WO2015151265A1 - Electric system and transport device provided therewith - Google Patents

Electric system and transport device provided therewith Download PDF

Info

Publication number
WO2015151265A1
WO2015151265A1 PCT/JP2014/059888 JP2014059888W WO2015151265A1 WO 2015151265 A1 WO2015151265 A1 WO 2015151265A1 JP 2014059888 W JP2014059888 W JP 2014059888W WO 2015151265 A1 WO2015151265 A1 WO 2015151265A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
electric motor
mode
output shaft
electric
Prior art date
Application number
PCT/JP2014/059888
Other languages
French (fr)
Japanese (ja)
Inventor
秀樹 松枝
満 越水
啓寿 山内
雄渡 伊與田
義則 嶋
Original Assignee
ヤマハモーターエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハモーターエンジニアリング株式会社 filed Critical ヤマハモーターエンジニアリング株式会社
Priority to PCT/JP2014/059888 priority Critical patent/WO2015151265A1/en
Publication of WO2015151265A1 publication Critical patent/WO2015151265A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2054Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/12Bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/42Electrical machine applications with use of more than one motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K2204/00Adaptations for driving cycles by electric motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to an electric system and a transport device including the same, and more particularly to an electric system equipped with a driving power source and a transport device including the same.
  • Patent Document 1 An example of this type of prior art is disclosed in Patent Document 1.
  • the two motor bodies are adjacent to each other and are coaxially connected to be integrally driven, and each motor body is based on an output request signal from the throttle sensor, respectively.
  • the drive is individually controlled via an independent controller. Thereby, a large driving force can be obtained by two motors during power running.
  • a main object of the present invention is to provide an electric system and a transport device including the same that can increase energy efficiency while securing a driving torque.
  • a driving power source a first driving electric motor driven by the driving power source and including the first rotor, a first driving motor driven by the driving power source and including the second rotor.
  • Two-drive electric motor a first output shaft driven by the first drive electric motor, a second output shaft driven by the second drive electric motor, a first rotor and a first output shaft A first transmission portion provided between the second transmission portion, a second transmission portion provided between the second rotor and the second output shaft, and a rotational speed of the first rotor and the second rotor
  • both the first rotor and the second rotor rotate, and in the second aspect, at least the first rotor rotates, the rotation speed of the first rotor is A, and the rotation speed of the second rotor Is B, the value of B / A in the second mode is the value of B / A in the first mode.
  • Ri small has at least two aspects, the electric system is provided.
  • both the first rotor and the second rotor rotate. Therefore, when the required torque is large, a large driving torque can be obtained by driving a plurality of electric motors. Further, the value of B / A in the second mode is smaller than the value of B / A in the first mode. That is, the ratio of the rotation speed of the second rotor to the rotation speed of the first rotor is smaller in the second aspect than in the first aspect. As a result, when the required torque is small, it is possible to operate while eliminating unnecessary iron loss, mechanical loss, etc., and efficiency can be improved. Therefore, by switching between the first mode and the second mode according to the situation, it is possible to increase energy efficiency while ensuring the driving torque.
  • the rotation speed of the second rotor in the second mode is lower than the rotation speed of the second rotor in the first mode.
  • the preferred one can be selected according to the situation for the rotation speed of the second rotor, and the energy efficiency can be increased.
  • the first rotor rotates, but the second rotor does not rotate.
  • either the first mode in which both the first rotor and the second rotor rotate and the second mode in which only the first rotor rotates can be selected according to the situation, and energy efficiency is increased.
  • the second rotor serves as a torque adding unit when the required torque is large, and is stopped when the required torque is small, thereby contributing to an improvement in efficiency.
  • the second transmission unit includes a clutch provided between the second rotor and the second output shaft.
  • the second transmission unit can be configured simply, and even when the first drive electric motor is being driven, the second drive electric motor can be easily stopped by disengaging the clutch.
  • the first transmission unit directly connects the first rotor and the first output shaft.
  • the configuration can be simplified and the energy efficiency can be increased.
  • the first output shaft and the second output shaft are the same output shaft.
  • the driving torque of the same output shaft can be increased easily and reliably.
  • the first mode and the second mode are set to one of the first mode and the second mode based on a command value detection unit that detects a torque command value indicating a drive torque to be generated in the electric system, and a detection result by the command value detection unit. And a control device.
  • a command value detection unit that detects a torque command value indicating a drive torque to be generated in the electric system, and a detection result by the command value detection unit.
  • a control device In this case, either one of the first mode and the second mode can be selected according to the required driving torque, and the energy efficiency can be increased.
  • a manual switch for switching between the first mode and the second mode is further provided.
  • the first mode and the second mode can be easily switched as necessary.
  • the rotational speeds of the first rotor and the second rotor are gradually increased. Increase or decrease to a predetermined value. In this case, the torque at the time of switching between the first mode and the second mode can be relaxed.
  • the rotation speed of each of the first rotor and the second rotor is such that the drive torque of the first driving electric motor on the downstream side of the power transmission direction from the first transmission portion and the power transmission direction from the second transmission portion. Is gradually increased or decreased so that the sum of the driving torque of the second driving electric motor and the torque command value detected by the command value detecting unit is downstream.
  • torque pulsation rapid acceleration / torque loss
  • impact, and vibration can be mitigated at the time of transition from the first mode to the second mode and from the second mode to the first mode. This is particularly effective when switching between parallel operation and single operation.
  • the above-described electric system is preferably used for transportation equipment.
  • FIG. 20 is a block diagram showing an electric system included in the embodiment of FIG. 19.
  • FIG. 1 shows an electric motorcycle 10 equipped with an electric system 30 according to an embodiment of the present invention.
  • the electric motorcycle 10 includes a vehicle body 12.
  • the vehicle body 12 includes a steering shaft (not shown) that is rotatably inserted into a head pipe (not shown), a handle support portion 16 attached to the upper end of the steering shaft, a handle 18 fixed to the handle support portion 16, and a steering shaft.
  • a front fork 20 attached to a lower end of the front fork 20 via a bracket (not shown), a seat 22, and a rear arm 24 extending rearward and swingable.
  • a front wheel 26 is rotatably attached to the lower end portion of the front fork 20, and a rear wheel 28 is rotatably attached to the rear end portion of the rear arm 24.
  • electric system 30 is mounted on such a vehicle body 12.
  • electric system 30 includes a battery 32 as a DC driving power source.
  • the battery 32 includes a BMS (Battery Management System) 34 that manages the battery 32.
  • a first control unit 36 and a second control unit 38 are connected to the BMS 34.
  • Each of first control unit 36 and second control unit 38 includes, for example, an MCU (Motor Control Unit).
  • the first control unit 36 and the second control unit 38 are communicably connected by a communication line 39. The judgment result and calculation result of the first control unit 36 are sent to the second control unit 38 via the communication line 39 as necessary.
  • the first control unit 36 includes a voltage sensor 40 that detects a battery voltage and a current sensor 42 that detects a battery current.
  • a first drive electric motor (hereinafter referred to as “first electric motor”) 44 is connected to the first controller 36, and the first rotor 46 of the first electric motor 44 is a deceleration including a chain, for example. It is connected to the first output shaft 50 via the machine 48.
  • a second drive electric motor (hereinafter referred to as “second electric motor”) 52 is connected to the second control unit 38, and a second rotor 54 of the second electric motor 52 includes a one-way clutch 56, an output. It is connected to the second output shaft 62 via a shaft 58 and a speed reducer 60 including, for example, a chain.
  • the first output shaft 50 and the second output shaft 62 are connected to the axle of the rear wheel 28. Therefore, the torque from the first output shaft 50 and the torque from the second output shaft 62 are combined on the axle of the rear wheel 28.
  • An encoder 64 is disposed in the vicinity of the first electric motor 44, and the first control unit 36 calculates the rotation speed and rotation direction of the first electric motor 44 based on the detection signal from the encoder 64.
  • an encoder 66 is disposed in the vicinity of the second electric motor 52, and the second control unit 38 calculates the rotation speed and rotation direction of the second electric motor 52 based on the detection signal from the encoder 66.
  • An accelerator signal is given from an accelerator 68 (see FIG. 1) provided on the handle 18 to the first control unit 36 and the second control unit 38.
  • the battery 32, the DC-DC converter 72, and the auxiliary machines 74 are connected via the main switch 70.
  • the first electric motor 44 has the same output as the second electric motor 52 or a lower output than the second electric motor 52.
  • the first electric motor 44 a motor having an output specification suitable for the amount of electric power used for regeneration is employed, and as the second electric motor 52, a high-output motor is employed.
  • a large capacity battery is used as the battery 32.
  • the reduction ratio of the speed reducers 48, 60 may be set small. This enables high speed travel.
  • the electric power from the battery 32 is supplied to the second control unit 38 via the BMS 34, whereby the second control unit 38 controls the second electric motor 52. Accordingly, the first electric motor 44 and the second electric motor 52 are driven by the battery 32 via the first control unit 36 and the second control unit 38, respectively.
  • the first output shaft 50 is driven by the first electric motor 44 via the speed reducer 48.
  • the second output shaft 62 is driven by the second electric motor 52 via the one-way clutch 56 and the speed reducer 60.
  • the speed reducer 48 corresponds to a first transmission unit configured such that the first rotor 46 and the first output shaft 50 are interlocked in both directions.
  • the one-way clutch 56, the output shaft 58, and the speed reducer 60 correspond to the second transmission unit. Since the second transmission unit includes the one-way clutch 56, the driving force from the second output shaft 62 is not transmitted to the second rotor 54, and the driving force from the second rotor 54 is applied to the second output shaft 62.
  • the connection part for electrically connecting the first electric motor 44 and the second electric motor 52 is the first control part 36, the second control part 38, and the AC line connecting the first control part 36 and the first electric motor 44.
  • the command value detection unit that detects the total torque command value includes a first control unit 36.
  • the control device includes a first control unit 36 and a second control unit 38.
  • the total torque command value indicates the total driving torque that should be generated in the electric system 30.
  • the total torque command value is determined by the driving torque of the first electric motor 44 on the downstream side in the power transmission direction from the first transmission unit and the second electric motor 52 on the downstream side in the power transmission direction from the second transmission unit. This corresponds to the sum of the driving torque.
  • the total torque command value is the sum of the torque to be generated on the first output shaft 50 and the torque to be generated on the second output shaft 62.
  • step S1 it is determined by the first control unit 36 whether or not the battery 32 is fully charged (step S1). This is determined based on a detection signal from the voltage sensor 40 in the first control unit 36 and communication data from the BMS 34. If the battery 32 is not fully charged, the first control unit 36 determines whether the battery current is being regenerated (current flows from the first control unit 36 toward the battery 32 and the battery 32 is being charged). (Step S3). This is determined based on the detection signal from the current sensor 42 in the first control unit 36 and the communication data from the BMS 34. If the battery current is not being regenerated, the first controller 36 determines whether or not the total torque command value can be handled by one electric motor (step S5).
  • the total torque command value (drive torque to be generated in the electric system 30) can be obtained by one electric motor.
  • the total torque command value is determined by the first control unit 36 based on the accelerator signal from the accelerator 68 and the detection signal from the encoder 64. If the total torque command value cannot be handled by one electric motor, the process proceeds to the parallel operation mode. On the other hand, if the total torque command value can be handled by one electric motor in step S5, the first control unit 36 determines whether or not the accelerator 68 is closed (step S7). If the accelerator 68 is not closed, the process proceeds to the single operation mode. If the accelerator 68 is closed, the process proceeds to the regeneration mode.
  • step S3 if the battery current is being regenerated, the first control unit 36 determines whether or not a regeneration instruction is being performed (step S9). Whether the regeneration instruction is being performed is determined by the first control unit 36 based on the detection signal from the encoder 64 and the accelerator signal from the accelerator 68. When the detection signal from the encoder 64 indicates that the vehicle speed of the electric motorcycle 10 is equal to or lower than the predetermined value, and the accelerator signal from the accelerator 68 indicates that the accelerator 68 is closed, It is judged, and it is judged that it is an event regeneration at other times. If the regeneration instruction is being performed, the process proceeds to step S5. On the other hand, if the regeneration instruction is not being performed (that is, if the regenerative regeneration is being performed), the process proceeds to the regeneration consumption mode. In step S1, when the battery 32 is fully charged, the process proceeds to the regeneration consumption mode.
  • “result regeneration” means that the electric motor is rotated at a rotational speed such that the induced voltage of the electric motor exceeds the voltage of the driving power supply, so that the regenerative power flows into the driving power supply regardless of a command from the control device. To do.
  • the parallel operation mode corresponds to the first mode in which both the first rotor 46 and the second rotor 54 rotate.
  • Other single operation modes, regeneration modes, and regeneration consumption modes correspond to the second mode in which at least the first rotor 46 rotates.
  • the rotation speed of the first rotor 46 is A and the rotation speed of the second rotor 54 is B
  • the value of B / A in the second mode is smaller than the value of B / A in the first mode.
  • the rotation speed of the second rotor 54 in the second mode is lower than the rotation speed of the second rotor 54 in the first mode.
  • the parallel operation mode process of the electric system 30 will be described with reference to FIG.
  • the process of FIG. 4 is also performed at the time of transition from the second mode to the first mode.
  • the total torque command value is acquired by the first control unit 36 (step S11).
  • the total torque command value is determined by the first control unit 36 based on the signal from the accelerator 68 and the detection signal from the encoder 64.
  • the 1st control part 36 acquires the torque demand value of the 2nd electric motor 52 based on a total torque command value (Step S13).
  • the respective ownerships of the first electric motor 44 and the second electric motor 52 with respect to the total torque command value are set in advance, and the share of the second electric motor 52 in the total torque command value is set to the second electric motor 52. Set as torque request value.
  • the first control unit 36 acquires the previous torque command value of the second electric motor 52 (step S15), and the previous torque command value of the second electric motor 52 is equal to or greater than the torque request value of the second electric motor 52. Is determined by the first control unit 36 (step S17). If the previous torque command value of the second electric motor 52 is less than the torque request value of the second electric motor 52, the first control unit 36 sets the torque command value of the second electric motor 52 to X (increase gradually). A value obtained by adding the values to the second electric motor 52 is set as a torque command value for the second electric motor 52 (step S19).
  • the first control unit 36 determines whether or not the torque command value of the second electric motor 52 is equal to or greater than the torque request value of the second electric motor 52 (step S21). If the torque command value of the second electric motor 52 is less than the torque request value of the second electric motor 52, the first controller 36 subtracts the torque command value of the second electric motor 52 from the total torque command value. The torque command value for the first electric motor 44 is set (step S23).
  • step S17 the first control unit 36 sets the torque request value of the second electric motor 52 to the first value. 2 Set as a torque command value for the electric motor 52 (step S25), and proceed to step S23.
  • step S25 the torque command value of the second electric motor 52
  • step S21 the torque command value of the second electric motor 52
  • step S21 the torque command value of the second electric motor 52
  • step S27 The torque command value for the electric motor 52 is set (step S27), and the process proceeds to step S23.
  • step S ⁇ b> 23 the first control unit 36 sets a value obtained by subtracting the torque command value of the second electric motor 52 from the total torque command value as the torque command value of the first electric motor 44.
  • the first control unit 36 determines whether or not the torque command value of the first electric motor 44 is equal to or greater than the upper limit value for system protection (step S29). If the torque command value of the first electric motor 44 is equal to or greater than the upper limit value for system protection, the first control unit 36 sets the upper limit value for system protection as the torque command value of the first electric motor 44 (step S31). ), Return. On the other hand, if the torque command value of the first electric motor 44 is less than the upper limit value for system protection, the process directly returns.
  • the total torque command value is distributed to the first electric motor 44 and the second electric motor 52.
  • the first electric motor 44 is driven so that the torque indicated by the set torque command value is obtained at the first output shaft 50
  • the second electric motor 52 is driven by the torque indicated by the set torque command value.
  • the two output shafts 62 are driven as obtained.
  • the driving torque indicated by the total torque command value in this embodiment, the torque to be generated in the first output shaft 50 and the second output shaft 62 while considering the torque fluctuations in the first transmission portion and the second transmission portion).
  • the first electric motor 44 and the second electric motor 52 are driven so as to generate torque so that the electric system 30 can output (the sum of the torque and the torque to be generated in step 1).
  • the torque request value of the second electric motor 52 is 1 ⁇ 2 of the total torque command value.
  • a part of the total torque command value may be preferentially assigned to the first electric motor 44 and the rest of the total torque command value may be assigned to the second electric motor 52.
  • a part of the total torque command value is allocated to the first electric motor 44 up to the limit of the first electric motor 44, and the remainder of the total torque command value that cannot be covered by the first electric motor 44 is transferred to the second electric motor 52. May be assigned. In this case, the remainder of the total torque command value assigned to the second electric motor 52 becomes the torque request value.
  • the torque by the first electric motor 44 and the torque by the second electric motor 52 can be synthesized, and a high torque can be obtained. As a result, the starting driving force and the maximum speed are improved.
  • the single operation mode process of the electric system 30 will be described with reference to FIG.
  • the process of FIG. 5 is also performed at the time of transition from the first mode to the second mode.
  • the total torque command value is acquired by the first control unit 36 (step S41).
  • the total torque command value is determined by the first control unit 36 based on the signal from the accelerator 68 and the detection signal from the encoder 64.
  • the first control unit 36 gradually increases the torque command value of the first electric motor 44 (step S43), and the first control unit determines whether or not the torque command value of the first electric motor 44 is equal to or greater than the total torque command value.
  • the determination is made at 36 (step S45). In other words, it is determined whether or not the torque command value of the first electric motor 44 has reached the total torque command value.
  • step S47 If the torque command value of the first electric motor 44 is less than the total torque command value, the value obtained by subtracting the torque command value of the first electric motor 44 from the total torque command value by the first control unit 36 is the second electric motor. 52 is set as the torque command value of 52 (step S47), and the process returns. On the other hand, if the torque command value of the first electric motor 44 is equal to or greater than the total torque command value in step S45, the total torque command value is set as the torque command value of the first electric motor 44 by the first control unit 36 (step S45). S49), the process proceeds to step S47.
  • step S47 the torque command value of the second electric motor 52 is set to zero by the first control unit 36, the second electric motor 52 is stopped by the second control unit 38, and the battery 32 passes through the BMS 34. The discharge to the second control unit 38 is also stopped. Thus, when the torque below the predetermined value is required, the single operation mode is executed.
  • the regeneration mode process of the electric system 30 will be described.
  • the total torque command value for regeneration is acquired by the first control unit 36 (step S51).
  • the total torque command value for regeneration is determined by the first control unit 36 based on the detection signal from the encoder 64.
  • the total torque command value for regeneration is set as the torque command value for the first electric motor 44 by the first control unit 36 (step S53), and the torque command value for the second electric motor 52 is zero by the first control unit 36. (Step S55) and the process returns.
  • the first electric motor 44 generates power and regenerative braking is performed, while the second electric motor 52 is stopped and the discharge from the battery 32 to the second control unit 38 via the BMS 34 is also stopped.
  • the regenerative torque in the regenerative mode process shown in FIG. 6 works in the opposite direction to the driving torque in the parallel operation mode process shown in FIG. 4 and the driving torque in the single operation mode process shown in FIG. .
  • step S61 whether or not the second electric motor 52 is rotating forward is determined by the second control unit 38 based on the detection signal from the encoder 66 (step S61). If the second electric motor 52 is rotating forward, the second electric motor 52 is stopped (step S63). On the other hand, if the second electric motor 52 is not rotating forward, the second electric motor 52 performs consumption processing. Is performed (step S65), and the process returns. In the power consumption processing by the second electric motor 52 in step S65, the second electric motor 52 is rotated in reverse by the second control unit 38, for example. The second control unit 38 may energize the second electric motor 52 with a lock.
  • the second electric motor 52 may be energized so that the second rotor 54 is locked at a predetermined position and the second electric motor 52 is not driven. At this time, for example, a non-sinusoidal current is supplied to the second electric motor 52. Further, the second electric motor 52 may be energized so as to vibrate the second rotor 54. Further, consumption without applying a driving torque may be performed by passing a reactive current (d-axis current). That is, energization with a so-called field weakening current that does not drive the second electric motor 52 may be performed. In regenerative consumption, consumption based only on copper loss may be performed.
  • the electric power (regenerative power) generated by the first electric motor 44 can be consumed by the second electric motor 52, and the battery 32 can be protected. That is, when the battery 32 is in a fully charged state or when there is an accidental regeneration due to downhill traveling or the like, by rotating the second electric motor 52 in reverse or energizing the second electric motor 52 with lock electricity, Electric power is consumed without charging the battery 32. Since the behavior of the second electric motor 52 such as reverse rotation and energization of the lock is not transmitted to the speed reducer 60 by the one-way clutch 56, there is no adverse effect on the rear wheel 28 and the electric motorcycle 10. Moreover, even in a fully charged state, it is possible to maintain an engine brake feeling equivalent to that at normal times.
  • a circuit that can activate the first control unit 36 by an induced voltage even when the main switch 70 is in an OFF state may be provided.
  • the second control unit 38 can be activated by communicating from the first control unit 36 to the second control unit 38 via the communication line 39.
  • both the first rotor 46 and the second rotor 54 rotate. Therefore, when the required torque is large, a large driving torque can be obtained by driving a plurality of electric motors (first electric motor 44 and second electric motor 52). Further, the value of B / A in the second mode is smaller than the value of B / A in the first mode. That is, the ratio of the rotational speed of the second rotor 54 to the rotational speed of the first rotor 46 is smaller in the second aspect than in the first aspect. As a result, when the required torque is small, it is possible to operate while eliminating unnecessary iron loss, mechanical loss, etc., and efficiency can be improved. Therefore, by switching between the first mode and the second mode according to the situation, it is possible to reduce the loss as much as possible and increase the energy efficiency while securing the driving torque.
  • the rotation speed of the second rotor 54 in the second mode is lower than the rotation speed of the second rotor 54 in the first mode. In this case, it is possible to select a preferable one for the rotation speed of the second rotor 54 according to the situation, and energy efficiency can be increased.
  • a first mode in which both the first rotor 46 and the second rotor 54 rotate (typically, a parallel operation mode in which both the first electric motor 44 and the second electric motor 52 are powered) and the first rotation.
  • the second mode in which only the child 46 rotates (typically, the single drive mode in which the first drive motor 44 is powered but the second electric motor 52 is stopped) can be selected according to the situation, Energy efficiency can be increased.
  • the second rotor 54 (second electric motor 52) serves as a torque adding unit when the required torque is large, and pauses when the required torque is small, thereby contributing to an improvement in efficiency.
  • the second transmission unit includes a one-way clutch 56 provided between the second rotor 54 and the second output shaft 62.
  • the second transmission portion can be configured easily, and the driving force from the second output shaft 62 is not transmitted to the second rotor 54 even while the first electric motor 44 is being driven. Therefore, the second electric motor 52 can be easily stopped.
  • either the first mode or the second mode can be selected, and the energy efficiency can be increased.
  • the respective rotational speeds of the first rotor 46 and the second rotor 54 can be gradually increased or decreased to be set to respective predetermined values. Thereby, the torque at the time of switching between the first mode and the second mode can be relaxed. In particular, torque when switching from single operation to parallel operation can be reduced. For example, when the rotation speeds of the first rotor 46 and the second rotor 54 are matched, the rotation speed of the second rotor 54 is gradually increased while the idle second rotor 54 is idled. If the rotational speed is controlled to catch up with the first rotor 46, torque pulsation, impact and vibration when caught up can be mitigated. In addition, the transmission part can be prevented from being damaged.
  • the driving torque of the first electric motor 44 and the second level downstream of the first transmission unit in the power transmission direction are arranged such that the sum of the driving torque of the second electric motor 52 on the downstream side in the power transmission direction from the transmission unit becomes a total torque command value detected based on a signal from the accelerator 68.
  • Each rotation speed of the rotor 54 is gradually increased or decreased. In this case, torque pulsation (rapid acceleration / torque loss), impact, and vibration can be mitigated at the time of transition from the first mode to the second mode and from the second mode to the first mode. This is particularly effective when switching between parallel operation and single operation.
  • the electric system 30 is preferably used for the electric motorcycle 10.
  • step S1 in FIG. 3 it is determined whether or not the battery 32 is fully charged.
  • the present invention is not limited to this, and it may be determined whether or not the battery voltage is an overvoltage.
  • the overvoltage refers to a high voltage at which it can be determined that an abnormality (high voltage abnormality) has occurred when the voltage is further increased.
  • the first control unit 32 can determine whether or not the battery voltage is an overvoltage based on the detection signal from the voltage sensor 40 even if communication data is not input from the BMS 34.
  • step S1 of FIG. 3 it may be determined whether or not the battery 32 is in a low temperature state, and further, it may be determined whether or not the battery 32 is in a high temperature state.
  • FIG. 12 shows an electric motorcycle 10a according to another embodiment of the present invention.
  • the electric motorcycle 10a includes a vehicle main body 12a, and an electric system 30a is mounted on the vehicle main body 12a.
  • the electric system 30 a does not include the second control unit 38, the AC line 75 b, the DC line 75 c, and the communication line 39, and An AC line 75d that connects the second electric motor 52 is included. Therefore, the first control unit 36 also functions as the second control unit 38 and controls the second electric motor 52.
  • the connection part that electrically connects the first electric motor 44 and the second electric motor 52 includes the first control part 36 and AC lines 75a and 75d.
  • the first control unit 36 corresponds to a control device. Since the other structure of the electric motorcycle 10a is the same as that of the electric motorcycle 10, the overlapping description is omitted.
  • FIG. 14 shows an electric motorcycle 10b according to another embodiment of the present invention.
  • the electric motorcycle 10b includes a vehicle main body 12b, and an electric system 30b is mounted on the vehicle main body 12b.
  • the electric system 30 b includes, for example, a third drive electric motor (hereinafter referred to as a third control unit 76 including an MCU) and a third rotor 78. , “Third electric motor”) 80 and an encoder 82.
  • the third rotor 78 of the third electric motor 80 is connected to the output shaft 58.
  • electric system 30 b includes communication lines 84 and 86 instead of communication line 39.
  • the first control unit 36 and the third control unit 76 are communicably connected by a communication line 84, and the second control unit 38 and the third control unit 76 are communicably connected by a communication line 86.
  • the third control unit 76 is supplied with electric power from the battery 32 via the BMS 34, whereby the third control unit 76 controls the third electric motor 80. Accordingly, the third electric motor 80 is driven by the battery 32 via the third control unit 76.
  • the control device includes a first control unit 36, a second control unit 38 and a third control unit 76. Since the other structure of the electric motorcycle 10b is the same as that of the electric motorcycle 10, the overlapping description is omitted.
  • the electric motorcycle 10b has the same effect as the electric motorcycle 10.
  • FIG. 16 shows an electric motorcycle 10c according to another embodiment of the present invention.
  • the electric motorcycle 10c includes a vehicle main body 12c, and an electric system 30c is mounted on the vehicle main body 12c.
  • electric system 30c includes, for example, a speed reducer 88 including a chain, and a third output shaft 89 in addition to the configuration of electric system 30b of electric motorcycle 10b.
  • the third rotor 78 of the third electric motor 80 is connected to the third output shaft 89 via the speed reducer 88 without being connected to the output shaft 58.
  • the third output shaft 89 connects the axle of the rear wheel 28 and the second output shaft 62.
  • the reduction gear 88 corresponds to the third transmission unit.
  • the total torque command value corresponds to the sum of the torque to be generated on the first output shaft 50, the torque to be generated on the second output shaft 62, and the torque to be generated on the third output shaft 89. Since the other structure of the electric motorcycle 10c is the same as that of the electric motorcycle 10b, description thereof is omitted.
  • FIG. 18 shows an electric system 30d according to another embodiment of the present invention.
  • the electric system 30 d does not include the output shaft 58, the speed reducer 60, and the second output shaft 62 of the electric system 30 of the electric motorcycle 10, and the second output shaft 90 that is directly connected to the first rotor 46 of the first electric motor 44.
  • the second rotor 54 of the second electric motor 52 is connected to the first rotor 46 of the first electric motor 44 via the one-way clutch 56 and the second output shaft 90, and the torque from the second output shaft 90 is To the first rotor 46 of the first electric motor 44.
  • a speed reducer 92 and an output shaft 94 are provided between the first rotor 46 and the speed reducer 48.
  • the reduction gears 48 and 92 and the output shaft 94 correspond to the first transmission unit.
  • the one-way clutch 56 corresponds to the second transmission unit.
  • the total torque command value corresponds to the sum of the torque to be generated on the first output shaft 50 and the torque to be generated on the second output shaft 90.
  • the other configuration of the electric system 30d is the same as that of the electric system 30, and thus redundant description thereof is omitted.
  • the same effect as the electric motorcycle 10 adopting the electric system 30 can be obtained.
  • the rotation directions of the first electric motor 44 and the second electric motor 52 are set in the same direction.
  • FIG. 19 shows an electric four-wheeled vehicle 100 according to an embodiment of the present invention.
  • the electric four-wheel vehicle 100 includes a vehicle main body 102.
  • the front portion of the vehicle main body 102 rotatably supports the pair of front wheels 104a and 104b, and the rear portion of the vehicle main body 102 rotatably supports the pair of rear wheels 106a and 106b.
  • Electric system 108 is mounted on such a vehicle main body 102.
  • electric system 108 includes a battery 110 as a DC driving power source.
  • the battery 110 includes a BMS 112 that manages the battery 110.
  • a control unit 114 is connected to the BMS 112.
  • Control unit 114 includes, for example, an MCU.
  • the control unit 114 includes a voltage sensor 116 that detects a battery voltage and a current sensor 118 that detects a battery current.
  • the control unit 114 is connected to a pair of first electric motors 120a and 120b.
  • the first rotor 122a of the first electric motor 120a is connected to the first output shaft 126a via the first transmission portion 124a.
  • First transmission portion 124a includes, for example, a coupling.
  • the first output shaft 126a is connected to the axle of the rear wheel 106a.
  • An encoder 128a is disposed in the vicinity of the first electric motor 120a, and the control unit 114 calculates the rotation speed and rotation direction of the first electric motor 120a based on a detection signal from the encoder 128a.
  • the first rotor 122b of the first electric motor 120b is connected to the first output shaft 126b through the first transmission portion 124b.
  • First transmission portion 124b includes, for example, a coupling.
  • the first output shaft 126b is connected to the axle of the rear wheel 106b.
  • An encoder 128b is disposed in the vicinity of the first electric motor 120b, and the control unit 114 calculates the rotation speed and rotation direction of the first electric motor 120b based on the detection signal from the encoder 128b.
  • a pair of second electric motors 130a and 130b is connected to the control unit 114.
  • the second rotor 132a of the second electric motor 130a is connected to the second output shaft 136a via the one-way clutch 134a.
  • the second output shaft 136a is connected to the axle of the front wheel 104a.
  • An encoder 138a is disposed in the vicinity of the second electric motor 130a, and the control unit 114 calculates the rotation speed and rotation direction of the second electric motor 130a based on a detection signal from the encoder 138a.
  • the second rotor 132b of the second electric motor 130b is connected to the second output shaft 136b via a one-way clutch 134b.
  • the second output shaft 136b is connected to the axle of the front wheel 104b.
  • An encoder 138b is disposed in the vicinity of the second electric motor 130b, and the control unit 114 calculates the rotation speed and rotation direction of the second electric motor 130b based on the detection signal from the encoder 138b.
  • An accelerator signal is given from the accelerator 140 to the control unit 114.
  • the battery 110, the DC-DC converter 144, and the auxiliary machinery 146 are connected via a main switch 142.
  • the control unit 114 is supplied with power from the battery 110 via the BMS 112, whereby the control unit 114 controls the pair of first electric motors 120a and 120b and the pair of second electric motors 130a and 130b. Accordingly, the pair of first electric motors 120 a and 120 b and the pair of second electric motors 130 a and 130 b are driven by the battery 110 via the control unit 114.
  • the first output shaft 126a is driven by the first electric motor 120a via the first transmission portion 124a
  • the first output shaft 126b is driven by the first electric motor 120b via the first transmission portion 124b.
  • the second output shaft 136a is driven by the second electric motor 130a via the one-way clutch 134a
  • the second output shaft 136b is driven by the second electric motor 130b via the one-way clutch 134b.
  • the one-way clutches 134a and 134b each correspond to a second transmission unit.
  • the one-way clutch 134a transmits the driving force from the second rotor 132a to the second output shaft 136a without transmitting the driving force from the second output shaft 136a to the second rotor 132a.
  • the driving force from the second rotor 132b is transmitted to the second output shaft 136b without the driving force from the second output shaft 136b being transmitted to the second rotor 132b by the one-way clutch 134b.
  • the connection part for electrically connecting the first electric motor 120a and the second electric motor 130a includes a control part 114, an AC line 148a connecting the control part 114 and the first electric motor 120a, and the control part 114 and the second electric motor.
  • AC line 148b connecting motor 130a is included.
  • the connection part that electrically connects the first electric motor 120b and the second electric motor 130b includes the control part 114, the AC line 150a that connects the control part 114 and the first electric motor 120b, and the control part 114.
  • An AC line 150b connecting the second electric motor 130b is included.
  • the control unit 114 corresponds to a control device.
  • the total torque command value corresponds to the total torque to be generated in the first output shafts 12a and 126b and the second output shafts 136a and 136b.
  • the electric four-wheeled vehicle 100 including the electric system 108 has the same effect as the electric two-wheeled vehicle 10 including the electric system 30.
  • the first transmission portion 124a directly connects the first rotor 122a and the first output shaft 126a, and the first transmission portion 124b connects the first rotor 122b and the first output shaft 126b.
  • the configuration is simplified and the energy efficiency can be increased.
  • the electric system 108 is divided into right and left, the first electric motor 120a and the second electric motor 130a are set as one set, and the first electric motor 120b and the second electric motor 130b are set as one set.
  • the first electric motor 120a and the second electric motor 130b are set as one set, the first electric motor 120b and the second electric motor 130a are set as one set, and the electric motor at the cross position is configured as one set. Also good.
  • three electric motors may be directly connected to the output shaft, and one electric motor may be connected to the output shaft via a clutch. Further, one electric motor may be directly connected to the output shaft, and each of the three electric motors may be connected to the output shaft via a clutch.
  • the first output shaft and the second output shaft are separate output shafts.
  • the present invention is not limited to this, and the same output shaft may be used.
  • the driving torque of the same output shaft can be increased easily and reliably.
  • the first output shaft 50, the second output shaft 62, and the axles of the rear wheels 28 may be configured as one (same) output shaft.
  • the first output shaft 50, the second output shaft 62, the third output shaft 89, and the axles of the rear wheels 28 may be configured as one (same) output shaft.
  • the switching between the first mode and the second mode may be performed by any switching means such as a manual switch.
  • the control device may switch between the first mode and the second mode based on a switching signal from a manual switch 152 (see FIG. 1) provided on the handle 18.
  • a manual switch 152 see FIG. 1
  • the first mode and the second mode can be easily switched by the manual switch 152 as necessary.
  • the present invention may include other aspects in addition to the first aspect and the second aspect.
  • the one-way clutch is used as the clutch, but the present invention is not limited to this.
  • a centrifugal clutch or an electromagnetic clutch may be used as the clutch.
  • the second electric motor 52 When the clutch is turned off by completely disengaging the clutch, the second electric motor 52 may be normally rotated in the regeneration consumption mode shown in FIGS. 7 and 11.
  • At least one of the first transmission unit to the third transmission unit includes a clutch.
  • at least the second transmission portion of the first transmission portion to the third transmission portion includes a clutch.
  • the electric system included in the electric motorcycle according to the embodiment of the present invention may have four or more electric motors.
  • a clutch is provided in one or two or more electric motors according to the amount of power regenerated and consumed by the electric system.
  • the electric motor may be an axial gap type motor or a radial gap type motor.
  • the voltage sensor 40 and the current sensor 42 may be provided in the BMS 34.
  • the transmission unit includes a reduction gear
  • the transmission unit is not necessarily limited to this, and the transmission unit may not necessarily include the reduction gear.
  • the reduction gear may have a belt instead of a chain.
  • the total torque command value is determined as a torque command value for determining whether to proceed to the parallel operation mode, that is, whether to set the first mode or the second mode.
  • a torque command value ⁇ total torque command value
  • It may be determined whether to set the first mode or the second mode.
  • ⁇ total torque command value indicating the sum of torque to be generated on one first output shaft 126a and torque to be generated on one second output shaft 136a.
  • the torque command values of the first electric motor 44 and the second electric motor 52 are gradually increased or decreased and set to desired values. It is not limited. You may make it set the torque command value of the 1st electric motor 44 and the 2nd electric motor 52 to a desired value at a stretch.
  • electric systems 30b, 30c and 30d shown in FIGS. 15, 17 and 18, all the electric motors may be controlled by one control unit.
  • a control unit is provided for each electric motor. It may be provided.
  • the electric system according to the present invention can be mounted not only on electric motorcycles and electric automobiles but also on any transportation equipment such as ships and airplanes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

This electric system (30) of an electric two-wheel vehicle (10) includes a battery (32). The battery (32) drives a first electric motor (44) and a second electric motor (52). A first transmission unit is provided between a first output shaft (50) and a first rotor (46) of the first electric motor (44), and a second transmission unit is provided between a second output shaft (62) and a second rotor (54) of the second electric motor (52). Further, the electric system (30) has at least two forms relating to the rotation speeds of the first rotor (46) and the second rotor (54). In the first mode, the first rotor (46) and the second rotor (54) rotate together, and in the second mode, at least the first rotor (46) rotates. Defining A as the rotation speed of the first rotor (46) and B as the rotation speed of the second rotor (54), the value of B/A in the second mode is less than the value of B/A in the first mode.

Description

電動システムおよびそれを備える輸送機器Electric system and transport equipment including the same
 この発明は電動システムおよびそれを備える輸送機器に関し、より特定的には、駆動用電源を搭載した電動システムおよびそれを備える輸送機器に関する。 The present invention relates to an electric system and a transport device including the same, and more particularly to an electric system equipped with a driving power source and a transport device including the same.
 この種の従来技術の一例が特許文献1において開示されている。特許文献1に開示されている電動車両では、2つのモータ本体は、互いに隣接するとともに同軸に連結して一体駆動可能とされ、それぞれのモータ本体は、スロットルセンサからの出力要求信号に基づき、それぞれ独立したコントローラを介して個別に駆動制御される。これにより、力行時には2つのモータで大きな駆動力が得られる。 An example of this type of prior art is disclosed in Patent Document 1. In the electric vehicle disclosed in Patent Document 1, the two motor bodies are adjacent to each other and are coaxially connected to be integrally driven, and each motor body is based on an output request signal from the throttle sensor, respectively. The drive is individually controlled via an independent controller. Thereby, a large driving force can be obtained by two motors during power running.
特開2012-158292号公報JP 2012-158292 A
 しかしながら、この電動車両では、常に2つのモータを駆動するため、鉄損、機械損なども2倍となるので、要求トルクが小さい場合の効率が悪い。 However, in this electric vehicle, since two motors are always driven, iron loss, mechanical loss, etc. are doubled, so the efficiency is low when the required torque is small.
 また、電源を搭載する電動車両では、電源、特に電池のコスト、搭載スペースについての制約が大きく、なるべく、電動システムのエネルギ効率を高めることで、航続距離を伸ばしたり、搭載する電池の量を減らすことが望まれている。 In addition, in electric vehicles equipped with a power supply, there are significant restrictions on the power supply, especially the cost of the battery, and the installation space. By increasing the energy efficiency of the electric system as much as possible, the cruising distance can be increased and the amount of battery installed can be reduced. It is hoped that.
 それゆえにこの発明の主たる目的は、駆動トルクを確保しつつ、エネルギ効率を高めることができる、電動システムおよびそれを備える輸送機器を提供することである。 Therefore, a main object of the present invention is to provide an electric system and a transport device including the same that can increase energy efficiency while securing a driving torque.
 この発明の或る見地によれば、駆動用電源と、駆動用電源によって駆動されかつ第1回転子を含む第1駆動用電動モータと、駆動用電源によって駆動されかつ第2回転子を含む第2駆動用電動モータと、第1駆動用電動モータによって駆動される第1出力軸と、第2駆動用電動モータによって駆動される第2出力軸と、第1回転子と第1出力軸との間に設けられる第1伝動部と、第2回転子と第2出力軸との間に設けられる第2伝動部と、第1回転子および第2回転子の回転速度に関する態様であって、第1態様では、第1回転子および第2回転子がともに回転し、第2態様では、少なくとも第1回転子が回転し、第1回転子の回転速度をAとし、第2回転子の回転速度をBとすると、第2態様でのB/Aの値は、第1態様でのB/Aの値より小さい、少なくとも2つの態様を有する、電動システムが提供される。 According to one aspect of the present invention, a driving power source, a first driving electric motor driven by the driving power source and including the first rotor, a first driving motor driven by the driving power source and including the second rotor. Two-drive electric motor, a first output shaft driven by the first drive electric motor, a second output shaft driven by the second drive electric motor, a first rotor and a first output shaft A first transmission portion provided between the second transmission portion, a second transmission portion provided between the second rotor and the second output shaft, and a rotational speed of the first rotor and the second rotor, In one aspect, both the first rotor and the second rotor rotate, and in the second aspect, at least the first rotor rotates, the rotation speed of the first rotor is A, and the rotation speed of the second rotor Is B, the value of B / A in the second mode is the value of B / A in the first mode. Ri small, has at least two aspects, the electric system is provided.
 この発明では、第1態様では、第1回転子および第2回転子がともに回転する。したがって、要求トルクが大きい場合には、複数の電動モータの駆動によって大きな駆動トルクを得ることができる。また、第2態様でのB/Aの値は第1態様でのB/Aの値より小さい。すなわち、第1回転子の回転速度に対する第2回転子の回転速度の割合は、第1態様より第2態様の方が小さい。これにより、要求トルクが小さい場合には、不要な鉄損、機械損などを排除しながら運転することができ、効率の向上が図れる。したがって、状況に応じて、第1態様と第2態様とを切り替えることによって、駆動トルクを確保しつつ、エネルギ効率を高めることができる。 In this invention, in the first aspect, both the first rotor and the second rotor rotate. Therefore, when the required torque is large, a large driving torque can be obtained by driving a plurality of electric motors. Further, the value of B / A in the second mode is smaller than the value of B / A in the first mode. That is, the ratio of the rotation speed of the second rotor to the rotation speed of the first rotor is smaller in the second aspect than in the first aspect. As a result, when the required torque is small, it is possible to operate while eliminating unnecessary iron loss, mechanical loss, etc., and efficiency can be improved. Therefore, by switching between the first mode and the second mode according to the situation, it is possible to increase energy efficiency while ensuring the driving torque.
 好ましくは、第1回転子の回転速度が同じ条件下においては、第2態様での第2回転子の回転速度は、第1態様での第2回転子の回転速度よりも小さい。この場合、第2回転子の回転速度につき状況に応じて好ましい方を選択でき、エネルギ効率を高めることができる。 Preferably, under the same rotation speed of the first rotor, the rotation speed of the second rotor in the second mode is lower than the rotation speed of the second rotor in the first mode. In this case, the preferred one can be selected according to the situation for the rotation speed of the second rotor, and the energy efficiency can be increased.
 また好ましくは、第2態様では、第1回転子は回転するが、第2回転子は回転しない。この場合、第1回転子および第2回転子がともに回転する第1態様と、第1回転子のみが回転する第2態様とのいずれかを、状況に応じて選択でき、エネルギ効率を高めることができる。言い換えれば、第2回転子(第2駆動用電動モータ)は、要求トルクが大きいときにはトルク付加手段となり、要求トルクが小さいときには休止し効率の向上に寄与する。 Also preferably, in the second aspect, the first rotor rotates, but the second rotor does not rotate. In this case, either the first mode in which both the first rotor and the second rotor rotate and the second mode in which only the first rotor rotates can be selected according to the situation, and energy efficiency is increased. Can do. In other words, the second rotor (second drive electric motor) serves as a torque adding unit when the required torque is large, and is stopped when the required torque is small, thereby contributing to an improvement in efficiency.
 さらに好ましくは、第2伝動部は、第2回転子と第2出力軸との間に設けられるクラッチを含む。この場合、第2伝達部を簡単に構成でき、第1駆動用電動モータの駆動中であってもクラッチを切ることにより第2駆動用電動モータを容易に休止できる。 More preferably, the second transmission unit includes a clutch provided between the second rotor and the second output shaft. In this case, the second transmission unit can be configured simply, and even when the first drive electric motor is being driven, the second drive electric motor can be easily stopped by disengaging the clutch.
 好ましくは、第1伝動部は、第1回転子と第1出力軸とを直結する。このように第1回転子と第1出力軸とを直結することによって、構成が簡単になりかつエネルギ効率を高めることができる。 Preferably, the first transmission unit directly connects the first rotor and the first output shaft. By directly connecting the first rotor and the first output shaft in this manner, the configuration can be simplified and the energy efficiency can be increased.
 また好ましくは、第1出力軸と第2出力軸とは同一の出力軸である。この場合、同一の出力軸の駆動トルクを簡単かつ確実に高めることができる。 Also preferably, the first output shaft and the second output shaft are the same output shaft. In this case, the driving torque of the same output shaft can be increased easily and reliably.
 さらに好ましくは、当該電動システムにおいて発生すべき駆動トルクを示すトルク指令値を検出する指令値検出部と、指令値検出部による検出結果に基づいて第1態様および第2態様のいずれか一方に設定する制御装置とをさらに備える。この場合、必要な駆動トルクに応じて、第1態様および第2態様のいずれか一方を選択でき、エネルギ効率を高めることができる。 More preferably, it is set to one of the first mode and the second mode based on a command value detection unit that detects a torque command value indicating a drive torque to be generated in the electric system, and a detection result by the command value detection unit. And a control device. In this case, either one of the first mode and the second mode can be selected according to the required driving torque, and the energy efficiency can be increased.
 好ましくは、第1態様と第2態様とを切り替えるための手動スイッチをさらに備える。この場合、必要に応じて簡単に第1態様と第2態様とを切り替えることができる。 Preferably, a manual switch for switching between the first mode and the second mode is further provided. In this case, the first mode and the second mode can be easily switched as necessary.
 また好ましくは、第1態様から第2態様への遷移時および第2態様から第1態様への遷移時の少なくともいずれか一方では、第1回転子および第2回転子のそれぞれの回転数を徐々に増減してそれぞれの所定値に設定する。この場合、第1態様と第2態様との切り替え時のトルクを緩和できる。 Preferably, at least one of the transition from the first mode to the second mode and the transition from the second mode to the first mode, the rotational speeds of the first rotor and the second rotor are gradually increased. Increase or decrease to a predetermined value. In this case, the torque at the time of switching between the first mode and the second mode can be relaxed.
 さらに好ましくは、第1回転子および第2回転子のそれぞれの回転数は、第1伝動部より動力伝達方向の下流側における第1駆動用電動モータの駆動トルクと第2伝動部より動力伝達方向の下流側における第2駆動用電動モータの駆動トルクとの合計が指令値検出部により検出されたトルク指令値となるように徐々に増減される。この場合、第1態様から第2態様への遷移時および第2態様から第1態様への遷移時において、トルク脈動(急加速/トルク抜け)、衝撃および振動を緩和できる。パラレル稼働およびシングル稼働間の切り替え時に特に効果的である。 More preferably, the rotation speed of each of the first rotor and the second rotor is such that the drive torque of the first driving electric motor on the downstream side of the power transmission direction from the first transmission portion and the power transmission direction from the second transmission portion. Is gradually increased or decreased so that the sum of the driving torque of the second driving electric motor and the torque command value detected by the command value detecting unit is downstream. In this case, torque pulsation (rapid acceleration / torque loss), impact, and vibration can be mitigated at the time of transition from the first mode to the second mode and from the second mode to the first mode. This is particularly effective when switching between parallel operation and single operation.
 輸送機器には、より大きな駆動トルクが求められているので、上述の電動システムは、輸送機器に好適に用いられる。 Since a larger driving torque is required for transportation equipment, the above-described electric system is preferably used for transportation equipment.
 この発明の上述の目的およびその他の目的、特徴、局面および利点は、添付図面に関連して行われる以下のこの発明の実施形態の詳細な説明から一層明らかとなろう。 The above object and other objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of the embodiments of the present invention given with reference to the accompanying drawings.
この発明の一実施形態の電動システムを搭載した電動二輪車を示す図であり、(a)は側面図解図であり、(b)は平面図解図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the electric motorcycle carrying the electric system of one Embodiment of this invention, (a) is a side view solution figure, (b) is a top view solution figure. 図1の実施形態に含まれる電動システムを示すブロック図である。It is a block diagram which shows the electric system included in embodiment of FIG. 電動システムの状態遷移動作の一例を示すフロー図である。It is a flowchart which shows an example of the state transition operation | movement of an electric system. 電動システムのパラレル稼働モード処理の一例を示すフロー図である。It is a flowchart which shows an example of the parallel operation mode process of an electric system. 電動システムのシングル稼働モード処理の一例を示すフロー図である。It is a flowchart which shows an example of the single operation mode process of an electric system. 電動システムの回生モード処理の一例を示すフロー図である。It is a flowchart which shows an example of the regeneration mode process of an electric system. 電動システムの回生消費モード処理の一例を示すフロー図である。It is a flowchart which shows an example of the regeneration consumption mode process of an electric system. パラレル稼働モード処理を説明するためのブロック図である。It is a block diagram for demonstrating a parallel operation mode process. シングル稼働モード処理を説明するためのブロック図である。It is a block diagram for demonstrating a single operation mode process. 回生モード処理を説明するためのブロック図である。It is a block diagram for demonstrating regeneration mode processing. 回生消費モード処理を説明するためのブロック図である。It is a block diagram for demonstrating regeneration consumption mode processing. この発明の他の実施形態の電動システムを搭載した電動二輪車を示す図であり、(a)は側面図解図であり、(b)は平面図解図である。It is a figure which shows the electric motorcycle carrying the electric system of other embodiment of this invention, (a) is a side view solution figure, (b) is a top view solution figure. 図12の実施形態に含まれる電動システムを示すブロック図である。It is a block diagram which shows the electric system included in embodiment of FIG. この発明のその他の実施形態の電動システムを搭載した電動二輪車を示す図であり、(a)は側面図解図であり、(b)は平面図解図である。It is a figure which shows the electric motorcycle carrying the electric system of other embodiment of this invention, (a) is a side view solution figure, (b) is a top view solution figure. 図14の実施形態に含まれる電動システムを示すブロック図である。It is a block diagram which shows the electric system included in embodiment of FIG. この発明のさらにその他の実施形態の電動システムを搭載した電動二輪車を示す図であり、(a)は側面図解図であり、(b)は平面図解図である。It is a figure which shows the electric motorcycle carrying the electric system of further another embodiment of this invention, (a) is a side view solution figure, (b) is a top view solution figure. 図16の実施形態に含まれる電動システムを示すブロック図である。It is a block diagram which shows the electric system included in embodiment of FIG. この発明の他の実施形態の電動システムを示すブロック図である。It is a block diagram which shows the electric system of other embodiment of this invention. この発明のその他の実施形態の電動システムを搭載した電動四輪車を示す図解図である。It is an illustration figure which shows the electric four-wheeled vehicle carrying the electric system of other embodiment of this invention. 図19の実施形態に含まれる電動システムを示すブロック図である。FIG. 20 is a block diagram showing an electric system included in the embodiment of FIG. 19.
 以下、図面を参照してこの発明の実施の形態について説明する。
 図1に、この発明の一実施形態の電動システム30を搭載した電動二輪車10を示す。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows an electric motorcycle 10 equipped with an electric system 30 according to an embodiment of the present invention.
 電動二輪車10は、車両本体12を含む。車両本体12は、図示しないヘッドパイプに回動自在に挿通される図示しないステアリング軸と、ステアリング軸の上端に取り付けられるハンドル支持部16と、ハンドル支持部16に固定されるハンドル18と、ステアリング軸の下端に図示しないブラケットを介して取り付けられるフロントフォーク20と、シート22と、後方に延びかつ揺動自在なリヤアーム24とを有する。フロントフォーク20の下端部には前輪26が回転自在に取り付けられ、リヤアーム24の後端部には後輪28が回転自在に取り付けられている。 The electric motorcycle 10 includes a vehicle body 12. The vehicle body 12 includes a steering shaft (not shown) that is rotatably inserted into a head pipe (not shown), a handle support portion 16 attached to the upper end of the steering shaft, a handle 18 fixed to the handle support portion 16, and a steering shaft. A front fork 20 attached to a lower end of the front fork 20 via a bracket (not shown), a seat 22, and a rear arm 24 extending rearward and swingable. A front wheel 26 is rotatably attached to the lower end portion of the front fork 20, and a rear wheel 28 is rotatably attached to the rear end portion of the rear arm 24.
 このような車両本体12には電動システム30が搭載されている。
 図2を参照して、電動システム30は、直流の駆動用電源としての電池32を含む。電池32は、電池32を管理するBMS(バッテリマネージメントシステム)34を有する。BMS34には、第1制御部36および第2制御部38が接続されている。第1制御部36および第2制御部38はそれぞれ、たとえばMCU(モータコントロールユニット)を含む。第1制御部36および第2制御部38間は、通信線39によって通信可能に接続されている。第1制御部36の判断結果や演算結果は、必要に応じて通信線39を介して第2制御部38に送られる。したがって、たとえば、第1制御部36の判断結果や演算結果は、第2制御部38を介して第2電動モータ52(後述)に与えられる。第1制御部36は、電池電圧を検出する電圧センサ40、および電池電流を検出する電流センサ42を有する。第1制御部36には、第1駆動用電動モータ(以下、「第1電動モータ」という)44が接続されており、第1電動モータ44の第1回転子46は、たとえばチェーンを含む減速機48を介して第1出力軸50に接続されている。第2制御部38には、第2駆動用電動モータ(以下、「第2電動モータ」という)52が接続されており、第2電動モータ52の第2回転子54は、ワンウェイクラッチ56、出力軸58およびたとえばチェーンを含む減速機60を介して第2出力軸62に接続されている。第1出力軸50および第2出力軸62は、後輪28の車軸に接続されている。したがって、第1出力軸50からのトルクと第2出力軸62からのトルクとは、後輪28の車軸で合成される。第1電動モータ44の近傍にはエンコーダ64が配置され、第1制御部36は、エンコーダ64からの検知信号に基づいて第1電動モータ44の回転数および回転方向を算出する。同様に、第2電動モータ52の近傍にはエンコーダ66が配置され、第2制御部38は、エンコーダ66からの検知信号に基づいて第2電動モータ52の回転数および回転方向を算出する。ハンドル18に設けられるアクセル68(図1参照)から第1制御部36および第2制御部38へはアクセル信号が与えられる。電池32と、DC-DCコンバータ72および補機類74とは、メインスイッチ70を介して接続されている。なお、好ましくは、第1電動モータ44は、第2電動モータ52と同出力または第2電動モータ52よりも低出力である。さらに好ましくは、第1電動モータ44として、回生として使用される電力量に適した出力のスペックのモータが採用され、第2電動モータ52として、高出力型のモータが採用される。好ましくは、電池32として大容量の電池が用いられる。また、第1駆動モータ44および第2駆動モータ52によって所望の低速トルクが得られるので、減速機48,60の減速比は、小さく設定されてもよい。これにより高速走行が可能となる。
An electric system 30 is mounted on such a vehicle body 12.
Referring to FIG. 2, electric system 30 includes a battery 32 as a DC driving power source. The battery 32 includes a BMS (Battery Management System) 34 that manages the battery 32. A first control unit 36 and a second control unit 38 are connected to the BMS 34. Each of first control unit 36 and second control unit 38 includes, for example, an MCU (Motor Control Unit). The first control unit 36 and the second control unit 38 are communicably connected by a communication line 39. The judgment result and calculation result of the first control unit 36 are sent to the second control unit 38 via the communication line 39 as necessary. Therefore, for example, the determination result and the calculation result of the first control unit 36 are given to the second electric motor 52 (described later) via the second control unit 38. The first control unit 36 includes a voltage sensor 40 that detects a battery voltage and a current sensor 42 that detects a battery current. A first drive electric motor (hereinafter referred to as “first electric motor”) 44 is connected to the first controller 36, and the first rotor 46 of the first electric motor 44 is a deceleration including a chain, for example. It is connected to the first output shaft 50 via the machine 48. A second drive electric motor (hereinafter referred to as “second electric motor”) 52 is connected to the second control unit 38, and a second rotor 54 of the second electric motor 52 includes a one-way clutch 56, an output. It is connected to the second output shaft 62 via a shaft 58 and a speed reducer 60 including, for example, a chain. The first output shaft 50 and the second output shaft 62 are connected to the axle of the rear wheel 28. Therefore, the torque from the first output shaft 50 and the torque from the second output shaft 62 are combined on the axle of the rear wheel 28. An encoder 64 is disposed in the vicinity of the first electric motor 44, and the first control unit 36 calculates the rotation speed and rotation direction of the first electric motor 44 based on the detection signal from the encoder 64. Similarly, an encoder 66 is disposed in the vicinity of the second electric motor 52, and the second control unit 38 calculates the rotation speed and rotation direction of the second electric motor 52 based on the detection signal from the encoder 66. An accelerator signal is given from an accelerator 68 (see FIG. 1) provided on the handle 18 to the first control unit 36 and the second control unit 38. The battery 32, the DC-DC converter 72, and the auxiliary machines 74 are connected via the main switch 70. Preferably, the first electric motor 44 has the same output as the second electric motor 52 or a lower output than the second electric motor 52. More preferably, as the first electric motor 44, a motor having an output specification suitable for the amount of electric power used for regeneration is employed, and as the second electric motor 52, a high-output motor is employed. Preferably, a large capacity battery is used as the battery 32. In addition, since a desired low speed torque can be obtained by the first drive motor 44 and the second drive motor 52, the reduction ratio of the speed reducers 48, 60 may be set small. This enables high speed travel.
 このような電動システム30では、メインスイッチ70がオンされると、第1制御部36および第2制御部38が起動される。一方、メインスイッチ70がオフされると第1制御部36および第2制御部38が停止され、電動二輪車10の電動システム30がシャットダウンされる。このように、メインスイッチ70のオン/オフによって、第1制御部36および第2制御部38の起動/停止が指示される。アクセル68によって電動二輪車10の発進が指示され、アクセル68の操作量に応じたアクセル信号がアクセル68から第1制御部36および第2制御部38に供給される。第1制御部36には、電池32からの電力がBMS34を介して与えられ、それによって第1制御部36は第1電動モータ44を制御する。第2制御部38には、電池32からの電力がBMS34を介して与えられ、それによって第2制御部38は第2電動モータ52を制御する。したがって、第1電動モータ44および第2電動モータ52はそれぞれ、第1制御部36および第2制御部38を介して電池32によって駆動される。第1出力軸50は、減速機48を介して第1電動モータ44によって駆動される。第2出力軸62は、ワンウェイクラッチ56および減速機60を介して第2電動モータ52によって駆動される。 In such an electric system 30, when the main switch 70 is turned on, the first control unit 36 and the second control unit 38 are activated. On the other hand, when the main switch 70 is turned off, the first control unit 36 and the second control unit 38 are stopped, and the electric system 30 of the electric motorcycle 10 is shut down. As described above, activation / deactivation of the first control unit 36 and the second control unit 38 is instructed by turning on / off the main switch 70. The start of the electric motorcycle 10 is instructed by the accelerator 68, and an accelerator signal corresponding to the operation amount of the accelerator 68 is supplied from the accelerator 68 to the first control unit 36 and the second control unit 38. The first control unit 36 is supplied with power from the battery 32 via the BMS 34, whereby the first control unit 36 controls the first electric motor 44. The electric power from the battery 32 is supplied to the second control unit 38 via the BMS 34, whereby the second control unit 38 controls the second electric motor 52. Accordingly, the first electric motor 44 and the second electric motor 52 are driven by the battery 32 via the first control unit 36 and the second control unit 38, respectively. The first output shaft 50 is driven by the first electric motor 44 via the speed reducer 48. The second output shaft 62 is driven by the second electric motor 52 via the one-way clutch 56 and the speed reducer 60.
 この実施形態では、減速機48が、第1回転子46と第1出力軸50とが双方向に連動するように構成される第1伝動部に相当する。ワンウェイクラッチ56、出力軸58および減速機60が第2伝動部に相当する。第2伝動部はワンウェイクラッチ56を含むので、第2出力軸62からの駆動力が第2回転子54に伝達されることなく、第2回転子54からの駆動力が第2出力軸62に伝達される。第1電動モータ44と第2電動モータ52とを電気的に接続する接続部は、第1制御部36、第2制御部38、第1制御部36と第1電動モータ44とを結ぶ交流線75a、第2制御部38と第2電動モータ52とを結ぶ交流線75b、および第1制御部36と第2制御部38とを結ぶ直流線75cを含む。総トルク指令値を検出する指令値検出部は、第1制御部36を含む。制御装置は、第1制御部36および第2制御部38を含む。 In this embodiment, the speed reducer 48 corresponds to a first transmission unit configured such that the first rotor 46 and the first output shaft 50 are interlocked in both directions. The one-way clutch 56, the output shaft 58, and the speed reducer 60 correspond to the second transmission unit. Since the second transmission unit includes the one-way clutch 56, the driving force from the second output shaft 62 is not transmitted to the second rotor 54, and the driving force from the second rotor 54 is applied to the second output shaft 62. Communicated. The connection part for electrically connecting the first electric motor 44 and the second electric motor 52 is the first control part 36, the second control part 38, and the AC line connecting the first control part 36 and the first electric motor 44. 75 a, an AC line 75 b connecting the second control unit 38 and the second electric motor 52, and a DC line 75 c connecting the first control unit 36 and the second control unit 38. The command value detection unit that detects the total torque command value includes a first control unit 36. The control device includes a first control unit 36 and a second control unit 38.
 なお、総トルク指令値は、電動システム30において発生すべき総駆動トルクを示す。この実施形態では、総トルク指令値は、第1伝動部より動力伝達方向の下流側における第1電動モータ44の駆動トルクと第2伝動部より動力伝達方向の下流側における第2電動モータ52の駆動トルクとの合計に相当する。言い換えれば、総トルク指令値は、第1出力軸50において発生すべきトルクと第2出力軸62において発生すべきトルクとの合計である。 The total torque command value indicates the total driving torque that should be generated in the electric system 30. In this embodiment, the total torque command value is determined by the driving torque of the first electric motor 44 on the downstream side in the power transmission direction from the first transmission unit and the second electric motor 52 on the downstream side in the power transmission direction from the second transmission unit. This corresponds to the sum of the driving torque. In other words, the total torque command value is the sum of the torque to be generated on the first output shaft 50 and the torque to be generated on the second output shaft 62.
 ついで、図3から図7を参照して、電動システム30の動作について説明する。
 図3を参照して、電動システム30の状態遷移動作を説明する。
Next, the operation of the electric system 30 will be described with reference to FIGS.
A state transition operation of the electric system 30 will be described with reference to FIG.
 まず、電池32が満充電状態であるか否かが第1制御部36によって判断される(ステップS1)。これは、第1制御部36内の電圧センサ40からの検出信号およびBMS34からの通信データに基づいて判断される。電池32が満充電状態でなければ、電池電流は回生中(第1制御部36から電池32に向けて電流が流れ、電池32を充電中)か否かが、第1制御部36によって判断される(ステップS3)。これは、第1制御部36内の電流センサ42からの検出信号およびBMS34からの通信データに基づいて判断される。電池電流が回生中でなければ、総トルク指令値は1つの電動モータで対応可能か否かが第1制御部36によって判断される(ステップS5)。すなわち、総トルク指令値が示すトルク(電動システム30において発生すべき駆動トルク)を、1つの電動モータによって得ることができるか否かが判断される。総トルク指令値は、アクセル68からのアクセル信号およびエンコーダ64からの検知信号に基づいて第1制御部36によって判断される。総トルク指令値が1つの電動モータで対応不可能であれば、パラレル稼働モードへ進む。一方、ステップS5において、総トルク指令値が1つの電動モータで対応可能であれば、アクセル68が閉じているか否かが第1制御部36によって判断される(ステップS7)。アクセル68が閉じていなければ、シングル稼働モードへ進み、一方、アクセル68が閉じていれば、回生モードへ進む。 First, it is determined by the first control unit 36 whether or not the battery 32 is fully charged (step S1). This is determined based on a detection signal from the voltage sensor 40 in the first control unit 36 and communication data from the BMS 34. If the battery 32 is not fully charged, the first control unit 36 determines whether the battery current is being regenerated (current flows from the first control unit 36 toward the battery 32 and the battery 32 is being charged). (Step S3). This is determined based on the detection signal from the current sensor 42 in the first control unit 36 and the communication data from the BMS 34. If the battery current is not being regenerated, the first controller 36 determines whether or not the total torque command value can be handled by one electric motor (step S5). That is, it is determined whether the torque indicated by the total torque command value (drive torque to be generated in the electric system 30) can be obtained by one electric motor. The total torque command value is determined by the first control unit 36 based on the accelerator signal from the accelerator 68 and the detection signal from the encoder 64. If the total torque command value cannot be handled by one electric motor, the process proceeds to the parallel operation mode. On the other hand, if the total torque command value can be handled by one electric motor in step S5, the first control unit 36 determines whether or not the accelerator 68 is closed (step S7). If the accelerator 68 is not closed, the process proceeds to the single operation mode. If the accelerator 68 is closed, the process proceeds to the regeneration mode.
 また、ステップS3において、電池電流が回生中であれば、回生指示中か否かが第1制御部36によって判断される(ステップS9)。回生指示中か否かは、エンコーダ64からの検知信号およびアクセル68からのアクセル信号に基づいて第1制御部36によって判断される。エンコーダ64からの検知信号が、電動二輪車10の車速が所定値以下であることを示し、かつアクセル68からのアクセル信号が、アクセル68が閉じられていることを示しているとき、回生指示中と判断され、それ以外のとき成り行き回生と判断される。回生指示中であればステップS5へ進み、一方、回生指示中でなければ(すなわち、成り行き回生中であれば)、回生消費モードへ進む。ステップS1において、電池32が満充電状態のときも、回生消費モードへ進む。 In step S3, if the battery current is being regenerated, the first control unit 36 determines whether or not a regeneration instruction is being performed (step S9). Whether the regeneration instruction is being performed is determined by the first control unit 36 based on the detection signal from the encoder 64 and the accelerator signal from the accelerator 68. When the detection signal from the encoder 64 indicates that the vehicle speed of the electric motorcycle 10 is equal to or lower than the predetermined value, and the accelerator signal from the accelerator 68 indicates that the accelerator 68 is closed, It is judged, and it is judged that it is an event regeneration at other times. If the regeneration instruction is being performed, the process proceeds to step S5. On the other hand, if the regeneration instruction is not being performed (that is, if the regenerative regeneration is being performed), the process proceeds to the regeneration consumption mode. In step S1, when the battery 32 is fully charged, the process proceeds to the regeneration consumption mode.
 ここで「成り行き回生」とは、電動モータの誘起電圧が駆動用電源の電圧を上回るような回転数で電動モータが回転され、それにより回生電力が制御装置の指令によらず駆動用電源に流入することをいう。 Here, “result regeneration” means that the electric motor is rotated at a rotational speed such that the induced voltage of the electric motor exceeds the voltage of the driving power supply, so that the regenerative power flows into the driving power supply regardless of a command from the control device. To do.
 なお、図3に示すモードのうち、パラレル稼働モードが、第1回転子46および第2回転子54がともに回転する第1態様に対応する。その他のシングル稼働モード、回生モードおよび回生消費モードが、少なくとも第1回転子46が回転する第2態様に対応する。第1回転子46の回転速度をAとし、第2回転子54の回転速度をBとすると、第2態様でのB/Aの値は、第1態様でのB/Aの値より小さい。第1回転子46の回転速度が同じ条件下においては、第2態様での第2回転子54の回転速度は、第1態様での第2回転子54の回転速度よりも小さい。 Of the modes shown in FIG. 3, the parallel operation mode corresponds to the first mode in which both the first rotor 46 and the second rotor 54 rotate. Other single operation modes, regeneration modes, and regeneration consumption modes correspond to the second mode in which at least the first rotor 46 rotates. Assuming that the rotation speed of the first rotor 46 is A and the rotation speed of the second rotor 54 is B, the value of B / A in the second mode is smaller than the value of B / A in the first mode. Under the same rotation speed of the first rotor 46, the rotation speed of the second rotor 54 in the second mode is lower than the rotation speed of the second rotor 54 in the first mode.
 図4を参照して、電動システム30のパラレル稼働モード処理について説明する。第2態様から第1態様への遷移時にも、図4の処理が実行される。 The parallel operation mode process of the electric system 30 will be described with reference to FIG. The process of FIG. 4 is also performed at the time of transition from the second mode to the first mode.
 まず、第1制御部36によって総トルク指令値が取得される(ステップS11)。総トルク指令値は、アクセル68からの信号およびエンコーダ64からの検知信号に基づいて第1制御部36によって判断される。そして、第1制御部36は、総トルク指令値に基づいて第2電動モータ52のトルク要求値を取得する(ステップS13)。たとえば、総トルク指令値に対する第1電動モータ44および第2電動モータ52のそれぞれの持分を予め設定しておき、総トルク指令値のうち第2電動モータ52の持分を、第2電動モータ52のトルク要求値として設定する。そして、第1制御部36は、前回の第2電動モータ52のトルク指令値を取得し(ステップS15)、前回の第2電動モータ52のトルク指令値が第2電動モータ52のトルク要求値以上であるか否かが、第1制御部36によって判断される(ステップS17)。前回の第2電動モータ52のトルク指令値が第2電動モータ52のトルク要求値未満であれば、第1制御部36によって、前回の第2電動モータ52のトルク指令値にX(徐々に増加させるための値)を加算した値を、第2電動モータ52のトルク指令値として設定する(ステップS19)。そして再び、第2電動モータ52のトルク指令値が第2電動モータ52のトルク要求値以上であるか否かが、第1制御部36によって判断される(ステップS21)。第2電動モータ52のトルク指令値が第2電動モータ52のトルク要求値未満であれば、第1制御部36によって、総トルク指令値から第2電動モータ52のトルク指令値を減算した値を、第1電動モータ44のトルク指令値として設定する(ステップS23)。 First, the total torque command value is acquired by the first control unit 36 (step S11). The total torque command value is determined by the first control unit 36 based on the signal from the accelerator 68 and the detection signal from the encoder 64. And the 1st control part 36 acquires the torque demand value of the 2nd electric motor 52 based on a total torque command value (Step S13). For example, the respective ownerships of the first electric motor 44 and the second electric motor 52 with respect to the total torque command value are set in advance, and the share of the second electric motor 52 in the total torque command value is set to the second electric motor 52. Set as torque request value. Then, the first control unit 36 acquires the previous torque command value of the second electric motor 52 (step S15), and the previous torque command value of the second electric motor 52 is equal to or greater than the torque request value of the second electric motor 52. Is determined by the first control unit 36 (step S17). If the previous torque command value of the second electric motor 52 is less than the torque request value of the second electric motor 52, the first control unit 36 sets the torque command value of the second electric motor 52 to X (increase gradually). A value obtained by adding the values to the second electric motor 52 is set as a torque command value for the second electric motor 52 (step S19). Then, again, the first control unit 36 determines whether or not the torque command value of the second electric motor 52 is equal to or greater than the torque request value of the second electric motor 52 (step S21). If the torque command value of the second electric motor 52 is less than the torque request value of the second electric motor 52, the first controller 36 subtracts the torque command value of the second electric motor 52 from the total torque command value. The torque command value for the first electric motor 44 is set (step S23).
 一方、ステップS17において、前回の第2電動モータ52のトルク指令値が第2電動モータ52のトルク要求値以上であれば、第1制御部36によって、第2電動モータ52のトルク要求値を第2電動モータ52のトルク指令値として設定して(ステップS25)、ステップS23へ進む。同様に、ステップS21において、第2電動モータ52のトルク指令値が第2電動モータ52のトルク要求値以上であれば、第1制御部36によって、第2電動モータ52のトルク要求値を第2電動モータ52のトルク指令値として設定して(ステップS27)、ステップS23へ進む。ステップS23では、第1制御部36によって、総トルク指令値から第2電動モータ52のトルク指令値を減算した値を、第1電動モータ44のトルク指令値として設定する。 On the other hand, if the previous torque command value of the second electric motor 52 is greater than or equal to the torque request value of the second electric motor 52 in step S17, the first control unit 36 sets the torque request value of the second electric motor 52 to the first value. 2 Set as a torque command value for the electric motor 52 (step S25), and proceed to step S23. Similarly, if the torque command value of the second electric motor 52 is equal to or greater than the torque request value of the second electric motor 52 in step S21, the first control unit 36 sets the torque request value of the second electric motor 52 to the second value. The torque command value for the electric motor 52 is set (step S27), and the process proceeds to step S23. In step S <b> 23, the first control unit 36 sets a value obtained by subtracting the torque command value of the second electric motor 52 from the total torque command value as the torque command value of the first electric motor 44.
 ステップS23の後、第1電動モータ44のトルク指令値がシステム保護上の上限値以上であるか否かが、第1制御部36によって判断される(ステップS29)。第1電動モータ44のトルク指令値がシステム保護上の上限値以上であれば、第1制御部36によって、システム保護上の上限値を第1電動モータ44のトルク指令値として設定し(ステップS31)、リターンする。一方、第1電動モータ44のトルク指令値がシステム保護上の上限値未満であれば、そのままリターンする。 After step S23, the first control unit 36 determines whether or not the torque command value of the first electric motor 44 is equal to or greater than the upper limit value for system protection (step S29). If the torque command value of the first electric motor 44 is equal to or greater than the upper limit value for system protection, the first control unit 36 sets the upper limit value for system protection as the torque command value of the first electric motor 44 (step S31). ), Return. On the other hand, if the torque command value of the first electric motor 44 is less than the upper limit value for system protection, the process directly returns.
 このように総トルク指令値を第1電動モータ44と第2電動モータ52とに配分する。そして、第1電動モータ44は、設定されたトルク指令値が示すトルクが第1出力軸50において得られるように駆動され、第2電動モータ52は、設定されたトルク指令値が示すトルクが第2出力軸62において得られるように駆動される。言い換えれば、第1伝動部および第2伝動部におけるトルク変動を考慮しながら、総トルク指令値が示す駆動トルク(この実施形態では、第1出力軸50において発生すべきトルクと第2出力軸62において発生すべきトルクとの和に相当)を電動システム30が出力できるように、第1電動モータ44および第2電動モータ52が駆動されトルクを発生する。 Thus, the total torque command value is distributed to the first electric motor 44 and the second electric motor 52. The first electric motor 44 is driven so that the torque indicated by the set torque command value is obtained at the first output shaft 50, and the second electric motor 52 is driven by the torque indicated by the set torque command value. The two output shafts 62 are driven as obtained. In other words, the driving torque indicated by the total torque command value (in this embodiment, the torque to be generated in the first output shaft 50 and the second output shaft 62 while considering the torque fluctuations in the first transmission portion and the second transmission portion). The first electric motor 44 and the second electric motor 52 are driven so as to generate torque so that the electric system 30 can output (the sum of the torque and the torque to be generated in step 1).
 なお、総トルク指令値に対する第1電動モータ44および第2電動モータ52の持分が1/2ずつであれば、第2電動モータ52のトルク要求値は総トルク指令値の1/2となる。また、総トルク指令値の一部が第1電動モータ44に優先的に割り当てられ、総トルク指令値の残りが第2電動モータ52に割り当てられてもよい。たとえば、総トルク指令値の一部が第1電動モータ44の限度まで第1電動モータ44に割り当てられ、第1電動モータ44によって賄いきれない総トルク指令値の残りが、第2電動モータ52に割り当てられてもよい。この場合、第2電動モータ52に割り当てられた総トルク指令値の残りが、トルク要求値となる。 In addition, if the share of the first electric motor 44 and the second electric motor 52 with respect to the total torque command value is ½, the torque request value of the second electric motor 52 is ½ of the total torque command value. Further, a part of the total torque command value may be preferentially assigned to the first electric motor 44 and the rest of the total torque command value may be assigned to the second electric motor 52. For example, a part of the total torque command value is allocated to the first electric motor 44 up to the limit of the first electric motor 44, and the remainder of the total torque command value that cannot be covered by the first electric motor 44 is transferred to the second electric motor 52. May be assigned. In this case, the remainder of the total torque command value assigned to the second electric motor 52 becomes the torque request value.
 図8を参照して、パラレル稼働モード処理を実行することによって、第1電動モータ44によるトルクおよび第2電動モータ52によるトルクを合成でき、高トルクが得られる。その結果、発進駆動力および最高速度が向上する。 Referring to FIG. 8, by executing the parallel operation mode process, the torque by the first electric motor 44 and the torque by the second electric motor 52 can be synthesized, and a high torque can be obtained. As a result, the starting driving force and the maximum speed are improved.
 図5を参照して、電動システム30のシングル稼働モード処理について説明する。第1態様から第2態様への遷移時にも、図5の処理が実行される。 The single operation mode process of the electric system 30 will be described with reference to FIG. The process of FIG. 5 is also performed at the time of transition from the first mode to the second mode.
 まず、第1制御部36によって総トルク指令値が取得される(ステップS41)。総トルク指令値は、アクセル68からの信号およびエンコーダ64からの検知信号に基づいて第1制御部36によって判断される。そして、第1制御部36によって第1電動モータ44のトルク指令値が徐々に増加され(ステップS43)、第1電動モータ44のトルク指令値が総トルク指令値以上か否かが第1制御部36で判断される(ステップS45)。言い換えれば、第1電動モータ44のトルク指令値が総トルク指令値に達したか否かが判断される。第1電動モータ44のトルク指令値が総トルク指令値未満であれば、第1制御部36によって、総トルク指令値から第1電動モータ44のトルク指令値を減算した値が、第2電動モータ52のトルク指令値として設定され(ステップS47)、リターンする。一方、ステップS45において、第1電動モータ44のトルク指令値が総トルク指令値以上になれば、第1制御部36によって総トルク指令値が第1電動モータ44のトルク指令値として設定され(ステップS49)、ステップS47へ進む。すると、ステップS47では、第1制御部36によって第2電動モータ52のトルク指令値がゼロに設定されて、第2制御部38によって第2電動モータ52が停止され、電池32からBMS34を介して第2制御部38への放電も休止される。このように所定値以下のトルクが要求されるときには、シングル稼働モードが実行される。 First, the total torque command value is acquired by the first control unit 36 (step S41). The total torque command value is determined by the first control unit 36 based on the signal from the accelerator 68 and the detection signal from the encoder 64. Then, the first control unit 36 gradually increases the torque command value of the first electric motor 44 (step S43), and the first control unit determines whether or not the torque command value of the first electric motor 44 is equal to or greater than the total torque command value. The determination is made at 36 (step S45). In other words, it is determined whether or not the torque command value of the first electric motor 44 has reached the total torque command value. If the torque command value of the first electric motor 44 is less than the total torque command value, the value obtained by subtracting the torque command value of the first electric motor 44 from the total torque command value by the first control unit 36 is the second electric motor. 52 is set as the torque command value of 52 (step S47), and the process returns. On the other hand, if the torque command value of the first electric motor 44 is equal to or greater than the total torque command value in step S45, the total torque command value is set as the torque command value of the first electric motor 44 by the first control unit 36 (step S45). S49), the process proceeds to step S47. Then, in step S47, the torque command value of the second electric motor 52 is set to zero by the first control unit 36, the second electric motor 52 is stopped by the second control unit 38, and the battery 32 passes through the BMS 34. The discharge to the second control unit 38 is also stopped. Thus, when the torque below the predetermined value is required, the single operation mode is executed.
 図9を参照して、シングル稼働モードを実行すると、第1電動モータ44だけで力行できるとともに、ワンウェイクラッチ56によって第2出力軸62からの駆動力は第2電動モータ52へ伝達されないので、第2電動モータ52の鉄損、銅損、機械損などの損失がゼロとなる。したがって、燃費を向上でき、航続距離を向上できる。 Referring to FIG. 9, when the single operation mode is executed, power can be powered only by first electric motor 44, and driving force from second output shaft 62 is not transmitted to second electric motor 52 by one-way clutch 56. 2 Loss such as iron loss, copper loss, mechanical loss of the electric motor 52 becomes zero. Therefore, fuel consumption can be improved and cruising distance can be improved.
 図6を参照して、電動システム30の回生モード処理について説明する。
 まず、第1制御部36によって回生用の総トルク指令値が取得される(ステップS51)。回生用の総トルク指令値は、エンコーダ64からの検知信号に基づいて第1制御部36によって決定される。そして、第1制御部36によって回生用の総トルク指令値が第1電動モータ44のトルク指令値として設定され(ステップS53)、第1制御部36によって第2電動モータ52のトルク指令値がゼロに設定され(ステップS55)、リターンする。このように、第1電動モータ44のみが発電して回生制動が行われ、その一方、第2電動モータ52は停止され、電池32からBMS34を介して第2制御部38への放電も休止される。なお、図6に示す回生モード処理における回生用のトルクは、図4に示すパラレル稼働モード処理における駆動用のトルクおよび図5に示すシングル稼働モード処理における駆動用のトルクとは、逆方向に働く。
With reference to FIG. 6, the regeneration mode process of the electric system 30 will be described.
First, the total torque command value for regeneration is acquired by the first control unit 36 (step S51). The total torque command value for regeneration is determined by the first control unit 36 based on the detection signal from the encoder 64. Then, the total torque command value for regeneration is set as the torque command value for the first electric motor 44 by the first control unit 36 (step S53), and the torque command value for the second electric motor 52 is zero by the first control unit 36. (Step S55) and the process returns. In this way, only the first electric motor 44 generates power and regenerative braking is performed, while the second electric motor 52 is stopped and the discharge from the battery 32 to the second control unit 38 via the BMS 34 is also stopped. The The regenerative torque in the regenerative mode process shown in FIG. 6 works in the opposite direction to the driving torque in the parallel operation mode process shown in FIG. 4 and the driving torque in the single operation mode process shown in FIG. .
 図10を参照して、電動二輪車10の車速が所定値以下でありかつアクセル68がオフされているとき、回生モードを実行することによって、回生機能による適度なエンジンブレーキ感があり、フィーリングが向上する。また、回生により電池32を充電して電力を還元できるので、航続距離を向上できる。さらに、ワンウェイクラッチ56によって第2出力軸62からの駆動力は第2電動モータ52へ伝達されないので、第2電動モータ52の鉄損、銅損、機械損などの損失がゼロとなる。 Referring to FIG. 10, when the vehicle speed of electric motorcycle 10 is equal to or lower than a predetermined value and accelerator 68 is turned off, by executing the regeneration mode, there is an appropriate engine braking feeling due to the regeneration function, and the feeling is reduced. improves. Further, since the battery 32 can be charged by regeneration to reduce the power, the cruising distance can be improved. Further, since the driving force from the second output shaft 62 is not transmitted to the second electric motor 52 by the one-way clutch 56, the loss of iron loss, copper loss, mechanical loss, etc. of the second electric motor 52 becomes zero.
 図7を参照して、電動システム30の回生消費モード処理について説明する。
 まず、第2電動モータ52が正転中か否かが、エンコーダ66からの検知信号に基づいて第2制御部38によって判断される(ステップS61)。第2電動モータ52が正転中であれば、第2電動モータ52が停止され(ステップS63)、一方、第2電動モータ52が正転中でなければ、第2電動モータ52によって消費処理が行われ(ステップS65)、リターンする。ステップS65における第2電動モータ52による電力の消費処理では、第2制御部38によってたとえば第2電動モータ52が逆回転される。また、第2制御部38によって第2電動モータ52にロック通電されてもよい。すなわち、第2回転子54が所定の位置にロックされ第2電動モータ52が駆動しないように第2電動モータ52に通電されてもよい。このとき、第2電動モータ52にはたとえば正弦波でない電流が供給される。さらに、第2回転子54を振動させるように第2電動モータ52へ通電されてもよい。また、無効電流(d軸電流)通電によって駆動トルクを与えない消費が行われてもよい。すなわち、第2電動モータ52が駆動しないような所謂弱め界磁電流による通電が行われてもよい。回生消費では、銅損のみによる消費が行われてもよい。
With reference to FIG. 7, the regeneration consumption mode process of the electric system 30 will be described.
First, whether or not the second electric motor 52 is rotating forward is determined by the second control unit 38 based on the detection signal from the encoder 66 (step S61). If the second electric motor 52 is rotating forward, the second electric motor 52 is stopped (step S63). On the other hand, if the second electric motor 52 is not rotating forward, the second electric motor 52 performs consumption processing. Is performed (step S65), and the process returns. In the power consumption processing by the second electric motor 52 in step S65, the second electric motor 52 is rotated in reverse by the second control unit 38, for example. The second control unit 38 may energize the second electric motor 52 with a lock. That is, the second electric motor 52 may be energized so that the second rotor 54 is locked at a predetermined position and the second electric motor 52 is not driven. At this time, for example, a non-sinusoidal current is supplied to the second electric motor 52. Further, the second electric motor 52 may be energized so as to vibrate the second rotor 54. Further, consumption without applying a driving torque may be performed by passing a reactive current (d-axis current). That is, energization with a so-called field weakening current that does not drive the second electric motor 52 may be performed. In regenerative consumption, consumption based only on copper loss may be performed.
 図11を参照して、回生消費モードを実行することによって、第1電動モータ44の発電による電力(回生電力)を第2電動モータ52で消費でき、電池32を保護できる。すなわち、電池32が満充電状態であるときや、下り坂走行などによる成り行き回生が発生する際には、第2電動モータ52を逆回転させたり、第2電動モータ52にロック通電させることによって、電池32を充電することなく電力を消費させる。なお、このような逆回転やロック通電といった第2電動モータ52の挙動は、ワンウェイクラッチ56によって減速機60へ伝達されないので、後輪28ひいては電動二輪車10への悪影響はない。また、満充電状態であっても、通常時と同等のエンジンブレーキ感を維持することができる。 Referring to FIG. 11, by executing the regeneration consumption mode, the electric power (regenerative power) generated by the first electric motor 44 can be consumed by the second electric motor 52, and the battery 32 can be protected. That is, when the battery 32 is in a fully charged state or when there is an accidental regeneration due to downhill traveling or the like, by rotating the second electric motor 52 in reverse or energizing the second electric motor 52 with lock electricity, Electric power is consumed without charging the battery 32. Since the behavior of the second electric motor 52 such as reverse rotation and energization of the lock is not transmitted to the speed reducer 60 by the one-way clutch 56, there is no adverse effect on the rear wheel 28 and the electric motorcycle 10. Moreover, even in a fully charged state, it is possible to maintain an engine brake feeling equivalent to that at normal times.
 なお、メインスイッチ70がオフ状態の場合にも誘起電圧によって第1制御部36を起動できる回路を設けてもよい。この場合、第1制御部36が起動されると、通信線39を介して第1制御部36から第2制御部38へ通信することによって、第2制御部38を起動できる。 It should be noted that a circuit that can activate the first control unit 36 by an induced voltage even when the main switch 70 is in an OFF state may be provided. In this case, when the first control unit 36 is activated, the second control unit 38 can be activated by communicating from the first control unit 36 to the second control unit 38 via the communication line 39.
 このような電動二輪車10によれば、第1態様では、第1回転子46および第2回転子54がともに回転する。したがって、要求トルクが大きい場合には、複数の電動モータ(第1電動モータ44および第2電動モータ52)の駆動によって大きな駆動トルクを得ることができる。また、第2態様でのB/Aの値は第1態様でのB/Aの値より小さい。すなわち、第1回転子46の回転速度に対する第2回転子54の回転速度の割合は、第1態様より第2態様の方が小さい。これにより、要求トルクが小さい場合には、不要な鉄損、機械損などを排除しながら運転することができ、効率の向上が図れる。したがって、状況に応じて、第1態様と第2態様とを切り替えることによって、駆動トルクを確保しつつ、損失を極力減らし、エネルギ効率を高めることができる。 According to such an electric motorcycle 10, in the first aspect, both the first rotor 46 and the second rotor 54 rotate. Therefore, when the required torque is large, a large driving torque can be obtained by driving a plurality of electric motors (first electric motor 44 and second electric motor 52). Further, the value of B / A in the second mode is smaller than the value of B / A in the first mode. That is, the ratio of the rotational speed of the second rotor 54 to the rotational speed of the first rotor 46 is smaller in the second aspect than in the first aspect. As a result, when the required torque is small, it is possible to operate while eliminating unnecessary iron loss, mechanical loss, etc., and efficiency can be improved. Therefore, by switching between the first mode and the second mode according to the situation, it is possible to reduce the loss as much as possible and increase the energy efficiency while securing the driving torque.
 第1回転子46の回転速度が同じ条件下においては、第2態様での第2回転子54の回転速度は、第1態様での第2回転子54の回転速度よりも小さい。この場合、第2回転子54の回転速度につき状況に応じて好ましい方を選択でき、エネルギ効率を高めることができる。 When the rotation speed of the first rotor 46 is the same, the rotation speed of the second rotor 54 in the second mode is lower than the rotation speed of the second rotor 54 in the first mode. In this case, it is possible to select a preferable one for the rotation speed of the second rotor 54 according to the situation, and energy efficiency can be increased.
 また、第1回転子46および第2回転子54がともに回転する第1態様(典型的には、第1電動モータ44および第2電動モータ52がともに力行するパラレル稼動モード)と、第1回転子46のみが回転する第2態様(典型的には、第1駆動モータ44は力行するが、第2電動モータ52は休止するシングル稼動モード)とのいずれかを、状況に応じて選択でき、エネルギ効率を高めることができる。言い換えれば、第2回転子54(第2電動モータ52)は、要求トルクが大きいときにはトルク付加手段となり、要求トルクが小さいときには休止し効率の向上に寄与する。 Further, a first mode in which both the first rotor 46 and the second rotor 54 rotate (typically, a parallel operation mode in which both the first electric motor 44 and the second electric motor 52 are powered) and the first rotation. The second mode in which only the child 46 rotates (typically, the single drive mode in which the first drive motor 44 is powered but the second electric motor 52 is stopped) can be selected according to the situation, Energy efficiency can be increased. In other words, the second rotor 54 (second electric motor 52) serves as a torque adding unit when the required torque is large, and pauses when the required torque is small, thereby contributing to an improvement in efficiency.
 第2伝動部は、第2回転子54と第2出力軸62との間に設けられるワンウェイクラッチ56を含む。この場合、第2伝達部を簡単に構成でき、第1電動モータ44の駆動中であっても第2出力軸62からの駆動力は第2回転子54へ伝達されないので、実質的にクラッチを切ることになり、第2電動モータ52を容易に休止できる。 The second transmission unit includes a one-way clutch 56 provided between the second rotor 54 and the second output shaft 62. In this case, the second transmission portion can be configured easily, and the driving force from the second output shaft 62 is not transmitted to the second rotor 54 even while the first electric motor 44 is being driven. Therefore, the second electric motor 52 can be easily stopped.
 必要な駆動トルクに応じて、第1態様および第2態様のいずれか一方を選択でき、エネルギ効率を高めることができる。 Depending on the required driving torque, either the first mode or the second mode can be selected, and the energy efficiency can be increased.
 第1態様から第2態様への遷移時および第2態様から第1態様への遷移時において、第1電動モータ44および第2電動モータ52のそれぞれのトルク指令値を徐々に増減させることによって、第1回転子46および第2回転子54のそれぞれの回転数を徐々に増減させてそれぞれの所定値に設定することができる。これによって、第1態様と第2態様との切り替え時のトルクを緩和できる。特に、シングル稼働からパラレル稼働への切り替え時のトルクを緩和できる。たとえば、第1回転子46と第2回転子54との回転数を一致させる場合、休止していた第2回転子54を空転させながらその回転数を徐々に増加させ、第2回転子54の回転数が第1回転子46に追いつくように制御すると、追いついたときのトルク脈動、衝撃および振動を緩和できる。また、伝達部の破損を防ぐこともできる。 By gradually increasing or decreasing the respective torque command values of the first electric motor 44 and the second electric motor 52 at the time of transition from the first mode to the second mode and at the time of transition from the second mode to the first mode, The respective rotational speeds of the first rotor 46 and the second rotor 54 can be gradually increased or decreased to be set to respective predetermined values. Thereby, the torque at the time of switching between the first mode and the second mode can be relaxed. In particular, torque when switching from single operation to parallel operation can be reduced. For example, when the rotation speeds of the first rotor 46 and the second rotor 54 are matched, the rotation speed of the second rotor 54 is gradually increased while the idle second rotor 54 is idled. If the rotational speed is controlled to catch up with the first rotor 46, torque pulsation, impact and vibration when caught up can be mitigated. In addition, the transmission part can be prevented from being damaged.
 また、第1態様から第2態様への遷移時および第2態様から第1態様への遷移時において、第1伝動部より動力伝達方向の下流側における第1電動モータ44の駆動トルクと第2伝動部より動力伝達方向の下流側における第2電動モータ52の駆動トルクとの合計がアクセル68からの信号に基づいて検出される総トルク指令値となるように、第1回転子46および第2回転子54のそれぞれの回転数が徐々に増減される。この場合、第1態様から第2態様への遷移時および第2態様から第1態様への遷移時において、トルク脈動(急加速/トルク抜け)、衝撃および振動を緩和できる。パラレル稼働およびシングル稼働間の切り替え時に特に効果的である。 Further, at the time of transition from the first mode to the second mode and at the time of transition from the second mode to the first mode, the driving torque of the first electric motor 44 and the second level downstream of the first transmission unit in the power transmission direction. The first rotor 46 and the second rotor 46 and the second rotor 46 are arranged such that the sum of the driving torque of the second electric motor 52 on the downstream side in the power transmission direction from the transmission unit becomes a total torque command value detected based on a signal from the accelerator 68. Each rotation speed of the rotor 54 is gradually increased or decreased. In this case, torque pulsation (rapid acceleration / torque loss), impact, and vibration can be mitigated at the time of transition from the first mode to the second mode and from the second mode to the first mode. This is particularly effective when switching between parallel operation and single operation.
 電動二輪車10には、より大きな駆動トルクが求められているので、電動システム30は、電動二輪車10に好適に用いられる。 Since the electric motorcycle 10 is required to have a larger driving torque, the electric system 30 is preferably used for the electric motorcycle 10.
 なお、図3のステップS1では、電池32が満充電状態か否かが判断されたが、これに限定されず、電池電圧が過電圧か否かが判断されてもよい。ここで、過電圧とは、これ以上電圧が高くなると異常(高電圧異常)が発生していると判断できる高電圧のことをいう。電池32の状態はBMS34によって監視されるが、第1制御部32は、BMS34から通信データが入力されなくとも、電圧センサ40からの検知信号に基づいて、電池電圧が過電圧か否かを判断できる。また、図3のステップS1において、電池32が低温状態か否かが判断されてもよく、さらに、電池32が高温状態か否かが判断されてもよい。 In step S1 in FIG. 3, it is determined whether or not the battery 32 is fully charged. However, the present invention is not limited to this, and it may be determined whether or not the battery voltage is an overvoltage. Here, the overvoltage refers to a high voltage at which it can be determined that an abnormality (high voltage abnormality) has occurred when the voltage is further increased. Although the state of the battery 32 is monitored by the BMS 34, the first control unit 32 can determine whether or not the battery voltage is an overvoltage based on the detection signal from the voltage sensor 40 even if communication data is not input from the BMS 34. . Moreover, in step S1 of FIG. 3, it may be determined whether or not the battery 32 is in a low temperature state, and further, it may be determined whether or not the battery 32 is in a high temperature state.
 ついで、図12に、この発明の他の実施形態の電動二輪車10aを示す。
 電動二輪車10aは車両本体12aを含み、車両本体12aには電動システム30aが搭載される。図13を参照して、電動システム30aは、電動二輪車10の電動システム30とは異なり、第2制御部38、交流線75b、直流線75cおよび通信線39を含まず、第1制御部36と第2電動モータ52とを結ぶ交流線75dを含む。したがって、第1制御部36が第2制御部38の機能をも果たし、第2電動モータ52を制御する。第1電動モータ44と第2電動モータ52とを電気的に接続する接続部は、第1制御部36、交流線75a,75dを含む。第1制御部36が制御装置に相当する。電動二輪車10aのその他の構成は、電動二輪車10と同様であるので、その重複する説明は省略する。
Next, FIG. 12 shows an electric motorcycle 10a according to another embodiment of the present invention.
The electric motorcycle 10a includes a vehicle main body 12a, and an electric system 30a is mounted on the vehicle main body 12a. Referring to FIG. 13, unlike the electric system 30 of the electric motorcycle 10, the electric system 30 a does not include the second control unit 38, the AC line 75 b, the DC line 75 c, and the communication line 39, and An AC line 75d that connects the second electric motor 52 is included. Therefore, the first control unit 36 also functions as the second control unit 38 and controls the second electric motor 52. The connection part that electrically connects the first electric motor 44 and the second electric motor 52 includes the first control part 36 and AC lines 75a and 75d. The first control unit 36 corresponds to a control device. Since the other structure of the electric motorcycle 10a is the same as that of the electric motorcycle 10, the overlapping description is omitted.
 電動二輪車10aは、電動二輪車10と同様の効果を奏する。
 つぎに、図14に、この発明の他の実施形態の電動二輪車10bを示す。
The electric motorcycle 10a has the same effects as the electric motorcycle 10.
Next, FIG. 14 shows an electric motorcycle 10b according to another embodiment of the present invention.
 電動二輪車10bは車両本体12bを含み、車両本体12bには電動システム30bが搭載される。図15を参照して、電動システム30bは、電動二輪車10の電動システム30の構成に加えて、たとえばMCUを含む第3制御部76、第3回転子78を有する第3駆動用電動モータ(以下、「第3電動モータ」という)80およびエンコーダ82を含む。第3電動モータ80の第3回転子78は、出力軸58に接続される。さらに、電動システム30bは、通信線39の代わりに通信線84,86を含む。第1制御部36および第3制御部76間は、通信線84によって通信可能に接続され、第2制御部38および第3制御部76間は、通信線86によって通信可能に接続されている。第3制御部76には、電池32からの電力がBMS34を介して与えられ、それによって第3制御部76は第3電動モータ80を制御する。したがって、第3電動モータ80は、第3制御部76を介して電池32によって駆動される。制御装置は、第1制御部36、第2制御部38および第3制御部76を含む。電動二輪車10bのその他の構成は、電動二輪車10と同様であるので、その重複する説明は省略する。 The electric motorcycle 10b includes a vehicle main body 12b, and an electric system 30b is mounted on the vehicle main body 12b. Referring to FIG. 15, in addition to the configuration of the electric system 30 of the electric motorcycle 10, the electric system 30 b includes, for example, a third drive electric motor (hereinafter referred to as a third control unit 76 including an MCU) and a third rotor 78. , “Third electric motor”) 80 and an encoder 82. The third rotor 78 of the third electric motor 80 is connected to the output shaft 58. In addition, electric system 30 b includes communication lines 84 and 86 instead of communication line 39. The first control unit 36 and the third control unit 76 are communicably connected by a communication line 84, and the second control unit 38 and the third control unit 76 are communicably connected by a communication line 86. The third control unit 76 is supplied with electric power from the battery 32 via the BMS 34, whereby the third control unit 76 controls the third electric motor 80. Accordingly, the third electric motor 80 is driven by the battery 32 via the third control unit 76. The control device includes a first control unit 36, a second control unit 38 and a third control unit 76. Since the other structure of the electric motorcycle 10b is the same as that of the electric motorcycle 10, the overlapping description is omitted.
 電動二輪車10bは、電動二輪車10と同様の効果を奏する。
 さらに、図16に、この発明の他の実施形態の電動二輪車10cを示す。
The electric motorcycle 10b has the same effect as the electric motorcycle 10.
FIG. 16 shows an electric motorcycle 10c according to another embodiment of the present invention.
 電動二輪車10cは車両本体12cを含み、車両本体12cには電動システム30cが搭載される。図17を参照して、電動システム30cは、電動二輪車10bの電動システム30bの構成に加えて、たとえばチェーンを含む減速機88、および第3出力軸89を含む。第3電動モータ80の第3回転子78は、出力軸58に接続されることなく、減速機88を介して第3出力軸89に連結される。第3出力軸89は、後輪28の車軸と第2出力軸62とを連結する。減速機88が第3伝動部に相当する。総トルク指令値は、第1出力軸50において発生すべきトルクと第2出力軸62において発生すべきトルクと第3出力軸89において発生すべきトルクとの合計に相当する。電動二輪車10cのその他の構成は、電動二輪車10bと同様であるので、説明は省略する。 The electric motorcycle 10c includes a vehicle main body 12c, and an electric system 30c is mounted on the vehicle main body 12c. 17, electric system 30c includes, for example, a speed reducer 88 including a chain, and a third output shaft 89 in addition to the configuration of electric system 30b of electric motorcycle 10b. The third rotor 78 of the third electric motor 80 is connected to the third output shaft 89 via the speed reducer 88 without being connected to the output shaft 58. The third output shaft 89 connects the axle of the rear wheel 28 and the second output shaft 62. The reduction gear 88 corresponds to the third transmission unit. The total torque command value corresponds to the sum of the torque to be generated on the first output shaft 50, the torque to be generated on the second output shaft 62, and the torque to be generated on the third output shaft 89. Since the other structure of the electric motorcycle 10c is the same as that of the electric motorcycle 10b, description thereof is omitted.
 電動二輪車10cは、電動二輪車10と同様の効果を奏する。
 つぎに、図18に、この発明の他の実施形態の電動システム30dを示す。
The electric motorcycle 10c has the same effect as the electric motorcycle 10.
Next, FIG. 18 shows an electric system 30d according to another embodiment of the present invention.
 電動システム30dは、電動二輪車10の電動システム30の出力軸58、減速機60および第2出力軸62を含まず、第1電動モータ44の第1回転子46に直結される第2出力軸90を含む。第2電動モータ52の第2回転子54は、ワンウェイクラッチ56および第2出力軸90を介して、第1電動モータ44の第1回転子46に接続され、第2出力軸90からのトルクは、第1電動モータ44の第1回転子46に与えられる。また、電動システム30dでは、第1回転子46と減速機48との間に、減速機92および出力軸94が設けられる。減速機48,92および出力軸94が、第1伝動部に相当する。ワンウェイクラッチ56が第2伝動部に相当する。総トルク指令値は、第1出力軸50において発生すべきトルクと第2出力軸90において発生すべきトルクとの合計に相当する。電動システム30dのその他の構成は、電動システム30と同様であるので、その重複する説明は省略する。 The electric system 30 d does not include the output shaft 58, the speed reducer 60, and the second output shaft 62 of the electric system 30 of the electric motorcycle 10, and the second output shaft 90 that is directly connected to the first rotor 46 of the first electric motor 44. including. The second rotor 54 of the second electric motor 52 is connected to the first rotor 46 of the first electric motor 44 via the one-way clutch 56 and the second output shaft 90, and the torque from the second output shaft 90 is To the first rotor 46 of the first electric motor 44. In the electric system 30d, a speed reducer 92 and an output shaft 94 are provided between the first rotor 46 and the speed reducer 48. The reduction gears 48 and 92 and the output shaft 94 correspond to the first transmission unit. The one-way clutch 56 corresponds to the second transmission unit. The total torque command value corresponds to the sum of the torque to be generated on the first output shaft 50 and the torque to be generated on the second output shaft 90. The other configuration of the electric system 30d is the same as that of the electric system 30, and thus redundant description thereof is omitted.
 電動システム30dを電動二輪車10に採用した場合も、電動システム30を採用した電動二輪車10と同様の効果を奏する。なお、電動システム30dでは、第1電動モータ44および第2電動モータ52の回転方向は互いに同方向に設定される。 When the electric system 30d is adopted in the electric motorcycle 10, the same effect as the electric motorcycle 10 adopting the electric system 30 can be obtained. In the electric system 30d, the rotation directions of the first electric motor 44 and the second electric motor 52 are set in the same direction.
 さらに、図19に、この発明の一実施形態の電動四輪車100を示す。
 電動四輪車100は、車両本体102を含む。車両本体102の前部は、一対の前輪104a,104bを回転自在に支持し、車両本体102の後部は、一対の後輪106a,106bを回転自在に支持する。
Furthermore, FIG. 19 shows an electric four-wheeled vehicle 100 according to an embodiment of the present invention.
The electric four-wheel vehicle 100 includes a vehicle main body 102. The front portion of the vehicle main body 102 rotatably supports the pair of front wheels 104a and 104b, and the rear portion of the vehicle main body 102 rotatably supports the pair of rear wheels 106a and 106b.
 このような車両本体102には電動システム108が搭載される。
 図20を参照して、電動システム108は、直流の駆動用電源としての電池110を含む。電池110は、電池110を管理するBMS112を有する。BMS112には、制御部114が接続されている。制御部114は、たとえばMCUを含む。制御部114は、電池電圧を検出する電圧センサ116、および電池電流を検出する電流センサ118を有する。
An electric system 108 is mounted on such a vehicle main body 102.
Referring to FIG. 20, electric system 108 includes a battery 110 as a DC driving power source. The battery 110 includes a BMS 112 that manages the battery 110. A control unit 114 is connected to the BMS 112. Control unit 114 includes, for example, an MCU. The control unit 114 includes a voltage sensor 116 that detects a battery voltage and a current sensor 118 that detects a battery current.
 制御部114には、一対の第1電動モータ120a,120bが接続されている。第1電動モータ120aの第1回転子122aは、第1伝動部124aを介して第1出力軸126aに接続されている。第1伝動部124aは、たとえばカップリングを含む。第1出力軸126aは、後輪106aの車軸に接続されている。第1電動モータ120aの近傍にはエンコーダ128aが配置され、制御部114は、エンコーダ128aからの検知信号に基づいて第1電動モータ120aの回転数および回転方向を算出する。同様に、第1電動モータ120bの第1回転子122bは、第1伝動部124bを介して第1出力軸126bに接続されている。第1伝動部124bは、たとえばカップリングを含む。第1出力軸126bは、後輪106bの車軸に接続されている。第1電動モータ120bの近傍にはエンコーダ128bが配置され、制御部114は、エンコーダ128bからの検知信号に基づいて第1電動モータ120bの回転数および回転方向を算出する。 The control unit 114 is connected to a pair of first electric motors 120a and 120b. The first rotor 122a of the first electric motor 120a is connected to the first output shaft 126a via the first transmission portion 124a. First transmission portion 124a includes, for example, a coupling. The first output shaft 126a is connected to the axle of the rear wheel 106a. An encoder 128a is disposed in the vicinity of the first electric motor 120a, and the control unit 114 calculates the rotation speed and rotation direction of the first electric motor 120a based on a detection signal from the encoder 128a. Similarly, the first rotor 122b of the first electric motor 120b is connected to the first output shaft 126b through the first transmission portion 124b. First transmission portion 124b includes, for example, a coupling. The first output shaft 126b is connected to the axle of the rear wheel 106b. An encoder 128b is disposed in the vicinity of the first electric motor 120b, and the control unit 114 calculates the rotation speed and rotation direction of the first electric motor 120b based on the detection signal from the encoder 128b.
 また、制御部114には、一対の第2電動モータ130a,130bが接続されている。第2電動モータ130aの第2回転子132aは、ワンウェイクラッチ134aを介して第2出力軸136aに接続されている。第2出力軸136aは、前輪104aの車軸に接続されている。第2電動モータ130aの近傍にはエンコーダ138aが配置され、制御部114は、エンコーダ138aからの検知信号に基づいて第2電動モータ130aの回転数および回転方向を算出する。同様に、第2電動モータ130bの第2回転子132bは、ワンウェイクラッチ134bを介して第2出力軸136bに接続されている。第2出力軸136bは、前輪104bの車軸に接続されている。第2電動モータ130bの近傍にはエンコーダ138bが配置され、制御部114は、エンコーダ138bからの検知信号に基づいて第2電動モータ130bの回転数および回転方向を算出する。 In addition, a pair of second electric motors 130a and 130b is connected to the control unit 114. The second rotor 132a of the second electric motor 130a is connected to the second output shaft 136a via the one-way clutch 134a. The second output shaft 136a is connected to the axle of the front wheel 104a. An encoder 138a is disposed in the vicinity of the second electric motor 130a, and the control unit 114 calculates the rotation speed and rotation direction of the second electric motor 130a based on a detection signal from the encoder 138a. Similarly, the second rotor 132b of the second electric motor 130b is connected to the second output shaft 136b via a one-way clutch 134b. The second output shaft 136b is connected to the axle of the front wheel 104b. An encoder 138b is disposed in the vicinity of the second electric motor 130b, and the control unit 114 calculates the rotation speed and rotation direction of the second electric motor 130b based on the detection signal from the encoder 138b.
 アクセル140から制御部114へはアクセル信号が与えられる。電池110と、DC-DCコンバータ144および補機類146とは、メインスイッチ142を介して接続されている。 An accelerator signal is given from the accelerator 140 to the control unit 114. The battery 110, the DC-DC converter 144, and the auxiliary machinery 146 are connected via a main switch 142.
 このような電動システム108では、メインスイッチ142がオンされると、制御部114が起動される。一方、メインスイッチ142がオフされると制御部114が停止され、電動四輪車100の電動システム108がシャットダウンされる。このように、メインスイッチ142のオン/オフによって、制御部114の起動/停止が指示される。アクセル140によって電動四輪車100の発進が指示され、アクセル140の操作量に応じたアクセル信号がアクセル140から制御部114に供給される。制御部114には、電池110からの電力がBMS112を介して与えられ、それによって制御部114は一対の第1電動モータ120a,120bおよび一対の第2電動モータ130a,130bを制御する。したがって、一対の第1電動モータ120a,120bおよび一対の第2電動モータ130a,130bは、制御部114を介して電池110によって駆動される。第1出力軸126aは、第1伝動部124aを介して第1電動モータ120aによって駆動され、第1出力軸126bは、第1伝動部124bを介して第1電動モータ120bによって駆動される。第2出力軸136aは、ワンウェイクラッチ134aを介して第2電動モータ130aによって駆動され、第2出力軸136bは、ワンウェイクラッチ134bを介して第2電動モータ130bによって駆動される。 In such an electric system 108, when the main switch 142 is turned on, the control unit 114 is activated. On the other hand, when the main switch 142 is turned off, the control unit 114 is stopped, and the electric system 108 of the electric four-wheeled vehicle 100 is shut down. As described above, activation / deactivation of the control unit 114 is instructed by turning on / off the main switch 142. The accelerator 140 instructs the start of the electric four-wheel vehicle 100, and an accelerator signal corresponding to the operation amount of the accelerator 140 is supplied from the accelerator 140 to the control unit 114. The control unit 114 is supplied with power from the battery 110 via the BMS 112, whereby the control unit 114 controls the pair of first electric motors 120a and 120b and the pair of second electric motors 130a and 130b. Accordingly, the pair of first electric motors 120 a and 120 b and the pair of second electric motors 130 a and 130 b are driven by the battery 110 via the control unit 114. The first output shaft 126a is driven by the first electric motor 120a via the first transmission portion 124a, and the first output shaft 126b is driven by the first electric motor 120b via the first transmission portion 124b. The second output shaft 136a is driven by the second electric motor 130a via the one-way clutch 134a, and the second output shaft 136b is driven by the second electric motor 130b via the one-way clutch 134b.
 この実施形態では、ワンウェイクラッチ134a,134bがそれぞれ、第2伝動部に相当する。ワンウェイクラッチ134aによって、第2出力軸136aからの駆動力が第2回転子132aに伝達されることなく、第2回転子132aからの駆動力が第2出力軸136aに伝達される。同様に、ワンウェイクラッチ134bによって、第2出力軸136bからの駆動力が第2回転子132bに伝達されることなく、第2回転子132bからの駆動力が第2出力軸136bに伝達される。第1電動モータ120aと第2電動モータ130aとを電気的に接続する接続部は、制御部114、制御部114と第1電動モータ120aとを結ぶ交流線148a、および制御部114と第2電動モータ130aとを結ぶ交流線148bを含む。同様に、第1電動モータ120bと第2電動モータ130bとを電気的に接続する接続部は、制御部114、制御部114と第1電動モータ120bとを結ぶ交流線150a、および制御部114と第2電動モータ130bとを結ぶ交流線150bを含む。制御部114が制御装置に相当する。総トルク指令値は、第1出力軸12a,126b,第2出力軸136a,136bにおいて発生すべきトルクの合計に相当する。 In this embodiment, the one- way clutches 134a and 134b each correspond to a second transmission unit. The one-way clutch 134a transmits the driving force from the second rotor 132a to the second output shaft 136a without transmitting the driving force from the second output shaft 136a to the second rotor 132a. Similarly, the driving force from the second rotor 132b is transmitted to the second output shaft 136b without the driving force from the second output shaft 136b being transmitted to the second rotor 132b by the one-way clutch 134b. The connection part for electrically connecting the first electric motor 120a and the second electric motor 130a includes a control part 114, an AC line 148a connecting the control part 114 and the first electric motor 120a, and the control part 114 and the second electric motor. AC line 148b connecting motor 130a is included. Similarly, the connection part that electrically connects the first electric motor 120b and the second electric motor 130b includes the control part 114, the AC line 150a that connects the control part 114 and the first electric motor 120b, and the control part 114. An AC line 150b connecting the second electric motor 130b is included. The control unit 114 corresponds to a control device. The total torque command value corresponds to the total torque to be generated in the first output shafts 12a and 126b and the second output shafts 136a and 136b.
 このような電動システム108を含む電動四輪車100は、電動システム30を含む電動二輪車10と同様の効果を奏する。 The electric four-wheeled vehicle 100 including the electric system 108 has the same effect as the electric two-wheeled vehicle 10 including the electric system 30.
 また、電動システム108では、第1伝動部124aは、第1回転子122aと第1出力軸126aとを直結し、第1伝動部124bは、第1回転子122bと第1出力軸126bとを直結することによって、構成が簡単になりかつエネルギ効率を高めることができる。 In the electric system 108, the first transmission portion 124a directly connects the first rotor 122a and the first output shaft 126a, and the first transmission portion 124b connects the first rotor 122b and the first output shaft 126b. By direct connection, the configuration is simplified and the energy efficiency can be increased.
 電動四輪車100では、電動システム108を左右に分け、第1電動モータ120aと第2電動モータ130aとを1セット、第1電動モータ120bと第2電動モータ130bとを1セットとする場合について説明したが、これに限定されない。第1電動モータ120aと第2電動モータ130bとを1セット、第1電動モータ120bと第2電動モータ130aとを1セットとして、クロスの位置にある電動モータが1セットとなるように構成されてもよい。また、3個の電動モータがそれぞれ出力軸に直結され、1個の電動モータがクラッチを介して出力軸に接続されてもよい。さらに、1個の電動モータが出力軸に直結され、3個の電動モータがそれぞれクラッチを介して出力軸に接続されてもよい。 In the electric four-wheeled vehicle 100, the electric system 108 is divided into right and left, the first electric motor 120a and the second electric motor 130a are set as one set, and the first electric motor 120b and the second electric motor 130b are set as one set. Although described, it is not limited to this. The first electric motor 120a and the second electric motor 130b are set as one set, the first electric motor 120b and the second electric motor 130a are set as one set, and the electric motor at the cross position is configured as one set. Also good. Alternatively, three electric motors may be directly connected to the output shaft, and one electric motor may be connected to the output shaft via a clutch. Further, one electric motor may be directly connected to the output shaft, and each of the three electric motors may be connected to the output shaft via a clutch.
 なお、上述の実施形態では、第1出力軸と第2出力軸とは別個の出力軸である場合について説明したが、これに限定されず、同一の出力軸であってもよい。この場合、同一の出力軸の駆動トルクを簡単かつ確実に高めることができる。たとえば、図1、図12および図14に示す実施形態では、第1出力軸50、第2出力軸62および後輪28の車軸が一本(同一)の出力軸として構成されてもよく、図16に示す実施形態では、第1出力軸50、第2出力軸62、第3出力軸89および後輪28の車軸が一本(同一)の出力軸として構成されてもよい。 In the above-described embodiment, the case where the first output shaft and the second output shaft are separate output shafts has been described. However, the present invention is not limited to this, and the same output shaft may be used. In this case, the driving torque of the same output shaft can be increased easily and reliably. For example, in the embodiment shown in FIGS. 1, 12, and 14, the first output shaft 50, the second output shaft 62, and the axles of the rear wheels 28 may be configured as one (same) output shaft. In the embodiment shown in FIG. 16, the first output shaft 50, the second output shaft 62, the third output shaft 89, and the axles of the rear wheels 28 may be configured as one (same) output shaft.
 第1態様と第2態様との切り替えは、手動スイッチなどの任意の切り替え手段によって行われてもよい。たとえばハンドル18に設けられた手動スイッチ152(図1参照)からの切り替え信号に基づいて、制御装置が第1態様と第2態様とを切り替えるようにしてもよい。この場合、手動スイッチ152によって、必要に応じて簡単に第1態様と第2態様とを切り替えることができる。 The switching between the first mode and the second mode may be performed by any switching means such as a manual switch. For example, the control device may switch between the first mode and the second mode based on a switching signal from a manual switch 152 (see FIG. 1) provided on the handle 18. In this case, the first mode and the second mode can be easily switched by the manual switch 152 as necessary.
 この発明は、第1態様および第2態様に加えて、他の態様を含んでもよい。
 上述の実施形態では、クラッチとしてワンウェイクラッチが用いられたが、これに限定されない。クラッチとして、遠心クラッチや電磁クラッチが用いられてもよい。クラッチを完全に切ることによってクラッチをオフする場合には、図7および図11に示す回生消費モードにおいて、第2電動モータ52は正転されてもよい。
The present invention may include other aspects in addition to the first aspect and the second aspect.
In the above-described embodiment, the one-way clutch is used as the clutch, but the present invention is not limited to this. A centrifugal clutch or an electromagnetic clutch may be used as the clutch. When the clutch is turned off by completely disengaging the clutch, the second electric motor 52 may be normally rotated in the regeneration consumption mode shown in FIGS. 7 and 11.
 第1伝動部から第3伝動部のうち少なくとも1つの伝動部がクラッチを含んでいればよい。好ましくは、第1伝動部から第3伝動部のうち少なくとも第2伝動部がクラッチを含む。 It is sufficient that at least one of the first transmission unit to the third transmission unit includes a clutch. Preferably, at least the second transmission portion of the first transmission portion to the third transmission portion includes a clutch.
 この発明の実施形態に係る電動二輪車に含まれる電動システムは、4個以上の電動モータを有していてもよい。この場合、電動システムが回生消費する電力量に応じて、1または2以上の電動モータにクラッチが設けられる。 The electric system included in the electric motorcycle according to the embodiment of the present invention may have four or more electric motors. In this case, a clutch is provided in one or two or more electric motors according to the amount of power regenerated and consumed by the electric system.
 電動モータは、アキシャルギャップ型モータでも、ラジアルギャップ型モータでもよい。 The electric motor may be an axial gap type motor or a radial gap type motor.
 上述の実施形態において、電圧センサ40および電流センサ42は、BMS34内に設けられてもよい。 In the above-described embodiment, the voltage sensor 40 and the current sensor 42 may be provided in the BMS 34.
 上述の実施形態に係る電動二輪車では、伝動部が減速機を含む場合について説明したが、これに限定されず、伝動部は減速機を必ずしも有していなくてもよい。 In the electric motorcycle according to the above-described embodiment, the case where the transmission unit includes a reduction gear has been described. However, the transmission unit is not necessarily limited to this, and the transmission unit may not necessarily include the reduction gear.
 また、減速機は、チェーンではなくベルトを有していてもよい。
 図3に示す動作例のステップS5では、パラレル稼働モードへ進むか否か、すなわち第1態様に設定するか第2態様に設定するかを判断するためのトルク指令値として、総トルク指令値が用いられたが、これに限定されない。たとえば、図16に示す実施形態では、第1出力軸50において発生すべきトルクと第2出力軸62において発生すべきトルクとの合計を示すトルク指令値(≦総トルク指令値)に基づいて、第1態様に設定するか第2態様に設定するかを判断してもよい。図19に示す実施形態では、一方の第1出力軸126aにおいて発生すべきトルクと一方の第2出力軸136aにおいて発生すべきトルクとの合計を示すトルク指令値(≦総トルク指令値)に基づいて、第1態様に設定するか第2態様に設定するかを判断してもよい。
Moreover, the reduction gear may have a belt instead of a chain.
In step S5 of the operation example shown in FIG. 3, the total torque command value is determined as a torque command value for determining whether to proceed to the parallel operation mode, that is, whether to set the first mode or the second mode. Although used, it is not limited to this. For example, in the embodiment shown in FIG. 16, based on a torque command value (≦ total torque command value) indicating the sum of the torque to be generated on the first output shaft 50 and the torque to be generated on the second output shaft 62, It may be determined whether to set the first mode or the second mode. In the embodiment shown in FIG. 19, based on a torque command value (≦ total torque command value) indicating the sum of torque to be generated on one first output shaft 126a and torque to be generated on one second output shaft 136a. Thus, it may be determined whether to set the first mode or the second mode.
 図4に示すパラレル稼働モード処理および図5に示すシングル稼働モード処理では、第1電動モータ44および第2電動モータ52のトルク指令値を徐々に増減して所望の値に設定したが、これに限定されない。第1電動モータ44および第2電動モータ52のトルク指令値を一気に所望の値に設定するようにしてもよい。 In the parallel operation mode process shown in FIG. 4 and the single operation mode process shown in FIG. 5, the torque command values of the first electric motor 44 and the second electric motor 52 are gradually increased or decreased and set to desired values. It is not limited. You may make it set the torque command value of the 1st electric motor 44 and the 2nd electric motor 52 to a desired value at a stretch.
 図15、図17および図18に示す電動システム30b,30cおよび30dにおいて、すべての電動モータが1つの制御部によって制御されてもよく、図20における電動システム108において、電動モータごとに制御部が設けられてもよい。 In electric systems 30b, 30c and 30d shown in FIGS. 15, 17 and 18, all the electric motors may be controlled by one control unit. In electric system 108 in FIG. 20, a control unit is provided for each electric motor. It may be provided.
 この発明に係る電動システムは、電動二輪車および電動四輪車だけではなく、船舶や航空機などの任意の輸送機器に搭載できる。 The electric system according to the present invention can be mounted not only on electric motorcycles and electric automobiles but also on any transportation equipment such as ships and airplanes.
 以上、この発明の好ましい実施形態について説明されたが、この発明の範囲および精神を逸脱しない限りにおいて種々の変更が可能であることは明らかである。この発明の範囲は、添付された請求の範囲のみによって限定される。 Although the preferred embodiments of the present invention have been described above, it is apparent that various modifications can be made without departing from the scope and spirit of the present invention. The scope of the invention is limited only by the appended claims.
 10,10a,10b,10c   電動二輪車
 30,30a,30b,30c,30d,108   電動システム
 32,110   電池
 36   第1制御部
 38   第2制御部
 40,116   電圧センサ
 42,118   電流センサ
 44,120a,120b   第1駆動用電動モータ
 46,122a,122b   第1回転子
 48,60,88,92   減速機
 50,126a,126b   第1出力軸
 52,130a,130b   第2駆動用電動モータ
 54,132a,132b   第2回転子
 56,134a,134b   ワンウェイクラッチ
 58,94   出力軸
 62,90,136a,136b   第2出力軸
 64,66,82,128a,128b,138a,138b   エンコーダ
 68,140   アクセル
 75a,75b,75d,148a,148b,150a,150b   交流線
 75c   直流線
 76   第3制御部
 78   第3回転子
 80   第3駆動用電動モータ
 100   電動四輪車
 114   制御部
 124a,124b   第1伝動部
 152   手動スイッチ
10, 10a, 10b, 10c Electric motorcycle 30, 30a, 30b, 30c, 30d, 108 Electric system 32, 110 Battery 36 First controller 38 Second controller 40, 116 Voltage sensor 42, 118 Current sensor 44, 120a, 120b First drive electric motor 46, 122a, 122b First rotor 48, 60, 88, 92 Reducer 50, 126a, 126b First output shaft 52, 130a, 130b Second drive electric motor 54, 132a, 132b Second rotor 56, 134a, 134b One-way clutch 58, 94 Output shaft 62, 90, 136a, 136b Second output shaft 64, 66, 82, 128a, 128b, 138a, 138b Encoder 68, 140 Accelerator 75a, 75b, 75d , 148a, 48b, 150a, 150b AC line 75c DC line 76 the third control unit 78 the third rotor 80 and third drive electric motor 100 electric automobile 114 control unit 124a, 124b first transmission portion 152 manual switch

Claims (11)

  1.  駆動用電源と、
     前記駆動用電源によって駆動されかつ第1回転子を含む第1駆動用電動モータと、
     前記駆動用電源によって駆動されかつ第2回転子を含む第2駆動用電動モータと、
     前記第1駆動用電動モータによって駆動される第1出力軸と、
     前記第2駆動用電動モータによって駆動される第2出力軸と、
     前記第1回転子と前記第1出力軸との間に設けられる第1伝動部と、
     前記第2回転子と前記第2出力軸との間に設けられる第2伝動部と、
     前記第1回転子および前記第2回転子の回転速度に関する態様であって、
     第1態様では、前記第1回転子および前記第2回転子がともに回転し、
     第2態様では、少なくとも前記第1回転子が回転し、
     前記第1回転子の回転速度をAとし、前記第2回転子の回転速度をBとすると、前記第2態様でのB/Aの値は、前記第1態様でのB/Aの値より小さい、少なくとも2つの態様を有する、電動システム。
    A power supply for driving;
    A first driving electric motor driven by the driving power source and including a first rotor;
    A second driving electric motor driven by the driving power source and including a second rotor;
    A first output shaft driven by the first driving electric motor;
    A second output shaft driven by the second driving electric motor;
    A first transmission portion provided between the first rotor and the first output shaft;
    A second transmission portion provided between the second rotor and the second output shaft;
    It is the aspect regarding the rotational speed of the said 1st rotor and the said 2nd rotor,
    In the first aspect, the first rotor and the second rotor rotate together,
    In the second aspect, at least the first rotor rotates,
    Assuming that the rotation speed of the first rotor is A and the rotation speed of the second rotor is B, the value of B / A in the second mode is greater than the value of B / A in the first mode. A motorized system having at least two aspects that are small.
  2.  前記第1回転子の回転速度が同じ条件下においては、前記第2態様での前記第2回転子の回転速度は、前記第1態様での前記第2回転子の回転速度よりも小さい、請求項1に記載の電動システム。 The rotation speed of the second rotor in the second aspect is lower than the rotation speed of the second rotor in the first aspect under the same rotation speed of the first rotor. Item 4. The electric system according to Item 1.
  3.  前記第2態様では、前記第1回転子は回転するが、前記第2回転子は回転しない、請求項1または2に記載の電動システム。 The electric system according to claim 1 or 2, wherein in the second aspect, the first rotor rotates but the second rotor does not rotate.
  4.  前記第2伝動部は、前記第2回転子と前記第2出力軸との間に設けられるクラッチを含む、請求項1から3のいずれかに記載の電動システム。 The electric system according to any one of claims 1 to 3, wherein the second transmission unit includes a clutch provided between the second rotor and the second output shaft.
  5.  前記第1伝動部は、前記第1回転子と前記第1出力軸とを直結する、請求項1から4のいずれかに記載の電動システム。 The electric system according to any one of claims 1 to 4, wherein the first transmission unit directly connects the first rotor and the first output shaft.
  6.  前記第1出力軸と前記第2出力軸とは同一の出力軸である、請求項1から5のいずれかに記載の電動システム。 The electric system according to any one of claims 1 to 5, wherein the first output shaft and the second output shaft are the same output shaft.
  7.  当該電動システムにおいて発生すべき駆動トルクを示すトルク指令値を検出する指令値検出部と、
     前記指令値検出部による検出結果に基づいて前記第1態様および前記第2態様のいずれか一方に設定する制御装置とをさらに備える、請求項1から6のいずれかに記載の電動システム。
    A command value detector for detecting a torque command value indicating a drive torque to be generated in the electric system;
    The electric system according to any one of claims 1 to 6, further comprising a control device configured to set to one of the first mode and the second mode based on a detection result by the command value detection unit.
  8.  前記第1態様と前記第2態様とを切り替えるための手動スイッチをさらに備える、請求項1から6のいずれかに記載の電動システム。 The electric system according to any one of claims 1 to 6, further comprising a manual switch for switching between the first mode and the second mode.
  9. 前記第1態様から前記第2態様への遷移時および前記第2態様から前記第1態様への遷移時の少なくともいずれか一方では、前記第1回転子および前記第2回転子のそれぞれの回転数を徐々に増減してそれぞれの所定値に設定する、請求項7に記載の電動システム。 At least one of the first mode and the second mode at the time of transition from the first mode to the second mode and at the time of the transition from the second mode to the first mode, respectively. The electric system according to claim 7, which is gradually increased or decreased and set to a predetermined value.
  10.  前記第1回転子および前記第2回転子のそれぞれの回転数は、前記第1伝動部より動力伝達方向の下流側における前記第1駆動用電動モータの駆動トルクと前記第2伝動部より動力伝達方向の下流側における前記第2駆動用電動モータの駆動トルクとの合計が前記指令値検出部により検出されたトルク指令値となるように徐々に増減される、請求項9に記載の電動システム。 The rotational speed of each of the first rotor and the second rotor is such that the driving torque of the first driving electric motor and the power transmission from the second transmission section are downstream from the first transmission section in the power transmission direction. 10. The electric system according to claim 9, wherein the electric system according to claim 9 is gradually increased or decreased so that a sum of the driving torque of the second driving electric motor on the downstream side in the direction becomes a torque command value detected by the command value detection unit.
  11.  請求項1から10のいずれかに記載の電動システムを備える、輸送機器。 Transportation equipment comprising the electric system according to any one of claims 1 to 10.
PCT/JP2014/059888 2014-04-03 2014-04-03 Electric system and transport device provided therewith WO2015151265A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/059888 WO2015151265A1 (en) 2014-04-03 2014-04-03 Electric system and transport device provided therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/059888 WO2015151265A1 (en) 2014-04-03 2014-04-03 Electric system and transport device provided therewith

Publications (1)

Publication Number Publication Date
WO2015151265A1 true WO2015151265A1 (en) 2015-10-08

Family

ID=54239626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059888 WO2015151265A1 (en) 2014-04-03 2014-04-03 Electric system and transport device provided therewith

Country Status (1)

Country Link
WO (1) WO2015151265A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4153438A4 (en) * 2020-05-21 2023-11-15 Soriano Motori Corp Duo-flex compact electrical platform for motorcycles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06153325A (en) * 1992-10-28 1994-05-31 Nissan Motor Co Ltd Power controller for electric automobile
JP2008247169A (en) * 2007-03-30 2008-10-16 Nissan Motor Co Ltd Drive unit for vehicle
JP2013017326A (en) * 2011-07-05 2013-01-24 Isuzu Motors Ltd Driving apparatus of electric vehicle, electric vehicle, and driving method of electric vehicle
JP2013158088A (en) * 2012-01-27 2013-08-15 Toyota Motor Corp Vehicle driving apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06153325A (en) * 1992-10-28 1994-05-31 Nissan Motor Co Ltd Power controller for electric automobile
JP2008247169A (en) * 2007-03-30 2008-10-16 Nissan Motor Co Ltd Drive unit for vehicle
JP2013017326A (en) * 2011-07-05 2013-01-24 Isuzu Motors Ltd Driving apparatus of electric vehicle, electric vehicle, and driving method of electric vehicle
JP2013158088A (en) * 2012-01-27 2013-08-15 Toyota Motor Corp Vehicle driving apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4153438A4 (en) * 2020-05-21 2023-11-15 Soriano Motori Corp Duo-flex compact electrical platform for motorcycles

Similar Documents

Publication Publication Date Title
US9975425B2 (en) Electric off-road wheeled vehicle
EP1018451B1 (en) Hybrid vehicle and method of controlling the travel of the vehicle
JP4376589B2 (en) Four-wheel drive vehicle
JP2009196545A (en) Vehicle of hybrid drive system
KR20110137312A (en) A device for torque vectoring
JP2010242967A (en) Method for interrupting force flow out of vehicular drive train during collision
JP6192811B2 (en) Electric system and transport equipment including the same
CN105121199A (en) System and method for controlling a motor vehicle with independent rear electric machines
JP2006014451A (en) Drive controller for vehicle
JP2012186962A (en) Device and method for controlling vehicle holding
JP2006327335A (en) Torque distribution controller for vehicle
JP4453653B2 (en) Torque distribution control device for hybrid vehicle
WO2015151265A1 (en) Electric system and transport device provided therewith
JP5531730B2 (en) Vehicle control device
JP2010241166A (en) Four-wheel drive controller and four-wheel drive control method for vehicle
JP2011131853A (en) Vehicle, and method for determining state of electric storage device provided on the vehicle
JP2011088492A (en) Traction control device for hybrid vehicle
JP2008278652A (en) Driving force controller
JP2009044859A (en) Vehicle behavior control device
WO2023127107A1 (en) Saddled vehicle
WO2023127088A1 (en) Saddled vehicle
WO2024062849A1 (en) Driving device for low-speed electric vehicle
JP2024044640A (en) Drive system for low-speed electric vehicles
JP3179137U (en) vehicle
JP2014163222A (en) Drive system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14888354

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14888354

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP