1種またはそれ以上の元素を含んでいてもよい。これらの元素は、好ましくは、酸化物として、例えばWO、Ta、MoO、Nbとして含まれ得る。 Furthermore, the raw material may contain one or more elements selected from other elements such as W, Ta, Mo and Nb. These elements can preferably be included as oxides, for example as WO 3 , Ta 2 O 5 , MoO 3 , Nb 2 O 5 .
 好ましい態様において、原料中に含まれるVとOのモル比は、約1:2である。このような比とすることにより、VOへの変化を促すことができる。 In a preferred embodiment, the molar ratio of V and O contained in the raw material is about 1: 2. With such a ratio, it is possible to prompt a change in the VO 2.
 次に、上記原料を、還元雰囲気下で徐々に昇温(加熱)する。 Next, the above raw material is gradually heated (heated) in a reducing atmosphere.
 昇温は、原料の温度が、850℃以上1200℃以下の温度、好ましくは900℃以上1100℃以下に達するまで行われる。 The temperature rise is performed until the temperature of the raw material reaches a temperature of 850 ° C. or higher and 1200 ° C. or lower, preferably 900 ° C. or higher and 1100 ° C. or lower.
 昇温工程は、特に限定されないが、例えば、1~10時間、好ましくは3~6時間で行われる。 The temperature raising step is not particularly limited, but is performed, for example, for 1 to 10 hours, preferably 3 to 6 hours.
 昇温工程は、より強い還元雰囲気下で行われ、酸素分圧は、高温保持工程より昇温工程の方が低い。好ましくは、昇温工程における800℃での酸素分圧は、1×10-11MPa以下であり、より好ましくは1×10-12MPa以下である。このような酸素分圧とすることにより、融点の低いV(約800℃)が、より融点の高い価数の小さい酸化バナジウム、例えばVOやV等になりやすくなるので、昇温工程における原料の溶融等を防止することができる。その結果、原料粒子同士のネッキング等が防止され、また、反応系における酸素濃度がより均一に保たれ、純度の高い酸化バナジウムを得ることができる。 The temperature raising step is performed in a stronger reducing atmosphere, and the oxygen partial pressure is lower in the temperature raising step than in the high temperature holding step. Preferably, the oxygen partial pressure at 800 ° C. in the temperature raising step is 1 × 10 −11 MPa or less, more preferably 1 × 10 −12 MPa or less. By setting such an oxygen partial pressure, V 2 O 5 having a low melting point (about 800 ° C.) is likely to become a vanadium oxide having a higher melting point and a lower valence, such as VO 2 or V 2 O 3 . The melting of the raw material in the temperature raising step can be prevented. As a result, necking or the like between the raw material particles is prevented, the oxygen concentration in the reaction system is kept more uniform, and vanadium oxide with high purity can be obtained.
 従って、一の態様において、原料は、Vを含む。 Thus, in one embodiment, the raw material includes V 2 O 5 .
 昇温工程における酸素濃度は、高温保持工程の酸素濃度より低く、その時点の温度でバナジウムが4価よりも還元される酸素濃度であってもよく、必ずしも一定である必要はない。例えば、より低温時には、比較的低い酸素濃度とし、高温になるに従って、徐々に酸素濃度を高くしてもよく、その逆でもよい。 The oxygen concentration in the temperature raising step may be lower than the oxygen concentration in the high temperature holding step, and may be an oxygen concentration at which vanadium is reduced to less than tetravalent at the temperature at that time, and is not necessarily constant. For example, at a lower temperature, the oxygen concentration may be relatively low, and the oxygen concentration may be gradually increased as the temperature increases, and vice versa.
 以下、高温保持工程について説明する。 Hereinafter, the high temperature holding process will be described.
 上記昇温工程にて加温した原料を、昇温後の温度、即ち850℃~1200℃で保持する。 The raw material heated in the temperature raising step is held at the temperature after the temperature elevation, that is, 850 ° C. to 1200 ° C.
 保持時間は、昇温工程にて還元された原料が、十分にVOに酸化される時間であれば特に限定されず、例えば、1時間以上、好ましくは2~6時間である。 The holding time is not particularly limited as long as the raw material reduced in the temperature raising step is sufficiently oxidized to VO 2 , and is, for example, 1 hour or longer, preferably 2 to 6 hours.
 高温保持工程は、その保持工程の少なくとも一部の期間、バナジウムが4価で安定となりやすい雰囲気下、例えば1×10-7~1×10-10MPaの酸素分圧下で行われる。 The high temperature holding step is performed in an atmosphere in which vanadium is tetravalent and stable, for example, under an oxygen partial pressure of 1 × 10 −7 to 1 × 10 −10 MPa for at least a part of the holding step.
 高温保持工程の間、好ましくは、バナジウムが5価となるような酸化雰囲気下とならないように酸素濃度を制御する。このように制御することにより、バナジウムが5価となり、融点が低下することを防止することができる。 During the high temperature holding step, the oxygen concentration is preferably controlled so as not to be in an oxidizing atmosphere where vanadium becomes pentavalent. By controlling in this way, vanadium becomes pentavalent and it is possible to prevent the melting point from being lowered.
 本発明の方法によれば、高純度かつ吸熱量の大きい酸化バナジウムを、大量に安定して合成することが可能になる。いかなる理論によっても拘束されないが、本発明の方法により、吸熱量の大きい酸化バナジウムが得られる理由は以下のように考えられる。まず。高温保持工程より強い還元雰囲気下で酸化バナジウムの原料を昇温することにより、バナジウムが還元されやすくなり5価のバナジウム量が少なくなる。つまり工程において、融点の低い(約800℃)のVが還元され、原料の酸化バナジウムの融点が高くなる(具体的には800℃よりも高くなる)。融点が高くなることにより、高温保持工程において、酸化バナジウムの溶融による、雰囲気の不均一化が防止される。さらに、バナジウムは、酸素を失う反応(即ち、還元反応)よりも、酸素を獲得する反応(即ち、酸化反応)の方が進みやすいので、一旦目的の4価よりも還元し、それから4価まで酸化することにより、より均一なVOが得られると考えられる。 According to the method of the present invention, it is possible to stably synthesize high-purity and high endothermic vanadium oxide in a large amount. Although not bound by any theory, the reason why vanadium oxide having a large endotherm can be obtained by the method of the present invention is considered as follows. First. By raising the temperature of the vanadium oxide raw material in a reducing atmosphere stronger than the high temperature holding step, vanadium is easily reduced and the amount of pentavalent vanadium is reduced. That is, in the process, V 2 O 5 having a low melting point (about 800 ° C.) is reduced, and the melting point of the raw material vanadium oxide becomes high (specifically, higher than 800 ° C.). By increasing the melting point, non-uniform atmosphere due to melting of vanadium oxide is prevented in the high temperature holding step. Furthermore, since vanadium is more likely to proceed with a reaction that acquires oxygen (that is, an oxidation reaction) than a reaction that loses oxygen (that is, a reduction reaction), the vanadium is once reduced rather than the target tetravalent, and then to the tetravalent. It is considered that more uniform VO 2 can be obtained by oxidation.
 好ましい態様において、本発明の方法は、酸素濃度が制御された降温工程を含んでもよい。 In a preferred embodiment, the method of the present invention may include a temperature lowering step in which the oxygen concentration is controlled.
 降温工程における800℃での酸素分圧は、降温保持工程で得られたVOが酸化されないように、好ましくは、1×10-10MPa以下であり、より好ましくは1×10-11MPa以下である。また、再度還元されないように、800℃での酸素分圧は、好ましくは1×10-13MPa以上、好ましくは1×10-12MPa以上である。 The oxygen partial pressure at 800 ° C. in the temperature lowering step is preferably 1 × 10 −10 MPa or less, more preferably 1 × 10 −11 MPa or less so that VO 2 obtained in the temperature lowering holding step is not oxidized. It is. In order not to be reduced again, the oxygen partial pressure at 800 ° C. is preferably 1 × 10 −13 MPa or more, preferably 1 × 10 −12 MPa or more.
 降温工程は、特に限定されないが、例えば、1~10時間、好ましくは3~6時間で行われる。 The temperature lowering step is not particularly limited, but is performed, for example, for 1 to 10 hours, preferably 3 to 6 hours.
 好ましい態様において、本発明の酸化バナジウムの製造方法は、粉砕工程を含まないか、あるいは、粉砕工程を含む場合、粉砕時間は12時間以下、好ましくは6時間以下である。 In a preferred embodiment, the method for producing vanadium oxide of the present invention does not include a pulverization step, or when it includes a pulverization step, the pulverization time is 12 hours or less, preferably 6 hours or less.
 上記のように粉砕時間を制御することにより、粉砕による結晶性の低下、酸素欠陥の導入を抑制することができ、吸熱量の低下を防止することができる。粉砕時間等の最適化は、上記した酸化開始温度の指標を用いることにより行うことができる。 By controlling the pulverization time as described above, it is possible to suppress the decrease in crystallinity and the introduction of oxygen defects due to the pulverization, and it is possible to prevent the endothermic amount from decreasing. Optimization of the pulverization time and the like can be performed by using the index of the oxidation start temperature described above.
 ・VおよびVからのVOの製造
 出発原料として、純度99.8%の三酸化バナジウム(V)および純度99.9%の五酸化バナジウム(V)を準備した。これを、V/V=25/25の混合比で、出発原料を、総重量120gになるように秤量し、ポリポット容器に部分安定化ジルコニア(PSZ:Partial Stabilized Zirconia)ボール、純水、分散剤(サンノプコ製:SN5468)とともに入れて、16時間湿式粉砕を行った。その後、混合スラリーを乾燥し、整粒して、図1に示す100×100×50mm(内容積90×90×40mm)のムライト製のさやに入れて蓋をして、水/水素/窒素雰囲気中で、熱処理した。
Production of VO 2 from V 2 O 3 and V 2 O 5 As starting materials, 99.8% pure vanadium trioxide (V 2 O 3 ) and 99.9% pure vanadium pentoxide (V 2 O 5 ) Was prepared. This was weighed so as to have a total weight of 120 g at a mixing ratio of V 2 O 3 / V 2 O 5 = 25/25, and partially stabilized zirconia (PSZ) balls were placed in a polypot container. , Pure water and a dispersant (manufactured by San Nopco: SN5468), and wet pulverized for 16 hours. Thereafter, the mixed slurry was dried, sized, put into a mullite sheath of 100 × 100 × 50 mm 3 (internal volume 90 × 90 × 40 mm 3 ) shown in FIG. Heat treatment was performed in a nitrogen atmosphere.
 熱処理は、表1に示すように、昇温工程における800℃での酸素分圧、高温保持工程の温度および酸素分圧、ならびに降温工程における800℃での酸素分圧を変更して、試料番号1~23(*を付した番号は比較例である)について行った。なお、昇温工程における開始温度は、室温であり、所定の温度まで、3.5時間で昇温した。高温保持工程は、4時間であった。降温工程は、室温になるまで静置して冷却した。 As shown in Table 1, the heat treatment was performed by changing the oxygen partial pressure at 800 ° C. in the temperature raising step, the temperature and oxygen partial pressure in the high temperature holding step, and the oxygen partial pressure at 800 ° C. in the temperature lowering step. 1 to 23 (numbers marked with * are comparative examples). The starting temperature in the temperature raising step was room temperature, and the temperature was raised to a predetermined temperature in 3.5 hours. The high temperature holding process was 4 hours. In the temperature lowering step, it was allowed to stand until it reached room temperature for cooling.
 熱処理中、酸素分圧は、150℃以上の区間では水蒸気量と窒素量を一定とし、酸素分圧をモニターし、水素量を調節することにより制御した。酸素分圧は、炉内のガスをサンプリングしてジルコニア式酸素分圧計で測定することによりモニターした。 During the heat treatment, the oxygen partial pressure was controlled by keeping the water vapor amount and nitrogen amount constant in the section of 150 ° C. or higher, monitoring the oxygen partial pressure, and adjusting the hydrogen amount. The oxygen partial pressure was monitored by sampling the gas in the furnace and measuring with a zirconia oxygen partial pressure meter.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 ・VおよびVからのV0.9950.005の製造
 出発原料として、上記した三酸化バナジウム(V)および五酸化バナジウム(V)に加え、酸化タングステン(WO)を準備した。これを、WO/V/V=0.5/25/24.75の混合比で、出発原料を、総重量120gになるように秤量した。その他の工程は、VOの製造と同様にして、試料番号24~27(*を付した番号は比較例である)について、熱処理を行った。処理条件は、下記表2に示す。
Production of V 0.995 W 0.005 O 2 from V 2 O 3 and V 2 O 5 As starting materials, the above-mentioned vanadium trioxide (V 2 O 3 ) and vanadium pentoxide (V 2 O 5 ) In addition, tungsten oxide (WO 3 ) was prepared. This was weighed so as to have a total weight of 120 g at a mixing ratio of WO 3 / V 2 O 3 / V 2 O 5 = 0.5 / 25 / 24.75. In other processes, heat treatment was performed on sample numbers 24 to 27 (numbers marked with * are comparative examples) in the same manner as in the production of VO 2 . The processing conditions are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 ・特性試験
(粉末X線回折測定)
 上記で作成した試料番号1~27について、粉末X線回折(XRD:X-ray Diffraction)測定を行い、結晶性を評価した。XRD測定では、図2に示すように、さやの表面部、中央部、そして底面部から、試料をサンプリングして測定を行った。結果を下記表3に示す。
・ Characteristic test (powder X-ray diffraction measurement)
The sample numbers 1 to 27 prepared above were subjected to powder X-ray diffraction (XRD) measurement to evaluate crystallinity. In the XRD measurement, as shown in FIG. 2, the sample was sampled from the surface portion, the central portion, and the bottom portion of the sheath and measured. The results are shown in Table 3 below.
(示差走査熱量測定)
 上記で作成した試料番号1~27について、示差走査熱量測定(DSC:Differential scanning calorimetry)を行い、吸熱量(潜熱量)を評価した。結果を下記表3に併せて示す。
(Differential scanning calorimetry)
With respect to the sample numbers 1 to 27 created above, differential scanning calorimetry (DSC) was performed to evaluate the endothermic amount (latent heat amount). The results are also shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000003
 ※表3において異相生成とはXRDの回折強度から主成分であるVOに対して、他の酸化バナジウムが20%以上存在していたことを示す。
Figure JPOXMLDOC01-appb-T000003
* In Table 3, heterogeneous generation means that 20% or more of other vanadium oxide was present with respect to VO 2 as the main component from the diffraction intensity of XRD.
 表3の結果から、本発明の製造方法によれば、単相で、かつ、吸熱量の高い酸化バナジウム(VO)を得ることができることが確認された。一方、昇温工程の800℃時点での酸素分圧が、本発明の範囲よりも高い試料番号1(1.0×10-8MPa)、試料番号7(1.0×10-9MPa)、試料番号13(2.2×10-10MPa)、試料番号14(1.0×10-8MPa)および試料番号17(1.0×10-8MPa)、高温保持工程の温度が、本発明の範囲外である、試料番号20(850℃)および試料番号21(1250℃)、ならびに、高温保持工程での酸素分圧が、本発明の範囲よりも高い試料番号5(1.0×10-6MPa)は、異相が生成し、吸熱量も小さくなった。また、データは示していないが、本発明のVOは、ロットによる吸熱量のばらつきがないことも確認された。 From the results in Table 3, it was confirmed that according to the production method of the present invention, vanadium oxide (VO 2 ) having a single phase and a high endothermic amount can be obtained. On the other hand, the sample partial number 1 (1.0 × 10 −8 MPa) and the sample number 7 (1.0 × 10 −9 MPa) whose oxygen partial pressure at the time of 800 ° C. in the temperature raising step is higher than the range of the present invention. Sample No. 13 (2.2 × 10 −10 MPa), Sample No. 14 (1.0 × 10 −8 MPa) and Sample No. 17 (1.0 × 10 −8 MPa), the temperature of the high temperature holding process is Sample number 20 (850 ° C.) and sample number 21 (1250 ° C.), which are outside the scope of the present invention, and sample number 5 (1.0 × 10 −6 MPa), a heterogeneous phase was formed, and the endothermic amount was small. In addition, although data is not shown, it was also confirmed that the VO 2 of the present invention has no variation in endothermic amount among lots.
 これは、昇温工程の800℃時点での酸素分圧が、本発明の範囲よりも高い場合には、800℃時点で原料中にVが存在し、これが溶融し、異相を生成するためと考えられる。また、高温保持工程の温度が低い場合には、昇温工程で還元されたバナジウムが、4価まで十分に酸化されないためと考えられる。さらに、高温保持工程の温度が高い場合、および酸素分圧が高い場合には、バナジウムが4価以上に酸化されて、異相が生成するためと考えられる。 This is because, when the oxygen partial pressure at the time of 800 ° C. in the temperature raising step is higher than the range of the present invention, V 2 O 5 is present in the raw material at the time of 800 ° C., and this melts to form a heterogeneous phase. It is thought to do. Moreover, it is considered that when the temperature in the high temperature holding step is low, the vanadium reduced in the heating step is not sufficiently oxidized to tetravalent. Furthermore, when the temperature in the high temperature holding step is high and when the oxygen partial pressure is high, it is considered that vanadium is oxidized to tetravalent or higher and a heterogeneous phase is generated.
・市販のVOと本発明のVOとの比較
 2種の市販のVO(試料番号28および29)について、上記と同様に、DSC測定を行った。結果を、表4に示す。
· Commercial VO 2 and the commercial VO 2 comparison two and VO 2 of the present invention (Sample Nos. 28 and 29), as above, was subjected to DSC measurement. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4から明らかなように、同じVOであっても、本発明の酸化バナジウム(試料番号30)と比較して、市販のVOは吸熱量が小さいことが確認された。また、ここでは示さないが、市販のVOは、ロットによって吸熱量がばらついており、ロットによっては50J/gを超える吸熱量を示すロットもあることを確認した。 As is clear from Table 4, even with the same VO 2 , it was confirmed that the commercially available VO 2 had a small endothermic amount compared to the vanadium oxide of the present invention (sample number 30). Further, although not shown here, it was confirmed that the commercially available VO 2 varies in the endothermic amount depending on the lot, and some lots show an endothermic amount exceeding 50 J / g.
・従来の製法で製造したVOからの本発明のVOの製造
 三酸化バナジウム(V)および五酸化バナジウム(V)の代わりに、試料番号28のVOを用いること以外は、試料番号1~27と同様にして、試料番号31~53のVOおよび試料番号54~57のV0.9950.005を製造した。得られた試料について、上記と同様に、粉末X線回折測定および示差走査熱量測定を行った。結果を下記表6に示す(*を付した番号は比較例である)。
- Instead of the production of VO 2 of the present invention from VO 2 prepared in conventional method vanadium trioxide (V 2 O 3) and vanadium pentoxide (V 2 O 5), using a VO 2 of Sample No. 28 Except for the above, VO 2 of sample numbers 31 to 53 and V 0.995 W 0.005 O 2 of sample numbers 54 to 57 were produced in the same manner as sample numbers 1 to 27. The obtained sample was subjected to powder X-ray diffraction measurement and differential scanning calorimetry in the same manner as described above. The results are shown in Table 6 below (numbers marked with * are comparative examples).
Figure JPOXMLDOC01-appb-T000005
 ※表5において異相生成とはXRDの回折強度から主成分であるVOに対して、他の酸化バナジウムが20%以上存在していたことを示す。
Figure JPOXMLDOC01-appb-T000005
* In Table 5, “heterogeneous generation” means that 20% or more of other vanadium oxide was present with respect to VO 2 as the main component from the diffraction intensity of XRD.
 表5から明らかなように、吸熱量が低いVOであっても、本発明の方法に付すことにより、吸熱量が向上することが確認された。 As is clear from Table 5, it was confirmed that the endothermic amount was improved by applying the method of the present invention even for VO 2 having a low endothermic amount.
・吸熱量と酸化開始温度の関係
 従来の製法により製造されたVOと本発明のVOの吸熱量を違いの原因を確認するため、試料番号2(試料番号30)、試料番号28および試料番号29について、粉末X線回折測定および示差熱-熱重量同時測定(TG-DTA)を行った。結果を、それぞれ、図3および図4に示す。
Endothermic amount as to determine the cause of the heat absorption amount of the VO 2 differences between the present invention and VO 2 produced by a conventional method relationship oxidation start temperature, sample No. 2 (Sample No. 30), Sample No. 28 and Sample For No. 29, powder X-ray diffraction measurement and differential thermal-thermogravimetric measurement (TG-DTA) were performed. The results are shown in FIGS. 3 and 4, respectively.
 図3から明らかなように、3つの試料間には、粉末X線回折測定で観測可能な結晶性の違いは見られなかった。しかしながら、図4から、TG-DTAでは、3つの試料は、明らかに重量増加の開始温度が異なっていることが確認された。VOは大気中で高温に熱処理すると、4価のVOからより高価数の5価のVへ酸化する。この酸化反応は、VO中に含まれる欠陥量に大きく影響されると考えられ、例えば酸素欠陥量が多ければより低温で酸化して重量が増加し、また、結晶性が低い場合も同様に低温で酸化されて重量が増加すると考えられる。したがって、これらの結果から、酸化バナジウム(VO)の吸熱量は、粉末X線回折では検出できない程度の僅かな結晶性の違い、特に酸素欠陥に起因するものであると考えられる。 As is apparent from FIG. 3, no difference in crystallinity observed by powder X-ray diffraction measurement was observed between the three samples. However, from FIG. 4, it was confirmed that in TG-DTA, the three samples clearly had different onset temperatures of weight increase. When heat-treated to high temperature in the atmosphere, VO 2 is oxidized from tetravalent VO 2 to a more expensive pentavalent V 2 O 5 . This oxidation reaction is considered to be greatly influenced by the amount of defects contained in VO 2. For example, if the amount of oxygen defects is large, oxidation occurs at a lower temperature and the weight increases, and also when the crystallinity is low It is thought that the weight increases due to oxidation at a low temperature. Therefore, from these results, it is considered that the endothermic amount of vanadium oxide (VO 2 ) is due to a slight difference in crystallinity that cannot be detected by powder X-ray diffraction, particularly due to oxygen defects.
 上記の吸熱量と酸化開始温度の関係を確認するため、試料番号31~57についても、TG-DTA測定を行った。TG-DTA測定による200℃における重量を基準とした、重量増加率(%)-温度(℃)グラフにおいて、重量増加率が4%である点と2%である点を結んだ直線が温度軸と交わる温度を、「酸化開始温度」と定義し(図6参照)、各試料について酸化開始温度を求めた。結果を、吸熱量(J/g)-酸化開始温度(℃)のグラフにプロットした(図5)。 TG-DTA measurement was also performed on sample numbers 31 to 57 in order to confirm the relationship between the endothermic amount and the oxidation start temperature. In the weight increase rate (%)-temperature (° C) graph based on the weight at 200 ° C. by TG-DTA measurement, the straight line connecting the points where the weight increase rate is 4% and 2% is the temperature axis Was defined as “oxidation start temperature” (see FIG. 6), and the oxidation start temperature was determined for each sample. The results were plotted on a graph of endotherm (J / g) -oxidation start temperature (° C.) (FIG. 5).
 図5から、酸化開始温度と吸熱量は強い相間を示し、酸化開始温度が高くなるに従い、吸熱量が向上することが確認された。このように、酸化開始温度は、吸熱量の指標として用いることができる。なお、本実施例では主にバナジウム酸化物を用いた結果を示したが、酸化開始温度と吸熱量の関係は原料としてバナジウム酸化物を利用したVOに限るものではなく、たとえばNHVOなどの塩を酸化して製造したVOにも適用される。 From FIG. 5, it was confirmed that the oxidation end temperature and the endothermic amount showed a strong phase, and the endothermic amount was improved as the oxidation start temperature increased. Thus, the oxidation start temperature can be used as an index of the endothermic amount. Incidentally, although the results of primarily using vanadium oxide in the present embodiment, the relationship between the oxidation start temperature and the endothermic amount is not limited to VO 2 using vanadium oxide as a raw material, for example NH 4 VO 3 It is also applied to VO 2 produced by oxidizing a salt such as
・吸熱量と粉砕時間の関係
 次に、試料番号2(試料番号30)の試料を用いて、粉砕による影響を調査した。
 粉砕は100gの試料番号2のVO粉末と5φのPSZメディア(600g)と水(100g)を秤量し、500mlのポットにて、6、12、24および48時間粉砕し、それぞれの時間粉砕して得られたスラリーを乾燥させることにより試料を調製した。得られた試料番号58~61の試料について、DCSおよびTG-DTA測定を行い、吸熱量と酸化開始温度の評価を行った。DCSの結果を下記表6、TG-DTAの結果を、図5に併せて示す。
-Relationship between endothermic amount and pulverization time Next, the sample number 2 (sample number 30) was used to investigate the influence of pulverization.
For pulverization, 100 g of VO 2 powder of sample number 2, 5φ PSZ media (600 g) and water (100 g) were weighed, crushed in a 500 ml pot for 6, 12, 24 and 48 hours, and pulverized for each time. A sample was prepared by drying the resulting slurry. The obtained samples Nos. 58 to 61 were subjected to DCS and TG-DTA measurement, and the endothermic amount and the oxidation start temperature were evaluated. The results of DCS are shown in Table 6 below, and the results of TG-DTA are also shown in FIG.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6から明らかなように、粉砕により吸熱量の顕著な低下がみられた。これは粉砕により欠陥が導入されるためであると考えられる。実際、TG-DTA測定から求める酸化開始温度が、粉砕時間が長くなるに従い低下し、48時間粉砕した試料では酸化開始温度が400℃より低くなり、吸熱量も40J/g以下となった。したがって、優れた冷却能を有するVOを製造するためには、VOの熱処理条件の最適化に加え、粉砕など欠陥を誘起するプロセスにも細心の注意を払う必要があることが確認された。 As is clear from Table 6, the endothermic amount was significantly reduced by pulverization. This is presumably because defects are introduced by grinding. Actually, the oxidation start temperature determined from the TG-DTA measurement decreased as the pulverization time increased, and in the sample pulverized for 48 hours, the oxidation start temperature was lower than 400 ° C. and the endothermic amount was 40 J / g or less. Therefore, in order to produce VO 2 having excellent cooling ability, it was confirmed that in addition to optimizing the heat treatment conditions of VO 2 , it is necessary to pay close attention to processes that induce defects such as crushing. .
 本発明の酸化バナジウムは、高い潜熱を有するため、電子機器の冷却デバイス等、種々の用途に好適に利用できる。 Since the vanadium oxide of the present invention has a high latent heat, it can be suitably used for various applications such as a cooling device for electronic equipment.

Claims (7)

  1.  酸化開始温度が400℃以上であり、4価のバナジウム(V4+)の酸化物を主成分とする酸化バナジウム。 Vanadium oxide having an oxidation start temperature of 400 ° C. or higher and mainly composed of an oxide of tetravalent vanadium (V 4+ ).
  2.  酸化開始温度が450℃以上である、請求項1に記載の酸化バナジウム。 The vanadium oxide according to claim 1, wherein the oxidation start temperature is 450 ° C or higher.
  3.  VおよびM(ここに、Mは、W、Ta、MoおよびNbから選択される少なくとも一種である)を含み、VとMの合計を100モル部としたときのMの含有モル部が0モル部以上約5モル部以下である酸化物を含むことを特徴とする、請求項1または2に記載の酸化バナジウム。 V and M (wherein M is at least one selected from W, Ta, Mo and Nb), and the content of M is 0 mol when the total of V and M is 100 mol 3. The vanadium oxide according to claim 1, comprising an oxide that is not less than about 5 parts by mole and not more than about 5 parts by mole.
  4.  式: V1-x
    (式中、Mは、W、Ta、MoまたはNbであり、xは、0以上0.05以下である)
    で表される1種またはそれ以上の酸化物を含む、請求項1~3のいずれかに記載の酸化バナジウム。
    Formula: V 1-x M x O 2
    (In the formula, M is W, Ta, Mo or Nb, and x is 0 or more and 0.05 or less)
    The vanadium oxide according to any one of claims 1 to 3, comprising one or more oxides represented by:
  5.  請求項1~4のいずれかに記載の酸化バナジウムを含む材料。 A material containing vanadium oxide according to any one of claims 1 to 4.
  6.  請求項1~4のいずれかに記載の酸化バナジウムの製造方法であって:
     (1)少なくとも1種の2価~5価のバナジウムの酸化物、および所望により少なくとも1種のM(ここに、Mは、W、Ta、MoおよびNbから選択される)の酸化物を含む原料を、850℃以上1200℃以下の温度にまで加熱する昇温工程;と
     (2)昇温後の温度で保持する高温保持工程と
    を含み、昇温工程において、800℃での酸素分圧が、1×10-11MPa以下であり、高温保持工程の少なくとも一部期間において、酸素分圧が、1×10-7~1×10-10MPaである、方法。
    A method for producing vanadium oxide according to any of claims 1 to 4, comprising:
    (1) comprising at least one divalent to pentavalent oxide of vanadium and optionally at least one oxide of M (where M is selected from W, Ta, Mo and Nb) A temperature raising step for heating the raw material to a temperature of 850 ° C. or higher and 1200 ° C. or lower; and (2) a high temperature holding step for holding the raw material at a temperature after the temperature rising, and in the temperature rising step, an oxygen partial pressure at 800 ° C. Is 1 × 10 −11 MPa or less, and the oxygen partial pressure is 1 × 10 −7 to 1 × 10 −10 MPa in at least a part of the high temperature holding step.
  7.  原料がVを含む、請求項6に記載の製造方法。 Feedstock containing V 2 O 5, The method according to claim 6.
PCT/JP2014/083706 2014-03-31 2014-12-19 Vanadium oxide and manufacturing method therefor WO2015151353A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016511326A JP6197948B2 (en) 2014-03-31 2014-12-19 Vanadium oxide and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014072530 2014-03-31
JP2014-072530 2014-03-31

Publications (1)

Publication Number Publication Date
WO2015151353A1 true WO2015151353A1 (en) 2015-10-08

Family

ID=54239710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083706 WO2015151353A1 (en) 2014-03-31 2014-12-19 Vanadium oxide and manufacturing method therefor

Country Status (2)

Country Link
JP (1) JP6197948B2 (en)
WO (1) WO2015151353A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017190377A (en) * 2016-04-12 2017-10-19 新日本電工株式会社 Manufacturing method of vanadium dioxide-based heat storage material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002187720A (en) * 2000-12-15 2002-07-05 Chiyoda Corp Method of manufacturing high purity vanadium compound from carbonaceous residue containing vanadium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002187720A (en) * 2000-12-15 2002-07-05 Chiyoda Corp Method of manufacturing high purity vanadium compound from carbonaceous residue containing vanadium

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. QI ET AL.: "Synthesis, characterization, and thermodynamic parameters of vanadium dioxide", MATERIALS RESEARCH BULLETIN, vol. 43, no. 8-9, 10 August 2007 (2007-08-10), pages 2300 - 2307, XP022717576, ISSN: 0025-5408 *
Y. ZHANG ET AL.: "Facile synthesis, phase transition, optical switching and oxidation resistance properties of belt-like VO2(A) and VO2(M) with a rectangular cross section", MATERIALS RESEARCH BULLETIN, vol. 47, no. 8, 16 April 2012 (2012-04-16), pages 1978 - 1986, XP028511982, ISSN: 0025-5408 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017190377A (en) * 2016-04-12 2017-10-19 新日本電工株式会社 Manufacturing method of vanadium dioxide-based heat storage material

Also Published As

Publication number Publication date
JPWO2015151353A1 (en) 2017-04-13
JP6197948B2 (en) 2017-09-20

Similar Documents

Publication Publication Date Title
Arpino et al. Impact of stoichiometry of Yb 2 Ti 2 O 7 on its physical properties
Clark et al. Hydrothermal synthesis and characterisation of BaTiO 3 fine powders: precursors, polymorphism and properties
Bora et al. Evolution of structural properties of iron oxide nano particles during temperature treatment from 250 C–900 C: X-ray diffraction and Fe K-shell pre-edge X-ray absorption study
Cavalcante et al. Synthesis, structural refinement and optical behavior of CaTiO3 powders: A comparative study of processing in different furnaces
Kong et al. Aqueous chemical synthesis of Ln 2 Sn 2 O 7 pyrochlore‐structured ceramics
Kumar et al. Investigations on magnetic and electrical properties of Zn doped Fe2O3 nanoparticles and their correlation with local electronic structures
JP6351523B2 (en) Method for producing vanadium dioxide
Matos et al. Effect of the sintering temperature on the properties of nanocrystalline Ca1− xSmxMnO3 (0≤ x≤ 0.4) powders
AMIN et al. Reaction of anatase and rutile with barium carbonate
JP4530057B2 (en) Method for producing dielectric powder
Tihtih et al. Role of A-site (Sr), B-site (Y), and A, B sites (Sr, Y) substitution in lead-free BaTiO3 ceramic compounds: Structural, optical, microstructure, mechanical, and thermal conductivity properties
Rautama et al. R-site varied series of RBaCo2O5. 5 (R2Ba2Co4O11) compounds with precisely controlled oxygen content
Bregani et al. Temperature effects on the size of anatase crystallites in Mo TiO2 and W TiO2 powders
Rocha et al. Structural and properties of nanocrystalline WO3/TiO2-based humidity sensors elements prepared by high energy activation
Yang et al. Phase formation, microstructure and dielectric properties of Sr0. 53Ba0. 47Nb2− xTaxO6 ceramics
Bandyopadhyay et al. Microstructure and charge carrier dynamics in Dy substituted phase stabilized cubic Bi 2 O 3
Tihtih et al. Synthesis of Ba1− xSrxTiO3 (x= 0–0.3) Ceramic Powders via Sol‐Gel Method: Structural, Microstructure, Thermal Conductivity, and Compressive Strength Properties
JP6197948B2 (en) Vanadium oxide and method for producing the same
Bahri et al. Raman and dielectric investigation of (Ba0. 9− xSrxCa0. 1)(Ti0. 8Zr0. 2) O3 ferroelectric ceramics
Alga et al. Synthesis, sintering and electrical properties of P-doped Bi4V2O11 ceramics
JPWO2015033421A1 (en) Ultrafine titanium dioxide and method for producing the same
Pavlović et al. Synthesis of BaTiO3 from a mechanically activated BaCO3-TiO2 system
Stojanović et al. Structure study of donor doped barium titan ate prepared from citrate solutions
Hu et al. Relaxor behavior and ferroelectric properties of a new Ba4SmFe0. 5Nb9. 5O30 tungsten bronze ceramic
JP6256596B2 (en) Vanadium oxide and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14888050

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016511326

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 14888050

Country of ref document: EP

Kind code of ref document: A1