WO2015147411A1 - Pharmaceutical composition for prophylaxis or treatment of proliferative vitreoretinopathy containing mitochondrial complex i inhibitor as active ingredient - Google Patents

Pharmaceutical composition for prophylaxis or treatment of proliferative vitreoretinopathy containing mitochondrial complex i inhibitor as active ingredient Download PDF

Info

Publication number
WO2015147411A1
WO2015147411A1 PCT/KR2014/011970 KR2014011970W WO2015147411A1 WO 2015147411 A1 WO2015147411 A1 WO 2015147411A1 KR 2014011970 W KR2014011970 W KR 2014011970W WO 2015147411 A1 WO2015147411 A1 WO 2015147411A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
rpe
rotenone
pharmaceutical composition
inhibitor
Prior art date
Application number
PCT/KR2014/011970
Other languages
French (fr)
Korean (ko)
Inventor
유영현
노지현
안희배
정선용
Original Assignee
동아대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동아대학교 산학협력단 filed Critical 동아대학교 산학협력단
Publication of WO2015147411A1 publication Critical patent/WO2015147411A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/34Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide
    • A61K31/343Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide condensed with a carbocyclic ring, e.g. coumaran, bufuralol, befunolol, clobenfurol, amiodarone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents

Definitions

  • the present invention relates to a pharmaceutical composition for preventing or treating proliferative vitreoretinopathy (PVR) containing an inhibitor of intracellular mitochondrial complex I as an active ingredient.
  • PVR proliferative vitreoretinopathy
  • Cell death is a complementary and antagonistic process for cell division, in order to maintain tissue homeostasis, and plays a pivotal role in some physiological processes and diseases.
  • Apoptosis the most widely studied category, is characterized by mass activation of caspases, staining of contaminated yarn, and reduction of cell volume.
  • Necrosis is characterized by an increase in cell volume, expansion of organelles, and rupture of the plasma membrane, which is usually considered an accidental, uncontrolled type of cell death.
  • Controlled necroptosis is controlled necrotic cell death, which is triggered by extensive caspase inhibition in the presence of death receptor ligands and is characterized by necrotic cell death morphology.
  • MC Mitotic catastrophe
  • Retinal pigment epithelial (RPE) cells form a single layer of cells adjacent to the photoreceptor outer segment (POS) of the retina, and these cells play a central role in the maintenance of POS cells.
  • RPE cell death is an important factor in some ocular pathological diseases such as age-related macular degeneration (AMD) and proliferative vitreoretinopathy (PVR).
  • AMD is a progressive degeneration of the macula and is largely classified as dry or wet. The dry form of AMD is more common and is characterized by the presence of drusen in the macula. Mitochondrial DNA variants of Respiratory Complex I are associated with increased AMD risk.
  • RPE cells significantly contribute to the formation of the retinal epithelium in PVR.
  • the introduction of RPE cell death in the epiretinal membrane may be a new attempt to inhibit cell proliferation in PVR.
  • Most studies of RPE cell death in the context of these ophthalmic pathological conditions have focused on two types of cell death, apoptosis and cell death.
  • RPE cells macrophages and digests the distal portion of POS, which ultimately degrades in lysosomes.
  • the interaction of macrophages and autodigestion in RPE requires both POS degradation and maintenance of retinoid levels to support vision.
  • these physiological lysosomal loads can be further increased to further increase the removal of damaged material, and insufficient digestion by old RPE cells of damaged macromolecules and organelles may result in lipofucin ( will cause a gradual accumulation of biological "waste", such as lipofuscin).
  • Rotenone is a natural isoflavonoid produced by plants and is a selective and stoichiometric inhibitor of mitochondrial complex I. More specifically, rotenone blocks NADH oxidation by the NADH-ubiquinone oxide reducing agent enzyme complex, resulting in inhibition of mitochondrial respiration and a decrease in ATP synthesis. Rotenone treatment also results in the production of reactive oxygen species (ROS), resulting in cell death.
  • ROS reactive oxygen species
  • the problem to be solved by the present invention is to provide a pharmaceutical composition that can control the cell death of RPE cells for the prevention or treatment of PVR, which is an ophthalmic pathological disease.
  • the present invention provides a pharmaceutical composition for the prevention or treatment of proliferative vitreoretinopathy (PVR) containing a mitochondrial complex I (Mitochodrial complex I) inhibitor as an active ingredient.
  • PVR proliferative vitreoretinopathy
  • the mitochondrial complex I inhibitor is preferably rotenone.
  • the active ingredient preferably further comprises an autophagy inhibitor.
  • the self-extinguishing inhibitor is preferably selected from the group consisting of 3-methyladenine, bafilomycin A1 and chloroquine.
  • the active ingredient regulates cell death of RPE (Retinal pigment epithelial) cells.
  • the cell death regulation preferably induces apoptosis.
  • the active ingredient included in the pharmaceutical composition of the present invention has the potential to be developed as an effective therapeutic agent for the ophthalmic pathological disease PVR by regulating cell death of RPE cells.
  • MC mitotic catastrophe
  • Figure 4 shows the results showing the increase of RPE-MC cell death by autodigestion inhibition.
  • FIG. 5 shows the results show that Parkin-mediated mitophagy occurs in RPE-CM cells.
  • the present invention provides a pharmaceutical composition for preventing or treating proliferative vitreoretinopathy (PVR) containing a mitochondrial complex I inhibitor as an active ingredient.
  • PVR proliferative vitreoretinopathy
  • the mitochondrial complex I inhibitor is preferably rotenone.
  • the rotenone is an isoflavonoid compound produced by plants and acts as an inhibitor of mitochondrial complex I.
  • the active ingredient preferably further comprises an autophagy inhibitor.
  • the self-extinguishing inhibitor is preferably selected from the group consisting of 3-methyladenine, bafilomycin A1 and chloroquine.
  • the active ingredient regulates cell death of RPE (Retinal pigment epithelial) cells.
  • cell death refers to controlled or uncontrolled death of cells, for example, apoptosis, necrosis, and controlled necroptosis. ), Autophagy and Mitotic catastrophe.
  • the cell death regulation preferably induces apoptosis.
  • the apoptosis of RPE cells is promoted by the induction of apoptosis, and the active ingredient of the present invention can be applied as a pharmaceutical composition for preventing or treating proliferative vitreoretinopathy (PVR), which is an ocular pathological disease. .
  • PVR proliferative vitreoretinopathy
  • compositions of the present invention may be formulated in various forms, such as powders, granules, tablets, capsules, suspensions, emulsions, syrups, aerosols, oral formulations, injections of sterile injectable solutions, etc. It can be used orally and can be administered by various routes including intravenous, intraperitoneal, subcutaneous, rectal, topical administration and the like.
  • Such pharmaceutical compositions may further include carriers, excipients or diluents, and examples of suitable carriers, excipients or diluents that may be included include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, Starch, acacia rubber, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methyl cellulose, amorphous cellulose, polyvinyl pyrrolidone, water, methylhydroxybenzoate, propylhydroxy benzoate, talc, magnesium stearate and mineral oil Etc. can be mentioned.
  • the pharmaceutical composition of the present invention may further include a filler, an anticoagulant, a lubricant, a humectant, a perfume, an emulsifier, a preservative, and the like.
  • solid preparations for oral administration include tablets, pills, powders, granules, capsules and the like, which solid preparations comprise at least one excipient such as starch, calcium carbonate, Sucrose, lactose, gelatin and the like are mixed and formulated.
  • excipient such as starch, calcium carbonate, Sucrose, lactose, gelatin and the like
  • lubricants such as magnesium stearate, talc and the like may also be used in addition to simple excipients.
  • oral liquid preparations may be exemplified by suspensions, solvents, emulsions, syrups, and the like, and various excipients, for example, wetting agents, sweeteners, Fragrances, preservatives and the like.
  • the preparation for parenteral administration may include sterile aqueous solutions, non-aqueous solvents, suspensions, emulsions, lyophilizers, suppositories and the like.
  • Non-aqueous solvents and suspending agents may include propylene glycol, polyethylene glycol, vegetable oils such as olive oil, injectable esters such as ethyl oleate, and the like.
  • injectables may include conventional additives such as solubilizers, isotonic agents, suspending agents, emulsifiers, stabilizers, preservatives, and the like.
  • the pharmaceutical composition containing the active ingredient of the present invention is administered in a pharmaceutically effective amount.
  • pharmaceutically effective amount means an amount sufficient to treat a disease at a reasonable benefit / risk ratio applicable to medical treatment, and the effective dose level is the type of disease, severity, activity of the drug, Sensitivity to drug, time of administration, route of administration and rate of release, duration of treatment, factors including concurrent use of drugs, and other factors well known in the medical arts.
  • the pharmaceutical compositions of the present invention may be administered as individual therapeutic agents or in combination with other therapeutic agents, may be administered sequentially or simultaneously with conventional therapeutic agents, and may be administered as single or multiple doses. Taking all of the above factors into consideration, it is important to administer an amount that can obtain the maximum effect in a minimum amount without side effects, which can be easily determined by those skilled in the art.
  • the effective amount may vary depending on the age, sex and weight of the patient, generally between 1 and 10 mg, preferably 2 and 5 mg per kg body weight daily or every other day or divided into 1 to 3 times daily can do.
  • the dosage may be increased or decreased depending on the route of administration, the severity of the disease, sex, weight, age, etc., and the above dosage does not limit the scope of the present invention in any way.
  • the present invention provides a pharmaceutical composition for preventing or treating proliferative vitreoretinopathy (PVR) containing a mitochondrial complex I inhibitor as an active ingredient.
  • PVR proliferative vitreoretinopathy
  • the mitochondrial complex I inhibitor is preferably rotenone.
  • the rotenone is an isoflavonoid compound produced by plants and acts as an inhibitor of mitochondrial complex I.
  • the active ingredient preferably further comprises an autophagy inhibitor.
  • the self-extinguishing inhibitor is preferably selected from the group consisting of 3-methyladenine, bafilomycin A1 and chloroquine.
  • the active ingredient regulates cell death of RPE (Retinal pigment epithelial) cells.
  • cell death refers to controlled or uncontrolled death of cells, for example, apoptosis, necrosis, and controlled necroptosis. ), Autophagy and Mitotic catastrophe.
  • the cell death regulation preferably induces apoptosis.
  • the apoptosis of RPE cells is promoted by the induction of apoptosis, and the active ingredient of the present invention can be applied as a pharmaceutical composition for preventing or treating proliferative vitreoretinopathy (PVR), which is an ocular pathological disease. .
  • PVR proliferative vitreoretinopathy
  • compositions of the present invention may be formulated in various forms, such as powders, granules, tablets, capsules, suspensions, emulsions, syrups, aerosols, oral formulations, injections of sterile injectable solutions, etc. It can be used orally and can be administered by various routes including intravenous, intraperitoneal, subcutaneous, rectal, topical administration and the like.
  • Such pharmaceutical compositions may further include carriers, excipients or diluents, and examples of suitable carriers, excipients or diluents that may be included include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, Starch, acacia rubber, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methyl cellulose, amorphous cellulose, polyvinyl pyrrolidone, water, methylhydroxybenzoate, propylhydroxy benzoate, talc, magnesium stearate and mineral oil Etc. can be mentioned.
  • the pharmaceutical composition of the present invention may further include a filler, an anticoagulant, a lubricant, a humectant, a perfume, an emulsifier, a preservative, and the like.
  • solid preparations for oral administration include tablets, pills, powders, granules, capsules and the like, which solid preparations comprise at least one excipient such as starch, calcium carbonate, Sucrose, lactose, gelatin and the like are mixed and formulated.
  • excipient such as starch, calcium carbonate, Sucrose, lactose, gelatin and the like
  • lubricants such as magnesium stearate, talc and the like may also be used in addition to simple excipients.
  • oral liquid preparations may be exemplified by suspensions, solvents, emulsions, syrups, and the like, and various excipients, for example, wetting agents, sweeteners, Fragrances, preservatives and the like.
  • the preparation for parenteral administration may include sterile aqueous solutions, non-aqueous solvents, suspensions, emulsions, lyophilizers, suppositories and the like.
  • Non-aqueous solvents and suspending agents may include propylene glycol, polyethylene glycol, vegetable oils such as olive oil, injectable esters such as ethyl oleate, and the like.
  • injectables may include conventional additives such as solubilizers, isotonic agents, suspending agents, emulsifiers, stabilizers, preservatives, and the like.
  • the pharmaceutical composition containing the active ingredient of the present invention is administered in a pharmaceutically effective amount.
  • pharmaceutically effective amount means an amount sufficient to treat a disease at a reasonable benefit / risk ratio applicable to medical treatment, and the effective dose level is the type of disease, severity, activity of the drug, Sensitivity to drug, time of administration, route of administration and rate of release, duration of treatment, factors including concurrent use of drugs, and other factors well known in the medical arts.
  • the pharmaceutical compositions of the present invention may be administered as individual therapeutic agents or in combination with other therapeutic agents, may be administered sequentially or simultaneously with conventional therapeutic agents, and may be administered as single or multiple doses. Taking all of the above factors into consideration, it is important to administer an amount that can obtain the maximum effect in a minimum amount without side effects, which can be easily determined by those skilled in the art.
  • the effective amount may vary depending on the age, sex and weight of the patient, generally between 1 and 10 mg, preferably 2 and 5 mg per kg body weight daily or every other day or divided into 1 to 3 times daily can do.
  • the dosage may be increased or decreased depending on the route of administration, the severity of the disease, sex, weight, age, etc., and the above dosage does not limit the scope of the present invention in any way.
  • ARPE-19 cells were purchased from the American Type Culture Collection (ATCC) and maintained at 37 ° C., 5% CO 2 under an air atmosphere. Cells were grown in a 1: 1 mixture of Ham F12 medium supplemented with DMEM and 10% FBS.
  • ARPE-19 cells were incubated with or without rotenone and then fixed for 10 minutes with methanol. For nuclear morphological observation, slides were stained with Kimsa solution for 15 minutes.
  • Ice-cold 95% ethanol supplemented with 0.5% Tween-20 was added to the cell suspension to a final concentration of 70% ethanol.
  • Fixed cells were pelleted and washed in 1% BSA-PBS solution. Cells were resuspended in 1 mL PBS containing 11 Kunitz U / ml RNase and incubated at 4 ° C. for 30 minutes, washed once with BSA-PBS and resuspended in 50 ⁇ g / ml PI solution. Cells were incubated for 30 min at 4 ° C.
  • SMART pool Human Parkin siRNA (SMART pool; L-003603-00-0005) and PINK1 siRNA (SMART pool; L-004030-00-0020) were purchased from Thermo Scientific. As negative controls, the same nucleotides were scraped to form non-genomic combinations.
  • siRNA transformation was performed using siPORT amine and Opti-MEM medium. Cells were grown in 6-well plates until reaching 40-50% confluence and transfected to a final siRNA concentration of 100 nM per well. Transformation mixture was added to each well and cells were incubated for 4 hours. Then 2 ml of growth medium was added and the cells were incubated for another 20 hours. After siRNA transformation, the medium was removed and each well was washed in PBS solution.
  • ARPE-19 cells (10 7 cells / well) were washed in Tris-based Mg 2+ / Ca 2+ -deficient buffer (135 mM NaCl, 5 mM KCl, and 25 mM Tris, pH 7.6) and ice-cold storage ( hypotonic) allowed to swell for 10 minutes in CaRSB buffer (10 mM NaCl, 1.5 mM CaCl 2 , 10 mM Tris, pH 7.5, and 1 ⁇ protease inhibitor cocktail).
  • Tris-based Mg 2+ / Ca 2+ -deficient buffer (135 mM NaCl, 5 mM KCl, and 25 mM Tris, pH 7.6) and ice-cold storage ( hypotonic) allowed to swell for 10 minutes in CaRSB buffer (10 mM NaCl, 1.5 mM CaCl 2 , 10 mM Tris, pH 7.5, and 1 ⁇ protease inhibitor cocktail).
  • Cells were ground by 60 strokes in a Dounce homogenizer and stabilized mitochondria by addition of mitochondrial stabilization buffer (210 mM mannitol, 70 mM sucrose, 5 mM EDTA, and 5 mM Tris, pH 7.6). Cells were centrifuged twice at 3,000 rpm for 15 minutes to collect nuclei, and then the supernatant was spun at 14,000 rpm for 20 minutes at 4 ° C. Pele and supernatant contained mitochondria and cytoplasmic fractions, respectively. Cells (5 ⁇ 10 7 ) were swollen in ice-cold hypotonic CaRSB buffer and ground using a Dounce homogenizer. The cell homogenate was then allowed to sink by spinning twice at 3,000 rpm for 15 minutes.
  • mitochondrial stabilization buffer 210 mM mannitol, 70 mM sucrose, 5 mM EDTA, and 5 mM Tris, pH 7.6
  • Cells were centrifuged twice at 3,000 rpm for
  • Protein concentrations of cell lysates were determined using the Bradford Protein Assay Kit (Bio-Rad), and equivalent amounts of proteins were determined between 7.5% and 15% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS). PAGE) was loaded onto the gel. The protein was then transferred onto a nitrogen cellulose membrane (manufactured by Amersham Pharmacia Biotech) and probed with each antibody. Using an enhanced chemiluminescent substrate (SuperSignal West Pico; manufactured by Pierce), immunostaining with antibodies was performed and detected using a photographic film (LAS-3000 Plus; Fuji). Equivalent protein load was confirmed by Ponceau S staining.
  • Mammalian expression constructs of human LC3 cloned into pEGFP are: N. Mizushima (Tokyo Medical and Dental University, Tokyo, Japan). YFP hparkin and GFP hPINK1 Provided by J Chung (Seoul National University, Seoul, Korea). ARPE-19 cells were seeded in 6-well plates (10 5 cells / well) and transiently transformed with each construct using Lipofectamine 2000 according to the manufacturer's instructions. Briefly, 2 ⁇ g of plasmid DNA was mixed with 6 ⁇ l of Lipofectamine 2000 and incubated with Opti-MEM. Plasmid DNA-Lipofectamine 2000 complex was added to the cells and the mixture was further incubated at 37 ° C. for 4 hours.
  • Fluorescent TUNEL terminal deozyribonucleotidyl deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end labeling
  • TdT terminal deoxynucleotidyl transferase
  • Fluorescence images were observed and analyzed using a Zeiss LSM 510 laser-scanning confocal microscope. The total cell number of at least 300 cells from each experiment was counted and the number of cells with positive staining was calculated by an observer blinded under epifluorescence optical lens.
  • the cells were harvested and the cell suspension was centrifuged on a clear, fat free glass slide using a cell centrifuge. Samples were stained at 37 ° C. for 30 minutes using 4 ⁇ g / ml Hoechst 33342 and fixed in 4% paraformaldehyde for 10 minutes. The total cell number from each experiment, which is at least 300 cells, was counted under a DIC optical lens, and the number of cells representing nuclei condensed or fragmented in pest staining was observed under epifluorescent optical lens, with no information on this. Calculated by
  • cells were incubated for 30 minutes at 37 ° C. in 50 nM LysoTracker red or 1 ⁇ g / ml of acridine orange.
  • cells were incubated with 500 ⁇ l Annexin V-binding buffer comprising 5 ⁇ l Annexin V-FITC conjugate and 10 ⁇ l propidinium iodide solution. After incubation for 10 minutes at room temperature, cells were analyzed by flow cytometry.
  • cells were incubated with 4 ⁇ g / ml JC-1 at 37 ° C. for 30 minutes. Data was acquired and analyzed by ADC XL (Beckman Coulter).
  • Rotenone induces MC in ARPE-19 retinal pigment epithelial cells.
  • FIG. 1C Flow cytometry analysis showed that most of the rotenone-treated ARPE-19 cells became tetraploid (4C) by 48 hours (FIG. 1C). Since most of the cells involved were> 4N levels of DNA and multinucleated, it seemed possible that these cells could be susceptible to death through MC. Thus, the inventors observed the cells under transmission electron microscopy. Transmission electron microscopy demonstrated the presence of micronuclei in rotenone-treated cells (FIG. 1D). These data show that rotenone induces MC in ARPE-19 cells.
  • Increased autodigestion involves MC in ARPE-19 cells.
  • RPE-MC cells are susceptible to inhibition of autophagy.
  • the inventors then examined whether inhibition of autodigestion affects the viability of RPE-MC cells.
  • autophagy inhibitors such as 3MA, bafilomycin A1 (Baf-A1) and chloroquine (CQ) significantly reduced their viability (FIG. 3A).
  • ARPE-19 cells were then transfected with a green fluorescent protein (GFP) -LC3 fusion plasmid, treated with rotenone in the presence or absence of Baf-A1 or chloroquine and then observed using confocal microscopy. After Baf-A1 or chloroquine treatment, the number of LC3-GFP tear points increased significantly (FIG. 3B).
  • GFP green fluorescent protein
  • Mitophagy contributes to the cellular protection of RPE-MC cells.
  • mitophagy appears to be the basis for autodigestion-related protection of rotenone-treated RPE cells.
  • Parkin knockdown partially prevented rotenone-induced increases at LC3-II levels (FIG. 6A).
  • Parkin knockdown significantly increased RPE cell death induced by rotenone treatment alone (FIG. 6B).
  • Alpha B crystallin protects RPE-MC cells from apoptosis.
  • alpha B crystallin ( ⁇ B-crystallin) is a major anti-apoptotic factor in RPE cells
  • ⁇ B-crystallin knockdown significantly increased the decrease in RPE-MC cell viability compared to cells treated with rotenone alone (FIG. 7A).
  • TUNEL analysis showed that ⁇ B-crystallin knockdown induced apoptosis in RPE cells treated with autophagy inhibitors (FIG. 7B), indicating that RPE is susceptible to cell death due to inhibition of autodigestion.

Abstract

The present invention relates to a pharmaceutical composition for prophylaxis or treatment of proliferative vitreoretinopathy (PVR) containing an intracellular mitochondrial complex I inhibitor as an active ingredient. According to the present invention, the active ingredient which is included in the pharmaceutical composition of the present invention can be developed as an effective therapeutic agent for PVR, an ophthalmic pathological condition, by controlling the cell death of RPE cells. DRAWIMG: FIG. 1: AA % of viability BB TUNEL-positive cell (%) CC + Rotenone DD + siRNA-aB-crystalllin EE Annexin V

Description

미토콘드리아성 복합체 Ⅰ 저해제를 유효성분으로 함유하는 증식성 유리체망막병증의 예방 또는 치료용 약학적 조성물Pharmaceutical composition for preventing or treating proliferative vitreoretinopathy containing mitochondrial complex I inhibitor as an active ingredient
본 발명은 세포 내 미토콘드리아성 복합체 Ⅰ(Mitochondrial complex Ⅰ)의 저해제를 유효성분으로 함유하는 증식성 유리체망막병증(proliferative vitreoretinopathy, PVR)의 예방 또는 치료용 약학적 조성물에 관한 것이다.The present invention relates to a pharmaceutical composition for preventing or treating proliferative vitreoretinopathy (PVR) containing an inhibitor of intracellular mitochondrial complex I as an active ingredient.
세포사(cell death)는 조직 항상성을 유지하기 위하여, 세포 분열에 대한 보충적이고 길항적인 과정이며, 몇몇 생리학적 공정 및 질병에서 중추적인 역할을 한다. 가장 광범위하게 연구된 범주인 세포사멸 (apoptosis)은, 카스파제 (caspase)의 대량 활성화, 염색사 응축, 및 세포 부피의 감소에 의하여 특징된다. 세포괴사 (Necrosis)는 세포 부피의 증가, 세포소기관의 팽창, 및 혈장 막의 파열에 의하여 특징되며, 이는 대개 우발적인, 비통제된 유형의 세포사로 여겨진다. 조절된 세포괴사(Necroptosis)는 조절된 괴사성 세포사로, 이는 사멸 수용체 리간드의 존재 하에서 광범위한 카스파제 저해에 의하여 촉발되고, 괴사성 세포사 형태에 의하여 특징된다. 자가소화 (autophagy)는 분해성 리소좀 경로로, 이는 리소좀 효소에 의한 벌크 분해를 위한, 액포 내 세포질성 물질의 축적에 의하여 특징된다. 자가소화가 세포 생존에 중추적인 역할을 하지만, 증가된 자가소화 활성은 종종 세포 사멸과 연관된다. 유사분열성 파멸 (mitotic catastrophe: MC)은, DNA 손상 후 유사분열 진행에 대한 실패로 인한 결과로 생성되는 세포 사멸의 유형으로, 이는 4배수성 또는 핵내 배수성(endopolyploidy)을 일으킨다. MC를 경험한 세포들은 일반적으로 다중 소핵을 갖는 거대 세포들을 형성한다.Cell death is a complementary and antagonistic process for cell division, in order to maintain tissue homeostasis, and plays a pivotal role in some physiological processes and diseases. Apoptosis, the most widely studied category, is characterized by mass activation of caspases, staining of contaminated yarn, and reduction of cell volume. Necrosis is characterized by an increase in cell volume, expansion of organelles, and rupture of the plasma membrane, which is usually considered an accidental, uncontrolled type of cell death. Controlled necroptosis is controlled necrotic cell death, which is triggered by extensive caspase inhibition in the presence of death receptor ligands and is characterized by necrotic cell death morphology. Autophagy is a degradable lysosomal pathway, characterized by the accumulation of cytoplasmic material in vacuoles for bulk degradation by lysosomal enzymes. Although autodigestion plays a central role in cell survival, increased autodigestion activity is often associated with cell death. Mitotic catastrophe (MC) is a type of cell death that results from failure of mitotic progression after DNA damage, resulting in tetraploid or endopolyploidy. Cells experiencing MC generally form large cells with multiple micronuclei.
망막 색소 상피 (retinal pigment epithelial: RPE) 세포는 망막의 광수용기 외분절 (POS)에 인접한 세포의 단일 층을 형성하며, 이들 세포는 POS 세포의 유지에 중추적인 역할을 한다. RPE 세포사는, 연령-관련 황반변성 (Age-related macular degeneration: AMD) 및 증식성 유리체망막병증 (vitreoretinopathy: PVR)과 같은 몇몇 안과 병리학적 질환들에서 중요한 인자이다. AMD는 황반의 점진적인 퇴화이며, 크게 건성 또는 습성으로 분류된다. AMD의 건성 형태가 보다 흔하며, 황반에서 드루젠(drusen)의 존재에 의하여 특징된다. 호흡기 복합체 I의 미토콘드리아성 DNA 변이체들은 증가된 AMD 위험과 관련된다. RPE에서의 손상 및 그의 사멸은 결정적이며, 아마도 AMD를 촉발시키기 때문에, RPE 세포사에 대한 보호는 AMD의 개시를 지연시킬 수 있다. 역으로, RPE 세포들은 PVR에서 망막 앞막의 형성에 현저히 기여한다. 따라서, 망막 앞막에서의 RPE 세포사의 도입은 PVR에서의 세포 증식을 저해하는 새로운 시도일 수 있다. 이들 안과 병리학적 상태의 맥락에서 RPE 세포사에 대한 대부분의 연구들은 세포사, 세포사멸 및 세포괴사 중 2 개의 유형에 집중되어 왔다.Retinal pigment epithelial (RPE) cells form a single layer of cells adjacent to the photoreceptor outer segment (POS) of the retina, and these cells play a central role in the maintenance of POS cells. RPE cell death is an important factor in some ocular pathological diseases such as age-related macular degeneration (AMD) and proliferative vitreoretinopathy (PVR). AMD is a progressive degeneration of the macula and is largely classified as dry or wet. The dry form of AMD is more common and is characterized by the presence of drusen in the macula. Mitochondrial DNA variants of Respiratory Complex I are associated with increased AMD risk. Since damage in RPE and its killing is crucial and probably triggers AMD, protection against RPE cell death can delay the onset of AMD. Conversely, RPE cells significantly contribute to the formation of the retinal epithelium in PVR. Thus, the introduction of RPE cell death in the epiretinal membrane may be a new attempt to inhibit cell proliferation in PVR. Most studies of RPE cell death in the context of these ophthalmic pathological conditions have focused on two types of cell death, apoptosis and cell death.
RPE 세포사의 이해에 있어서 발전들이 이루어져 왔으나, 이들 안과 병리학적 상태와 관련된 RPE 세포사에서 자가소화의 역할에 대한 정보는 아주 적다. 매일, RPE 세포는 POS의 원위 부분을 대식작용 및 소화시키며, 이들은 궁극적으로 리소좀에서 분해된다. RPE 내 대식작용 및 자가소화의 상호작용은, 시력을 지지하기 위하여, POS 분해 및 레티노이드 수준의 유지 두가지를 모두 필요로 한다. 노안의 RPE 세포들에서, 이러한 생리학적 리소좀성 부하는 더욱 증가되어, 손상된 물질의 제거를 더욱 증가시킬 수 있고, 손상된 거대분자들과 세포소기관들의 늙은 RPE 세포들에 의한 불충분한 소화는 리포푸신(lipofuscin)과 같은, 생물학적 "폐기물"의 점진적인 축적을 일으킬 것이다. 이에 따라, 벗겨진 POS 파편의 리소좀 의존성 분해에서의 비정상은 RPE 세포의 분해에 기여할 수 있다. 자가소화에서 연령-관련 변화는 AMD 환자에서 발견되는 유전적 감수성에 기초할 수 있으며, AMD의 병리학과 관련될 수 있다는 것이 이전의 연구에서 제안되었다. Although advances have been made in understanding RPE cell death, little is known about the role of autodigestion in RPE cell death associated with these ocular pathological conditions. Every day, RPE cells macrophages and digests the distal portion of POS, which ultimately degrades in lysosomes. The interaction of macrophages and autodigestion in RPE requires both POS degradation and maintenance of retinoid levels to support vision. In presbyopic RPE cells, these physiological lysosomal loads can be further increased to further increase the removal of damaged material, and insufficient digestion by old RPE cells of damaged macromolecules and organelles may result in lipofucin ( will cause a gradual accumulation of biological "waste", such as lipofuscin). Thus, abnormalities in lysosomal dependent degradation of exfoliated POS fragments may contribute to the degradation of RPE cells. It has been suggested in previous studies that age-related changes in autodigestion may be based on the genetic sensitivity found in AMD patients and may be related to the pathology of AMD.
그러나, 자가소화가 AMD에서 RPE 세포사를 조절하는 메커니즘은 여전히 불투명하다. PVR에서 RPE 세포들의 증식에서 자가소화의 역할 및 그의 PVR에 대한 치료 전략으로서의 그의 조절은 아직 문서화되지 않았다.However, the mechanism by which autodigestion regulates RPE cell death in AMD is still opaque. The role of autodigestion in the proliferation of RPE cells in PVR and its regulation as a therapeutic strategy for PVR have not yet been documented.
로테논(Rotenone)은 식물에 의해 생산되는 천연 이소플라보노이드로, 미토콘드리아성 복합체 I의 선택적이며 화학양론적인 저해제이다. 더욱 구체적으로, 로테논은 NADH-유비퀴논 산화물 환원제 효소 복합체에 의한 NADH 산화를 차단하여, 미토콘드리아성 호흡의 저해 및 ATP 합성에서의 감소를 결과로서 초래한다. 로테논 처리는 또한 반응성 산소종 (ROS)의 생산을 결과로서 일으켜, 결과적으로 세포사를 일으킨다. 몇몇 연구들은, 로테논이 아마도 미토콘드리아 기능의 저해 및 산화적 스트레스의 생성에 반응하여 자가소화성 액포의 축적을 유발한다는 것을 보여주었다. 그와 관계없이, 로테논의 활성은 각종 세포에서 연구되어 왔으며, RPE 세포에 대한 로테논의 효과는 거의 연구되지 않았다. 시험관 내 시스템을 이용한 이전의 연구들은, 저농도의 로테논이 RPE 세포들에서 mtDNA 손상을 결과로서 초래함을 밝혔으며, 노령의 RPE 세포에서 로테논 처리에 의해 유발된 증가된 자가소화가 드루젠 및 AMD의 형성에 영향을 미칠 수 있음을 제안하였다. 그러나, 로테논이 RPE 세포사를 조절하는 메커니즘은 불명확한 것으로 남아있다.Rotenone is a natural isoflavonoid produced by plants and is a selective and stoichiometric inhibitor of mitochondrial complex I. More specifically, rotenone blocks NADH oxidation by the NADH-ubiquinone oxide reducing agent enzyme complex, resulting in inhibition of mitochondrial respiration and a decrease in ATP synthesis. Rotenone treatment also results in the production of reactive oxygen species (ROS), resulting in cell death. Some studies have shown that rotenone presumably causes accumulation of self-extinguishing vacuoles in response to inhibition of mitochondrial function and production of oxidative stress. Regardless, the activity of rotenone has been studied in various cells, and the effect of rotenone on RPE cells has been little studied. Previous studies using in vitro systems have shown that low concentrations of rotenone result in mtDNA damage in RPE cells, and that increased autodigestion induced by rotenone treatment in older RPE cells results in drusen and It has been suggested that this may affect the formation of AMD. However, the mechanism by which rotenone regulates RPE cell death remains unclear.
본 발명이 해결하고자 하는 과제는 안과 병리학적 질환인 PVR의 예방 또는 치료용으로서 RPE 세포의 세포사를 조절할 수 있는 약학적 조성물을 제공하고자 하는 것이다. The problem to be solved by the present invention is to provide a pharmaceutical composition that can control the cell death of RPE cells for the prevention or treatment of PVR, which is an ophthalmic pathological disease.
상기와 같은 과제를 해결하기 위하여, 본 발명은 미토콘드리아성 복합체 Ⅰ(Mitochodrial complex Ⅰ) 저해제를 유효성분으로 함유하는 증식성 유리체망막병증(Proliferative vitreoretinopathy: PVR)의 예방 또는 치료용 약학적 조성물을 제공한다.In order to solve the above problems, the present invention provides a pharmaceutical composition for the prevention or treatment of proliferative vitreoretinopathy (PVR) containing a mitochondrial complex I (Mitochodrial complex I) inhibitor as an active ingredient. .
상기 미토콘드리아성 복합체 Ⅰ 저해제는 로테논(Rotenone)인 것이 바람직하다.The mitochondrial complex I inhibitor is preferably rotenone.
상기 유효성분에는 자가소화(Autophagy) 억제제를 더 포함하는 것이 바람직하다.The active ingredient preferably further comprises an autophagy inhibitor.
상기 자가소화 억제제는 3-메틸아데닌(3-methyladenine), 바필로바이신 A1(bafilomycin A1) 및 클로로퀸(chloroquine)으로 이루어지는 군으로부터 1종 이상 선택되는 것이 바람직하다.The self-extinguishing inhibitor is preferably selected from the group consisting of 3-methyladenine, bafilomycin A1 and chloroquine.
상기 유효성분은 RPE(Retinal pigment epithelial) 세포의 세포사(Cell death)를 조절하는 것이 바람직하다. 상기 세포사 조절은 세포사멸(Apoptosis)을 유도하는 것이 바람직하다.It is preferable that the active ingredient regulates cell death of RPE (Retinal pigment epithelial) cells. The cell death regulation preferably induces apoptosis.
본 발명에 따르면, 본 발명의 약학적 조성물에 포함되는 유효성분은 RPE 세포의 세포사를 조절함으로써 안과 병리학적 질환인 PVR에 대한 효과적인 치료제로서 개발될 수 있는 가능성이 있다. According to the present invention, the active ingredient included in the pharmaceutical composition of the present invention has the potential to be developed as an effective therapeutic agent for the ophthalmic pathological disease PVR by regulating cell death of RPE cells.
도 1은 로테논이 ARPE-19 retinal pigment epithelial cells에서 MC(mitotic catastrophe)를 유도함을 보여주는 결과들이다.1 is a result showing that rotenone induces mitotic catastrophe (MC) in ARPE-19 retinal pigment epithelial cells.
도 2는 RPE-MC 세포에서 증가된 자가소화가 발생함을 보여주는 결과들이다. 여기에서, C는 control, 3MA는 3-methyladenine, Baf는 bafilomycin A 및 CQ는 chloroquine을 나타낸다.2 shows the results showing that increased autodigestion occurs in RPE-MC cells. Here, C is control, 3MA is 3-methyladenine, Baf is bafilomycin A and CQ is chloroquine.
도 3은 RPE-MC 세포가 자가소화 저해에 취약함을 보여주는 결과들이다.3 shows results showing that RPE-MC cells are susceptible to inhibition of autophagy.
도 4는 자가소화 저해에 의한 RPE-MC 세포사의 증대를 보여주는 결과들이다.Figure 4 shows the results showing the increase of RPE-MC cell death by autodigestion inhibition.
도 5는 RPE-CM 세포에서 Parkin-mediated mitophagy가 발생되는 것을 보여주는 결과들이다.Figure 5 shows the results show that Parkin-mediated mitophagy occurs in RPE-CM cells.
도 6은 Mitophagy가 RPE-MC 세포의 세포 보호에 기여함을 보여주는 결과들이다.6 are the results showing that Mitophagy contributes to the cellular protection of RPE-MC cells.
도 7은 알파 B 크리스탈린이 RPE-CM 세포를 세포사멸로부터 보호됨을 보여주는 결과들이다.7 shows the results that alpha B crystallins protect RPE-CM cells from apoptosis.
이하, 본 발명을 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.
본 발명자들은, 미토콘드리아성 복합체 I 저해에 의하여 손상된 RPE 세포의 사멸을 조절하는 메커니즘을 명확히 하기 위하여 본 연구를 수행하였다. 그 결과, 본 발명의 발명자들은 로테논이 RPE 세포들에서 MC를 유도함을 확인하였다. 추가적으로, 본 발명자들은 미토콘드리아성 복합체 I에 의하여 유도된 유사분열성 파멸 (RPE-MC 세포)을 겪은 RPE 세포들이 자가소화 저해에 취약함을 확인하였다.We conducted this study to clarify the mechanism that regulates the death of damaged RPE cells by mitochondrial complex I inhibition. As a result, the inventors of the present invention confirmed that rotenone induced MC in RPE cells. In addition, the inventors have identified that RPE cells undergoing mitotic destruction (RPE-MC cells) induced by mitochondrial complex I are susceptible to inhibition of autophagy.
따라서, 본 발명은 미토콘드리아성 복합체 Ⅰ(Mitochodrial complex Ⅰ) 저해제를 유효성분으로 함유하는 증식성 유리체망막병증(Proliferative vitreoretinopathy: PVR)의 예방 또는 치료용 약학적 조성물을 제공한다.Accordingly, the present invention provides a pharmaceutical composition for preventing or treating proliferative vitreoretinopathy (PVR) containing a mitochondrial complex I inhibitor as an active ingredient.
상기 미토콘드리아성 복합체 Ⅰ 저해제는 로테논(Rotenone)인 것이 바람직하다.The mitochondrial complex I inhibitor is preferably rotenone.
상기 로테논은 식물에 의하여 생산되는 이소플라보노이드계 화합물로서 미토콘드리아성 복합체 Ⅰ의 저해제로 작용한다.The rotenone is an isoflavonoid compound produced by plants and acts as an inhibitor of mitochondrial complex I.
상기 유효성분에는 자가소화(Autophagy) 억제제를 더 포함하는 것이 바람직하다.The active ingredient preferably further comprises an autophagy inhibitor.
상기 자가소화 억제제는 3-메틸아데닌(3-methyladenine), 바필로바이신 A1(bafilomycin A1) 및 클로로퀸(chloroquine)으로 이루어지는 군으로부터 1종 이상 선택되는 것이 바람직하다.The self-extinguishing inhibitor is preferably selected from the group consisting of 3-methyladenine, bafilomycin A1 and chloroquine.
상기 유효성분은 RPE(Retinal pigment epithelial) 세포의 세포사(Cell death)를 조절하는 것이 바람직하다.It is preferable that the active ingredient regulates cell death of RPE (Retinal pigment epithelial) cells.
상기에서 "세포사(Cell death)"라 함은 세포의 조절된 또는 조절되지 않는 소멸(demise)을 의미하며, 예를 들어, 세포사멸(Apoptosis), 세포괴사(Necrosis), 조절된 세포괴사(Necroptosis), 자가소화(Autophagy) 및 유사분열성 파멸(Mitotic catastrophe)를 포함할 수 있다.As used herein, "cell death" refers to controlled or uncontrolled death of cells, for example, apoptosis, necrosis, and controlled necroptosis. ), Autophagy and Mitotic catastrophe.
상기 세포사 조절은 세포사멸(Apoptosis)을 유도하는 것이 바람직하다.The cell death regulation preferably induces apoptosis.
이와 같은 세포사멸 유도에 의하여 RPE 세포의 세포사멸이 촉진되며, 본 발명의 유효성분은 안과 병리학적 질환인 증식성 유리체망막병증(Proliferative vitreoretinopathy: PVR)의 예방 또는 치료용 약학적 조성물로서 적용될 수 있다.The apoptosis of RPE cells is promoted by the induction of apoptosis, and the active ingredient of the present invention can be applied as a pharmaceutical composition for preventing or treating proliferative vitreoretinopathy (PVR), which is an ocular pathological disease. .
본 발명의 약학적 조성물은 각각의 사용 목적에 맞게 통상의 방법에 따라 산제, 과립제, 정제, 캡슐제, 현탁제, 에멀젼, 시럽, 에어로졸 등의 경구 제형, 멸균 주사용액의 주사제 등 다양한 형태로 제형화하여 사용할 수 있으며, 경구 투여하거나 정맥 내, 복강 내, 피하, 직장, 국소 투여 등을 포함한 다양한 경로를 통해 투여될 수 있다.The pharmaceutical compositions of the present invention may be formulated in various forms, such as powders, granules, tablets, capsules, suspensions, emulsions, syrups, aerosols, oral formulations, injections of sterile injectable solutions, etc. It can be used orally and can be administered by various routes including intravenous, intraperitoneal, subcutaneous, rectal, topical administration and the like.
이러한 약학적 조성물에는 추가적으로 담체, 부형제 또는 희석제 등이 더 포함될 수 있으며, 포함될 수 있는 적합한 담체, 부형제 또는 희석제의 예로는 락토오스, 덱스트로오스, 수크로오스, 솔비톨, 만니톨, 자일리톨, 에리쓰리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로스, 메틸 셀룰로스, 비정질 셀룰로스, 폴리비닐 피롤리돈, 물, 메틸하이드록시벤조에이트, 프로필하이드록시 벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유 등을 들 수 있다. 또한, 본 발명의 약학적 조성물은 충전제, 항응집제, 윤활제, 습윤제, 향료, 유화제, 방부제 등을 추가로 더 포함할 수도 있다.Such pharmaceutical compositions may further include carriers, excipients or diluents, and examples of suitable carriers, excipients or diluents that may be included include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, Starch, acacia rubber, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methyl cellulose, amorphous cellulose, polyvinyl pyrrolidone, water, methylhydroxybenzoate, propylhydroxy benzoate, talc, magnesium stearate and mineral oil Etc. can be mentioned. In addition, the pharmaceutical composition of the present invention may further include a filler, an anticoagulant, a lubricant, a humectant, a perfume, an emulsifier, a preservative, and the like.
바람직한 구체예로서, 경구 투여를 위한 고형 제제에는 정제, 환제, 산제, 과립제, 캡슐제 등이 포함되며, 이러한 고형 제제는 상기 약학적 조성물에 적어도 하나 이상의 부형제, 예를 들면, 전분, 탄산칼슘, 수크로오스, 락토오스, 젤라틴 등을 혼합하여 제형화한다. 또한, 단순한 부형제 이외에 마그네슘 스테아레이트, 탈크 등과 같은 윤활제가 사용될 수도 있다.In a preferred embodiment, solid preparations for oral administration include tablets, pills, powders, granules, capsules and the like, which solid preparations comprise at least one excipient such as starch, calcium carbonate, Sucrose, lactose, gelatin and the like are mixed and formulated. In addition, lubricants such as magnesium stearate, talc and the like may also be used in addition to simple excipients.
바람직한 구체예로서, 경구용 액상 제제로는 현탁제, 내용액제, 유제, 시럽제 등이 예시될 수 있으며, 흔히 사용되는 단순 희석제인 물, 액체 파라핀 이외에 여러 가지 부형제, 예를 들면, 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다.As a preferred embodiment, oral liquid preparations may be exemplified by suspensions, solvents, emulsions, syrups, and the like, and various excipients, for example, wetting agents, sweeteners, Fragrances, preservatives and the like.
바람직한 구체예로서, 비경구 투여를 위한 제제에는 멸균된 수용액제, 비수성용제, 현탁제, 유제, 동결건조제, 좌제 등을 예시할 수 있다. 비수성용제, 현탁제에는 프로필렌글리콜, 폴리에틸렌글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 포함될 수 있다. 주사제에는 용해제, 등장화제, 현탁화제, 유화제, 안정화제, 방부제 등과 같은 종래의 첨가제가 포함될 수 있다.As a preferred embodiment, the preparation for parenteral administration may include sterile aqueous solutions, non-aqueous solvents, suspensions, emulsions, lyophilizers, suppositories and the like. Non-aqueous solvents and suspending agents may include propylene glycol, polyethylene glycol, vegetable oils such as olive oil, injectable esters such as ethyl oleate, and the like. Injectables may include conventional additives such as solubilizers, isotonic agents, suspending agents, emulsifiers, stabilizers, preservatives, and the like.
본 발명의 유효성분을 함유하는 약학적 조성물은 약학적으로 유효한 양으로 투여한다. 본 발명에서, "약학적으로 유효한 양"은 의학적 치료에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료하기에 충분한 양을 의미하며, 유효 용량 수준은 환자의 질환의 종류, 중증도, 약물의 활성, 약물에 대한 민감도, 투여 시간, 투여 경로 및 배출 비율, 치료 기간, 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다. 본 발명의 약학적 조성물은 개별 치료제로 투여하거나 다른 치료제와 병용하여 투여될 수 있고, 종래의 치료제와 순차적으로 또는 동시에 투여될 수 있으며, 단일 또는 다중 투여될 수 있다. 상기한 요소들을 모두 고려하여 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하며, 이는 당업자에 의해 용이하게 결정될 수 있다.The pharmaceutical composition containing the active ingredient of the present invention is administered in a pharmaceutically effective amount. In the present invention, "pharmaceutically effective amount" means an amount sufficient to treat a disease at a reasonable benefit / risk ratio applicable to medical treatment, and the effective dose level is the type of disease, severity, activity of the drug, Sensitivity to drug, time of administration, route of administration and rate of release, duration of treatment, factors including concurrent use of drugs, and other factors well known in the medical arts. The pharmaceutical compositions of the present invention may be administered as individual therapeutic agents or in combination with other therapeutic agents, may be administered sequentially or simultaneously with conventional therapeutic agents, and may be administered as single or multiple doses. Taking all of the above factors into consideration, it is important to administer an amount that can obtain the maximum effect in a minimum amount without side effects, which can be easily determined by those skilled in the art.
바람직한 구체예로서, 유효량은 환자의 나이, 성별, 체중에 따라 달라질 수 있으며, 일반적으로는 체중 ㎏ 당 1 내지 10mg , 바람직하게는 2 내지 5mg을 매일 또는 격일 투여하거나 1일 1 내지 3회로 나누어 투여할 수 있다. 그러나, 투여 경로, 질병의 중증도, 성별, 체중, 연령 등에 따라서 증감될 수 있으므로 상기 투여량이 어떠한 방법으로도 본 발명의 범위를 한정하는 것은 아니다.In a preferred embodiment, the effective amount may vary depending on the age, sex and weight of the patient, generally between 1 and 10 mg, preferably 2 and 5 mg per kg body weight daily or every other day or divided into 1 to 3 times daily can do. However, the dosage may be increased or decreased depending on the route of administration, the severity of the disease, sex, weight, age, etc., and the above dosage does not limit the scope of the present invention in any way.
이하, 본 발명을 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.
본 발명자들은, 미토콘드리아성 복합체 I 저해에 의하여 손상된 RPE 세포의 사멸을 조절하는 메커니즘을 명확히 하기 위하여 본 연구를 수행하였다. 그 결과, 본 발명의 발명자들은 로테논이 RPE 세포들에서 MC를 유도함을 확인하였다. 추가적으로, 본 발명자들은 미토콘드리아성 복합체 I에 의하여 유도된 유사분열성 파멸 (RPE-MC 세포)을 겪은 RPE 세포들이 자가소화 저해에 취약함을 확인하였다.We conducted this study to clarify the mechanism that regulates the death of damaged RPE cells by mitochondrial complex I inhibition. As a result, the inventors of the present invention confirmed that rotenone induced MC in RPE cells. In addition, the inventors have identified that RPE cells undergoing mitotic destruction (RPE-MC cells) induced by mitochondrial complex I are susceptible to inhibition of autophagy.
따라서, 본 발명은 미토콘드리아성 복합체 Ⅰ(Mitochodrial complex Ⅰ) 저해제를 유효성분으로 함유하는 증식성 유리체망막병증(Proliferative vitreoretinopathy: PVR)의 예방 또는 치료용 약학적 조성물을 제공한다.Accordingly, the present invention provides a pharmaceutical composition for preventing or treating proliferative vitreoretinopathy (PVR) containing a mitochondrial complex I inhibitor as an active ingredient.
상기 미토콘드리아성 복합체 Ⅰ 저해제는 로테논(Rotenone)인 것이 바람직하다.The mitochondrial complex I inhibitor is preferably rotenone.
상기 로테논은 식물에 의하여 생산되는 이소플라보노이드계 화합물로서 미토콘드리아성 복합체 Ⅰ의 저해제로 작용한다.The rotenone is an isoflavonoid compound produced by plants and acts as an inhibitor of mitochondrial complex I.
상기 유효성분에는 자가소화(Autophagy) 억제제를 더 포함하는 것이 바람직하다.The active ingredient preferably further comprises an autophagy inhibitor.
상기 자가소화 억제제는 3-메틸아데닌(3-methyladenine), 바필로바이신 A1(bafilomycin A1) 및 클로로퀸(chloroquine)으로 이루어지는 군으로부터 1종 이상 선택되는 것이 바람직하다.The self-extinguishing inhibitor is preferably selected from the group consisting of 3-methyladenine, bafilomycin A1 and chloroquine.
상기 유효성분은 RPE(Retinal pigment epithelial) 세포의 세포사(Cell death)를 조절하는 것이 바람직하다.It is preferable that the active ingredient regulates cell death of RPE (Retinal pigment epithelial) cells.
상기에서 "세포사(Cell death)"라 함은 세포의 조절된 또는 조절되지 않는 소멸(demise)을 의미하며, 예를 들어, 세포사멸(Apoptosis), 세포괴사(Necrosis), 조절된 세포괴사(Necroptosis), 자가소화(Autophagy) 및 유사분열성 파멸(Mitotic catastrophe)를 포함할 수 있다.As used herein, "cell death" refers to controlled or uncontrolled death of cells, for example, apoptosis, necrosis, and controlled necroptosis. ), Autophagy and Mitotic catastrophe.
상기 세포사 조절은 세포사멸(Apoptosis)을 유도하는 것이 바람직하다.The cell death regulation preferably induces apoptosis.
이와 같은 세포사멸 유도에 의하여 RPE 세포의 세포사멸이 촉진되며, 본 발명의 유효성분은 안과 병리학적 질환인 증식성 유리체망막병증(Proliferative vitreoretinopathy: PVR)의 예방 또는 치료용 약학적 조성물로서 적용될 수 있다.The apoptosis of RPE cells is promoted by the induction of apoptosis, and the active ingredient of the present invention can be applied as a pharmaceutical composition for preventing or treating proliferative vitreoretinopathy (PVR), which is an ocular pathological disease. .
본 발명의 약학적 조성물은 각각의 사용 목적에 맞게 통상의 방법에 따라 산제, 과립제, 정제, 캡슐제, 현탁제, 에멀젼, 시럽, 에어로졸 등의 경구 제형, 멸균 주사용액의 주사제 등 다양한 형태로 제형화하여 사용할 수 있으며, 경구 투여하거나 정맥 내, 복강 내, 피하, 직장, 국소 투여 등을 포함한 다양한 경로를 통해 투여될 수 있다.The pharmaceutical compositions of the present invention may be formulated in various forms, such as powders, granules, tablets, capsules, suspensions, emulsions, syrups, aerosols, oral formulations, injections of sterile injectable solutions, etc. It can be used orally and can be administered by various routes including intravenous, intraperitoneal, subcutaneous, rectal, topical administration and the like.
이러한 약학적 조성물에는 추가적으로 담체, 부형제 또는 희석제 등이 더 포함될 수 있으며, 포함될 수 있는 적합한 담체, 부형제 또는 희석제의 예로는 락토오스, 덱스트로오스, 수크로오스, 솔비톨, 만니톨, 자일리톨, 에리쓰리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로스, 메틸 셀룰로스, 비정질 셀룰로스, 폴리비닐 피롤리돈, 물, 메틸하이드록시벤조에이트, 프로필하이드록시 벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유 등을 들 수 있다. 또한, 본 발명의 약학적 조성물은 충전제, 항응집제, 윤활제, 습윤제, 향료, 유화제, 방부제 등을 추가로 더 포함할 수도 있다.Such pharmaceutical compositions may further include carriers, excipients or diluents, and examples of suitable carriers, excipients or diluents that may be included include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, Starch, acacia rubber, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methyl cellulose, amorphous cellulose, polyvinyl pyrrolidone, water, methylhydroxybenzoate, propylhydroxy benzoate, talc, magnesium stearate and mineral oil Etc. can be mentioned. In addition, the pharmaceutical composition of the present invention may further include a filler, an anticoagulant, a lubricant, a humectant, a perfume, an emulsifier, a preservative, and the like.
바람직한 구체예로서, 경구 투여를 위한 고형 제제에는 정제, 환제, 산제, 과립제, 캡슐제 등이 포함되며, 이러한 고형 제제는 상기 약학적 조성물에 적어도 하나 이상의 부형제, 예를 들면, 전분, 탄산칼슘, 수크로오스, 락토오스, 젤라틴 등을 혼합하여 제형화한다. 또한, 단순한 부형제 이외에 마그네슘 스테아레이트, 탈크 등과 같은 윤활제가 사용될 수도 있다.In a preferred embodiment, solid preparations for oral administration include tablets, pills, powders, granules, capsules and the like, which solid preparations comprise at least one excipient such as starch, calcium carbonate, Sucrose, lactose, gelatin and the like are mixed and formulated. In addition, lubricants such as magnesium stearate, talc and the like may also be used in addition to simple excipients.
바람직한 구체예로서, 경구용 액상 제제로는 현탁제, 내용액제, 유제, 시럽제 등이 예시될 수 있으며, 흔히 사용되는 단순 희석제인 물, 액체 파라핀 이외에 여러 가지 부형제, 예를 들면, 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다.As a preferred embodiment, oral liquid preparations may be exemplified by suspensions, solvents, emulsions, syrups, and the like, and various excipients, for example, wetting agents, sweeteners, Fragrances, preservatives and the like.
바람직한 구체예로서, 비경구 투여를 위한 제제에는 멸균된 수용액제, 비수성용제, 현탁제, 유제, 동결건조제, 좌제 등을 예시할 수 있다. 비수성용제, 현탁제에는 프로필렌글리콜, 폴리에틸렌글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 포함될 수 있다. 주사제에는 용해제, 등장화제, 현탁화제, 유화제, 안정화제, 방부제 등과 같은 종래의 첨가제가 포함될 수 있다.As a preferred embodiment, the preparation for parenteral administration may include sterile aqueous solutions, non-aqueous solvents, suspensions, emulsions, lyophilizers, suppositories and the like. Non-aqueous solvents and suspending agents may include propylene glycol, polyethylene glycol, vegetable oils such as olive oil, injectable esters such as ethyl oleate, and the like. Injectables may include conventional additives such as solubilizers, isotonic agents, suspending agents, emulsifiers, stabilizers, preservatives, and the like.
본 발명의 유효성분을 함유하는 약학적 조성물은 약학적으로 유효한 양으로 투여한다. 본 발명에서, "약학적으로 유효한 양"은 의학적 치료에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료하기에 충분한 양을 의미하며, 유효 용량 수준은 환자의 질환의 종류, 중증도, 약물의 활성, 약물에 대한 민감도, 투여 시간, 투여 경로 및 배출 비율, 치료 기간, 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다. 본 발명의 약학적 조성물은 개별 치료제로 투여하거나 다른 치료제와 병용하여 투여될 수 있고, 종래의 치료제와 순차적으로 또는 동시에 투여될 수 있으며, 단일 또는 다중 투여될 수 있다. 상기한 요소들을 모두 고려하여 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하며, 이는 당업자에 의해 용이하게 결정될 수 있다.The pharmaceutical composition containing the active ingredient of the present invention is administered in a pharmaceutically effective amount. In the present invention, "pharmaceutically effective amount" means an amount sufficient to treat a disease at a reasonable benefit / risk ratio applicable to medical treatment, and the effective dose level is the type of disease, severity, activity of the drug, Sensitivity to drug, time of administration, route of administration and rate of release, duration of treatment, factors including concurrent use of drugs, and other factors well known in the medical arts. The pharmaceutical compositions of the present invention may be administered as individual therapeutic agents or in combination with other therapeutic agents, may be administered sequentially or simultaneously with conventional therapeutic agents, and may be administered as single or multiple doses. Taking all of the above factors into consideration, it is important to administer an amount that can obtain the maximum effect in a minimum amount without side effects, which can be easily determined by those skilled in the art.
바람직한 구체예로서, 유효량은 환자의 나이, 성별, 체중에 따라 달라질 수 있으며, 일반적으로는 체중 ㎏ 당 1 내지 10mg , 바람직하게는 2 내지 5mg을 매일 또는 격일 투여하거나 1일 1 내지 3회로 나누어 투여할 수 있다. 그러나, 투여 경로, 질병의 중증도, 성별, 체중, 연령 등에 따라서 증감될 수 있으므로 상기 투여량이 어떠한 방법으로도 본 발명의 범위를 한정하는 것은 아니다.In a preferred embodiment, the effective amount may vary depending on the age, sex and weight of the patient, generally between 1 and 10 mg, preferably 2 and 5 mg per kg body weight daily or every other day or divided into 1 to 3 times daily can do. However, the dosage may be increased or decreased depending on the route of administration, the severity of the disease, sex, weight, age, etc., and the above dosage does not limit the scope of the present invention in any way.
이하에서는 실시예를 통하여 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.
<실시예><Example>
1. 재료 및 방법1. Materials and Methods
1.1. 시약1.1. reagent
하기 시약들을 상업적으로 수득하였다. 토끼 다클론성 항-인간 Bcl-2, Tom20, GFP, YFP, p-Parkin, 및 마우스 단일클론성 항-인간 Parkin 및 Beclin-1 항체 (Santa Cruz Biotechnology 사제), 토끼 다클론성 항-인간 카스파제-3, 카스파제-7, LC3B, HRP-접합된 당나귀 항-토끼, 양 항-마우스 IgG 항체, 및 RIPA 버퍼 (Cell Signaling 사제), 토끼 다클론성 항-인간 PINK1 (Abcam Cambridge 사제), FITC-접합된 염소 항-토끼 및 텍사스 레드-접합된 (Texas Red-conjugated) 말 항-마우스 IgGs (Vector 사제), 둘베코 변형 이글 배지 (DMEM)/F12, Opti-MEM, 및 페니실린-스트렙토마이신 (Gibco BRL 사제), LysoTracker 및 Lipofectamine (Invitrogen 사제), β-액틴 항체, Hoechst 33342, 다이메틸 설폭사이드 (DMSO), RN아제 A, 프로테나아제 K, 프로피디움 요오드화물 (PI), 단백질-A 아가로오스, 3-메틸아데닌 (3MA), 바필로마이신 A1 (Baf-A1), 아넥신 V-FITC 세포자살 검출 키트, Mdivi-1, 아크리딘 오렌지, 클로로퀸, 및 로테논 (Sigma 사제), 판(pan) 카스파제 저해제 (Calbiochem 사제), 5,5',6,6'-테트라클로로-1,1',3,3'-테트라에틸벤즈이미다졸 카르보시아닌 요오드화물 (JC-1) (Molecular Probes 사제), SuperSignal WestPico 증진된 화학발광 웨스턴 블롯팅 검출 시약 및 우태아 혈청 (FBS) (Thermo), 및 siPORT 아민 (Ambion 사제).The following reagents were obtained commercially. Rabbit polyclonal anti-human Bcl-2, Tom20, GFP, YFP, p-Parkin, and mouse monoclonal anti-human Parkin and Beclin-1 antibodies (manufactured by Santa Cruz Biotechnology), rabbit polyclonal anti-human caspas -3, caspase-7, LC3B, HRP-conjugated donkey anti-rabbit, sheep anti-mouse IgG antibody, and RIPA buffer (manufactured by Cell Signaling), rabbit polyclonal anti-human PINK1 (manufactured by Abcam Cambridge), FITC-conjugated goat anti-rabbit and Texas Red-conjugated horse anti-mouse IgGs (manufactured by Vector), Dulbecco's Modified Eagle Medium (DMEM) / F12, Opti-MEM, and penicillin-streptomycin (Manufactured by Gibco BRL), LysoTracker and Lipofectamine (manufactured by Invitrogen), β-actin antibody, Hoechst 33342, dimethyl sulfoxide (DMSO), RNase A, proteinase K, propidium iodide (PI), protein-A Agarose, 3-methyladenine (3MA), Baphylomycin A1 (Baf-A1), Annexin V-FITC Suicide Detection Kit, Mdivi-1, Acridine Orene , Chloroquine, and rotenone (from Sigma), pan caspase inhibitor (from Calbiochem), 5,5 ', 6,6'-tetrachloro-1,1', 3,3'-tetraethylbenzimi Dazole Carbocyanine Iodide (JC-1) from Molecular Probes, SuperSignal WestPico Enhanced Chemiluminescent Western Blotting Detection Reagent and Fetal Bovine Serum (FBS) (Thermo), and siPORT Amine (manufactured by Ambion).
1.2. 세포 배양1.2. Cell culture
ARPE-19 세포를 미국 균주 보관소 (American Type Culture Collection: ATCC)로부터 구매하고, 공기 분위기 하에서 37℃, 5% CO2에 유지시켰다. 세포들을 DMEM 및 10% FBS로 보충된 Ham F12 배지의 1:1 혼합물 내에서 생장시켰다.ARPE-19 cells were purchased from the American Type Culture Collection (ATCC) and maintained at 37 ° C., 5% CO 2 under an air atmosphere. Cells were grown in a 1: 1 mixture of Ham F12 medium supplemented with DMEM and 10% FBS.
1.3. 로테논 처리1.3. Rotenone treatment
ARPE-19 세포를 계대배양하여 24시간 후, 원래의 배지를 제거하였다. 세포들을 PBS로 세척한 후, 동일한 새로운 배지에서 인큐베이션하였다. 로테논을 저장 용액(stock solution)에서 배지를 첨가하여 약물의 2.5μM 희석액을 수득하였다. 0, 24, 48, 72, 또는 96시간 후, 세포들을 수확하고, 트립판 블루로 염색한 후, 혈구계산기를 이용하여 계수하였다. 본 발명에서 사용된 PBS의 농도는 본 발명자들의 이전의 연구에서의 ARPE-19 세포 증식에 대한 어떤 영향도 없었다.After 24 hours of passage of ARPE-19 cells, the original medium was removed. Cells were washed with PBS and then incubated in the same fresh medium. Rotenone was added to the medium in a stock solution to obtain a 2.5 μM dilution of the drug. After 0, 24, 48, 72, or 96 hours, cells were harvested, stained with trypan blue and counted using a hemocytometer. The concentration of PBS used in the present invention had no effect on ARPE-19 cell proliferation in our previous studies.
1.4. 김사(giemsa) 염색1.4. Gimsa dyeing
ARPE-19 세포들을 로테논 없이 또는 로테논과 함께 배양하고, 그 후 메탄올로 10분 동안 고정시켰다. 핵 형태학 관찰을 위하여, 슬라이드를 김사 용액으로 15분 동안 염색하였다.ARPE-19 cells were incubated with or without rotenone and then fixed for 10 minutes with methanol. For nuclear morphological observation, slides were stained with Kimsa solution for 15 minutes.
1.5. DNA 저배수성의 정량 및 유세포 분석에 의한 세포 사이클 상 분석1.5. Cell cycle phase analysis by quantification and flow cytometry of DNA low ploidy
0.5% Tween-20으로 보충된 빙냉된 95% 에탄올을 세포 현탁액에 첨가하여 70% 에탄올의 최종 농도로 하였다. 고정된 세포들을 펠렛화하고 1% BSA-PBS 용액 중에서 세척하였다. 세포들을 11 Kunitz U/ml RNase를 포함하는 1mL의 PBS 중에 재현탁시키고 4℃에서 30분 동안 인큐베이션시키고, BSA-PBS로 한번 세척하고, 50 ㎍/ml PI 용액 중에 재현탁시켰다. 세포들을 어두운 중에서 4℃에서 30분 동안 인큐베이션시킨 후, 35 mm 메쉬를 통하여 여과하고, FACSCalibur (Becton-Dickinson) 유세포 분석기를 이용하여 염색 1시간 내에 DNA 함량을 결정하였다. 세포성 DNA 함량을 CellQuest 소프트웨어 (Becton-Dickinson)를 이용하여 분석하였다.Ice-cold 95% ethanol supplemented with 0.5% Tween-20 was added to the cell suspension to a final concentration of 70% ethanol. Fixed cells were pelleted and washed in 1% BSA-PBS solution. Cells were resuspended in 1 mL PBS containing 11 Kunitz U / ml RNase and incubated at 4 ° C. for 30 minutes, washed once with BSA-PBS and resuspended in 50 μg / ml PI solution. Cells were incubated for 30 min at 4 ° C. in the dark, then filtered through a 35 mm mesh and DNA content was determined within 1 hour of staining using a FACSCalibur (Becton-Dickinson) flow cytometer. Cellular DNA content was analyzed using CellQuest software (Becton-Dickinson).
1.6. 공-면역침전1.6. Co-immunoprecipitation
세포 추출물을 추출 버퍼 내 적절한 항체와 함께 4℃에서 하룻밤 동안 인큐베이션하였다. 면역복합체들은, 단백질 A-세파로오스 비즈를 이용하여 2시간 동안 침전되었으며, SDS 샘플 버퍼 중에서 비등시키기 전 추출 버퍼로 5회 세척하였다. 40㎍의 단백질을 포함하는 면역침전된 단백질 또는 분취액을 SDS-폴리아크릴아미드 겔 상에서 분리하고, 웨스턴 블롯 분석을 기재한 바와 같이 수행하였다. 각 공-면역침전 실험은 상호(reciprocal) 면역침전을 통하여 확인되었다.Cell extracts were incubated overnight at 4 ° C. with appropriate antibodies in the extraction buffer. The immunocomplexes were precipitated for 2 hours using Protein A-Sepharose beads and washed 5 times with extraction buffer before boiling in SDS sample buffer. Immunoprecipitated proteins or aliquots containing 40 μg of protein were separated on SDS-polyacrylamide gels and performed as described for Western blot analysis. Each co-immunoprecipitation experiment was confirmed through reciprocal immunoprecipitation.
1.7. 인간 파킨 및 PINK1 siRNA1.7. Human Parkin and PINK1 siRNA
인간 파킨 siRNA (SMART 풀; L-003603-00-0005) 및 PINK1 siRNA (SMART 풀; L-004030-00-0020)을 Thermo Scientific으로부터 구매하였다. 음성 대조구로서, 동일한 뉴클레오티드를 긁어모아 비게놈성 조합을 형성하였다.Human Parkin siRNA (SMART pool; L-003603-00-0005) and PINK1 siRNA (SMART pool; L-004030-00-0020) were purchased from Thermo Scientific. As negative controls, the same nucleotides were scraped to form non-genomic combinations.
1.8. siRNA 형질전환1.8. siRNA transformation
siPORT 아민 및 Opti-MEM 배지를 이용하여, siRNA 형질전환을 수행하였다. 세포들을 6-웰 플레이트에서 40~50%의 컨플루언스 (confluent)에 도달할 때까지 생장시키고, 웰 당 100 nM의 최종 siRNA 농도로 트랜스팩션시켰다. 형질전환 혼합물을 각 웰에 첨가하고, 세포들을 4시간 동안 인큐베이션하였다. 그 후, 2ml의 성장 배지를 첨가하고, 세포들을 또다른 20시간 동안 인큐베이션하였다. siRNA 형질전환 후, 배지를 제거하고, 각 웰을 PBS 용액 중에서 세척하였다.siRNA transformation was performed using siPORT amine and Opti-MEM medium. Cells were grown in 6-well plates until reaching 40-50% confluence and transfected to a final siRNA concentration of 100 nM per well. Transformation mixture was added to each well and cells were incubated for 4 hours. Then 2 ml of growth medium was added and the cells were incubated for another 20 hours. After siRNA transformation, the medium was removed and each well was washed in PBS solution.
1.9. 하위세포성 분획화1.9. Subcellular Fractionation
ARPE-19 세포 (107 세포/웰)를 Tris-계 Mg2+/Ca2+-결핍 버퍼 (135 mM NaCl, 5 mM KCl, 및 25 mM Tris, pH 7.6)에서 세척하고, 빙냉된 저장성(hypotonic) CaRSB 버퍼 (10 mM NaCl, 1.5 mM CaCl2, 10 mM Tris, pH 7.5, 및 1x 프로테아제 저해제 칵테일)에서 10분 동안 팽윤되도록 두었다. 세포들을 Dounce 균질기에서 60 회 스트로크 (strokes)에 의하여 분쇄시키고, 미토콘드리아 안정화 버퍼 (210 mM 만니톨, 70 mM 수크로오스, 5 mM EDTA, 및 5 mM Tris, pH 7.6)를 첨가하여 미토콘드리아를 안정화시켰다. 세포들을 3,000 rpm에서 15분 동안 2회 원심분리하여 핵을 수집한 후, 상등액을 4℃에서 20분 동안 14,000 rpm으로 회전시켰다. 펠레 및 상등액은 미토콘드리아 및 세포질 분획을 각각 포함하였다. 세포(5×107)는 빙냉된 저장성 CaRSB 버퍼 중에서 팽윤되었으며, Dounce 균질기를 이용하여 분쇄하였다. 그 후 세포 균질물을 3,000 rpm에서 15분 동안 2회 회전시켜 가라앉혔다.ARPE-19 cells (10 7 cells / well) were washed in Tris-based Mg 2+ / Ca 2+ -deficient buffer (135 mM NaCl, 5 mM KCl, and 25 mM Tris, pH 7.6) and ice-cold storage ( hypotonic) allowed to swell for 10 minutes in CaRSB buffer (10 mM NaCl, 1.5 mM CaCl 2 , 10 mM Tris, pH 7.5, and 1 × protease inhibitor cocktail). Cells were ground by 60 strokes in a Dounce homogenizer and stabilized mitochondria by addition of mitochondrial stabilization buffer (210 mM mannitol, 70 mM sucrose, 5 mM EDTA, and 5 mM Tris, pH 7.6). Cells were centrifuged twice at 3,000 rpm for 15 minutes to collect nuclei, and then the supernatant was spun at 14,000 rpm for 20 minutes at 4 ° C. Pele and supernatant contained mitochondria and cytoplasmic fractions, respectively. Cells (5 × 10 7 ) were swollen in ice-cold hypotonic CaRSB buffer and ground using a Dounce homogenizer. The cell homogenate was then allowed to sink by spinning twice at 3,000 rpm for 15 minutes.
1.10. 웨스턴 블롯 분석1.10. Western blot analysis
세포들을 빙냉된 PBS로 2회 세척하고, 빙냉된 가용화 버퍼 (300 mM NaCl, 50 mM Tris-HCl [pH 7.6], 0.5% 트리톤 (Triton) X-100, 2 mM PMSF, 2 ㎕/mL 아프로티닌, 및 2 ㎕/mL 류펩틴) 200 ㎕ 중에 재현탁시키고, 4℃에서 30분 동안 인큐베이션시켰다. 용균물을 4℃에서 15분 동안 14,000 rpm으로 원심분리하였다. 세포 용균물의 단백질 농도를, 브래드포드 (Bradford) 단백질 분석 키트 (Bio-Rad)를 이용하여 결정하였으며, 균등량의 단백질들을 7.5% 내지 15% 나트륨 도데실 술페이트-폴리아크릴아미드 겔 전기영동 (SDS-PAGE) 겔 상에 로딩하였다. 그 후 단백질을 질소셀룰로오스 막 (Amersham Pharmacia Biotech 사제) 상으로 옮기고, 각 항체를 이용하여 프로브 탐지하였다. 증진된 화학발광성 기재 (SuperSignal WestPico; Pierce 사제)를 이용하여, 항체를 이용한 면역 염색을 수행하였으며, 사진 필름을 이용하여 이를 검출하였다 (LAS-3000 Plus; Fuji). 당량 단백질 부하는 폰소 S (Ponceau S) 염색에 의하여 확인하였다.Cells were washed twice with ice-cold PBS and ice-cold solubilization buffer (300 mM NaCl, 50 mM Tris-HCl [pH 7.6], 0.5% Triton X-100, 2 mM PMSF, 2 μL / mL aprotinin) , And 2 μl / mL leupetin) were resuspended and incubated at 4 ° C. for 30 minutes. The lysates were centrifuged at 14,000 rpm for 15 minutes at 4 ° C. Protein concentrations of cell lysates were determined using the Bradford Protein Assay Kit (Bio-Rad), and equivalent amounts of proteins were determined between 7.5% and 15% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS). PAGE) was loaded onto the gel. The protein was then transferred onto a nitrogen cellulose membrane (manufactured by Amersham Pharmacia Biotech) and probed with each antibody. Using an enhanced chemiluminescent substrate (SuperSignal West Pico; manufactured by Pierce), immunostaining with antibodies was performed and detected using a photographic film (LAS-3000 Plus; Fuji). Equivalent protein load was confirmed by Ponceau S staining.
1.11. LC3-GFP, YFP-파킨, 및 PINK1-GFP의 ARPE-19 세포로의 형질감염 및 공초점 현미경분석1.11. Transfection and Confocal Microscopy of LC3-GFP, YFP-Parkin, and PINK1-GFP into ARPE-19 Cells
pEGFP 내로 클로닝된 인간 LC3의 포유동물 표현 구축물은 Dr. N. Mizushima (Tokyo Medical and Dental University, Tokyo, Japan)에 의하여 제공되었다. YFP hparkin 및 GFP hPINK1은 Dr. J Chung (Seoul National University, Seoul, Korea)에 의하여 제공되었다. ARPE-19 세포들을 6개-웰 플레이트 내에 접종하고 (105 세포/웰) Lipofectamine 2000을 제조자 설명서에 따라 사용하여, 각 구축물을 이용하여 일시적으로 형질전환시켰다. 간략하게는, 2㎍의 플라스미드 DNA를 6㎕의 Lipofectamine 2000과 혼합하고, Opti-MEM과 함께 인큐베이션하였다. 플라스미드 DNA-Lipofectamine 2000 복합체를 세포에 첨가하고, 그 혼합물을 37℃에서 4시간 동안 추가로 인큐베이션하였다. 인큐베이션 후, 배지를 2㎕의 생장 배지로 교체하고, 세포들을 추가 20시간 동안 유지시켰다. 형질전환한지 24시간 후, 플라스미드 DNA 형질전환 배지를 제거하고, 각 웰을 PBS 용액으로 세척하였다. 세포들을 나타낸 바와 같이 처리하고, 4℃에서 15분 동안 4% 파라포름알데히드를 이용하여 고정시켰다. 형광 이미지들을 수득하고, Zeiss LSM 510 레이저-스캐닝 공초점 현미경 (Goettingen, Germany)을 이용하여 분석하였다. 점찍힌(punctuate) 패턴을 나타낸 세포들을 정량화하기 위하여, 각 실험으로부터 적어도 300개의 세포들을 실험군에 대하여 모르는 관찰자에 의하여 계수하였다.Mammalian expression constructs of human LC3 cloned into pEGFP are: N. Mizushima (Tokyo Medical and Dental University, Tokyo, Japan). YFP hparkin and GFP hPINK1 Provided by J Chung (Seoul National University, Seoul, Korea). ARPE-19 cells were seeded in 6-well plates (10 5 cells / well) and transiently transformed with each construct using Lipofectamine 2000 according to the manufacturer's instructions. Briefly, 2 μg of plasmid DNA was mixed with 6 μl of Lipofectamine 2000 and incubated with Opti-MEM. Plasmid DNA-Lipofectamine 2000 complex was added to the cells and the mixture was further incubated at 37 ° C. for 4 hours. After incubation, the medium was replaced with 2 μl of growth medium and the cells were maintained for an additional 20 hours. Twenty four hours after transformation, plasmid DNA transfection medium was removed and each well was washed with PBS solution. Cells were treated as shown and fixed using 4% paraformaldehyde at 4 ° C. for 15 minutes. Fluorescence images were obtained and analyzed using a Zeiss LSM 510 laser-scanning confocal microscope (Goettingen, Germany). To quantify the cells that exhibited a punctuate pattern, at least 300 cells from each experiment were counted by an observer unknown to the experimental group.
1.12. 투과 전자 현미경1.12. Transmission electron microscope
처리한지 48시간 후, 세포들을 수확, 펠렛화하고, 인산염 버퍼 중 2.5% 글루타르알데히드 내에서 고정시켰다. 세포들을 인산염 버퍼로 헹구고, 샘플들을 1시간 동안 1%의 4산화오스뮴 내에서 후고정시키고, 등급화된 일련의 에탄올 내에서 탈수시키고, 산화프로필렌과 함께 인큐베이션하고, Epon812에서 하룻밤 동안 보관하였다. 샘플들을 Epon812 내에 임베딩하고(embedded), 60℃ 오븐 내에서 경화시켰다. Reichert Ultracut E 마이크로톰을 이용하여 초박형 단편들을 수득하였다. 단편들을 우라닐 아세테이트, 납 시트레이트로 염색하고, 투과 전자 현미경 (Hitachi)를 이용하여 관찰하였다. 각 처리군 또는 대조구에 대하여, 임의 선택된 투과 전자 현미경 필드로부터 적어도 200개의 세포들이 관찰되었다.48 hours after treatment, cells were harvested, pelleted and fixed in 2.5% glutaraldehyde in phosphate buffer. Cells were rinsed with phosphate buffer, samples were post-fixed in 1% osmium tetraoxide for 1 hour, dehydrated in a graded series of ethanol, incubated with propylene oxide and stored overnight at Epon812. Samples were embedded in Epon812 and cured in a 60 ° C. oven. Ultra-thin fragments were obtained using a Reichert Ultracut E microtome. Fragments were stained with uranyl acetate, lead citrate and observed using a transmission electron microscope (Hitachi). For each treatment group or control, at least 200 cells were observed from any selected transmission electron microscope field.
1.13. TUNEL 염색1.13. TUNEL dyeing
세포자살이 진행되는 세포들을 관찰하기 위하여, 형광 TUNEL (말단 데옥시리보뉴클레오티딜 전이효소-매개된 dUTP-다이곡시제닌 닉 앤드 라벨링: terminal deozyribonucleotidyl deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end labeling) 분석을, 현장 사멸 검출 키트를 이용하여 수행하였다. 간략하게, 커버슬립 상에서 성장된 세포들을 4% 파라포름알데히드 내에서 15분 동안 고정시킨 후, PBS 중에 헹구었다. 세포들을 37℃에서 1시간 동안 말단 데옥시뉴클레오티딜 전이효소 (TdT)와 함께 인큐베이션시킨 후, 항-다이곡시제닌-FITC를 실온에서 30분 동안 적용하였다. 핵을 프로피디윰 요오드화물/퇴색방지제(antifade)로 대비염색시켰다. Zeiss LSM 510 레이저-스캐닝 공초점 현미경을 이용하여 형광 이미지들을 관찰하고 분석하였다. 각 실험으로부터 적어도 300 세포의, 총 세포 수를 계수하고, 양성 염색을 보인 세포들의 수를 에피형광 광학렌즈 하에서, 이에 대한 정보를 알지못하는(blinded) 관찰자에 의해 계산하였다.Fluorescent TUNEL (terminal deozyribonucleotidyl deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end labeling) analysis to observe cells undergoing apoptosis Was performed using an in situ death detection kit. Briefly, cells grown on coverslips were fixed in 4% paraformaldehyde for 15 minutes and then rinsed in PBS. Cells were incubated with terminal deoxynucleotidyl transferase (TdT) for 1 hour at 37 ° C., and then anti-digoxigenin-FITC was applied for 30 minutes at room temperature. Nuclei were counterstained with propidium iodide / antifade. Fluorescence images were observed and analyzed using a Zeiss LSM 510 laser-scanning confocal microscope. The total cell number of at least 300 cells from each experiment was counted and the number of cells with positive staining was calculated by an observer blinded under epifluorescence optical lens.
1.14. 훼스트(Hoechst) 염색1.14. Hoechst Dyeing
세포들을 수확하고, 세포 원심분리기를 이용하여 세포 현탁액을 투명한 무지방 유리 슬라이드 상에서 원심분리시켰다. 샘플을 4 ㎍/ml Hoechst 33342를 이용하여 37℃에서 30분 동안 염색시키고, 4% 파라포름알데히드 중에서 10분 동안 고정시켰다. 적어도 300개의 세포들인, 각 실험으로부터의 총 세포 수를 DIC 광학렌즈 하에서 계수하고, 훼스트 염색에서 응축된 또는 단편화된 핵을 나타내는 세포들의 수를 에피형광 광학 렌즈 하에서, 이에 대한 정보를 알지 못하는 관찰자에 의해 계산하였다.The cells were harvested and the cell suspension was centrifuged on a clear, fat free glass slide using a cell centrifuge. Samples were stained at 37 ° C. for 30 minutes using 4 μg / ml Hoechst 33342 and fixed in 4% paraformaldehyde for 10 minutes. The total cell number from each experiment, which is at least 300 cells, was counted under a DIC optical lens, and the number of cells representing nuclei condensed or fragmented in pest staining was observed under epifluorescent optical lens, with no information on this. Calculated by
1.15. 세포자살, 세포소기관 함량, 및 미토콘드리아 막 전위의 유세포적 측정1.15. Flow cytometry of apoptosis, organelle content, and mitochondrial membrane potential
산성 세포소기관 함량의 정량화를 위하여, 세포들을 50 nM LysoTracker 적색 또는 1 μg/ml의 아크리딘 오렌지 중에서, 37℃에서 30 분 동안 인큐베이션하였다. 상기 세포자살성 세포의 정량화를 위하여, 세포를 5 ㎕의 아넥신 V-FITC 접합물 및 10 ㎕의 프로피디늄 요오드화물 용액을 포함하는 500 ㎕의 아넥신 V-결합 버퍼와 함께 인큐베이션시켰다. 실온에서 10분 동안 인큐베이션 한 후, 유세포 분석으로 세포들을 분석하였다. 미토콘드리아성 막 전위의 측정을 위하여, 세포들을 37℃에서 30분 동안 4 ㎍/ml JC-1와 함께 인큐베이션하였다. 데이터를 획득하고 ADC XL (Beckman Coulter)로 분석하였다.For quantification of acidic organelle content, cells were incubated for 30 minutes at 37 ° C. in 50 nM LysoTracker red or 1 μg / ml of acridine orange. For quantification of the apoptotic cells, cells were incubated with 500 μl Annexin V-binding buffer comprising 5 μl Annexin V-FITC conjugate and 10 μl propidinium iodide solution. After incubation for 10 minutes at room temperature, cells were analyzed by flow cytometry. For the measurement of mitochondrial membrane potential, cells were incubated with 4 μg / ml JC-1 at 37 ° C. for 30 minutes. Data was acquired and analyzed by ADC XL (Beckman Coulter).
1.16. 통계 분석1.16. Statistical analysis
적어도 3회 이상의 독립된 실험을 시험관 내에서 실시하였다. 결과는 3회 실험으로부터의 평균±S.D.로 나타내었다. 실험 및 대조구의 결과는, 스튜던트 t 검정을 이용하여 통계적 유의성에 대해 검정하였다. 모든 경우에서, 0.05 미만의 p 값은 유의한 것으로 여겨졌다.At least three independent experiments were performed in vitro. The results are expressed as mean ± S.D. From three experiments. The results of the experiments and controls were tested for statistical significance using the Student's t test. In all cases, p values less than 0.05 were considered significant.
2. 결과2. Results
2.1. 로테논은 ARPE-19 망막 색소 상피 세포에서 MC를 유도한다.2.1. Rotenone induces MC in ARPE-19 retinal pigment epithelial cells.
24 시간의 로테논 처리는 ARPE-19 세포의 생육성을 감소시키지 않았지만, 72 시간의 처리는 투여량-의존적인 방식으로 세포 생육성을 현저히 감소시켰다. 48 시간 동안 2.5~25μM의 로테논 처리는 ARPE-19 세포 (도 1A)의 생육성을 약간 (약 10~20%) 감소시켰다. 중요하게는, 2.5~25μM 로테논으로 처리된 대부분의 ARPE-19는 다수의 핵 및 불균일한 형태를 가졌다 (도 1B). 2.5μM는, 48 시간 동안 처리된 ARPE-19 세포들의 생육성에서 약간의 감소를 가져온 최저 투여량이기 때문에, 로테논-유도된 세포독성의 메커니즘 및 세포 소멸과 로테논-유도된 다핵화 사이의 상관관계에 대한 추가적인 연구에 이 농도를 사용하였다. 유세포 (flow cytometry) 분석은 대부분의 로테논-처리된 ARPE-19 세포들이 48시간 까지 4배수성(4C)이 되었음을 나타내었다 (도 1C). 포함된 대부분의 세포들은 >4N 수준의 DNA이고, 다핵화되었기 때문에, 이들 세포들이 MC를 통하여 사멸에 영향받기 쉬울 수 있다는 것이 가능해 보였다. 따라서, 본 발명자들은 투과 전자 현미경 하에 세포들을 관찰하였다. 투과 전자 현미경은 로테논-처리된 세포들 내 소핵들의 존재를 증명하였다 (도 1D). 이들 데이터는, 로테논이 ARPE-19 세포에서 MC를 유도한다는 것을 나타낸다.24 hours of rotenone treatment did not reduce the viability of ARPE-19 cells, but 72 hours of treatment significantly reduced cell viability in a dose-dependent manner. Rotenone treatment of 2.5-25 μM for 48 hours slightly reduced (approximately 10-20%) viability of ARPE-19 cells (FIG. 1A). Importantly, most of the ARPE-19 treated with 2.5-25 μM rotenone had a number of nuclei and heterogeneous morphology (FIG. 1B). Since 2.5 μM is the lowest dose that resulted in a slight decrease in the viability of treated ARPE-19 cells for 48 hours, the correlation between rotenone-induced cytotoxicity and cell death and rotenone-induced multinucleation This concentration was used in further studies of the relationship. Flow cytometry analysis showed that most of the rotenone-treated ARPE-19 cells became tetraploid (4C) by 48 hours (FIG. 1C). Since most of the cells involved were> 4N levels of DNA and multinucleated, it seemed possible that these cells could be susceptible to death through MC. Thus, the inventors observed the cells under transmission electron microscopy. Transmission electron microscopy demonstrated the presence of micronuclei in rotenone-treated cells (FIG. 1D). These data show that rotenone induces MC in ARPE-19 cells.
2.2. 증가된 자가소화는 ARPE-19 세포에서 MC를 수반한다.2.2. Increased autodigestion involves MC in ARPE-19 cells.
본 발명자들은 그 다음으로, 로테논이 RPE-MC 세포에서 자가 소화를 증가시키는지의 여부를 시험하였다. 웨스턴 블롯 분석은 로테논-처리된 ARPE-19 세포에서 LC3-II 수준의 증가를 증명하였다 (도 2A). 로테논 처리는 Beclin-1 또는 ATG5의 발현 수준을 변경시키지는 않았다. 그러나, 로테논은 ARPE-19 세포들에서 VPS-34의 발현 수준은 약간 증가시켰다 (도 A). 로테논은 Beclin-1과 Bcl-2 사이의 상호작용은 감소시켰지만, Beclin-1과 Vps-34 사이의 상호작용은 증가시켰다 (도 2B). 유세포 분석을 이용하여 LysoTracker 또는 아크리딘 오렌지로 라벨링된 세포소기관을 포함한 세포들을 관찰 및 정량화하였으며, 이 분석은 로테논이 산성 소포 세포소기관의 발달을 증가시켰다는 것을 증명하였다 (도 2C). 투과 전자 현미경은 로테논이 RPE-MC 세포에서 자가포식소체 (autophagosome)의 수를 증가시킴을 보여주었다 (도 2D). 이들 데이터는 증가된 자가소화가 RPE-MC 세포에 존재함을 나타낸다.We next tested whether rotenone increased autodigestion in RPE-MC cells. Western blot analysis demonstrated an increase in LC3-II levels in rotenone-treated ARPE-19 cells (FIG. 2A). Rotenone treatment did not alter the expression level of Beclin-1 or ATG5. However, rotenone slightly increased the expression level of VPS-34 in ARPE-19 cells (FIG. A). Rotenone reduced the interaction between Beclin-1 and Bcl-2, but increased the interaction between Beclin-1 and Vps-34 (FIG. 2B). Flow cytometry was used to observe and quantify cells including organelles labeled LysoTracker or Acridine Orange, which demonstrated that rotenone increased the development of acid vesicle organelles (FIG. 2C). Transmission electron microscopy showed that rotenone increased the number of autophagosomes in RPE-MC cells (FIG. 2D). These data indicate that increased autodigestion is present in RPE-MC cells.
2.3. RPE-MC 세포들은 자가소화 저해에 취약하다.2.3. RPE-MC cells are susceptible to inhibition of autophagy.
본 발명자들은 그 후, 자가소화의 저해가 RPE-MC 세포의 생육성에 영향을 미치는지의 여부를 검사하였다. 특히, 3MA, 바필로마이신 (bafilomycin) A1 (Baf-A1) 및 클로로퀸 (chloroquine) (CQ)과 같은 자가소화 저해제는 그들의 생육성을 현저하게 감소시켰다 (도 3A). 그 다음으로, ARPE-19 세포들을 녹색 형광 단백질 (GFP)-LC3 융합 플라스미드로 형질감염시키고, Baf-A1 또는 클로로퀸 존재 또는 부재 하에서 로테논으로 처리하고, 그 후 공초점 현미경을 이용하여 관찰하였다. Baf-A1 또는 클로로퀸 처리 후, LC3-GFP 눈물점의 수가 현저하게 증가되었다 (도 3B). 웨스턴 블롯 분석은 3MA가 로테논-처리된 ARPE-19 세포에서 LC3-II의 축적을 방지하였음을 나타내었다. 웨스턴 블롯 분석에 의한 LC3-II의 회전율 평가에 근거한, 자가소화 플럭스 (flux) 분석은 Baf-A1 또는 클로로퀸의 리소좀성 분해의 방지가 LC3-II의 축적을 유도하였음을 보여주었다. 로테논-단독 처리는 카스파제-3 및 카스파제-7 절개 (cleavage) 생성물을 유도하였다. 자가소화 저해와 연결된 로테논도 카스파제-3 및 카스파제-7 절개 생성물을 유도하였다. 그러나, 자가소화 저해는, 로테논-단독 처리에 비하여 이들 절개 생성물의 축적을 증대시키지 않았으며 (도 3C), 이는 자가소화 저해가 세포자살을 증대시키지 않았음을 나타낸다. 이들 데이터는, 자가소화 플럭스의 저해가 RPE-MC 세포들의 사멸을 유도하고, ARPE-19 세포를 로테논에 노출시킴으로써 유도된 자가소화는 세포보호성이라는 것을 나타낸다. 나아가 본 발명자들은 자가소화 저해제가 로테논-유도된 다핵화에 영향을 미치는지의 여부를 검사하였다. 본 발명자들의 데이터는 자가소화 저해제가 ARPE-19 세포에서 로테논-유도된 다핵화를 역전시키지 않았음을 나타낸다 (도 3D).The inventors then examined whether inhibition of autodigestion affects the viability of RPE-MC cells. In particular, autophagy inhibitors such as 3MA, bafilomycin A1 (Baf-A1) and chloroquine (CQ) significantly reduced their viability (FIG. 3A). ARPE-19 cells were then transfected with a green fluorescent protein (GFP) -LC3 fusion plasmid, treated with rotenone in the presence or absence of Baf-A1 or chloroquine and then observed using confocal microscopy. After Baf-A1 or chloroquine treatment, the number of LC3-GFP tear points increased significantly (FIG. 3B). Western blot analysis showed that 3MA prevented the accumulation of LC3-II in rotenone-treated ARPE-19 cells. Based on the evaluation of the turnover of LC3-II by Western blot analysis, autodigestion flux analysis showed that the prevention of lysosomal degradation of Baf-A1 or chloroquine led to the accumulation of LC3-II. Rotenone-only treatment induced caspase-3 and caspase-7 cleavage products. Rotenone associated with autodigestion inhibition also induced caspase-3 and caspase-7 incision products. However, inhibition of autodigestion did not increase the accumulation of these incision products compared to rotenone-only treatment (FIG. 3C), indicating that inhibition of autodigestion did not enhance apoptosis. These data indicate that inhibition of autodigestion flux induces death of RPE-MC cells and autodigestion induced by exposing ARPE-19 cells to rotenone is cytoprotective. In addition, we examined whether autodigestion inhibitors affect rotenone-induced multinucleation. Our data show that autodigestion inhibitors did not reverse rotenone-induced multinucleation in ARPE-19 cells (FIG. 3D).
2.4. 자가소화 저해에 의한 RPE-MC 세포 사멸의 증대가 비세포자살성 세포 사멸 경로를 통하여 일어난다. 2.4. Increasing RPE-MC cell death by inhibiting autophagy occurs through a non-apoptotic cell death pathway.
본 발명자들은 세포 사멸의 메커니즘을 결정하기 위하여 몇가지 분석을 수행하였다. 웨스턴 블롯 분석은 카스파제-3 및 카스파제-7이 로테논 단독-처리된 ARPE-19 세포 (도 4A) 중에서 활성화되었음을 증명하였다. 유세포 분석은, 아넥신 V-양성 세포의 백분율 값이 약 10%였음을 증명하였다 (도 4B). 추가적으로, zVAD-fmk와의 인큐베이션은 로테논-단독 처리에 의하여 유도된 세포 사멸을 완전히 방지하였다. 그러나, zVAD-fmk와의 인큐베이션은 자가소화 저해제 (도 4C)에 의한 세포 사멸의 증대를 단지 부분적으로만 방지하였다. TUNEL 분석은, TUNEL-양성 세포의 백분율 값을 증대시키지 않았음을 증명한다 (도 4D). 이들 데이터는 도 3C와 관련하여, 자가소화 저해는, 로테논-유도된 MC가 진행되는 RPE 세포에서의 비세포자살성 세포 사멸을 주로 유도하는 한편, 로테논-단독 치료는 RPE 세포들에서 세포자살성 세포 사멸을 유도한다는 것을 제시한다.We conducted several analyzes to determine the mechanism of cell death. Western blot analysis demonstrated that caspase-3 and caspase-7 were activated in rotenone alone-treated ARPE-19 cells (FIG. 4A). Flow cytometry demonstrated that the percentage value of Annexin V-positive cells was about 10% (FIG. 4B). In addition, incubation with zVAD-fmk completely prevented cell death induced by rotenone-only treatment. Incubation with zVAD-fmk, however, only partially prevented the increase of cell death by autophagy inhibitors (FIG. 4C). TUNEL analysis demonstrates that the percentage value of TUNEL-positive cells did not increase (FIG. 4D). These data indicate that, with respect to FIG. 3C, autodigestion inhibition mainly induces non-apoptotic cell death in RPE cells undergoing rotenone-induced MC, while rotenone-only treatment in cells in RPE cells. Induces suicide cell death.
2.5. 파킨-매개된 마이토파지(parkin-mediated mitophagy)가 RPE-MC 세포에서 일어난다. 2.5. Parkin-mediated mitophagy occurs in RPE-MC cells.
본 발명자들은 그 후, 마이토파지가 RPE-MC 세포들에서 일어나는지의 여부를 검사하였다. 웨스턴 블롯 분석은 로테논이 파킨 단백질을 현저히 상향조절하였음을 나타내었다. 파킨은 대조구 세포의 미토콘드리아에서는 없지만, 로테논-처리된 세포들의 미토콘드리아 내로 전위되었다 (도 5A). 로테논은 미토콘드리아에서 포스포릴화 파킨 (p-파킨)의 양도 증가시켰다. 로테논은 PINK1를 현저하게 상향조절하지 않았으며, 로테논 처리는 미토콘드리아 분획에서 PINK1의 양을 증가시켰다. 유세포 분석은 로테논-처리된 세포들에서 MMP의 감소를 나타내었다 (도 5B). 공초점 현미경은 탈분극화된 미토콘드리아를 식별하였으며, 이는 정상의 미토콘드리아로부터 중간 내지 낮은 MitoTracker 미토콘드리아 염색을 나타내었으며,이는 미토콘드리아 막전위가 소실되지 않았음을 보여주는 것으로, 이에 따라 더욱 강한 염색을 나타내었다. 파킨 및 PINK1 수준은 탈분극화 미토콘드리아에서 현저히 증가되었다 (도 5C 및 도 5D). 파킨 및 PINK1 모두의 과잉발현은 LC3-II의 축적을 증가시켰다 (도 5E). 이들 발견은 파킨-매개 마이토파지가 RPE-MC 세포들에서 일어남을 나타낸다.We then examined whether mitophagy occurred in RPE-MC cells. Western blot analysis showed that rotenone significantly upregulated Parkin protein. Parkin was not in the mitochondria of control cells, but was translocated into the mitochondria of rotenone-treated cells (FIG. 5A). Rotenone also increased the amount of phosphorylated Parkin (p-Parkin) in mitochondria. Rotenone did not significantly upregulate PINK1, and rotenone treatment increased the amount of PINK1 in the mitochondrial fraction. Flow cytometry showed a decrease in MMP in rotenone-treated cells (FIG. 5B). Confocal microscopy identified depolarized mitochondria, which showed medium to low MitoTracker mitochondrial staining from normal mitochondria, showing that the mitochondrial membrane potential was not lost, thus showing stronger staining. Parkin and PINK1 levels were significantly increased in depolarized mitochondria (FIG. 5C and FIG. 5D). Overexpression of both Parkin and PINK1 increased the accumulation of LC3-II (FIG. 5E). These findings indicate that Parkin-mediated mitophagy occurs in RPE-MC cells.
2.6. 마이토파지는 RPE-MC 세포들의 세포 보호에 기여한다. 2.6. Mitophagy contributes to the cellular protection of RPE-MC cells.
자가소화 저해제들은 RPE-MC 세포들의 생육성을 감소시키기 때문에, 마이토파지는 로테논-처리된 RPE 세포의 자가소화-관련 보호에 기초가 되는 것으로 나타난다. 마이토파지가 세포보호 역할을 한다는 것을 입증하기 위하여, 본 발명자들은 세포 사멸에 대한 파킨 고갈의 효과를 시험하였다. 파킨 넉다운(knockdown)은 LC3-II 수준에서 로테논-유도된 증가를 부분적으로 방지하였다 (도 6A). 주목할 만하게, 파킨 넉다운은 로테논 단독 처리에 의해 유도된 RPE 세포 사멸을 현저히 심하게 하였다 (도 6B). 이들 발견은, 마이토파지가 RPE-MC 세포의 생존에 어떤 역할을 함을 나타낸다. 투과 전자 현미경은 로테논-처리된 세포에서의 분해된 미토콘드리아 및 자가포식소체(자가포식소체)의 존재를 밝혔다. 라이소좀으로 삼켜진 미토콘드리아는 RPE-MC 세포에서도 관찰되었으며 (도 6Ca-Cd), 이는 RPE-MC 세포 내에서 활성 마이토파지를 나타낸다. 로테논 및 3MA로 처리된 RPE-MC 세포들에서 관찰되는 자가포식소체 또는 라이소좀은 없었으며, 이들 세포에서, 분해된 미토콘드리아들은 소화되지 않고 남아있었다 (도 6Cd). 로테논 및 Baf-A1 또는 클로로퀸으로 처리된 RPE-MC 세포들에는 다양한 자가포식소체가 존재하였고, 다양한 분해된 미토콘드리아가 자가포식소체들로부터 분리되었다 (도 6 Ce 및 Cf). 이들 발견은 자가소화 저해제들이 RPE-MC 세포에서 분해된 미토콘드리아의 제거를 차단하였음을 나타낸다. 이들 발견은 파킨-매개된 마이토파지가 RPE-MC 세포의 자가소화-관련 세포보호의 기초가 된다는 것을 입증한다.Because autodigestion inhibitors reduce the viability of RPE-MC cells, mitophagy appears to be the basis for autodigestion-related protection of rotenone-treated RPE cells. To demonstrate that mitophagy plays a cytoprotective role, we tested the effect of Parkin depletion on cell death. Parkin knockdown partially prevented rotenone-induced increases at LC3-II levels (FIG. 6A). Notably, Parkin knockdown significantly increased RPE cell death induced by rotenone treatment alone (FIG. 6B). These findings indicate that mitophagy plays a role in the survival of RPE-MC cells. Transmission electron microscopy revealed the presence of degraded mitochondria and autophagosomes (autophagosomes) in rotenone-treated cells. Mitochondria swallowed with lysosomes were also observed in RPE-MC cells (Fig. 6Ca-Cd), indicating active mitophagy in RPE-MC cells. There were no autophagosomes or lysosomes observed in RPE-MC cells treated with rotenone and 3MA, in which the degraded mitochondria remained undigested (FIG. 6Cd). In RPE-MC cells treated with rotenone and Baf-A1 or chloroquine, various autophagosomes were present, and various degraded mitochondria were isolated from autophagosomes (Figure 6 Ce and Cf). These findings indicate that autodigestion inhibitors blocked the removal of degraded mitochondria in RPE-MC cells. These findings demonstrate that Parkin-mediated mitophagy is the basis for autodigestion-related cytoprotection of RPE-MC cells.
2.7. 알파 B 크리스탈린(crystallin)은 RPE-MC 세포를 세포자살로부터 보호한다. 2.7. Alpha B crystallin protects RPE-MC cells from apoptosis.
알파 B 크리스탈린 (αB-크리스탈린)은 RPE 세포들에서 주요한 항세포자살성 인자이기 때문에, 본 발명자들은 αB-크리스탈린이 RPE-MC 세포들에서 항세포자살성 효과를 내는지의 여부를 검사하였다. αB-크리스탈린 넉다운은, 로테논 단독으로 처리한 세포에 비교하여 RPE-MC 세포 생육성에서의 감소를 현저히 증대시켰다 (도 7A). 이들 데이터는, αB-크리스탈린이, RPE-MC 세포들이 세포 사멸로 빠지는 것을 방지한다는 것을 나타낸다. 특히, TUNEL 분석은 αB-크리스탈린 넉다운이 자가소화 저해제들로 처리된 RPE 세포들에서 세포자살을 유도하였음을 나타내었으며 (도 7B), 이는 αB-크리스탈린이 자가 소화 저해로 인해 세포 사멸되기 쉬운 RPE 세포들에서 항세포자살성 활성을 나타낸다는 것을 나타낸다. 유세포 분석은 αB-크리스탈린 넉다운이 아넥신 V-양성 RPE-MC 세포들의 현저히 증가된 축적이라는 결과를 일으킨다는 것을 나타내었으며, 이는 αB-크리스탈린 넉다운이 RPE-MC 세포들의 자가소화 저해-유도된 사멸이 비세포자살성 세포 사멸에서 세포자살성 세포 사멸로 방향을 바꾸도록 유발시킨다는 것을 나타낸다 (도 7C). 이들 발견은 αB-크리스탈린이 RPE-MC 세포들에서 항세포자살성 활성을 내어, 그들이 세포자살을 경험하는 것을 방지한다는 것을 제시한다. Since alpha B crystallin (αB-crystallin) is a major anti-apoptotic factor in RPE cells, we examined whether αB-crystallin has an anti-apoptotic effect in RPE-MC cells. αB-crystallin knockdown significantly increased the decrease in RPE-MC cell viability compared to cells treated with rotenone alone (FIG. 7A). These data show that αB-crystallin prevents RPE-MC cells from falling into cell death. In particular, TUNEL analysis showed that αB-crystallin knockdown induced apoptosis in RPE cells treated with autophagy inhibitors (FIG. 7B), indicating that RPE is susceptible to cell death due to inhibition of autodigestion. Cells show anti-apoptotic activity. Flow cytometry showed that αB-crystallin knockdown results in significantly increased accumulation of Annexin V-positive RPE-MC cells, indicating that αB-crystallin knockdown results in inhibition of autophagy of RPE-MC cells. It is shown that killing causes a change from non-apoptotic cell death to apoptotic cell death (FIG. 7C). These findings suggest that αB-crystallin exerts anti-apoptotic activity in RPE-MC cells, preventing them from experiencing apoptosis.

Claims (6)

  1. 미토콘드리아성 복합체 Ⅰ(Mitochodrial complex Ⅰ) 저해제를 유효성분으로 함유하는 증식성 유리체망막병증(Proliferative vitreoretinopathy: PVR)의 예방 또는 치료용 약학적 조성물.A pharmaceutical composition for preventing or treating proliferative vitreoretinopathy (PVR) containing a mitochondrial complex I inhibitor as an active ingredient.
  2. 제 1항에 있어서, 상기 미토콘드리아성 복합체 Ⅰ 저해제는 로테논(Rotenone)인 것을 특징으로 하는 약학적 조성물.The pharmaceutical composition of claim 1, wherein the mitochondrial complex I inhibitor is Rotenone.
  3. 제 1항에 있어서, 상기 유효성분에는 자가소화(Autophagy) 억제제를 더 포함하는 것을 특징으로 하는 약학적 조성물.The pharmaceutical composition of claim 1, wherein the active ingredient further comprises an autophagy inhibitor.
  4. 제 3항에 있어서, 상기 자가소화 억제제는 3-메틸아데닌(3-methyladenine), 바필로바이신 A1(bafilomycin A1) 및 클로로퀸(chloroquine)으로 이루어지는 군으로부터 1종 이상 선택되는 것을 특징으로 하는 약학적 조성물.The pharmaceutical composition of claim 3, wherein the self-extinguishing inhibitor is selected from the group consisting of 3-methyladenine, bafilomycin A1, and chloroquine. Composition.
  5. 제 1항 내지 제 4항 중 어느 한 항에 있어서, 상기 유효성분은 RPE(Retinal pigment epithelial) 세포의 세포사(Cell death)를 조절하는 것을 특징으로 하는 약학적 조성물. The pharmaceutical composition according to any one of claims 1 to 4, wherein the active ingredient modulates cell death of Retinal pigment epithelial (RPE) cells.
  6. 제 5항에 있어서, 상기 세포사 조절은 세포사멸(Apoptosis)을 유도하는 것을 특징으로 하는 약학적 조성물.6. The pharmaceutical composition of claim 5, wherein the regulation of cell death induces apoptosis.
PCT/KR2014/011970 2014-03-28 2014-12-05 Pharmaceutical composition for prophylaxis or treatment of proliferative vitreoretinopathy containing mitochondrial complex i inhibitor as active ingredient WO2015147411A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140036954A KR101587483B1 (en) 2014-03-28 2014-03-28 A pharmaceutical composition for prevention or treatment of proliferative vitreoretinopathy comprising the inhibitor of mitochondrial complex as an effective component
KR10-2014-0036954 2014-03-28

Publications (1)

Publication Number Publication Date
WO2015147411A1 true WO2015147411A1 (en) 2015-10-01

Family

ID=54195885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/011970 WO2015147411A1 (en) 2014-03-28 2014-12-05 Pharmaceutical composition for prophylaxis or treatment of proliferative vitreoretinopathy containing mitochondrial complex i inhibitor as active ingredient

Country Status (2)

Country Link
KR (1) KR101587483B1 (en)
WO (1) WO2015147411A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040127468A1 (en) * 2001-08-20 2004-07-01 Tatton William George Methods and compositions for treating apoptosis associated disorders
US20080112923A1 (en) * 2005-05-10 2008-05-15 Allergan, Inc Ocular therapy using alpha-2 adrenergic receptor anterior compounds having enhanced clearance rates
US20130281478A1 (en) * 2011-01-11 2013-10-24 Don Benjamin Combination of syrosingopine and mitochondrial inhibitors for the treatment of cancer and immunosuppression

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040127468A1 (en) * 2001-08-20 2004-07-01 Tatton William George Methods and compositions for treating apoptosis associated disorders
US20080112923A1 (en) * 2005-05-10 2008-05-15 Allergan, Inc Ocular therapy using alpha-2 adrenergic receptor anterior compounds having enhanced clearance rates
US20130281478A1 (en) * 2011-01-11 2013-10-24 Don Benjamin Combination of syrosingopine and mitochondrial inhibitors for the treatment of cancer and immunosuppression

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BERETTA, SIMONE ET AL.: "Partial mitochondrial complex I inhibition induces oxidative damage and perturbs glutamate transport in primary retinal cultures. Relevance to Leber Hereditary Optic Neuropathy (LHON", NEUROBIOLOGY OF DISEASE, vol. 24, no. 2, 2006, pages 308 - 317, XP024901487 *
LEE, SY ET AL.: "Retinal pigment epithelial cells undergoing mitotic catastrophe are vulnerable to autophagy inhibition", CELL DEATH & DISEASE, vol. 5, 26 June 2014 (2014-06-26), pages 1 - 11, XP055225007 *
WANG, AI LING ET AL.: "Autophagy and exosomes in the aged retinal pigment epithelium: possible relevance to drusen formation and age-related macular degeneration", PLOS ONE, vol. 4, no. 1, 2009, pages 1 - 13, XP055224997 *

Also Published As

Publication number Publication date
KR101587483B1 (en) 2016-01-21
KR20150112542A (en) 2015-10-07

Similar Documents

Publication Publication Date Title
ES2684351T3 (en) Pharmacological therapy to prevent or treat glaucoma
JP2014080447A (en) β-TURN PEPTIDOMIMETIC CYCLIC COMPOUND FOR TREATING DRY EYE
CN111372598A (en) Treatment of ophthalmic conditions such as macular degeneration, glaucoma, and diabetic retinopathy with agents that eliminate aging cells
Liu et al. Catalpol provides a protective effect on fibrillary Aβ1–42‐induced barrier disruption in an in vitro model of the blood–brain barrier
He et al. Rapamycin removes damaged mitochondria and protects human trabecular meshwork (TM-1) cells from chronic oxidative stress
Shyam et al. Mitochondrial ROS induced lysosomal dysfunction and autophagy impairment in an animal model of congenital hereditary endothelial dystrophy
Zhao et al. Aberrant buildup of all-trans-retinal dimer, a nonpyridinium bisretinoid lipofuscin fluorophore, contributes to the degeneration of the retinal pigment epithelium
WO2018155773A1 (en) Composition, for preventing or treating dry eye syndrome, containing polyethylene glycol and flavonoid nanocomposite as active ingredient
WO2018226058A9 (en) Pharmaceutical composition for preventing or treating neovascular disease, containing collagen type i and pigment epithelium derived factor peptide as active ingredients
Han et al. Antiangiogenic effects of catalpol on rat corneal neovascularization
WO2017007273A1 (en) Composition for treating corneal diseases or conjunctival diseases
Liu et al. Caspase-3 inhibitor Z-DEVD-FMK enhances retinal ganglion cell survival and vision restoration after rabbit traumatic optic nerve injury
WO2015147411A1 (en) Pharmaceutical composition for prophylaxis or treatment of proliferative vitreoretinopathy containing mitochondrial complex i inhibitor as active ingredient
WO2022114906A1 (en) Novel pharmaceutical composition for treating neurodegenerative diseases
Whitebirch et al. Reduced cholecystokinin-expressing interneuron input contributes to disinhibition of the hippocampal CA2 region in a mouse model of temporal lobe epilepsy
KR20100038424A (en) Pirenzepine and derivatives thereof as anti-amyloid agents
Li et al. Trehalose protects motorneuron after brachial plexus root avulsion by activating autophagy and inhibiting apoptosis mediated by the AMPK signaling pathway
IT9020968A1 (en) PHARMACEUTICAL COMPOUND BASED ON AN ANOCYANIDINE FOR THE TREATMENT OF OPHTHALMIC DISEASES
García-Alvarado et al. Otilonium and pinaverium trigger mitochondrial-mediated apoptosis in rat embryo cortical neurons in vitro
Guo et al. Roflumilast attenuates neuroinflammation post retinal ischemia/reperfusion injury by regulating microglia phenotype via the Nrf2/STING/NF-κB pathway
KR20170123502A (en) Pharmaceutical composition for preventing or treating angiogenic diseases comprising collagen and pigemented epithelium derived factor
WO2010008746A1 (en) Pharmaceutical compositions and methods for treating age-related macular degeneration with melatonin analogues
WO2018048046A2 (en) Pharmaceutical composition containing mtor inhibitor for treating macular degeneration
WO2022050431A1 (en) Pharmaceutical composition and health functional food for prevention or treatment of osteoarthritis
WO2023229443A1 (en) Novel peptide and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14887591

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 14887591

Country of ref document: EP

Kind code of ref document: A1