WO2015150606A1 - System and method for liquid level measurement using a bubbler - Google Patents

System and method for liquid level measurement using a bubbler Download PDF

Info

Publication number
WO2015150606A1
WO2015150606A1 PCT/ES2015/070243 ES2015070243W WO2015150606A1 WO 2015150606 A1 WO2015150606 A1 WO 2015150606A1 ES 2015070243 W ES2015070243 W ES 2015070243W WO 2015150606 A1 WO2015150606 A1 WO 2015150606A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
liquid level
level
pump
passage
Prior art date
Application number
PCT/ES2015/070243
Other languages
Spanish (es)
French (fr)
Inventor
Miguel MICO MILAN
Eduardo ABARRACIN HERNANDEZ
Original Assignee
Aquatec, Proyectos Para El Sector Del Agua, S.A.U.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aquatec, Proyectos Para El Sector Del Agua, S.A.U. filed Critical Aquatec, Proyectos Para El Sector Del Agua, S.A.U.
Publication of WO2015150606A1 publication Critical patent/WO2015150606A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/14Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measurement of pressure
    • G01F23/16Indicating, recording, or alarm devices being actuated by mechanical or fluid means, e.g. using gas, mercury, or a diaphragm as transmitting element, or by a column of liquid
    • G01F23/165Indicating, recording, or alarm devices being actuated by mechanical or fluid means, e.g. using gas, mercury, or a diaphragm as transmitting element, or by a column of liquid of bubbler type
    • G01F23/168Indicating, recording, or alarm devices being actuated by mechanical or fluid means, e.g. using gas, mercury, or a diaphragm as transmitting element, or by a column of liquid of bubbler type with electric indicating or recording

Definitions

  • the system and procedure for measuring liquid level bubbling is one that allows the level of liquid to be obtained in wells, aquifers, reservoirs or other continents of liquid, such as a reservoir, continuously and precisely.
  • devices that use the technique of measuring liquid level by bubbling, usually used to measure the liquid level of hard to reach continents, such as wells or reservoirs.
  • the principle of operation of this measurement system is based on the pressure necessary to overcome a column of liquid contained in an open tube at the end submerged below the water level. After introducing compressed air into the tube, until all the water contained in it is eliminated, a small and continuous supply of air must be maintained, guaranteeing the permanent exit of bubbles through the lower end of the tube. Once this condition is observed, from the reading of the internal pressure of the tube the height of water above the point of discharge of the air can be obtained, thus calculating water level.
  • Bubble level measurement devices that reduce the water level calculation error are known, such as those described in US5791 187 and EP882974 which suggest the use of at least two bubble tubes to determine the density of water and thus decrease the level error.
  • Devices such as that described in US200301 10856 which use several closed U-pipes to determine the density of water are also known.
  • Another objective is to present an alternative to the systems for measuring known liquid level by bubbling.
  • the system for measuring liquid level bubbling in a well or other continents, such as aquifers, reservoirs, reservoirs etc. of the present invention is one that comprises a pneumatic distributor interposed between a means of generating pressurized gas and a tube for injecting a gas flow into said well, the distributor regulating the gas flow injected into the well; a pressure sensor to detect the pressure of the gas injected into the well; and programmable means for reading the liquid level of the well, connected to the pressure sensor.
  • the system is characterized in that the programmable means for reading the liquid level are adapted to record a first pressure value of the pressure sensor and associate it with a first value of the liquid level; record a second pressure value of the pressure sensor and associate it with a second value of the liquid level to obtain subsequent automatic level readings from an instantaneous pressure value provided by the pressure sensor by means of a mathematical model calculated between said first and Second level and pressure ratio.
  • the mathematical model that the programmable means are adapted to calculate is a linear relationship. If there were more than two level and pressure relationships, the mathematical model could include the sections formed by the different linear relationships between the level and pressure relationships.
  • the programmable means for reading the liquid level are adapted to record the first pressure value while the pump is stopped and the second pressure value being The pump running. In this way, a time should not be expected to register the second value when the liquid level has varied, since the activation of the pump will cause it to vary. In addition, the possible error caused by the suction effect that the pump may exert is corrected in this way.
  • the pneumatic system distributor it comprises an inlet chamber provided with coupling means of a pressurized gas inlet; a measuring chamber provided with coupling means of a constant flow gas outlet; a gas pressure sensor of the measuring chamber; and a conduit that communicates said input chamber with the measuring chamber, the conduit being provided with at least one flow regulator embedded in said conduit that provides a narrow passage, the input chamber and the measuring chamber being communicated only through of said narrow passage.
  • said flow regulator it is possible to obtain an essentially constant gas flow that is necessary to perform level measurements by bubbling in wells or reservoirs.
  • the distributor is characterized in that the duct is provided with two serial flow regulators provided with two narrow passages, the input chamber and the measurement chamber being communicated only through said narrow passages and the diameter being of the flow regulator passage closest to the inlet chamber greater than or equal to the diameter of the flow regulator passage closest to the measurement chamber.
  • the gas flow is progressively reduced, avoiding instabilities in the flow and therefore allowing greater precision when used to measure the level of water in a bubbling system.
  • the passage section of the flow regulator passages is equivalent to that of a circular section of radius between 0.1 and 0.8 mm, this being narrow in relation to a passage section of the conduit which can be by 4.5 mm example, limiting gas flow.
  • a flow regulator passage section is understood to be narrow that is at least five times smaller than the passage section of the conduit, preferably being at least nine times smaller.
  • the internal diameter of the flow regulator passage closest to the inlet chamber is 0.5mm, while the internal diameter of the flow regulator passage closest to the measuring chamber is between 0.15 and 0.5 mm. .
  • the flow regulators are chicles embedded in the duct, which allow for easy installation in the channel. Said chicles may be for example threaded in said channel or snapped.
  • the pressure sensor is adapted to obtain the pressure value of the measuring chamber. For example, it could be arranged on the wall of the measuring chamber. In this way it is possible to obtain a measurement of the pressure of the chamber that will be similar to the pressure of the gas outlet at constant flow for the same level of air column of the end of the tube, a difference that is compensated with the calibration.
  • the pressure sensor is a piezoresistive sensor that advantageously allows measuring very small pressure variations, even in aggressive environments.
  • the open end of the tube is arranged at the pump level, allowing the level of liquid equivalent to the water column to be measured above the pump, in order to prevent the pump from being dry. If the open end were above the pump, the liquid level could not be measured when it dropped below the open end of the tube and it would not be known exactly from when the pump would be dry, and could be damaged. Naturally, it is envisioned that the open end may also be arranged above the pump, although in this case the level of liquid could not be measured when it exceeds the open end and the pump could remain dry. The open end can also be arranged at a height that is known to never be dry, such as in an aquifer.
  • the pump being submerged and connected to a discharge pipe to extract water from the well, the tube extends essentially adjacent to said discharge pipe, thus reducing errors such as those due to the play of the tube or its elongation.
  • the tube has a section of 10x8 mm that allows the system to react faster when responding to sudden changes in level. It is also envisioned that the tube can be of a smaller section, such as 6x4 mm, which allows its introduction through a narrow piezometric tube. It is also known that the pressurized gas generating means provide a gas pressure of between 3 and 10 bars, suitable to provide a stable flow rate of between 0.4 liters per minute and 10 liters per minute.
  • a method for measuring the level of liquid by bubbling that can be carried out in the system described above in that, being injected into a well or another continent of liquid a regulated flow of gas, it comprises a previous calibration step comprising the steps of registering a first pressure value of the regulated gas flow, for example by means of a pressure sensor, and associating it with a first value of the liquid level, to obtain a first relationship between level and pressure; record a second pressure value of the regulated gas flow, for example by means of a pressure sensor, and associate it with a second value of the liquid level, to obtain a second relationship between level and pressure; determine a mathematical relationship between said first and second level and pressure relationship; and the subsequent steps of obtaining liquid level values from an instantaneous pressure value of the regulated gas flow through the previously determined mathematical relationship.
  • the constant gas flow is obtained by injecting pressurized gas into an inlet chamber, provided with a conduit that connects it with a measuring chamber, forcing said gas through at least one narrow passage in relation to a passage section of the duct, thus limiting the flow of injected gas.
  • Fig. 1 shows a section of the pneumatic distributor of the system of the present invention
  • Fig. 2 shows the system for measuring liquid level by bubbling with the pump stopped
  • Fig. 3 shows the system of Fig. 2 with the pump running
  • Fig. 4 shows the mathematical relationship for the system level reading of Figs. 2 and 3
  • Fig. 1 shows a sectional view of the pneumatic distributor 1 of the system 100 that will be shown later in the present invention where it can be seen that it comprises an inlet chamber 2, which may have a quarter inch section, provided with coupling means 3 of a pressurized gas inlet 4, such as a compressor that provides constant pressure to distributor 1.
  • the distributor 1 further comprises a measuring chamber 5 provided with coupling means of a constant flow gas outlet 6, for example a tube 105 that will be introduced into a well to measure its level by the known bubbling technique.
  • the measuring chamber 5 of the distributor 1 is provided with a pressure sensor 7 of the gas of the measuring chamber 5, said pressure sensor 7 is arranged on the wall of the measuring chamber 5 and allows measuring the pressure of the measuring chamber 5, which will be proportional to the pressure at the open end 106 of the tube 105 connected at its outlet 6. In this way, by measuring the pressure in the measuring chamber 5 it will be possible to obtain a pressure reading at the open end 106 of tube 105 during the bubbling phase, as will be detailed below.
  • the pressure distributor 7 can be a piezoresistive sensor, for example of the type of strain gauge equipped with a fluorosilicone measuring membrane exposed in the measuring chamber 5 and an electrical circuit, such as a Wheatstone bridge.
  • the pneumatic distributor 1 further comprises a conduit 8 of 4.5 mm section that communicates the inlet chamber 2 with the measuring chamber 5, said conduit 8 being provided with a first and a second flow regulator 9a, 9b embedded in said duct 8 and provided with respective narrow passages 10a, 10b, the input chamber 4 and the measuring chamber 5 being communicated only through said narrow passages 10a, 10b.
  • the flow regulators 9a, 9b can be interlocked in the conduit 8 in a known manner, for example under pressure or by means of a thread, so that the joint between the walls of the flow regulators 9a, 9b and the walls of the conduit 8 is seal and force the passage of gas only through their respective narrow passages 10a, 10b.
  • Said flow regulators 9a, 9b can be for example chicles.
  • the conduit 8 can be connected to the inlet chamber 2 through a narrow section, for example of a 2 mm section, smaller than the section of the conduit 8 and the inlet chamber 2.
  • the diameter of the narrow passages 10a, 10b is much smaller than the diameter of the duct 8, simplifying the construction of the pneumatic distributor 1, which can be made of aluminum or the like, and in which subsequently the flow regulators that They will have the right narrow steps. In this way, the flow regulators can be manufactured separately.
  • the flow regulators 9a, 9b are arranged in series in the duct, the inlet chamber 2 and the measuring chamber 5 being communicated only through the respective narrow passages 10a, 10b of the flow regulators 9a, 9b.
  • the diameter of the narrow passage 10a of the first flow regulator 9a, closer to the inlet chamber 2 is greater than or equal to the diameter of the narrow passage 10b of the second flow regulator 9b, closer to the measurement chamber 5.
  • the spaces in the duct 8 between the flow regulators 9a, 9b also serve to reduce turbulence, whereby the fact of placing successive flow regulators with the same narrow passage is also advantageous.
  • the pneumatic distributor 1 is provided with two flow regulators, it is anticipated that there may be more flow regulators, with successive diameters of equal or lesser narrow passages, which will allow obtaining a flow rate of constant gas even more stable. In a simpler and cheaper variant, there could be a single flow regulator, although in this variant the flow would be more unstable.
  • Figure 100 shows the system 100 for measuring the level of liquid by bubbling that uses the pneumatic distributor 1 and also incorporates some pressurized gas generating means 101, generally an air compressor, connected to the pressurized gas inlet 4 of the pneumatic distributor 1; reading means 102 of the liquid level, connected to the pressure sensor 7 of the pneumatic distributor; a pump 103 for the extraction of liquid from a well 107, said pump being connected to a discharge pipe 104; and a tube 105 connected to the constant flow gas outlet 6 of the pneumatic distributor 1 and its open end 106 being arranged at the level of the pump 103.
  • some pressurized gas generating means 101 generally an air compressor, connected to the pressurized gas inlet 4 of the pneumatic distributor 1; reading means 102 of the liquid level, connected to the pressure sensor 7 of the pneumatic distributor; a pump 103 for the extraction of liquid from a well 107, said pump being connected to a discharge pipe 104; and a tube 105 connected to the constant flow gas outlet 6 of the pneumatic distributor 1 and its open end
  • the gas pressure that is applied at the inlet 4 by means of generating gas under pressure 101 must be greater than the weight of the water column to be measured at the open end 106 of the tube 105, whereby a pressure of 3 bars may be used to measure depths of up to about 30 meters, reaching up to 10 bars for a water column of up to about 100 meters.
  • the pressure sensor 7 must be conveniently sized to measure said pressures.
  • the system 100 will respond more rapidly to the changes in liquid level, being able to appreciate, for example, the transients during the start and stop of the pump 103.
  • the higher the flow the more energy the pressurized gas generating means 101 will consume to maintain the constant pressure at the inlet 4 of the pneumatic distributor 1 and the more noise they will make. Therefore, a compromise between the responsiveness of the system 100 for the measurement of the liquid level and the energy expenditure and discomforts that may be caused due to the noise of the pressurized gas generation means 101 in the different scenarios in which You want to monitor the liquid level.
  • the pressurized gas generating means 101 must inject completely clean gas into the pneumatic distributor 1, since said gas will end up passing through the liquid of the well 107 and cannot in any way contaminate it with oils or lubricants.
  • the means for generating pressurized gas 101 can be an air compressor such as those known for sanitary use. with a 25 liter boiler that allows continuous supply to the pneumatic distributor 1.
  • the system 100 allows the level of liquid to be measured by bubbling in wells 107, as illustrated in Figs. 2 and 3, but could also be used in aquifers, reservoirs or other continents of liquid such as deposits. Although generally the liquid from which one will want to obtain the level is water, the system 100 could be used to measure other types of liquids.
  • the pump 103 depicted in Figs. 2 and 3 is a submerged pump, it is also contemplated that the pump is not submerged or even outside well 107, in these cases the pump provided with a suction tube that would be introduced into the liquid and that would be the one that would extract the liquid when the pump is activated. When the pump 107 is not submerged, it could be both the self-suction type and the cane pump type.
  • the tube 105 In order to have a good pressure stability in the measuring chamber 5, in addition to regulating the flow that is advantageously achieved by the pneumatic distributor 1, the tube 105 must have a suitable section to prevent sudden variations in the level from affecting that the measure is momentarily missed.
  • the tube 105 connected to the outlet 6 of the distributor 1 extends essentially adjacent to the discharge pipe 104.
  • This can be made of polyamide, or other flexible and resistant material that allows gas conduction, and will have a reduced section to improve the Responsibility and stability of the measurement, this can be for example 10x8 mm or even smaller, for example 6x4 mm if necessary to enter the well through a piezometric tube.
  • the system 100 also includes means for reading 102 of the liquid level, such as an electronic display, which are connected to the pressure sensor 7 of the pneumatic distributor 1 and allow calculation, based on the voltage provided by the sensor. pressure proportional to the measured pressure P, the height of the liquid column corresponding to the level of liquid L. This level of liquid L can be shown by a digital display of said reading means 102 or even simply by an analog pressure gauge conveniently graduate.
  • means for reading 102 of the liquid level such as an electronic display, which are connected to the pressure sensor 7 of the pneumatic distributor 1 and allow calculation, based on the voltage provided by the sensor. pressure proportional to the measured pressure P, the height of the liquid column corresponding to the level of liquid L.
  • This level of liquid L can be shown by a digital display of said reading means 102 or even simply by an analog pressure gauge conveniently graduate.
  • the system 100 can be integrated into industrial control devices such as PLCs, SCADAS, etc., and transmit the value measured by the pressure sensor 7 through standardized analog signal (4-20 mA), configurable digital signals for detection of level and by means of communication devices such as Modbus serial communication ports and GPRS modem, for sending and processing in a remote station.
  • the system 100 shown in Figs. 2 and 3 comprises a pump 103 arranged at the bottom of the well 107 to extract the water contained in said well 107 through the discharge pipe 104.
  • the pneumatic distributor 1 of the system 100 allows a stable gas flow to be injected regardless of whether the pump 103 is stopped, as shown in Fig. 2, or in operation, as shown in Fig. 3. In this way it is It is possible to observe the transients in the liquid level during the start and stop of the pump 103. However, when the pump 103 is in operation, the suction exerted by the pump 103 in the liquid affects the pressure of the open end 103 of the tube 105, being close to the pump 103. This fact means that the calibration that can be done of the system 100 when the pump 103 is stopped -static does not correspond to the calibration when the pump 103 is in operation. In the same way, a calibration with pump 103 running - dynamic - would not be used for measurements with the pump stopped.
  • this calibration is especially recommended for use with the pneumatic distributor 1 that injects a constant flow into well 107, it could also be used with other bubbling measurement devices, for example those using a proportional regulating valve. It is also possible to perform calibration in wells or continents of liquid that are not provided with a pump, such as a water reservoir, taking pressure measurements at different liquid levels.
  • a second pressure reading P2 of the pressure sensor 7 of the pneumatic distributor 1 must be carried out and associated with the liquid level L2 in dynamic, that is, the pump 103 is in operation, for example also by external means such as a probe calibrated electrical
  • a second level and pressure ratio is obtained.
  • the order of obtaining the relationships, first in static and then in dynamic could be inverse.
  • a first relationship between pressure and level is achieved when the pump 103 is stopped and a second relationship between pressure and level when the pump 103 is running, whereby the pressure distortion at the open end 106 of the tube 105 created by pump suction 103 over The weight of the water column is compensated.
  • a mathematical model r can be calculated such as the linear relationship shown in Fig. 4 that can be used to calibrate the reading means 102 of the liquid level.
  • This procedure makes it possible to obtain subsequent measurements of the liquid level that are measured by the system 100 simply from pressure readings P of the pressure sensor 7 using said linear relationship.
  • other mathematical relationships could be calculated r, such as sections.
  • This calibration and reading procedure allows, in addition to minimizing the error produced by the aspiration of the pump 103, at the same time linearizing, and both eliminate, the fixed errors of the system 100, as the errors related to the pressure sensor 7, such as errors due to the ambient temperature, the atmospheric pressure, the effect of the sensor offset, repeatability and linearity.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

The invention relates to a system (100) and method for liquid level measurement using a bubbler in a well or another liquid container, which may be provided with a pump for extracting the liquid and which includes a pneumatic distributor (1); a pressure sensor (7); and programmable means (102) for reading the liquid level, suitable for recording a first pressure value (P1) of the pressure sensor and for associating same with a first liquid level value (L1); recording a second pressure value (P2) of the pressure sensor and associating same with a second liquid level value (L2) in order to obtain subsequent automatic level readings (L) from an instantaneous pressure value (P) supplied by the pressure sensor by means of a mathematical pattern (r) calculated between said first and second level and pressure ratios.

Description

D E S C R I P C I O N  D E S C R I P C I O N
"Sistema y procedimiento para la medida por burbujeo de nivel de líquido" Sector técnico de la invención "System and method for measuring liquid level bubbling" Technical sector of the invention
El sistema y procedimiento para la medida por burbujeo de nivel de líquido es de los que permite obtener el nivel de líquido en pozos, acuíferos, embalses u otros continentes de líquido, tales como un depósito, en continuo y de manera precisa.  The system and procedure for measuring liquid level bubbling is one that allows the level of liquid to be obtained in wells, aquifers, reservoirs or other continents of liquid, such as a reservoir, continuously and precisely.
Antecedentes de la invención Background of the invention
La medición en continuo del nivel freático en sondeos para la extracción de agua en acuíferos siempre ha sido un problema debido al elevado coste de los equipos, principalmente basados en una sonda sumergida, y al alto índice de averías en los mismos. Por tanto, el aforo de pozos y el análisis del rendimiento de las bombas de extracción resultan procesos laboriosos y costosos.  The continuous measurement of the groundwater level in surveys for water extraction in aquifers has always been a problem due to the high cost of the equipment, mainly based on a submerged probe, and the high failure rate in them. Therefore, the capacity of wells and the analysis of the performance of the extraction pumps are laborious and expensive processes.
Para solventar este inconveniente, se conocen dispositivos que utilizan la técnica de medida de nivel de líquido por burbujeo, usualmente utilizada para medir el nivel de líquido de continentes de difícil acceso, tales como pozos o embalses. El principio de operación de este sistema de medición, se basa en la presión necesaria para vencer una columna de líquido contenida en un tubo abierto en el extremo sumergido bajo el nivel del agua. Después de introducir aire comprimido al tubo, hasta lograr que se elimine toda el agua contenida en el mismo, se debe mantener una pequeña y continua alimentación de aire, garantizando la salida permanente de burbujas por el extremo inferior del tubo. Una vez observada esa condición, a partir de la lectura de la presión interna del tubo puede obtenerse la altura de agua sobre el punto de descarga del aire, calculando así nivel de agua. To solve this problem, devices are known that use the technique of measuring liquid level by bubbling, usually used to measure the liquid level of hard to reach continents, such as wells or reservoirs. The principle of operation of this measurement system is based on the pressure necessary to overcome a column of liquid contained in an open tube at the end submerged below the water level. After introducing compressed air into the tube, until all the water contained in it is eliminated, a small and continuous supply of air must be maintained, guaranteeing the permanent exit of bubbles through the lower end of the tube. Once this condition is observed, from the reading of the internal pressure of the tube the height of water above the point of discharge of the air can be obtained, thus calculating water level.
No obstante, los dispositivos conocidos son poco precisos, con lo que no se consigue una medida fiable del nivel, sobre todo durante los transitorios debidos a la puesta en marcha y paro de una bomba. Son conocidos dispositivos de medida de nivel por burbujeo que reducen el error de cálculo del nivel de agua, tales como los que se describen en los documentos de patente US5791 187 y EP882974 que sugieren el uso de al menos dos tubos de burbujeo para determinar la densidad del agua y así disminuir el error de nivel. También son conocidos dispositivos como el descrito en el documento de patente US200301 10856 que utiliza varios conductos cerrados en U para determinar la densidad del agua. However, the known devices are not very precise, so that a reliable level measurement is not achieved, especially during transients due to the start-up and shutdown of a pump. Bubble level measurement devices that reduce the water level calculation error are known, such as those described in US5791 187 and EP882974 which suggest the use of at least two bubble tubes to determine the density of water and thus decrease the level error. Devices such as that described in US200301 10856 which use several closed U-pipes to determine the density of water are also known.
También son conocidos dispositivos como el descrito en el documento de patente EP1366342 que compensa los errores mediante el uso de burbujeadores dispuestos a distinto nivel. No obstante, estos dispositivos conocidos requieren el uso de varios burbujeadores, por lo que los dispositivos resultan excesivamente complejos y caros. Es por tanto, un objetivo de la presente invención dar a conocer un sistema y procedimiento para la medida de nivel de líquido por burbujeo económico que permita realizar medidas precisas minimizando errores. Devices such as that described in patent document EP1366342 are also known that compensates for errors by using bubblers arranged at different levels. However, these known devices require the use of several bubblers, so the devices are excessively complex and expensive. It is therefore an objective of the present invention to disclose a system and method for measuring liquid level by economic bubbling that allows precise measurements to be made minimizing errors.
Es también otro objetivo de la presente invención dar a conocer un procedimiento de lectura del nivel de líquido mediante dicho sistema y un distribuidor neumático que permita mejorar la precisión de la lectura del nivel. It is also another objective of the present invention to disclose a method of reading the liquid level by means of said system and a pneumatic distributor that allows to improve the accuracy of the level reading.
Otro objetivo es dar a conocer una alternativa a los sistemas para la medida de nivel de líquido por burbujeo conocidos. Another objective is to present an alternative to the systems for measuring known liquid level by bubbling.
Explicación de la invención Explanation of the invention.
El sistema para la medida por burbujeo de nivel de líquido en un pozo u otros continentes, tales como acuíferos, embalses, depósitos etc. de la presente invención es de los que comprende un distribuidor neumático interpuesto entre unos medios de generación de gas a presión y un tubo para inyectar un caudal de gas en dicho pozo, regulando el distribuidor el caudal de gas inyectado en el pozo; un sensor de presión para detectar la presión del gas inyectado en el pozo; y unos medios programables de lectura del nivel de líquido del pozo, conectados al sensor de presión. En esencia, el sistema se caracteriza porque los medios programables de lectura del nivel de líquido están adaptados para registrar un primer valor de presión del sensor de presión y asociarlo a un primer valor del nivel de líquido; registrar un segundo valor de presión del sensor de presión y asociarlo a un segundo valor del nivel de líquido para obtener subsiguientes lecturas automáticas de nivel a partir de un valor instantáneo de presión proporcionado por el sensor de presión mediante un modelo matemático calculado entre dichas primera y segunda relación de nivel y presión. En una variante de realización, especialmente cuando solamente se tienen dos relaciones de nivel y presión, el modelo matemático que los medios programables están adaptados para calcular es una relación lineal. Si se tuvieran más de dos relaciones de nivel y presión, el modelo matemático podría comprender los tramos formados por las diferentes relaciones lineales entre las relaciones de nivel y presión. Mediante este modelo matemático, se consigue compensar la diferencia de caudal que inyectará el distribuidor de caudal en el pozo en función del nivel de líquido del pozo, es decir, de la columna de agua que se encuentre por encima del punto en que el tubo inyecta el gas en el pozo. Ventajosamente, se consigue tomando los valores de presión en al menos dos niveles de líquido, calibrar fácilmente los medios programables de lectura del nivel de líquido del pozo. Naturalmente, las relaciones de nivel y presión deben tomarse con niveles diferentes del nivel de líquido. The system for measuring liquid level bubbling in a well or other continents, such as aquifers, reservoirs, reservoirs etc. of the present invention is one that comprises a pneumatic distributor interposed between a means of generating pressurized gas and a tube for injecting a gas flow into said well, the distributor regulating the gas flow injected into the well; a pressure sensor to detect the pressure of the gas injected into the well; and programmable means for reading the liquid level of the well, connected to the pressure sensor. In essence, the system is characterized in that the programmable means for reading the liquid level are adapted to record a first pressure value of the pressure sensor and associate it with a first value of the liquid level; record a second pressure value of the pressure sensor and associate it with a second value of the liquid level to obtain subsequent automatic level readings from an instantaneous pressure value provided by the pressure sensor by means of a mathematical model calculated between said first and Second level and pressure ratio. In a variant embodiment, especially when there are only two relations of level and pressure, the mathematical model that the programmable means are adapted to calculate is a linear relationship. If there were more than two level and pressure relationships, the mathematical model could include the sections formed by the different linear relationships between the level and pressure relationships. Through this mathematical model, it is possible to compensate the difference in flow rate that the flow distributor will inject into the well based on the liquid level of the well, that is, the water column that is above the point where the tube injects The gas in the well. Advantageously, it is achieved by taking the pressure values in at least two liquid levels, easily calibrating the programmable means of reading the liquid level of the well. Naturally, the level and pressure ratios must be taken with different levels of the liquid level.
Cuando el sistema de la invención se emplea para medida de nivel en un pozo provisto de bomba de extracción, los medios programables de lectura del nivel de líquido están adaptados para registrar el primer valor de presión estando la bomba parada y el segundo valor de presión estando la bomba en funcionamiento. De esta manera, no debe esperarse un tiempo a registrar el segundo valor cuando el nivel de líquido haya variado, ya que la activación de la bomba hará que éste varíe. Complementariamente, se corrige de esta manera también el posible error provocado por el efecto de succión que pueda ejercer la bomba. When the system of the invention is used for level measurement in a well provided with an extraction pump, the programmable means for reading the liquid level are adapted to record the first pressure value while the pump is stopped and the second pressure value being The pump running. In this way, a time should not be expected to register the second value when the liquid level has varied, since the activation of the pump will cause it to vary. In addition, the possible error caused by the suction effect that the pump may exert is corrected in this way.
En una variante de interés, el distribuidor neumático del sistema comprende una cámara de entrada provista de medios de acoplamiento de una entrada de gas a presión; una cámara de medida provista de medios de acoplamiento de una salida de gas a flujo constante; un sensor de presión del gas de la cámara de medida; y un conducto que comunica dicha cámara de entrada con la cámara de medida, estando el conducto provisto de al menos un regulador de caudal encajado en dicho conducto que proporciona un paso angosto, quedando la cámara de entrada y la cámara de medida comunicadas solamente a través de dicho paso angosto. Ventajosamente, mediante el uso de dicho regulador de caudal se consigue obtener un flujo de gas esencialmente constante que es necesario para realizar medidas de nivel por burbujeo en pozos o embalses. In a variant of interest, the pneumatic system distributor it comprises an inlet chamber provided with coupling means of a pressurized gas inlet; a measuring chamber provided with coupling means of a constant flow gas outlet; a gas pressure sensor of the measuring chamber; and a conduit that communicates said input chamber with the measuring chamber, the conduit being provided with at least one flow regulator embedded in said conduit that provides a narrow passage, the input chamber and the measuring chamber being communicated only through of said narrow passage. Advantageously, by using said flow regulator it is possible to obtain an essentially constant gas flow that is necessary to perform level measurements by bubbling in wells or reservoirs.
En una variante de interés, el distribuidor se caracteriza porque el conducto está provisto de dos reguladores de caudal en serie provistos de sendos pasos angostos, quedando la cámara de entrada y la cámara de medida comunicadas solamente a través de dichos pasos angostos y siendo el diámetro del paso del regulador de caudal más próximo a la cámara de entrada mayor o igual que el diámetro del paso del regulador de caudal más próximo a la cámara de medida. De esta manera se consigue reducir progresivamente el caudal de gas, evitando inestabilidades en el caudal y por tanto permitiendo mayor precisión cuando se usa para medir el nivel de agua en un sistema de burbujeo. In a variant of interest, the distributor is characterized in that the duct is provided with two serial flow regulators provided with two narrow passages, the input chamber and the measurement chamber being communicated only through said narrow passages and the diameter being of the flow regulator passage closest to the inlet chamber greater than or equal to the diameter of the flow regulator passage closest to the measurement chamber. In this way, the gas flow is progressively reduced, avoiding instabilities in the flow and therefore allowing greater precision when used to measure the level of water in a bubbling system.
Se da a conocer que la sección de paso de los pasos de los reguladores de caudal equivale a la de una sección circular de radio entre 0.1 y 0,8 mm, siendo este angosto en relación con una sección de paso del conducto que puede ser por ejemplo de 4,5 mm, limitando el caudal de gas. En el ámbito de la invención se entiende como angosta una sección de paso de regulador de caudal que es al menos cinco veces menor que la sección de paso del conducto, siendo preferentemente al menos nueve veces menor. En una variante de interés, el diámetro interior del paso del regulador de caudal más próximo a la cámara de entrada es de 0.5mm, mientras el diámetro interior del paso regulador de caudal más próximo a la cámara de medida es de entre 0.15 y 0.5 mm. Concretamente, cuando el diámetro interior del paso regulador de caudal más próximo a la cámara de medida es de 0.15 mm se consigue un caudal aproximado de 0,4 litros por minuto, mientras que cuando el diámetro interior del paso del regulador de caudal más próximo a la cámara de medida es de 0.5 mm se consigue un caudal de 10 litros por minuto. Naturalmente, también se contemplan otras secciones de paso equivalentes a los diámetros anteriormente especificados. It is known that the passage section of the flow regulator passages is equivalent to that of a circular section of radius between 0.1 and 0.8 mm, this being narrow in relation to a passage section of the conduit which can be by 4.5 mm example, limiting gas flow. Within the scope of the invention, a flow regulator passage section is understood to be narrow that is at least five times smaller than the passage section of the conduit, preferably being at least nine times smaller. In a variant of interest, the internal diameter of the flow regulator passage closest to the inlet chamber is 0.5mm, while the internal diameter of the flow regulator passage closest to the measuring chamber is between 0.15 and 0.5 mm. . Specifically, when the inner diameter of the flow regulator step closest to the measuring chamber is 0.15 mm, an approximate flow rate of 0.4 liters per minute, while when the inside diameter of the flow regulator passage closest to the measuring chamber is 0.5 mm, a flow rate of 10 liters per minute is achieved. Of course, other sections of passage equivalent to the diameters specified above are also contemplated.
En una variante de interés, los reguladores de caudal son chiclés encajados en el conducto, que permiten su fácil montaje en el canal. Dichos chiclés pueden estar por ejemplo roscados en dicho canal o encajados a presión. En una variante de la invención, el sensor de presión está adaptado para obtener el valor de presión de la cámara de medida. Por ejemplo podría estar dispuesto en la pared de la cámara de medida. De esta manera se consigue obtener una medición de la presión de la cámara que será similar a la presión de la salida de gas a flujo constante para un mismo nivel de columna de aire del extremo del tubo, diferencia que se compensa con la calibración. In a variant of interest, the flow regulators are chicles embedded in the duct, which allow for easy installation in the channel. Said chicles may be for example threaded in said channel or snapped. In a variant of the invention, the pressure sensor is adapted to obtain the pressure value of the measuring chamber. For example, it could be arranged on the wall of the measuring chamber. In this way it is possible to obtain a measurement of the pressure of the chamber that will be similar to the pressure of the gas outlet at constant flow for the same level of air column of the end of the tube, a difference that is compensated with the calibration.
En otra variante de realización, el sensor de presión es un sensor piezoresistivo que permite ventajosamente medir variaciones de presión muy pequeñas, incluso en ambientes agresivos. In another variant embodiment, the pressure sensor is a piezoresistive sensor that advantageously allows measuring very small pressure variations, even in aggressive environments.
En otra variante de realización, el extremo abierto del tubo está dispuesto a nivel de la bomba, permitiendo medir el nivel de líquido equivalente a la columna de agua por encima de la bomba, para así evitar que la bomba pueda quedar en seco. Si el extremo abierto estuviera por encima de la bomba, no se podría medir el nivel de líquido cuando éste bajara por debajo del extremo abierto del tubo y no se sabría con exactitud a partir de qué momento la bomba quedaría seca, pudiendo estropearse. Naturalmente, se prevé que el extremo abierto también pueda estar dispuesto por encima de la bomba, aunque en este caso no se podría medir el nivel de líquido cuando éste superara el extremo abierto y podría quedar la bomba seca. También puede disponerse el extremo abierto a una altura que se sepa que nunca quede en seco, como por ejemplo en un acuífero. In another variant embodiment, the open end of the tube is arranged at the pump level, allowing the level of liquid equivalent to the water column to be measured above the pump, in order to prevent the pump from being dry. If the open end were above the pump, the liquid level could not be measured when it dropped below the open end of the tube and it would not be known exactly from when the pump would be dry, and could be damaged. Naturally, it is envisioned that the open end may also be arranged above the pump, although in this case the level of liquid could not be measured when it exceeds the open end and the pump could remain dry. The open end can also be arranged at a height that is known to never be dry, such as in an aquifer.
En una variante de realización, estando la bomba sumergida y conectada a una tubería de impulsión para extraer agua del pozo, el tubo se extiende esencialmente adyacente a dicha tubería de impulsión, disminuyendo así errores tales como los debidos al juego del tubo o su elongación. In a variant embodiment, the pump being submerged and connected to a discharge pipe to extract water from the well, the tube extends essentially adjacent to said discharge pipe, thus reducing errors such as those due to the play of the tube or its elongation.
En una variante de realización, el tubo tiene una sección de 10x8 mm que permite que el sistema reaccione más rápido a la hora de responder ante cambios bruscos de nivel. También se prevé que el tubo pueda ser de sección menor, tal como de 6x4 mm que permite su introducción a través de un tubo piezométrico estrecho. Se da a conocer también que los medios de generación de gas a presión proporcionan una presión de gas de entre 3 y 10 bares, adecuados para proporcionar un caudal estable de entre 0,4 litros por minuto y 10 litros por minuto. In a variant embodiment, the tube has a section of 10x8 mm that allows the system to react faster when responding to sudden changes in level. It is also envisioned that the tube can be of a smaller section, such as 6x4 mm, which allows its introduction through a narrow piezometric tube. It is also known that the pressurized gas generating means provide a gas pressure of between 3 and 10 bars, suitable to provide a stable flow rate of between 0.4 liters per minute and 10 liters per minute.
Se describe también un procedimiento para la medida de nivel de líquido por burbujeo que puede realizarse en el sistema anteriormente descrito en que, estando inyectando en un pozo u otro continente de líquido un flujo regulado de gas, comprende un paso previo de calibración que comprende los pasos de registrar un primer valor de presión del flujo regulado de gas, por ejemplo mediante un sensor de presión, y asociarlo a un primer valor del nivel de líquido, para obtener una primera relación entre nivel y presión; registrar un segundo valor de presión del flujo regulado de gas, por ejemplo mediante un sensor de presión, y asociarlo a un segundo valor del nivel de líquido, para obtener una segunda relación entre nivel y presión; determinar una relación matemática entre dichas primera y segunda relación de nivel y presión; y los pasos posteriores de obtener valores del nivel de líquido a partir un valor instantáneo de presión del flujo regulado de gas mediante la relación matemática previamente determinada. Mediante el uso de dicha relación matemática, que puede ser una relación lineal cuando por ejemplo se toman solamente dos relaciones entre nivel y presión, se consigue obtener de manera precisa la medida del nivel de agua, eliminando los errores debidos a factores constantes del sistema y la diferencia de caudal que pueda inyectarse en el pozo debido a la variación del nivel de líquido. A method is also described for measuring the level of liquid by bubbling that can be carried out in the system described above in that, being injected into a well or another continent of liquid a regulated flow of gas, it comprises a previous calibration step comprising the steps of registering a first pressure value of the regulated gas flow, for example by means of a pressure sensor, and associating it with a first value of the liquid level, to obtain a first relationship between level and pressure; record a second pressure value of the regulated gas flow, for example by means of a pressure sensor, and associate it with a second value of the liquid level, to obtain a second relationship between level and pressure; determine a mathematical relationship between said first and second level and pressure relationship; and the subsequent steps of obtaining liquid level values from an instantaneous pressure value of the regulated gas flow through the previously determined mathematical relationship. By using this mathematical relationship, which can be a linear relationship when, for example, only two relations between level and pressure are taken, the measurement of the water level is obtained accurately, eliminating errors due to constant system factors and the difference in flow that can be injected into the well due to the variation of the liquid level.
Cuando se dispone de una bomba para la extracción del líquido almacenado, en el paso previo de calibración del procedimiento, el primer valor de presión del flujo regulado de gas se registra estando la bomba parada; mientras que el segundo valor de presión del flujo regulado de gas se registra estando la bomba en funcionamiento. De esta manera se consigue fácilmente registrar dos valores de presión a diferentes valores del nivel de líquido, minimizando además de los factores constantes del sistema y la diferencia de caudal que pueda inyectarse en el pozo debido a la variación del nivel de líquido, el error introducido por el efecto Venturi de succión o aspiración causado por el accionamiento de la bomba. En otra variante de realización, el flujo de gas constante se obtiene inyectando gas a presión en una cámara de entrada, provista de un conducto que la conecta con una cámara de medida, forzando el paso de dicho gas a través de al menos un paso angosto en relación con una sección de paso del conducto, limitando así el caudal de gas inyectado. Para limitar progresivamente el caudal de gas y evitar turbulencias, es preferible usar dos pasos angostos en serie, siendo preferiblemente el paso angosto aguas abajo menor o igual que paso angosto aguas arriba. When a pump is available for the extraction of the stored liquid, in the previous step of calibration of the procedure, the first value of Regulated gas flow pressure is recorded while the pump is stopped; while the second pressure value of the regulated gas flow is recorded while the pump is running. In this way, it is easy to record two pressure values at different values of the liquid level, minimizing in addition to the constant factors of the system and the difference in flow that can be injected into the well due to the variation of the liquid level, the error introduced by the Venturi suction or suction effect caused by the pump drive. In another variant embodiment, the constant gas flow is obtained by injecting pressurized gas into an inlet chamber, provided with a conduit that connects it with a measuring chamber, forcing said gas through at least one narrow passage in relation to a passage section of the duct, thus limiting the flow of injected gas. To progressively limit gas flow and avoid turbulence, it is preferable to use two narrow passages in series, preferably the narrow passage downstream is less than or equal to the narrow passage upstream.
Breve descripción de los dibujos Brief description of the drawings
Para complementar la descripción que se está realizando y con objeto de facilitar la comprensión de las características de la invención, se acompaña a la presente memoria descriptiva un juego de dibujos en los que, con carácter ilustrativo y no limitativo, se ha representado lo siguiente: La Fig. 1 muestra una sección del distribuidor neumático del sistema de la presente invención;  To complement the description that is being made and in order to facilitate the understanding of the characteristics of the invention, a set of drawings is attached to the present specification in which, for illustrative and non-limiting purposes, the following has been represented: Fig. 1 shows a section of the pneumatic distributor of the system of the present invention;
la Fig. 2 muestra el sistema para la medida de nivel de líquido por burbujeo con la bomba parada;  Fig. 2 shows the system for measuring liquid level by bubbling with the pump stopped;
la Fig. 3 muestra el sistema de la Fig. 2 con la bomba en funcionamiento; y  Fig. 3 shows the system of Fig. 2 with the pump running; Y
la Fig. 4 muestra la relación matemática para la lectura de nivel del sistema de las Figs. 2 y 3.  Fig. 4 shows the mathematical relationship for the system level reading of Figs. 2 and 3
Descripción detallada de los dibujos La Fig. 1 muestra una vista en sección del distribuidor 1 neumático del sistema 100 que se mostrará más adelante de la presente invención donde se puede observar que comprende una cámara de entrada 2, que pude tener una sección de un cuarto de pulgada, provista de medios de acoplamiento 3 de una entrada 4 de gas a presión, tal como un compresor que proporcione una presión constante al distribuidor 1 . El distribuidor 1 comprende además una cámara de medida 5 provista de medios de acoplamiento de una salida 6 de gas a flujo constante, por ejemplo un tubo 105 que se introducirá en un pozo para medir su nivel mediante la técnica conocida del burbujeo. Mediante el uso de este distribuidor 1 neumático, se consigue ventajosamente inyectar un caudal de gas, esencialmente constante, en dicho tubo que permitirá obtener una lectura precisa de la presión en el extremo de dicho tubo, como se detallará más adelante. Esta ventaja permite obtener medidas del nivel freático en continuo y así monitorizar el nivel de líquido. Detailed description of the drawings Fig. 1 shows a sectional view of the pneumatic distributor 1 of the system 100 that will be shown later in the present invention where it can be seen that it comprises an inlet chamber 2, which may have a quarter inch section, provided with coupling means 3 of a pressurized gas inlet 4, such as a compressor that provides constant pressure to distributor 1. The distributor 1 further comprises a measuring chamber 5 provided with coupling means of a constant flow gas outlet 6, for example a tube 105 that will be introduced into a well to measure its level by the known bubbling technique. By using this pneumatic distributor 1, it is advantageously possible to inject an essentially constant gas flow into said tube which will allow obtaining an accurate reading of the pressure at the end of said tube, as will be detailed below. This advantage allows continuous water table measurements to be obtained and thus monitor the liquid level.
Además, la cámara de medida 5 del distribuidor 1 está provista de un sensor de presión 7 del gas de la cámara de medida 5, dicho sensor de presión 7 está dispuesto en la pared de la cámara de medida 5 y permite medir la presión de la cámara de medida 5, que será proporcional a la presión en el extremo abierto 106 del tubo 105 conectado en su salida 6. De esta manera, midiendo la presión en la cámara de medida 5 se conseguirá obtener una lectura de la presión en el extremo abierto 106 del tubo 105 durante la fase de burbujeo, como se detallará más adelante. El distribuidor de presión 7 puede ser un sensor piezoresistivo, por ejemplo del tipo de galga extensiométrica provisto de una membrana de medida de fluorosilicona expuesta en la cámara de medida 5 y un circuito eléctrico, tal como un puente de Wheatstone. De este modo, la presión en la cámara de medida 5 se ejerce sobre la membrana de medida que causa un cambio de presión en dicha membrana, descompensando el puente, con lo que se obtiene un aumento de tensión en la salida del puente proporcional a la presión de la cámara de medida 5. Como se puede observar en la Fig. 1 , el distribuidor 1 neumático comprende además un conducto 8 de sección de 4,5 mm que comunica la cámara de entrada 2 con la cámara de medida 5, estando dicho conducto 8 provisto de un primer y un segundo regulador de caudal 9a, 9b encajados en dicho conducto 8 y provistos de respectivos pasos 10a, 10b angostos, quedando la cámara de entrada 4 y la cámara de medida 5 comunicadas solamente a través de dichos pasos angostos 10a, 10b. Los reguladores de caudal 9a, 9b pueden estar enclavados en el conducto 8 de modo conocido, por ejemplo a presión o mediante una rosca, de modo que la unión entre las paredes de los reguladores de caudal 9a, 9b y las paredes del conducto 8 sea estanca y se fuerce el paso del gas solamente a través de sus respectivos pasos angostos 10a, 10b. Dichos reguladores de caudal 9a, 9b pueden ser por ejemplo chiclés. El conducto 8 puede estar unido con la cámara de entrada 2 a través de un tramo estrecho, por ejemplo de sección de 2 mm, menor que la sección del conducto 8 y de la cámara de entrada 2. In addition, the measuring chamber 5 of the distributor 1 is provided with a pressure sensor 7 of the gas of the measuring chamber 5, said pressure sensor 7 is arranged on the wall of the measuring chamber 5 and allows measuring the pressure of the measuring chamber 5, which will be proportional to the pressure at the open end 106 of the tube 105 connected at its outlet 6. In this way, by measuring the pressure in the measuring chamber 5 it will be possible to obtain a pressure reading at the open end 106 of tube 105 during the bubbling phase, as will be detailed below. The pressure distributor 7 can be a piezoresistive sensor, for example of the type of strain gauge equipped with a fluorosilicone measuring membrane exposed in the measuring chamber 5 and an electrical circuit, such as a Wheatstone bridge. Thus, the pressure in the measuring chamber 5 is exerted on the measuring membrane that causes a change in pressure in said membrane, decompensing the bridge, thereby obtaining an increase in voltage at the output of the bridge proportional to the measuring chamber pressure 5. As can be seen in Fig. 1, the pneumatic distributor 1 further comprises a conduit 8 of 4.5 mm section that communicates the inlet chamber 2 with the measuring chamber 5, said conduit 8 being provided with a first and a second flow regulator 9a, 9b embedded in said duct 8 and provided with respective narrow passages 10a, 10b, the input chamber 4 and the measuring chamber 5 being communicated only through said narrow passages 10a, 10b. The flow regulators 9a, 9b can be interlocked in the conduit 8 in a known manner, for example under pressure or by means of a thread, so that the joint between the walls of the flow regulators 9a, 9b and the walls of the conduit 8 is seal and force the passage of gas only through their respective narrow passages 10a, 10b. Said flow regulators 9a, 9b can be for example chicles. The conduit 8 can be connected to the inlet chamber 2 through a narrow section, for example of a 2 mm section, smaller than the section of the conduit 8 and the inlet chamber 2.
Se observa que el diámetro de los pasos angostos 10a, 10b es muy inferior al diámetro del conducto 8, simplificando la construcción del distribuidor neumático 1 , que puede confeccionase en aluminio o similar, y en el que con posterioridad se incorporarán los reguladores de caudal que tendrán los pasos angostos adecuados. De este modo, los reguladores de caudal pueden fabricarse por separado. It is observed that the diameter of the narrow passages 10a, 10b is much smaller than the diameter of the duct 8, simplifying the construction of the pneumatic distributor 1, which can be made of aluminum or the like, and in which subsequently the flow regulators that They will have the right narrow steps. In this way, the flow regulators can be manufactured separately.
Tal y como muestra la Fig. 1 , los reguladores de caudal 9a, 9b quedan dispuestos en serie en el conducto, quedando la cámara de entrada 2 y la cámara de medida 5 comunicadas solamente a través de los respectivos pasos angostos 10a, 10b de los reguladores de caudal 9a, 9b. Se observa que el diámetro del paso angosto 10a del primer regulador de caudal 9a, más próximo a la cámara de entrada 2, es mayor o igual que el diámetro del paso angosto 10b del segundo regulador de caudal 9b, más próximo a la cámara de medida 5. De esta manera se consigue una reducción progresiva del caudal de gas inyectado en la cámara de entrada 4 que puede pasar a través de los sucesivos pasos angostos 10a, 10b, evitando turbulencias y consiguiendo así obtener un caudal de gas constante que permitirá obtener una lectura del nivel de líquido con precisión, como se describirá más adelante. Los espacios en el conducto 8 entre los reguladores de caudal 9a, 9b también sirven para reducir las turbulencias, por lo que el hecho de poner reguladores de caudal sucesivos con el mismo paso angosto es también ventajoso. As shown in Fig. 1, the flow regulators 9a, 9b are arranged in series in the duct, the inlet chamber 2 and the measuring chamber 5 being communicated only through the respective narrow passages 10a, 10b of the flow regulators 9a, 9b. It is noted that the diameter of the narrow passage 10a of the first flow regulator 9a, closer to the inlet chamber 2, is greater than or equal to the diameter of the narrow passage 10b of the second flow regulator 9b, closer to the measurement chamber 5. In this way, a progressive reduction of the gas flow injected into the inlet chamber 4 is achieved, which can pass through successive narrow passages 10a, 10b, avoiding turbulence and thus obtaining a constant gas flow that will allow obtaining a liquid level reading accurately, as will be described later. The spaces in the duct 8 between the flow regulators 9a, 9b also serve to reduce turbulence, whereby the fact of placing successive flow regulators with the same narrow passage is also advantageous.
Aunque en la variante mostrada en la Fig. 1 el distribuidor neumático 1 está provisto de dos reguladores de caudal, se prevé que pueda haber más reguladores de caudal, con sucesivos diámetros de pasos angostos iguales o cada vez menores, que permitirán obtener un caudal de gas constante todavía más estable. Podría incluso en una variante más simple y económica haber un único regulador de caudal, aunque en esta variante el caudal sería más inestable. Although in the variant shown in Fig. 1 the pneumatic distributor 1 is provided with two flow regulators, it is anticipated that there may be more flow regulators, with successive diameters of equal or lesser narrow passages, which will allow obtaining a flow rate of constant gas even more stable. In a simpler and cheaper variant, there could be a single flow regulator, although in this variant the flow would be more unstable.
Se ha observado que aplicando en la entrada 4 del distribuidor neumático 1 una presión de gas de entre 3 y 10 bares y utilizando dos reguladores de caudal 9a, 9b con diámetro interior del paso angosto 10a, 10b de entre 0.15 y 0.5 mm se obtiene un caudal estable adecuado para la medida de nivel de líquido por burbujeo. Concretamente, cuando tanto el primer como el segundo paso angosto 10a, 10b es de 0,5 mm se consigue un caudal estable de 10 litros por minuto y cuando el diámetro interior del primer paso angosto 10a del primer regulador de caudal 9a es de 0.5 mm y el diámetro interior del segundo paso angosto 10b del segundo regulador de caudal 9b es de 0.15 mm se consigue un caudal estable de 0,4 litros por minuto. Conviene observar que un exceso de caudal de aire ocasionaría un desequilibrio debido a la pérdida de carga en el tubo, por lo que si minimizamos al máximo el caudal de aire introducido por el tubo, al mismo tiempo estamos minimizando el error producido por la pérdida de carga. Es importante que el caudal de gas o aire que proporciona el distribuidor neumático 1 esté regulado, es decir, que este sea constante para un mismo nivel de líquido, para obtener mejor responsividad en la lectura del nivel de líquido frente a cambios de nivel del líquido. Esto permite poder realizar medidas en continuo y con suficiente resolución de la variación de dicho nivel del líquido, incluyendo los transitorios debidos al arranque o paro de la bomba 103. It has been observed that by applying a gas pressure of between 3 and 10 bar at the inlet 4 of the pneumatic distributor 1 and using two flow regulators 9a, 9b with inner diameter of the narrow passage 10a, 10b between 0.15 and 0.5 mm, a stable flow rate suitable for measuring liquid level by bubbling. Specifically, when both the first and second narrow pass 10a, 10b is 0.5 mm, a stable flow rate of 10 liters per minute is achieved and when the inside diameter of the first narrow pass 10a of the first flow regulator 9a is 0.5 mm and the inner diameter of the second narrow passage 10b of the second flow regulator 9b is 0.15 mm, a stable flow rate of 0.4 liters per minute is achieved. It should be noted that an excess of air flow would cause an imbalance due to the loss of load in the tube, so if we minimize the maximum air flow introduced by the tube, at the same time we are minimizing the error caused by the loss of load. It is important that the gas or air flow rate provided by the pneumatic distributor 1 is regulated, that is, that it is constant for the same liquid level, to obtain better responsiveness in the reading of the liquid level against changes in the liquid level. . This allows measurements to be made continuously and with sufficient resolution of the variation of said liquid level, including the transients due to the start or stop of the pump 103.
Se muestra en la Fig. 2 el sistema 100 para la medida de nivel de líquido por burbujeo que utiliza el distribuidor 1 neumático e incorpora además unos medios de generación de gas a presión 101 , generalmente un compresor de aire, conectados a la entrada 4 de gas a presión del distribuidor 1 neumático; unos medios de lectura 102 del nivel de líquido, conectados al sensor de presión 7 del distribuidor neumático; una bomba 103 para la extracción de líquido de un pozo 107, estando dicha bomba conectada a una tubería de impulsión 104; y un tubo 105 conectado a la salida 6 de gas a flujo constante del distribuidor 1 neumático y estando su extremo abierto 106 dispuesto a nivel de la bomba 103. Figure 100 shows the system 100 for measuring the level of liquid by bubbling that uses the pneumatic distributor 1 and also incorporates some pressurized gas generating means 101, generally an air compressor, connected to the pressurized gas inlet 4 of the pneumatic distributor 1; reading means 102 of the liquid level, connected to the pressure sensor 7 of the pneumatic distributor; a pump 103 for the extraction of liquid from a well 107, said pump being connected to a discharge pipe 104; and a tube 105 connected to the constant flow gas outlet 6 of the pneumatic distributor 1 and its open end 106 being arranged at the level of the pump 103.
Para la utilización del distribuidor 1 neumático en un sistema 100 para la medida por burbujeo, la presión de gas que se aplica en la entrada 4 mediante los medios de generación de gas a presión 101 debe ser superior al peso de la columna de agua a medir en el extremo abierto 106 del tubo 105, por lo que se podrá usar una presión de 3 bares para medir profundidades de hasta aproximadamente 30 metros, llegando hasta 10 bares para columna de agua de hasta aproximadamente 100 metros. Naturalmente, el sensor de presión 7 debe estar convenientemente dimensionado para medir dichas presiones. For the use of the pneumatic distributor 1 in a system 100 for the measurement by bubbling, the gas pressure that is applied at the inlet 4 by means of generating gas under pressure 101 must be greater than the weight of the water column to be measured at the open end 106 of the tube 105, whereby a pressure of 3 bars may be used to measure depths of up to about 30 meters, reaching up to 10 bars for a water column of up to about 100 meters. Naturally, the pressure sensor 7 must be conveniently sized to measure said pressures.
Cuanto mayor sea el caudal que se configure mediante los reguladores de caudal 9a, 9b en el distribuidor neumático 1 , el sistema 100 responderá con más rapidez a los cambios de nivel de líquido, pudiéndose apreciar por ejemplo los transitorios durante el arranque y paro de la bomba 103. Naturalmente, debe considerarse que cuanto mayor sea el caudal, más energía consumirán los medios de generación de gas a presión 101 para mantener la presión constante en la entrada 4 del distribuidor neumático 1 y más ruido harán. Por tanto, deberá buscarse un compromiso entre la responsividad del sistema 100 para la medida del nivel de líquido y el gasto energético y molestias que puedan causar debido al ruido de los medios de generación de gas a presión 101 en los diferentes escenarios en los que se desee monitorizar el nivel de líquido. Naturalmente, los medios de generación de gas a presión 101 deben inyectar gas totalmente limpio al distribuidor 1 neumático, ya que dicho gas acabará pasando a través del líquido del pozo 107 y no puede de ninguna manera contaminarlo con aceites o lubricantes. Por ejemplo los medios de generación de gas a presión 101 pueden ser un compresor de aire como por ejemplo de los conocidos para uso sanitario con un calderín de 25 litros y que permita suministrar aire en continuo al distribuidor 1 neumático. The higher the flow rate that is configured by means of the flow regulators 9a, 9b in the pneumatic distributor 1, the system 100 will respond more rapidly to the changes in liquid level, being able to appreciate, for example, the transients during the start and stop of the pump 103. Naturally, it should be considered that the higher the flow, the more energy the pressurized gas generating means 101 will consume to maintain the constant pressure at the inlet 4 of the pneumatic distributor 1 and the more noise they will make. Therefore, a compromise between the responsiveness of the system 100 for the measurement of the liquid level and the energy expenditure and discomforts that may be caused due to the noise of the pressurized gas generation means 101 in the different scenarios in which You want to monitor the liquid level. Naturally, the pressurized gas generating means 101 must inject completely clean gas into the pneumatic distributor 1, since said gas will end up passing through the liquid of the well 107 and cannot in any way contaminate it with oils or lubricants. For example, the means for generating pressurized gas 101 can be an air compressor such as those known for sanitary use. with a 25 liter boiler that allows continuous supply to the pneumatic distributor 1.
El sistema 100 permite medir el nivel de líquido por burbujeo tanto en pozos 107, como se ilustra en las Figs. 2 y 3, pero también podría utilizarse en acuíferos, embalses u otros continentes de líquido tales como depósitos. Aunque generalmente el líquido del que se querrá obtener el nivel es agua, el sistema 100 podría usarse para medir otros tipos de líquidos. Aunque la bomba 103 representada en las Figs. 2 y 3 es una bomba sumergida, también se contempla que la bomba no esté sumergida o incluso esté fuera del pozo 107, estando en estos casos la bomba provista de un tubo de succión que se introduciría en el líquido y que sería el que extraería el líquido al activarse la bomba. Cuando la bomba 107 no está sumergida, ésta podría ser tanto del tipo autoaspirante como del tipo bomba de caña. The system 100 allows the level of liquid to be measured by bubbling in wells 107, as illustrated in Figs. 2 and 3, but could also be used in aquifers, reservoirs or other continents of liquid such as deposits. Although generally the liquid from which one will want to obtain the level is water, the system 100 could be used to measure other types of liquids. Although the pump 103 depicted in Figs. 2 and 3 is a submerged pump, it is also contemplated that the pump is not submerged or even outside well 107, in these cases the pump provided with a suction tube that would be introduced into the liquid and that would be the one that would extract the liquid when the pump is activated. When the pump 107 is not submerged, it could be both the self-suction type and the cane pump type.
Para disponer de una buena estabilidad de la presión en la cámara de medida 5, además del hecho de regular el caudal que se consigue ventajosamente mediante el distribuidor 1 neumático, el tubo 105 debe tener una sección adecuada para evitar que las variaciones bruscas del nivel afecten a que se falsee momentáneamente la medida. In order to have a good pressure stability in the measuring chamber 5, in addition to regulating the flow that is advantageously achieved by the pneumatic distributor 1, the tube 105 must have a suitable section to prevent sudden variations in the level from affecting that the measure is momentarily missed.
El tubo 105 conectado a la salida 6 del distribuidor 1 se extiende esencialmente adyacente a la tubería de impulsión 104. Éste puede estar fabricado en poliamida, u otro material flexible y resistente que permita la conducción de gas, y tendrá una sección reducida para mejorar la responsividad y estabilidad de la medida, ésta puede ser por ejemplo de 10x8 mm o incluso menor, por ejemplo de 6x4 mm si es necesario para introducirse en el pozo a través de un tubo piezométrico. The tube 105 connected to the outlet 6 of the distributor 1 extends essentially adjacent to the discharge pipe 104. This can be made of polyamide, or other flexible and resistant material that allows gas conduction, and will have a reduced section to improve the Responsibility and stability of the measurement, this can be for example 10x8 mm or even smaller, for example 6x4 mm if necessary to enter the well through a piezometric tube.
Cuanto menor sea la sección de tubo 105, el sistema 100 responderá más rápido ante cambios bruscos de nivel, pero en contra, los errores producidos por perdida de carga e inestabilidad son elevados. Por el contario, cuanto mayor sea la sección de tubo 105 aunque el sistema 100 tendrá un bajo índice de error por perdidas de carga, será lento ante cambios bruscos de nivel y la estabilidad no sería la deseable. The smaller the section of tube 105, the system 100 will respond faster to sudden changes in level, but in contrast, errors caused by loss of load and instability are high. On the contrary, the larger the section of tube 105 although the system 100 will have a low error rate per Losses of load, will be slow before sudden changes in level and stability would not be desirable.
Se observa que el sistema 100 comprende también unos medios de lectura 102 del nivel de líquido, tales como un visualizador electrónico, que se encuentran conectados al sensor de presión 7 del distribuidor 1 neumático y permiten calcular, a partir del voltaje proporcionado por el sensor de presión proporcional a la presión P medida, la altura de la columna de líquido que se corresponde con el nivel de líquido L. Este nivel de líquido L puede mostrarse mediante una pantalla digital de dichos medios de lectura 102 o incluso simplemente mediante un manómetro analógico convenientemente graduado. It is noted that the system 100 also includes means for reading 102 of the liquid level, such as an electronic display, which are connected to the pressure sensor 7 of the pneumatic distributor 1 and allow calculation, based on the voltage provided by the sensor. pressure proportional to the measured pressure P, the height of the liquid column corresponding to the level of liquid L. This level of liquid L can be shown by a digital display of said reading means 102 or even simply by an analog pressure gauge conveniently graduate.
Naturalmente, el sistema 100 puede integrarse en dispositivos de control industrial como PLCs, SCADAS, etc., y transmitir el valor medido por el sensor de presión 7 a través de señal analógica normalizada (4-20 mA), señales digitales configurables para detección de nivel y mediante dispositivos de comunicación tales como puertos de comunicación serie Modbus y modem GPRS, para su envío y procesado en una estación remota. Se observa que el sistema 100 mostrado en las Figs. 2 y 3 comprende una bomba 103 dispuesta en el fondo del pozo 107 para extraer el agua contenida en dicho pozo 107 a través de la tubería de impulsión 104. Naturally, the system 100 can be integrated into industrial control devices such as PLCs, SCADAS, etc., and transmit the value measured by the pressure sensor 7 through standardized analog signal (4-20 mA), configurable digital signals for detection of level and by means of communication devices such as Modbus serial communication ports and GPRS modem, for sending and processing in a remote station. It is noted that the system 100 shown in Figs. 2 and 3 comprises a pump 103 arranged at the bottom of the well 107 to extract the water contained in said well 107 through the discharge pipe 104.
Ventajosamente, el distribuidor 1 neumático del sistema 100 permite inyectar un caudal de gas estable independientemente de que la bomba 103 esté parada, como se muestra en el Fig 2, o en funcionamiento, como se muestra en la Fig. 3. De esta manera es posible observar los transitorios en el nivel de líquido durante el arranque y parada de la bomba 103. No obstante, cuando la bomba 103 está en funcionamiento, la succión que ejerce la bomba 103 en el líquido afecta a la presión del extremo abierto 103 del tubo 105, al estar éste próximo a la bomba 103. Este hecho hace que la calibración que se pueda hacer del sistema 100 cuando la bomba 103 está parada -estático, no se corresponda a la calibración cuando la bomba 103 está en funcionamiento. De la misma manera, una calibración con la bomba 103 en funcionamiento - dinámico- no serviría para mediciones con la bomba parada. Advantageously, the pneumatic distributor 1 of the system 100 allows a stable gas flow to be injected regardless of whether the pump 103 is stopped, as shown in Fig. 2, or in operation, as shown in Fig. 3. In this way it is It is possible to observe the transients in the liquid level during the start and stop of the pump 103. However, when the pump 103 is in operation, the suction exerted by the pump 103 in the liquid affects the pressure of the open end 103 of the tube 105, being close to the pump 103. This fact means that the calibration that can be done of the system 100 when the pump 103 is stopped -static does not correspond to the calibration when the pump 103 is in operation. In the same way, a calibration with pump 103 running - dynamic - would not be used for measurements with the pump stopped.
Para disminuir los errores que se obtendrían con una calibración solamente en estático o en dinámico, se realiza la calibración del sistema 100 según se detalla a continuación. To reduce the errors that would be obtained with a static or dynamic calibration only, the calibration of system 100 is performed as detailed below.
Aunque esta calibración está especialmente recomendada para su uso con el distribuidor 1 neumático que inyecta un caudal constante en el pozo 107, también podría usarse con otros dispositivos de medida por burbujeo, por ejemplo aquellos que usan una válvula de regulación proporcional. También es posible realizar la calibración en pozos o continentes de líquido que no estén provistos de una bomba, como por ejemplo un embalse de agua, tomando medidas de presión a diferentes niveles de líquido. Although this calibration is especially recommended for use with the pneumatic distributor 1 that injects a constant flow into well 107, it could also be used with other bubbling measurement devices, for example those using a proportional regulating valve. It is also possible to perform calibration in wells or continents of liquid that are not provided with a pump, such as a water reservoir, taking pressure measurements at different liquid levels.
Para realizar una lectura del nivel de líquido mediante el sistema 100 se puede realizar una calibración para reducir o eliminar errores. Para esta calibración es necesario que estando el extremo abierto 106 del tubo 105 emitiendo un burbujeo, se sigan los pasos de realizar una primera lectura de presión P1 del sensor de presión 7 del distribuidor 1 neumático y asociarlo al nivel de líquido L1 en estático, es decir, estando la bomba 103 parada, por ejemplo mediante medios externos tales como tomando una medida manual de nivel mediante una sonda eléctrica calibrada. Así se obtiene una primera relación entre nivel y presión. A continuación se debe realizar una segunda lectura de presión P2 del sensor de presión 7 del distribuidor 1 neumático, y asociarlo al nivel de líquido L2 en dinámico, es decir, estando la bomba 103 en funcionamiento, por ejemplo también mediante medios externos tales una sonda eléctrica calibrada. Así se obtiene una segunda relación de nivel y presión. Naturalmente, el orden de obtener las relaciones, primero en estático y luego en dinámico, podría ser inverso. To perform a liquid level reading using system 100, calibration can be performed to reduce or eliminate errors. For this calibration it is necessary that with the open end 106 of the tube 105 emitting a bubbling, the steps of making a first pressure reading P1 of the pressure sensor 7 of the pneumatic distributor 1 and associating it with the liquid level L1 in static are followed. that is, the pump 103 being stopped, for example by external means such as taking a manual level measurement by means of a calibrated electrical probe. Thus a first relationship between level and pressure is obtained. Next, a second pressure reading P2 of the pressure sensor 7 of the pneumatic distributor 1 must be carried out and associated with the liquid level L2 in dynamic, that is, the pump 103 is in operation, for example also by external means such as a probe calibrated electrical Thus a second level and pressure ratio is obtained. Naturally, the order of obtaining the relationships, first in static and then in dynamic, could be inverse.
De esta manera se consigue una primera relación entre presión y nivel cuando la bomba 103 está parada y una segunda relación entre presión y nivel cuando la bomba 103 está funcionando, por lo que la distorsión de la presión en el extremo abierto 106 del tubo 105 creado por la succión de la bomba 103 sobre el peso de la columna de agua queda compensado. A partir de la primera y segunda relación de nivel y presión se puede calcular un modelo matemático r tal como la relación lineal mostrada en la Fig. 4 que se puede usar para calibrar los medios de lectura 102 del nivel de líquido. Mediante dicha relación lineal se consigue que, a partir de una lectura de la presión P de la cámara de medida 5, se pueda obtener el nivel de líquido L correspondiente con errores minimizados, tanto cuando la bomba 103 está parada o en funcionamiento, ya que dicha relación lineal minimiza el error causado por la succión causada por la bomba 103 cuando está en funcionamiento. Este procedimiento permite obtener las subsiguientes medidas del nivel de líquido que se midan mediante el sistema 100 simplemente a partir de lecturas de presión P del sensor de presión 7 usando dicha relación lineal. Naturalmente, si hubiera más relaciones entre nivel y presión se podría calcular otras relaciones matemáticas r, tales como tramos Este procedimiento de calibración y lectura permite, además de minimizar el error que produce la aspiración de la bomba 103, a la vez linealizar, y por tanto eliminar, los errores fijos del sistema 100, como los errores relacionados con el sensor de presión 7, tales como errores debidos a la temperatura ambiente, a la presión atmosférica, al efecto del offset del sensor, de repetitividad y linealidad. También permite eliminar los errores que afectan al sistema 100 debido al método de burbujeo, tales como el error por efecto del estiramiento del tubo 105 de medida, el error por efecto de la pérdida de carga, que varía en función del caudal, el error por el peso del aire dentro del tubo 105 de medida, aunque este sería prácticamente despreciable, e incluso los errores por efecto de temperatura y densidad del líquido. Mediante este procedimiento de lectura no es necesario saber previamente la densidad del líquido a medir, lo que es especialmente ventajoso cuando el líquido no es agua. In this way a first relationship between pressure and level is achieved when the pump 103 is stopped and a second relationship between pressure and level when the pump 103 is running, whereby the pressure distortion at the open end 106 of the tube 105 created by pump suction 103 over The weight of the water column is compensated. From the first and second level and pressure ratio a mathematical model r can be calculated such as the linear relationship shown in Fig. 4 that can be used to calibrate the reading means 102 of the liquid level. By means of said linear relationship it is achieved that, from a reading of the pressure P of the measuring chamber 5, the corresponding liquid level L can be obtained with minimized errors, both when the pump 103 is stopped or in operation, since said linear relationship minimizes the error caused by the suction caused by the pump 103 when it is in operation. This procedure makes it possible to obtain subsequent measurements of the liquid level that are measured by the system 100 simply from pressure readings P of the pressure sensor 7 using said linear relationship. Naturally, if there were more relationships between level and pressure, other mathematical relationships could be calculated r, such as sections. This calibration and reading procedure allows, in addition to minimizing the error produced by the aspiration of the pump 103, at the same time linearizing, and both eliminate, the fixed errors of the system 100, as the errors related to the pressure sensor 7, such as errors due to the ambient temperature, the atmospheric pressure, the effect of the sensor offset, repeatability and linearity. It also allows eliminating the errors that affect the system 100 due to the bubbling method, such as the error due to the stretching of the measuring tube 105, the error due to the loss of load, which varies according to the flow rate, the error due to the weight of the air inside the measuring tube 105, although this would be practically negligible, and even the errors due to the effect of temperature and density of the liquid. Through this reading procedure it is not necessary to know in advance the density of the liquid to be measured, which is especially advantageous when the liquid is not water.

Claims

R E I V I N D I C A C I O N E S  R E I V I N D I C A C I O N E S
~\ - Sistema (100) para la medida por burbujeo de nivel de líquido en un pozo (107) u otro continente de líquido que comprende a. un distribuidor (1 ) neumático interpuesto entre unos medios de generación de gas a presión (101 ) y un tubo (105), para regular el caudal de gas inyectado en el pozo; ~ \ - System (100) for measuring liquid level bubbling in a well (107) or another continent of liquid comprising a. a pneumatic distributor (1) interposed between a means of generating pressurized gas (101) and a tube (105), to regulate the flow of gas injected into the well;
b. un sensor de presión (7) para detectar la presión del gas inyectado en el pozo;  b. a pressure sensor (7) to detect the pressure of the gas injected into the well;
c. unos medios programables (102) de lectura del nivel de líquido del pozo, conectados al sensor de presión (7); caracterizado por que los medios programables de lectura del nivel de líquido están adaptados para registrar un primer valor de presión (P1 ) del sensor de presión y asociarlo a un primer valor del nivel de líquido (L1 ); registrar un segundo valor de presión (P2) del sensor de presión y asociarlo a un segundo valor del nivel de líquido (L2) para obtener subsiguientes lecturas automáticas de nivel (L) a partir de un valor instantáneo de presión (P) proporcionado por el sensor de presión mediante un modelo matemático (r) calculado entre dichas primera y segunda relación de nivel y presión.  C. programmable means (102) for reading the liquid level of the well, connected to the pressure sensor (7); characterized in that the programmable means for reading the liquid level are adapted to record a first pressure value (P1) of the pressure sensor and associate it with a first value of the liquid level (L1); record a second pressure value (P2) of the pressure sensor and associate it with a second liquid level value (L2) to obtain subsequent automatic level readings (L) from an instantaneous pressure value (P) provided by the pressure sensor using a mathematical model (r) calculated between said first and second level and pressure ratio.
2.- Sistema (100) según la reivindicación anterior, caracterizado por que, estando dicho sistema equipado con una bomba (103), los medios programables de lectura del nivel de líquido están adaptados para registrar el primer valor de presión (P1 ) del sensor de presión estando la bomba parada y asociarlo a un primer valor del nivel de líquido (L1 ); registrar el segundo valor de presión (P2) del sensor de presión estando la bomba en funcionamiento y asociarlo a un segundo valor del nivel de líquido (L2) para obtener subsiguientes lecturas automáticas de nivel (L) a partir de un valor instantáneo de presión (P) proporcionado por el sensor de presión mediante un modelo matemático (r) calculado entre dichas primera y segunda relación de nivel y presión. 2. System (100) according to the preceding claim, characterized in that said system being equipped with a pump (103), the programmable means for reading the liquid level are adapted to record the first pressure value (P1) of the sensor pressure while the pump is stopped and associate it with a first liquid level value (L1); record the second pressure value (P2) of the pressure sensor while the pump is running and associate it with a second liquid level value (L2) to obtain subsequent automatic level readings (L) from an instantaneous pressure value ( P) provided by the pressure sensor through a mathematical model (r) calculated between said first and second level and pressure ratio.
3.- Sistema (100) según una cualquiera de las reivindicaciones anteriores, caracterizado por que el modelo matemático que los medios programables están adaptados para calcular es una relación lineal. 3. System (100) according to any one of the preceding claims, characterized in that the mathematical model that the programmable means are adapted to calculate is a linear relationship.
4.- Sistema (100) según una cualquiera de las reivindicaciones anteriores, caracterizado por que el distribuidor (1 ) neumático comprende a. una cámara de entrada (2) con una entrada (4) provista de medios de acoplamiento (3) a unos medios de generación de gas a presión (101 ); 4. System (100) according to any one of the preceding claims, characterized in that the pneumatic distributor (1) comprises a. an inlet chamber (2) with an inlet (4) provided with coupling means (3) to pressurized gas generating means (101);
b. una cámara de medida (5) con una salida (6) provista de medios de acoplamiento al tubo (105);  b. a measuring chamber (5) with an outlet (6) provided with coupling means to the tube (105);
c. un conducto (8) que comunica la cámara de entrada con la cámara de medida, provisto de al menos un regulador de caudal (9a, 9b) encajado en dicho conducto y que determina un paso (10a, 10b) angosto en relación con una sección de paso del conducto.  C. a conduit (8) that communicates the inlet chamber with the measuring chamber, provided with at least one flow regulator (9a, 9b) embedded in said conduit and determining a narrow passage (10a, 10b) in relation to a section of passage of the duct.
5.- Sistema (100) según la reivindicación anterior, caracterizado por que el conducto (8) está provisto de dos reguladores de caudal (9a, 9b) en serie que determinan sendos pasos (10a, 10b) angostos, siendo la sección de paso del paso (10a) del regulador de caudal (9a) más próximo a la cámara de entrada mayor o igual que la sección de paso del paso (10b) del regulador de caudal (9b) más próximo a la cámara de medida. 5. System (100) according to the preceding claim, characterized in that the duct (8) is provided with two flow regulators (9a, 9b) in series that determine two narrow passages (10a, 10b), the passage section being of the passage (10a) of the flow regulator (9a) closest to the inlet chamber greater than or equal to the passage section of the passage (10b) of the flow regulator (9b) closest to the measurement chamber.
6. - Sistema (100) según la reivindicación anterior, caracterizado por que la sección de paso de los pasos (10a, 10b) de los reguladores de caudal (9a, 9b) equivale a la de una sección circular de radio entre 0.1 y 0,8 mm. 6. - System (100) according to the preceding claim, characterized in that the step section of the passages (10a, 10b) of the flow regulators (9a, 9b) is equivalent to that of a circular section of radius between 0.1 and 0 , 8 mm.
7. - Sistema (100) según la reivindicación anterior, caracterizado por que la sección de paso del paso (10a) del regulador de caudal (9a) más próximo a la cámara de entrada (2) equivale a la de una sección circular de 0.5mm y el diámetro de la sección del paso (10b) del regulador de caudal (9b) más próximo a la cámara de medida (5) equivale a la de una sección circular de 0.15 mm. 7. - System (100) according to the preceding claim, characterized in that the passage section of the passage (10a) of the flow regulator (9a) closest to the inlet chamber (2) is equivalent to that of a circular section of 0.5 mm and the diameter of the passage section (10b) of the flow regulator (9b) closest to the measuring chamber (5) is equivalent to that of a circular section of 0.15 mm.
8. - Sistema (100) según la reivindicación 6, caracterizado por que la sección de paso del paso (10a, 10b) de los reguladores de caudal (9a, 9b) equivale a la de una sección circular de 0.5mm. 8. - System (100) according to claim 6, characterized in that the passage passage section (10a, 10b) of the flow regulators (9a, 9b) is equivalent to that of a 0.5mm circular section.
9. - Sistema (100) según una cualquiera de las reivindicaciones 3 a 7, caracterizado por que los reguladores de caudal (9a, 9b) son chiclés encajados en el conducto (8). 9. - System (100) according to any one of claims 3 to 7, characterized in that the flow regulators (9a, 9b) are chicles embedded in the conduit (8).
10.- Sistema (100) según una cualquiera de las reivindicaciones 4 a 9, caracterizado por que el sensor de presión (7) está adaptado para obtener el valor de presión de la cámara de medida (5). 10. System (100) according to any one of claims 4 to 9, characterized in that the pressure sensor (7) is adapted to obtain the pressure value of the measuring chamber (5).
1 1. - Sistema (100) según una cualquiera de las reivindicaciones anteriores, caracterizado por que el sensor de presión (7) es un sensor piezoresistivo. 1 1. - System (100) according to any one of the preceding claims, characterized in that the pressure sensor (7) is a piezoresistive sensor.
12. - Sistema (100) según una cualquiera de las reivindicaciones 2 a 1 1 , caracterizado por que, cuando el sistema está provisto de una bomba (103), el extremo abierto (106) del tubo (105) está dispuesto a nivel de la bomba. 12. - System (100) according to any one of claims 2 to 1 1, characterized in that, when the system is provided with a pump (103), the open end (106) of the tube (105) is arranged at the level of the bomb.
13. - Sistema (100) según una cualquiera de las reivindicaciones 2 a 1 1 , caracterizado por que, cuando el sistema está provisto de una bomba (103), dicha bomba (103) está sumergida y conectada a una tubería de impulsión (104) para extraer agua del pozo (107) y el tubo (105) se extiende esencialmente adyacente a dicha tubería de impulsión. 13. - System (100) according to any one of claims 2 to 1 1, characterized in that, when the system is provided with a pump (103), said pump (103) is submerged and connected to a discharge pipe (104 ) to extract water from the well (107) and the tube (105) extends essentially adjacent to said discharge pipe.
14.- Sistema (100) según una cualquiera de las reivindicaciones anteriores, caracterizado por que el tubo (105) tiene una sección de 10x8 mm.. 14. System (100) according to any one of the preceding claims, characterized in that the tube (105) has a section of 10x8 mm.
15.- Sistema (100) según una cualquiera de las reivindicaciones 1 a 13, caracterizado por que el tubo (105) tiene una sección de 6x4 mm.. 15. System (100) according to any one of claims 1 to 13, characterized in that the tube (105) has a section of 6x4 mm.
16.- Sistema (100) según una cualquiera de las reivindicaciones anteriores, caracterizado por que los medios de generación de gas a presión (101 ) proporcionan una presión de gas de entre 3 y 10 bares al distribuidor (1 ) neumático. 16. System (100) according to any one of the preceding claims, characterized in that the pressurized gas generation means (101) provide a gas pressure of between 3 and 10 bars to the pneumatic distributor (1).
17.- Procedimiento para la medida por burbujeo de nivel de líquido en un pozo (107) u otro continente de líquido, caracterizado por que, estando inyectando en el pozo u otro continente de líquido un flujo regulado de gas, comprende un paso previo de calibración que comprende los pasos de: a. registrar un primer valor de presión (P1 ) de la presión del gas inyectado y asociarlo a un primer valor del nivel de líquido (L1 ) para obtener una primera relación entre nivel y presión, b. registrar un segundo valor de presión (P2) de la presión del gas inyectado y asociarlo a un segundo valor del nivel de líquido (L2), para obtener una segunda relación entre nivel y presión, c. determinar una relación matemática (r) entre dichas primera y segunda relación de nivel y presión; y posteriores pasos para obtener valores del nivel de líquido (L) a partir un valor de presión (P) de la presión del gas inyectado mediante la relación lineal previamente determinada. 17.- Procedure for the measurement by bubbling of liquid level in a well (107) or another continent of liquid, characterized in that, being injecting in the well or another continent of liquid a regulated flow of gas, comprises a previous step of Calibration comprising the steps of: a. record a first pressure value (P1) of the injected gas pressure and associate it with a first liquid level value (L1) to obtain a first relationship between level and pressure, b. record a second pressure value (P2) of the injected gas pressure and associate it with a second liquid level value (L2), to obtain a second relationship between level and pressure, c. determine a mathematical relationship (r) between said first and second level and pressure relationship; and subsequent steps to obtain liquid level values (L) from a pressure value (P) of the pressure of the injected gas through the previously determined linear relationship.
18.- Procedimiento según la reivindicación anterior, caracterizado por que estando el pozo provisto de una bomba (103), el primer valor de presión (P1 ) se registra estando la bomba parada y el segundo valor de presión (P2) se registra estando la bomba en funcionamiento. 18. Method according to the preceding claim, characterized in that the well being provided with a pump (103), the first pressure value (P1) is registered while the pump is stopped and the second pressure value (P2) is registered while the pump running.
19.- Procedimiento según la reivindicación 17 o 18, caracterizado porque la relación matemática es una relación lineal. 19. Method according to claim 17 or 18, characterized in that the mathematical relationship is a linear relationship.
20. - Procedimiento según una cualquiera de las reivindicaciones 17 a 19, caracterizado por que el flujo de gas constante se obtiene inyectando gas a presión en una cámara de entrada 4, provista de un conducto 8 que la conecta con una cámara de medida 5, forzando el paso de dicho gas a través de al menos un paso (10a, 10b) angosto en relación con una sección de paso del conducto. 20. - Method according to any one of claims 17 to 19, characterized in that the constant gas flow is obtained by injecting gas under pressure into an inlet chamber 4, provided with a conduit 8 that connects it with a measuring chamber 5, forcing the passage of said gas through at least one narrow passage (10a, 10b) in relation to a passage section of the conduit.
21. - Procedimiento según la reivindicación anterior, caracterizado por que el paso de gas se fuerza a través de dos pasos (10a, 10b) angostos en relación con una sección de paso del conducto. 21. - Method according to the preceding claim, characterized in that the gas passage is forced through two narrow passages (10a, 10b) in relation with a passage section of the duct.
PCT/ES2015/070243 2014-04-03 2015-03-30 System and method for liquid level measurement using a bubbler WO2015150606A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201430493 2014-04-03
ES201430493A ES2547362B1 (en) 2014-04-03 2014-04-03 System and procedure for measuring liquid level bubbling

Publications (1)

Publication Number Publication Date
WO2015150606A1 true WO2015150606A1 (en) 2015-10-08

Family

ID=53177502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2015/070243 WO2015150606A1 (en) 2014-04-03 2015-03-30 System and method for liquid level measurement using a bubbler

Country Status (2)

Country Link
ES (1) ES2547362B1 (en)
WO (1) WO2015150606A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4669308A (en) * 1985-04-09 1987-06-02 Jorritsma Johannes N Method and apparatus for determining liquid flow rates
US5347863A (en) * 1993-07-02 1994-09-20 Richard Clarence N Asphalt oil tank monitor
US5791187A (en) 1995-07-10 1998-08-11 Changmin Co., Ltd. Level measurement method using measurements of water column pressure therefor
EP0882974A1 (en) 1997-06-02 1998-12-09 Compagnie Generale Des Matieres Nucleaires Device and procedure for determining the level and the density of a liquid in a tub, by means of a single bubble plunger tube
US20030110856A1 (en) 2001-10-15 2003-06-19 Su Tyan Khak Bubble water depth measuring method and system thereof
EP1366342A1 (en) 2001-03-08 2003-12-03 Hydro-Quebec Bubble level meter and related method
US20120203478A1 (en) * 2011-02-04 2012-08-09 Smaidris Thomas F Liquid level determination system and associated methods
US20130054159A1 (en) * 2011-08-31 2013-02-28 E. Strode Pennebaker Wireless tank level monitoring system
WO2013162453A1 (en) * 2012-04-23 2013-10-31 Kockum Sonics Ab A liquid level measurement apparatus, arrangement and method using bubble measurement

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4669308A (en) * 1985-04-09 1987-06-02 Jorritsma Johannes N Method and apparatus for determining liquid flow rates
US5347863A (en) * 1993-07-02 1994-09-20 Richard Clarence N Asphalt oil tank monitor
US5791187A (en) 1995-07-10 1998-08-11 Changmin Co., Ltd. Level measurement method using measurements of water column pressure therefor
EP0882974A1 (en) 1997-06-02 1998-12-09 Compagnie Generale Des Matieres Nucleaires Device and procedure for determining the level and the density of a liquid in a tub, by means of a single bubble plunger tube
EP1366342A1 (en) 2001-03-08 2003-12-03 Hydro-Quebec Bubble level meter and related method
US20030110856A1 (en) 2001-10-15 2003-06-19 Su Tyan Khak Bubble water depth measuring method and system thereof
US20120203478A1 (en) * 2011-02-04 2012-08-09 Smaidris Thomas F Liquid level determination system and associated methods
US20130054159A1 (en) * 2011-08-31 2013-02-28 E. Strode Pennebaker Wireless tank level monitoring system
WO2013162453A1 (en) * 2012-04-23 2013-10-31 Kockum Sonics Ab A liquid level measurement apparatus, arrangement and method using bubble measurement

Also Published As

Publication number Publication date
ES2547362B1 (en) 2016-06-28
ES2547362A1 (en) 2015-10-05

Similar Documents

Publication Publication Date Title
US7263448B2 (en) Continuous flow chemical metering apparatus
ES2913770T3 (en) Device and method for determining the size of a leak hole
CN104135706B (en) Direct press type airtight detecting apparatus
US5406828A (en) Method and apparatus for pressure and level transmission and sensing
CN102486391A (en) Bubble type automatic proportion correction liquid level meter
CN101458144B (en) Direction gage calibration device
US4052903A (en) Pressure sensor
US3831448A (en) Manometer and pitot tube probe
ES2547362B1 (en) System and procedure for measuring liquid level bubbling
CN102252736B (en) Constant-pressure liquid source device containing overflow groove in pressure container
CN104132707A (en) Calibration system and method for volume of closed container
CN104748903B (en) Liquid-gas conversion pressure measurement device and pressure measurement device with synchronous electrical measurement and digital display for tests
CN114252119A (en) High-precision ultralow-flow bubble flow instrument and flow calibration method
CN205192681U (en) A water pressure and an atmospheric pressure conversion pressure regulating section of thick bamboo
CN207763880U (en) A kind of instrument for calibrating pressure measuring meter peculiar to vessel
CN204514523U (en) Liquid gas shift pressure tester and the experiment pressure tester being with simultaneous electrical measurement digital display
US8707779B2 (en) Internal liquid measurement and monitoring system for a three phase separator
CN204516182U (en) A kind of row's formula pressure tester with touring electrical measurement digital display
AU2001290187B2 (en) Method and apparatus for determining the volume of liquid in a reservoir
CN219284571U (en) Dynamic explosion pressure verification device of explosion-proof test system
CN104751710B (en) A kind of row's formula pressure tester of the touring electrical measurement digital display of band
CN204085616U (en) A kind of volumetric calibration system of closed container
ES2406386B1 (en) System for determining the permeability of a material to a gas
RU2513633C1 (en) Liquid pressure sensor
CN103411724A (en) Method for measuring pressure of constant-volume quick inflation/deflation air cavity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15722555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15722555

Country of ref document: EP

Kind code of ref document: A1