WO2015147577A1 - 혈관 내 고주파 절제 풍선 카테터 - Google Patents

혈관 내 고주파 절제 풍선 카테터 Download PDF

Info

Publication number
WO2015147577A1
WO2015147577A1 PCT/KR2015/002996 KR2015002996W WO2015147577A1 WO 2015147577 A1 WO2015147577 A1 WO 2015147577A1 KR 2015002996 W KR2015002996 W KR 2015002996W WO 2015147577 A1 WO2015147577 A1 WO 2015147577A1
Authority
WO
WIPO (PCT)
Prior art keywords
catheter
electrode
shaft
balloon
balloons
Prior art date
Application number
PCT/KR2015/002996
Other languages
English (en)
French (fr)
Inventor
박희남
황민기
조규복
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Publication of WO2015147577A1 publication Critical patent/WO2015147577A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00273Anchoring means for temporary attachment of a device to tissue
    • A61B2018/00279Anchoring means for temporary attachment of a device to tissue deployable
    • A61B2018/00285Balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00839Bioelectrical parameters, e.g. ECG, EEG

Definitions

  • the present invention relates to a radiofrequency ablation balloon catheter that can effectively ablate a variety of structurally inaccessible lesions in the cardiovascular vessel, and in particular, by placing an ablation electrode and a wedge balloon to remove a lesion site,
  • the present invention relates to a high-frequency ablation balloon catheter capable of removing a lesion site while minimizing alternating current resistance by using an ablation electrode contacting a lesion site existing at various positions in the body.
  • the heartbeat is performed by sequential stimulation of the muscles of the heart by electrical signals that occur regularly from parts of the heart. However, if an abnormality occurs in the flow of this electrical signal, the heart cannot be beat accurately. These abnormal signals are caused by abnormal electrical signals generated not only in the tissues of the heart but also in the outer envelope of the heart, causing abnormal heartbeats, which is called arrhythmia.
  • catheter ablation techniques Treatment of cardiac arrhythmias has changed considerably since the introduction of catheter ablation techniques by high frequency currents.
  • catheter ablation techniques an ablation-catheter is inserted into one heart through a vein or artery under X-ray control, and tissues causing cardiac arrhythmias are destroyed by high frequency currents.
  • a prerequisite for the successful implementation of catheter ablation is to accurately detect the cause of arrhythmia inside the heart. Such detection is diagnosed through electrophysiological examination in which electrical potentials are recorded in spatially resolved state by a mapping-catheter inserted into the heart.
  • Paroxysmal hyperventricular tachycardia is the most common persistent arrhythmia, which can increase heart rate up to 100-175 or more per minute. Paroxysmal hyperventricular tachycardia has a high frequency of heart palpitations and is associated with many medical sequelae such as fainting, dizziness, shortness of breath, chest pain, and general weakness.
  • the heartbeat causes the operator to precisely detect the bioelectrical signals in the heart to identify and excise the cardiac region that causes arrhythmia and manipulate the catheter's position.
  • the catheter since there is no catheter that detects and ablates the electrical signal in consideration of the characteristics in the cardiovascular vessel, a catheter designed to detect and ablate the electrical signal in the existing heart is used to point-contact parts that are difficult to access the lesions in the cardiovascular vessel. The site causing the lesion could not be detected accurately.
  • the resistance value of the current rapidly increased during the radiofrequency ablation procedure in narrow cardiovascular vessels, which made it difficult to perform an effective ablation procedure.
  • the present invention has been devised to solve the above problems, and was devised in consideration of structural features in cardiovascular vessels, as well as applying electric stimulation to lesion sites existing in various parts of the desired cardiovascular vessel.
  • Positioning the balloon provides stable access while minimizing the catheter movement caused by the patient's breath, providing an intravascular high frequency ablation balloon catheter that increases the contact area of the lesion and allows the operator to precisely control the ablation procedure. It aims to do it.
  • the present invention helps the wedge balloon to maintain the blood flow in the blood vessels to prevent a sudden change in the AC resistance value that may occur during the ablation procedure in narrow blood vessels, and also helps to maintain the alternating resistance stably, and the catheter It is an object of the present invention to provide an intravascular high-frequency ablation balloon catheter that can stably move a desired lesion even in a narrow vessel by improving the terminal thickness of the thinner than a conventional catheter.
  • the present invention not only provides a useful procedure for removing arrhythmia-induced biosignal of the middle cardiac vein, which is a source of paroxysmal supratricular tachycardia arrhythmia, but also atrial tachycardia Intravascular high-frequency ablation balloon, which is also useful for removing arrhythmia-induced biosignals of the Great Cardiac Vein and Anterior Interventricular vein that are the source of ventricular tachycardia arrhythmia.
  • the purpose is to provide a catheter.
  • the present invention provides a liquid inlet connected to one end of the catheter body, to achieve the above object;
  • a shaft consisting of an elongated conduit connected to the other end of the catheter body;
  • An electrode formed at the distal end of the shaft;
  • a balloon formed at the distal end of the shaft, and when the balloon is inflated in the blood vessel, the inflated balloon provides a catheter characterized in that a space is formed to partially block the blood vessel to maintain blood flow.
  • the diameter before the expansion of the balloon may be 0.1 to 3 mm
  • the diameter after the expansion of the balloon may be 0.5 to 5 mm.
  • Balloons in the present invention may be made of wedge-shaped, spherical, egg-shaped, conical, stepped or polyhedron.
  • a plurality of balloons may be provided, and at least two balloons may be formed at equal intervals along the circumferential direction of the shaft at the same position of the shaft.
  • a flow path for injecting liquid into the balloon may be formed inside the shaft, and the flow path may be a tube or a pipe independent of the shaft.
  • the electrode may be provided with 2 to 20.
  • the width of the electrode may be 0.1 to 10 mm, the electrodes may be arranged at intervals of 0.1 to 10 mm.
  • the catheter according to the present invention is formed at the end of the shaft, the first electrode having a width of 1 to 5 mm; A second electrode formed at a distance of 0.5 to 3 mm from the first electrode and having a width of 0.5 to 2 mm; A third electrode formed at a distance of 1 to 6 mm from the second electrode and having a width of 0.5 to 5 mm; And a fourth electrode formed at an interval of 0.5 to 3 mm from the third electrode and having a width of 0.5 to 2 mm.
  • the balloon is formed between the second electrode and the third electrode, at least two or more balloons may be formed at the same position.
  • a plurality of liquid discharge holes may be formed in the end surface of the shaft, and a plurality of liquid discharge holes may be formed in the electrode.
  • the length of the shaft is 100 to 150 mm
  • the diameter of the shaft may be 0.1 to 5 mm.
  • the shaft can be bent to 0 to 180 degrees, the bending radius can be 10 to 100 mm.
  • the catheter according to the present invention can be used for radiofrequency ablation in cardiovascular.
  • the catheter according to the present invention is designed in consideration of structural features in the cardiovascular vessel, and may be provided with a plurality of electrodes to apply electrical stimulation to a lesion site existing in various parts of the desired cardiovascular vessel.
  • a wedge balloon having an appropriate size and shape, it can be stably accessed while minimizing the catheter movement caused by the patient's breathing, thereby increasing the contact area of the lesion and precisely adjusting the operator to perform ablation on the lesion. Can be.
  • the wedge balloon in order to prevent a sudden change in the AC resistance value that may occur during ablation procedure in a narrow vessel, by installing a wedge balloon having an appropriate size and shape, the wedge balloon can maintain the blood flow in the blood vessel so that the AC resistance It can help you stay stable.
  • the terminal thickness of the catheter is designed to be thinner than the conventional catheter, it is possible to stably move the desired lesion even in narrow blood vessels, it is possible to improve the success rate of the catheter procedure.
  • FIG. 1 is an overall configuration diagram of a catheter according to an embodiment of the present invention.
  • FIG. 2 is an enlarged view of a portion A of FIG. 1.
  • FIG. 3 is a partial cutaway view of FIG. 2.
  • FIG. 4 is a view showing that the shaft of the catheter according to the present invention can be bent at various angles.
  • FIG. 5 is a detailed view of a catheter having liquid discharge holes in accordance with another embodiment of the present invention.
  • FIG. 1 is an overall configuration diagram of a catheter according to an embodiment of the present invention, the catheter according to this embodiment is a liquid inlet 10, connector 12, catheter body 20, shaft 30, electrode ( 40, 42, 44, 46, and balloons 50, 52, and the like.
  • the left side is a distal side far from the operator, and the right side is a proximal side close to the operator.
  • the liquid inlet 10 may be connected to the proximal side end of the catheter body 20. After the liquid is introduced into the catheter through the liquid input part 10, the balloons 50 and 52 may be inflated by being injected into the balloons 50 and 52. Saline, a contrast agent, etc. can be used as a liquid.
  • the connector 12 is connected to the proximal end of the catheter body 20, and can connect a separate catheter signal cable through the connecting connector 12, thereby providing a plurality of electrodes 40, 42, 44, 46 can be applied a high frequency current.
  • the catheter body 20 is configured to include a handle that can be gripped by the operator, it may be made of a metal or plastic material.
  • the handle may be configured as a push-pull control type.
  • Shaft 30 may consist of an elongated conduit connected to the distal side end of catheter body 20.
  • Shaft 30 may be made of metal (stainless steel, nitinol, etc.), plastic (nylon, polyether block amide, polyurethane, etc.), rubber, or mixtures thereof, and may be made of different materials along the longitudinal direction. Can be configured.
  • the shaft 30 may consist of one single shaft or may consist of a plurality of shafts. When configuring a plurality of shafts, it can be connected using a connector, or can be connected using a method such as fitting, welding, bonding.
  • a space is formed inside the shaft 30 like a conventional pipe or tube, and a separate flow path may be formed in this space, and liquid may flow through the space.
  • the inner and / or outer surface of the shaft 30 may be made hydrophilic and / or hydrophobic coating, for example, to reduce friction with the vessel wall.
  • the length of the shaft 30 is not particularly limited and may be, for example, 100 to 150 mm, preferably 110 to 140 mm. If the length of the shaft 30 is too long or short, inconveniences occur during the procedure, and the length from the heart to the right thigh is usually the most convenient for the operator.
  • the diameter of the shaft 30 is not particularly limited and may be, for example, 0.1 to 5 mm, preferably 0.5 to 4 mm, more preferably 1 to 3 mm. If the diameter of the shaft 30 is thicker, a thicker sheath should be used for vascular insertion, which increases the risk of thrombus formation. On the other hand, if too thin, the electrode is bent or damaged when the electrode (catheter) operation is not applied to the force.
  • FIG. 2 is an enlarged view of the portion A of FIG. 1 and shows an enlarged view of the distal end portion of the shaft 30 in which the electrodes 40, 42, 44, 46 and the balloons 50, 52 are formed.
  • an end may mean an end, and an end portion may mean a portion from an end to a predetermined length.
  • the length of the distal end may be 30% or less based on the total length.
  • the electrodes 40, 42, 44, 46 may be formed in plural along the longitudinal direction of the shaft 30 at the distal side distal end of the shaft 30.
  • the electrode in the form of a plurality of multi-electrodes, it is possible to effectively remove the plurality of lesions while minimizing the movement of the lesions that are present at various locations of the heart tissue using the contacted multi-electrode ablation electrodes.
  • the ablation electrode near the distal electrode in addition to the distal electrode at the distal end of the catheter, it is possible to detect the electrical signal of the lesion site present in the various parts of the desired heart, or to apply the electrical stimulation to the lesion site.
  • the contact area of the lesion can be increased, and the operator can precisely control the lesion to be stably resected.
  • the other ablation electrode is disposed at a position spaced apart by a predetermined distance from the ablation electrode at the win- win end of the catheter, when the distal end of the catheter inserted into the lesion site from the outside of the human body passes the lesion site, it is returned to the lesion site again.
  • the ease of use of the catheter operator can be increased.
  • the electrodes 40, 42, 44, 46 are preferably all ablation electrodes, and some may be mapping electrodes capable of sensing electrical signals.
  • the electrodes 40, 42, 44, and 46 may be configured in a ring shape surrounding the outer circumferential surface of the shaft 30.
  • the ring electrodes 40, 42, 44, 46 can be made of a conductive material, in particular a metal material. Platinum, gold, iridium, cobalt, titanium, nickel, silver, copper, zinc, tin, aluminum, chromium, manganese, magnesium and alloys thereof may be used as the metal.
  • the method for forming the ring electrodes 40, 42, 44, 46 is not particularly limited, and a method of fixing a metal material molded into a ring shape to the shaft 30 with an adhesive, a sputtering method, an ion beam deposition method, or the like. The method of forming a ring-shaped electrode into a film is mentioned.
  • the electrodes 40, 42, 44, and 46 may be connected to a lead wire (not shown), and the lead wire may be inserted into the shaft 30 to be connected to the connector 12 through the main body 20.
  • the number of the electrodes 40, 42, 44, 46 is not particularly limited, and may be, for example, 2 to 20, preferably 3 to 15, more preferably 4 to 10. If the number of electrodes 40, 42, 44, 46 is too small, the benefits of the multi-electrode disappear, so that many lesions cannot be cured and the catheter movement can be increased. If the number of electrodes is too large, the electrode ceramics become thick and stiff. Can be.
  • the width of the electrodes 40, 42, 44, 46 is not particularly limited and may be, for example, 0.1 to 10 mm, preferably 0.5 to 7 mm, more preferably 0.7 to 5 mm. If the width of the electrodes 40, 42, 44, 46 is too small, the ablation site can be narrowed, and if it is too large, it can be damaged to the normal site.
  • the spacing of the electrodes 40, 42, 44, 46 is not particularly limited, and may be, for example, 0.1 to 10 mm, preferably 0.5 to 8 mm, more preferably 0.7 to 7 mm. If the arrangement interval of the electrodes 40, 42, 44, 46 is too narrow, the ablation site can be narrowed, and if it is too large, the accuracy or the like can be reduced.
  • the catheter according to the present invention includes a plurality of electrodes, for example, a first electrode 40, a second electrode 42, a third electrode 44, and a fourth electrode 46. can do.
  • the number of electrodes 40, 42, 44, 46 may be more or less than in FIG. 2.
  • the width and spacing of each electrode 40, 42, 44, 46 may be independently the same or different.
  • the first electrode 40 is a tip electrode, and may be formed from the distal side end of the shaft 30. It is preferable that the width T 1 of the first electrode 40 is relatively large, for example, 0.5 to 10 mm, preferably 1 to 5 mm, and more preferably 3 to 5 mm.
  • the second electrode 42 may be formed at a predetermined interval from the first electrode 40.
  • the second electrode 42 may be configured in the form of a band electrode. It is preferable that the width T 2 of the second electrode 42 is relatively small, for example, 0.1 to 3 mm, preferably 0.5 to 2 mm, and more preferably 0.5 to 1.5 mm.
  • the interval S 1 between the first electrode 40 and the second electrode 42 is preferably relatively narrow, for example, 0.1 to 5 mm, preferably 0.5 to 3 mm, more preferably 0.5 to May be 2 mm.
  • the third electrode 44 may be formed at regular intervals from the second electrode 42.
  • the width T 3 of the third electrode 44 may be small or large in some cases, for example, 0.1 to 10 mm, preferably 0.5 to 5 mm, and more preferably 1 to 4 mm.
  • the distance S 2 between the second electrode 42 and the third electrode 44 is preferably relatively wide, for example 0.5 to 10 mm, preferably 1 to 6 mm, more preferably 3 to It may be 5 mm.
  • the fourth electrode 46 may be formed at a predetermined interval from the third electrode 44. It is preferable that the width T 4 of the fourth electrode 46 is relatively small, for example, 0.1 to 3 mm, preferably 0.5 to 2 mm, and more preferably 0.5 to 1.5 mm.
  • the distance S 3 between the third electrode 44 and the fourth electrode 46 is preferably relatively narrow, for example, 0.1 to 5 mm, preferably 0.5 to 3 mm, more preferably 0.5 to May be 2 mm.
  • Balloons 50, 52 may be formed at the distal side distal end of shaft 30 like the electrode. As described above, the liquid 50, 52 is injected into the balloon 50, 52 through the flow path (54, 56) after the liquid is injected into the catheter, such as saline, contrast medium through the liquid inlet 10 Can be expanded.
  • the catheter such as saline, contrast medium through the liquid inlet 10 Can be expanded.
  • the balloons 50 and 52 may be made of plastic or fiber material, for example nylon, polyether block amide (Pebax), polyurethane, or the like.
  • the balloons 50 and 52 may be of a multi-layered structure, for example the outer shell may be made of polyether block amide, and the inner shell may be made of nylon.
  • the balloons 50, 52 may be inflatablely attached to the distal end of the shaft 30 by attachment means using adhesive, heat, laser, or the like.
  • the balloon (50, 52) inflated in the blood vessel is characterized in that the inflated balloon (50, 52) is a space that can maintain the blood flow by only partially blocking the blood vessel.
  • the size and shape of the balloons 50 and 52 are important.
  • the diameter D 1 before inflation of the balloons 50, 52 may be 0.1 to 5 mm, preferably 0.1 to 3 mm, more preferably 0.5 to 2 mm.
  • the diameter D 2 after inflation of the balloons 50, 52 may be 0.1 to 10 mm, preferably 0.5 to 5 mm, more preferably 1 to 4 mm.
  • the diameter D 2 after inflation may refer to the diameter of the balloons 50 and 52 that are fully inflated.
  • the diameter of the balloons 50 and 52 may mean an average diameter. If the diameters of the balloons 50 and 52 are too small, they may not be in close contact with blood vessels. If the diameters of the balloons 50 and 52 are too large, the area of the flow path space through which blood can pass may be reduced by blocking the blood vessels too much.
  • the shapes of the balloons 50 and 52 may be made of a wedge shape, a spherical shape, an egg shape, a conical shape, a stepped shape, a polyhedron, or the like, and preferably may have a spherical shape as shown in the drawings. In the case of using the spherical balloons 50 and 52, more flow path space through which blood can pass can be secured.
  • Balloons 50 and 52 may be provided in plurality.
  • at least two or more balloons 50, 52 may be formed at the same location. That is, the balloons 50 and 52 may be formed along the circumferential direction of the shaft 30 at any point of the shaft 30.
  • the distance between the balloons 50 and 52 is preferably the same, for example, two may be 180 degrees, three may be 120 degrees, and four may be 90 degrees.
  • the two spherical balloons (50, 52) are formed at intervals of 180 degrees at the same position, it is possible to ensure as much as possible the flow path space through which blood can pass.
  • the balloons 50 and 52 may be formed between the second electrode 42 and the third electrode 44, and the positions of the balloons 50 and 52 are not limited thereto and may be appropriately adjusted as necessary. You can change it.
  • a plurality of balloons 50 and 52 may be formed along the longitudinal direction of the shaft 30.
  • FIG. 3 is a partial cutaway view of FIG. 2, in which the proximal side, which is the right side of the balloons 50, 52, is cut away to show the flow paths 54, 56.
  • the flow paths 54 and 56 are formed inside the shaft 30 and serve as a passage for injecting liquid into the balloons 50 and 52.
  • the flow paths 54 and 56 may be manufactured in the form of pipes or tubes independent of the shaft 30. That is, a separate pipe or tube may be inserted into the shaft 30 to form the flow paths 54 and 56. Alternatively, the flow paths 54 and 56 may be spaces (lumens) integrally formed inside the shaft 30.
  • the material may be made of metal (stainless steel, nitinol, etc.), plastic (nylon, polyether block amide, polyurethane, etc.), rubber, or a mixture thereof. It can be composed of different materials in part along the longitudinal direction.
  • the diameters of the flow paths 54 and 56 may vary depending on the diameter of the shaft 30, and may be, for example, 1 to 50%, preferably 5 to 30% of the diameter of the shaft 30.
  • the number of flow paths 54 and 56 may vary according to the number of balloons 50 and 52. For example, as shown in the drawing, when two balloons 50 and 52 are formed, two flow paths ( 54, 56 may be formed.
  • FIG. 4 is a view showing that the shaft of the catheter according to the present invention can be bent at various angles.
  • the distal end of the shaft 30 can be bent from 0 to 180 degrees, and can be bent at an additional angle as necessary.
  • the bending of the shaft 30 can be performed by manipulating the handle of the push and pull control type. As such, since the shaft 30 can be curved from 0 degrees to 180 degrees, not only the catheter insertion inside the vein in the blood vessel, but also the majority of the catheter can be easily accessed.
  • the bending radius (rotation radius) of the distal end of the shaft 30 may be 10 to 100 mm, preferably 20 to 80 mm, more preferably 30 to 60 mm. If the bend radius of the shaft 30 is too small, proper operation is impossible in a large heart, and if too large, operation is difficult and dangerous in a small heart.
  • FIG. 5 is a detailed view of a catheter having a liquid discharge hole according to another embodiment of the present invention, wherein a plurality of liquid discharge holes 60 may be formed at the distal side end surface of the shaft 30, and a plurality of electrodes may be formed. Liquid discharge holes 62 and 64 may be formed.
  • the liquid discharge holes 60, 62, and 64 are sequentially disposed in the catheter ablation electrode, so that the lesion site can be more efficiently excised.
  • it may be useful in a procedure for removing arrhythmia-induced biosignals of the left atrium, which is a source of atrial fibrillation arrhythmia.
  • the liquid discharged to the liquid discharge holes 60, 62, 64 may be a liquid used for the purpose of achieving ablation by electric stimulation (for example, heating, cooling, lubrication, contrast, vascular destruction, and the like).
  • the liquid flows through the liquid inlet 10 and then flows through the inner space of the shaft 30 except for the flow paths 54 and 56 to be discharged to the liquid discharge holes 60, 62, and 64.
  • the number of liquid discharge holes 60 formed in the distal side end surface is not particularly limited, and may be, for example, 2 to 10, preferably 3 to 8, respectively. Four liquid discharge holes 60 are formed in the figure.
  • the number of liquid discharge holes 62 and 64 formed in the electrodes 41 and 45 is not particularly limited, and may be, for example, 2 to 30, preferably 5 to 20. In the drawing, twelve liquid discharge holes 62 are formed in the first electrode 41, and twelve liquid discharge holes 64 are formed in the third electrode 45.
  • the diameter of the liquid discharge holes 60, 62, 64 may be 0.01 to 3 mm, preferably 0.05 to 1 mm, more preferably 0.1 to 0.5 mm. If the diameter of the liquid discharge hole (60, 62, 64) is too small, there is a difficulty in discharging the liquid, so effective resection is difficult, too large may increase the thickness of the electrode ceramics, as well as the back flow of blood into the discharge hole may occur. .
  • the catheter according to FIG. 5 may also include a plurality of electrodes, for example, a first electrode 41, a second electrode 43, a third electrode 45, and a fourth electrode 47.
  • a first electrode 41 for example, a second electrode 43, a third electrode 45, and a fourth electrode 47.
  • the width and spacing of each electrode 41, 43, 45, 47 may differ from the catheter according to FIG. 2.
  • the width t 1 of the first electrode 41 may be, for example, 0.5 to 10 mm, preferably 1 to 5 mm, and more preferably 3 to 5 mm.
  • the width t 2 of the second electrode 43 may be, for example, 0.1 to 3 mm, preferably 0.5 to 2 mm, and more preferably 0.5 to 1.5 mm.
  • the interval s 1 between the first electrode 41 and the second electrode 43 may be, for example, 0.1 to 5 mm, preferably 0.5 to 3 mm, more preferably 0.5 to 2 mm.
  • the width t 3 of the third electrode 45 may be, for example, 0.1 to 10 mm, preferably 0.5 to 5 mm, more preferably 1 to 4 mm.
  • the interval s 2 between the second electrode 43 and the third electrode 45 may be, for example, 0.5 to 10 mm, preferably 1 to 6 mm, more preferably 3 to 5 mm.
  • the width t 4 of the fourth electrode 47 may be, for example, 0.1 to 3 mm, preferably 0.5 to 2 mm, and more preferably 0.5 to 1.5 mm.
  • the interval s 3 between the third electrode 45 and the fourth electrode 47 may be, for example, 0.1 to 5 mm, preferably 0.5 to 3 mm, more preferably 0.5 to 2 mm.
  • Table 1 shows the detailed configuration of the catheter produced according to an example of the present invention.
  • Table 1 Feature Specification Type Steerable ablation catheter Catheter diameter 5F (1.675 mm) Usable length 110 cm Number of electrode 4 (1 tip and 3 band) Tip electrode 5Fr and 4 mm in length Band electrodes 1 mm Electrode space 2-5-2 mm Temperature sensor Thermocouple Shaft deflection 180 ° uni-directional Handle Push-pull style
  • the catheter according to the present invention can be used for radiofrequency ablation in cardiovascular, particularly useful for radiofrequency ablation in coronary vein.
  • the catheter according to the present invention is characterized in that it is possible to secure a space for maintaining blood flow, and the liquid such as saline solution introduced through the liquid input unit is introduced into the balloon, the balloon is in close contact with the blood vessel surface, the ablation electrode is in the blood vessel Helps to position stably, there is an advantage that can be effective resection.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Otolaryngology (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Cardiology (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Surgical Instruments (AREA)
  • Pulmonology (AREA)
  • Hematology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Biophysics (AREA)
  • Anesthesiology (AREA)

Abstract

본 발명은 혈관 내 고주파 절제 풍선 카테터에 관한 것으로, 카테터 본체의 일단에 연결되는 액체 투입부; 카테터 본체의 타단에 연결되는 긴 도관으로 구성되는 샤프트; 샤프트의 말단부에 형성되는 전극; 및 샤프트의 말단부에 형성되는 풍선을 포함하고, 혈관 내에서 풍선이 팽창했을 때 팽창된 풍선은 혈관을 부분적으로만 막아서 혈류를 유지할 수 있는 공간이 형성되는 것을 특징으로 하는 카테터를 제공한다.

Description

혈관 내 고주파 절제 풍선 카테터
본 발명은 심장 혈관 내의 구조적으로 접근이 어려운 다양한 병변을 효과적으로 절제할 수 있는 고주파 절제 풍선 카테터에 관한 것이며, 상세하게는 병변 부위를 제거하기 위한 절제 전극과 웨지 풍선(Wedge balloon)을 위치시킴으로써 심장 혈관 내의 여러 위치에 존재하는 병변부위를 접촉된 절제 전극을 이용하여 교류 저항을 최소화하면서 병변 부위를 제거할 수 있는 고주파 절제 풍선 카테터에 관한 것이다.
심장의 박동은 심장의 일부로부터 정기적으로 발생하는 전기 신호에 의해 심장의 근육이 순차 자극됨으로써 행해지고 있다. 그런데, 이 전기 신호의 흐름에 이상이 발생하면, 심장이 정확하게 박동할 수 없게 된다. 이러한 이상 신호가 발생되는 원인이 심장 내의 조직뿐만 아니라, 심장 외막에서도 비정상적인 전기 신호가 발생되어 정상적인 심장 박동의 이상을 일으키는데, 이것이 이른바 부정맥이다.
심장 부정맥의 처치는, 고주파수 전류에 의한 카테터 절제(catheter ablation) 기술의 도입 이후로 상당히 변모했다. 카테터 절제 기술에서는, X-레이 통제 하에서 절제-카테터가 정맥 또는 동맥을 통해 하나의 심장에 삽입되고, 고주파 전류에 의해 심장 부정맥을 유발하는 조직이 파괴된다. 카테터 절제의 성공적인 실행을 위한 전제 조건은, 심장 내부에서 부정맥의 원인을 정확하게 탐지하는 것이다. 이와 같은 탐지는, 전위(electrical potentials)가 심장 내부에 삽입된 맵핑-카테터에 의해서 공간적으로 분해된 상태로 레코딩되는 전기생리학적 검사를 통해 진단이 이루어진다.
발작성 상심실성 빈맥은 가장 흔한 지속적 부정맥으로서, 심박수를 분당 100 내지 175까지 또는 그 이상으로까지 증가시킬 수 있다. 발작성 상심실성 빈맥은 심장의 두근거림 증상이 나타나는 빈도가 높고, 실신, 현기증, 호흡 곤란, 흉통, 전신 쇠약 등과 같은 다수의 의학적 후유증과도 연관되어 있다.
심장 혈관 내에 상심실성 빈맥의 원인이 되는 병소를 찾는 것에 있어서, 심장 박동으로 인해 시술자가 정밀하게 심장 내의 생체 전기신호를 탐지하여 부정맥을 유발하는 심장 부위를 판별하고 절제하는 과정에서 카테터의 위치를 조작하는데 어려움이 있었다. 또한, 심장 혈관 내의 특성을 고려한 전기적 신호를 탐지하고 절제하는 카테터가 없어서, 기존의 심장 내에 전기적 신호를 탐지하고 절제하기 위해 만들어진 카테터를 이용하여, 심장 혈관 내의 병소에 접근이 어려운 부분을 점 접촉시켜 병소를 일으키는 부위를 정확히 감지할 수 없었다. 특히, 좁은 심장 혈관 내에서 고주파 절제 시술 시 전류의 저항치가 급격히 올라가는 문제가 발생되어 효과적인 절제 시술에 어려움이 많았다.
따라서, 본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 심장 혈관 내의 구조적인 특징을 고려하여 고안되었으며, 원하는 심장 혈관 내의 여러 부분에 존재하는 병변 부위에 전기자극을 인가함은 물론, 웨지 풍선을 위치시킴으로써 환자의 호흡에 의한 카테터 움직임을 최소화하면서 안정적으로 접근할 수 있어, 병소의 접촉 면적을 증대시키고 조작자가 정밀하게 조절하여 병소에 절제 시술을 할 수 있는 혈관 내 고주파 절제 풍선 카테터를 제공하는 것을 목적으로 한다.
아울러, 본 발명은 좁은 혈관 내에서 절제 시술 시 야기될 수 있는 교류 저항값의 급격한 변화를 방지하기 위해, 웨지 풍선이 혈관 내 혈류량을 유지 가능하도록 하여 교류 저항이 안정적으로 유지되게 도와주며, 또한 카테터의 말단 두께를 기존 카테터보다 얇게 도안함으로써, 좁은 혈관 내에서도 원하는 병소를 안정적으로 이동할 수 있도록 하여, 카테터 시술의 성공률을 향상시킬 수 있는 혈관 내 고주파 절제 풍선 카테터를 제공하는 것을 목적으로 한다.
특히, 본 발명은 발작성 상심실성 빈맥(Paroxysmal Supraventricular Tachycardia) 부정맥 시술 시 근원이 되는 중심장 정맥(Middle Cardiac Vein)의 부정맥 유발 생체신호를 제거하는 시술에 유용함을 제공할 뿐만 아니라, 심방 빈맥(Atrial Tachycardia), 심실 빈맥(Ventricular Tachycardia) 부정맥 시술 시 근원이 되는 대심 정맥(Great Cardiac Vein), 전심실 중격 정맥(Anterior Interventricular vein)의 부정맥 유발 생체신호를 제거하는 시술에서도 유용함을 제공하는 혈관 내 고주파 절제 풍선 카테터를 제공하는 것을 목적으로 한다.
본 발명은 상기 목적을 달성하기 위해, 카테터 본체의 일단에 연결되는 액체 투입부; 카테터 본체의 타단에 연결되는 긴 도관으로 구성되는 샤프트; 샤프트의 말단부에 형성되는 전극; 및 샤프트의 말단부에 형성되는 풍선을 포함하고, 혈관 내에서 풍선이 팽창했을 때 팽창된 풍선은 혈관을 부분적으로만 막아서 혈류를 유지할 수 있는 공간이 형성되는 것을 특징으로 하는 카테터를 제공한다.
본 발명에서 풍선의 팽창 전 직경은 0.1 내지 3 mm일 수 있고, 풍선의 팽창 후 직경은 0.5 내지 5 mm일 수 있다.
본 발명에서 풍선은 웨지형, 구형, 계란형, 원추형, 계단형 또는 다면체로 이루어질 수 있다.
본 발명에서 풍선은 복수 개로 구비될 수 있고, 적어도 2개의 풍선은 샤프트의 동일 위치에서 샤프트의 원주방향을 따라 동일한 간격으로 형성될 수 있다.
본 발명에서 샤프트의 내부에는 풍선으로 액체를 주입하기 위한 유로가 형성될 수 있고, 유로는 샤프트와 독립적인 튜브 또는 파이프일 수 있다.
본 발명에서 전극은 복수 개로 구비될 수 있고, 전극은 2 내지 20개로 구비될 수 있다.
본 발명에서 전극의 폭은 0.1 내지 10 mm일 수 있고, 전극은 0.1 내지 10 mm의 간격으로 배치될 수 있다.
본 발명에 따른 카테터는 샤프트의 말단에 형성되고, 1 내지 5 mm의 폭을 갖는 제1전극; 제1전극으로부터 0.5 내지 3 mm의 간격을 두고 형성되며, 0.5 내지 2 mm의 폭을 갖는 제2전극; 제2전극으로부터 1 내지 6 mm의 간격을 두고 형성되며, 0.5 내지 5 mm의 폭을 갖는 제3전극; 및 제3전극으로부터 0.5 내지 3 mm의 간격을 두고 형성되며, 0.5 내지 2 mm의 폭을 갖는 제4전극을 포함할 수 있다.
본 발명에서 풍선은 제2전극 및 제3전극 사이에서 형성되고, 적어도 2개 이상의 풍선이 동일 위치에 형성될 수 있다.
본 발명에서 샤프트의 말단면에는 복수의 액체 배출공이 형성될 수 있고, 전극에는 복수의 액체 배출공이 형성될 수 있다.
본 발명에서 샤프트의 길이는 100 내지 150 mm이고, 샤프트의 직경은 0.1 내지 5 mm일 수 있다.
본 발명에서 샤프트는 0 내지 180도까지 굴곡 가능하고, 굴곡 반경은 10 내지 100 mm일 수 있다.
본 발명에 따른 카테터는 심장 혈관 내 고주파 절제용으로 사용될 수 있다.
본 발명에 따른 카테터는 심장 혈관 내의 구조적인 특징을 고려하여 고안되었고, 복수의 전극을 구비하여 원하는 심장 혈관 내의 여러 부분에 존재하는 병변 부위에 전기자극을 인가할 수 있다. 또한, 적절한 크기와 형상을 갖는 웨지 풍선을 설치함으로써, 환자의 호흡에 의한 카테터 움직임을 최소화하면서 안정적으로 접근할 수 있으므로, 병소의 접촉 면적을 증대시키고 조작자가 정밀하게 조절하여 병소에 절제 시술을 할 수 있다.
아울러, 좁은 혈관 내에서 절제 시술 시 야기될 수 있는 교류 저항값의 급격한 변화를 방지하기 위해, 적절한 크기와 형상을 갖는 웨지 풍선을 설치함으로써, 웨지 풍선이 혈관 내 혈류량을 유지 가능하도록 하여 교류 저항이 안정적으로 유지되게 도와줄 수 있다. 또한, 카테터의 말단 두께를 기존 카테터보다 얇게 도안함으로써, 좁은 혈관 내에서도 원하는 병소를 안정적으로 이동할 수 있도록 하여, 카테터 시술의 성공률을 향상시킬 수 있다.
특히, 발작성 상심실성 빈맥 부정맥 시술 시 근원이 되는 중심장 정맥의 부정맥 유발 생체신호를 제거하는 시술에 유용함을 제공할 뿐만 아니라, 심방 빈맥, 심실 빈맥 부정맥 시술 시 근원이 되는 대심 정맥, 전심실 중격 정맥의 부정맥 유발 생체신호를 제거하는 시술에서도 유용함을 제공할 수 있다.
도 1은 본 발명의 일 실시형태에 따른 카테터의 전체 구성도이다.
도 2는 도 1의 A 부분에 대한 확대도이다.
도 3은 도 2의 부분 절개도이다.
도 4는 본 발명에 따른 카테터의 샤프트가 다양한 각도로 굴곡 가능함을 보여주는 도면이다.
도 5는 본 발명의 다른 실시형태에 따라 액체 배출공을 구비하는 카테터의 상세도이다.
이하, 첨부도면을 참조하여 본 발명을 상세하게 설명한다.
도 1은 본 발명의 일 실시형태에 따른 카테터의 전체 구성도로서, 이 실시형태에 따른 카테터는 액체 투입부(10), 커넥터(12), 카테터 본체(20), 샤프트(30), 전극(40, 42, 44, 46) 및 풍선(50, 52)를 포함하여 이루어질 수 있다.
도 1에서 좌측은 시술자와 먼 원위(distal) 측이고, 우측은 시술자와 가까운 근위(proximal) 측이다.
액체 투입부(10)는 카테터 본체(20)의 근위 측 말단에 연결될 수 있다. 액체 투입부(10)를 통해 액체가 카테터 내부로 투입된 후, 풍선(50, 52)으로 주입됨으로써 풍선(50, 52)이 팽창될 수 있다. 액체로는 식염수, 조영제 등을 사용할 수 있다.
커넥터(12)는 카테터 본체(20)의 근위 측 말단에 연결되고, 이 연결 커넥터(12)를 통해 별도의 카테터 신호 케이블(catheter signal cable)을 연결할 수 있으며, 이에 따라 복수의 전극들(40, 42, 44, 46)에 고주파수 전류를 인가할 수 있다.
카테터 본체(20)는 시술자가 잡을 수 있는 핸들을 포함하여 구성되고, 금속이나 플라스틱 소재로 제작될 수 있다. 핸들은 푸쉬 앤 풀 제어(Push-pull control) 타입으로 구성될 수 있다.
샤프트(shaft)(30)는 카테터 본체(20)의 원위 측 말단에 연결되는 긴 도관으로 구성될 수 있다. 샤프트(shaft)(30)는 금속(스테인리스 스틸, 니티놀 등), 플라스틱(나일론, 폴리에테르 블록 아미드, 폴리우레탄 등), 고무 또는 이들의 혼합물로 이루어질 수 있으며, 길이방향을 따라 부분적으로 상이한 재질로 구성할 수 있다.
샤프트(30)는 하나의 단일 샤프트로 이루어질 수 있고, 또한 복수의 샤프트로 구성될 수도 있다. 복수의 샤프트로 구성할 경우, 커넥터를 이용하여 연결하거나, 끼움 결합, 용접, 접착 등의 방법을 이용하여 연결할 수 있다.
샤프트(30)의 내부에는 통상적인 파이프나 튜브처럼 공간이 형성되어 있으며, 이 공간에는 별도의 유로가 형성될 수 있고, 또한 이 공간을 통해 액체가 흐를 수도 있다.
샤프트(30)의 내부 및/또는 외부 표면에는 예를 들어 혈관 내벽과의 마찰을 감소시키기 위해 친수성 및/또는 소수성 코팅이 이루어질 수 있다.
샤프트(30)의 길이는 특별히 제한되지 않고, 예를 들어 100 내지 150 mm, 바람직하게는 110 내지 140 mm일 수 있다. 샤프트(30)의 길이가 너무 길거나 짧으면 시술 시 불편한 점이 발생하며, 통상 심장에서 우측 허벅지까지의 길이가 시술자에게 가장 편리하다.
샤프트(30)의 직경은 특별히 제한되지 않고, 예를 들어 0.1 내지 5 mm, 바람직하게는 0.5 내지 4 mm, 더욱 바람직하게는 1 내지 3 mm일 수 있다. 샤프트(30)의 직경이 굵으면 혈관 삽입을 위해 더 굵은 시스(sheath)를 사용해야 하며, 혈전 형성의 위험이 증가한다. 반면 너무 가늘면 전극도자(카테터) 조작 시 힘을 받지 못하고 전극이 구부러지거나 상하게 된다.
도 2는 도 1의 A 부분에 대한 확대도로서, 전극(40, 42, 44, 46) 및 풍선(50, 52)이 형성되어 있는 샤프트(30)의 원위 측 말단부를 확대하여 도시한 것이다. 본 발명에서 말단(end)은 끝을 의미할 수 있고, 말단부(end portion)는 말단으로부터 일정 길이까지의 부위를 의미할 수 있다. 예를 들어, 말단부의 길이는 전체 길이를 기준으로 30% 이하일 수 있다.
전극(40, 42, 44, 46)은 샤프트(30)의 원위 측 말단부에서 샤프트(30)의 길이방향을 따라 복수 개로 형성될 수 있다.
이와 같이, 전극을 복수 개의 다전극 형태로 구성함으로써, 심장 조직의 여러 위치에 존재하는 병변 부위를 접촉된 다전극 절제 전극을 이용하여 이동을 최소화하면서, 복수의 병변 부위를 효과적으로 제거할 수 있다. 구체적으로, 카테터 원위 측 말단의 절제 전극 외에 그 근처 말단부에도 절제 전극을 위치시킴으로써, 원하는 심장의 여러 부분에 존재하는 병변 부위의 전기신호를 감지하거나, 병변 부위에 전기자극을 인가할 수 있다. 또한, 카테터의 이동을 최소화하면서 원하는 병소에 접근할 수 있기 때문에, 병소의 접촉면적을 증대시키고 조작자가 정밀하게 조절하여 병소에 안정적으로 절제 시술을 할 수 있다.
아울러, 카테터의 윈위 말단의 절제 전극과 일정한 간격만큼 이격된 위치에서 다른 절제 전극이 배치됨으로써, 시술 시 인체의 외부에서 병변 부위로 삽입된 카테터의 원위 말단이 병변 부위를 지나치면 다시 병변 부위로 되돌아와서 병변 부위를 치료하는 기존의 카테터와 달리, 카테터 시술자의 사용편의성을 증대시킬 수 있다.
전극(40, 42, 44, 46)은 바람직하게는 모두 절제 전극이며, 일부는 전기신호를 감지할 수 있는 맵핑 전극일 수도 있다.
전극(40, 42, 44, 46)은 샤프트(30)의 외주면을 둘러싸는 링 형상으로 구성될 수 있다. 링 형상 전극(40, 42, 44, 46)은 도전성 재료, 특히 금속 재료로 이루어질 수 있다. 금속으로는 백금, 금, 이리듐, 코발트, 티타늄, 니켈, 은, 구리, 아연, 주석, 알루미늄, 크롬, 망간, 마그네슘 및 이들의 합금 등을 사용할 수 있다. 링 형상 전극(40, 42, 44, 46)의 형성 방법으로서는 특별히 한정되는 것은 아니고, 링 형상으로 성형 가공된 금속재료를 접착제에 의해 샤프트(30)에 고정하는 방법과, 스퍼터링법이나 이온빔 증착법 등에 의해 링 형상 전극을 성막 형성하는 방법을 들 수 있다.
전극(40, 42, 44, 46)은 리드선(미도시)과 연결될 수 있고, 리드선은 샤프트(30)의 내부에 삽입되어 본체(20)를 거쳐 커넥터(12) 등과 연결될 수 있다.
전극(40, 42, 44, 46)의 수는 특별히 제한되지 않고, 예를 들어 2 내지 20개, 바람직하게는 3 내지 15개, 더욱 바람직하게는 4 내지 10개일 수 있다. 전극(40, 42, 44, 46)의 수가 너무 적으면 다전극의 이점이 사라져 여러 병변 부위를 치료할 수 없고 카테터의 움직임이 늘어날 수 있으며, 전극수가 너무 많으면 전극도자가 굵어지고 뻣뻣해지는 문제가 발생할 수 있다.
전극(40, 42, 44, 46)의 폭은 특별히 제한되지 않고, 예를 들어 0.1 내지 10 mm, 바람직하게는 0.5 내지 7 mm, 더욱 바람직하게는 0.7 내지 5 mm일 수 있다. 전극(40, 42, 44, 46)의 폭이 너무 작으면 절제 부위가 좁아질 수 있고, 너무 크면 정상 부위까지 손상될 수 있다.
전극(40, 42, 44, 46)의 간격은 특별히 제한되지 않고, 예를 들어 0.1 내지 10 mm, 바람직하게는 0.5 내지 8 mm, 더욱 바람직하게는 0.7 내지 7 mm일 수 있다. 전극(40, 42, 44, 46)의 배치 간격이 너무 좁으면 절제 부위가 좁아질 수 있고, 너무 크면 정확도 등이 감소할 수 있다.
도 2에 도시된 바와 같이, 본 발명에 따른 카테터는 복수의 전극, 예를 들어 제1전극(40), 제2전극(42), 제3전극(44), 제4전극(46)을 구비할 수 있다. 전극(40, 42, 44, 46)의 수는 도 2보다 더 많거나 적을 수 있다. 또한, 각 전극(40, 42, 44, 46)의 폭 및 간격은 독립적으로 같거나 다를 수 있다.
제1전극(40)은 팁 전극(tip electrode)로서, 샤프트(30)의 원위 측 말단에서부터 형성될 수 있다. 제1전극(40)의 폭(T1)은 상대적으로 큰 것이 바람직하며, 예를 들어 0.5 내지 10 mm, 바람직하게는 1 내지 5 mm, 더욱 바람직하게는 3 내지 5 mm일 수 있다.
제2전극(42)은 제1전극(40)으로부터 일정 간격을 두고 형성될 수 있다. 제2전극(42)은 밴드 전극(band electrode) 형태로 구성할 수 있다. 제2전극(42)의 폭(T2)은 상대적으로 작은 것이 바람직하며, 예를 들어 0.1 내지 3 mm, 바람직하게는 0.5 내지 2 mm, 더욱 바람직하게는 0.5 내지 1.5 mm일 수 있다. 제1전극(40)과 제2전극(42) 사이의 간격(S1)은 상대적으로 좁은 것이 바람직하며, 예를 들어 0.1 내지 5 mm, 바람직하게는 0.5 내지 3 mm, 더욱 바람직하게는 0.5 내지 2 mm일 수 있다.
제3전극(44)은 제2전극(42)으로부터 일정 간격을 두고 형성될 수 있다. 제3전극(44)의 폭(T3)은 경우에 따라 작거나 클 수 있는데, 예를 들어 0.1 내지 10 mm, 바람직하게는 0.5 내지 5 mm, 더욱 바람직하게는 1 내지 4 mm일 수 있다. 제2전극(42)과 제3전극(44) 사이의 간격(S2)은 상대적으로 넓은 것이 바람직하며, 예를 들어 0.5 내지 10 mm, 바람직하게는 1 내지 6 mm, 더욱 바람직하게는 3 내지 5 mm일 수 있다.
제4전극(46)은 제3전극(44)으로부터 일정 간격을 두고 형성될 수 있다. 제4전극(46)의 폭(T4)은 상대적으로 작은 것이 바람직하며, 예를 들어 0.1 내지 3 mm, 바람직하게는 0.5 내지 2 mm, 더욱 바람직하게는 0.5 내지 1.5 mm일 수 있다. 제3전극(44)과 제4전극(46) 사이의 간격(S3)은 상대적으로 좁은 것이 바람직하며, 예를 들어 0.1 내지 5 mm, 바람직하게는 0.5 내지 3 mm, 더욱 바람직하게는 0.5 내지 2 mm일 수 있다.
풍선(50, 52)은 전극과 마찬가지로 샤프트(30)의 원위 측 말단부에 형성될 수 있다. 전술한 바와 같이, 액체 투입부(10)를 통해 식염수, 조영제 등의 액체가 카테터 내부로 투입된 후, 유로(54, 56)를 거쳐 풍선(50, 52)으로 주입됨으로써 풍선(50, 52)이 팽창될 수 있다.
풍선(50, 52)은 플라스틱이나 섬유 소재, 예를 들어 나일론, 폴리에테르 블록 아미드(Pebax), 폴리우레탄 등으로 제작될 수 있다. 풍선(50, 52)은 복층 구조로 구성될 수 있는데, 예를 들어 외피는 폴리에테르 블록 아미드로 구성하고, 내피는 나일론으로 구성할 수 있다.
풍선(50, 52)은 접착제, 열, 레이저 등을 이용한 부착수단에 의해 샤프트(30)의 원위 쪽 말단부에 팽창 가능하게 부착될 수 있다.
본 발명에서는 혈관 내에서 풍선(50, 52)이 팽창했을 때 팽창된 풍선 풍선(50, 52)은 혈관을 부분적으로만 막아서 혈류를 유지할 수 있는 공간이 형성되는 것을 특징으로 한다.
따라서, 본 발명에서는 풍선(50, 52)의 크기와 형상이 중요하다.
풍선(50, 52)의 팽창 전 직경(D1)은 0.1 내지 5 mm, 바람직하게는 0.1 내지 3 mm, 더욱 바람직하게는 0.5 내지 2 mm일 수 있다. 풍선(50, 52)의 팽창 후 직경(D2)은 0.1 내지 10 mm, 바람직하게는 0.5 내지 5 mm, 더욱 바람직하게는 1 내지 4 mm일 수 있다. 팽창 후 직경(D2)은 최대로 팽창된 풍선(50, 52)의 직경을 의미할 수 있다. 풍선(50, 52)이 구형이 아닐 경우, 풍선(50, 52)의 직경은 평균 직경을 의미할 수 있다. 풍선(50, 52)의 직경이 너무 작으면 혈관에 밀착되지 않을 수 있고, 너무 크면 혈관을 너무 많이 막아서 혈액이 통과할 수 있는 유로 공간의 면적이 줄어들 수 있다.
풍선(50, 52)의 형상은 웨지형, 구형, 계란형, 원추형, 계단형, 다면체 등으로 이루어질 수 있으며, 바람직하게는 도면에 도시된 바와 같이 구형으로 이루어질 수 있다. 구형의 풍선(50, 52)을 사용할 경우, 혈액이 통과할 수 있는 유로 공간을 더 많이 확보할 수 있다.
풍선(50, 52)은 복수 개로 구비될 수 있다. 바람직하게는, 도면에 도시된 바와 같이, 적어도 2개 이상의 풍선(50, 52)이 동일 위치에 형성될 수 있다. 즉, 풍선(50, 52)은 샤프트(30)의 어느 한 지점에서 샤프트(30)의 원주 방향을 따라 형성될 수 있다. 풍선(50, 52)간의 간격은 서로 동일한 것이 바람직하며, 예를 들어 2개일 경우 180도, 3개일 경우 120도, 4개일 경우 90도일 수 있다. 바람직하게는, 도면에 도시된 바와 같이, 2개의 구형 풍선(50, 52)이 동일 위치에서 180도 간격으로 형성될 경우, 혈액이 통과할 수 있는 유로 공간을 최대한으로 많이 확보할 수 있다.
풍선(50, 52)은 도시된 바와 같이, 제2전극(42) 및 제3전극(44) 사이에서 형성될 수 있고, 풍선(50, 52)의 위치는 이에 한정되지 않고 필요에 따라 적절하게 변경할 수 있다. 또한, 풍선(50, 52)은 샤프트(30)의 길이방향을 따라 복수 개로 형성될 수도 있다.
도 3은 도 2의 부분 절개도로서, 유로(54, 56)를 보여주기 위해, 풍선(50, 52)의 우측인 근위 측을 절개한 것이다.
유로(54, 56)는 샤프트(30)의 내부에 형성되고, 풍선(50, 52)으로 액체를 주입하기 위한 통로 역할을 한다.
유로(54, 56)는 샤프트(30)와 독립적인 파이프나 튜브 형태로 제작될 수 있다. 즉, 별도의 파이프나 튜브를 샤프트(30) 내부에 삽입하여 유로(54, 56)를 형성할 수 있다. 이와 달리, 유로(54, 56)는 샤프트(30)의 내부에 일체로 형성된 공간(루멘)일 수도 있다.
유로(54, 56)를 튜브나 파이프로 제작할 경우, 그 재질은 금속(스테인리스 스틸, 니티놀 등), 플라스틱(나일론, 폴리에테르 블록 아미드, 폴리우레탄 등), 고무 또는 이들의 혼합물로 이루어질 수 있으며, 길이방향을 따라 부분적으로 상이한 재질로 구성할 수 있다.
유로(54, 56)의 직경은 샤프트(30)의 직경에 따라 달라질 수 있으며, 예를 들어 샤프트(30)의 직경 대비 1 내지 50%, 바람직하게는 5 내지 30%일 수 있다.
유로(54, 56)의 개수는 풍선(50, 52)의 개수에 따라 달라질 수 있으며, 예를 들어 도면에 도시된 바와 같이, 2개의 풍선(50, 52)이 형성될 경우, 2개의 유로(54, 56)가 형성될 수 있다.
도 4는 본 발명에 따른 카테터의 샤프트가 다양한 각도로 굴곡 가능함을 보여주는 도면이다.
샤프트(30)의 말단부는 도시된 바와 같이, 0 내지 180도까지 굴곡 가능하며, 필요에 따라 그 이상의 각도로도 굴곡될 수 있다. 샤프트(30)의 굴곡은 푸쉬 앤 풀 제어 타입의 핸들을 조작하여 수행될 수 있다. 이와 같이, 샤프트(30)를 0도에서 180도까지 커브를 구사할 수 있기 때문에, 혈관 내 정맥 안쪽의 카테터 삽입뿐만 아니라, 대다수의 카테터가 위치하기 어려운 부위에도 쉽게 접근할 수 있도록 도와줄 수 있다.
샤프트(30) 말단부의 굴곡 반경(회전 반경)은 10 내지 100 mm, 바람직하게는 20 내지 80 mm, 더욱 바람직하게는 30 내지 60 mm일 수 있다. 샤프트(30)의 굴곡 반경이 너무 작으면 큰 심장에서 적절한 조작이 불가능하고, 너무 크면 작은 심장에서 조작이 어렵고 위험하다.
도 5는 본 발명의 다른 실시형태에 따라 액체 배출공을 구비하는 카테터의 상세도로서, 샤프트(30)의 원위 측 말단면에는 복수의 액체 배출공(60)이 형성될 수 있고, 전극에도 복수의 액체 배출공(62, 64)이 형성될 수 있다.
이와 같이, 카테터 절제 전극 안에 액체 배출공(60, 62, 64)이 순차적으로 배치됨으로써, 보다 효율적으로 병변 부위를 절제할 수 있다. 특히, 심방 세동(Atrial Fibrillation) 부정맥 시술 시 근원이 되는 좌심방(Left Atrium)의 부정맥 유발 생체신호를 제거하는 시술에 유용함을 제공할 수 있다.
액체 배출공(60, 62, 64)으로 배출되는 액체는 전기자극에 의한 절제를 도모할 목적(예를 들어, 가열, 냉각, 윤활, 조영, 혈관 파괴 등)으로 사용되는 액체일 수 있다. 예를 들어, 액체는 액체 투입부(10)를 통해 유입된 후, 유로(54, 56)를 제외한 샤프트(30)의 내부 공간을 통해 흐르면서, 액체 배출공(60, 62, 64)으로 배출될 수 있다.
원위 측 말단면에 형성되는 액체 배출공(60)의 개수는 특별히 제한되지 않고, 예를 들어 2 내지 10개, 바람직하게는 3 내지 8개일 수 있다. 도면에는 4개의 액체 배출공(60)이 형성되어 있다.
전극(41, 45)에 형성되는 액체 배출공(62, 64)의 개수는 특별히 제한되지 않고, 예를 들어 2 내지 30개, 바람직하게는 5 내지 20개일 수 있다. 도면에는 제1전극(41)에 12개의 액체 배출공(62)이 형성되고, 제3전극(45)에도 12개의 액체 배출공(64)이 형성되어 있다.
이와 같이, 다수의 액체 배출공(60, 62, 64)을 통해서 효과적으로 절제술을 할 수 있는 장점이 있다.
액체 배출공(60, 62, 64)의 직경은 0.01 내지 3 mm, 바람직하게는 0.05 내지 1 mm, 더욱 바람직하게는 0.1 내지 0.5 mm일 수 있다. 액체 배출공(60, 62, 64)의 직경이 너무 작으면 액체 배출에 어려움이 있어 효과적인 절제술이 어렵고, 너무 크면 전극도자의 굵기가 증가할 뿐 아니라 배출공 내로 혈액이 역류하는 단점이 발생할 수 있다.
도 5에 따른 카테터도 복수의 전극, 예를 들어 제1전극(41), 제2전극(43), 제3전극(45), 제4전극(47)을 구비할 수 있으며, 액체 배출공(60, 62, 64)의 추가됨에 따라 각 전극(41, 43, 45, 47)의 폭 및 간격은 도 2에 따른 카테터와 다를 수 있다.
제1전극(41)의 폭(t1)은 예를 들어 0.5 내지 10 mm, 바람직하게는 1 내지 5 mm, 더욱 바람직하게는 3 내지 5 mm일 수 있다.
제2전극(43)의 폭(t2)은 예를 들어 0.1 내지 3 mm, 바람직하게는 0.5 내지 2 mm, 더욱 바람직하게는 0.5 내지 1.5 mm일 수 있다. 제1전극(41)과 제2전극(43) 사이의 간격(s1)은 예를 들어 0.1 내지 5 mm, 바람직하게는 0.5 내지 3 mm, 더욱 바람직하게는 0.5 내지 2 mm일 수 있다.
제3전극(45)의 폭(t3)은 예를 들어 0.1 내지 10 mm, 바람직하게는 0.5 내지 5 mm, 더욱 바람직하게는 1 내지 4 mm일 수 있다. 제2전극(43)과 제3전극(45) 사이의 간격(s2)은 예를 들어 0.5 내지 10 mm, 바람직하게는 1 내지 6 mm, 더욱 바람직하게는 3 내지 5 mm일 수 있다.
제4전극(47)의 폭(t4)은 예를 들어 0.1 내지 3 mm, 바람직하게는 0.5 내지 2 mm, 더욱 바람직하게는 0.5 내지 1.5 mm일 수 있다. 제3전극(45)과 제4전극(47) 사이의 간격(s3)은 예를 들어 0.1 내지 5 mm, 바람직하게는 0.5 내지 3 mm, 더욱 바람직하게는 0.5 내지 2 mm일 수 있다.
표 1은 본 발명의 일 예에 따라 제작한 카테터의 세부 구성을 나타낸 것이다.
표 1
Feature Specification
Type Steerable ablation catheter
Catheter Diameter 5F (1.675 mm)
Usable length 110 cm
Number of electrode 4(1 tip and 3 band)
Tip electrode 5Fr and 4 mm in length
Band electrodes 1 mm
Electrode Space 2-5-2 mm
Temperature sensor Thermocouple
Shaft Deflection 180° uni-directional
Handle Push-pull style
본 발명에 따른 카테터는 심장 혈관 내 고주파 절제용으로 사용될 수 있으며, 특히 관상 정맥 혈관 내 고주파 절제용으로 유용하게 사용될 수 있다.
본 발명에 따른 카테터는 혈류를 유지할 수 있는 공간을 확보할 수 있는 것을 특징으로 하며, 액체 투입부를 통해 투입된 식염수 등의 액체가 풍선으로 투입되어 혈관 표면에 풍선이 밀착됨으로써, 절제 전극이 혈관 내에서 안정적으로 위치할 수 있도록 도와주며, 효과적으로 절제술을 할 수 있는 장점이 있다.
[부호의 설명]
10: 액체 투입부
12: 커넥터
20: 카테터 본체
30: 샤프트
40, 41, 42, 43, 44, 45, 46, 47: 전극
50, 52: 풍선
54, 56: 유로
60, 62, 64: 액체 배출공

Claims (19)

  1. 카테터 본체의 일단에 연결되는 액체 투입부;
    카테터 본체의 타단에 연결되는 긴 도관으로 구성되는 샤프트;
    샤프트의 말단부에 형성되는 전극; 및
    샤프트의 말단부에 형성되는 풍선을 포함하고,
    혈관 내에서 풍선이 팽창했을 때 팽창된 풍선은 혈관을 부분적으로만 막아서 혈류를 유지할 수 있는 공간이 형성되는 것을 특징으로 하는 카테터.
  2. 제1항에 있어서,
    풍선의 팽창 전 직경은 0.1 내지 3 mm인 것을 특징으로 하는 카테터.
  3. 제1항에 있어서,
    풍선의 팽창 후 직경은 0.5 내지 5 mm인 것을 특징으로 하는 카테터.
  4. 제1항에 있어서,
    풍선은 웨지형, 구형, 계란형, 원추형, 계단형 또는 다면체로 이루어진 것을 특징으로 하는 카테터.
  5. 제1항에 있어서,
    풍선은 복수 개로 구비되는 것을 특징으로 하는 카테터.
  6. 제5항에 있어서,
    적어도 2개의 풍선은 샤프트의 동일 위치에서 샤프트의 원주방향을 따라 동일한 간격으로 형성되는 것을 특징으로 하는 카테터.
  7. 제1항에 있어서,
    샤프트의 내부에는 풍선으로 액체를 주입하기 위한 유로가 형성되는 것을 특징으로 하는 카테터.
  8. 제7항에 있어서,
    유로는 샤프트와 독립적인 튜브 또는 파이프인 것을 특징으로 하는 카테터.
  9. 제1항에 있어서,
    전극은 복수 개로 구비되는 것을 특징으로 하는 카테터.
  10. 제9항에 있어서,
    전극은 2 내지 20개로 구비되는 것을 특징으로 하는 카테터.
  11. 제9항에 있어서,
    전극의 폭은 0.1 내지 10 mm인 것을 특징으로 하는 카테터.
  12. 제9항에 있어서,
    전극은 0.1 내지 10 mm의 간격으로 배치되는 것을 특징으로 하는 카테터.
  13. 제9항에 있어서,
    샤프트의 말단에 형성되고, 1 내지 5 mm의 폭을 갖는 제1전극;
    제1전극으로부터 0.5 내지 3 mm의 간격을 두고 형성되며, 0.5 내지 2 mm의 폭을 갖는 제2전극;
    제2전극으로부터 1 내지 6 mm의 간격을 두고 형성되며, 0.5 내지 5 mm의 폭을 갖는 제3전극; 및
    제3전극으로부터 0.5 내지 3 mm의 간격을 두고 형성되며, 0.5 내지 2 mm의 폭을 갖는 제4전극을 포함하는 것을 특징으로 하는 카테터.
  14. 제13항에 있어서,
    풍선은 제2전극 및 제3전극 사이에서 형성되고, 적어도 2개 이상의 풍선이 동일 위치에 형성되는 것을 특징으로 하는 카테터.
  15. 제1항에 있어서,
    샤프트의 말단면에는 복수의 액체 배출공이 형성되는 것을 특징으로 하는 카테터.
  16. 제1항에 있어서,
    전극에는 복수의 액체 배출공이 형성되는 것을 특징으로 하는 카테터.
  17. 제1항에 있어서,
    샤프트의 길이는 100 내지 150 mm이고, 샤프트의 직경은 0.1 내지 5 mm인 것을 특징으로 하는 카테터.
  18. 제1항에 있어서,
    샤프트는 0 내지 180도까지 굴곡 가능하고, 굴곡 반경은 10 내지 100 mm인 것을 특징으로 하는 카테터.
  19. 제1항에 있어서,
    심장 혈관 내 고주파 절제용으로 사용되는 것을 특징으로 하는 카테터.
PCT/KR2015/002996 2014-03-28 2015-03-26 혈관 내 고주파 절제 풍선 카테터 WO2015147577A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140036628A KR101586899B1 (ko) 2014-03-28 2014-03-28 혈관 내 고주파 절제 풍선 카테터
KR10-2014-0036628 2014-03-28

Publications (1)

Publication Number Publication Date
WO2015147577A1 true WO2015147577A1 (ko) 2015-10-01

Family

ID=54195995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/002996 WO2015147577A1 (ko) 2014-03-28 2015-03-26 혈관 내 고주파 절제 풍선 카테터

Country Status (2)

Country Link
KR (1) KR101586899B1 (ko)
WO (1) WO2015147577A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080110224A (ko) * 2007-06-15 2008-12-18 중앙대학교 산학협력단 카테터 시스템
KR20100001342A (ko) * 2008-06-26 2010-01-06 재단법인서울대학교산학협력재단 혈관 내의 만성완전협착 병변 제거용 카테터
KR101000320B1 (ko) * 2008-04-15 2010-12-13 (주) 태웅메디칼 바이폴라 전극 방식의 가이드 와이어 및 이를 이용한카테터 시스템
US20140005659A1 (en) * 2005-12-29 2014-01-02 Arnold E. Oyola Method of Treating Tissue with Radio Frequency Vascular Electrode Array

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140005659A1 (en) * 2005-12-29 2014-01-02 Arnold E. Oyola Method of Treating Tissue with Radio Frequency Vascular Electrode Array
KR20080110224A (ko) * 2007-06-15 2008-12-18 중앙대학교 산학협력단 카테터 시스템
KR101000320B1 (ko) * 2008-04-15 2010-12-13 (주) 태웅메디칼 바이폴라 전극 방식의 가이드 와이어 및 이를 이용한카테터 시스템
KR20100001342A (ko) * 2008-06-26 2010-01-06 재단법인서울대학교산학협력재단 혈관 내의 만성완전협착 병변 제거용 카테터

Also Published As

Publication number Publication date
KR20150112443A (ko) 2015-10-07
KR101586899B1 (ko) 2016-01-19

Similar Documents

Publication Publication Date Title
US6016437A (en) Catheter probe system with inflatable soft shafts
US5891027A (en) Cardiovascular catheter system with an inflatable soft tip
EP2136702B1 (en) High resolution electrophysiology catheter
US11224482B2 (en) Catheter having two-piece connector for a split handle assembly
US6029091A (en) Catheter system having lattice electrodes
AU2013225794B2 (en) Catheter for the treatment of atrial flutter having single action dual deflection mechanism
US5868741A (en) Ablation catheter system having fixation tines
US7047068B2 (en) Microelectrode catheter for mapping and ablation
EP1343426B1 (en) Microelectrode catheter for mapping and ablation
US20040092806A1 (en) Microelectrode catheter for mapping and ablation
US20050256521A1 (en) Method and apparatus for control of ablation energy and electrogram acquisition through multiple common electrodes in an electrophysiology catheter
US20150265341A1 (en) Electrophysiology system
JP2002531165A (ja) スライド可能な電極を移動させるための内部機構
JPH05123304A (ja) 頻拍性不整脈のマツピング方法および装置
JP2002543908A (ja) 心不整脈病巣のマッピング用装置
WO2015026174A1 (ko) 맵핑 절제 카테터
EP3313311B1 (en) Open-irrigated ablation catheter
US20160338769A1 (en) Catheter with anchoring balloon assembly
WO2015147577A1 (ko) 혈관 내 고주파 절제 풍선 카테터
KR101464085B1 (ko) 혈관 조영이 가능한 다전극 맵핑 폐정맥형 원형 카테터
KR101501837B1 (ko) 다전극 맵핑 폐정맥형 원형 카테터
US11903639B2 (en) Flexible distal-end assembly with double-sided electrode array and irrigation
US20240173071A1 (en) Flexible Distal-End Assembly with Double-Sided Electrode Array and Irrigation
WO2015167256A1 (ko) 카테터 어셈블리

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15770285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15770285

Country of ref document: EP

Kind code of ref document: A1