WO2015150550A1 - Procede de fabrication d'un bloc de construction composite isolant - Google Patents

Procede de fabrication d'un bloc de construction composite isolant Download PDF

Info

Publication number
WO2015150550A1
WO2015150550A1 PCT/EP2015/057388 EP2015057388W WO2015150550A1 WO 2015150550 A1 WO2015150550 A1 WO 2015150550A1 EP 2015057388 W EP2015057388 W EP 2015057388W WO 2015150550 A1 WO2015150550 A1 WO 2015150550A1
Authority
WO
WIPO (PCT)
Prior art keywords
block
mineral
cement
foam
water
Prior art date
Application number
PCT/EP2015/057388
Other languages
English (en)
Inventor
Hélène LOMBOIS-BURGER
Cédric ROY
Christophe Levy
Original Assignee
Lafarge
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to MX2016012721A priority Critical patent/MX2016012721A/es
Priority to PL15714498T priority patent/PL3126588T3/pl
Priority to AU2015239093A priority patent/AU2015239093B2/en
Priority to CN201580025342.1A priority patent/CN106458773A/zh
Priority to US15/300,855 priority patent/US10040726B2/en
Priority to MDA20160119A priority patent/MD20160119A2/ro
Application filed by Lafarge filed Critical Lafarge
Priority to SG11201608216RA priority patent/SG11201608216RA/en
Priority to EP15714498.1A priority patent/EP3126588B1/fr
Priority to EA201691880A priority patent/EA201691880A1/ru
Priority to CA2944257A priority patent/CA2944257A1/fr
Publication of WO2015150550A1 publication Critical patent/WO2015150550A1/fr
Priority to PH12016501961A priority patent/PH12016501961A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/10Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by using foaming agents or by using mechanical means, e.g. adding preformed foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/22Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to internal surfaces, e.g. of tubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0016Granular materials, e.g. microballoons
    • C04B20/002Hollow or porous granular materials
    • C04B20/0024Hollow or porous granular materials expanded in situ, i.e. the material is expanded or made hollow after primary shaping of the mortar, concrete or artificial stone mixture
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/02Portland cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/14Cements containing slag
    • C04B7/147Metallurgical slag
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C1/00Building elements of block or other shape for the construction of parts of buildings
    • E04C1/40Building elements of block or other shape for the construction of parts of buildings built-up from parts of different materials, e.g. composed of layers of different materials or stones with filling material or with insulating inserts
    • E04C1/41Building elements of block or other shape for the construction of parts of buildings built-up from parts of different materials, e.g. composed of layers of different materials or stones with filling material or with insulating inserts composed of insulating material and load-bearing concrete, stone or stone-like material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2259/00Applying the material to the internal surface of hollow articles other than tubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00215Mortar or concrete mixtures defined by their oxide composition
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00293Materials impermeable to liquids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials
    • C04B2111/00517Coating or impregnation materials for masonry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00663Uses not provided for elsewhere in C04B2111/00 as filling material for cavities or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00663Uses not provided for elsewhere in C04B2111/00 as filling material for cavities or the like
    • C04B2111/00698Uses not provided for elsewhere in C04B2111/00 as filling material for cavities or the like for cavity walls
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/10Compositions or ingredients thereof characterised by the absence or the very low content of a specific material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/10Compositions or ingredients thereof characterised by the absence or the very low content of a specific material
    • C04B2111/1037Cement free compositions, e.g. hydraulically hardening mixtures based on waste materials, not containing cement as such
    • C04B2111/1043Calciumaluminate-free refractories
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/10Compositions or ingredients thereof characterised by the absence or the very low content of a specific material
    • C04B2111/105Alumina-free or very low alumina-content materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/27Water resistance, i.e. waterproof or water-repellent materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/40Porous or lightweight materials

Definitions

  • the present invention relates to a method of manufacturing a masonry element, or a masonry block, in particular a composite insulating building block, and the element or block obtained by said method.
  • Bare concrete blocks are widely used building blocks, the material being one of the most economical to purchase. Its thermal insulation properties however remain limited. To improve its thermal properties, concrete blocks can be lightened by lightening concrete. Furthermore, they can be molded so as to include internal cavities or voids so as to benefit from the insulating properties of the air. In this case the cells must be small, for example elongated cells whose thickness does not exceed 2 cm. Such blocks, however, are more difficult to manufacture and use a larger amount of raw material.
  • Insulating materials have been placed inside the cells of lightweight concrete blocks to improve the thermal resistance of these building blocks, thereby creating composite insulating blocks.
  • mineral wool, glass wool or polystyrene inside lightweight concrete blocks.
  • the manufacturing process is however uneconomical and / or complex.
  • Fast setting foams in particular calcium aluminate cement based foams, are economically unattractive and difficult to use in an industrial process because of their rapid setting (fouling phenomenon).
  • the object of the invention is to remedy these drawbacks by providing a method for manufacturing a composite insulating mineral block comprising the following steps:
  • a) having a mineral block for masonry comprising at least one cell having walls having a water absorption rate of less than 5 g / (m 2 .s) at 10 minutes, and
  • the mineral cement foam does not substantially comprise quick setting cement.
  • the walls of the cell of the mineral block to be masonry may be a single wall (for example circular).
  • the method according to the invention allows the continuous or semi-continuous filling of the cavities of the mineral block to be built by the mineral cement foam. This is particularly well suited to factory production on a production line, where the blocks are produced continuously or semi-continuously.
  • the process according to the invention makes it possible to maintain a stability of the foam in the mineral block to be formed, that is to say that the foam does not collapse.
  • the process according to the invention makes it possible to completely fill the cell of the block with little or no deformation on the surface of the foam, in particular little or no concave deformations.
  • the process according to the invention makes it possible to obtain a composite insulating mineral block whose mineral cement foam adheres durably to the walls of the cell of the block. Indeed this mineral filling foam does not come off the walls under customary conditions of use, even when the block is returned and shaken.
  • the method according to the invention makes it possible to maintain a cohesion of the block and the foam. This means that the foam does not destabilize.
  • substantially not refers to a composition that does not include a sufficient amount of compound for its presence to have actual effects on the setting of the foam. Thus the presence of less than about 5% by weight of the dry mixture, or traces of this compound will not affect substantially the setting of the foam and such a quantity can therefore be in the composition without it actually understands this compound.
  • Alveolus a hollow, a cavity, a void or an excavation present on the surface or inside the block. This is a structural vacuum. This cell has walls, intended to come into contact with the mineral cement foam.
  • Brick is a rectangular parallelepiped, raw clay soil, sun-dried or baked, used as a building material. Clay is often mixed with sand. The brick has one or more cells.
  • composite describes the association of a building block comprising a or several structural voids, preferably through, at least one, and preferably all, are filled with a mineral material whose structure or composition is different from that of said block.
  • Concrete a mixture of a cement, with water, possibly aggregates and / or admixtures in accordance with the EN 934-2 standard of September 2002, and possibly additions.
  • the expression "concrete” denotes indistinctly a composition in the fresh or hardened state.
  • the concrete may be a cement slurry, a mortar, a concrete or a lime slurry.
  • the concrete is a mortar or a concrete.
  • Lightweight concrete Light concretes are obtained by playing on the structure (cavernous concretes) or on the use of light aggregates (such as pumice aggregates, expanded shale, expanded clay or polystyrene, or even particles of cork or wood). Adjuvants such as air entrainers can also be added for maximum relief.
  • the lightweight concretes of the blocks according to the invention offer a density much lower than that of a conventional product, these densities being from 300 to 1800 kg / m 3 .
  • a cement is a hydraulic binder comprising a proportion at least equal to 50% by weight of calcium oxide (CaO) and silicon dioxide (SiO 2). These quantities being determined by the EN 196-2 standard of April 2006.
  • the cements that can be used to produce either the mineral foams or the cell blocks can be selected from the cements described in the NF-EN197 standard. -1 of February 2001, in particular being cements CEM I, CEM II, CEM III, CEM IV, or CEM V.
  • the cement mainly comprises Portland cement, such as CEM I.
  • the cements not suitable according to the invention for producing the mineral foam are calcium aluminate cements or their mixtures.
  • Calcium aluminate cements are cements generally comprising a C 4 A 3 , CA, C 12 A 7 , C 3 A or C n A 7 CaF 2 mineral phase or mixtures thereof, such as, for example, Ciments Fondu ® , sulphoaluminous cements, Calcium aluminate cements in accordance with European Standard NF EN 14647 of December 2006. Such cements are characterized by an alumina content (Al 2 O 3 ) greater than or equal to 35% by mass.
  • the alumina content of the dry mineral compound used to make the foam is less than 35% by weight of the dry mineral compound. This content is preferably less than or equal to 30%, advantageously less than or equal to 20%, more advantageously less than or equal to at 15%, and even more advantageously less than or equal to 10% by weight of the dry compound.
  • Hydraulic Binder Material that takes and hardens by hydration.
  • the setting is the transition from liquid or pasty state to solid state.
  • the setting is followed or accompanied by a hardening phenomenon where the material acquires mechanical properties. Hardening usually occurs after the end of setting, especially for cements.
  • Dairy for example as defined in standard NF EN 197-1 of February 2001, paragraph 5.2.2, or it is a co-product of the metallurgy containing metal oxides, mainly silicates, aluminates and lime.
  • mineral foam refers to a complex medium mixture comprising a hydraulic binder, especially cement, mixed with gas bubbles, usually air.
  • the term "sufficiently moist” means a degree of moisture sufficient to prevent the retraction of the foam during hydration (ie setting) and drying. This moisture content may be generally that of fresh concrete blocks at the end of the demoulding. Alternatively, in the case of blocks taken and / or hardened, this moisture content can be achieved by the addition of water, especially by soaking or watering, until saturation of the block.
  • water-repellent material refers to a material that prevents the transfer of a quantity of water adequately. For example, sufficient water repellency is achieved when a drop of water deposited on the surface of the material has a contact angle greater than 90 °.
  • the mineral block to be used in step a) of the process of the invention comprises at least one cell having walls having a water absorption rate of less than 5 g / (m 2 ⁇ s) at 10 minutes. preferably from less than 4 g / (m 2 ⁇ s) to 10 minutes, still more preferably from less than 3 g / (m 2 ⁇ s) to 10 minutes.
  • the rate of water absorption is measured according to standard NF EN 772-1 1 of August 2011.
  • the walls of the cell may also in some cases have an absorption rate of almost zero, or close to 0 g / (m 2 .s) at 10 minutes. In this case, the walls are either saturated with water and can no longer absorb water or they are impermeable to water (for example by water repellency). In both cases, there is little or no water transfer via the wall.
  • the mineral block to be used in step a) of the process of the invention may be in the fresh state or sufficiently wet.
  • This block can hold a certain amount of water before the foam mineral cement is introduced into the cells.
  • the mineral block to be masonry may be a block already formed and hardened, and it will be sufficiently wet or humidified. This humidification can be carried out by adding water to this block, for example by soaking, watering or spraying.
  • This block in the fresh state or sufficiently wet or humidified comprises at least one cell having walls having a water absorption rate of less than 5 g / (m 2 .s) to 10 minutes, preferably less than 4 g / (m 2 ⁇ s) at 10 minutes, still more preferably less than 3 g / (m 2 ⁇ s) at 10 minutes.
  • the rate of water absorption is measured according to standard NF EN 772-11 of August 2011.
  • the moisture can come from the absence of drying during the manufacture of the block.
  • the block is obtained from the shaping of an aqueous paste (for example based on clay (brick), lime or Portland cement)
  • the mineral cement foam can advantageously be introduced into the cells before the block is taken and / or hardened.
  • This method of manufacture is very advantageous since it saves time by combining curing and humidification steps as well as avoiding additional steps for manipulating the blocks.
  • the method according to the invention may advantageously include the use of a block whose concrete is in the fresh state during step b), in particular a fresh lightweight concrete block.
  • the mineral block to be used in step a) of the process of the invention is preferably in the fresh state.
  • the block material is in the fresh state, that is, the block is not taken and / or hardened.
  • the fresh block is usually a just shaped or molded block. In this case, the block is just formed or molded and the hydration of the cement is in progress.
  • the amount of water contained in just formed blocks is particularly suitable for the presence of cement mineral foam.
  • the manufacturing method comprises a step of forming the block (for example a molding step).
  • This step of forming the block is a variant of step a) and it can be followed either immediately or in a short period of time in step b) of filling the cell or cells of the block. It is preferred that this time not exceed 60 minutes, preferably 30 minutes and advantageously less than 10 minutes, for example about 5 minutes.
  • the lapse of time between steps a) and b) of the process according to the invention does not exceed 60 minutes, preferably 30 minutes, and is advantageously less than 10 minutes, for example about 5 minutes.
  • step b) of the process according to the invention the composite blocks are generally stored in a room with possibly an anti-freeze, this step is called autocure. Then they are put on hold until marketing.
  • the method according to the invention does not comprise a step of heat treatment of the composite insulating block, apart from the autocure, nor of hydrothermal treatment, nor of autoclave treatment with or without pressurization, at any moment of the process. .
  • the manufacturing method according to the invention does not include a step of drying or steaming the block before steps a) or b).
  • the manufacturing method according to the invention is a continuous or semi-continuous process.
  • the wall of the cells of the mineral block to be masonry is covered with a water repellent material which, in particular by closing pores, allows little or no aqueous transfer.
  • the water-repellent compound that can be used, alone or as a mixture, for hydrofugging a concrete or a block is advantageously chosen from the group consisting of the following compounds:
  • Silicon derivatives such as: polyhydromethylsiloxanes, polydimethylsiloxanes, organosiliconates (such as potassium or sodium methyl siliconate and in general alkylsiliconates), organosilanes (such as octyl trimethoxysilane, octyltrethoxysilane, butyltrimethoxysilane, butyl triethoxysilane and linear or branched C1-C12 alkyl chain alkoxysilanes), organosilanols, alkyltrichlorosilanes and fluorinated silicones.
  • Fluorinated derivatives such as polytrifluoroethylenes, polytetrafluoroethylenes and fluorocarbon derivatives.
  • the fatty chains alkyl natural or synthetic, such as linear or branched paraffins, including polyethylenes or polypropylenes.
  • Fatty acid derivatives such as stearates, oleates, palmitates, behenates and derivatives of Guerbet (for example calcium stearates or calcium oleate).
  • the water-repellent compound can therefore be used during the mixing of the concrete (added in the mass) or in post-treatment on an already formed block, by impregnation or by application with a spray on the surface of the block.
  • the water-repellent compound may be in powder form or in liquid form.
  • the liquid forms may be homogeneous or may be emulsions or dispersions.
  • organosilanes Some of its compounds, such as organosilanes, are hydrolysed in the presence of cement and water in organosilanols which polymerise and bind covalently with the surfaces of concrete and aggregates to make them hydrophobic. Polyhydromethyl siloxanes are also hydrolyzed and polymerized in situ. Products such as fatty acid salts or polydimethylsiloxanes or paraffins are trapped in the porosity. They prevent the movement of water and make the substrate hydrophobic.
  • a preferred repellent compound is CHRYSOFUGE ® C product of Chryso.
  • CHRYSOFUGE ® C is a concentrated calcium-base-based water repellent whose use is recommended for concretes whose hydraulic binder includes lime. With this compound, it forms hydrophobic micelles that obstruct the capillaries of concrete.
  • the process according to the invention may advantageously comprise a step of applying a water-repellent compound to the walls of the cell of the block, for example by dipping or spraying, a preliminary step in step b) of filling.
  • the mineral block to be used in step a) of the process according to the invention may comprise a water-repellent compound mixed in the mass of the block.
  • the method may comprise, when the block is a lightweight concrete block, a step of obtaining a block by mixing a hydraulic binder and granules and at least one water-repellent compound, said step being a preliminary step in step b) filling.
  • the mineral block to be used in step a) of the process according to the invention is a concrete block.
  • the block used in the process according to the invention is preferably a concrete block comprising a cement and aggregates, preferably of generally parallelepiped shape.
  • the cement may also comprise a certain amount of slag, for example from 2 to 33% by weight of the total mass of cement.
  • the aggregates can generally be aggregates selected from the groups of 0/4, 0/6 and 4 / 6.3 mm aggregates or mixtures thereof.
  • the mineral block to be masonry is a lightweight concrete block.
  • the lightweight aggregates of the lightweight concrete block can be pumice, and preferably a pumice sand size 0 / 6mm.
  • lightweight aggregates are not glass beads, expanded glass beads or any glass-based granules.
  • the block may be formed of an aqueous paste based on clay, such as a brick.
  • the cells are generally cells or recesses of standard size in the manufacture of building blocks.
  • the masonry block according to the invention may be a concrete block, a light concrete block, a cellular concrete block or a brick.
  • the masonry block according to the invention may be a concrete block.
  • the masonry block according to the invention may be a lightweight concrete block.
  • the cell present in the block used in the method according to the invention is a through-cell, that is to say an opening passing through the block from one side to the other.
  • the cement mineral foam implemented in step b) of the process according to the invention is preferably in the fresh state, it means that it is neither set and / or hardened.
  • Fresh mineral cement foam is usually just formed foam or cast, in this case the hydration of the foam cement is in progress.
  • step b) is a step of filling a fresh cement mineral foam in a cell of a block in the fresh state or sufficiently wet.
  • the cement mineral foam implemented in step b) is in the fresh state and the mineral block to be used in step a) is in the fresh state.
  • the mineral cement foam preferably has a density of less than 600 kg / m 3 , preferably less than 500 kg / m 3 , more preferably less than 400 kg / m 3 .
  • the mineral foam has a very low thermal conductivity. Decrease the thermal conductivity of building materials is highly desirable since it allows to obtain a saving of energy of heating or air conditioning in the buildings of dwelling or work.
  • Thermal conductivity also called lambda ( ⁇ )
  • is a physical quantity that characterizes the behavior of materials during conductive heat transfer. Thermal conductivity is the amount of heat transferred per unit area and a unit of time under a temperature gradient. In the international system of units, the thermal conductivity is expressed in watts per meter Kelvin (Wm-1-K-1).
  • the mineral foam implemented in step b) of the process according to the invention may be chosen from foams having a thermal conductivity ranging from 0.03 to 0.1 W / mK, preferably from 0.03 to 0, 0.6 W / mK and more preferably 0.03 to 0.046 W / mK
  • the mineral foams which expand in the cell of the mineral block to be masonry are excluded from the process according to the invention.
  • An object of the invention is also a composite insulating mineral block, and more particularly a masonry block, obtained by the method according to the invention as well as its use in the field of construction.
  • Another subject of the invention is a composite insulating block comprising a block, said block comprising at least one cell having walls possibly made of a substantially water-repellent material, said cell being filled with a mineral foam not comprising any cement of water. calcium aluminate.
  • said foam does not comprise quick setting cement.
  • the cured mineral foam is stable, that is to say that it does not collapse or come off the walls.
  • the block and the mineral foam may be as described above with reference to the method of the invention.
  • Another object of the invention is the use of a composite insulating mineral block as described above or obtained according to the method described above for the construction and more particularly the masonry.
  • Figure 1 shows blocks of concrete filled with a cement foam according to the invention
  • FIG. 2 represents a part of a concrete block of FIG. drying
  • Figure 3 is a comparative example of a concrete block when the method according to the invention is not put into practice.
  • CEM I type cement or Portland type cement, comprising more than 95% clinker (in accordance with standard NF EN 197-1) sold by Lafarge under the trademark Ciment 52.5R.
  • the amount of prewetting water is 2.179 kg and the amount of mixing water is 0.916 kg.
  • a water-repellent concrete was obtained using the following formula F 34:
  • CEM I type cement or Portland type cement, comprising more than 95% of clinker (in accordance with standard NF EN 197-1) sold by Lafarge under the trademark Ciment 52.5R.
  • the amount of mixing water is 2,701 kg.
  • the homogenization and mixing were carried out by a standard mixer whose technical characteristics are as follows: vertical axis mixer with eccentric blades and revolving bowl brand Zylos.
  • blocks comprising two cells were made by casting the concrete in molds and compaction by using vibrating presses (vibro-compaction) according to known methods and customary.
  • the amount of materials used was 15.6 kg to obtain blocks of about 14 kg.
  • the cement slurry was produced with a Rayneri type mixer.
  • the mixing protocol was as follows.
  • the mineral foam was produced from the mixture of a cement slurry and an aqueous foam, which were homogenized continuously in a static mixer.
  • This mineral foam may be of the same type as those described on pages 23 to 26 of the patent application published under the number
  • cement slurry was obtained by using a solid compound, or premix, comprising one or more hydraulic binders, (for example Portland cement and / or slag) at a level of 50% by weight of the dry mixture. Water was then mixed with the premix so as to obtain a cement slurry in proportions of around 20% ⁇ 5% by mass.
  • hydraulic binders for example Portland cement and / or slag
  • MEXP-101 fast A Rayneri Turbotest Mixer (MEXP-101) comprising deflocculating blades with a speed ranging from 1000 rpm to 400 rpm depending on the volume of grout was used to maintain the grout in continuous agitation in the storage tank after manufacture and before its pumping to be injected into the static mixer.
  • the grout can be pumped using a Moineau type positive displacement pump, eg a 245021 commissioned Seepex TM BN025-12-W eccentric screw pump.
  • the aqueous foam was obtained by foaming a solution of water and a foaming agent such as Proprump 26 produced by Propump.
  • Propump 26 is an animal protein with a molecular weight of about 6000 Daltons.
  • the amount of water can vary from 75 to 98% by weight, for example around 80%.
  • additives such as a thickening agent (e.g. Kelcocrete 200 biopolymer), or an accelerator such as calcium chloride may be added but are generally not required.
  • a thickening agent e.g. Kelcocrete 200 biopolymer
  • an accelerator such as calcium chloride
  • the aqueous foaming agent solution was co-introduced through the aerator with the pressurized air (range 1 to 6 bar) using a T-junction.
  • the aqueous foam was generated in a controlled manner. keep on going.
  • the aerator consists of a bed of SB30 type glass balls of diameter between 0.8 and 1.4 mm, packed in a tube length of 100 mm and diameter 12 mm.
  • the cement slurry was brought into contact with the aqueous foam already circulated in the circuit and the foamed cement slurry was then obtained.
  • the filling of the cells of the concrete block with the foamed slurry has been carried out continuously by a pipe which is handled from one cell to another.
  • the implementation was manual, the implementation may be automated, in particular because the cement slurry does not contain a setting accelerator such as calcium aluminate.
  • Example 1 Filling a mineral block to be masonry in the fresh state.
  • the blocks of cement blocks (2) made according to the method described above with the concrete of Formula F33 were filled with a cement foam (3) right out of the press (vibrator compactor) and demolding said block (2).
  • the walls of the cell of the block were saturated with water (the value of theoretical water absorption according to standard NF-EN 772-11 would be close to zero to 10min in g / (m 2 .s) if the cohesion of the block allowed to realize the measure).
  • the composite mineral insulating blocks (1) were placed under a Styrodur lid and left in the room for 24 hours. hours. The external appearance of these composite insulating mineral blocks (1) is represented in FIGS. 1 and 2.
  • Example 2 Filling a waterproofed masonry mineral block.
  • cement blocks made according to the method described above with the concrete of Formula F34 were placed under a Styrodur lid in order to reproduce the curing conditions generally observed in the production plants for masonry blocks.
  • the temperature is close to 30 ° C and the humidity is close to saturation.
  • the cells of these blocks, the walls of which had a water absorption according to standard NF-EN 772-11) of 0.6 g / (m 2 .s) at 10min were filled with mineral cement foam.
  • These composite insulating mineral blocks were placed under a Styrodur lid and left in the room for 24 hours.
  • Example 3 Filling a mineral block to be masonry in the rehydrated dry state.
  • cement blocks made according to the method described above with the concrete of Formula F33 were placed under a Styrodur lid for 48 hours in order to reproduce the curing conditions. and setting generally observed in masonry block production plants.
  • the temperature was close to 30 ° C and the humidity near saturation.
  • the block was re-moistened by spraying with large amounts of water for 20 seconds.
  • the water absorption according to standard NF-EN 772-11) of the walls of the cells of the block was 2 g / (m 2 .s) at 10 min.
  • Example 4 Comparative Example: Filling a Commercial Cement Block
  • a standard cement block from Fabemi was filled with cement foam (5).
  • the external appearance of this composite block (4) after drying is shown in FIG. 3.
  • the water absorption according to standard NF-EN 772-11) of the walls of the cells of the block was 6 g / (m 2 .s) at 10min.
  • the cement foam of the composite blocks obtained according to the method of the invention and described above remained stable after drying. Not only did the foam remain attached to the walls from a visual point of view and no retraction was apparent, but said blocks were turned over to ensure that the foams adhered well to the walls. Foams have not been detached.
  • Example 5 Example: filling a commercial concrete masonry block mineral.
  • Standard concrete blocks (breeze blocks from Fabemi) were filled with cement foam. Indeed, three blocks were immersed in water for 24 hours and then drained for either 2 hours, 24 hours or 30 minutes. One block was not immersed (comparative block).
  • the water absorption according to standard NF-EN 772-11 of the walls of the cells of the blocks were variable as indicated in Table 1. Then they were filled with cement mouse. The state of the foam is described in Table 1 below.
  • Example 6 Example: filling of a mineral block masonry lightweight commercial concrete.

Abstract

Procédé de fabrication d'un bloc isolant composite comprenant une mousse minérale, ledit procédé comprenant les étapes suivantes : a. disposer un bloc comprenant au moins une alvéole ayant des parois, lesdites parois étant, soit suffisamment humides, soit constituées d'un matériau hydrofuge, et b. remplir ladite alvéole d'une mousse minérale ne comprenant substantiellement pas d'aluminate de calcium. Bloc isolant composite comprenant un bloc, ledit bloc comprenant au moins une alvéole ayant des parois comprenant éventuellement un matériau hydrofuge, ladite alvéole étant remplie d'une mousse minérale ne comprenant substantiellement pas d'aluminate de calcium.

Description

Procédé de fabrication d'un bloc de construction composite isolant
La présente invention concerne un procédé de fabrication d'un élément de maçonnerie, ou d'un bloc à maçonner, en particulier d'un bloc de construction isolant composite, et l'élément ou le bloc obtenu par ledit procédé.
Les blocs de béton nus sont des éléments de construction très répandus, le matériau étant à l'achat l'un des plus économiques. Ses propriétés d'isolation thermique demeurent cependant limitées. Pour améliorer ses propriétés thermiques, les blocs de béton peuvent être allégés par allégement du béton. Par ailleurs, ils peuvent être moulés de manière à comprendre des alvéoles ou espaces vides internes de manière à bénéficier des propriétés isolantes de l'air. Dans ce cas les alvéoles doivent être de petites dimensions, par exemple des alvéoles de forme allongée dont l'épaisseur ne dépasse pas 2 cm. De tels blocs sont cependant plus difficiles à fabriquer et utilisent une plus grande quantité de matière première.
Des matériaux isolants ont été disposés à l'intérieur des alvéoles de blocs de béton léger pour améliorer la résistance thermique de ces blocs de construction, créant ainsi des blocs isolants composites. Ainsi il est connu d'introduire de la laine minérale, de laine de verre ou du polystyrène à l'intérieur de parpaings de béton léger. Le procédé de fabrication est cependant peu économique et/ou complexe. Plus récemment il a été proposé de remplir les alvéoles de mousses de ciment car les mousses de ciment ont des propriétés thermiques d'isolation intéressantes.
Cependant le remplissage de cavités présentes dans des blocs de béton léger par des mousses de ciment nécessite des mousses à prises rapides telles des mousses de ciment d'aluminate de calcium. Lorsque des mousses à prise lente, sont utilisées et introduites sous forme de mousse, la mousse à tendance à s'effondrer, à se déstabiliser, à se rétracter lors de son durcissement et à se détacher de la paroi des cavités. Un tel phénomène se fait, évidemment, au détriment des propriétés thermiques de tels blocs composites.
Les mousses à prise rapide, en particulier les mousses à base de ciment d"aluminate de calcium, sont économiquement peu intéressantes et difficiles d'utilisation dans un procédé industriel du fait même de leur prise rapide (phénomène d'encrassage).
L'invention a pour but de remédier à ces inconvénients en fournissant un procédé de fabrication d'un bloc minéral isolant composite comprenant es étapes suivantes :
a) disposer d'un bloc minéral à maçonner comprenant au moins une alvéole ayant des parois présentant un taux d'absorption d'eau de moins de 5 g / (m2.s) à 10 minutes, et
b) remplir ladite alvéole d'une mousse minérale de ciment ne comprenant substantiellement pas de ciment d'aluminate de calcium.
De préférence la mousse minérale de ciment ne comprend substantiellement pas de ciment à prise rapide. De préférence les parois de l'alvéole du bloc minéral à maçonner, peuvent être une paroi unique (par exemple circulaire).
Avantageusement le procédé selon l'invention permet le remplissage en continu ou en semi continu des alvéoles du bloc minéral à maçonner par la mousse minérale de ciment. Ceci est particulièrement bien adapté à la fabrication en usine sur une ligne de production, où les blocs sont produits en continu ou en semi continu.
Avantageusement, le procédé selon l'invention permet de conserver une stabilité de la mousse dans le bloc minéral à maçonner, c'est-à-dire que la mousse ne s'effondre pas.
Avantageusement, le procédé selon l'invention permet de remplir complètement l'alvéole du bloc avec peu ou pas de déformations à la surface de la mousse, notamment peu ou pas de déformations concaves.
Avantageusement, le procédé selon l'invention permet d'obtenir un bloc minéral isolant composite dont la mousse minérale de ciment adhère durablement aux parois de l'alvéole du bloc. En effet cette mousse minérale de remplissage ne se détache pas des parois dans des conditions d'utilisations usuelles, même lorsque le bloc est retourné et secoué. Le procédé selon l'invention permet de maintenir une cohésion du bloc et de la mousse. Cela signifie que la mousse ne se déstabilise pas.
L'expression « substantiellement pas» désigne une composition qui n'inclut pas une quantité suffisante de composé pour que sa présence ait des effets réels sur la prise de la mousse. Ainsi la présence d'une quantité inférieure à environs 5% en masse du mélange sec, ou de traces de ce composé n'affectera pas sensiblement la prise de la mousse et une telle quantité peut donc se trouver dans la composition sans que celle-ci comprenne effectivement ce composé.
Définitions :
Alvéole : un creux, une cavité, un espace vide ou une excavation présente à la surface ou à l'intérieur du bloc. Il s'agit d'un vide structurel. Cette alvéole possède des parois, destinées à venir en contact avec la mousse minérale de ciment.
Brique : La brique est un parallélépipède rectangle, de terre argileuse crue et séchée au soleil ou cuite au four, utilisé comme matériau de construction. L'argile est souvent mêlée à du sable. La brique présente une ou des alvéoles.
Le terme « composite » décrit l'association d'un bloc de construction comprenant un ou plusieurs vides structurels, de préférence traversants, dont au moins un, et de préférence tous, sont remplis d'un matériau minéral dont la structure ou la composition est différente de celle dudit bloc.
Béton : un mélange d'un ciment, avec de l'eau, éventuellement des granulats et/ou des adjuvants conformément à la norme EN 934-2 de septembre 2002, et éventuellement des additions. L'expression « béton », désigne indistinctement une composition à l'état frais ou durci. Le béton peut être un coulis de ciment, un mortier, un béton ou un coulis de chaux. Préférentiellement, le béton est un mortier ou un béton. Béton léger : Les bétons légers sont obtenus en jouant sur la structure (bétons caverneux) ou sur l'emploi de granulats allégés (tels que des granulats de pierre ponce, des billes de schiste expansé, d'argile expansée ou de polystyrène, voire des particules de liège ou de bois). Des adjuvants comme les entraîneurs d'air peuvent aussi être ajoutés pour un allégement maximum. On peut également créer une porosité par une réaction provoquant un dégagement gazeux : c'est le cas du béton cellulaire ou d'un béton mousse. Les bétons légers des blocs selon l'invention offrent une densité très inférieure à celle d'un produit classique, ces densités étant de 300 à 1800 kg/m3.
Ciment : Un ciment est un liant hydraulique comprenant une proportion au moins égale à 50% en masse d'oxyde de calcium (CaO) et de dioxyde de silicium (Si02). Ces quantités étant déterminées par la norme EN 196-2 d'avril 2006. Les ciments pouvant être utilisés pour réaliser soit les mousses minérales, soit les blocs à alvéole(s), peuvent être sélectionnés parmi les ciments décrits dans la norme NF- EN197-1 de février 2001 , en particulier être des ciments CEM I, CEM II, CEM III, CEM IV, ou CEM V. Avantageusement le ciment comprend en majorité du ciment de Portland, tel que du CEM I.
Les ciments ne convenant pas selon l'invention pour réaliser la mousse minérale sont les ciments d'aluminates de calcium ou leurs mélanges. Les ciments d'aluminates de calcium sont des ciments généralement comprenant une phase minéralogique C4A3$, CA, C12A7, C3A ou CnA7CaF2 ou leurs mélanges, tel que par exemple les Ciments Fondu®, les ciments sulfoalumineux, les ciments d'aluminates de calcium conformes à la norme européenne NF EN 14647 de décembre 2006. De tels ciments sont caractérisés par une teneur en alumine (Al203) supérieure ou égale à 35% en masse.
Ainsi pour la réalisation du procédé selon l'invention la teneur en alumine du composé minéral sec utilisé pour réaliser la mousse est inférieure à 35% en masse du composé minéral sec. De préférence cette teneur est inférieure ou égale à 30%, avantageusement inférieure ou égale à 20%, plus avantageusement inférieure ou égale à 15 %, et encore plus avantageusement inférieure ou égale à 10%, en masse du composé sec.
Liant hydraulique : Matériau qui prend et durcit par hydratation. La prise est le passage de l'état liquide ou pâteux à l'état solide. La prise est suivie ou accompagnée d'un phénomène de durcissement où le matériau acquière des propriétés mécaniques. Le durcissement a généralement lieu après la fin de la prise, particulièrement pour les ciments.
Laitier : par exemple tels que définis dans la norme NF EN 197-1 de février 2001 , paragraphe 5.2.2, ou il s'agit un coproduit de la métallurgie contenant des oxydes métalliques, essentiellement des silicates, des aluminates et de la chaux.
L'expression « mousse minérale » désigne un mélange milieu complexe comprenant un liant hydraulique, en particulier du ciment, mêlé à des bulles de gaz, généralement de l'air.
L'expression «suffisamment humide » désigne un degré d'humidité suffisant pour empêcher la rétractation de la mousse lors de son hydratation (c'est à dire de la prise) et de son séchage. Ce taux d'humidité peut être généralement celui de blocs de béton à l'état frais au sortir du démoulage. Alternativement, dans le cas de blocs pris et /ou durcis, ce taux d'humidité peut être atteint par l'adjonction d'eau, notamment par trempage ou arrosage, jusqu'à saturation du bloc.
L'expression « matériau hydrofuge » désigne un matériau qui empêche le transfert d'une quantité d'eau de manière adéquate. Par exemple une hydrofugation suffisante est réalisée lorsqu'une goutte d'eau déposée à la surface du matériau présente un angle de contact supérieur à 90°.
Le bloc minéral à maçonner utilisé à l'étape a) du procédé de l'invention comprend au moins une alvéole ayant des parois présentant un taux d'absorption d'eau de moins de 5 g / (m2.s) à 10 minutes, de préférence de moins de 4 g / (m2.s) à 10 minutes, encore plus préférentiellement de moins de 3 g / (m2. s) à 10 minutes. Généralement, le taux d'absorption d'eau est mesuré selon la norme NF EN 772-1 1 de août 2011.
Les parois de l'alvéole peuvent également dans certains cas présenter un taux d'absorption quasiment nul, ou proche de 0 g / (m2.s) à 10 minutes. Dans ce cas, les parois sont soit saturées en eau et ne peuvent plus absorber d'eau soit elles sont imperméable à l'eau (par exemple par hydrofugation). Dans ces deux cas, il n'y a pas ou peu de transfert hydrique via la paroi.
Ainsi selon un premier mode de réalisation, le bloc minéral à maçonner mis en œuvre à l'étape a) du procédé de l'invention peut être à l'état frais ou suffisamment humide. Ce bloc peut contenir une certaine quantité d'eau avant que la mousse minérale de ciment ne soit introduite dans les alvéoles. Selon ce mode de réalisation, le bloc minéral à maçonner peut être un bloc déjà formé et durci, et il sera suffisamment humide ou humidifié. Cette humidification peut être effectuée par adjonction d'eau à ce bloc, par exemple par trempage, arrosage ou vaporisation. Ce bloc à l'état frais ou suffisamment humide ou humidifié comprend au moins une alvéole ayant des parois présentant un taux d'absorption d'eau de moins de 5 g / (m2.s) à 10 minutes, de préférence de moins de 4 g / (m2.s) à 10 minutes, encore plus préférentiellement de moins de 3 g / (m2.s) à 10 minutes. Généralement, le taux d'absorption d'eau est mesuré selon la norme NF EN 772-11 de août 2011 .
Alternativement l'humidité peut provenir de l'absence de séchage lors de la fabrication du bloc. En effet, lorsque le bloc est obtenu à partir de la mise en forme d'une pâte aqueuse (par exemple à base d'argile (brique), de chaux ou du ciment Portland), la mousse minérale de ciment peut avantageusement être introduite dans les alvéoles avant que le bloc ne soit pris et/ou durci. Cette méthode de fabrication est très avantageuse puisqu'elle permet un gain de temps en combinant des étapes de durcissement et d'humidification ainsi qu'en évitant des étapes de manipulations supplémentaires des blocs. Ainsi le procédé selon l'invention peut avantageusement comprendre l'utilisation d'un bloc dont le béton est à l'état frais lors de l'étape b), en particulier un bloc de béton léger frais.
Le bloc minéral à maçonner utilisé à l'étape a) du procédé de l'invention est de préférence à l'état frais. Cela signifie que le matériau du bloc est à l'état frais, c'est-à- dire que le bloc ne soit ni pris et/ou ni durci. Le bloc à l'état frais est généralement un bloc juste formé ou moulé. Dans ce cas, le bloc est juste formé ou moulé et l'hydratation du ciment est en cours.
Pour certains types de blocs, la quantité d'eau contenu dans des blocs juste formés (blocs à l'état frais) est particulièrement adaptée à la présence de mousse minérale de ciment.
L'utilisation de blocs non durcis, c'est-à-dire frais formés ou en cours d'hydratation et/ou de durcissement est un aspect particulièrement innovant de l'invention. Selon cet aspect particulièrement préféré de l'invention, la texture désirée du béton est de type terre humide. Il est difficile de caractériser la rhéologie d'un tel matériau par un test simple. Seuls des aspects visuels et tactiles (formation d'une boule dans la main qui n'est pas totalement liée) permettent dans un premier temps d'évaluer la formulation de manière adéquate. La réalisation de l'essai permet en effet de vérifier la qualité de la formulation. Ainsi selon un mode réalisation et un aspect particulièrement préféré de l'invention le procédé de fabrication comprend une étape de formation du bloc (par exemple une étape de moulage). Cette étape de formation du bloc est une variante de l'étape a) et elle peut être suivie soit immédiatement, soit dans un laps de temps court de l'étape b) de remplissage de l'alvéole ou des alvéoles du bloc. Il est préféré que ce laps de temps n'excède pas 60 minutes, de préférence 30 minutes et soit avantageusement de moins 10mn, par exemple d'environs 5mn.
De préférence, le laps de temps entre les étapes a) et b) du procédé selon l'invention n'excède pas 60 minutes, de préférence 30 minutes, et soit avantageusement de moins 10mn, par exemple d'environs 5mn.
Après l'étape b) du procédé selon l'invention, les blocs composites sont généralement stockés dans un local avec éventuellement une mise hors gel, cette étape s'appelle autocure. Ensuite ils sont mis en attente jusqu'à commercialisation.
En revanche, le procédé selon l'invention ne comprend pas d'étape de traitement thermique du bloc isolant composite, hormis l'autocure, ni de traitement hydrothermique, ni de traitement par autoclave avec ou sans mise sous pression, à aucun moment du procédé.
De préférence, le procédé de fabrication selon l'invention ne comprend pas d'étape de séchage ou d'étuvage du bloc avant les étapes a) ou b).
De préférence, le procédé de fabrication selon l'invention est un procédé en continu ou en semi continu.
Selon un second mode de réalisation, la paroi des alvéoles du bloc minéral à maçonner est recouverte d'un matériau hydrofuge qui, notamment en obturant des pores, ne permet peu ou pas les transferts aqueux.
II est possible d'employer des composés hydrofuges de surface, employés comme enduits superficiels, ou des hydrofuges de masse, incorporés dans le béton lors de la confection du bloc.
Le composé hydrofuge pouvant être utilisé, seul ou en mélange, pour hydrofuger un béton ou un bloc est avantageusement choisi dans le groupe constitué par les composés suivants:
- Les dérivés du silicium tels que : les polyhydrogénométhyl siloxanes, les polydiméthyl siloxanes, les organosiliconates (comme le méthyl siliconate de potassium ou de sodium et en général les alkylsiliconates), les organosilanes (comme les octyl triméthoxysilane, octyl tréthoxysilane, les butyl triméthoxysilane, les butyl triéthoxysilane et les alcoxysilanes de chaîne alkyl C1 à C12 linéaire ou ramifiée), les organosilanols, les alkyltrichlorosilanes et les silicones fluorés. - Les dérivés fluorés tels que les polytrifluoroéthylènes, les polytetrafluoroéthylènes, et les dérivés des fluorocarbones.
- Les chaînes grasses alkyles, naturelles ou synthétiques, telles que les paraffines linéaires ou ramifiées, y compris les polyéthylènes ou les polypropylènes.
- Les dérivés d'acides gras tels que les stéarates, oléates, palmitates, béhénates et les dérivés de la société Guerbet (comme par exemple les stéarates de calcium ou oléate de calcium).
Le composé hydrofuge peut donc être employé lors du gâchage du béton (ajouté dans la masse) ou en post traitement sur un bloc déjà formé, par imprégnation ou par application à l'aide d'un spray à la surface du bloc.
Le composé hydrofuge peut être sous forme de poudre ou sous forme liquide. Les formes liquides peuvent être homogènes ou être des émulsions ou des dispersions.
Certains de ses composés, comme les organosilanes sont hydrolysés en présence de ciment et d'eau en organosilanols qui polymérisent et se fixent de façon covalente avec les surfaces du béton et des granulats pour les rendre hydrophobes. Les polyhydrogénométhyl siloxanes sont également hydrolysés et polymérisent in situ. Les produits tels que les sels d'acides gras ou les polydiméthylsiloxanes ou les paraffines sont piégés dans la porosité. Ils empêchent les mouvements d'eau et rendent le substrat hydrophobe.
Un composé hydrofuge préféré est le CHRYSOFUGE® C, produit de la société Chryso. CHRYSOFUGE® C est un hydrofuge de masse concentré à base de stéarate de calcium, dont l'utilisation est recommandée pour des bétons dont le liant hydraulique comprend de la chaux. Il forme avec ce composé des micelles hydrophobes qui obstruent les capillaires du béton.
Ainsi le procédé selon l'invention peut avantageusement comprendre une étape d'application d'un composé hydrofuge sur les parois de l'alvéole du bloc, par exemple par trempage ou vaporisation, étape préliminaire à l'étape b) de remplissage.
De préférence, le bloc minéral à maçonner mis en œuvre à l'étape a) du procédé selon l'invention peut comprendre un composé hydrofuge mélangé dans la masse du bloc.
Ainsi le procédé peut comprendre, lorsque le bloc est un bloc de béton léger, une étape d'obtention d'un bloc par mélange d'un liant hydraulique et de granulats et d'au moins un composé hydrofuge, ladite étape étant une étape préliminaire à l'étape b) de remplissage.
De préférence, le bloc minéral à maçonner mis en œuvre à l'étape a) du procédé selon l'invention est un bloc de béton. Le bloc utilisé dans le procédé selon l'invention est de préférence un bloc de béton comprenant un ciment et des granulats, avantageusement de forme généralement parallélépipédique. Lorsqu'un composé hydrofuge est utilisé, le ciment peut également comprendre une certaine quantité de laitier, par exemple de 2 à 33% en masse de la masse total de ciment.
Les granulats peuvent être généralement des granulats choisis dans les groupes de granulats 0/4, 0/6 et 4/6,3 mm ou leurs mélanges.
Selon un aspect particulièrement préféré de l'invention, le bloc minéral à maçonner est un bloc de béton léger. Les granulats léger du béton léger du bloc peuvent être de la pierre ponce, et avantageusement un sable en pierre ponce de taille 0/6mm. Selon un aspect de l'invention, les granulats légers ne sont pas des billes de verres, ni des billes de verre expansé ou tout granulat à base de verre.
Selon un autre aspect de l'invention, le bloc peut être formé d'une pâte aqueuse à base d'argile, telle qu'une brique.
Les alvéoles sont généralement des alvéoles ou des creux de taille standard dans la fabrication de blocs de constructions.
Avantageusement, le bloc à maçonner selon l'invention peut être un bloc de béton, un bloc de béton léger, un bloc de béton cellulaire ou une brique.
Avantageusement, le bloc à maçonner selon l'invention peut être un bloc de béton. Avantageusement, le bloc à maçonner selon l'invention peut être un bloc de béton léger.
De manière très avantageuse, l'alvéole présente dans le bloc mis en oeuvre dans le procédé selon l'invention est une alvéole traversante, c'est-à-dire une ouverture traversant le bloc de part en part.
La mousse minérale de ciment mise en œuvre à l'étape b) du procédé selon l'invention est de préférence à l'état frais, cela signifie qu'elle ne soit ni prise et/ou ni durcie. La mousse minérale de ciment à l'état frais est généralement une mousse juste formée ou coulée, dans ce cas l'hydratation du ciment de la mousse est en cours.
De préférence, l'étape b) est une étape de remplissage d'une mousse minérale de ciment à l'état frais dans une alvéole d'un bloc à l'état frais ou suffisamment humide.
De préférence, la mousse minérale de ciment mise en œuvre à l'étape b) est à l'état frais et le bloc minéral à maçonner mis en œuvre à l'étape a) est à l'état frais.
La mousse minérale de ciment présente de préférence une densité inférieure à 600 kg/m3, préférentiellement inférieure à 500 kg/m3, plus préférentiellement inférieure à 400 kg/m3. De préférence, la mousse minérale présente une très faible conductivité thermique. Diminuer la conductivité thermique des matériaux de construction est hautement désirable puisqu'elle permet d'obtenir une économie d'énergie de chauffage ou climatisation dans les immeubles d'habitation ou de travail. La conductivité thermique (encore appelée lambda (λ)) est une grandeur physique caractérisant le comportement des matériaux lors du transfert de chaleur par conduction. La conductivité thermique représente la quantité de chaleur transférée par unité de surface et par une unité de temps sous un gradient de température. Dans le système international d'unités, la conductivité thermique est exprimée en watts par mètre kelvin (W-m-1 -K- 1 ). Les bétons classiques ou traditionnels ont une conductivité thermique entre 1 ,3 et 2,1 mesurée à 23°C et 50 % d'humidité relative. La mousse minérale mise en œuvre à l'étape b) du procédé selon l'invention peut être choisie parmi les mousses ayant une conductivité thermique allant de 0,03 à 0,1 W/m.K, de préférence de 0,03 à 0,06 W/m.K et plus préférentiellement de 0,03 à 0,046 W/m.K.
Les mousses minérales réalisées à partir d'agents porogènes sont exclues du procédé selon l'invention.
Les mousses minérales qui s'expansent dans l'alvéole du bloc minéral à maçonner sont exclues du procédé selon l'invention.
Un objet de l'invention est également un bloc minéral isolant composite, et plus particulièrement un bloc à maçonner, obtenu par le procédé selon l'invention ainsi que son utilisation dans le domaine de la construction.
Un autre objet de l'invention est un bloc isolant composite comprenant un bloc, ledit bloc comprenant au moins une alvéole ayant des parois éventuellement constituées d'un matériau substantiellement hydrofuge, ladite alvéole étant remplie d'une mousse minérale ne comprenant pas de ciment d'aluminate de calcium.
De préférence ladite mousse ne comprend pas de ciment à prise rapide. Selon un aspect particulièrement avantageux de l'invention la mousse minérale durcie est stable, c'est-à-dire qu'elle ne s'effondre pas et ne se détache pas des parois. Le bloc et la mousse minérale peuvent être tels que décrit précédemment en référence avec le procédé de l'invention.
Un autre objet de l'invention est l'utilisation un bloc minéral isolant composite tel que décrit ci-dessus ou obtenu selon le procédé décrit ci-dessus pour la construction et plus particulièrement la maçonnerie.
L'invention sera mieux comprise à la lecture des exemples et des figures annexées, qui ne présentent aucun caractère limitatif, dans lesquelles :
La figure 1 représente des blocs de bétons remplis d'une mousse de ciment selon l'invention ;
La figure 2 représente une partie d'un bloc de béton de la figure 1 après séchage ; et
La figure 3 est un exemple comparatif d'un bloc de béton lorsque le procédé selon l'invention n'est pas mis en pratique. EXEMPLES
Formation de blocs de béton à alvéoles.
Un béton standard a été obtenu en utilisant la formule F33 suivante :
Liants hydrauliques :
4,952 Kg de ciment de type CEM I, ou ciment de type Portland, comprenant plus de 95% de clinker (conformément à la norme NF EN 197-1 ) vendu par Lafarge sous la marque Ciment 52.5R.
2,476 Kg d'un matériau calcaire à base de chaux (laitier) vendu sous la dénomination commerciale BL200 par la société Orgon de la société Omya.
Granulats :
- 24,514 Kg de sable de la carrière de la Petite Craz de granulométrie 0/4 mm concassé (en accords avec la norme BS EN 13139) vendu par Lafarge granulats sous la dénomination commerciale 0 /4C.
- 29,962 Kg de gravillons de la carrière de la Petite Craz de granulométrie 4/6.3 mm concassé (en accords avec la norme BS EN 13139) vendu par Lafarge granulats sous la dénomination commerciale 4/6.3C.
La quantité d'eau de prémouillage est de 2,179 kg et la quantité d'eau de gâchage est de 0,916 kg.
Un béton hydrofugé a été obtenu en utilisant la formule F 34 suivante :
Liants hydrauliques :
4,943 Kg de ciment de type CEM I, ou ciment de type Portland, comprenant plus de 95% de clinker (conformément à la norme NF EN 197-1 ) vendu par Lafarge sous la marque Ciment 52.5R.
2,471 Kg de d'un matériau calcaire à base de chaux (laitier) vendu sous la dénomination commerciale BL200 par la société Orgon de la société Omya.
Granulats :
- 24,468 Kg de sable de la carrière de la Petite Craz de granulométrie 0/4 mm (en accords avec la norme BS EN 13139) vendu par Lafarge granulats sous la dénomination commerciale 0/4C. - 29,905 Kg de gravillons de la carrière de la Petite Craz de granulométrie 4/6.3 mm (en accords avec la norme BS EN 13139) vendu par Lafarge granulats sous la dénomination commerciale 4/6.3C.
- 0,099 kg d'agent hydrofugeant CHRYSOFUGE® C provenant de la société Chryso. La quantité d'eau de pré mouillage est de 2,175 kg et la quantité d'eau de gâchage est de 1.038 kg.
Un béton léger standard est obtenu en utilisant la formule F41 suivante :
Liants hydrauliques :
- 4,943 Kg de ciment de type CEM I, ou ciment de type Portland, comprenant plus de 95% de clinker (conformément à la norme NF EN 197-1 ) vendu par Lafarge sous la marque Ciment 52.5R.
Granulats :
- 39,377 Kg de sable de pierre ponce de granulométrie 0/6 mm vendu par Lafarge granulats sous la dénomination commerciale Ponce de lava GR3554.
- La quantité d'eau de gâchage est de 2,701 kg.
Obtention du béton
Le procédé d'obtention du béton dans les exemples ci-dessous a été effectué selon un protocole standard qui est le suivant :
- Introduction des granulats dans le malaxeur.
- Homogénéisation pendant 30s.
- Introduction en 30s de l'eau de prémouillage (4% de la masse des granulats).
- Malaxage pendant 1 min.
- Repos pendant 4 min (temps nécessaire pour atteindre l'équilibre d'absorption des granulats).
- Introduction des liants.
- Malaxage pendant 1 min.
- Introduction de l'eau de gâchage en 30s.
- Malaxage pendant 1 min30s.
- Prélèvement.
L'homogénéisation et le malaxage ont été effectué par un malaxeur standard dont les caractéristiques techniques sont les suivantes : malaxeur à axe vertical avec pâles excentrées et cuve tournante de marque Zylos.
Pour le béton léger, le procédé d'obtention dans l'exemple ci-dessous a été effectué selon un protocole standard qui est le suivant :
Introduction des granulats et des liants dans un malaxeur
Malaxage pendant 1 min.
Introduction de l'eau de gâchage en 30s.
- Malaxage pendant 1 min30s.
Prélèvement.
Formation des blocs
Une fois le béton obtenu, des blocs comprenant deux alvéoles ont été confectionnés en coulant le béton dans des moules et en procédant à leurs compaction par utilisation de presses fixes vibrantes (vibro-compaction) selon des méthodes connues et usuelles. Pour confectionner les blocs (planche de 4 blocs de 15X20X40 cm) la quantité de matières mise en œuvre a été de 15,6 Kg afin d'obtenir des blocs d'environ 14Kg. Production et de mise en œuyre de la mousse minérale selon la méthode décrite dans le document WO2013/150148A1
Le coulis de ciment a été produit avec un malaxeur de type Rayneri. Le protocole de malaxage a été le suivant. La mousse minérale a été produite à partir du mélange d'un coulis de ciment et d'une mousse aqueuse, lesquels ont été homogénéisé en continue dans un mélangeur statique. Cette mousse minérale peut-être du même type que celles décrites aux pages 23 à 26 de la demande de brevet publiée sous le numéro
WO2013/150148A1 au nom du déposant (mousses minérales 6 à 8).
En résumé un « coulis de ciment » a été obtenu en utilisant un composé solide, ou prémix, comprenant un ou plusieurs liants hydrauliques, (par exemple ciment de Portland et/ou laitiers) à hauteur de 50% en masse du mélange sec. De l'eau a alors été mélangée au prémix de manière à obtenir un coulis de ciment dans des proportions aux alentours de 20% ± 5% en masse.
Temps Vitesse Actions
O à 10" Lente Mélange des liants à sec
10" à roo Lente Ajout de la solution jusqu'à la formation des quenelles
1 O0 à 2'00 Rapide Mélange des quenelles
2Ό0 à 3Ό0 Lente Ajout du reste de la solution
3' à 5'30" Semi Malaxage
rapide Un malaxeur Rayneri Turbotest Mixer (MEXP-101 ) comprenant des pales défloculeuses et dont la vitesse varie de 1000 rpm à 400 rpm selon le volume de coulis a été utilisé pour maintenir le coulis en agitation continue dans la cuve de stockage après sa fabrication et avant son pompage pour être injecté dans le mélangeur statique.
Le coulis peut être pompé grâce à une pompe volumétrique de type Moineau, par exemple une : pompe à vis excentrée Seepex™ BN025-12 - W de commission 244921 .
La mousse aqueuse a été obtenue par moussage d'une solution d'eau et d'un agent moussant tel que le Proprump 26 produite par la société Propump. Le Propump 26 est une protéine animale de poids moléculaire d'environs 6000 Daltons. La quantité d'eau peut varier de 75 à 98% en masse, par exemple aux environs de 80%.
D'autres additifs tels qu'un agent épaississant (par exemple le biopolymère Kelco- crete 200), ou un accélérateur comme du chlorure de calcium peut être ajoutés mais ne sont généralement pas requis.
La solution aqueuse d'agent moussant a été co-introduite à travers le mousseur avec l'air sous pression (plage allant de 1 à 6 bars) à l'aide d'une jonction en T. La mousse aqueuse a été générée de façon continue. Le mousseur est constitué d'un lit de billes de verre de type SB30 de diamètre compris entre 0,8 et 1 ,4 mm, entassées selon un tube de longueur 100 mm et de diamètre 12 mm.
Le coulis de ciment a été mis en contact avec la mousse aqueuse déjà mise en circulation dans le circuit et le coulis de ciment moussé a alors été obtenu.
Le remplissage des alvéoles du bloc de béton par le coulis moussé a été réalisé en continu par un tuyau qui est manipulé d'une alvéole à l'autre. Bien que dans cet exemple la mise en œuvre ait été manuelle, la mise en œuvre peut-être automatisée, en particulier du fait que le coulis de ciment ne contient pas d'accélérateur de prise tel que l'aluminate de calcium.
Exemple 1 : remplissage d'un bloc minéral à maçonner à l'état frais.
Selon une première variante de l'invention, les alvéoles de blocs de ciment (2) réalisés selon la méthode décrite ci-dessus avec le béton de Formule F33 ont été remplies d'une mousse de ciment (3) dès la sortie de la presse (vibro compacteur) et le démoulage dudit bloc (2). Les parois de l'alvéole du bloc étaient saturés en eau (la valeur d'absorptions d'eau théorique d'après norme NF-EN 772-11 serait proche de zéro à 10min en g/(m2.s) si la cohésion du bloc permettait de réaliser la mesure). Après remplissage par la mousse de ciment, les blocs minéraux isolants composites (1 ) ont été placés sous un couvercle de Styrodur et laissés sur place dans la salle pendant 24 heures. L'aspect extérieur de ces blocs minéraux isolants composites (1 ) est représenté aux figures 1 et 2.
Ce procédé a été répété avec un bloc de ciment léger de Formule F 41 . Exemple 2 : remplissage d'un bloc minéral à maçonner hydrofugé.
Selon une seconde variante de l'invention, des blocs de ciment réalisés selon la méthode décrite ci-dessus avec le béton de Formule F34 (blocs hydrofugés) ont été placés sous un couvercle en Styrodur afin de reproduire les conditions de cure observées généralement dans les usines de production de blocs à maçonner. La température est proche de 30°C et l'humidité proche de la saturation. Une fois la prise et la cure effectuées (au moins 24 heures), les alvéoles de ces blocs, dont les parois présentaient une absorption d'eau d'après norme NF-EN 772-11 ) de 0,6 g/(m2.s) à 10min, ont été remplies de mousse minérale de ciment. Ces blocs minéraux isolants composites ont été placés sous un couvercle de Styrodur et laissés sur place dans la salle pendant 24 heures.
Exemple 3 : remplissage d'un bloc minéral à maçonner à l'état sec réhydraté.
Selon une troisième variante de l'invention, des blocs de ciment réalisés selon la méthode décrite ci-dessus avec le béton de Formule F33 (blocs non hydrofugés) ont été placés sous un couvercle en Styrodur pendant 48 heures afin de reproduire les conditions de cure et de prise observées généralement dans les usines de production de blocs à maçonner. La température était proche de 30°C et l'humidité proche de la saturation.
Une fois la prise et la cure effectuées, le bloc a été ré-humidifié par aspersion à grande eau pendant 20 secondes. L'absorption d'eau d'après norme NF-EN 772-11 ) des parois des alvéoles du bloc était de 2 g/(m2.s) à 10min.
Les alvéoles de ces blocs ont été alors remplies de mousse de ciment. Ces blocs composites ont été placés sous un couvercle de Styrodur et laissés sur place dans la salle pendant 24 heures.
Exemple 4 : Exemple comparatif : remplissage d'un bloc de ciment du commerce.
Un parpaing en ciment standard provenant de la société Fabemi a été rempli d'une mousse de ciment (5). L'aspect extérieur de ce bloc composite (4) après séchage est représenté en Figure 3. L'absorption d'eau d'après norme NF-EN 772-11 ) des parois des alvéoles du bloc était de 6 g/(m2.s) à 10min. Conclusion
La mousse de ciment des blocs composites obtenus selon la méthode de l'invention et décrits ci-dessus est restée stable après séchage. Non seulement la mousse est restée solidaire des parois d'un point vue visuelle et aucune rétractation n'était apparente, mais lesdits blocs ont été retournés de manière à s'assurer que les mousses adhéraient bien aux parois. Les mousses ne se sont pas détachées.
La mousse de ciment introduite dans les alvéoles d'un bloc de ciment standard (exemple comparatif 4) s'est rétractée et détachée des parois des alvéoles.
Exemple 5 : Exemple: remplissage d'un bloc minéral à maçonner de béton du commerce.
Des blocs de béton standard (parpaing provenant de la société Fabemi) ont été rempli d'une mousse de ciment. En effet, trois blocs ont été immergés dans l'eau pendant 24 heures puis égouttés pendant soit 2 heures, 24 heures ou 30 minutes. Un bloc n'a pas été immergé (bloc comparatif). L'absorption d'eau d'après norme NF-EN 772-11 des parois des alvéoles des blocs étaient variables comme indiqué dans le tableau 1 . Ensuite ils ont été remplis de mouse de ciment. L'état de la mousse est décrit dans le tableau 1 ci-dessous.
Figure imgf000016_0001
Tableau 1
Exemple 6 : Exemple: remplissage d'un bloc minéral à maçonner de béton léger du commerce.
Des blocs de béton léger à base de granulats de pierre ponce (vendu sous le nom Fabtherm et provenant de la société Fabemi) ont été rempli d'une mousse de ciment (5). En effet, trois blocs ont été immergés dans l'eau pendant 24 heures puis égouttés pendant soit 2 heures, 24 heures ou 30 minutes. Un bloc n'a pas été immergé (bloc comparatif). L'absorption d'eau d'après norme NF-EN 772-11 des parois des alvéoles des blocs étaient variables comme indiqué dans le tableau 2. Ensuite ils ont été remplis de mouse de ciment. L'état de la mousse est décrit dans le tableau 2 ci-dessous.
Figure imgf000017_0001
L'invention n'est pas limitée aux modes de réalisations présentés et d'autres modes de réalisation apparaîtront clairement à l'homme du métier. Il est notamment possible d'accélérer la prise des blocs composites une fois la mousse de ciment introduite dans les alvéoles par des méthodes connues telle que le chauffage.

Claims

REVENDICATIONS
1 . Procédé de fabrication d'un bloc minéral isolant composite comprenant les étapes suivantes :
a) disposer d'un bloc minéral à maçonner comprenant au moins une alvéole ayant des parois présentant un taux d'absorption d'eau de moins de 5 g / (m2.s) à 10 minutes, et
b) remplir ladite alvéole d'une mousse minérale de ciment ne comprenant substantiellement pas de ciment d'aluminate de calcium.
2. Procédé selon la revendication 1 , caractérisé en ce que le bloc mis en œuvre à l'état a) est à l'état frais ou suffisamment humide.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que la mousse minérale de ciment ne comprend substantiellement pas de ciment à prise rapide.
4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que la mousse minérale de ciment présente une densité inférieure à 600 kg/m3.
5. Procédé selon l'une quelconque des revendications 1 à 4 caractérisé en ce que la mousse minérale de ciment mise en œuvre à l'étape b) présente une conductivité thermique allant de 0,03 à 0,06 W/m.K.
6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que ladite alvéole soit une alvéole traversante.
7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le bloc est un bloc de béton.
8. Procédé selon l'une quelconque des revendications 1 à 7 caractérisé en ce que le laps de temps entre les étapes a) et b) n'excède pas 60 minutes, de préférence 30 minutes.
9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce qu'il comprend une étape d'application d'un composé hydrofuge sur les parois de l'alvéole du bloc, étape préliminaire à l'étape b) de remplissage.
10. Procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce que le bloc mis en œuvre à l'étape a) comprend un composé hydrofuge mélangé dans la masse du bloc.
1 1 . Procédé selon l'une quelconque des revendications 1 à 10 caractérisé en ce qu'il ne comprend pas d'étape de séchage ou d'étuvage du bloc avant les étapes a) ou b).
12. Procédé selon l'une quelconque des revendications 1 à 11 caractérisé en qu'il s'agit d'un procédé en continu ou en semi continu.
13. Bloc minéral isolant composite obtenu par le procédé selon l'une quelconques des revendications précédentes.
14. Utilisation d'un bloc minéral isolant composite selon la revendication 13, ou obtenu selon le procédé décrit à l'une quelconque des revendications 1 à 12, pour la construction, et plus particulièrement la maçonnerie.
PCT/EP2015/057388 2014-04-02 2015-04-02 Procede de fabrication d'un bloc de construction composite isolant WO2015150550A1 (fr)

Priority Applications (11)

Application Number Priority Date Filing Date Title
PL15714498T PL3126588T3 (pl) 2014-04-02 2015-04-02 Sposób wytwarzania kompozytowego izolacyjnego bloczka konstrukcyjnego
AU2015239093A AU2015239093B2 (en) 2014-04-02 2015-04-02 Method for producing an insulating composite building block
CN201580025342.1A CN106458773A (zh) 2014-04-02 2015-04-02 用于制备隔热复合建筑砌块的方法
US15/300,855 US10040726B2 (en) 2014-04-02 2015-04-02 Method for producing an insulating composite building block
MDA20160119A MD20160119A2 (ro) 2014-04-02 2015-04-02 Procedeu de fabricare a unui bloc de construcţie compus izolant
MX2016012721A MX2016012721A (es) 2014-04-02 2015-04-02 Metodo para producir un bloque de construccion compuesto aislante.
SG11201608216RA SG11201608216RA (en) 2014-04-02 2015-04-02 Method for producing an insulating composite building block
EP15714498.1A EP3126588B1 (fr) 2014-04-02 2015-04-02 Procede de fabrication d'un bloc de construction composite isolant
EA201691880A EA201691880A1 (ru) 2014-04-02 2015-04-02 Способ получения изоляционного композитного стенового строительного блока
CA2944257A CA2944257A1 (fr) 2014-04-02 2015-04-02 Procede de fabrication d'un bloc de construction composite isolant
PH12016501961A PH12016501961A1 (en) 2014-04-02 2016-10-03 Method for producing an insulating composite building block

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1452919 2014-04-02
FR1452919A FR3019543B1 (fr) 2014-04-02 2014-04-02 Procede de fabrication d'un bloc de construction composite isolant

Publications (1)

Publication Number Publication Date
WO2015150550A1 true WO2015150550A1 (fr) 2015-10-08

Family

ID=51293060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/057388 WO2015150550A1 (fr) 2014-04-02 2015-04-02 Procede de fabrication d'un bloc de construction composite isolant

Country Status (13)

Country Link
US (1) US10040726B2 (fr)
EP (1) EP3126588B1 (fr)
CN (1) CN106458773A (fr)
AU (1) AU2015239093B2 (fr)
CA (1) CA2944257A1 (fr)
EA (1) EA201691880A1 (fr)
FR (1) FR3019543B1 (fr)
MD (1) MD20160119A2 (fr)
MX (1) MX2016012721A (fr)
PH (1) PH12016501961A1 (fr)
PL (1) PL3126588T3 (fr)
SG (1) SG11201608216RA (fr)
WO (1) WO2015150550A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018231177A3 (fr) * 2017-01-10 2019-03-14 Akin Mermer Tekstil Insaat Makina Enerji Sanayi Ve Ticaret Ltd. Sti. Installation et procédé de production de blocs de pierre ponce ayant des cavités remplies d'un matériau d'isolation
WO2019004954A3 (fr) * 2017-01-10 2019-03-28 Akin Mermer Tekstil Insaat Makina Enerji Sanayi Ve Ticaret Ltd.Sti. Brique de construction perfectionnée et son procédé de fabrication
EP3613715A1 (fr) 2018-08-22 2020-02-26 Holcim Technology Ltd. Utilisation d'une mousse minérale pour la production de parois préfabriquées isolées thermiquement
EP3659986A1 (fr) * 2018-11-30 2020-06-03 Centre d'Etudes et de Recherches de l'Industrie du Béton Procede pour la realisation d'un beton a demoulage immediat produisant de faibles variations dimensionnelles en reponse a des variations hygrometriques
WO2022058544A1 (fr) 2020-09-18 2022-03-24 Holcim Technology Ltd Procédé pour la production d'un élément de construction minéral isolant composite

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023016946A1 (fr) * 2021-08-13 2023-02-16 Sika Technology Ag Panneau d'isolation thermique léger résistant au feu

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2374393A1 (fr) * 1976-12-17 1978-07-13 Asahi Dow Ltd Nouvelle mousse et son procede de preparation
EP0086974A1 (fr) * 1982-01-29 1983-08-31 Hoechst Aktiengesellschaft Brique composite, inorganique et procédé pour sa fabrication
DE29722863U1 (de) * 1997-08-12 1998-12-10 Ziegelwerk Klosterbeuren Ludwi Gefüllter Ziegelstein
EP1174558A1 (fr) * 2000-07-18 2002-01-23 Liapor GmbH & Co. KG Bloc isolant thermique avec un cadre et remplissage avec du mortier
WO2013150148A1 (fr) * 2012-04-06 2013-10-10 Lafarge Mousse minérale isolante

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2943082B1 (fr) 2009-03-12 2016-04-01 Tarmac Materiaux De Construction Bloc de coffrage d'un chainage peripherique de batiment
DE102010062762B4 (de) 2010-12-09 2012-09-27 Dr. Lucà & Partner Ingenieurkontor GmbH Verfahren zur Herstellung von Schaumbeton und Verwendung des Verfahrens
CN103628614B (zh) * 2013-12-02 2015-12-30 段志祥 一种多功能发泡混凝土复合自保温砌块及其成型方法
CN103643760B (zh) * 2013-12-27 2015-08-19 中国建筑材料科学研究总院 一种发泡水泥充填式混凝土复合保温砌块及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2374393A1 (fr) * 1976-12-17 1978-07-13 Asahi Dow Ltd Nouvelle mousse et son procede de preparation
EP0086974A1 (fr) * 1982-01-29 1983-08-31 Hoechst Aktiengesellschaft Brique composite, inorganique et procédé pour sa fabrication
DE29722863U1 (de) * 1997-08-12 1998-12-10 Ziegelwerk Klosterbeuren Ludwi Gefüllter Ziegelstein
EP1174558A1 (fr) * 2000-07-18 2002-01-23 Liapor GmbH & Co. KG Bloc isolant thermique avec un cadre et remplissage avec du mortier
WO2013150148A1 (fr) * 2012-04-06 2013-10-10 Lafarge Mousse minérale isolante

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIAPOR: "New Generation of Products featuring mineral insulating material", 31 December 2013 (2013-12-31), XP002731482, Retrieved from the Internet <URL:http://www.liapor.com/en/fines.php?n=0102> [retrieved on 20141022] *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018231177A3 (fr) * 2017-01-10 2019-03-14 Akin Mermer Tekstil Insaat Makina Enerji Sanayi Ve Ticaret Ltd. Sti. Installation et procédé de production de blocs de pierre ponce ayant des cavités remplies d'un matériau d'isolation
WO2019004954A3 (fr) * 2017-01-10 2019-03-28 Akin Mermer Tekstil Insaat Makina Enerji Sanayi Ve Ticaret Ltd.Sti. Brique de construction perfectionnée et son procédé de fabrication
EP3613715A1 (fr) 2018-08-22 2020-02-26 Holcim Technology Ltd. Utilisation d'une mousse minérale pour la production de parois préfabriquées isolées thermiquement
WO2020039023A1 (fr) 2018-08-22 2020-02-27 Holcim Technology Ltd Utilisation d'une mousse minérale pour la production de parois préfabriquées thermiquement isolées
EP3659986A1 (fr) * 2018-11-30 2020-06-03 Centre d'Etudes et de Recherches de l'Industrie du Béton Procede pour la realisation d'un beton a demoulage immediat produisant de faibles variations dimensionnelles en reponse a des variations hygrometriques
FR3089220A1 (fr) * 2018-11-30 2020-06-05 Centre D'etudes Et De Recherches De L'industrie Du Béton Procede pour la realisation d’un beton a demoulage immediat produisant de faibles variations dimensionnelles en reponse a des variations hygrometriques
WO2022058544A1 (fr) 2020-09-18 2022-03-24 Holcim Technology Ltd Procédé pour la production d'un élément de construction minéral isolant composite

Also Published As

Publication number Publication date
US10040726B2 (en) 2018-08-07
EA201691880A1 (ru) 2017-03-31
FR3019543B1 (fr) 2019-10-11
EP3126588B1 (fr) 2020-02-26
CA2944257A1 (fr) 2015-10-08
PH12016501961A1 (en) 2017-01-09
AU2015239093A1 (en) 2016-10-20
CN106458773A (zh) 2017-02-22
FR3019543A1 (fr) 2015-10-09
PL3126588T3 (pl) 2020-08-24
SG11201608216RA (en) 2016-11-29
US20170022116A1 (en) 2017-01-26
EP3126588A1 (fr) 2017-02-08
MX2016012721A (es) 2016-12-16
AU2015239093B2 (en) 2018-11-29
MD20160119A2 (ro) 2017-03-31

Similar Documents

Publication Publication Date Title
EP3126588B1 (fr) Procede de fabrication d&#39;un bloc de construction composite isolant
EP2263985B1 (fr) Matériau composite de construction incorporant de la chenevotte de chanvre
EP2401239B1 (fr) Mortier isolant pulverulent, mortier isolant en couche
CA3041936C (fr) Composition de construction seche projetable en voie humide a l&#39;aide d&#39;une pompe a vis et comprenant un liant et une charge biosourcee - preparation et applications d&#39;une telle composition
CA2971658C (fr) Procede de fabrication en continu d&#39;une mousse minerale a faible densite
FR3050203A1 (fr) Composition de mortier fortement allege et isolant thermique
EP2093201A2 (fr) Composition de mousse de chaux pour isolation thermique
WO2011086333A2 (fr) Materiau pour isolation thermique et son procede de fabrication
FR2989083A1 (fr) Mousse minerale isolante
EP2935144A1 (fr) Composition de béton ou mortier allégé comprenant une mousse aqueuse
EP3018109B1 (fr) Mélange hydraulique comprenant des granulats d&#39;origine végétale et procédé de préparation de béton ou mortier à partir dudit mélange
FR3023859A1 (fr) Element de construction isolant, procede de fabrication et materiau isolant correspondants
FR3026421A1 (fr) Bloc beton isolant et a base de granulats vegetaux
FR2975096A1 (fr) Procede de cure d&#39;un beton permeable
EP3377458B1 (fr) Mousse minerale ultra-légère et son procede de fabrication
EP3152181B1 (fr) Procede de fabrication d&#39;une mousse minerale ultra-legere
EP3325424A1 (fr) Procede de preparation d&#39;un béton ou mortier allegé contenant de la glycerine
EP2401238B1 (fr) Composition utile pour la preparation d&#39;un beton sans ajout d&#39;eau
EP3392224A1 (fr) Utilisation d&#39;un agent entraineur d air pour diminuer le temps de sechage d&#39;une chape a base de sulfate de calcium
FR2643363A1 (fr) Procede de traitement de la chenevotte tiree d&#39;un chanvre monoique en vue de l&#39;obtention d&#39;agregats durcis utilisables comme isolant ou comme charge dans la confection d&#39;un beton, et beton obtenu par ce procede
BE1025982B1 (fr) Materiau de construction de type beton non-porteur comprenant des anas de lin melanges a de la chaux et un accelerateur de prise
BE438867A (fr)
FR2740445A1 (fr) Additif pour controler la sedimentation des conglomerats

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15714498

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2944257

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/012721

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 15300855

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 12016501961

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 201691880

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 2015239093

Country of ref document: AU

Date of ref document: 20150402

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015714498

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015714498

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20160119

Country of ref document: MD

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016022138

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: A 2016 0119

Country of ref document: MD

ENP Entry into the national phase

Ref document number: 112016022138

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160926