WO2015149468A1 - 侦听方法及侦听装置 - Google Patents

侦听方法及侦听装置 Download PDF

Info

Publication number
WO2015149468A1
WO2015149468A1 PCT/CN2014/084668 CN2014084668W WO2015149468A1 WO 2015149468 A1 WO2015149468 A1 WO 2015149468A1 CN 2014084668 W CN2014084668 W CN 2014084668W WO 2015149468 A1 WO2015149468 A1 WO 2015149468A1
Authority
WO
WIPO (PCT)
Prior art keywords
user
base station
communication
intercepted
bearer
Prior art date
Application number
PCT/CN2014/084668
Other languages
English (en)
French (fr)
Inventor
宗在峰
李志军
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2015149468A1 publication Critical patent/WO2015149468A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/30Network architectures or network communication protocols for network security for supporting lawful interception, monitoring or retaining of communications or communication related information
    • H04L63/304Network architectures or network communication protocols for network security for supporting lawful interception, monitoring or retaining of communications or communication related information intercepting circuit switched data communications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M3/00Automatic or semi-automatic exchanges
    • H04M3/22Arrangements for supervision, monitoring or testing
    • H04M3/2281Call monitoring, e.g. for law enforcement purposes; Call tracing; Detection or prevention of malicious calls
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements

Definitions

  • the present invention relates to the field of communications, and in particular to a listening method and a listening device.
  • 3GPP 3rd Generation Partnership Project
  • EPS evolved Evolved Packet System
  • E-UTRAN Mobility Management Entity
  • S-GW Serving Gateway
  • P-GW Packet Data Network Gateway
  • HSS Home Subscriber Server
  • AAA 3GPP Authentication Authorization and Accounting
  • FIG. 1 is a schematic diagram of an architecture of short-range communication according to the related art.
  • a new direct interface PC5 is added between the UE and the UE, and the PC5 interface is an air interface between the UE and the UE.
  • the ProSe functional entity is a core network functional entity that assists in supporting short-range communication.
  • the functional entity assists in discovering between UEs and assists in establishing a PC5 interface.
  • the functional entity is also responsible for registration, authentication, authorization, and short-range communication of the short-range communication UE.
  • Discovery of the peer, establishment or handover of a short-range communication link ie, a PC5 link.
  • the ProSe functional entity interfaces with the existing EPC (such as MME) through the PC4.
  • the ProSe functional entity also interfaces with the application server through the PC2, which is used to obtain application-related information from the application server and to provide close-range communication services for the application server.
  • Near-field communication can not only meet the needs of emergency communication between mobile phones without coverage, but also provide a new possibility and opportunity for operators' networks.
  • a listening method including: listening to a communication between a listened user and a communication peer by a base station where a listener is located, where the intercepted The user is a short-range communication user; the base station sends the intercepted data to the core network element.
  • the detecting, by the base station, the communication between the intercepted user and the communication peer comprises: communicating, by the base station, the intercepted user and the communication peer between the air interface Or performing the interception; or, the base station switches the short-distance communication link established by the intercepted user and the communication peer to a communication link that passes through the base station, and then passes through a communication link of the base station. Listening for communication between the listened user and the communication peer.
  • the detecting, by the base station, the intercepted user on the air interface includes: the base station is the intercepted user, and the base station where the communication peer is located is the communication peer, and the wireless parameter is reconfigured.
  • the base station switches the short-distance communication link established by the intercepted user and the communication peer to a communication link that passes through the base station, and performs interception, including: the base station is the Listening to the user and the base station where the communication peer is located as the communication peer, reconfiguring the wireless parameters, and establishing the intercepted user and a bearer of the communication peer and the respective base station; when the intercepted user and the communication peer communicate on the established bearer, the base station where the intercepted user is located performs detection on the established bearer listen.
  • the base station where the intercepted user is located and the base station where the communication peer is located are the same base station or different base stations.
  • the base station where the intercepted user is located transmits the intercepted data to the core network element: the base station where the intercepted user is located obtains encrypted data by intercepting, and decrypts the encrypted data. And sending the decrypted data to the core network element; or sending, by the base station where the intercepted user is located, the encrypted data that is sent to the core network element.
  • the method further includes: receiving, by the base station where the intercepted user is located, the network element from the core network for decrypting the Information about the data.
  • the method further includes: the base station where the intercepted user is located is being intercepted for the When the user reconfigures the wireless parameters, the keys of the listened user and the communication peer are reconfigured.
  • the method further includes: the base station where the listened user is located via the mobile management
  • the network element receives a request from the ProSe functional entity to listen to the listened user.
  • a listening device located in a base station where a listened user is located, comprising: a listening module, configured to communicate between the listened user and a communication peer
  • the intercepting user is the short-distance communication user; the sending module is configured to send the intercepted data to the core network element.
  • the listening module is configured to listen to communication between the listened user and the communication peer at an air interface; or the listening module is configured to be the listened user After the short-distance communication link established with the communication peer is switched to the communication link of the base station, the communication link between the intercepted user and the communication peer is passed through a communication link of the base station Communication is listening.
  • the listening module is configured to: after the wireless parameter is reconfigured for the listened user and the bearer of the listened user is updated, the listened user and the communication peer are updated. When the communication is performed on the subsequent bearer, the updated bearer is intercepted on the air interface.
  • the listening module is configured to: after reconfiguring a wireless parameter for the intercepted user, and establishing a bearer of the intercepted user and a base station thereof, in the intercepted user and the communication When the peer communicates on the established bearer, it listens on the established bearer.
  • the sending module is configured to decrypt the encrypted data by intercepting, and send the decrypted data to the core network element; or the sending module is configured to encrypt the detected data.
  • the data is sent to the core network element.
  • the method further includes: a first receiving module, configured to receive information from the core network element for decrypting the data.
  • the method further includes: a configuration module, configured to reconfigure the key of the listened user and the communication peer when the wireless parameter is reconfigured for the listened user.
  • the method further includes: a second receiving module, configured to receive, by the mobility management network element, a request from the ProSe functional entity to listen to the intercepted user.
  • the base station where the user is located is used to listen to the communication between the listened user and the communication peer, wherein the listened user is a short-range communication user; the base station sends the intercepted data to the base station. Core network element. The problem that the short-range communication is monitored is not proposed in the related art, and the user of the short-range communication is monitored.
  • FIG. 1 is a schematic diagram of a short-range communication according to the related art
  • FIG. 2 is a flowchart of a listening method according to an embodiment of the present invention
  • FIG. 3 is a base station listening through an air interface according to an embodiment of the present invention
  • FIG. 4 is a preferred flowchart of a base station performing interception after switching a short-range communication link to a communication link through a base station according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a listening apparatus according to an embodiment of the present invention. Structure diagram; 6 is a schematic diagram of a legal listening reference architecture according to a preferred embodiment of the present invention
  • FIG. 7 is a flowchart according to a preferred embodiment of the present invention
  • FIG. 8 is a flowchart according to a preferred embodiment of the present invention
  • 9 is a flow chart according to a preferred embodiment 4 of the present invention
  • FIG. 10 is a flow chart according to a preferred embodiment 5 of the present invention.
  • FIG. 2 is a flowchart of a listening method according to an embodiment of the present invention. As shown in FIG. 2, the process includes the following steps: Step S202: Listening to the user The base station listens to the communication between the listened user and the communication peer, wherein the listened user is a short-range communication user; and in step S204, the base station sends the intercepted data to the core network element.
  • the intercepted user is intercepted by the base station, and then the intercepted data is sent to the core network element, thereby realizing the monitoring of the user of the short-range communication.
  • the monitoring of the monitored user by the base station can be implemented in various ways, and two preferred embodiments are provided in this embodiment. It should be noted that the two implementation manners are only preferred implementation manners, and the manner in which the base station listens to the listened user is not limited to the two preferred embodiments. These two preferred embodiments are described below.
  • the foregoing interception may be initiated by the ProSe, and the base station where the intercepted user is located may receive a request from the ProSe functional entity to listen to the intercepted user via the mobility management network element.
  • a base station listens for communication between a listened user and a communication peer at an air interface.
  • the base station may listen to the monitored user through the air interface on the updated bearer by updating the bearer.
  • FIG. 3 is a flow chart of a base station listening through an air interface according to an embodiment of the present invention. As shown in FIG. 3, the process includes the following steps: Step S302: A base station is a listener and a base station where the communication peer is located.
  • the peer end reconfigures the wireless parameter and updates the bearer of the listened user and the communication peer; Step S304, when the listened user and the communication peer communicate on the updated bearer, the base station where the listened user is located is in the air interface Listen for the updated bearer.
  • the base station after the base station switches the short-distance communication link established between the monitored user and the communication peer to the communication link passing through the base station, the base station communicates with the communication peer through the communication link through the base station. Communication is listening.
  • the interception can be performed by establishing a bearer to the base station.
  • Step S402 The base station is Listening to the user and the base station where the communication peer is located is the communication peer, reconfiguring the wireless parameters, and establishing the bearer of the monitored user and the communication peer and the respective base station; Step S404, in the listened user and the communication peer When the established bearer communicates, the base station where the intercepted user is located listens on the established bearer.
  • the base station where the intercepted user is located and the base station where the communication peer is located may be the same base station or different base stations, and different base stations may establish inter-base station communication for data forwarding.
  • the base station can encrypt the data by listening to the data obtained.
  • the base station where the intercepted user is located can decrypt the encrypted data, and send the decrypted data to the core network element; or
  • the base station where the intercepted user is located may also send the intercepted encrypted data to the core network element, and then the core network element performs decryption processing.
  • FIG. 5 is a structural block diagram of a listening apparatus according to an embodiment of the present invention. As shown in FIG.
  • the structure includes the following modules: a listening module 52 and a sending module 54, wherein the listening module 52 is set to be listened to The communication between the user and the communication peer is intercepted, wherein the listened user is a short-range communication user; and the sending module 54 is configured to send the intercepted data to the core network element.
  • the listening module 52 is configured to listen to communication between the listened user and the communication peer at the air interface; or, the listening module 52 is set to establish a close distance between the user to be intercepted and the communication peer. After the communication link is switched to the communication link of the base station, the communication between the listened user and the communication peer is intercepted by the communication link passing through the base station.
  • the listening module 52 is configured to, after reconfiguring the wireless parameter for the listened user and updating the bearer of the listened user, when the listened user and the communication peer communicate on the updated bearer, Listen for the updated bearer.
  • the listening module 52 is configured to, after reconfiguring the wireless parameter for the listened user, and establishing the bearer of the listened user and the base station in which it is located, when the monitored user and the communication peer communicate on the established bearer , listening on the established bearer.
  • the sending module 54 is configured to decrypt the encrypted data by the interception, and send the decrypted data to the core network element; or the sending module 54 is configured to send the intercepted encrypted data to the core network. Network element.
  • the apparatus may further include: a first receiving module, configured to receive information from the core network element for decrypting data.
  • the apparatus may further comprise: a configuration module configured to reconfigure the keys of the listened user and the communication peer when reconfiguring the wireless parameters for the listened user.
  • the apparatus may further comprise: a second receiving module, configured to receive, by the mobility management network element, a request from the ProSe functional entity to listen to the intercepted user.
  • the core network function entity 1 notifies the base station where the intercepted user is located; (b) the base station where the listened user is located listens to the user on the air interface, or is detected Listening to the base station where the user is located, switching the short-distance communication link between the user and another user or the host to the user through the base station;
  • the data packet intercepted by the base station of the listened user is decrypted and sent to the core network function entity 2; or the data packet intercepted by the base station that is intercepted by the user is directly sent to the core network function entity 2 without decryption.
  • the data packet is decrypted by the core network functional entity 2.
  • the core network functional entity 2 then sends the intercepted data to the lawful interception server.
  • the core network functional entity 1 is a ProSe functional entity or a PDN GW.
  • the core network function entity 1 notifies the base station where the user is located to listen to the user through the MME.
  • the base station where the user is being listened to refers to a base station that is monitored by the user to be camped on.
  • the base station performs interception on the air interface, that is, the base station intercepts, in the air interface, the data packet that the intercepted user directly communicates with other users or hosts on the short-distance communication link.
  • the base station forwards the short-range communication data packet between the two users.
  • the intercepted user and the communication peer of the user reside in different base stations, the ij needs to establish a channel between the two base stations, and the channel is used for the communication end between the listened user and the user. Forward short-range communication packets.
  • the base station or the core network function entity 2 in which the listened user is located decrypts the encrypted data packet.
  • the base station of the listened user reconfigures the communication link for the listened user before performing the interception, including configuring a new communication key and bearer.
  • the core network function entity 2 may be a PDN GW or a ProSe functional entity.
  • the base station obtains information required to decrypt the data packet from the core network functional entity 3, including parameters such as an algorithm, a key, and an initial value.
  • the core network functional entity 3 can be an MME or a ProSe functional entity.
  • the core network functional entity 2 obtains information required to decrypt the data packet from the core network functional entity 3, including an algorithm and a key. , initial values and other parameters.
  • the core network functional entity 3 can be an MME or a ProSe functional entity.
  • a tunnel is established between the base station and the core network functional entity 2 for intercepting the transmission of data.
  • the establishment of the tunnel between the base station and the core network functional entity 2 can be performed with the assistance of the MME; or the base station and the core network functional entity 2 directly establish a tunnel.
  • the granularity of the tunnel is user granularity or bearer granularity.
  • FIG. 6 is a schematic diagram of a legal listening reference architecture of short-range communication according to a preferred embodiment of the present invention. As shown in FIG. 6, based on the reference architecture of FIG. 1, this embodiment adds three interfaces: Xl- 1, X2, X3. XI interface: Interface between the ProSe functional entity and the Administration Function (ADMF). The interception department sends an instruction to listen to the short-distance user communication through the X1-1 interface to the ProSe functional entity.
  • ADMF Administration Function
  • X2 interface Interface between the ProSe functional entity and Delivery Function 2 (Delivery Function 2).
  • the interface is used by the ProSe function entity to send event and signaling information related to the listened user to the Delivery Function 2. For example, the listened user initiates a discovery process, or the intercepted user establishes a close relationship with another user. Communication, etc.
  • X3 interface Interface between the ProSe functional entity and Delivery Function 3 (Delivery Function 3). This interface is used by the ProSe functional entity to send a packet to the Delivery Function 3 to be communicated between the listened user and other users or hosts over a short-range communication link. In addition, this embodiment will also enhance the X3 interface between the PDN GW and the Delivery Function 3 (not shown in Figure 6) to send the listened user to the Delivery Function 3 through close communication with other users or hosts. A packet through which the link communicates.
  • Embodiment 2 This embodiment is a listening process in which the intercepted user and the peer user communicating with the peer are located under the same eNB.
  • the eNB directly listens to the air interface of the user UE A and its communication peer UE B, so as to intercept the data packets communicated between them.
  • the eNB establishes an LI tunnel with the PDN GW, and the tunnel can be decrypted by the SGWo e B to intercept the data packet that the UE A intercepts from the air interface and the other user, and then sent to the PDN GW through the LI tunnel, and sent by the PDN GW through the X3 interface.
  • Delivery Function 3
  • UE A is a listened user
  • UE B is a communication peer that performs short-range communication with UE A.
  • UE A and UE B reside under the same eNB.
  • FIG. 7 is a flowchart of a preferred embodiment of the present invention. As shown in FIG. 7, the process includes the following steps: Step S701: UE A is performing short-range communication with UE B. Step S702, the ProSe functional entity receives the requirement of listening to the UE A. Step S703: The ProSe function entity sends a request for listening to the UE A to the MME served by the UE A, and the MME sends a request for listening to the UE A to the eNB. Step S704, step S705, the eNB initiates establishment of the LI tunnel. The eNB requests the MME to establish an LI tunnel.
  • the tunnel passes through the SGW, that is, the tunnel is composed of a tunnel between the eNB and the SGW and a tunnel between the SGW and the PDN GW.
  • the MME selects one PDN GW for the eNB as the PDN GW that is reported and reported.
  • the LI tunnel is used by the eNB to send a packet to the PDN GW to communicate between UE A intercepted by the air interface and other users.
  • the establishment of the tunnel can be performed by using the S1AP protocol and the GTP protocol. For details, refer to the existing 3GPP protocol. Therefore, the present invention does not describe the tunnel establishment process.
  • Step S706 after the tunnel establishment is completed, the eNB sends a response message to the ProSe functional entity.
  • Step S707 the ProSe functional entity configures a new key for short-range communication between UE A and UE B.
  • the ProSe functional entity sends the new key to the e B through the MME, and the eNB configures the new key for UE A and UE B.
  • the ProSe functional entity also sends security algorithms and other algorithm related parameters between UE A and UE B to e B.
  • the eNB stores security algorithms, keys, and other algorithm related parameters between UE A and UE B to decrypt the intercepted communication packets between UE A and UE B.
  • the eNB also updates the bearer for the UE A and the UE B, including: allocating a new bearer and releasing the old bearer.
  • UE A and UE B reconfigure PDCP, and the security related parameters are The number is reinitialized (eg, UE A and UE B reset the Counter) and the data is sent and received on the new bearer.
  • UE A and UE B release the old bearer.
  • Counter synchronization between the eNB and the uplink and downlink data packets of UE A and UE B is maintained by means of re-bearing bearers.
  • Step S710 the eNB starts to listen to the air interface of UE A.
  • the eNB listens for communication packets between UE A and UE B on the new bearer.
  • Step S711 the eNB initializes a security context for decrypting the communication data packet between the UE A and the UE B, including setting a security algorithm, a key, and other initial vectors, such as a Counter.
  • the eNB After intercepting the communication data packet between UE A and UE B, the eNB decrypts the data packet by using parameters in the foregoing security context. Step S712, the eNB sends the decrypted data packet to the PDN GW through the LI tunnel. Step S713, the PDN GW sends the communication data packet between the UE A and the UE B to the interception server through the X3 interface.
  • Embodiment 3 This embodiment is a listening process in which the intercepted user and the peer user communicating with the peer are located under different eNBs. In this embodiment, UE A is a listened user, and UE B is a communication peer that performs short-range communication with UE A.
  • FIG. 8 is a flowchart of a third embodiment of the present invention. As shown in FIG. 8, the process includes the following steps: Step S801: UE A is performing short-range communication with UE B. Step S802, the ProSe functional entity receives the requirement of listening to the UE A. Step S803, the ProSe function entity sends a request for listening to the UE A to the MME served by the UE A, and the MME sends a request for listening to the UE A to the eNB A.
  • Step S804, step S805, the eNB A initiates establishment of the LI tunnel.
  • eNB A requests the MME to establish an LI tunnel. If there is an SGW, the tunnel passes through the SGW, that is, the tunnel is composed of a tunnel between the eNB A and the SGW and a tunnel between the SGW and the PDN GW.
  • the MME selects one PDN GW for the eNB A as the PDN GW that listens for reporting.
  • the LI tunnel is used by the eNB A to send a packet of communication between the UE A intercepted by the air interface and other users to the PDN GW.
  • the establishment of the tunnel can be performed by using the S1AP protocol and the GTP protocol. For details, refer to the existing 3GPP protocol.
  • Step S806 after the tunnel establishment is completed, the eNB A sends a response message to the ProSe functional entity.
  • Step S807 the ProSe functional entity configures a new key for short-range communication between UE A and UE B.
  • the ProSe functional entity sends a new key to the eNB A through the MME, and the eNB A configures a new key for the UE A.
  • the ProSe functional entity also sends security algorithms and other algorithm related parameters between UE A and UE B to eNB A.
  • the e BA stores security algorithms, keys, and other algorithm related parameters between UE A and UE B to decrypt the intercepted communication packets between UE A and UE B.
  • Step S808 the eNB A reconfigures the radio parameters for the UE A, including: reconfiguring the key that the UE A communicates with the UE B.
  • the eNB A also updates the bearer for the UE A, including: allocating a new bearer and releasing the old bearer.
  • UE A reconfigures the PDCP, reinitializes the security related parameters (eg, UE A resets the Counter), and transmits and receives data on the new bearer.
  • UE A releases the old bearer.
  • the counter synchronization between the uplink and downlink data packets of the eNB A and the UE A is maintained by reconfiguring the bearer.
  • the ProSe functional entity configures a new key for short-range communication between UE A and UE B.
  • the ProSe functional entity sends a new key to the eNB B through the MME, and the eNB B configures a new key for the UE B.
  • Step S810 the eNB B reconfigures the radio parameters for the UE B, including: reconfiguring the key that the UE A communicates with the UE B.
  • the e BB also updates the bearer for the UE B, including: allocating a new bearer and releasing the old bearer.
  • UE B After receiving the reconfiguration radio parameters from the eNB, UE B reconfigures the PDCP, reinitializes the security related parameters (eg, UE B resets the Counter), and transmits and receives data on the new bearer.
  • UE B releases the old bearer.
  • the eNB A starts to listen to the air interface of the UE A.
  • the eNB A listens for communication packets between UE A and UE B on the new bearer.
  • the eNB A initializes a security context for decrypting the communication data packet between the UE A and the UE B, and includes setting a security algorithm, a key, and other initial vectors, such as a Counter.
  • eNB A decrypts the data packet using the parameters in the foregoing security context.
  • the eNB A sends the decrypted data packet to the PDN GW through the LI tunnel.
  • the PDN GW sends the communication data packet between the UE A and the UE B to the listening server through the X3 interface.
  • Embodiment 4 is a listening process when the intercepted user and the peer user communicating with the peer are located under the same eNB, and the eNB cannot directly intercept the intercepted user and other users or interrupt the call data packet in the air interface.
  • UE A is a listened user
  • UE B is a communication peer that performs short-range communication with UE A. Both UE A and UE B reside under the eNB.
  • this embodiment assumes that UE A and UE B are served by the same MME and ProSe functional entity.
  • FIG. 9 is a flowchart of a preferred embodiment 4 of the present invention. As shown in FIG.
  • Step S901 UE A is performing short-range communication with UE B.
  • Step S902 the ProSe functional entity receives the requirement of listening to the UE A.
  • Step S903 The ProSe function entity sends a request for listening to the UE A to the MME served by the UE A, and the MME sends a request for listening to the UE A to the eNB.
  • Step S904, step S905, the eNB initiates establishment of an LI tunnel.
  • the eNB requests the MME to establish an LI tunnel. If there is an SGW, the tunnel passes through the SGW, that is, the tunnel is composed of a tunnel between the eNB and the SGW and a tunnel between the SGW and the PDN GW.
  • the MME selects one PDN GW for the eNB as the PDN GW that is reported and reported.
  • the LI tunnel is used by the eNB to send a packet to the PDN GW to communicate between UE A intercepted by the air interface and other users.
  • the establishment of the tunnel can be performed by using the S1AP protocol and the GTP protocol. For details, refer to the existing 3GPP protocol. Therefore, the present invention does not describe the tunnel establishment process.
  • Step S906 after the tunnel establishment is completed, the eNB sends a response message to the ProSe functional entity.
  • Step S907 the ProSe functional entity configures a new key for short-range communication between UE A and UE B.
  • the ProSe functional entity sends the new key to the e B through the MME, and the eNB configures the new key for UE A and UE B.
  • the ProSe functional entity also sends security algorithms and other algorithm related parameters between UE A and UE B to e B.
  • the eNB stores security algorithms, keys, and other algorithm related parameters between UE A and UE B to decrypt the intercepted communication packets between UE A and UE B.
  • Step S908 step S909, the eNB reconfiguring the wireless parameters for the UE A and the UE B, including: reconfiguring the key.
  • the eNB divides the bearer directly communicating between UE A and UE B into two segments: eNB
  • the bearer of the UE A to the eNB and the bearer of the UE B to the eNB are not established, and a loop is established locally at the eNB, and the bearer between the UE A and the eNB and the UE B and the eNB bearer are relayed, thereby ensuring the connection between the UE A and the UE B.
  • Unicom Thereby, the communication data packet between UE A and UEB is transited by the eNB.
  • UE A and UEB After receiving the reconfiguration radio parameters from the eNB, UE A and UEB reconfigure the PDCP, reinitialize the security related parameters (eg, UEA and UEB reset Counter), and send and receive data on the new bearer. At the same time, the eNB commands UEA and UEB to release the old bearer. In this embodiment, the eNB inserts the eNB on the communication path of the UE A and the UE B by means of the reconfiguration bearer, so that the communication data packet between the UEA and the UEB can be intercepted.
  • the security related parameters eg, UEA and UEB reset Counter
  • the UEA and the UE B need to enable the new key, and initialize the security algorithm context, so that the Counter synchronization between the eNB and the uplink and downlink data packets of the UE A and the UE B can be maintained.
  • the UE A and the UE B start to send and receive data on the new bearer, and the eNB also starts to intercept the data packet on the new bearer, so that the Counter on the eNB and the Counter on the UEA and the UEB can be guaranteed. be consistent.
  • Step S910 the eNB starts to intercept the communication data packet of the UEA and the UEB locally.
  • the eNB initializes a security context for decrypting communication packets between UEA and UE B, including setting a security algorithm, a key, other initial vectors such as Counter, and the like. After intercepting the communication data packet between the UEA and the UEB, the eNB decrypts the data packet by using the parameters in the security context. Step S911, the eNB sends the decrypted data packet to the PDN GW through the LI tunnel. Step S912, the PDN GW sends the communication data packet between the UEA and the UEB to the interception server through the X3 interface.
  • Embodiment 5 This embodiment is a listening process when the intercepted user and the peer user communicating with the peer are located under different eNBs, and the eNB cannot directly intercept the intercepted user and other users or interrupt the call data packet in the air interface.
  • the UEA is a listened user
  • the UEB is a communication peer that performs short-range communication with the UE A.
  • UE A resides under eNB A
  • UE B resides under eNB B.
  • FIG. 10 is a flowchart of a preferred embodiment 5 of the present invention. As shown in FIG.
  • Step S1001 UEA is performing short-range communication with the UEB.
  • Step S1002 The ProSe functional entity receives the requirement of listening to the UEA.
  • Step S1003 The ProSe function entity sends a request for listening to UE A to the MME served by UE A, and the MME sends a request for listening to UE A to eNB A.
  • Step S1004, step S1005, eNB A initiates establishment of an LI tunnel.
  • eNB A requests the MME to establish an LI tunnel. If there is an SGW, the tunnel passes through the SGW, that is, the tunnel is composed of a tunnel between the eNB A and the SGW and a tunnel between the SGW and the PDN GW.
  • the MME selects one PDN GW for the eNB A as the PDN GW that listens for reporting.
  • the LI tunnel is used by the eNB A to send a packet of communication between the UE A intercepted by the air interface and other users to the PDN GW.
  • the establishment of the tunnel can be performed by using the S1AP protocol and the GTP protocol. For details, refer to the existing 3GPP protocol. Therefore, the present invention does not describe the tunnel establishment process.
  • Step S1006 After the tunnel establishment is completed, the eNB A sends a response message to the ProSe functional entity.
  • Step S1007 The ProSe functional entity configures a new key for short-range communication between UE A and UE B.
  • the ProSe functional entity sends a new key to the eNB A through the MME, and the eNB A configures a new key for the UE A and the UE B.
  • the ProSe functional entity also sends security algorithms and other algorithm related parameters between UE A and UE B to eNB A.
  • eNB A stores security algorithms, keys, and other algorithm related parameters between UE A and UE B to decrypt the intercepted communication packets between UE A and UE B.
  • Step S1008 The ProSe functional entity configures a new key for short-range communication between UE A and UE B.
  • the ProSe functional entity sends a new key to the eNB B through the MME, and the eNB B configures a new key for the UE A and the UE B.
  • the eNB A determines that the data packet between the UE A and the UE B cannot be directly intercepted in the air interface, and the UE A and the UE B reside in different eNBs (the UE B resides under the eNB B), and the eNB A and the UE A forwarding channel is established between the base stations eNB B where the UE B resides.
  • Step S1010 The eNB A reconfigures the radio parameters for the UE A, including: reconfiguring the key and rebuilding the bearer.
  • the eNB A establishes a new bearer between the UE A and the eNB A, and releases the bearer between the UE A and the UE B.
  • UE A sends and receives data to UE B through the bearer between UE A and eNB A.
  • the eNB A forwards the data to the eNB B through the forwarding channel established in the step S1009.
  • UE A will configure new security parameters, including new keys, initialization security parameters, etc., after enabling the new bearer (bearer between UE A and eNB A).
  • Step S1011 The eNB B reconfigures the radio parameters for the UE B, including: reconfiguring the key and rebuilding the bearer.
  • the eNB B establishes a new bearer between the UE B and the eNB B, and releases the bearer between the UE B and the UE A.
  • UE B sends and receives data to UE A through the bearer between UE B and eNB B.
  • eNB B steps through the steps The forwarding channel established by SI 009 forwards data to the e BA.
  • UE B After enabling the new bearer (bearer between UE B and eNB B), UE B will configure new security parameters, including new key, initialization security parameters, and so on.
  • Step S1012 the eNB A starts to intercept the communication data packet of the UE A and the UE B locally.
  • the eNB A initializes the security context for decrypting the communication data packet between the UE A and the UE B, including setting a security algorithm, a key, other initial vectors such as Counter, and the like. After intercepting the communication data packet between UE A and UE B, eNB A decrypts the data packet using the parameters in the foregoing security context. Step S1013: The eNB A sends the decrypted data packet to the PDN GW through the LI tunnel. Step S1014: The PDN GW sends the communication data packet between the UE A and the UE B to the interception server through the X3 interface.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device, or they may be separately fabricated into individual integrated circuit modules, or they may be Multiple modules or steps are made into a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the above are only the preferred embodiments of the present invention, and are not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Technology Law (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了侦听方法及侦听装置,该侦听方法包括:被侦听用户所在的基站对被侦听用户和通信对端之间的通信进行侦听,其中,被侦听用户为近距离通信用户;基站将侦听得到的数据发送给核心网网元。通过本发明解决了相关技术中没有提出任何对近距离通信进行监控的问题,实现了对近距离通信的用户进行监控。

Description

侦听方法及侦听装置 技术领域 本发明涉及通信领域, 具体而言, 涉及侦听方法及侦听装置。 背景技术 第三代合作伙伴计划(3rd Generation Partnership Project, 简称为 3GPP)演进的分 组系统 (Evolved Packet System , 简称为 EPS) 由演进的通用移动通信系统陆地无线 接入网 (Evolved Universal Terrestrial Radio Access Network, 简称为 E-UTRAN)、 移动 管理单元 (Mobility Management Entity, 简称为 MME)、 服务网关 ( Serving Gateway, S-GW)、 分组数据网络网关 (Packet Data Network Gateway, 简称为 P-GW或者 PDN GW) 归属用户服务器 (Home Subscriber Server, 简称为 HSS)、 3GPP的认证授权计 费 ( Authentication Authorization and Accounting , 简称为 AAA) 月艮务器。 致力于 2G集群通讯的 TETRA也将目光投向了 LTE技术, 他们也希望将 LTE技 术作为未来集群通讯的首选技术。 这是 LTE技术的机遇, 也是挑战。 公共安全网络和 集群通讯给 LTE 技术提出了新的需求, 其中之一便是支持近距离通信 (Proximity communication )。 所谓近距离通信是指两个或多个手机, 当他们相互间的距离比较接近时, 可以直 接进行通讯, 包括数据通讯和语音通讯。 图 1是根据相关技术中近距离通信的架构示 意图。 在该图中, UE和 UE间增加了新的直接接口 PC5, PC5接口是 UE和 UE间的 空中接口。 ProSe 功能实体是辅助支持近距离通信的核心网功能实体, 该功能实体协 助 UE间进行发现、 协助 PC5接口的建立等, 该功能实体还负责近距离通信 UE的注 册、 认证、 授权、 近距离通信对端的发现、 近距离通信链路 (即 PC5链路) 的建立或 切换等。 ProSe功能实体与现有的 EPC (如 MME) 间通过 PC4接口。 同时, ProSe功 能实体还与应用服务器通过 PC2接口, 该接口用于从应用服务器获取应用相关信息, 以及为应用服务器提供近距离通信服务。 近距离通信不仅可以满足无覆盖时手机之间的应急通讯的需求, 同时也为运营商 的网络提供了一种新的可能和机遇。 比如, 利用近距离通讯开展广告业务或者利用近 距离通讯将数据流从基站卸载, 从而提升网络容量等。 但是, 在近距离通信给运营商 带来机遇的同时也提出了新的挑战, 其中最重要的就是合法侦听了。 在传统 3GPP网络中, 合法侦听是通过移动核心网网关设备 (如 PDN GW) 将被 侦听用户的通信数据包 (语音或数据) 拷贝, 并发送给合法侦听服务器, 再由合法侦 听服务器提供给公安部门等希望侦听该用户通信数据的政府安全部门。 由于在传统的 3GPP网络中, 用户的所有通信数据均流经核心网的网关设备, 因此, 当需要侦听某用 户的通信数据时, 只需要通知该用户所附着的网关设备进行侦听即可。 由于近距离通信是手机间直接通信, 手机间互相通信的数据将不再经过运营商的 网络(不经过基站、 核心网网关设备), 因此, 按照传统的合法侦听方案, 运营商将无 法依照相关法律法规对用户通信数据进行监控, 也就是无法根据法律法规提供合法侦 听的能力了。 这对运营商来说是不可接受的。 针对相关技术中没有提出任何对近距离通信进行监控的问题, 目前没有提出解决 方案。 发明内容 本发明提供了侦听方法及装置, 以至少解决相关技术中没有提出任何对近距离通 信进行监控的问题。 根据本发明的一个方面, 提供了一种侦听方法, 包括: 被侦听用户所在的基站对 所述被侦听用户和通信对端之间的通信进行侦听, 其中, 所述被侦听用户为近距离通 信用户; 所述基站将侦听得到的数据发送给核心网网元。 优选地, 所述基站对所述被侦听用户和所述通信对端之间的通信进行侦听包括: 所述基站在空口对所述被侦听用户和所述通信对端之间的通信进行侦听; 或者, 所述 基站将所述被侦听用户与所述通信对端建立的近距离通信链路切换为经过所述基站的 通信链路之后, 通过经过所述基站的通信链路对所述被侦听用户和所述通信对端之间 的通信进行侦听。 优选地, 所述基站在空口对所述被侦听用户进行侦听包括: 所述基站为所述被侦 听用户以及所述通信对端所在的基站为所述通信对端, 重新配置无线参数并更新所述 被侦听用户和所述通信对端的承载; 在所述被侦听用户和所述通信对端在更新后的承 载上进行通信时, 所述被侦听用户所在的基站在空口对所述更新后的承载进行侦听。 优选地, 所述基站将所述被侦听用户与所述通信对端建立的近距离通信链路切换 为经过所述基站的通信链路, 并进行侦听包括: 所述基站为所述被侦听用户以及所述 通信对端所在的基站为所述通信对端, 重新配置无线参数, 并建立所述被侦听用户和 所述通信对端与各自所在基站的承载; 在所述被侦听用户和所述通信对端在建立的承 载上进行通信时, 所述被侦听用户所在的基站在建立的承载上进行侦听。 优选地, 所述被侦听用户所在的基站和所述通信对端所在的基站为相同的基站或 者不同的基站。 优选地,述被侦听用户所在的基站将侦听得到的数据发送给所述核心网网元包括: 所述被侦听用户所在的基站通过侦听得到加密的数据, 将加密的数据进行解密, 并将 解密后的数据发送给所述核心网网元; 或者, 所述被侦听用户所在的基站将侦听到的 加密的数据发送给所述核心网网元。 优选地, 在所述被侦听用户所在的基站将所述加密的数据进行解密之前, 所述方 法还包括: 所述被侦听用户所在的基站接收来自核心网网元的用于解密所述数据的信 息。 优选地, 所述被侦听用户所在的基站接收来自核心网网元的用于解密所述数据的 信息之后, 所述方法还包括: 所述被侦听用户所在基站在为所述被侦听用户重新配置 无线参数时, 重新配置所述被侦听用户和所述通信对端的密钥。 优选地, 在所述被侦听用户所在的基站对所述被侦听用户和通信对端之间的通信 进行侦听之前, 所述方法还包括: 所述被侦听用户所在基站经由移动管理网元接收来 自 ProSe功能实体的侦听所述被侦听用户的请求。 根据本发明的另一个方面, 还提供了一种侦听装置, 位于被侦听用户所在的基站 中, 包括: 侦听模块, 设置为对所述被侦听用户和通信对端之间的通信进行侦听, 其 中, 所述被侦听用户为近距离通信用户; 发送模块, 设置为将侦听得到的数据发送给 核心网网元。 优选地, 所述侦听模块设置为在空口对所述被侦听用户和所述通信对端之间的通 信进行侦听; 或者, 所述侦听模块设置为在将所述被侦听用户与所述通信对端建立的 近距离通信链路切换为经过所述基站的通信链路之后, 通过经过所述基站的通信链路 对所述被侦听用户和所述通信对端之间的通信进行侦听。 优选地, 所述侦听模块设置为, 在为所述被侦听用户重新配置无线参数并更新所 述被侦听用户的承载之后, 在所述被侦听用户和所述通信对端在更新后的承载上进行 通信时, 在空口对所述更新后的承载进行侦听。 优选地, 所述侦听模块设置为, 在为所述被侦听用户重新配置无线参数, 并建立 所述被侦听用户与其所在基站的承载之后, 在所述被侦听用户和所述通信对端在建立 的承载上进行通信时, 在建立的承载上进行侦听。 优选地, 所述发送模块, 设置为将通过侦听得到加密的数据进行解密, 将解密后 的数据发送给所述核心网网元; 或者, 所述发送模块, 设置为将侦听到的加密的数据 发送给所述核心网网元。 优选地, 还包括: 第一接收模块, 设置为接收来自核心网网元的用于解密所述数 据的信息。 优选地, 还包括: 配置模块, 设置为在为所述被侦听用户重新配置无线参数时, 重新配置所述被侦听用户和所述通信对端的密钥。 优选地, 还包括: 第二接收模块, 设置为经由移动管理网元接收来自 ProSe功能 实体的侦听所述被侦听用户的请求。 通过本发明, 采用被侦听用户所在的基站对被侦听用户和通信对端之间的通信进 行侦听, 其中, 被侦听用户为近距离通信用户; 基站将侦听得到的数据发送给核心网 网元。 解决了相关技术中没有提出任何对近距离通信进行监控的问题, 实现了对近距 离通信的用户进行监控。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中: 图 1是根据相关技术中近距离通信的架构示意图; 图 2是根据本发明实施例的侦听方法的流程图; 图 3是根据本发明实施例的基站通过空口进行侦听的优选流程图; 图 4是根据本发明实施例的基站将近距离通信链路切换为经过基站的通信链路之 后进行侦听的优选流程图; 图 5是根据本发明实施例的侦听装置的结构框图; 图 6是根据本发明优选实施例的近距离通信的合法侦听参考架构示意图; 图 7是根据本发明优选实施例二的流程图; 图 8是根据本发明优选实施例三的流程图; 图 9是根据本发明优选实施例四的流程图; 图 10是根据本发明优选实施例五的流程图。 具体实施方式 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特征可以相 互组合。 下面将参考附图并结合实施例来详细说明本发明。 在本实施例中提供了一种侦听方法, 图 2是根据本发明实施例的侦听方法的流程 图, 如图 2所示, 该流程包括如下步骤: 步骤 S202, 被侦听用户所在的基站对被侦听用户和通信对端之间的通信进行侦 听, 其中, 被侦听用户为近距离通信用户; 步骤 S204, 该基站将侦听得到的数据发送给核心网网元。 通过上述步骤, 通过基站对被侦听用户进行侦听, 然后将侦听得到的数据发送给 核心网网元, 从而实现了对近距离通信的用户的监控。 基站对被侦听用户的监控可以通过多种方式来实现, 在本实施例中提供了两种优 选的实施方式。 需要说明的是, 这两种实施方式仅仅是优选的实施方式, 基站对被侦 听用户的侦听方式并不仅仅限于这两种优选的实施方式。 下面对这两种优选的实施方 式进行说明。 优选地, 上述侦听可以使 ProSe发起的, 被侦听用户所在基站可以经由移动管理 网元接收来自 ProSe功能实体的侦听被侦听用户的请求。 优选实施方式一 基站在空口对被侦听用户和通信对端之间的通信进行侦听。 在该实施方式中, 优选地, 基站可以通过更新承载的方式来在更新之后的承载上 通过空口侦听被侦听用户。 图 3是根据本发明实施例的基站通过空口进行侦听的优选 流程图, 如图 3所示, 该流程包括如下步骤: 步骤 S302, 基站为被侦听用户以及通信对端所在的基站为通信对端, 重新配置无 线参数并更新被侦听用户和通信对端的承载; 步骤 S304, 在被侦听用户和通信对端在更新后的承载上进行通信时, 被侦听用户 所在的基站在空口对更新后的承载进行侦听。 优选实施方式二 基站将被侦听用户与通信对端建立的近距离通信链路切换为经过基站的通信链路 之后, 通过经过基站的通信链路对被侦听用户和通信对端之间的通信进行侦听。 在该实施方式中, 可以通过建立到基站上的承载的方式来进行侦听。 图 4是根据 本发明实施例的基站将近距离通信链路切换为经过基站的通信链路之后进行侦听的优 选流程图, 如图 4所示, 该流程包括如下步骤: 步骤 S402, 基站为被侦听用户以及通信对端所在的基站为通信对端, 重新配置无 线参数, 并建立被侦听用户和通信对端与各自所在基站的承载; 步骤 S404, 在被侦听用户和通信对端在建立的承载上进行通信时, 被侦听用户所 在的基站在建立的承载上进行侦听。 通过上述步骤, 需要重新建立到用户到基站的承载, 然后就可以对被侦听用户进 行监控了。 在上述两个优选实施例中, 被侦听用户所在的基站和通信对端所在的基站可以为 相同的基站或者也可以为不同的基站,不同的基站可以建立基站间通信进行数据转发。 上述步骤 S204中, 基站通过侦听得到的数据可以使加密数据, 此时, 被侦听用户 所在的基站可以将加密的数据进行解密, 并将解密后的数据发送给核心网网元; 或者, 被侦听用户所在的基站也可以将侦听到的加密的数据发送给核心网网元, 然后由核心 网网元进行解密处理。 对于如果需要在基站侧进行解密,该解密所需要用到的信息可以使来自核心网的, 及基站可以接收来自核心网网元的用于解密数据的信息。 如果接收到用于解密数据的 信息, 被侦听用户所在基站可以在为被侦听用户重新配置无线参数时, 重新配置被侦 听用户和通信对端的密钥。 在本实施例中, 还提供了一种侦听装置, 位于被侦听用户所在的基站中, 该装置 可以实现上述方法及方法优选实施例, 上述实施例中所涉及到的每一个步骤均可以使 用模块来实现。 图 5是根据本发明实施例的侦听装置的结构框图, 如图 5所示, 该结 构包括如下模块: 侦听模块 52和发送模块 54, 其中, 侦听模块 52, 设置为对被侦听 用户和通信对端之间的通信进行侦听, 其中, 被侦听用户为近距离通信用户; 发送模 块 54, 设置为将侦听得到的数据发送给核心网网元。 优选地, 侦听模块 52 设置为在空口对被侦听用户和通信对端之间的通信进行侦 听; 或者,侦听模块 52设置为在将被侦听用户与通信对端建立的近距离通信链路切换 为经过基站的通信链路之后, 通过经过基站的通信链路对被侦听用户和通信对端之间 的通信进行侦听。 优选地,侦听模块 52设置为在为被侦听用户重新配置无线参数并更新被侦听用户 的承载之后, 在被侦听用户和通信对端在更新后的承载上进行通信时, 在空口对更新 后的承载进行侦听。 优选地,侦听模块 52设置为在为被侦听用户重新配置无线参数, 并建立被侦听用 户与其所在基站的承载之后, 在被侦听用户和通信对端在建立的承载上进行通信时, 在建立的承载上进行侦听。 优选地, 发送模块 54设置为将通过侦听得到加密的数据进行解密,将解密后的数 据发送给核心网网元; 或者,发送模块 54设置为将侦听到的加密的数据发送给核心网 网元。 优选地, 该装置还可以包括: 第一接收模块, 设置为接收来自核心网网元的用于 解密数据的信息。 优选地, 该装置还可以包括: 配置模块, 设置为在为被侦听用户重新配置无线参 数时, 重新配置被侦听用户和通信对端的密钥。 优选地, 该装置还可以包括: 第二接收模块, 设置为经由移动管理网元接收来自 ProSe功能实体的侦听被侦听用户的请求。 下面结合优选实施例对进行说明。 在以下几个优选实施例中,提供了一种近距离通信时对用户进行合法侦听的方法, 该方法包括如下步骤:
(a)当需要对近距离用户进行合法侦听时, 核心网功能实体 1通知被侦听用户所 在的基站; (b)被侦听用户所在基站在空口对用户进行侦听, 或者, 被侦听用户所在基站将 该用户与其他用户或主机间近距离通信链路切换到经过该基站后在本地对该用户进行 侦听;
(c)被侦听用户所在基站将侦听到的数据包解密后发送给核心网功能实体 2; 或 者被侦听用户所在基站将侦听到的数据包不解密直接发送给核心网功能实体 2, 由核 心网功能实体 2对数据包进行解密。
(d) 核心网功能实体 2再将侦听到的数据发送给合法侦听服务器。 优选地, 上述核心网功能实体 1为 ProSe功能实体或者 PDN GW。 核心网功能实 体 1通过 MME通知被侦听用户所在基站对用户进行侦听。 优选地, 上述被侦听用户所在基站是指被侦听用户所驻留 (camp) 的基站。 优选地, 上述步骤(b)中基站在空口进行侦听是指基站在空口截取被侦听用户与 其他用户或主机在近距离通信链路上直接通信的数据包。 优选地, 上述步骤(b) 中, 若被侦听用户与该用户的通信对端间的近距离通信链 路切换到经过基站, 基站将在该二用户间转发近距离通信数据包。 优选地, 若被侦听用户与该用户的通信对端驻留在不同的基站下, 贝 ij, 需建立两 基站间的通道, 该通道用于在被侦听用户与该用户的通信对端间转发近距离通信数据 包。 优选地, 上述步骤(b) 中, 若被侦听用户的通信数据包加密, 被侦听用户所驻留 的基站或核心网功能实体 2对加密的数据包进行解密。 优选地, 若被侦听用户的通信数据包加密, 在该被侦听用户的基站在进行侦听前 重新为该被侦听用户配置通信链路, 包括配置新的通信密钥和承载。 优选地, 上述步骤(c) 中, 核心网功能实体 2可为 PDN GW, 或者为 ProSe功能 实体。 优选地, 上述步骤(C ) 中, 若由基站解密被侦听数据包, 则基站从核心网功能实 体 3获得解密数据包所需的信息, 包括算法、 密钥、 初始值等参数。 核心网功能实体 3可为 MME或 ProSe 功能实体。 优选地, 上述步骤(c) 中, 若由核心网功能实体 2解密被侦听数据包, 则核心网 功能实体 2从核心网功能实体 3获得解密数据包所需的信息, 包括算法、 密钥、 初始 值等参数。 核心网功能实体 3可为 MME或 ProSe 功能实体。 优选地, 基站与核心网功能实体 2间建立隧道用于侦听数据的发送。 基站和核心 网功能实体 2间的隧道的建立可以在 MME的协助下进行; 或者基站与核心网功能实 体 2间直接建立隧道。 该隧道的粒度是用户粒度或者承载粒度。 优选地, 当核心网功能实体 2是 PDN GW时, 该隧道经过 Serving GW。 下面对这几个优选实施例进行说明。 实施例一 图 6是根据本发明优选实施例的近距离通信的合法侦听参考架构示意图, 如图 6 所示, 在图 1的参考架构基础上, 本实施例增加了 3个接口: Xl-1, X2, X3。 XI接口: ProSe功能实体与监督功能 (Administration Function, 简称为 ADMF) 间的接口。 侦听部门通过 X1-1接口向 ProSe 功能实体发送侦听侦听近距离用户间通 信的指令。
X2接口: ProSe功能实体与投递功能 2 (Delivery Function 2) 间的接口。 该接口 用于 ProSe功能实体向 Delivery Function 2发送被侦听用户有关的事件、信令信息,如, 被侦听用户发起了一个发现过程,或者被侦听用户与另一用户间建立了近距离通信等。
X3接口: ProSe功能实体与投递功能 3 (Delivery Function 3 ) 间的接口。 该接口 用于 ProSe功能实体向 Delivery Function 3发送被侦听用户与其他用户或主机间通过近 距离通信链路进行通信的数据包。 除此之外, 本实施例还将增强 PDN GW与 Delivery Function 3间的 X3接口 (未 在图 6中标示), 以向 Delivery Function 3发送被侦听用户与其他用户或主机间通过近 距离通信链路进行通信的数据包。 实施例二 本实施例是被侦听用户及与其通信的对端用户位于同一 eNB下的侦听流程。在本 实施例所示的流程图中, eNB直接侦听被侦听用户 UE A与其通信对端 UE B的空口, 以便截取他们间通信的数据包。 eNB建立与 PDN GW间的 LI隧道, 该隧道可经过 SGWo e B将从空口截取的 UE A与其他用户通信的数据包解密后通过上述 LI隧道发 送给 PDN GW, 并由 PDN GW通过 X3接口发送给 Delivery Function 3。 在本实施例中, UE A是被侦听的用户, UE B是与 UE A进行近距离通信的通信 对端。 UE A和 UE B驻留在同一个 eNB下。 为了简化, 本实施例假设 UE A和 UE B 由同一 MME和 ProSe功能实体为其服务。 图 7是根据本发明优选实施例二的流程图, 如图 7所示, 该流程包括如下步骤: 步骤 S701, UE A正在与 UE B进行近距离通信。 步骤 S702, ProSe功能实体收到侦听 UE A的需求。 步骤 S703, ProSe功能实体向 UE A所服务 MME发送侦听 UE A的请求, MME 向 eNB发送侦听 UE A的请求。 步骤 S704, 步骤 S705, eNB发起建立 LI隧道。 eNB向 MME请求建立 LI隧道。 若存在 SGW,该隧道经过 SGW,即,该隧道由 eNB与 SGW间的隧道和 SGW与 PDN GW间的隧道两段隧道组成。 MME为 eNB选择一个 PDN GW作为侦听上报的 PDN GW。 LI隧道用于 eNB向 PDN GW发送其在空口截获的 UE A与其他用户间通信的数 据包。 该隧道的建立可采用 S1AP协议和 GTP协议分段完成, 具体如何操作可参考现有 的 3GPP协议, 因此, 本发明在此不赘述隧道建立过程。 步骤 S706, 上述隧道建立完成后, eNB向 ProSe功能实体发送响应消息。 步骤 S707, ProSe功能实体为 UE A和 UE B的近距离通信配置新的密钥。 ProSe 功能实体将新的密钥通过 MME发送给 e B, 由 eNB为 UE A和 UE B配置新密钥。 在这一步, ProSe功能实体还将 UE A与 UE B间的安全算法和其他算法相关参数发送 给 e B。 eNB保存 UE A与 UE B间的安全算法、 密钥及其他算法相关参数, 以便解 密侦听到的 UE A与 UE B间的通信数据包。 步骤 S708, 步骤 S709, eNB为 UE A和 UE B重新配置无线参数, 包括: 重新配 置密钥。 同时, eNB还为 UE A和 UE B更新承载,包括: 分配新的承载、释放老承载。 UE A和 UE B在收到从 eNB来的重配无线参数后, 重新配置 PDCP, 将安全相关的参 数重新初始化(如, UE A与 UE B重置 Counter), 并且在新的承载上发送和接受数据。 UE A和 UE B释放老的承载。本实施例通过重配承载的方式保持 eNB与 UE A及 UE B 的上下行数据包间的 Counter同步。 具体的, eNB重配承载后, UE A和 UE B开始在 新的承载上收发数据, eNB也同时开启截获该新承载上的数据包, 这样可以保证 eNB 上的 Counter与 UE A及 UE B上的 Counter保持一致。 步骤 S710, eNB开始侦听 UE A的空口。 eNB在新的承载上侦听 UE A与 UE B 间的通信数据包。 步骤 S711, eNB为解密 UE A与 UE B间的通信数据包初始化安全上下文, 包括 设置安全算法、 密钥、 其他初始向量如 Counter等。 eNB截获 UE A与 UE B间通信数 据包后使用上述安全上下文中的参数对数据包进行解密。 步骤 S712, eNB将解密后的数据包通过 LI隧道发送给 PDN GW。 步骤 S713, PDN GW通过 X3接口将 UE A与 UE B间的通信数据包发送给侦听 服务器。 实施例三 本实施例是被侦听用户及与其通信的对端用户位于不同 eNB下的侦听流程。 在本实施例中, UE A是被侦听的用户, UE B是与 UE A进行近距离通信的通信 对端。 UE A驻留在 eNB A下, UE B驻留在 eNB B下。为了简化,本实施例假设 UE A 和 UE B由同一 MME和 ProSe功能实体为其服务。图 8是根据本发明优选实施例三的 流程图, 如图 8所示, 该流程包括如下步骤: 步骤 S801, UE A正在与 UE B进行近距离通信。 步骤 S802, ProSe功能实体收到侦听 UE A的需求。 步骤 S803, ProSe功能实体向 UE A所服务 MME发送侦听 UE A的请求, MME 向 eNB A发送侦听 UE A的请求。 步骤 S804, 步骤 S805, eNB A发起建立 LI隧道。 eNB A向 MME请求建立 LI 隧道。若存在 SGW,该隧道经过 SGW,即,该隧道由 eNB A与 SGW间的隧道和 SGW 与 PDN GW间的隧道两段隧道组成。 MME为 eNB A选择一个 PDN GW作为侦听上 报的 PDN GW。 LI隧道用于 eNB A向 PDN GW发送其在空口截获的 UE A与其他用 户间通信的数据包。 该隧道的建立可采用 S1AP协议和 GTP协议分段完成, 具体如何操作可参考现有 的 3GPP协议, 因此, 本发明在此不赘述隧道建立过程。 步骤 S806, 上述隧道建立完成后, eNB A向 ProSe功能实体发送响应消息。 步骤 S807, ProSe功能实体为 UE A和 UE B的近距离通信配置新的密钥。 ProSe 功能实体将新的密钥通过 MME发送给 eNB A, 由 eNB A为 UE A配置新密钥。 在这 一步, ProSe功能实体还将 UE A与 UE B间的安全算法和其他算法相关参数发送给 eNB A。 e B A保存 UE A与 UE B间的安全算法、 密钥及其他算法相关参数, 以便解密侦 听到的 UE A与 UE B间的通信数据包。 步骤 S808, eNB A为 UE A重新配置无线参数, 包括: 重新配置 UE A与 UE B 通信的密钥。 同时, eNB A还为 UE A更新承载, 包括: 分配新的承载、 释放老承载。 UE A在收到从 eNB A来的重配无线参数后, 重新配置 PDCP,将安全相关的参数重新 初始化 (如, UE A重置 Counter), 并且在新的承载上发送和接受数据。 UE A释放老 的承载。 本实施例通过重配承载的方式保持 eNB A 与 UE A 的上下行数据包间的 Counter同步。具体的, eNB A重配承载后, UE A开始在新的承载上收发数据, eNB A 也同时开启截获该新承载上的数据包, 这样可以保证 eNB A上的 Counter与 UE A上 的 Counter保持一致。 步骤 S809, ProSe功能实体为 UE A和 UE B的近距离通信配置新的密钥。 ProSe 功能实体将新的密钥通过 MME发送给 eNB B, 由 eNB B为 UE B配置新密钥。 步骤 S810, eNB B为 UE B重新配置无线参数, 包括: 重新配置 UE A与 UE B 通信的密钥。 同时, e B B还为 UE B更新承载, 包括: 分配新的承载、 释放老承载。 UE B在收到从 eNB来的重配无线参数后,重新配置 PDCP,将安全相关的参数重新初 始化 (如, UE B重置 Counter), 并且在新的承载上发送和接受数据。 UE B释放老的 承载。 步骤 S811, eNB A开始侦听 UE A的空口。 eNB A在新的承载上侦听 UE A与 UE B间的通信数据包。 步骤 S812, eNB A为解密 UE A与 UE B间的通信数据包初始化安全上下文, 包 括设置安全算法、 密钥、 其他初始向量如 Counter等。 eNB A截获 UE A与 UE B间通 信数据包后使用上述安全上下文中的参数对数据包进行解密。 步骤 S813, eNB A将解密后的数据包通过 LI隧道发送给 PDN GW。 步骤 S814, PDN GW通过 X3接口将 UE A与 UE B间的通信数据包发送给侦听 服务器。 实施例四 本实施例是被侦听用户及与其通信的对端用户位于相同 eNB下, 且 eNB不能直 接在空口截获被侦听用户与其他用户或中断通话数据包时的侦听流程。 在本实施例中, UE A是被侦听的用户, UE B是与 UE A进行近距离通信的通信 对端。 UE A和 UE B都驻留在 eNB下。 为了简化, 本实施例假设 UE A和 UE B由同 一 MME和 ProSe功能实体为其服务。 图 9是根据本发明优选实施例四的流程图, 如 图 9所示, 该流程包括如下步骤: 步骤 S901, UE A正在与 UE B进行近距离通信。 步骤 S902, ProSe功能实体收到侦听 UE A的需求。 步骤 S903, ProSe功能实体向 UE A所服务 MME发送侦听 UE A的请求, MME 向 eNB发送侦听 UE A的请求。 步骤 S904, 步骤 S905, eNB发起建立 LI隧道。 eNB向 MME请求建立 LI隧道。 若存在 SGW,该隧道经过 SGW,即,该隧道由 eNB与 SGW间的隧道和 SGW与 PDN GW间的隧道两段隧道组成。 MME为 eNB选择一个 PDN GW作为侦听上报的 PDN GW。 LI隧道用于 eNB向 PDN GW发送其在空口截获的 UE A与其他用户间通信的数 据包。 该隧道的建立可采用 S1AP协议和 GTP协议分段完成, 具体如何操作可参考现有 的 3GPP协议, 因此, 本发明在此不赘述隧道建立过程。 步骤 S906, 上述隧道建立完成后, eNB向 ProSe功能实体发送响应消息。 步骤 S907, ProSe功能实体为 UE A和 UE B的近距离通信配置新的密钥。 ProSe 功能实体将新的密钥通过 MME发送给 e B, 由 eNB为 UE A和 UE B配置新密钥。 在这一步, ProSe功能实体还将 UE A与 UE B间的安全算法和其他算法相关参数发送 给 e B。 eNB保存 UE A与 UE B间的安全算法、 密钥及其他算法相关参数, 以便解 密侦听到的 UE A与 UE B间的通信数据包。 步骤 S908, 步骤 S909, eNB为 UE A和 UE B重新配置无线参数, 包括: 重新配 置密钥。 同时, eNB将 UE A与 UE B间直接通信的承载分成两段重新配置: eNB分 别建立 UE A到 eNB的承载和 UE B到 eNB的承载, 并且在 eNB本地建立回路, 在 UE A与 eNB的承载和 UE B与 eNB承载间进行中继,从而保障 UE A和 UE B间的联 通。 从而, UE A与 UEB间的通信数据包经过 eNB中转。
UE A和 UEB在收到从 eNB来的重配无线参数后, 重新配置 PDCP, 将安全相关 的参数重新初始化 (如, UEA与 UEB重置 Counter), 并且在新承载上发送和接受数 据。 同时, eNB命令 UEA和 UEB释放老的承载。 本实施例中, eNB通过重配承载的方式将 eNB安插在 UE A与 UE B的通信路径 上, 从而可以截获 UEA与 UEB的通信数据包。 并且, 在 eNB重配承载后, UEA和 UE B需启用新的密钥, 并将安全算法上下文初始化, 从而可以保持 eNB与 UE A及 UE B的上下行数据包间的 Counter同步。 具体的, eNB重配承载后, UE A和 UE B 开始在新的承载上收发数据, eNB也同时开启截获该新承载上的数据包, 这样可以保 证 eNB上的 Counter与 UEA及 UEB上的 Counter保持一致。 步骤 S910, eNB开始在本地截获 UEA与 UEB的通信数据包。 eNB为解密 UEA 与 UE B间的通信数据包初始化安全上下文, 包括设置安全算法、 密钥、 其他初始向 量如 Counter等。 eNB截获 UEA与 UEB间通信数据包后使用上述安全上下文中的参 数对数据包进行解密。 步骤 S911, eNB将解密后的数据包通过 LI隧道发送给 PDN GW。 步骤 S912, PDN GW通过 X3接口将 UEA与 UEB间的通信数据包发送给侦听 服务器。 实施例五 本实施例是被侦听用户及与其通信的对端用户位于不同 eNB下, 且 eNB不能直 接在空口截获被侦听用户与其他用户或中断通话数据包时的侦听流程。 在本实施例中, UEA是被侦听的用户, UEB是与 UE A进行近距离通信的通信 对端。 UE A驻留在 eNB A下, UE B驻留在 eNB B下。为了简化,本实施例假设 UEA 和 UE B由同一 MME和 ProSe功能实体为其服务。 图 10是根据本发明优选实施例五 的流程图, 如图 10所示, 该流程包括如下步骤: 步骤 S1001, UEA正在与 UEB进行近距离通信。 步骤 S1002, ProSe功能实体收到侦听 UEA的需求。 步骤 S1003 , ProSe功能实体向 UE A所服务 MME发送侦听 UE A的请求, MME 向 eNB A发送侦听 UE A的请求。 步骤 S1004, 步骤 S1005, eNB A发起建立 LI隧道。 eNB A向 MME请求建立 LI 隧道。若存在 SGW,该隧道经过 SGW,即,该隧道由 eNB A与 SGW间的隧道和 SGW 与 PDN GW间的隧道两段隧道组成。 MME为 eNB A选择一个 PDN GW作为侦听上 报的 PDN GW。 LI隧道用于 eNB A向 PDN GW发送其在空口截获的 UE A与其他用 户间通信的数据包。 该隧道的建立可采用 S1AP协议和 GTP协议分段完成, 具体如何操作可参考现有 的 3GPP协议, 因此, 本发明在此不赘述隧道建立过程。 步骤 S1006, 上述隧道建立完成后, eNB A向 ProSe功能实体发送响应消息。 步骤 S1007, ProSe功能实体为 UE A和 UE B的近距离通信配置新的密钥。 ProSe 功能实体将新的密钥通过 MME发送给 eNB A, 由 eNB A为 UE A和 UE B配置新密 钥。 在这一步, ProSe功能实体还将 UE A与 UE B间的安全算法和其他算法相关参数 发送给 eNB A。 eNB A保存 UE A与 UE B间的安全算法、 密钥及其他算法相关参数, 以便解密侦听到的 UE A与 UE B间的通信数据包。 步骤 S1008, ProSe功能实体为 UE A和 UE B的近距离通信配置新的密钥。 ProSe 功能实体将新的密钥通过 MME发送给 eNB B, 由 eNB B为 UE A和 UE B配置新密 钥。 步骤 S1009, eNB A判断其不能在空口直接截获 UE A和 UE B间通信的数据包, 且 UE A与 UE B驻留在不同的 eNB下 (UE B驻留在 eNB B下), eNB A与 UE B所 驻留的基站 eNB B间建立转发通道。 步骤 S1010, eNB A为 UE A重新配置无线参数,包括:重新配置密钥和重建承载。 eNB A在 UE A与 eNB A间建立新的承载, 同时释放 UE A与 UE B间的承载。 UE A 通过 UE A与 eNB A间的承载向 UE B发送和接受数据。 同时, eNB A通过步骤步骤 S 1009建立的转发通道向 eNB B转发数据。 UE A在启用新的承载(UE A与 eNB A间 的承载) 后将配置新的安全参数, 包括新的密钥、 初始化安全参数等。 步骤 S1011 , eNB B为 UE B重新配置无线参数,包括:重新配置密钥和重建承载。 eNB B在 UE B与 eNB B间建立新的承载, 同时释放 UE B与 UE A间的承载。 UE B 通过 UE B与 eNB B间的承载向 UE A发送和接受数据。 同时, eNB B通过步骤步骤 SI 009建立的转发通道向 e B A转发数据。 UE B在启用新的承载(UE B与 eNB B间 的承载) 后将配置新的安全参数, 包括新的密钥、 初始化安全参数等。 步骤 S1012, eNB A开始在本地截获 UE A与 UE B的通信数据包。 eNB A为解密 UE A与 UE B间的通信数据包初始化安全上下文, 包括设置安全算法、 密钥、 其他初 始向量如 Counter等。 eNB A截获 UE A与 UE B间通信数据包后使用上述安全上下文 中的参数对数据包进行解密。 步骤 S1013 , eNB A将解密后的数据包通过 LI隧道发送给 PDN GW。 步骤 S1014, PDN GW通过 X3接口将 UE A与 UE B间的通信数据包发送给侦听 服务器。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以 将它们存储在存储装置中由计算装置来执行, 或者将它们分别制作成各个集成电路模 块, 或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明 不限制于任何特定的硬件和软件结合。 以上仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技术人 员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的任何 修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。 工业实用性 如上所述, 本发明实施例提供的侦听方法及侦听装置具有以下有益效果: 解决了 相关技术中没有提出任何对近距离通信进行监控的问题, 实现了对近距离通信的用户 进行监控。

Claims

权 利 要 求 书
1. 一种侦听方法, 包括: 被侦听用户所在的基站对所述被侦听用户和通信对端之间的通信进行侦 听, 其中, 所述被侦听用户为近距离通信用户;
所述基站将侦听得到的数据发送给核心网网元。
2. 根据权利要求 1所述的方法, 其中, 所述基站对所述被侦听用户和所述通信对 端之间的通信进行侦听包括: 所述基站在空口对所述被侦听用户和所述通信对端之间的通信进行侦听; 或者,
所述基站将所述被侦听用户与所述通信对端建立的近距离通信链路切换为 经过所述基站的通信链路之后, 通过经过所述基站的通信链路对所述被侦听用 户和所述通信对端之间的通信进行侦听。
3. 根据权利要求 2所述的方法, 其中, 所述基站在空口对所述被侦听用户进行侦 听包括: 所述基站为所述被侦听用户以及所述通信对端所在的基站为所述通信对 端, 重新配置无线参数并更新所述被侦听用户和所述通信对端的承载;
在所述被侦听用户和所述通信对端在更新后的承载上进行通信时, 所述被 侦听用户所在的基站在空口对所述更新后的承载进行侦听。
4. 根据权利要求 2所述的方法, 其中, 所述基站将所述被侦听用户与所述通信对 端建立的近距离通信链路切换为经过所述基站的通信链路, 并进行侦听包括: 所述基站为所述被侦听用户以及所述通信对端所在的基站为所述通信对 端, 重新配置无线参数, 并建立所述被侦听用户和所述通信对端与各自所在基 站的承载;
在所述被侦听用户和所述通信对端在建立的承载上进行通信时, 所述被侦 听用户所在的基站在建立的承载上进行侦听。
5. 根据权利要求 2至 4中任一项所述的方法, 其中, 所述被侦听用户所在的基站 和所述通信对端所在的基站为相同的基站或者不同的基站。
6. 根据权利要求 1至 4中任一项所述的方法, 其中, 所述被侦听用户所在的基站 将侦听得到的数据发送给所述核心网网元包括: 所述被侦听用户所在的基站通过侦听得到加密的数据, 将加密的数据进行 解密, 并将解密后的数据发送给所述核心网网元; 或者,
所述被侦听用户所在的基站将侦听到的加密的数据发送给所述核心网网 元。
7. 根据权利要求 6所述的方法, 其中, 在所述被侦听用户所在的基站将所述加密 的数据进行解密之前, 所述方法还包括:
所述被侦听用户所在的基站接收来自核心网网元的用于解密所述数据的信 息。
8. 根据权利要求 7所述的方法, 其中, 所述被侦听用户所在的基站接收来自核心 网网元的用于解密所述数据的信息之后, 所述方法还包括: 所述被侦听用户所在基站在为所述被侦听用户重新配置无线参数时, 重新 配置所述被侦听用户和所述通信对端的密钥。
9. 根据权利要求 1至 8中任一项所述的方法, 其中, 在所述被侦听用户所在的基 站对所述被侦听用户和通信对端之间的通信进行侦听之前, 所述方法还包括: 所述被侦听用户所在基站经由移动管理网元接收来自 ProSe功能实体的侦 听所述被侦听用户的请求。
10. 一种侦听装置, 位于被侦听用户所在的基站中, 包括: 侦听模块, 设置为对所述被侦听用户和通信对端之间的通信进行侦听, 其 中, 所述被侦听用户为近距离通信用户;
发送模块, 设置为将侦听得到的数据发送给核心网网元。
11 . 根据权利要求 10所述的装置, 其中, 所述侦听模块设置为在空口对所述被侦听用户和所述通信对端之间的通信 进行侦听; 或者,
所述侦听模块设置为在将所述被侦听用户与所述通信对端建立的近距离通 信链路切换为经过所述基站的通信链路之后, 通过经过所述基站的通信链路对 所述被侦听用户和所述通信对端之间的通信进行侦听。
12. 根据权利要求 11所述的装置, 其中, 所述侦听模块设置为, 在为所述被侦听用 户重新配置无线参数并更新所述被侦听用户的承载之后, 在所述被侦听用户和 所述通信对端在更新后的承载上进行通信时, 在空口对所述更新后的承载进行 侦听
13. 根据权利要求 11所述的装置, 其中, 所述侦听模块设置为, 在为所述被侦听用 户重新配置无线参数, 并建立所述被侦听用户与其所在基站的承载之后, 在所 述被侦听用户和所述通信对端在建立的承载上进行通信时, 在建立的承载上进 行侦听
14. 根据权利要求 10至 13中任一项所述的装置, 其中, 所述发送模块, 设置为将通过侦听得到加密的数据进行解密, 将解密后的 数据发送给所述核心网网元; 或者,
所述发送模块, 设置为将侦听到的加密的数据发送给所述核心网网元。
15. 根据权利要求 14所述的装置, 其中, 还包括: 第一接收模块, 设置为接收来自核心网网元的用于解密所述数据的信息。
16. 根据权利要求 15所述的装置, 其中, 还包括: 配置模块, 设置为在为所述被侦听用户重新配置无线参数时, 重新配置所 述被侦听用户和所述通信对端的密钥。
17. 根据权利要求 10至 16中任一项所述的装置, 其中, 还包括: 第二接收模块, 设置为经由移动管理网元接收来自 ProSe功能实体的侦听 所述被侦听用户的请求。
PCT/CN2014/084668 2014-04-02 2014-08-18 侦听方法及侦听装置 WO2015149468A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410132099.0A CN104980943B (zh) 2014-04-02 2014-04-02 合法侦听方法及合法侦听装置
CN201410132099.0 2014-04-02

Publications (1)

Publication Number Publication Date
WO2015149468A1 true WO2015149468A1 (zh) 2015-10-08

Family

ID=54239356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/084668 WO2015149468A1 (zh) 2014-04-02 2014-08-18 侦听方法及侦听装置

Country Status (2)

Country Link
CN (1) CN104980943B (zh)
WO (1) WO2015149468A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105704140A (zh) * 2016-03-17 2016-06-22 北京佰才邦技术有限公司 一种侦听方法、侦听装置和本地网关
CN114205823B (zh) * 2021-12-13 2024-03-22 西安讯智通达科技有限公司 一种基于5g无线通信技术的侦听系统及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006079521A1 (de) * 2005-01-25 2006-08-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. System und verfahren zur überwachung von gruppierten objekten
CN1859650A (zh) * 2006-03-27 2006-11-08 华为技术有限公司 对集群业务处理进行监听的方法及集群通讯系统
CN103384411A (zh) * 2012-05-04 2013-11-06 财团法人资讯工业策进会 直接通信系统及其通信连接方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006079521A1 (de) * 2005-01-25 2006-08-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. System und verfahren zur überwachung von gruppierten objekten
CN1859650A (zh) * 2006-03-27 2006-11-08 华为技术有限公司 对集群业务处理进行监听的方法及集群通讯系统
CN103384411A (zh) * 2012-05-04 2013-11-06 财团法人资讯工业策进会 直接通信系统及其通信连接方法

Also Published As

Publication number Publication date
CN104980943B (zh) 2019-10-18
CN104980943A (zh) 2015-10-14

Similar Documents

Publication Publication Date Title
JP6786701B2 (ja) ワイヤレスネットワークにおけるカバレージ及びリソース制限デバイスをサポートするためのレイヤ2リレー
JP6773340B2 (ja) プロキシされたデバイスのセキュリティ
EP3028524B1 (en) Methods and apparatuses for establishing radio bearer
KR101078615B1 (ko) 무선 원격통신에서의 암호화
WO2019019736A1 (zh) 安全实现方法、相关装置以及系统
CN105874766B (zh) 在用户设备之间提供受控证书的方法和设备
CN111641947B (zh) 密钥配置的方法、装置和终端
US20210076207A1 (en) Method and device for generating access stratum key in communications system
EP3490289B1 (en) Cross-interface correlation of traffic
WO2011088677A1 (zh) 一种rrc连接重建立时的安全处理方法和系统
EP4265004A1 (en) Managing ue connections after network topology change
WO2021047454A1 (zh) 位置信息获取、位置服务配置方法和通信设备
WO2014201925A1 (zh) 长期演进业务和集群业务并发时重建立方法、基站和用户设备
US20110002272A1 (en) Communication apparatus and communication method
WO2017128306A1 (zh) 通信方法及设备
WO2022027476A1 (zh) 密钥管理方法及通信装置
US20220345883A1 (en) Security key updates in dual connectivity
US9894517B2 (en) Methods and apparatuses for handling data traffic in a radio node having a split protocol stack
WO2015149468A1 (zh) 侦听方法及侦听装置
US20240172176A1 (en) Managing downlink early data transmission
KR20150042686A (ko) 이동 통신 시스템 환경에서 프록시미티 기반 서비스를 위한 보안 및 정보 지원 방법 및 시스템
WO2018010554A1 (zh) 安全管理系统
CN115298662A (zh) 5g虚拟ran中的选择性用户平面保护
WO2014111049A1 (zh) 小区优化方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14888075

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 14888075

Country of ref document: EP

Kind code of ref document: A1