WO2015147276A1 - Optical waveguide device - Google Patents

Optical waveguide device Download PDF

Info

Publication number
WO2015147276A1
WO2015147276A1 PCT/JP2015/059668 JP2015059668W WO2015147276A1 WO 2015147276 A1 WO2015147276 A1 WO 2015147276A1 JP 2015059668 W JP2015059668 W JP 2015059668W WO 2015147276 A1 WO2015147276 A1 WO 2015147276A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
optical
waveguides
optical waveguides
width
Prior art date
Application number
PCT/JP2015/059668
Other languages
French (fr)
Japanese (ja)
Inventor
徳一 宮崎
勝利 近藤
Original Assignee
住友大阪セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友大阪セメント株式会社 filed Critical 住友大阪セメント株式会社
Publication of WO2015147276A1 publication Critical patent/WO2015147276A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections

Definitions

  • the present invention relates to an optical waveguide device, and more particularly to an optical waveguide device provided with an optical waveguide having a junction.
  • optical waveguide devices such as optical modulators or optical switches are often used.
  • an optical waveguide device an optical waveguide is formed on a substrate such as a semiconductor substrate or a substrate having an electrooptic effect such as lithium niobate.
  • the pattern shape of the optical waveguide for example, a branching part where the optical waveguide branches into a plurality of parts, or a combining part where a plurality of optical waveguides join together, such as a Mach-Zehnder type optical waveguide, is used.
  • a branching part where the optical waveguide branches into a plurality of parts, or a combining part where a plurality of optical waveguides join together such as a Mach-Zehnder type optical waveguide.
  • an optical modulator or the like corresponding to a multilevel modulation format or a polarization multiplexing system is widely used together with a digital coherent technology. For this reason, the pattern shape of the optical waveguide is complicated and enlarged as in a configuration in which a plurality of Mach-Zehnder optical waveguides are integrated.
  • the optical waveguide In order to reduce the size of the joining / branching portion, it is conceivable to sharply bend the optical waveguide (decrease the radius of curvature), or increase the angle between the branched optical waveguides or the angle between the joined optical waveguides.
  • the light wave propagating from the optical waveguide into the substrate leaks at the bent portion or the coupling portion of the optical waveguide, and the optical insertion loss of the optical waveguide device increases.
  • Patent Document 1 In order to reduce the size of the joining / branching portion, a structure of an optical waveguide as in Patent Document 1 or 2 has been proposed.
  • an optical waveguide (joining / branching portion) 1, an input / output waveguide 11 that propagates in a single mode, and a pair of branching waveguides that branch from the input / output waveguide are provided.
  • the shape of the branching waveguide is provided with a multimode propagation part 13 in which the width of the optical waveguide is wider than that of the input / output waveguide 11 and a connection part 12 in which the width of the optical waveguide increases from the branching end toward the multimode propagation part.
  • the thickened optical waveguide portion becomes an optical waveguide having a higher order mode larger than the second order.
  • the optical waveguide structure before and after the branch start part is different, for example, if there is a difference in the number of optical waveguides before and after the joint branch part, the electric field distribution before and after the branch start becomes inconsistent, and the higher-order mode Conversion to is likely to occur, and excess loss increases or wavelength dependence of the optical branching ratio occurs.
  • the substrate on which the optical waveguide is formed is thinned to a thickness of 20 ⁇ m or less, for example.
  • confinement of the optical electric field distribution in the cross-sectional lateral direction is weak in a cross-section perpendicular to the light propagation direction.
  • the width of the optical waveguide is widened for that purpose, the optical waveguide condition that a higher order mode is more likely to be generated, and the wavelength dependency of the optical branching ratio at the coupling / branching portion may be a serious problem.
  • the leakage light generated at the junction / branch part especially the leakage light generated between the branch optical waveguides, propagates as unnecessary light in the substrate, and the phenomenon that the unnecessary light recombines with the optical waveguide also occurs. However, this greatly affects the characteristics of the optical waveguide device.
  • the optical waveguide (joining / branching portion) 2 is separated from the multimode waveguide (straight line portion) 23 by using a single mode waveguide 21 as a multimode waveguide 23 by a taper portion 22.
  • a structure including two single mode waveguides (branch waveguides) 24 and 25 arranged as (gap G1) has been proposed. It is also disclosed that the width W1 of the straight portion 23 is set smaller than the width W2 of the interval between the side wall surfaces outside the ends of the two branch waveguides.
  • mode conversion of the optical waveguide occurs in the portion where the optical waveguide is divided.
  • a thin plate when a thin plate is used, not only the waveguide mode to the waveguides 24 and 25 but also the conversion to the slab mode using the substrate as the core layer occurs. There is a problem that the operation of the part becomes unstable.
  • the optical waveguide (joint branching portion) 3 is arranged such that the main waveguide 31 and the two branching waveguides 32 are arranged with a predetermined gap (gap G) therebetween.
  • a configuration for forming the mechanical coupling portion 33 is disclosed. With this configuration, excessive loss at the branch portion is reduced.
  • the length of the portion where the narrow gap (gap G) is formed or the portion where the width of the optical waveguide is narrow is long, and the required optical waveguide pattern accuracy is stably reproduced in the optical waveguide (joint branching portion) 3. It is difficult. Further, when applied to a thin plate, similarly to Patent Document 2, conversion to a slab mode using a substrate as a core layer occurs at the end of the optical waveguide, and there is a problem that the operation of the coupling portion becomes unstable. .
  • the problem to be solved by the present invention is to solve the above-mentioned problems and to provide an optical waveguide device with small optical insertion loss while realizing miniaturization.
  • the optical waveguide device of the present invention has the following technical features.
  • the junction portion includes N optical waveguides.
  • the N optical waveguides are branched to more than N optical waveguides, and the entire N optical waveguides are directly connected to the N optical waveguides and the M optical waveguides.
  • the width W1 is smaller than the entire width W2 of the M optical waveguides, and a discontinuous step is formed on the outer contour of the optical waveguide at the connection position.
  • the merging / branching portion joins N optical waveguides.
  • a single optical waveguide, and then the single optical waveguide is branched into M optical waveguides greater than N.
  • the overall width W1 of the N optical waveguides is It is larger than the width W3 of one optical waveguide, and a discontinuous step is formed on the outer contour of the optical waveguide at the connection position.
  • a branch for removing higher-order mode light is provided upstream of the coupling portion of the optical waveguide in the light propagation direction.
  • An optical waveguide is arranged.
  • the junction portion includes N optical waveguides.
  • the N optical waveguides are merged and branched into more than N optical waveguides, and the entire N optical waveguides are located at a position where the N optical waveguides and the M optical waveguides are directly connected.
  • the width W1 is smaller than the entire width W2 of the M optical waveguides, and a discontinuous step is formed in the outer contour of the optical waveguide at the connection position.
  • the M optical waveguides can secure the width of the single mode waveguide from the branch end, the optical confinement is strong and the branch angle between the optical waveguides (branch optical waveguides) is increased. It is possible to reduce the radius of curvature of the branched optical waveguides, and the like, and a wide angle between the branched optical waveguides can be realized, and the optical waveguide device can be downsized.
  • an optical waveguide device having an optical waveguide formed on a substrate and a junction portion where the optical waveguide branches or joins at least a part of the optical waveguide
  • the junction portion is joined by N optical waveguides.
  • a single optical waveguide, and then the single optical waveguide is branched into M optical waveguides greater than N.
  • the single optical waveguide and the M optical waveguides are connected to each other.
  • the width W3 of the one optical waveguide is smaller than the entire width W2 of the M optical waveguides, and a discontinuous step is formed on the outer contour of the optical waveguide at the connected position. Therefore, similarly to the above-described invention, it is possible to suppress excessive loss at the junction and reduce the size of the optical waveguide device.
  • FIG. It is a figure explaining the junction part disclosed by patent document 1.
  • FIG. It is a figure explaining the junction part disclosed by patent document 2.
  • FIG. It is a figure explaining the junction part disclosed by patent document 3.
  • FIG. It is a figure explaining the structure of the optical waveguide device of this invention.
  • (A) is a plan view of the entire optical waveguide device
  • (b) is an enlarged view of a region indicated by symbol A in (a)
  • (c) is an enlarged view of a region indicated by symbol B in (b).
  • the optical waveguide device of the present invention has an optical waveguide 5 formed on a substrate 4 and an optical waveguide having a junction part where the optical waveguide branches or joins at least a part of the optical waveguide.
  • the merging / branching portion is configured such that N optical waveguides 51 merge and branch to M optical waveguides (53, 54) that are larger than N, and the N optical waveguides and At the position where the M optical waveguides are directly connected, the overall width W1 of the N optical waveguides is smaller than the overall width W2 of the M optical waveguides, and the outer contour of the optical waveguide at the connection position. Is characterized in that discontinuous steps are formed.
  • a substrate used for the optical waveguide device of the present invention for example, a material having an electro-optic effect such as lithium niobate, lithium tantalate, PLZT (lead lanthanum zirconate titanate) can be used. is there. Further, a quartz substrate used for a planar lightwave circuit (PLC), or a material such as a polymer or a semiconductor can be used.
  • a material having an electro-optic effect such as lithium niobate, lithium tantalate, PLZT (lead lanthanum zirconate titanate)
  • PLC planar lightwave circuit
  • the present invention can be particularly preferably applied to an optical waveguide device using a thin plate having a substrate thickness of 20 ⁇ m or less. This is because the thin plate itself functions as a slab type optical waveguide, and confinement by the optical waveguide is weakened.
  • the optical waveguide used in the present invention is formed by a method of forming a portion higher than the refractive index of the substrate on the surface of the substrate, such as a thermal diffusion method using Ti or the proton exchange method, or forming a ridge or rib on the substrate.
  • a method of forming a convex optical waveguide or the like can be employed.
  • a control electrode can be formed along the optical waveguide 5.
  • Control electrodes include various types of electrodes depending on the function or purpose, such as a signal electrode and a ground electrode for applying a modulation signal, a bias electrode for applying a DC voltage, and a switching electrode for switching an optical path. It has been known.
  • the control electrode can be formed by depositing a metal film such as Ti / Au on the substrate by a vapor deposition method or a sputtering method, and patterning it using a photolithographic technique, or a gold plating method.
  • a buffer layer such as a dielectric SiO 2 may be provided on the surface of the substrate after the optical waveguide is formed to suppress the absorption or scattering of light waves by the electrode formed on the upper side of the optical waveguide.
  • FIG. 4A shows an example of a so-called nested optical waveguide in which a sub Mach-Zehnder type waveguide is incorporated in a branching waveguide of the main Mach-Zehnder type waveguide.
  • a portion surrounded by a dotted line indicates a branching portion or a merging portion of the optical waveguide.
  • FIG. 4B is an enlarged view of the dotted area A in FIG. 4A
  • FIG. 4C is an enlarged view of the dotted area B in FIG. 4B.
  • the optical waveguides before and after the junction are axisymmetric, and the number of optical waveguides at the junction is one before branching as shown in FIG.
  • the latter illustrates two Y branches (1 ⁇ 2 branches).
  • the configuration of the branching unit according to the optical waveguide device of the present invention is such that N optical waveguides merge and branch into more than N optical waveguides. Can be applied.
  • the relationship between the number of optical waveguides in the connecting portion and the width of the optical waveguide is important, and the effect of the present invention can be obtained even when the input / output direction of the coupling / branching portion is switched.
  • the width of the optical waveguide is usually set so that the single optical waveguide 51 on the input side is a single mode optical waveguide.
  • the optical waveguide is tapered and thickened as indicated by reference numeral 52.
  • the branch optical waveguide (53, 54) is connected with a gap in order to reduce the influence of pattern accuracy.
  • the optical waveguide width of the minimum curvature radius portion of the bent portion is also shown in FIG.
  • the same optical waveguide width may be prepared.
  • the angle between the branched optical waveguides can be increased, and an optical waveguide device that is smaller and that suppresses light emission due to bending can be provided.
  • the taper-shaped optical waveguide 52 is made too wide, a large structural change occurs with respect to the propagation of light, and loss due to light mode conversion also occurs.
  • the optical waveguide width W1 on the side where the number is small before and after the start of branching is set to the number of optical waveguides.
  • W1 ⁇ W2 the total width of the optical waveguide on the larger side.
  • the entire width W1 of the optical waveguide to be merged and the entire width W2 of the optical waveguide to be branched are discontinuous in the outer contour of the optical waveguide at W1 ⁇ W2.
  • a step is formed. Conventionally, such a step has been considered to cause light wave scattering and cause excessive loss.However, as a result of extensive research, the present inventors have conducted divergent guidance even if such a step exists. As a result, it has been found that securing a wider waveguide width reduces the excess loss, and the present invention has been completed.
  • the Mach-Zehnder type optical waveguide By improving the light confinement at the coupling / branching portion, it is possible to suppress the generation of the leaked light L0 as shown in FIG. As a result, in the Mach-Zehnder type optical waveguide, the element size required for the junction or bending is reduced, and an optical waveguide device excellent in characteristics such as insertion loss and On / Off extinction ratio can be obtained while being small. .
  • FIG. 7 shows another embodiment of the optical waveguide device according to the present invention.
  • By adopting such a structure even when the electric field distribution of light deviates from the center of the optical waveguide due to, for example, fiber connection displacement or bending, variation in the wavelength dependence of the branching ratio can be suppressed. it can.
  • it is more effective when the waveguide substrate is a thin plate of 20 ⁇ m or less.
  • FIG. 8 (b) shows a merging / branching portion (2 ⁇ 3 branches) having two optical waveguides to be merged and three optical waveguides to be branched.
  • the two optical waveguides (61, 62) to be joined are two branch optical waveguides of the Mach-Zehnder type optical waveguide, and the center of the three optical waveguides to be branched is
  • the output optical waveguide 63 and the two optical waveguides (64, 65) sandwiching the output optical waveguide can also be used as a leakage light optical waveguide that guides the leakage light at the junction.
  • the entire width W1 of the optical waveguide on the merging side is made smaller than the entire width W2 of the optical waveguide on the branch side, similarly to the case of the 1 ⁇ 2 branch Y branch. It becomes possible to suppress excessive loss.
  • two (N) optical waveguides (71, 72) merge to form one optical waveguide 73, and then, the one optical waveguide 73 is merged at the joining / branching portion. It is configured to branch into three (M) optical waveguides, which is larger than N.
  • the width W3 of the one optical waveguide is set to the M light guides at a position where the one optical waveguide 73 and the two (M) optical waveguides are directly connected. The width may be set smaller than the entire width W2 of the waveguide, and a discontinuous step may be formed in the outer contour of the optical waveguide at the connection position.
  • the N optical waveguides as a whole are also at a position where the two (N) optical waveguides (71, 72) and the one optical waveguide 73 are directly connected.
  • the width W1 is larger than the width W3 of the single optical waveguide, and an excessive loss can be suppressed by forming a discontinuous step on the outer contour of the optical waveguide at the connection position.
  • the coupling / branching part provided with the branched optical waveguides (55, 56) as shown in FIG. 7 was analyzed by the light propagation method (BPM).
  • FIG. 10 (b) is a joining / branching part according to the present invention, and has a shape as shown in FIG. 10A and 10B, it can be easily understood that leakage light is generated from the branch ends between the branched optical waveguides in the conventional example.
  • the optical confinement effect when the optical waveguide width ratio W1 / W2 was changed was examined from the analysis result by the light propagation method. A certain amount of leakage light suppression effect was confirmed when W1 / W2 was in the range of 0.5 to 0.9. More preferably, it was in the range of 0.6 to 0.8.
  • the ratio W1 / W2 of the width of the optical waveguide By setting the ratio W1 / W2 of the width of the optical waveguide within this range, it is possible to obtain an optical waveguide device in which coupling to unnecessary light or mode conversion at the connection portion is reduced and the loss or branching ratio is more stable. . Also, with respect to the bending waveguide section, it is possible to use an optical waveguide width in which optical confinement of the optical waveguide is high from the connecting section to the minimum bending radius section, so that the propagation loss is smaller and the radiation loss is suppressed. Recombination with the optical waveguide can be prevented.

Abstract

The purpose of the present invention is to provide an optical waveguide device that has little optical insertion loss even while achieving a decrease in size. Provided is an optical waveguide device having optical waveguides (5) formed on a substrate (4), and a merging/branching unit where optical waveguides branch or merge in at least a part of the optical waveguide, wherein: the merging/branching unit is configured so that a number N of optical waveguides (51) merge and then branch into a number M, greater than N, of optical waveguides (53, 54); at a position where the N optical waveguides and the M optical waveguides are directly connected to one another, an overall width (W1) of the N optical waveguides is smaller than an overall width (W2) of the M optical waveguides; and at this connection position, discontinuous stepped differences are formed on the outside contour of the optical waveguides.

Description

光導波路デバイスOptical waveguide device
 本発明は、光導波路デバイスに関し、特に、合分岐部を有する光導波路を備えた光導波路デバイスに関する。 The present invention relates to an optical waveguide device, and more particularly to an optical waveguide device provided with an optical waveguide having a junction.
 光通信又は光計測などの技術分野では、光変調器又は光スイッチなどの光導波路デバイスが多く用いられている。光導波路デバイスでは、ニオブ酸リチウムなどの電気光学効果を有する基板又は半導体基板などの基板に光導波路が形成されている。 In the technical field such as optical communication or optical measurement, optical waveguide devices such as optical modulators or optical switches are often used. In an optical waveguide device, an optical waveguide is formed on a substrate such as a semiconductor substrate or a substrate having an electrooptic effect such as lithium niobate.
 光導波路のパターン形状としては、たとえば、マッハツェンダー型光導波路などのように、光導波路が複数に分岐する分岐部又は、複数の光導波路が合流する合波部が使用される。特に、大容量・高速伝送を実現するために、デジタルコヒーレント技術と共に、多値変調フォーマット又は偏波多重方式に対応した光変調器などが広く使われるようになっている。このため、光導波路のパターン形状は、複数のマッハツェンダー型光導波路を集積した構成などのように、複雑化、大型化している。 As the pattern shape of the optical waveguide, for example, a branching part where the optical waveguide branches into a plurality of parts, or a combining part where a plurality of optical waveguides join together, such as a Mach-Zehnder type optical waveguide, is used. In particular, in order to realize large-capacity and high-speed transmission, an optical modulator or the like corresponding to a multilevel modulation format or a polarization multiplexing system is widely used together with a digital coherent technology. For this reason, the pattern shape of the optical waveguide is complicated and enlarged as in a configuration in which a plurality of Mach-Zehnder optical waveguides are integrated.
 近年では、光通信装置の小型化・高密度実装化の要求に伴い、光導波路デバイスの小型化に対する市場ニーズが高まっている。光導波路デバイスを小型化するには、素子サイズに占める割合が高い、光導波路の分岐部又は合流部、所謂、合分岐部を小型化することが重要となる。 In recent years, with the demand for miniaturization and high-density mounting of optical communication devices, market needs for miniaturization of optical waveguide devices are increasing. In order to reduce the size of the optical waveguide device, it is important to reduce the size of the branching or merging portion of the optical waveguide, that is, the so-called merging / branching portion, which is high in the element size.
 合分岐部を小型化するには、光導波路を急激に曲げ(曲率半径を小さくし)たり、分岐する光導波路間の角度又は合流する光導波路間の角度を大きくするなどが考えられる。しかしながら、このような方法は、光導波路の曲げ部分又は結合部分で、光導波路から基板内に光導波路を伝搬する光波が漏出し、光導波路デバイスの光挿入損失が増加する。 In order to reduce the size of the joining / branching portion, it is conceivable to sharply bend the optical waveguide (decrease the radius of curvature), or increase the angle between the branched optical waveguides or the angle between the joined optical waveguides. However, in such a method, the light wave propagating from the optical waveguide into the substrate leaks at the bent portion or the coupling portion of the optical waveguide, and the optical insertion loss of the optical waveguide device increases.
 合分岐部の小型化のために、特許文献1又は2のような光導波路の構造が提案されている。特許文献1では、図1に示すように、光導波路(合分岐部)1、シングルモード伝搬する入出力導波路11と、この入出力導波路から分岐する一対の分岐導波路とを備えている。分岐導波路の形状は、入出力導波路11よりも光導波路の幅が広いマルチモード伝搬部13と、分岐端からマルチモード伝搬部に向かって光導波路の幅が大きくなる接続部12を備えている。 In order to reduce the size of the joining / branching portion, a structure of an optical waveguide as in Patent Document 1 or 2 has been proposed. In Patent Document 1, as shown in FIG. 1, an optical waveguide (joining / branching portion) 1, an input / output waveguide 11 that propagates in a single mode, and a pair of branching waveguides that branch from the input / output waveguide are provided. . The shape of the branching waveguide is provided with a multimode propagation part 13 in which the width of the optical waveguide is wider than that of the input / output waveguide 11 and a connection part 12 in which the width of the optical waveguide increases from the branching end toward the multimode propagation part. Yes.
 図1のような構造の場合、分岐開始部分(分岐端)に近い曲げ部分で,光導波路の光閉じ込め不足による光の漏洩が発生する。しかも、接続部において、光導波路の延在方向と光導波路の幅が同時に変化するので、光の伝搬に対して大きな構造変化となり、光のモード変換による損失も発生し易くなる。 In the case of the structure as shown in FIG. 1, light leakage occurs due to insufficient light confinement in the optical waveguide at the bent portion near the branch start portion (branch end). In addition, since the extending direction of the optical waveguide and the width of the optical waveguide simultaneously change in the connection portion, a large structural change occurs with respect to light propagation, and loss due to light mode conversion is also likely to occur.
 仮に、分岐開始部分まで入出力導波路11の幅を大きくし、曲げによる放射を抑制する場合には、太くなった光導波路部分が、2次よりも大きい高次モードが存在する光導波路となる。このような場合には、分岐開始部前後の光導波路構造が異なる、例えば、合分岐部の前後で光導波路の数に差異があると、分岐開始前後の電界分布が不整合となり、高次モードへの変換が発生し易く、過剰損失の増加又は光分岐比の波長依存性が発生する。 If the width of the input / output waveguide 11 is increased to the branch start portion and radiation due to bending is suppressed, the thickened optical waveguide portion becomes an optical waveguide having a higher order mode larger than the second order. . In such a case, if the optical waveguide structure before and after the branch start part is different, for example, if there is a difference in the number of optical waveguides before and after the joint branch part, the electric field distribution before and after the branch start becomes inconsistent, and the higher-order mode Conversion to is likely to occur, and excess loss increases or wavelength dependence of the optical branching ratio occurs.
 また、光導波路デバイスの駆動電圧の低下又は広帯域化のために、光導波路を形成する基板を、例えば、20μm以下の厚さにまで薄板化することも行われている。このような薄板を用いた光導波路構造の場合には、光の伝搬方向に垂直な断面において、断面横方向(厚さ方向に垂直な方向)の光電界分布の閉じ込めが弱い。薄板を用いた光導波路の曲げ部分による損失を低減するためには、さらに光導波路の閉じ込めを強くする必要がある。しかし、そのために光導波路の幅を広くすると、高次モードがより発生する光導波路条件になりやすく、また、合分岐部での光分岐比の波長依存性が大きな問題となる場合もある。しかも、薄板構造では、合分岐部で発生した漏洩光、特に分岐光導波路の間に発生した漏洩光が基板中を不要光として伝搬し、不要光が光導波路に再結合するなどの現象も発生し、光導波路デバイスの特性に大きな影響を与えることとなる。 Also, in order to reduce the driving voltage or increase the bandwidth of the optical waveguide device, the substrate on which the optical waveguide is formed is thinned to a thickness of 20 μm or less, for example. In the case of an optical waveguide structure using such a thin plate, confinement of the optical electric field distribution in the cross-sectional lateral direction (direction perpendicular to the thickness direction) is weak in a cross-section perpendicular to the light propagation direction. In order to reduce the loss due to the bent portion of the optical waveguide using a thin plate, it is necessary to further strengthen the confinement of the optical waveguide. However, if the width of the optical waveguide is widened for that purpose, the optical waveguide condition that a higher order mode is more likely to be generated, and the wavelength dependency of the optical branching ratio at the coupling / branching portion may be a serious problem. In addition, in the thin plate structure, the leakage light generated at the junction / branch part, especially the leakage light generated between the branch optical waveguides, propagates as unnecessary light in the substrate, and the phenomenon that the unnecessary light recombines with the optical waveguide also occurs. However, this greatly affects the characteristics of the optical waveguide device.
 特許文献2では、図2に示すように、光導波路(合分岐部)2を、シングルモード導波路21をテーパ部22によりマルチモード導波路23とし、マルチモード導波路(直線部)23から離間(ギャップG1)して配置される2つのシングルモード導波路(分岐導波路)24,25を備えた構造が提案されている。また、直線部23の幅W1を、2つの分岐導波路の端部の外側の側壁面間の間隔の幅W2より小さく設定することも開示されている。 In Patent Document 2, as shown in FIG. 2, the optical waveguide (joining / branching portion) 2 is separated from the multimode waveguide (straight line portion) 23 by using a single mode waveguide 21 as a multimode waveguide 23 by a taper portion 22. A structure including two single mode waveguides (branch waveguides) 24 and 25 arranged as (gap G1) has been proposed. It is also disclosed that the width W1 of the straight portion 23 is set smaller than the width W2 of the interval between the side wall surfaces outside the ends of the two branch waveguides.
 しかしながら、図2のように、光導波路が分断された部分では、光導波路のモード変換が発生する。特に、薄板を用いた場合には、導波路24、25への導波モードだけでなく基板をコア層としたスラブモードへの変換が発生し、過剰損失の増加又はモード間の干渉により合分岐部の動作が不安定になるという問題がある。 However, as shown in FIG. 2, mode conversion of the optical waveguide occurs in the portion where the optical waveguide is divided. In particular, when a thin plate is used, not only the waveguide mode to the waveguides 24 and 25 but also the conversion to the slab mode using the substrate as the core layer occurs. There is a problem that the operation of the part becomes unstable.
 また、特許文献3では、図3に示すように、光導波路(合分岐部)3を、主導波路31と2つの分岐導波路32とを所定の間隙(ギャップG)を隔てて配置し、光学的結合部33を形成する構成が開示されている。この構成により、分岐部における過剰損失の低減を図っている。 In Patent Document 3, as shown in FIG. 3, the optical waveguide (joint branching portion) 3 is arranged such that the main waveguide 31 and the two branching waveguides 32 are arranged with a predetermined gap (gap G) therebetween. A configuration for forming the mechanical coupling portion 33 is disclosed. With this configuration, excessive loss at the branch portion is reduced.
 しかしながら、狭い間隙(ギャップG)を形成する部分又は、光導波路の幅が狭い部分の長さが長く、光導波路(合分岐部)3において、必要となる光導波路パターン精度を安定的に再現することが難しい。また、薄板に適用した場合には、特許文献2と同様に、光導波路端で基板をコア層としたスラブモードへの変換が発生し、合分岐部の動作が不安定になるという問題がある。 However, the length of the portion where the narrow gap (gap G) is formed or the portion where the width of the optical waveguide is narrow is long, and the required optical waveguide pattern accuracy is stably reproduced in the optical waveguide (joint branching portion) 3. It is difficult. Further, when applied to a thin plate, similarly to Patent Document 2, conversion to a slab mode using a substrate as a core layer occurs at the end of the optical waveguide, and there is a problem that the operation of the coupling portion becomes unstable. .
国際公開WO2010/082673号International Publication WO2010 / 082673 特許第3970350号公報Japanese Patent No. 3970350 特開平9-265018号公報Japanese Patent Laid-Open No. 9-265018
 本発明が解決しようとする課題は、上記の問題を解決し、小型化を実現しながら光挿入損失の少ない光導波路デバイスを提供することである。 The problem to be solved by the present invention is to solve the above-mentioned problems and to provide an optical waveguide device with small optical insertion loss while realizing miniaturization.
 上記課題を解決するために、本発明の光導波路デバイスは、以下のような技術的特徴を有する。
(1) 基板に形成された光導波路と、該光導波路の少なくとも一部に光導波路が分岐又は合流する合分岐部を有する光導波路デバイスにおいて、該合分岐部が、N本の光導波路が合流し、N本より多いM本の光導波路に分岐するよう構成されており、前記N本の光導波路と前記M本の光導波路とを直接接続した位置において、前記N本の光導波路の全体の幅W1は、前記M本の光導波路の全体の幅W2より小さく、当該接続位置において光導波路の外側の輪郭には不連続な段差が形成されていることを特徴とする。
In order to solve the above problems, the optical waveguide device of the present invention has the following technical features.
(1) In an optical waveguide device having an optical waveguide formed on a substrate and a junction portion where the optical waveguide branches or joins at least a part of the optical waveguide, the junction portion includes N optical waveguides. The N optical waveguides are branched to more than N optical waveguides, and the entire N optical waveguides are directly connected to the N optical waveguides and the M optical waveguides. The width W1 is smaller than the entire width W2 of the M optical waveguides, and a discontinuous step is formed on the outer contour of the optical waveguide at the connection position.
(2) 基板に形成された光導波路と、該光導波路の少なくとも一部に光導波路が分岐又は合流する合分岐部を有する光導波路デバイスにおいて、該合分岐部が、N本の光導波路が合流し、1本の光導波路となり、その後、前記1本の光導波路がN本より多いM本の光導波路に分岐するよう構成されており、前記1本の光導波路と前記M本の光導波路とを直接接続した位置において、前記1本の光導波路の幅W3は、前記M本の光導波路の全体の幅W2より小さく、当該接続位置において光導波路の外側の輪郭には不連続な段差が形成されていることを特徴とする。 (2) In an optical waveguide device having an optical waveguide formed on a substrate and a merging / branching portion where the optical waveguide diverges or merges with at least a part of the optical waveguide, the merging / branching portion joins N optical waveguides. A single optical waveguide, and then the single optical waveguide is branched into M optical waveguides greater than N. The single optical waveguide, the M optical waveguides, At the position where the optical waveguides are directly connected, the width W3 of the one optical waveguide is smaller than the entire width W2 of the M optical waveguides, and a discontinuous step is formed in the outer contour of the optical waveguide at the connection position. It is characterized by being.
(3) 上記(2)に記載の光導波路デバイスにおいて、前記N本の光導波路と前記1本の光導波路とを直接接続した位置において、前記N本の光導波路の全体の幅W1は、前記1本の光導波路の幅W3より大きく、当該接続位置において光導波路の外側の輪郭には不連続な段差が形成されていることを特徴とする。 (3) In the optical waveguide device according to (2) above, at the position where the N optical waveguides and the one optical waveguide are directly connected, the overall width W1 of the N optical waveguides is It is larger than the width W3 of one optical waveguide, and a discontinuous step is formed on the outer contour of the optical waveguide at the connection position.
(4) 上記(1)乃至(3)のいずれかに記載の光導波路デバイスにおいて、該光導波路の該合分岐部の光伝播方向の上流側には、高次モード光を除去するための分岐光導波路が配置されていることを特徴とする。 (4) In the optical waveguide device according to any one of the above (1) to (3), a branch for removing higher-order mode light is provided upstream of the coupling portion of the optical waveguide in the light propagation direction. An optical waveguide is arranged.
(5) 上記(1)乃至(4)のいずれかに記載の光導波路デバイスにおいて、該基板は、厚みが20μm以下であることを特徴とする。 (5) The optical waveguide device according to any one of (1) to (4), wherein the substrate has a thickness of 20 μm or less.
 本発明により、基板に形成された光導波路と、該光導波路の少なくとも一部に光導波路が分岐又は合流する合分岐部を有する光導波路デバイスにおいて、該合分岐部が、N本の光導波路が合流し、N本より多いM本の光導波路に分岐するよう構成されており、前記N本の光導波路と前記M本の光導波路とを直接接続した位置において、前記N本の光導波路の全体の幅W1は、前記M本の光導波路の全体の幅W2より小さく、当該接続位置において光導波路の外側の輪郭には不連続な段差が形成されているので、M本の光導波路の分岐部から漏出する漏れ光を抑制し、合分岐部における過剰損失の少ない光導波路デバイスが得られる。 According to the present invention, in an optical waveguide device having an optical waveguide formed on a substrate and a junction portion where the optical waveguide branches or joins at least a part of the optical waveguide, the junction portion includes N optical waveguides. The N optical waveguides are merged and branched into more than N optical waveguides, and the entire N optical waveguides are located at a position where the N optical waveguides and the M optical waveguides are directly connected. The width W1 is smaller than the entire width W2 of the M optical waveguides, and a discontinuous step is formed in the outer contour of the optical waveguide at the connection position. Thus, an optical waveguide device can be obtained in which leakage light leaking out of the optical fiber is suppressed and the excess loss at the junction is small.
 しかも、M本の光導波路(分岐光導波路)は分岐端からシングルモード導波路の幅を確保することも可能となるので、光閉じ込めが強く、光導波路(分岐光導波路)間の分岐角度を大きくとること、又は分岐光導波路の曲率半径を小さくすること等が可能となり、分岐光導波路間の広角化が実現でき、光導波路デバイスの小型化も実現することができる。 In addition, since the M optical waveguides (branch optical waveguides) can secure the width of the single mode waveguide from the branch end, the optical confinement is strong and the branch angle between the optical waveguides (branch optical waveguides) is increased. It is possible to reduce the radius of curvature of the branched optical waveguides, and the like, and a wide angle between the branched optical waveguides can be realized, and the optical waveguide device can be downsized.
 また、基板に形成された光導波路と、該光導波路の少なくとも一部に光導波路が分岐又は合流する合分岐部を有する光導波路デバイスにおいて、該合分岐部が、N本の光導波路が合流し、1本の光導波路となり、その後、前記1本の光導波路がN本より多いM本の光導波路に分岐するよう構成されており、前記1本の光導波路と前記M本の光導波路とを直接接続した位置において、前記1本の光導波路の幅W3は、前記M本の光導波路の全体の幅W2より小さく、当該接続位置において光導波路の外側の輪郭には不連続な段差が形成されているので、上述した発明と同様に、合分岐部での過剰損失を抑制し、光導波路デバイスの小型化も併せて実現することができる。 Further, in an optical waveguide device having an optical waveguide formed on a substrate and a junction portion where the optical waveguide branches or joins at least a part of the optical waveguide, the junction portion is joined by N optical waveguides. A single optical waveguide, and then the single optical waveguide is branched into M optical waveguides greater than N. The single optical waveguide and the M optical waveguides are connected to each other. At the directly connected position, the width W3 of the one optical waveguide is smaller than the entire width W2 of the M optical waveguides, and a discontinuous step is formed on the outer contour of the optical waveguide at the connected position. Therefore, similarly to the above-described invention, it is possible to suppress excessive loss at the junction and reduce the size of the optical waveguide device.
特許文献1に開示された合分岐部を説明する図である。It is a figure explaining the junction part disclosed by patent document 1. FIG. 特許文献2に開示された合分岐部を説明する図である。It is a figure explaining the junction part disclosed by patent document 2. FIG. 特許文献3に開示された合分岐部を説明する図である。It is a figure explaining the junction part disclosed by patent document 3. FIG. 本発明の光導波路デバイスの構成を説明する図である。(a)は光導波路デバイス全体の平面図、(b)は(a)の符号Aの領域の拡大図、(c)は(b)の符号Bの領域の拡大図である。It is a figure explaining the structure of the optical waveguide device of this invention. (A) is a plan view of the entire optical waveguide device, (b) is an enlarged view of a region indicated by symbol A in (a), and (c) is an enlarged view of a region indicated by symbol B in (b). 本発明の光導波路デバイスにおける合分岐部の接続部分を拡大する図である。It is a figure which expands the connection part of the junction part in the optical waveguide device of this invention. 本発明の光導波路デバイスにおける光波の電界分布を説明する図である。It is a figure explaining the electric field distribution of the light wave in the optical waveguide device of this invention. 本発明の光導波路デバイスの応用例を説明する図であり、合分岐部の前段に高次モード光除去手段を設けた例である。It is a figure explaining the application example of the optical waveguide device of this invention, and is an example which provided the high-order mode light removal means in the front | former stage of the junction part. 2本の光導波路を合流し、3本の光導波路に分岐する例を説明する図である。(a)はマッハツェンダー型光導波路の全体を示す図であり、(b)は(a)における合流部Cの拡大図である。It is a figure explaining the example which joins two optical waveguides and branches to three optical waveguides. (A) is a figure which shows the whole Mach-Zehnder type | mold optical waveguide, (b) is an enlarged view of the junction C in (a). 2本の光導波路と3本の光導波路との間に1本の光導波路(接続部)を設けた例を説明する図である。It is a figure explaining the example which provided one optical waveguide (connection part) between two optical waveguides and three optical waveguides. 図7の応用例を用いて、従来例(a)と本発明(b)において、光伝搬法(BPM)による解析を行った結果を説明する図である。It is a figure explaining the result of having analyzed by the light propagation method (BPM) in the prior art example (a) and this invention (b) using the application example of FIG.
 以下、本発明について好適例を用いて詳細に説明する。
 本発明の光導波路デバイスは、図4乃至6に示すように、基板4に形成された光導波路5と、該光導波路の少なくとも一部に光導波路が分岐又は合流する合分岐部を有する光導波路デバイスにおいて、該合分岐部が、N本の光導波路51が合流し、N本より多いM本の光導波路(53,54)に分岐するよう構成されており、前記N本の光導波路と前記M本の光導波路とを直接接続した位置において、前記N本の光導波路の全体の幅W1は、前記M本の光導波路の全体の幅W2より小さく、当該接続位置において光導波路の外側の輪郭には不連続な段差が形成されていることを特徴とする。
Hereinafter, the present invention will be described in detail using preferred examples.
As shown in FIGS. 4 to 6, the optical waveguide device of the present invention has an optical waveguide 5 formed on a substrate 4 and an optical waveguide having a junction part where the optical waveguide branches or joins at least a part of the optical waveguide. In the device, the merging / branching portion is configured such that N optical waveguides 51 merge and branch to M optical waveguides (53, 54) that are larger than N, and the N optical waveguides and At the position where the M optical waveguides are directly connected, the overall width W1 of the N optical waveguides is smaller than the overall width W2 of the M optical waveguides, and the outer contour of the optical waveguide at the connection position. Is characterized in that discontinuous steps are formed.
 本発明の光導波路デバイスに使用される基板としては、例えばニオブ酸リチウム、タンタル酸リチウム、PLZT(ジルコン酸チタン酸鉛ランタン)等のように、電気光学効果を有する材料を利用することが可能である。また、プレーナ光波回路(PLC)に用いられる石英系基板又は、ポリマー、半導体などの材料も利用することが可能である。 As a substrate used for the optical waveguide device of the present invention, for example, a material having an electro-optic effect such as lithium niobate, lithium tantalate, PLZT (lead lanthanum zirconate titanate) can be used. is there. Further, a quartz substrate used for a planar lightwave circuit (PLC), or a material such as a polymer or a semiconductor can be used.
 また、本発明は、基板の厚さが20μm以下の薄板を用いた光導波路デバイスに対しては、特に好適に適用することが可能である。これは、薄板自体がスラブ型の光導波路として機能し、光導波路による閉じ込めが弱くなるためである。 In addition, the present invention can be particularly preferably applied to an optical waveguide device using a thin plate having a substrate thickness of 20 μm or less. This is because the thin plate itself functions as a slab type optical waveguide, and confinement by the optical waveguide is weakened.
 本発明で利用する光導波路の形成は、Tiなどを用いた熱拡散法又は、プロトン交換法などで、基板表面に基板の屈折率より高い部分を形成する方法又は、基板にリッジ又はリブを形成し、凸部状の光導波路を形成する方法等を採用することができる。 The optical waveguide used in the present invention is formed by a method of forming a portion higher than the refractive index of the substrate on the surface of the substrate, such as a thermal diffusion method using Ti or the proton exchange method, or forming a ridge or rib on the substrate. In addition, a method of forming a convex optical waveguide or the like can be employed.
 図4の中では、図示していないが、光導波路5に沿って、制御電極を形成することが可能である。制御電極は、例えば、変調信号を印加するための信号電極と接地電極又は、DC電圧を印加するためのバイアス用電極、光路切替を行うためのスイッチング電極など、機能又は目的に応じた各種のものが知られている。制御電極は、基板上に、Ti・Auなどの金属膜を蒸着法又はスパッタリング法により成膜し、フォトリソフラフィー技術を用いてパターニングしたり、金メッキ法などにより形成することが可能である。さらに、必要に応じて光導波路形成後の基板表面に誘電体SiO等のバッファ層を設け、光導波路の上側に形成した電極による光波の吸収又は散乱を抑制することも可能である。 Although not shown in FIG. 4, a control electrode can be formed along the optical waveguide 5. Control electrodes include various types of electrodes depending on the function or purpose, such as a signal electrode and a ground electrode for applying a modulation signal, a bias electrode for applying a DC voltage, and a switching electrode for switching an optical path. It has been known. The control electrode can be formed by depositing a metal film such as Ti / Au on the substrate by a vapor deposition method or a sputtering method, and patterning it using a photolithographic technique, or a gold plating method. Further, if necessary, a buffer layer such as a dielectric SiO 2 may be provided on the surface of the substrate after the optical waveguide is formed to suppress the absorption or scattering of light waves by the electrode formed on the upper side of the optical waveguide.
 本発明の光導波路デバイスの特徴は、図4(a)~(c)に示す、光導波路の合分岐部の形状にある。図4(a)は、主マッハツェンダー型導波路の分岐導波路に副マッハツェンダー型導波路を組み込んだ、所謂、ネスト型の光導波路の例を示している。点線で囲んでいる部分は、光導波路の分岐部又は合流部を示している。図4(b)は、図4(a)の点線領域Aの拡大図であり、図4(c)は、図4(b)の点線領域Bの拡大図である。 The characteristics of the optical waveguide device of the present invention lie in the shape of the coupling portion of the optical waveguide shown in FIGS. 4 (a) to 4 (c). FIG. 4A shows an example of a so-called nested optical waveguide in which a sub Mach-Zehnder type waveguide is incorporated in a branching waveguide of the main Mach-Zehnder type waveguide. A portion surrounded by a dotted line indicates a branching portion or a merging portion of the optical waveguide. FIG. 4B is an enlarged view of the dotted area A in FIG. 4A, and FIG. 4C is an enlarged view of the dotted area B in FIG. 4B.
 本発明の一態様の光導波路デバイスでは、合分岐部前後の光導波路が線対称で、合分岐部の光導波路の本数は、図4(b)に示すように、分岐前が1本、分岐後が2本のY分岐(1×2分岐)を例示している。後述するように、本発明の光導波路デバイスに係る合分岐部の構成は、N本の光導波路が合流し、N本より多いM本の光導波路に分岐するような合分岐部に対して、適用することができる。また、本発明は接続部の光導波路本数の大小と光導波路幅との関係が重要であり、合分岐部の入出力方向が入れ替わった場合においても本発明の効果を得ることができる。 In the optical waveguide device according to one aspect of the present invention, the optical waveguides before and after the junction are axisymmetric, and the number of optical waveguides at the junction is one before branching as shown in FIG. The latter illustrates two Y branches (1 × 2 branches). As will be described later, the configuration of the branching unit according to the optical waveguide device of the present invention is such that N optical waveguides merge and branch into more than N optical waveguides. Can be applied. Further, in the present invention, the relationship between the number of optical waveguides in the connecting portion and the width of the optical waveguide is important, and the effect of the present invention can be obtained even when the input / output direction of the coupling / branching portion is switched.
 図4(b)に示すように、入力側の単独の光導波路51は、通常、シングルモード光導波路となるように光導波路の幅が設定される。その幅から接続部(図4(c)の接続位置)での電界の不連続を減少させるために、符号52に示すように、光導波路をテーパ状に太くする。分岐光導波路(53,54)側の接続部では、パターン精度の影響を少なくするために、分岐光導波路(53,54)間に間隙をもって接続される。 As shown in FIG. 4B, the width of the optical waveguide is usually set so that the single optical waveguide 51 on the input side is a single mode optical waveguide. In order to reduce the discontinuity of the electric field at the connection portion (connection position in FIG. 4C) from the width, the optical waveguide is tapered and thickened as indicated by reference numeral 52. In the connecting portion on the branch optical waveguide (53, 54) side, the branch optical waveguide (53, 54) is connected with a gap in order to reduce the influence of pattern accuracy.
 また、その際に、2分岐側の曲げ部での損失を低減させるので、個々の分岐光導波路に対しても、図4(b)のように、曲げ部分の最小曲率半径部の光導波路幅と同一の光導波路幅を用意してもよい。これにより分岐光導波路間の広角化を行うことができ、より小型で、曲げによる光の放射が抑制された光導波路デバイスを提供できる。 At this time, since the loss at the bent portion on the two branch side is reduced, the optical waveguide width of the minimum curvature radius portion of the bent portion is also shown in FIG. The same optical waveguide width may be prepared. As a result, the angle between the branched optical waveguides can be increased, and an optical waveguide device that is smaller and that suppresses light emission due to bending can be provided.
 テーパ形状の光導波路52は、幅を広くし過ぎると、光の伝搬に対して大きな構造変化となり、光のモード変換による損失も発生する。本発明の一態様では、図4(c)及び図5に示すように、接続位置における光導波路の幅の関係に関しては、分岐開始前後の本数の少ない側の光導波路幅W1を光導波路本数が多い側の光導波路の全幅をW2とすると、W1<W2となるように設定している。これにより合分岐部の接続前後の光電界分布の整合が高くなり、損失又は分岐比の波長依存性を低減することができる。図5及び図6に伝搬する光波の電界分布を符号L1~L5で模式的に図示している。 If the taper-shaped optical waveguide 52 is made too wide, a large structural change occurs with respect to the propagation of light, and loss due to light mode conversion also occurs. In one aspect of the present invention, as shown in FIG. 4C and FIG. 5, regarding the relationship of the width of the optical waveguide at the connection position, the optical waveguide width W1 on the side where the number is small before and after the start of branching is set to the number of optical waveguides. When the total width of the optical waveguide on the larger side is W2, W1 <W2. Thereby, the matching of the optical electric field distribution before and after the connection of the coupling / branching portion is increased, and the wavelength dependence of the loss or the branching ratio can be reduced. The electric field distribution of the light wave propagating in FIGS. 5 and 6 is schematically shown by reference numerals L1 to L5.
 本発明に係る合分岐部では、合流する光導波路の全体の幅W1と、分岐する光導波路の全体の幅W2が、W1<W2として、当該接続位置において光導波路の外側の輪郭には不連続な段差を形成している。従来は、このような段差は光波の散乱を誘発し、過剰損失の発生原因と考えられていたが、本発明者らは鋭意研究を重ねた結果、このような段差があっても、分岐導波路の幅をより広く確保する方が、結果として、過剰損失を低減することを見出し、本発明を完成させたものである。 In the junction / branch portion according to the present invention, the entire width W1 of the optical waveguide to be merged and the entire width W2 of the optical waveguide to be branched are discontinuous in the outer contour of the optical waveguide at W1 <W2. A step is formed. Conventionally, such a step has been considered to cause light wave scattering and cause excessive loss.However, as a result of extensive research, the present inventors have conducted divergent guidance even if such a step exists. As a result, it has been found that securing a wider waveguide width reduces the excess loss, and the present invention has been completed.
 合分岐部における光閉じ込めを改善することで、図6に示すような漏洩光L0の発生を抑制できる。その結果、マッハツェンダー型光導波路において、合分岐部又は曲げに要する素子サイズが小さくなり、小型でありながら、挿入損失及びOn/Off消光比などの特性が優れた光導波路デバイスを得ることができる。 By improving the light confinement at the coupling / branching portion, it is possible to suppress the generation of the leaked light L0 as shown in FIG. As a result, in the Mach-Zehnder type optical waveguide, the element size required for the junction or bending is reduced, and an optical waveguide device excellent in characteristics such as insertion loss and On / Off extinction ratio can be obtained while being small. .
 図7は、本発明に係る光導波路デバイスの別の実施例で、合分岐部(51~54)の光伝搬方向の上流側(光導波路50)には、分岐光導波路(55,56)が配置されている例である。この分岐光導波路(55,56)を設けることで、高次モード光が、合分岐部に入ることを防止することが可能となる。このような構造を採用することで、例えばファイバ接続のずれ又は、曲げなどにより、光の電界分布が光導波路の中心からずれた場合においても、分岐比の波長依存性のばらつきを抑制することができる。特に、導波路基板が20μm以下の薄板である場合にはより効果がある。当然、合分岐部の形状は、図5等に示した形状を採用している。 FIG. 7 shows another embodiment of the optical waveguide device according to the present invention. On the upstream side (optical waveguide 50) in the light propagation direction of the coupling portions (51 to 54), there are branched optical waveguides (55, 56). This is an example of arrangement. By providing the branched optical waveguides (55, 56), it is possible to prevent higher-order mode light from entering the coupling / branching portion. By adopting such a structure, even when the electric field distribution of light deviates from the center of the optical waveguide due to, for example, fiber connection displacement or bending, variation in the wavelength dependence of the branching ratio can be suppressed. it can. In particular, it is more effective when the waveguide substrate is a thin plate of 20 μm or less. Naturally, the shape shown in FIG.
 図8(b)は、合流する光導波路が2本で、分岐する光導波路が3本の合分岐部(2×3分岐)を示す。例えば、図8(a)に示すように、合流する2つの光導波路(61,62)が、マッハツェンダー型光導波路の2つの分岐光導波路であり、分岐する3つの光導波路の内、中央が出力用光導波路63、その出力用光導波路を挟む2つの光導波路(64,65)は、合流部の漏洩光を導波する漏洩光用光導波路とすることもできる。 FIG. 8 (b) shows a merging / branching portion (2 × 3 branches) having two optical waveguides to be merged and three optical waveguides to be branched. For example, as shown in FIG. 8A, the two optical waveguides (61, 62) to be joined are two branch optical waveguides of the Mach-Zehnder type optical waveguide, and the center of the three optical waveguides to be branched is The output optical waveguide 63 and the two optical waveguides (64, 65) sandwiching the output optical waveguide can also be used as a leakage light optical waveguide that guides the leakage light at the junction.
 図8のような場合にも、合流側の光導波路の全体の幅W1を、分岐側の光導波路の全体の幅W2よりも小さくすることで、1×2分岐のY分岐の場合と同様に、過剰損失を抑制することが可能となる。 In the case of FIG. 8 as well, the entire width W1 of the optical waveguide on the merging side is made smaller than the entire width W2 of the optical waveguide on the branch side, similarly to the case of the 1 × 2 branch Y branch. It becomes possible to suppress excessive loss.
 さらに、図9に示すように、合分岐部が、2本(N本)の光導波路(71,72)が合流し、1本の光導波路73となり、その後、前記1本の光導波路73がN本より多い3本(M本)の光導波路に分岐するよう構成している。過剰損失を抑制するには、前記1本の光導波路73と前記2本(M本)の光導波路とを直接接続した位置において、前記1本の光導波路の幅W3は、前記M本の光導波路の全体の幅W2より小さく設定し、当該接続位置において光導波路の外側の輪郭には不連続な段差が形成してもよい。 Further, as shown in FIG. 9, two (N) optical waveguides (71, 72) merge to form one optical waveguide 73, and then, the one optical waveguide 73 is merged at the joining / branching portion. It is configured to branch into three (M) optical waveguides, which is larger than N. In order to suppress the excessive loss, the width W3 of the one optical waveguide is set to the M light guides at a position where the one optical waveguide 73 and the two (M) optical waveguides are directly connected. The width may be set smaller than the entire width W2 of the waveguide, and a discontinuous step may be formed in the outer contour of the optical waveguide at the connection position.
 さらに、図9の合分岐部では、前記2本(N本)の光導波路(71,72)と前記1本の光導波路73とを直接接続した位置においても、前記N本の光導波路の全体の幅W1は、前記1本の光導波路の幅W3より大きく、当該接続位置において光導波路の外側の輪郭には不連続な段差を形成することで、過剰損失を抑制することができる。 Further, in the coupling / branching portion of FIG. 9, the N optical waveguides as a whole are also at a position where the two (N) optical waveguides (71, 72) and the one optical waveguide 73 are directly connected. The width W1 is larger than the width W3 of the single optical waveguide, and an excessive loss can be suppressed by forming a discontinuous step on the outer contour of the optical waveguide at the connection position.
 本発明に係る合分岐部の効果を確認するため、図7のような分岐光導波路(55,56)を前段に備えた合分岐部について、光伝搬法(BPM)による解析を行った。そのシミュレーション結果を図10に示す。図10(a)は、従来例であり、合分岐部の接続位置における光導波路の幅をW1=W2とし、光導波路の外側の輪郭は連続的に接続されている。 In order to confirm the effect of the coupling / branching part according to the present invention, the coupling / branching part provided with the branched optical waveguides (55, 56) as shown in FIG. 7 was analyzed by the light propagation method (BPM). The simulation result is shown in FIG. FIG. 10A shows a conventional example, where the width of the optical waveguide at the connection position of the junction is W1 = W2, and the outer contour of the optical waveguide is continuously connected.
 これに対し、図10(b)は、本発明に係る合分岐部であり、図5のような形状となっている。図10(a)と(b)とを対比すると、従来例の方が、分岐光導波路間の分岐端から漏洩光が発生していることが容易に理解される。 On the other hand, FIG. 10 (b) is a joining / branching part according to the present invention, and has a shape as shown in FIG. 10A and 10B, it can be easily understood that leakage light is generated from the branch ends between the branched optical waveguides in the conventional example.
 さらに、光伝搬法による解析結果から、光導波路の幅の比W1/W2を変化させた場合の光閉じ込め効果を調べた。W1/W2が0.5~0.9の範囲である程度の漏洩光の抑制効果が確認できた。より好ましくは、0.6~0.8の範囲であった。 Furthermore, the optical confinement effect when the optical waveguide width ratio W1 / W2 was changed was examined from the analysis result by the light propagation method. A certain amount of leakage light suppression effect was confirmed when W1 / W2 was in the range of 0.5 to 0.9. More preferably, it was in the range of 0.6 to 0.8.
 光導波路の幅の比W1/W2をこの範囲に設定することで、接続部での不要光への結合又はモード変換を減少させ、損失又は分岐比がより安定した光導波路デバイスを得ることができる。また、曲げ導波路部についても、接続部から最小曲げ半径部にかけて、光導波路の光閉じ込めが高い光導波路幅を用いることが可能となり、より伝搬損失が小さく、放射損失も抑制されるので、後段の光導波路との再結合を防ぐことができる。 By setting the ratio W1 / W2 of the width of the optical waveguide within this range, it is possible to obtain an optical waveguide device in which coupling to unnecessary light or mode conversion at the connection portion is reduced and the loss or branching ratio is more stable. . Also, with respect to the bending waveguide section, it is possible to use an optical waveguide width in which optical confinement of the optical waveguide is high from the connecting section to the minimum bending radius section, so that the propagation loss is smaller and the radiation loss is suppressed. Recombination with the optical waveguide can be prevented.
 本発明によれば、小型化を実現しながら光挿入損失の少ない光導波路デバイスを提供することが可能になる。 According to the present invention, it is possible to provide an optical waveguide device with small optical insertion loss while realizing miniaturization.
4 基板
5,50~74 光導波路
6,7 合分岐部
4 Substrate 5, 50 to 74 Optical waveguide 6, 7 Joint branch

Claims (5)

  1.  基板に形成された光導波路と、該光導波路の少なくとも一部に光導波路が分岐又は合流する合分岐部を有する光導波路デバイスにおいて、
     該合分岐部が、N本の光導波路が合流し、N本より多いM本の光導波路に分岐するよう構成されており、
     前記N本の光導波路と前記M本の光導波路とを直接接続した位置において、前記N本の光導波路の全体の幅W1は、前記M本の光導波路の全体の幅W2より小さく、当該接続位置において光導波路の外側の輪郭には不連続な段差が形成されていることを特徴とする光導波路デバイス。
    In an optical waveguide device having an optical waveguide formed on a substrate, and a junction part where the optical waveguide branches or merges in at least a part of the optical waveguide,
    The merging / branching portion is configured such that N optical waveguides merge and branch into M optical waveguides greater than N,
    At the position where the N optical waveguides and the M optical waveguides are directly connected, the overall width W1 of the N optical waveguides is smaller than the overall width W2 of the M optical waveguides. An optical waveguide device, wherein a discontinuous step is formed in the outer contour of the optical waveguide at a position.
  2.  基板に形成された光導波路と、該光導波路の少なくとも一部に光導波路が分岐又は合流する合分岐部を有する光導波路デバイスにおいて、
     該合分岐部が、N本の光導波路が合流し、1本の光導波路となり、その後、前記1本の光導波路がN本より多いM本の光導波路に分岐するよう構成されており、
     前記1本の光導波路と前記M本の光導波路とを直接接続した位置において、前記1本の光導波路の幅W3は、前記M本の光導波路の全体の幅W2より小さく、当該接続位置において光導波路の外側の輪郭には不連続な段差が形成されていることを特徴とする光導波路デバイス。
    In an optical waveguide device having an optical waveguide formed on a substrate, and a junction part where the optical waveguide branches or merges in at least a part of the optical waveguide,
    The coupling / branching unit is configured such that N optical waveguides merge to form one optical waveguide, and then the one optical waveguide branches into M optical waveguides greater than N.
    At the position where the one optical waveguide and the M optical waveguides are directly connected, the width W3 of the one optical waveguide is smaller than the entire width W2 of the M optical waveguides, An optical waveguide device characterized in that a discontinuous step is formed in the outer contour of the optical waveguide.
  3.  請求項2に記載の光導波路デバイスにおいて、前記N本の光導波路と前記1本の光導波路とを直接接続した位置において、前記N本の光導波路の全体の幅W1は、前記1本の光導波路の幅W3より大きく、当該接続位置において光導波路の外側の輪郭には不連続な段差が形成されていることを特徴とする光導波路デバイス。 3. The optical waveguide device according to claim 2, wherein an overall width W1 of the N optical waveguides at the position where the N optical waveguides and the one optical waveguide are directly connected is the one optical waveguide device. An optical waveguide device having a width greater than the width W3 of the waveguide and having a discontinuous step formed on the outer contour of the optical waveguide at the connection position.
  4.  請求項1乃至3のいずれかに記載の光導波路デバイスにおいて、該光導波路の該合分岐部の光伝播方向の上流側には、高次モード光を除去するための分岐光導波路が配置されていることを特徴とする光導波路デバイス。 4. The optical waveguide device according to claim 1, wherein a branching optical waveguide for removing higher-order mode light is disposed upstream of the coupling portion of the optical waveguide in the light propagation direction. An optical waveguide device characterized by comprising:
  5.  請求項1乃至4のいずれかに記載の光導波路デバイスにおいて、該基板は、厚みが20μm以下であることを特徴とする光導波路デバイス。 5. The optical waveguide device according to claim 1, wherein the substrate has a thickness of 20 μm or less.
PCT/JP2015/059668 2014-03-28 2015-03-27 Optical waveguide device WO2015147276A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014069187A JP6084177B2 (en) 2014-03-28 2014-03-28 Optical waveguide device
JP2014-069187 2014-03-28

Publications (1)

Publication Number Publication Date
WO2015147276A1 true WO2015147276A1 (en) 2015-10-01

Family

ID=54195780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059668 WO2015147276A1 (en) 2014-03-28 2015-03-27 Optical waveguide device

Country Status (2)

Country Link
JP (1) JP6084177B2 (en)
WO (1) WO2015147276A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7205101B2 (en) * 2018-07-30 2023-01-17 住友大阪セメント株式会社 optical modulator
JP6942992B2 (en) 2017-03-30 2021-09-29 住友大阪セメント株式会社 Optical waveguide element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0933740A (en) * 1995-07-20 1997-02-07 Hitachi Cable Ltd Y-branch waveguide type optical tap
JP2008089875A (en) * 2006-09-29 2008-04-17 Sumitomo Osaka Cement Co Ltd Optical waveguide element
JP2011018072A (en) * 2004-04-12 2011-01-27 Hitachi Chem Co Ltd Optical waveguide structure
JP2011186258A (en) * 2010-03-10 2011-09-22 Sumitomo Osaka Cement Co Ltd Optical waveguide element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1239311A1 (en) * 2001-03-05 2002-09-11 Corning O.T.I. S.p.A. Integrated optical device comprising an adiabatic junction

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0933740A (en) * 1995-07-20 1997-02-07 Hitachi Cable Ltd Y-branch waveguide type optical tap
JP2011018072A (en) * 2004-04-12 2011-01-27 Hitachi Chem Co Ltd Optical waveguide structure
JP2008089875A (en) * 2006-09-29 2008-04-17 Sumitomo Osaka Cement Co Ltd Optical waveguide element
JP2011186258A (en) * 2010-03-10 2011-09-22 Sumitomo Osaka Cement Co Ltd Optical waveguide element

Also Published As

Publication number Publication date
JP2015191140A (en) 2015-11-02
JP6084177B2 (en) 2017-02-22

Similar Documents

Publication Publication Date Title
JP6137023B2 (en) Optical waveguide device
JP4745415B2 (en) Light modulator
US7079732B2 (en) Optical device
US7386198B2 (en) Optical waveguide device
EP2624029B1 (en) Optical waveguide element
JP5092573B2 (en) Optical waveguide device
JP5212475B2 (en) Tunable optical transmitter
JP2011186258A (en) Optical waveguide element
JP2008064936A (en) Optical modulator
JP2005221999A (en) Optical modulator and optical modulator array
WO2014157456A1 (en) Optical modulator
CN110780380A (en) Optical waveguide element
JP5729075B2 (en) Optical waveguide device
US5255334A (en) Directional coupler type optical device and a driving method therefor
WO2015147276A1 (en) Optical waveguide device
JP6260631B2 (en) Optical waveguide device
US7184631B2 (en) Optical device
JP5467414B2 (en) Optical functional waveguide
JP4468397B2 (en) Optical waveguide device
JP7347300B2 (en) light modulator
US7373025B2 (en) Waveguide-type optical device
JP5505230B2 (en) Optical semiconductor device
JP4756011B2 (en) Optical device
JP3897231B2 (en) Optical splitter
JP2007094440A (en) Optical waveguide, optical device, and method for manufacturing the optical waveguide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15770396

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15770396

Country of ref document: EP

Kind code of ref document: A1