WO2015151244A1 - Squirrel-cage rotor - Google Patents

Squirrel-cage rotor Download PDF

Info

Publication number
WO2015151244A1
WO2015151244A1 PCT/JP2014/059741 JP2014059741W WO2015151244A1 WO 2015151244 A1 WO2015151244 A1 WO 2015151244A1 JP 2014059741 W JP2014059741 W JP 2014059741W WO 2015151244 A1 WO2015151244 A1 WO 2015151244A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
core
cage rotor
particles
end ring
Prior art date
Application number
PCT/JP2014/059741
Other languages
French (fr)
Japanese (ja)
Inventor
佳樹 岡田
由晴 ▲高▼島
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2014538560A priority Critical patent/JP5745703B1/en
Priority to PCT/JP2014/059741 priority patent/WO2015151244A1/en
Publication of WO2015151244A1 publication Critical patent/WO2015151244A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/0012Manufacturing cage rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/16Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors
    • H02K17/168Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors having single-cage rotors

Definitions

  • the present invention relates to a cage rotor.
  • Patent Documents 1 to 3 solid-state metal material powder is sprayed to improve the strength reliability of the conductor bar, to form a conductor end ring, or to form a conductor coating material for the purpose of reinforcing the conductor end ring.
  • An induction motor using a so-called “cold spray method” is disclosed.
  • JP 2012-19634 A Japanese Patent No. 5155423 Japanese Patent No. 5326012
  • the present invention has been made in view of the above, and is a squirrel-cage rotation capable of achieving both improvement in conductivity and strength of a secondary conductor while suppressing adhesion of a coating material to a core and an increase in cost.
  • the purpose is to get a child.
  • the present invention provides a squirrel-cage rotor for use in an induction motor, a core stacked in a cylindrical shape, and a slot formed in a radial position of the core.
  • a conductor bar formed in the slot, a conductor end ring disposed on both axial end surfaces of the core and connected to the conductor bar, and a conductor end with a shaft or sleeve fitted into the inner peripheral portion of the core
  • Solid conductor particles are sprayed from the outer circumferential direction or the end face direction of the ring, and are provided with a conductor end ring and an annular coating material integrated with the shaft or sleeve.
  • the squirrel-cage rotor according to the present invention has an effect that it is possible to improve both the conductivity and the strength of the secondary conductor while suppressing the adhesion of the coating material to the core and the increase in cost.
  • FIG. 1 is a cross-sectional view of the squirrel-cage rotor according to the first embodiment of the present invention along the rotation center axis.
  • FIG. 2 is a cross-sectional view of a squirrel-cage rotor taken along line AA shown in FIG.
  • FIG. 3 is a cross-sectional view schematically showing a manufacturing process of the cage rotor.
  • FIG. 4 is a cross-sectional view schematically illustrating a manufacturing process of the cage rotor according to the first modification of the first embodiment.
  • FIG. 5 is a cross-sectional view schematically showing a manufacturing process of the cage rotor according to the second modification of the first embodiment.
  • FIG. 1 is a cross-sectional view of the squirrel-cage rotor according to the first embodiment of the present invention along the rotation center axis.
  • FIG. 2 is a cross-sectional view of a squirrel-cage rotor taken along line AA shown in FIG.
  • FIG. 3 is a cross-sectional view schematic
  • FIG. 6 is a cross-sectional view schematically illustrating a manufacturing process of the cage rotor according to the third modification of the first embodiment.
  • FIG. 7 is a cross-sectional view schematically showing a manufacturing process of the cage rotor according to the fourth modification of the first embodiment.
  • FIG. 8 is a cross-sectional view schematically showing a manufacturing process of the cage rotor according to the second embodiment of the present invention.
  • FIG. 9 is a cross-sectional view schematically showing a manufacturing process of the cage rotor according to the first modification of the second embodiment.
  • FIG. 10 is a cross-sectional view schematically showing a manufacturing process of the cage rotor according to the second modification of the second embodiment.
  • FIG. 11 is a cross-sectional view schematically showing a manufacturing process of the cage rotor according to the third modification of the second embodiment.
  • FIG. 12 is a cross-sectional view schematically illustrating a manufacturing process of the cage rotor according to the fourth modification of the second embodiment.
  • FIG. 1 is a cross-sectional view of the squirrel-cage rotor 3 according to the first embodiment of the present invention along the rotation center axis 1.
  • FIG. 2 is a cross-sectional view of the cage rotor 3 taken along the line AA shown in FIG.
  • the squirrel-cage rotor 3 is attached to, for example, a cylindrical cored bar 2.
  • the squirrel-cage rotor 3 includes a cylindrical core 7, a pair of annular conductor end rings 31 a and 31 b that are disposed at both ends and sandwich the core 7, and a conductor bar 4 that fills a slot 6 that penetrates the core 7. Consists of.
  • the core 7 is formed of a laminate in which a required number of annular thin plates punched from electromagnetic steel plates, which are thin steel plates, are laminated in the direction of the rotation center axis 1.
  • a core through-hole 5 that is penetrated along the rotation center axis 1 is formed.
  • the cored bar 2 is inserted into the core through hole 5.
  • a plurality of slots 6 are formed at positions that are equally spaced in the circumferential direction around the rotation center axis 1.
  • the slot 6 is positioned parallel to the rotation center axis 1 with a specified angle skewed.
  • the slot 6 penetrates the core 7 in a direction along the rotation center axis 1.
  • a conductor bar 4 is formed in the slot 6.
  • a pair of conductor end rings 31 a and 31 b are arranged at the end of the conductor bar 4.
  • the conductor bar 4 and the pair of conductor end rings 31a and 31b are formed by die casting using a conductor material such as aluminum, aluminum alloy, copper, or copper alloy.
  • a conductor material such as aluminum, aluminum alloy, copper, or copper alloy.
  • an end ring through hole 8 is formed with the rotation center axis 1 as the center.
  • FIG. 3 is a cross-sectional view schematically showing a manufacturing process of the cage rotor 3. The manufacturing process is performed in a state in which the shaft 10 is press-fitted into the core through hole 5 and the end ring through hole 8 with respect to the squirrel-cage rotor 3 and is coupled by shrinking or the like.
  • the annular coating materials 21a and 21b are formed on both end faces of the core 7 by a cold spray method.
  • a Laval nozzle 41 shown in FIG. 3 is used.
  • the Laval nozzle 41 is formed with a flow path that widens toward the outlet at the tip.
  • a supersonic flow gas 42 is introduced into the flow path toward the tip.
  • the flow rate of the gas 42 is set to 500 to 700 m / s, for example.
  • Conductor particles 43 are introduced into the gas 42 flowing through the flow path.
  • the gas 42 is set to a temperature lower than the melting point or softening temperature of the conductor particles 43.
  • the conductive particles 43 are more rigid than conductive materials such as copper and copper alloys, which have a lower specific resistance than the conductive end rings 31a and 31b, or aluminum (pure aluminum) defined by the JIS (Japan Industrial Standards) A1000 series. High-rigidity materials such as high iron and iron alloys are used.
  • the particle diameter of the conductor particles 43 is set to 5 to 50 ⁇ m, for example.
  • the temperature of the gas 42 is set to, for example, room temperature to about 500 ° C.
  • the Laval nozzle 41 is arranged so as to blow out the conductor particles 43 along the rotation center axis 1.
  • the tip of the Laval nozzle 41 is opposed to the upper end surface of the core 7.
  • the tip of the Laval nozzle 41 changes the posture from a position perpendicular to the core end surface to a horizontal position and blows out the conductor particles 43.
  • Supersonic flow conductor particles 43 are blown out from the tip of the Laval nozzle 41.
  • the blown conductor particles 43 are sprayed onto the conductor end ring 31a and the shaft 10. Since the temperature of the gas 42 is set to a temperature lower than the melting point of the conductor particles 43, the conductor particles 43 collide with the conductor end rings 31a and 31b in a solid state.
  • the annular coating material 21 a is formed on the surfaces of the conductor end ring 31 a and the shaft 10. Further, the cage-shaped rotor 3 is rotated 180 ° in the direction perpendicular to the rotation center axis 1 and the conductor particles 43 are sprayed on the conductor end ring 31b side, whereby the surface of the conductor end ring 31b and the shaft 10 is coated with the annular coating material 21b. Is formed.
  • the thickness of the annular coating materials 21a and 21b is not particularly specified, it is set within a range of several mm to several tens mm in order to maintain sufficient coating material strength and inter-member bonding.
  • the annular coating materials 21 a and 21 b are joined to the conductor end rings 31 a and 31 b and the shaft 10. By the joining, deformation of the conductor end rings 31a and 31b due to centrifugal force during high-speed rotation is suppressed.
  • the conductor particles 43 are introduced into the gas 42 having a temperature lower than the melting point thereof, so that the conductor end rings 31a and 31b and the shaft 10 are in a solid state. Is sprayed on. Thereby, the enlargement of the crystal grain of the conductor which forms cyclic
  • the conductor does not melt in the process of forming the annular coating materials 21a and 21b, there is no thermal contraction that occurs when the conductor is melted, and the gap formed between the different members can be suppressed.
  • the shaft 10 is coupled to the core through hole 5 in advance, it is possible to prevent the conductor particles 43 from adhering to the inner peripheral surface of the core 7. Thereby, the process of removing the conductor particles 43 and the process of attaching / detaching the cored bar provided to suppress the adhesion of the conductor particles 43 to the core through hole 5 can be omitted, and the manufacturing cost can be suppressed. .
  • FIG. 4 is a cross-sectional view schematically showing a manufacturing process of the cage rotor 3 according to the first modification of the first embodiment.
  • Modification 1 an example is shown in which a sleeve 11 used for connection to a spindle or the like is coupled to a cage rotor 3 by press-fitting or shrinking into a core through hole 5 and an end ring through hole 8.
  • the conductor particles 43 are sprayed in the same process as in the above-described example.
  • the annular coating materials 21a and 21b, the conductor end rings 31a and 31b, and the sleeve 11 can be more reliably joined to improve the reliability.
  • FIG. 5 is a cross-sectional view schematically showing a manufacturing process of the cage rotor 3 according to the second modification of the first embodiment.
  • the conductor particles 43 are sprayed in a state where the pair of reinforcing members 12a and 12b are arranged on the inner peripheral side of the conductor end rings 31a and 31b (inside the end ring through hole 8).
  • Reinforcing member through holes 13 having the same diameter as the core through holes 5 are formed in the reinforcing members 12a and 12b.
  • the reinforcing members 12a and 12b are arranged so that the reinforcing member through hole 13 and the core through hole 5 communicate with each other.
  • the reinforcing members 12a and 12b are preferably non-magnetic materials in order to suppress a decrease in the output of the induction motor due to leakage magnetic flux. Further, the reinforcing members 12a and 12b are disposed on the inner peripheral side of the conductor end rings 31a and 31b, either in the form of shrinkage with the inner peripheral side of the conductor end rings 31a and 31b, or in the form of being cast during aluminum or copper die casting. It is desirable to do.
  • the shape of the reinforcing members 12a and 12b in this modification 2 is an example, and is not limited to the shape.
  • the annular coating materials 21 a and 31 b are formed on the surfaces of the conductor end rings 31 a and 31 b and the reinforcing members 12 a and 12 b. 21b is formed.
  • the annular coating materials 21a and 21b are joined to the conductor end rings 31a and 31b and the reinforcing members 12a and 12b. Thereafter, the reinforcing members 12a and 12b are coupled to the shaft, the sleeve, and the like using the reinforcing member through holes 13, so that the conductor end rings 31a and 31b are prevented from being deformed by the centrifugal force during high-speed rotation. Moreover, the end surface of the conductor end rings 31a and 31b on the direction side along the rotation center axis 1 is exposed from the annular coating materials 21a and 21b, so that the region where the conductor particles 43 are sprayed is formed on the conductor end rings 31a and 31b. It can be limited to the outer peripheral side.
  • the region where the conductor particles 43 are sprayed can be separated from the core through hole 5 of the core 7. Therefore, it is possible to suppress the conductor particles from adhering to the inner peripheral surface of the core through hole 5. Thereby, the process of removing the conductor particles 43 and the process of attaching / detaching the cored bar provided to suppress the adhesion of the conductor particles 43 to the core through hole 5 can be omitted, and the manufacturing cost can be suppressed. .
  • FIG. 6 is a cross-sectional view schematically showing a manufacturing process of the cage rotor 3 according to the third modification of the first embodiment.
  • the conductor particles 43 are sprayed in a state where the pair of reinforcing members 12a and 12b are arranged on the inner peripheral side of the conductor end rings 31a and 31b.
  • Reinforcing member through holes 13 having the same diameter as the core through holes 5 are formed in the reinforcing members 12a and 12b.
  • the reinforcing members 12a and 12b are arranged so that the reinforcing member through hole 13 and the core through hole 5 communicate with each other.
  • the conductor particles 43 are sprayed in a state where the shaft 10 is fitted in the core through hole 5 and the reinforcing member through hole 13.
  • the conductor end rings 31a and 31b, the reinforcing members 12a and 12b, and the shaft 10 are joined to each other, so that the conductor end rings 31a and 31b are subjected to centrifugal force during high-speed rotation. Deformation is suppressed.
  • the conductor particles 43 do not adhere to the inner peripheral surface of the core through hole 5 even if the conductor particles 43 are sprayed around the core through hole 5. Therefore, the conductor particles 43 are sprayed to the periphery of the core through hole 5 to form the annular coating materials 21a and 21b so as to cover the end faces on the direction side along the rotation center axis 1 of the reinforcing members 12a and 12b. it can. As a result, the reinforcing effect of the annular coating materials 21a and 21b can be more reliably exhibited.
  • FIG. 7 is a cross-sectional view schematically showing a manufacturing process of the cage rotor 3 according to the fourth modification of the first embodiment.
  • the conductor particles 43 are sprayed in a state where the sleeve 11 is fitted in the core through hole 5. Similar to the third modification, when the annular coating materials 21a and 21b are formed, the conductor end rings 31a and 31b, the reinforcing members 12a and 12b, and the sleeve 11 are joined to each other, so that the conductor end rings 31a and 31b are joined together. The deformation with respect to the centrifugal force during high-speed rotation is suppressed.
  • the conductor particles 43 do not adhere to the inner peripheral surface of the core through hole 5 even if the conductor particles 43 are sprayed around the core through hole 5. Therefore, the conductor particles 43 are sprayed to the periphery of the core through hole 5 to form the annular coating materials 21a and 21b so as to cover the end faces on the direction side along the rotation center axis 1 of the reinforcing members 12a and 12b. it can. As a result, the reinforcing effect of the annular coating materials 21a and 21b can be more reliably exhibited.
  • FIG. FIG. 8 is a cross-sectional view schematically showing the manufacturing process of the cage rotor 3 according to the second embodiment of the present invention.
  • symbol is attached
  • a conductor bar 14 cast and extruded with aluminum, copper, or the like, or a conductor bar 14 manufactured by cutting is disposed in the slot 6 penetrating the core 7.
  • the conductor bar 14 protrudes from the end surface of the core 7.
  • a pair of annular conductor end rings 32a and 32b are provided in which holes are provided radially so as to expose the end of the conductor bar 14.
  • the conductor bar 14, the conductor end rings 32a and 32b, and the shaft 10 are joined to each other by using the annular coating materials 22a and 22b, so that the conductor end rings 32a and 32b are subjected to a centrifugal force during high-speed rotation. Deformation is suppressed.
  • the conductor bar 14 has a structure that is convex with respect to the conductor end rings 32a and 32b, but the conductor bar 14 only needs to have a structure that can be exposed on either side.
  • FIG. 9 is a cross-sectional view schematically showing a manufacturing process of the cage rotor 3 according to the first modification of the second embodiment.
  • the conductor particles 43 are sprayed in a state where the sleeve 11 is fitted in place of the shaft 10 to form the annular coating materials 22a and 22b.
  • FIG. 10 is a cross-sectional view schematically showing a manufacturing process of the cage rotor 3 according to the second modification of the second embodiment.
  • the conductor particles 43 are sprayed in a state where the reinforcing members 12a and 12b are fitted inside the conductor end rings 32a and 32b, thereby forming the annular coating materials 22a and 22b.
  • the region to which the conductor particles 43 are sprayed is the outer peripheral side of the conductor end rings 32a and 32b, and the end surfaces along the rotation center axis 1 of the reinforcing members 12a and 12b are exposed.
  • FIG. 11 is a cross-sectional view schematically showing a manufacturing process of the cage rotor 3 according to the third modification of the second embodiment.
  • the conductor particles 43 are sprayed in a state where the shaft 10 is fitted in the core through hole 5 of the core 7 to form the annular coating materials 22a and 22b.
  • FIG. 12 is a cross-sectional view schematically showing a manufacturing process of the cage rotor 3 according to the fourth modification of the second embodiment.
  • the conductor particles 43 are sprayed in a state in which the sleeve 11 is fitted in the core through hole 5 of the core 7 to form the annular coating materials 22a and 22b.
  • the adhesion of the conductor particles 43 to the inner peripheral surface of the core through hole 5 is suppressed, thereby reducing the manufacturing cost. Can be achieved. Further, the joining of the conductor end rings 32a and 32b, the conductor bar 14, the shaft 10, the sleeve 11, and the reinforcing members 12a and 12b can be further strengthened by the annular coating materials 22a and 22b. Thereby, deformation
  • a material having a small specific resistance (for example, a material having a specific resistance smaller than that of the conductor end ring) is used for the conductive particles 43 used for forming the annular coating materials 21a, 21b, 22a, and 22b.
  • the material of the conductor particles 43 copper or a copper alloy such as pure copper, chromium copper, Corson alloy, beryllium copper, or alumina dispersion strengthened copper is used, so that the conductor end rings 31a, 31b, 32a, and 32b as a whole are used.
  • the electric resistance can be reduced, and the efficiency of the induction motor can be improved.
  • the conductive particles 43 used for forming the annular coating materials 21a, 21b, 22a, and 22b are, for example, highly rigid materials having higher rigidity than aluminum (pure aluminum) defined in the A1000 series of JIS (Japan Industrial Standards).
  • an iron alloy such as iron, stainless steel, chrome molybdenum steel, or the like is used, so that deformation caused by the centrifugal force at the time of high-speed rotation of the conductor end rings 31a, 31b, 32a, and 32b.
  • the induction motor can be rotated at a high speed.
  • the conductor particles 43 are preferably a nonmagnetic iron alloy.
  • the magnetic path to the core 7 is blocked, so it is possible to use magnetic iron or iron alloy.
  • the cage rotor according to the present invention is useful for a cage rotor used in a rotating electrical machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Induction Machinery (AREA)

Abstract

A squirrel-cage rotor (3) used in an induction motor comprises: a core (7) laminated to a cylindrical shape; slots (6) formed within a radial position of the core (7); conductor bars (4) formed in the slots (6); conductor end rings (31a, 31b) disposed on both axial end surfaces of the core (7) and connected to the conductor bars (4); and ring-shaped coated materials (21a, 21b) formed by spraying conductive particles (43) in a solid phase state from an outer peripheral direction or an end surface direction of the conductor end rings (31a, 31b) with a shaft (10) or a sleeve fitted in an inner circumferential portion of the core (7), so that the coated materials are integrated with the conductor end rings (31a, 31b) and the shaft (10) or the sleeve.

Description

かご形回転子Cage rotor
 本発明は、かご形回転子に関する。 The present invention relates to a cage rotor.
 誘導電動機に用いられるかご形回転子の二次導体形成には、コスト、および製造方法の容易性からアルミダイカストを使用することが多く、工作機械用の誘導電動機でも数多く適用されている。しかしながら、近年では、資源枯渇による省エネルギー化の要望や、機械加工タクトの削減・難切削材加工への対応など、工作機械用の誘導電動機に対する高効率・高速回転化のニーズが非常に高くなっている。 In forming a secondary conductor of a squirrel-cage rotor used for an induction motor, aluminum die casting is often used because of cost and ease of manufacturing, and many are applied to induction motors for machine tools. However, in recent years, the need for high efficiency and high-speed rotation of induction motors for machine tools has become very high, such as demand for energy saving due to resource depletion, reduction of machining tact and handling of difficult-to-cut materials. Yes.
 これらのニーズに対応するためには、回転子の二次導体の導電率向上と、回転子の高速回転によって発生する遠心力に耐えうる二次導体の強度の向上を両立させる必要がある。これらのニーズへの対応として、例えば、二次導体の合金アルミ化、銅の適用、導体エンドリングへの補強部材の追加がある。 In order to meet these needs, it is necessary to improve both the conductivity of the secondary conductor of the rotor and the strength of the secondary conductor that can withstand the centrifugal force generated by the high-speed rotation of the rotor. As a response to these needs, for example, alloying the secondary conductor with aluminum, applying copper, and adding a reinforcing member to the conductor end ring are available.
 しかしながら、合金アルミ化の場合、高速運転への強度確保はできるが、合金アルミの導電率が低いため誘導電動機の効率が低下する。一方、銅の適用の場合では、導電率向上による効率改善はできるが、製造方法にろう付けを使用するため、強度信頼性の確保が難しい。他方、導体エンドリングへの補強部材の追加は、補強部材が別途の構成部品となることや、高い比強度を持つ難加工金属(ステンレス合金、チタン等)を用いた場合の高コスト化が問題となりやすい。 However, in the case of alloyed aluminum, the strength for high-speed operation can be ensured, but the efficiency of the induction motor decreases because the conductivity of the alloyed aluminum is low. On the other hand, in the case of application of copper, efficiency can be improved by improving conductivity, but brazing is used in the manufacturing method, so it is difficult to ensure strength reliability. On the other hand, the addition of a reinforcing member to the conductor end ring is problematic because the reinforcing member becomes a separate component and the cost increases when difficult-to-process metals (stainless alloy, titanium, etc.) with high specific strength are used. It is easy to become.
 例えば特許文献1から3には、導体バーの強度信頼性の向上、導体エンドリングの形成、または導体エンドリングの補強を目的とする導体被膜材の形成に、固相状態の金属材料粉末を吹き付ける、いわゆる「コールドスプレー法」を用いた誘導電動機が開示されている。 For example, in Patent Documents 1 to 3, solid-state metal material powder is sprayed to improve the strength reliability of the conductor bar, to form a conductor end ring, or to form a conductor coating material for the purpose of reinforcing the conductor end ring. An induction motor using a so-called “cold spray method” is disclosed.
特開2012-19634号公報JP 2012-19634 A 特許第5155423号公報Japanese Patent No. 5155423 特許第5326012号公報Japanese Patent No. 5326012
 コールドスプレー法による導体エンドリング補強では、導体エンドリング表面に高強度の環状被膜材を形成することで、高速回転時における遠心力に起因したロータ外周方向への変形を抑制する補強効果を得ることが可能であるが、環状被膜材をコアの表皮面と一体成型した場合、固相状態の金属粉末が高速でコアに衝突するため、コアに過大な応力が生じて鉄心特性が低下し、誘導電動機の効率が悪化するおそれがある。 In conductor end ring reinforcement by the cold spray method, by forming a high-strength annular coating material on the surface of the conductor end ring, it is possible to obtain a reinforcement effect that suppresses deformation in the rotor outer circumference due to centrifugal force during high-speed rotation. However, when the annular coating material is molded integrally with the core skin surface, the metal powder in the solid state collides with the core at a high speed. The efficiency of the electric motor may deteriorate.
 また、コールドスプレー法による導体エンドリングと導体バーの接続、および導体エンドリング外周面のみの環状被膜材形成では、モータ駆動時における導体バー材料(アルミ、または銅等)と鉄心との線膨張係数の違いに起因した軸方向への膨張が抑制できない。そのため、温度上昇時に導体バーのみで導体エンドリングを支持する形となる。このような状態では、モータの加減速運転時において、導体バーと導体エンドリングの継ぎ目に大きな繰り返し応力が付加されるため、当該部位の疲労破壊が懸念される。 In addition, when connecting the conductor end ring and the conductor bar by the cold spray method and forming the annular coating only on the outer peripheral surface of the conductor end ring, the linear expansion coefficient between the conductor bar material (aluminum, copper, etc.) and the iron core when the motor is driven The expansion in the axial direction due to the difference cannot be suppressed. Therefore, when the temperature rises, the conductor end ring is supported only by the conductor bar. In such a state, during the acceleration / deceleration operation of the motor, since a large repetitive stress is applied to the joint between the conductor bar and the conductor end ring, there is a concern about fatigue failure of the part.
 また、コールドスプレー法による導体バー、導体エンドリングおよび環状の被膜材を形成する工程では、コアの内周部への被膜材付着防止を目的に、被膜の付着しにくい加工を施した芯金等をコアの内周部へ挿入する必要がある。そのため、芯金等の製造コストや、芯金等の挿入・取り外し、および芯金等に付着した被膜材除去などのメンテナンスに工数がかかるといった課題がある。 In addition, in the process of forming the conductor bar, conductor end ring and annular coating material by the cold spray method, a core metal or the like which has been processed to prevent the coating material from adhering to the inner periphery of the core Must be inserted into the inner periphery of the core. Therefore, there is a problem that man-hours are required for maintenance such as manufacturing cost of the cored bar, insertion / removal of the cored bar, and removal of the coating material attached to the cored bar.
 本発明は、上記に鑑みてなされたものであって、コアへの被膜材の付着やコストの増加を抑えつつ、二次導体の導電率向上および強度向上の両立を図ることができるかご形回転子を得ることを目的とする。 The present invention has been made in view of the above, and is a squirrel-cage rotation capable of achieving both improvement in conductivity and strength of a secondary conductor while suppressing adhesion of a coating material to a core and an increase in cost. The purpose is to get a child.
 上述した課題を解決し、目的を達成するために、本発明は、誘導電動機に用いられるかご形回転子において、円筒状に積層されるコアと、コアの径方向位置内に形成されるスロットと、スロット内に形成される導体バーと、コアの軸方向両端面に配置されて導体バーと接続される導体エンドリングと、コアの内周部にシャフトまたはスリーブを嵌め込んだ状態で、導体エンドリングの外周方向もしくは端面方向から固相状態の導体粒子が吹き付けられて形成され、導体エンドリング、ならびにシャフトまたはスリーブと一体化した環状被膜材と、を備えることを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention provides a squirrel-cage rotor for use in an induction motor, a core stacked in a cylindrical shape, and a slot formed in a radial position of the core. A conductor bar formed in the slot, a conductor end ring disposed on both axial end surfaces of the core and connected to the conductor bar, and a conductor end with a shaft or sleeve fitted into the inner peripheral portion of the core Solid conductor particles are sprayed from the outer circumferential direction or the end face direction of the ring, and are provided with a conductor end ring and an annular coating material integrated with the shaft or sleeve.
 本発明にかかるかご形回転子は、コアへの被膜材の付着やコストの増加を抑えつつ、二次導体の導電率向上および強度向上の両立を図ることができるという効果を奏する。 The squirrel-cage rotor according to the present invention has an effect that it is possible to improve both the conductivity and the strength of the secondary conductor while suppressing the adhesion of the coating material to the core and the increase in cost.
図1は、本発明の実施の形態1にかかるかご形回転子の回転中心軸線に沿った断面図である。FIG. 1 is a cross-sectional view of the squirrel-cage rotor according to the first embodiment of the present invention along the rotation center axis. 図2は、図1に示すA-A線に沿って見たかご形回転子断面図である。FIG. 2 is a cross-sectional view of a squirrel-cage rotor taken along line AA shown in FIG. 図3は、かご形回転子の製造工程を概略的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing a manufacturing process of the cage rotor. 図4は、実施の形態1の変形例1にかかるかご形回転子の製造工程を概略的に示す断面図である。FIG. 4 is a cross-sectional view schematically illustrating a manufacturing process of the cage rotor according to the first modification of the first embodiment. 図5は、実施の形態1の変形例2にかかるかご形回転子の製造工程を概略的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing a manufacturing process of the cage rotor according to the second modification of the first embodiment. 図6は、実施の形態1の変形例3にかかるかご形回転子の製造工程を概略的に示す断面図である。FIG. 6 is a cross-sectional view schematically illustrating a manufacturing process of the cage rotor according to the third modification of the first embodiment. 図7は、実施の形態1の変形例4にかかるかご形回転子の製造工程を概略的に示す断面図である。FIG. 7 is a cross-sectional view schematically showing a manufacturing process of the cage rotor according to the fourth modification of the first embodiment. 図8は、本発明の実施の形態2にかかるかご形回転子の製造工程を概略的に示す断面図である。FIG. 8 is a cross-sectional view schematically showing a manufacturing process of the cage rotor according to the second embodiment of the present invention. 図9は、実施の形態2の変形例1にかかるかご形回転子の製造工程を概略的に示す断面図である。FIG. 9 is a cross-sectional view schematically showing a manufacturing process of the cage rotor according to the first modification of the second embodiment. 図10は、実施の形態2の変形例2にかかるかご形回転子の製造工程を概略的に示す断面図である。FIG. 10 is a cross-sectional view schematically showing a manufacturing process of the cage rotor according to the second modification of the second embodiment. 図11は、実施の形態2の変形例3にかかるかご形回転子の製造工程を概略的に示す断面図である。FIG. 11 is a cross-sectional view schematically showing a manufacturing process of the cage rotor according to the third modification of the second embodiment. 図12は、実施の形態2の変形例4にかかるかご形回転子の製造工程を概略的に示す断面図である。FIG. 12 is a cross-sectional view schematically illustrating a manufacturing process of the cage rotor according to the fourth modification of the second embodiment.
 以下に、本発明にかかるかご形回転子の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, embodiments of a cage rotor according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は、本発明の実施の形態1にかかるかご形回転子3の回転中心軸線1に沿った断面図である。図2は、図1に示すA-A線に沿って見たかご形回転子3断面図である。かご形回転子3は、例えば円柱状の芯金2に装着される。かご形回転子3は円筒形状のコア7と、その両端に配置されてコア7を挟み込む一対の円環状の導体エンドリング31a,31bと、コア7を貫通するスロット6に充填される導体バー4で構成される。
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view of the squirrel-cage rotor 3 according to the first embodiment of the present invention along the rotation center axis 1. FIG. 2 is a cross-sectional view of the cage rotor 3 taken along the line AA shown in FIG. The squirrel-cage rotor 3 is attached to, for example, a cylindrical cored bar 2. The squirrel-cage rotor 3 includes a cylindrical core 7, a pair of annular conductor end rings 31 a and 31 b that are disposed at both ends and sandwich the core 7, and a conductor bar 4 that fills a slot 6 that penetrates the core 7. Consists of.
 コア7は、薄鋼板である電磁鋼板から打抜かれた環状の薄板を回転中心軸線1の方向に必要枚数積層した積層体から形成される。コア7の中心には、回転中心軸線1に沿って貫通されたコア貫通穴5が形成される。コア貫通穴5には芯金2が挿入される。コア7の外周面の近傍には、回転中心軸線1を中心として周方向に等間隔となる位置に複数のスロット6が形成される。スロット6は、回転中心軸線1を中心に規定の角度だけスキューをかけ平行に位置される。スロット6は、回転中心軸線1に沿った方向にコア7を貫通する。スロット6内には、導体バー4が形成される。 The core 7 is formed of a laminate in which a required number of annular thin plates punched from electromagnetic steel plates, which are thin steel plates, are laminated in the direction of the rotation center axis 1. In the center of the core 7, a core through-hole 5 that is penetrated along the rotation center axis 1 is formed. The cored bar 2 is inserted into the core through hole 5. In the vicinity of the outer peripheral surface of the core 7, a plurality of slots 6 are formed at positions that are equally spaced in the circumferential direction around the rotation center axis 1. The slot 6 is positioned parallel to the rotation center axis 1 with a specified angle skewed. The slot 6 penetrates the core 7 in a direction along the rotation center axis 1. A conductor bar 4 is formed in the slot 6.
 導体バー4の末端部には1対の導体エンドリング31a,31bが配置される。導体バー4、および一対の導体エンドリング31a,31bはアルミニウム、アルミ合金、銅、銅合金といった導体材料を用いてダイカストによって形成される。導体エンドリング31a,31bの中心には、回転中心軸線1を中心としてエンドリング貫通穴8が形成される。 A pair of conductor end rings 31 a and 31 b are arranged at the end of the conductor bar 4. The conductor bar 4 and the pair of conductor end rings 31a and 31b are formed by die casting using a conductor material such as aluminum, aluminum alloy, copper, or copper alloy. At the center of the conductor end rings 31a and 31b, an end ring through hole 8 is formed with the rotation center axis 1 as the center.
 図3は、かご形回転子3の製造工程を概略的に示す断面図である。当該製造工程の実施に当たっては、かご形回転子3に対し、コア貫通穴5、およびエンドリング貫通穴8にシャフト10を圧入、焼きバメ等で結合した状態で実施される。 FIG. 3 is a cross-sectional view schematically showing a manufacturing process of the cage rotor 3. The manufacturing process is performed in a state in which the shaft 10 is press-fitted into the core through hole 5 and the end ring through hole 8 with respect to the squirrel-cage rotor 3 and is coupled by shrinking or the like.
 コア7の両端面には、コールドスプレー法によって環状被膜材21a,21bが形成される。コールドスプレー法の実施にあたって、図3に示すラバルノズル41が用いられる。ラバルノズル41は、先端の出口に向かうにつれて広がる流路が形成される。流路には先端に向かって超音速流のガス42が導入される。ガス42の流速は例えば500~700m/sに設定される。 The annular coating materials 21a and 21b are formed on both end faces of the core 7 by a cold spray method. In performing the cold spray method, a Laval nozzle 41 shown in FIG. 3 is used. The Laval nozzle 41 is formed with a flow path that widens toward the outlet at the tip. A supersonic flow gas 42 is introduced into the flow path toward the tip. The flow rate of the gas 42 is set to 500 to 700 m / s, for example.
 流路を流れるガス42の中に導体粒子43が投入される。ガス42は、導体粒子43の融点または軟化温度よりも低い温度に設定される。導体粒子43には例えば銅、銅合金といった導体エンドリング31a,31bより比抵抗が小さい導電材料、もしくは、例えばJIS(Japanese Industrial Standards)のA1000番台系で規定されるアルミニウム(純アルミニウム)よりも剛性の高い鉄、鉄合金などの高剛性材料が用いられる。導体粒子43の粒径は例えば5~50μmに設定される。ガス42の温度は例えば常温~500℃程度に設定される。 Conductor particles 43 are introduced into the gas 42 flowing through the flow path. The gas 42 is set to a temperature lower than the melting point or softening temperature of the conductor particles 43. The conductive particles 43 are more rigid than conductive materials such as copper and copper alloys, which have a lower specific resistance than the conductive end rings 31a and 31b, or aluminum (pure aluminum) defined by the JIS (Japan Industrial Standards) A1000 series. High-rigidity materials such as high iron and iron alloys are used. The particle diameter of the conductor particles 43 is set to 5 to 50 μm, for example. The temperature of the gas 42 is set to, for example, room temperature to about 500 ° C.
 ラバルノズル41は、回転中心軸線1に沿って導体粒子43を吹き出すように配置される。ラバルノズル41の先端は、コア7の上端面に向き合わせられる。ラバルノズル41の先端は、コア端面と垂直となる位置から水平となる位置まで姿勢を変えて導体粒子43を吹き出す。ラバルノズル41の先端から超音速流の導体粒子43が吹き出される。 The Laval nozzle 41 is arranged so as to blow out the conductor particles 43 along the rotation center axis 1. The tip of the Laval nozzle 41 is opposed to the upper end surface of the core 7. The tip of the Laval nozzle 41 changes the posture from a position perpendicular to the core end surface to a horizontal position and blows out the conductor particles 43. Supersonic flow conductor particles 43 are blown out from the tip of the Laval nozzle 41.
 吹き出された導体粒子43は、導体エンドリング31aおよびシャフト10に吹き付けられる。ガス42の温度は導体粒子43の融点よりも低い温度に設定されることから、導体粒子43は固相状態で導体エンドリング31a,31bに衝突する。 The blown conductor particles 43 are sprayed onto the conductor end ring 31a and the shaft 10. Since the temperature of the gas 42 is set to a temperature lower than the melting point of the conductor particles 43, the conductor particles 43 collide with the conductor end rings 31a and 31b in a solid state.
 回転中心軸線1回りにラバルノズル41が回転移動、もしくは回転中心軸線1回りにかご形回転子3が回転することによって、導体エンドリング31aおよびシャフト10の表面に環状被膜材21aが形成される。また、回転中心軸線1に対し垂直方向にかご形回転子3を180°回転させ、導体エンドリング31b側に導体粒子43を吹き付けることで、導体エンドリング31bおよびシャフト10の表面に環状被膜材21bが形成される。環状被膜材21a,21bの厚みについて特に指定はないが、十分な被膜材強度と部材間接合を維持するため、概ね数mm~数十mmの間に設定される。 When the Laval nozzle 41 rotates around the rotation center axis 1 or the cage rotor 3 rotates around the rotation center axis 1, the annular coating material 21 a is formed on the surfaces of the conductor end ring 31 a and the shaft 10. Further, the cage-shaped rotor 3 is rotated 180 ° in the direction perpendicular to the rotation center axis 1 and the conductor particles 43 are sprayed on the conductor end ring 31b side, whereby the surface of the conductor end ring 31b and the shaft 10 is coated with the annular coating material 21b. Is formed. Although the thickness of the annular coating materials 21a and 21b is not particularly specified, it is set within a range of several mm to several tens mm in order to maintain sufficient coating material strength and inter-member bonding.
 環状被膜材21a,21bは、導体エンドリング31a,31bおよびシャフト10と相互に接合される。当該接合により、高速回転時の遠心力による導体エンドリング31a,31bの変形が抑制される。 The annular coating materials 21 a and 21 b are joined to the conductor end rings 31 a and 31 b and the shaft 10. By the joining, deformation of the conductor end rings 31a and 31b due to centrifugal force during high-speed rotation is suppressed.
 以上のように、本発明にかかる製造方法によれば、導体粒子43は、その融点よりも低い温度のガス42に投入されることから、固相状態で導体エンドリング31a,31b、およびシャフト10に吹き付けられる。これにより、環状被膜材21a,21bを形成する導体の結晶粒の肥大化を抑制することができる。また、被膜の積層体の緻密化を図ることができる。また、導体エンドリング31a,31bおよびシャフト10が環状被膜材21a,21bによって確実に接合される。また、環状被膜材21a,21bを形成する過程において導体が溶融しないため、導体が溶融した場合に生ずる熱収縮もなく、異種部材間に形成される隙間を抑制することができる。また、シャフト10がコア貫通穴5に予め結合されているので、コア7の内周面に導体粒子43が付着するのを抑えることができる。これにより、導体粒子43を除去する工程や、導体粒子43の付着を抑えるために設けた芯金をコア貫通穴5に対して着脱する工程を省略して、製造コストの抑制を図ることができる。 As described above, according to the manufacturing method of the present invention, the conductor particles 43 are introduced into the gas 42 having a temperature lower than the melting point thereof, so that the conductor end rings 31a and 31b and the shaft 10 are in a solid state. Is sprayed on. Thereby, the enlargement of the crystal grain of the conductor which forms cyclic | annular coating material 21a, 21b can be suppressed. Further, it is possible to make the laminated body of the coating dense. Further, the conductor end rings 31a and 31b and the shaft 10 are reliably joined by the annular coating materials 21a and 21b. Further, since the conductor does not melt in the process of forming the annular coating materials 21a and 21b, there is no thermal contraction that occurs when the conductor is melted, and the gap formed between the different members can be suppressed. In addition, since the shaft 10 is coupled to the core through hole 5 in advance, it is possible to prevent the conductor particles 43 from adhering to the inner peripheral surface of the core 7. Thereby, the process of removing the conductor particles 43 and the process of attaching / detaching the cored bar provided to suppress the adhesion of the conductor particles 43 to the core through hole 5 can be omitted, and the manufacturing cost can be suppressed. .
 このように、コールドスプレー法による環状被膜材21a,21bの形成では、溶接やろう付けでの接合で生ずる熱ひずみや組成の脆性化が抑制できる。また、ろう付け等で発生する冷却時間を省略して、工数を短縮することができる。 As described above, in the formation of the annular coating materials 21a and 21b by the cold spray method, thermal strain and composition embrittlement caused by welding or brazing can be suppressed. In addition, it is possible to reduce the man-hours by omitting the cooling time generated by brazing or the like.
 図4は、実施の形態1の変形例1にかかるかご形回転子3の製造工程を概略的に示す断面図である。変形例1では、かご形回転子3に対し、コア貫通穴5、およびエンドリング貫通穴8にスピンドル等との接続に使用するスリーブ11を圧入、焼きバメ等で結合した例を示す。導体粒子43の吹き付けにおいては、上述した例と同様の工程で行う。本変形例1においても、環状被膜材21a,21b、導体エンドリング31a,31bおよびスリーブ11をより確実に接合し、信頼性の向上を図ることができる。 FIG. 4 is a cross-sectional view schematically showing a manufacturing process of the cage rotor 3 according to the first modification of the first embodiment. In Modification 1, an example is shown in which a sleeve 11 used for connection to a spindle or the like is coupled to a cage rotor 3 by press-fitting or shrinking into a core through hole 5 and an end ring through hole 8. The conductor particles 43 are sprayed in the same process as in the above-described example. Also in the first modification, the annular coating materials 21a and 21b, the conductor end rings 31a and 31b, and the sleeve 11 can be more reliably joined to improve the reliability.
 図5は、実施の形態1の変形例2にかかるかご形回転子3の製造工程を概略的に示す断面図である。変形例2では、一対の補強部材12a,12bを導体エンドリング31a,31bの内周側(エンドリング貫通穴8の内側)に配した状態で導体粒子43の吹き付けが行われる。補強部材12a,12bには、コア貫通穴5と同一径の補強部材貫通穴13が形成されている。補強部材12a,12bは、補強部材貫通穴13と、コア貫通穴5とが連通するように配置される。 FIG. 5 is a cross-sectional view schematically showing a manufacturing process of the cage rotor 3 according to the second modification of the first embodiment. In the second modification, the conductor particles 43 are sprayed in a state where the pair of reinforcing members 12a and 12b are arranged on the inner peripheral side of the conductor end rings 31a and 31b (inside the end ring through hole 8). Reinforcing member through holes 13 having the same diameter as the core through holes 5 are formed in the reinforcing members 12a and 12b. The reinforcing members 12a and 12b are arranged so that the reinforcing member through hole 13 and the core through hole 5 communicate with each other.
 補強部材12a,12bは漏れ磁束による誘導電動機の出力低下を抑えるため、非磁性体であることが望ましい。また、導体エンドリング31a,31bの内周側への補強部材12a,12bの配置については、導体エンドリング31a,31bの内周側との焼きバメか、アルミニウムまたは銅ダイカスト時に鋳包む形で配置することが望ましい。なお、本変形例2における補強部材12a,12bの形状は一例であり、当該形状に限定されるものではない。 The reinforcing members 12a and 12b are preferably non-magnetic materials in order to suppress a decrease in the output of the induction motor due to leakage magnetic flux. Further, the reinforcing members 12a and 12b are disposed on the inner peripheral side of the conductor end rings 31a and 31b, either in the form of shrinkage with the inner peripheral side of the conductor end rings 31a and 31b, or in the form of being cast during aluminum or copper die casting. It is desirable to do. In addition, the shape of the reinforcing members 12a and 12b in this modification 2 is an example, and is not limited to the shape.
 回転中心軸線1回りにラバルノズル41が回転移動、もしくは回転中心軸線1回りにかご形回転子3が回転することによって、導体エンドリング31a,31bおよび補強部材12a,12bの表面に環状被膜材21a,21bが形成される。 When the Laval nozzle 41 rotates around the rotation center axis 1 or the cage rotor 3 rotates around the rotation center axis 1, the annular coating materials 21 a and 31 b are formed on the surfaces of the conductor end rings 31 a and 31 b and the reinforcing members 12 a and 12 b. 21b is formed.
 環状被膜材21a,21bは、導体エンドリング31a,31bおよび補強部材12a,12bと相互に接合される。その後、補強部材貫通穴13を用いて補強部材12a,12bがシャフト、スリーブ等に結合されることで、導体エンドリング31a,31bの高速回転時の遠心力に対する変形が抑制される。また、導体エンドリング31a,31bのうち回転中心軸線1に沿った方向側の端面は、環状被膜材21a,21bから露出させることで、導体粒子43を吹き付ける領域を、導体エンドリング31a,31bの外周側に限定することができる。すなわち、導体粒子43が吹き付けられる領域をコア7のコア貫通穴5から離間させることができる。したがって、コア貫通穴5の内周面に導体粒子が付着することを抑えることができる。これにより、導体粒子43を除去する工程や、導体粒子43の付着を抑えるために設けた芯金をコア貫通穴5に対して着脱する工程を省略して、製造コストの抑制を図ることができる。 The annular coating materials 21a and 21b are joined to the conductor end rings 31a and 31b and the reinforcing members 12a and 12b. Thereafter, the reinforcing members 12a and 12b are coupled to the shaft, the sleeve, and the like using the reinforcing member through holes 13, so that the conductor end rings 31a and 31b are prevented from being deformed by the centrifugal force during high-speed rotation. Moreover, the end surface of the conductor end rings 31a and 31b on the direction side along the rotation center axis 1 is exposed from the annular coating materials 21a and 21b, so that the region where the conductor particles 43 are sprayed is formed on the conductor end rings 31a and 31b. It can be limited to the outer peripheral side. That is, the region where the conductor particles 43 are sprayed can be separated from the core through hole 5 of the core 7. Therefore, it is possible to suppress the conductor particles from adhering to the inner peripheral surface of the core through hole 5. Thereby, the process of removing the conductor particles 43 and the process of attaching / detaching the cored bar provided to suppress the adhesion of the conductor particles 43 to the core through hole 5 can be omitted, and the manufacturing cost can be suppressed. .
 図6は、実施の形態1の変形例3にかかるかご形回転子3の製造工程を概略的に示す断面図である。本変形例3では、上記変形例2と同様に、一対の補強部材12a,12bを導体エンドリング31a,31bの内周側に配した状態で導体粒子43の吹き付けが行われる。補強部材12a,12bには、コア貫通穴5と同一径の補強部材貫通穴13が形成されている。補強部材12a,12bは、補強部材貫通穴13と、コア貫通穴5とが連通するように配置される。また、本変形例3では、コア貫通穴5および補強部材貫通穴13にシャフト10を嵌め込んだ状態で、導体粒子43の吹き付けが行われる。 FIG. 6 is a cross-sectional view schematically showing a manufacturing process of the cage rotor 3 according to the third modification of the first embodiment. In the third modification, similarly to the second modification, the conductor particles 43 are sprayed in a state where the pair of reinforcing members 12a and 12b are arranged on the inner peripheral side of the conductor end rings 31a and 31b. Reinforcing member through holes 13 having the same diameter as the core through holes 5 are formed in the reinforcing members 12a and 12b. The reinforcing members 12a and 12b are arranged so that the reinforcing member through hole 13 and the core through hole 5 communicate with each other. In the third modification, the conductor particles 43 are sprayed in a state where the shaft 10 is fitted in the core through hole 5 and the reinforcing member through hole 13.
 環状被膜材21a,21bを形成した時点で、導体エンドリング31a,31b、補強部材12a,12bおよびシャフト10が相互に接合されることで、導体エンドリング31a,31bの高速回転時の遠心力に対する変形が抑制される。 At the time when the annular coating materials 21a and 21b are formed, the conductor end rings 31a and 31b, the reinforcing members 12a and 12b, and the shaft 10 are joined to each other, so that the conductor end rings 31a and 31b are subjected to centrifugal force during high-speed rotation. Deformation is suppressed.
 また、シャフト10がコア貫通穴5に嵌め込まれているので、コア貫通穴5の周辺に導体粒子43を吹き付けても、コア貫通穴5の内周面に導体粒子43は付着しない。そのため、導体粒子43をコア貫通穴5の周辺にまで吹き付けて、補強部材12a,12bのうち回転中心軸線1に沿った方向側の端面を覆うように環状被膜材21a,21bを形成することができる。これにより、環状被膜材21a,21bによる補強効果をより確実に発揮させることが可能となる。 Further, since the shaft 10 is fitted in the core through hole 5, the conductor particles 43 do not adhere to the inner peripheral surface of the core through hole 5 even if the conductor particles 43 are sprayed around the core through hole 5. Therefore, the conductor particles 43 are sprayed to the periphery of the core through hole 5 to form the annular coating materials 21a and 21b so as to cover the end faces on the direction side along the rotation center axis 1 of the reinforcing members 12a and 12b. it can. As a result, the reinforcing effect of the annular coating materials 21a and 21b can be more reliably exhibited.
 図7は、実施の形態1の変形例4にかかるかご形回転子3の製造工程を概略的に示す断面図である。本変形例4では、上記変形例3で示したシャフトに代えて、スリーブ11をコア貫通穴5にはめ込んだ状態で導体粒子43が吹き付けられる。上記変形例3と同様に、環状被膜材21a,21bを形成した時点で、導体エンドリング31a,31b、補強部材12a,12bおよびスリーブ11が相互に接合されることで、導体エンドリング31a,31bの高速回転時の遠心力に対する変形が抑制される。 FIG. 7 is a cross-sectional view schematically showing a manufacturing process of the cage rotor 3 according to the fourth modification of the first embodiment. In the fourth modification, instead of the shaft shown in the third modification, the conductor particles 43 are sprayed in a state where the sleeve 11 is fitted in the core through hole 5. Similar to the third modification, when the annular coating materials 21a and 21b are formed, the conductor end rings 31a and 31b, the reinforcing members 12a and 12b, and the sleeve 11 are joined to each other, so that the conductor end rings 31a and 31b are joined together. The deformation with respect to the centrifugal force during high-speed rotation is suppressed.
 また、スリーブ11がコア貫通穴5に嵌め込まれているので、コア貫通穴5の周辺に導体粒子43を吹き付けても、コア貫通穴5の内周面に導体粒子43は付着しない。そのため、導体粒子43をコア貫通穴5の周辺にまで吹き付けて、補強部材12a,12bのうち回転中心軸線1に沿った方向側の端面を覆うように環状被膜材21a,21bを形成することができる。これにより、環状被膜材21a,21bによる補強効果をより確実に発揮させることが可能となる。 Further, since the sleeve 11 is fitted in the core through hole 5, the conductor particles 43 do not adhere to the inner peripheral surface of the core through hole 5 even if the conductor particles 43 are sprayed around the core through hole 5. Therefore, the conductor particles 43 are sprayed to the periphery of the core through hole 5 to form the annular coating materials 21a and 21b so as to cover the end faces on the direction side along the rotation center axis 1 of the reinforcing members 12a and 12b. it can. As a result, the reinforcing effect of the annular coating materials 21a and 21b can be more reliably exhibited.
実施の形態2.
 図8は、本発明の実施の形態2にかかるかご形回転子3の製造工程を概略的に示す断面図である。なお、上記実施の形態と同様の構成については、同様の符号を付して詳細な説明を省略する。本実施の形態では、コア7を貫通するスロット6に、アルミニウムおよび銅等で鋳造、押出された導体バー14、または切削加工にて製作した導体バー14を配している。導体バー14は、コア7の端面よりも突出している。また、導体バー14の端部を表出させるように放射状に穴を配した一対の円環状の導体エンドリング32a,32bが設けられる。
Embodiment 2. FIG.
FIG. 8 is a cross-sectional view schematically showing the manufacturing process of the cage rotor 3 according to the second embodiment of the present invention. In addition, about the structure similar to the said embodiment, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted. In the present embodiment, a conductor bar 14 cast and extruded with aluminum, copper, or the like, or a conductor bar 14 manufactured by cutting is disposed in the slot 6 penetrating the core 7. The conductor bar 14 protrudes from the end surface of the core 7. In addition, a pair of annular conductor end rings 32a and 32b are provided in which holes are provided radially so as to expose the end of the conductor bar 14.
 本実施の形態では、導体バー14、導体エンドリング32a,32bおよびシャフト10を環状被膜材22a,22bを用いて相互に接合することで、導体エンドリング32a,32bの高速回転時の遠心力に対する変形が抑制される。なお、本実施の形態では、導体バー14が導体エンドリング32a,32bに対し凸となる構造を取っているが、導体バー14がいずれかの面に表出しうる構造を取っていればよい。 In the present embodiment, the conductor bar 14, the conductor end rings 32a and 32b, and the shaft 10 are joined to each other by using the annular coating materials 22a and 22b, so that the conductor end rings 32a and 32b are subjected to a centrifugal force during high-speed rotation. Deformation is suppressed. In the present embodiment, the conductor bar 14 has a structure that is convex with respect to the conductor end rings 32a and 32b, but the conductor bar 14 only needs to have a structure that can be exposed on either side.
 図9は、実施の形態2の変形例1にかかるかご形回転子3の製造工程を概略的に示す断面図である。変形例1では、シャフト10に代えてスリーブ11をはめ込んだ状態で導体粒子43が吹き付けられて、環状被膜材22a,22bが形成される。 FIG. 9 is a cross-sectional view schematically showing a manufacturing process of the cage rotor 3 according to the first modification of the second embodiment. In the first modification, the conductor particles 43 are sprayed in a state where the sleeve 11 is fitted in place of the shaft 10 to form the annular coating materials 22a and 22b.
 図10は、実施の形態2の変形例2にかかるかご形回転子3の製造工程を概略的に示す断面図である。変形例2では、導体エンドリング32a,32bの内側に補強部材12a,12bがはめ込まれた状態で導体粒子43が吹き付けられて、環状被膜材22a,22bが形成される。変形例2では、導体粒子43の吹き付けられる領域が導体エンドリング32a,32bの外周側とされ、補強部材12a,12bのうち回転中心軸線1に沿った端面が露出する。 FIG. 10 is a cross-sectional view schematically showing a manufacturing process of the cage rotor 3 according to the second modification of the second embodiment. In the second modification, the conductor particles 43 are sprayed in a state where the reinforcing members 12a and 12b are fitted inside the conductor end rings 32a and 32b, thereby forming the annular coating materials 22a and 22b. In the modified example 2, the region to which the conductor particles 43 are sprayed is the outer peripheral side of the conductor end rings 32a and 32b, and the end surfaces along the rotation center axis 1 of the reinforcing members 12a and 12b are exposed.
 図11は、実施の形態2の変形例3にかかるかご形回転子3の製造工程を概略的に示す断面図である。変形例3では、変形例2の構成に加えて、コア7のコア貫通穴5にシャフト10が嵌め込まれた状態で導体粒子43が吹き付けられて、環状被膜材22a,22bが形成される。 FIG. 11 is a cross-sectional view schematically showing a manufacturing process of the cage rotor 3 according to the third modification of the second embodiment. In the modified example 3, in addition to the configuration of the modified example 2, the conductor particles 43 are sprayed in a state where the shaft 10 is fitted in the core through hole 5 of the core 7 to form the annular coating materials 22a and 22b.
 図12は、実施の形態2の変形例4にかかるかご形回転子3の製造工程を概略的に示す断面図である。変形例4では、変形例3で示すシャフト10に代えてスリーブ11がコア7のコア貫通穴5に嵌め込まれた状態で導体粒子43が吹き付けられて、環状被膜材22a,22bが形成される。 FIG. 12 is a cross-sectional view schematically showing a manufacturing process of the cage rotor 3 according to the fourth modification of the second embodiment. In the modified example 4, instead of the shaft 10 shown in the modified example 3, the conductor particles 43 are sprayed in a state in which the sleeve 11 is fitted in the core through hole 5 of the core 7 to form the annular coating materials 22a and 22b.
 本実施の形態2の変形例1~4では、上記実施の形態1の変形例1~4と同様に、コア貫通穴5の内周面への導体粒子43の付着を抑えて製造コストの抑制を図ることができる。また、環状被膜材22a,22bによって、導体エンドリング32a,32b、導体バー14、シャフト10、スリーブ11、補強部材12a,12b同士の接合をより強固にすることができる。これにより、導体エンドリング32a,32bの変形を抑えることができる。 In the first to fourth modifications of the second embodiment, as in the first to fourth modifications of the first embodiment, the adhesion of the conductor particles 43 to the inner peripheral surface of the core through hole 5 is suppressed, thereby reducing the manufacturing cost. Can be achieved. Further, the joining of the conductor end rings 32a and 32b, the conductor bar 14, the shaft 10, the sleeve 11, and the reinforcing members 12a and 12b can be further strengthened by the annular coating materials 22a and 22b. Thereby, deformation | transformation of the conductor end rings 32a and 32b can be suppressed.
 なお、上記実施の形態1,2において、環状被膜材21a,21b,22a,22bの形成に使用する導体粒子43に、比抵抗の小さな材料(例えば導体エンドリングよりも比抵抗の小さな材料)を接合することで、導体エンドリング31a,31b,32a,32b全体の電気抵抗を低減することが可能となり、誘導電動機の効率が向上できる。 In the first and second embodiments, a material having a small specific resistance (for example, a material having a specific resistance smaller than that of the conductor end ring) is used for the conductive particles 43 used for forming the annular coating materials 21a, 21b, 22a, and 22b. By joining, it becomes possible to reduce the electrical resistance of the conductor end rings 31a, 31b, 32a, 32b as a whole, and the efficiency of the induction motor can be improved.
 また、導体粒子43の材料としては、純銅、クロム銅、コルソン合金、ベリリウム銅、アルミナ分散強化銅等の銅や銅合金が使用されることで、導体エンドリング31a,31b,32a,32b全体の電気抵抗を低減することが可能となり、誘導電動機の効率が向上できる。 Further, as the material of the conductor particles 43, copper or a copper alloy such as pure copper, chromium copper, Corson alloy, beryllium copper, or alumina dispersion strengthened copper is used, so that the conductor end rings 31a, 31b, 32a, and 32b as a whole are used. The electric resistance can be reduced, and the efficiency of the induction motor can be improved.
 また、環状被膜材21a,21b,22a,22bの形成に使用する導体粒子43に、例えばJIS(Japanese Industrial Standards)のA1000番台系で規定されるアルミニウム(純アルミニウム)よりも剛性の高い高剛性材料を接合することにより、導体エンドリング31a,31b,32a,32bの高速回転時の遠心力に起因した変形を抑制することが可能となり、誘導電動機の高速回転化が可能となる。 Further, the conductive particles 43 used for forming the annular coating materials 21a, 21b, 22a, and 22b are, for example, highly rigid materials having higher rigidity than aluminum (pure aluminum) defined in the A1000 series of JIS (Japan Industrial Standards). By joining the conductor end rings 31a, 31b, 32a, 32b, deformation due to centrifugal force during high speed rotation can be suppressed, and the induction motor can be rotated at high speed.
 また、導体粒子43の材料としては、鉄やステンレス、クロムモリブデン鋼等の鉄合金が使用されることで、導体エンドリング31a,31b,32a,32bの高速回転時の遠心力に起因した変形を抑制することが可能となり、誘導電動機の高速回転化が可能となる。 Moreover, as a material of the conductor particles 43, an iron alloy such as iron, stainless steel, chrome molybdenum steel, or the like is used, so that deformation caused by the centrifugal force at the time of high-speed rotation of the conductor end rings 31a, 31b, 32a, and 32b. Thus, the induction motor can be rotated at a high speed.
 導体粒子43(環状被膜材21a,21b,22a,22b)がシャフト10、スリーブ11等に直接接合する例であれば、導体粒子43は非磁性の鉄合金であることが望ましい。補強部材12a,12bに非磁性の材料を用いた場合には、コア7への磁路が遮断されるので、磁性体の鉄や鉄合金を使用することも可能となる。 In the case where the conductor particles 43 ( annular coating materials 21a, 21b, 22a, 22b) are directly joined to the shaft 10, the sleeve 11, etc., the conductor particles 43 are preferably a nonmagnetic iron alloy. When a non-magnetic material is used for the reinforcing members 12a and 12b, the magnetic path to the core 7 is blocked, so it is possible to use magnetic iron or iron alloy.
 以上のように、本発明にかかるかご形回転子は、回転電機に用いられるかご形回転子に有用である。 As described above, the cage rotor according to the present invention is useful for a cage rotor used in a rotating electrical machine.
 1 回転中心軸線、2 芯金、3 かご形回転子、4,14 導体バー、5 コア貫通穴、6 スロット、7 コア、8 エンドリング貫通穴、10 シャフト、11 スリーブ、12a,12b 補強部材、13 補強部材貫通穴、21a,21b,22a,22b 環状被膜材、31a,31b,32a,32b 導体エンドリング、41 ラバルノズル、42 ガス、43 導体粒子。 1 rotation center axis, 2 cored bar, 3 cage rotor, 4,14 conductor bar, 5 core through hole, 6 slot, 7 core, 8 end ring through hole, 10 shaft, 11 sleeve, 12a, 12b reinforcement member, 13 reinforcing member through hole, 21a, 21b, 22a, 22b annular coating material, 31a, 31b, 32a, 32b conductor end ring, 41 Laval nozzle, 42 gas, 43 conductor particles.

Claims (8)

  1.  誘導電動機に用いられるかご形回転子において、
     円筒状に積層されるコアと、
     前記コアの径方向位置内に形成されるスロットと、
     前記スロット内に形成される導体バーと、
     前記コアの軸方向両端面に配置されて前記導体バーと接続される導体エンドリングと、
     前記コアの内周部にシャフトまたはスリーブを嵌め込んだ状態で、前記導体エンドリングの外周方向もしくは端面方向から固相状態の導体粒子が吹き付けられて形成され、前記導体エンドリング、ならびに前記シャフトまたは前記スリーブと一体化した環状被膜材と、を備えることを特徴とするかご形回転子。
    In squirrel-cage rotors used for induction motors,
    A core laminated in a cylindrical shape;
    A slot formed in a radial position of the core;
    A conductor bar formed in the slot;
    A conductor end ring disposed on both axial end faces of the core and connected to the conductor bar;
    In a state where a shaft or a sleeve is fitted to an inner peripheral portion of the core, solid state conductive particles are sprayed from an outer peripheral direction or an end surface direction of the conductor end ring, and the conductor end ring and the shaft or A squirrel-cage rotor comprising an annular coating material integrated with the sleeve.
  2.  誘導電動機に用いられるかご形回転子において、
     円筒状に積層されるコアと、
     前記コアの径方向位置内に形成されるスロットと、
     前記スロット内に形成される導体バーと、
     前記コアの軸方向両端面に配置されて前記導体バーと接続される導体エンドリングと、 前記導体エンドリングの内周部に補強部材を嵌め込んだ状態で、前記導体エンドリングの外周方向もしくは端面方向から固相状態の導体粒子が吹き付けられて形成され、前記導体エンドリングおよび前記補強部材と一体化した環状被膜材と、を備えることを特徴とするかご形回転子。
    In squirrel-cage rotors used for induction motors,
    A core laminated in a cylindrical shape;
    A slot formed in a radial position of the core;
    A conductor bar formed in the slot;
    A conductor end ring disposed on both axial end faces of the core and connected to the conductor bar; and an outer peripheral direction or end face of the conductor end ring in a state in which a reinforcing member is fitted in an inner peripheral portion of the conductor end ring. A squirrel-cage rotor comprising: an annular coating material formed by spraying solid-state conductor particles from a direction and integrated with the conductor end ring and the reinforcing member.
  3.  前記環状被膜材は、前記コアの内周部にシャフトまたはスリーブを嵌め込んだ状態で、前記導体粒子が吹き付けられて形成され、前記シャフトまたは前記スリーブと一体化することを特徴とする請求項2に記載のかご形回転子。 3. The annular coating material is formed by spraying the conductive particles in a state in which a shaft or a sleeve is fitted into an inner peripheral portion of the core, and is integrated with the shaft or the sleeve. The cage rotor described in 1.
  4.  前記導体粒子によって、前記導体エンドリングと前記導体バーとが接続されることを特徴とする請求項1から3のいずれか1つに記載のかご形回転子。 The cage rotor according to any one of claims 1 to 3, wherein the conductor end ring and the conductor bar are connected by the conductor particles.
  5.  前記導体粒子が、前記導体エンドリングより比抵抗が小さい材料からなることを特徴とする請求項1から4のいずれか1つに記載のかご形回転子。 The cage rotor according to any one of claims 1 to 4, wherein the conductor particles are made of a material having a specific resistance smaller than that of the conductor end ring.
  6.  前記導体粒子が、銅または銅合金からなることを特徴とする請求項5に記載のかご形回転子。 The cage rotor according to claim 5, wherein the conductor particles are made of copper or a copper alloy.
  7.  前記導体粒子が、鉄または鉄合金からなることを特徴とする請求項1から4のいずれか1つに記載のかご形回転子。 The squirrel-cage rotor according to any one of claims 1 to 4, wherein the conductor particles are made of iron or an iron alloy.
  8.  前記導体粒子が、アルミニウムよりも剛性が高い高剛性材料からなる、請求項1から4のいずれか1つに記載のかご形回転子。 The squirrel-cage rotor according to any one of claims 1 to 4, wherein the conductor particles are made of a highly rigid material having rigidity higher than that of aluminum.
PCT/JP2014/059741 2014-04-02 2014-04-02 Squirrel-cage rotor WO2015151244A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014538560A JP5745703B1 (en) 2014-04-02 2014-04-02 Cage rotor
PCT/JP2014/059741 WO2015151244A1 (en) 2014-04-02 2014-04-02 Squirrel-cage rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/059741 WO2015151244A1 (en) 2014-04-02 2014-04-02 Squirrel-cage rotor

Publications (1)

Publication Number Publication Date
WO2015151244A1 true WO2015151244A1 (en) 2015-10-08

Family

ID=53537844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059741 WO2015151244A1 (en) 2014-04-02 2014-04-02 Squirrel-cage rotor

Country Status (2)

Country Link
JP (1) JP5745703B1 (en)
WO (1) WO2015151244A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3595146A1 (en) * 2018-07-12 2020-01-15 Siemens Aktiengesellschaft Rotor having a short circuit cage, method of manufacturing
WO2020115462A1 (en) * 2018-12-04 2020-06-11 Bowman Power Group Limited Squirrel-cage rotor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3629452A1 (en) * 2018-09-28 2020-04-01 Siemens Aktiengesellschaft Method for the preparation of a rotor of a rotary electric machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012019634A (en) * 2010-07-08 2012-01-26 Nhk Spring Co Ltd Cage rotor and manufacturing method of the same
JP5155423B2 (en) * 2011-04-04 2013-03-06 ファナック株式会社 Cage-shaped rotor and manufacturing method thereof
JP5326012B2 (en) * 2012-02-14 2013-10-30 ファナック株式会社 Rotor with cage-shaped conductor formed with reinforcing structure and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012019634A (en) * 2010-07-08 2012-01-26 Nhk Spring Co Ltd Cage rotor and manufacturing method of the same
JP5155423B2 (en) * 2011-04-04 2013-03-06 ファナック株式会社 Cage-shaped rotor and manufacturing method thereof
JP5326012B2 (en) * 2012-02-14 2013-10-30 ファナック株式会社 Rotor with cage-shaped conductor formed with reinforcing structure and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3595146A1 (en) * 2018-07-12 2020-01-15 Siemens Aktiengesellschaft Rotor having a short circuit cage, method of manufacturing
WO2020115462A1 (en) * 2018-12-04 2020-06-11 Bowman Power Group Limited Squirrel-cage rotor

Also Published As

Publication number Publication date
JP5745703B1 (en) 2015-07-08
JPWO2015151244A1 (en) 2017-04-13

Similar Documents

Publication Publication Date Title
JP5326012B2 (en) Rotor with cage-shaped conductor formed with reinforcing structure and method for manufacturing the same
JP5155423B2 (en) Cage-shaped rotor and manufacturing method thereof
JP6072395B1 (en) Rotating machine rotor member, rotating machine rotor and rotating machine
US8791618B2 (en) Squirrel-cage rotor for induction motor
JP6087427B2 (en) Rotating electric machine rotor and method of manufacturing rotating electric machine rotor
JP6049897B1 (en) Rotating electric machine rotor and method of manufacturing rotating electric machine rotor
US20120293036A1 (en) Induction rotor assembly and method of manufacturing same
US10505432B2 (en) Rotor and method for manufacturing rotor
US20110241473A1 (en) Electric Motor Rotor
JP5745703B1 (en) Cage rotor
US10720805B2 (en) Embedded permanent magnet type rotating electric machine with permanent magnet rotor having magnet holes and central bridge
US10491085B2 (en) Induction rotor and method of assembling an induction rotor
EP3891875A1 (en) Squirrel-cage rotor
JP2014108006A (en) Rotor, induction motor including rotor, and manufacturing method of rotor
US10886825B2 (en) Rotor for an electric machine, the rotor has short circuit bars, short circuit ring, and support disc of different materials
WO2019150500A1 (en) Rotor member, rotor and rotating electric device
CN109217598A (en) Rotor for induction motor
JP4613833B2 (en) Surface magnet type rotating electrical machine and method for manufacturing the same
JP6089100B2 (en) Rotating electric machine
US11750052B2 (en) Rotating electric machine rotor
JP2002142421A (en) Method of manufacturing rotor of induction motor
TW202011672A (en) Cage rotor and rotary motor
JP2015048708A (en) Impeller, rotary machine, and process of assembling impeller
JP2003244912A (en) Induction generator and manufacturing method for rotor thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014538560

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14888102

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 14888102

Country of ref document: EP

Kind code of ref document: A1