WO2015147117A1 - Ultraviolet light-absorbing cosmetic material, cosmetic containing same, and method for blocking ultraviolet light - Google Patents

Ultraviolet light-absorbing cosmetic material, cosmetic containing same, and method for blocking ultraviolet light Download PDF

Info

Publication number
WO2015147117A1
WO2015147117A1 PCT/JP2015/059270 JP2015059270W WO2015147117A1 WO 2015147117 A1 WO2015147117 A1 WO 2015147117A1 JP 2015059270 W JP2015059270 W JP 2015059270W WO 2015147117 A1 WO2015147117 A1 WO 2015147117A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultraviolet
absorbing
cosmetic material
coumarin
light
Prior art date
Application number
PCT/JP2015/059270
Other languages
French (fr)
Japanese (ja)
Inventor
裕 辻内
Original Assignee
国立大学法人秋田大学
裕 辻内
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人秋田大学, 裕 辻内 filed Critical 国立大学法人秋田大学
Priority to JP2016510458A priority Critical patent/JPWO2015147117A1/en
Publication of WO2015147117A1 publication Critical patent/WO2015147117A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/44Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • A61K8/4973Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with oxygen as the only hetero atom
    • A61K8/498Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with oxygen as the only hetero atom having 6-membered rings or their condensed derivatives, e.g. coumarin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations

Definitions

  • the present invention relates to a UV-absorbing cosmetic material, a cosmetic containing the UV-absorbing cosmetic material, and a UV-blocking method, and in particular, has UV-blocking and visible light enhancing effects, low irritation, and stability when used in cosmetics
  • the present invention relates to an excellent UV-absorbing cosmetic material, a cosmetic containing the UV-absorbing cosmetic material, and an ultraviolet blocking method.
  • sunscreen cosmetics have become a necessity in daily life as well as in summer leisure, and are widely used not only for women but also for men and infants.
  • sunscreen cosmetics are required to have a higher UV protection effect.
  • high SPF sunscreen cosmetics are required, and more UV absorbers and UV scattering agents are added.
  • organic ultraviolet absorbers such as 2-ethylhexyl paramethoxycinnamate and t-butylmethoxydibenzoylmethane have been used.
  • organic ultraviolet absorbers have caused skin problems such as causing inflammation when in contact with the skin.
  • the organic ultraviolet absorber has a strong polarity and is hardly soluble, there is a problem that crystals are formed when used in cosmetics and the stability is poor.
  • Patent Documents 1 to 4 disclose techniques for preventing skin troubles caused by an organic ultraviolet absorber by encapsulating the organic ultraviolet absorber in a capsule.
  • Patent Document 5 discloses a technique for preventing crystallization of an organic ultraviolet absorbent by blending an organic ultraviolet absorbent and polyoxyethylene hydrogenated castor oil.
  • titanium oxide, zinc oxide and the like have been used as inorganic ultraviolet scattering agents. These inorganic ultraviolet scattering agents have a problem that they aggregate and cannot provide a sufficient ultraviolet ray preventing effect, or have a sticky feel when a sunscreen cosmetic is applied.
  • Patent Documents 6 and 7 disclose a technique for preventing aggregation by improving the dispersion state of the inorganic ultraviolet scattering agent.
  • Patent Documents 8 and 9 disclose a technique for improving the stickiness of an inorganic ultraviolet scattering agent by blending specific components.
  • Patent Documents 10 to 12 disclose fluorescent compounds having a light absorption band in the wavelength range of ultraviolet to visible light using coumarin dyes as raw materials, and the use of such compounds is also considered.
  • JP 2012-136453 A JP 2009-167168 A JP 2009-23955 A JP 2001-106612 A JP 2013-47206 A JP 2013-221148 A JP 2013-203708 A JP 2013-224276 A JP2013-203716A JP 2008-195567 A JP 2009-179623 A JP 2012-25870 A
  • organic ultraviolet absorbers convert ultraviolet rays into heat energy, there is also a problem in that they may cause skin trouble by giving hot flashes to the skin.
  • the technologies described in Patent Documents 1 to 4 include an organic ultraviolet absorber in the capsule, the organic ultraviolet light in the capsule is rubbed against the skin when applying the cosmetic. If the absorbent is discharged, it may cause skin troubles. Further, if the capsule coating is made strong so that the capsules are not broken even when the cosmetics are rubbed against the skin, the feel during use may be deteriorated, which may contribute to a deterioration in the feeling of use of the cosmetics. Furthermore, although the technique of the said patent document 5 can prevent crystallization of an organic type ultraviolet absorber, it cannot prevent skin trouble completely.
  • UV-absorbing cosmetic material that can replace conventional organic UV absorbers and inorganic UV scattering agents with low irritation and good stability when used in cosmetics.
  • an object of the present invention is to solve the above-mentioned problems of the prior art, have an ultraviolet shielding effect and a visible light enhancement effect, have low irritation, and have good stability when used in cosmetics.
  • the object is to provide a cosmetic containing a UV-absorbing cosmetic material.
  • the present inventor has an ultraviolet absorbing compound having an excitation band of a specific wavelength and an emission band of another specific wavelength.
  • the present invention has been completed.
  • the ultraviolet blocking method of the present invention is a method of blocking the skin from ultraviolet rays by applying a cosmetic containing an ultraviolet absorbing cosmetic material having light absorption at least 250 to 300 nm to human skin,
  • a cosmetic material is synthesized from a coumarin pigment and arginine and contains a metal ion having an ionic radius of 30 to 70 pm together with an ultraviolet absorbing compound composed of a cyclic structure compound having one or more cyclic structures different from those derived from coumarin. It has an excitation band at 430 nm and an emission band at 320 to 600 nm.
  • the cyclic structure compound preferably does not contain a coumarin skeleton, the coumarin dye is preferably 4-hydroxycoumarin, and the metal ion is preferably Al 3+ or Mg 2+ .
  • the ultraviolet ray absorbing cosmetic material may have excitation bands of 250 to 300 nm and 330 to 430 nm and an emission band of 400 to 600 nm.
  • the UV-absorbing cosmetic material may have an excitation band of 260 to 350 nm and an emission band of 320 to 550 nm.
  • the ultraviolet-absorbing cosmetic material of the present invention is an ultraviolet ray containing a cyclic structure compound that is synthesized from coumarin pigment and arginine and has one or more cyclic structures different from those derived from coumarin and has light absorption at least 250 to 300 nm.
  • An absorbent cosmetic material characterized by being provided with metal ions having an ionic radius of 30 to 70 pm and having an excitation band at 250 to 430 nm and an emission band at 320 to 600 nm.
  • the cyclic structure compound preferably does not contain a coumarin skeleton, the coumarin dye is preferably 4-hydroxycoumarin, and the metal ion is preferably Al 3+ or Mg 2+ .
  • excitation bands 250 to 300 nm and 330 to 430 nm and an emission band of 400 to 600 nm.
  • it may be characterized by having an excitation band of 260 to 350 nm and an emission band of 320 to 550 nm.
  • the cosmetic according to the present invention is characterized by containing the above-described ultraviolet absorbing cosmetic material.
  • the ultraviolet-absorbing cosmetic material of the present invention contains an ultraviolet-absorbing compound I having light absorption at 250 to 300 nm and a metal atom, has excitation bands at 250 to 300 nm and 330 to 430 nm, and 400 to 600 nm. It has a light emission band.
  • the metal atom is present as a metal ion, and the ion radius of the metal ion is preferably 30 to 90 pm, and the metal ion is Al 3+ or Mg 2+ . Preferably there is.
  • the ultraviolet absorbing compound I is a compound having no structure composed of a plurality of cyclic structures derived from coumarin.
  • the ultraviolet-absorbing cosmetic material of the present invention is characterized by containing an ultraviolet-absorbing compound II having an excitation band at 260 to 330 nm and an emission band at 320 to 550 nm.
  • the ultraviolet-absorbing cosmetic material of the present invention preferably contains the ultraviolet-absorbing compound II and a metal atom.
  • the metal atom is present as a metal ion, and the ion radius of the metal ion is 30 to 90 pm, and the metal ion is Al 3+ or Mg 2+. It is preferable that
  • the ultraviolet-absorbing cosmetic material of the present invention preferably contains the ultraviolet-absorbing compound II in addition to the ultraviolet-absorbing compound I and the metal atom.
  • the cosmetic of the present invention is characterized by containing the ultraviolet absorbing cosmetic material.
  • an ultraviolet-absorbing cosmetic material having an ultraviolet shielding effect and a visible light enhancing effect, low irritation, and good stability when used in cosmetics, and a cosmetic containing the ultraviolet-absorbing cosmetic material. Can do.
  • 6 is a graph showing the pH dependence of the light absorption spectrum of a 7-hydroxy-4-methylcoumarin aqueous solution.
  • 3 is a graph showing the absorption intensity at 320 nm ( ⁇ ) and 360 nm ( ⁇ ) with respect to pH in a 7-hydroxy-4-methylcoumarin aqueous solution.
  • 3 is a graph showing a fluorescence spectrum when a 7-hydroxy-4-methylcoumarin aqueous solution is excited with light of 360 nm. It is a light absorption spectrum before and after microwave irradiation to a 4-hydroxycoumarin and arginine mixture. It is the schematic of a microwave application apparatus.
  • 3 is a graph showing the excitation wavelength dependence (340 to 400 nm) of a fluorescence spectrum (arginyl coumarin + AlCl 3 ).
  • 3 is a graph showing the excitation wavelength dependence (340 to 400 nm) of luminescence intensity (475 nm) of arginyl coumarin.
  • 2 is a graph showing an ultraviolet absorption spectrum of an ultraviolet absorbing compound I.
  • 2 is a graph showing a light absorption spectrum (difference spectrum) before and after addition of AlCl 3 to the ultraviolet absorbing compound I. It is the graph which showed the fluorescence spectrum measured by excitation at 250 nm of the ultraviolet absorption compound I. It is the graph which showed the fluorescence spectrum measured by excitation of 325 nm of the ultraviolet absorption compound I. It is the graph which showed the fluorescence spectrum measured by excitation at 375 nm of the ultraviolet absorption compound I.
  • the ultraviolet absorbing compound I is a graph showing the fluorescence and excitation spectra were excited Thus measurement at 368nm after AlCl 3 addition.
  • Solution containing an ultraviolet-absorbing compound II is a graph illustrating a light absorption spectrum of the solution containing the ultraviolet absorbing compound I and AlCl 3.
  • the ultraviolet absorbing compound II is a graph showing the difference absorption spectra showing the difference in absorption spectrum in AlCl 3 before and after addition. It is the graph which showed the fluorescence spectrum and excitation spectrum which were measured by excitation at 300 nm of the ultraviolet absorption compound II.
  • the ultraviolet absorbing compound II is a graph showing the fluorescence and excitation spectra were excited Thus measurement at 300nm after AlCl 3 addition.
  • the solution containing the ultraviolet absorbing compound III is a graph illustrating a light absorption spectrum of the solution containing the ultraviolet absorbing compound III and AlCl 3. It is the graph which showed the fluorescence spectrum and excitation spectrum of the ultraviolet absorption compound III. It is the graph which showed the influence on the fluorescence spectrum by the metal ion addition of arginyl coumarin. It is the graph which showed the influence on the fluorescence spectrum by Mg ion and Cu ion addition density
  • the ultraviolet-absorbing cosmetic material of the present invention contains an ultraviolet-absorbing compound I having light absorption at 250 to 300 nm and a metal atom, has excitation bands at 250 to 300 nm and 330 to 430 nm, and emits light at 400 to 600 nm. It is characterized by having a belt. Thereby, it has an ultraviolet shielding effect and a visible light enhancement effect, has low irritation, and can have good stability when used in cosmetics.
  • the “excitation band” refers to a state in which a substance can take energy energetically when the lowest energy state is a ground state and a higher state is an excited state. An optical wavelength band that can go from the excited state to the excited state.
  • the “emission band” is an optical wavelength band in which light can be emitted from the excited state to the outside and shifted to a lower energy state. That is.
  • the metal atom contained together with the UV-absorbing compound I is preferably a metal ion, and the ion radius of the metal ion is preferably 30 to 90 pm (picometer). 35 to 70 pm is more preferable, and 50 to 65 pm is even more preferable. Since the metal atom is present as a metal ion, it has a charge, so that the intensity of light in the excitation band and the emission band can be further increased. Furthermore, the intensity of light in the excitation band and the emission band can be further increased by containing metal ions having the ionic radius.
  • the metal ion contained together with the ultraviolet absorbing compound I is not particularly limited as long as the effect of the present invention is obtained, but is preferably Al 3+ or Mg 2+ , and more preferably Al 3+ .
  • Al 3+ can take an ionic radius of 50 pm
  • Mg 2+ can take an ionic radius of 65 pm.
  • the metal ion is preferably water-soluble, and more preferably a metal that coordinates to the ultraviolet absorbing compound I. Thereby, the intensity of light in the excitation band and the emission band can be further increased.
  • the ultraviolet absorbing compound I is a compound having no structure composed of a plurality of cyclic structures derived from coumarin.
  • the heterocyclic structure generally has an atom other than carbon in the ring structure.
  • a ring structure having atoms such as nitrogen, oxygen, sulfur and the like.
  • examples of the structure composed of a plurality of cyclic structures derived from coumarin include compounds composed of a plurality of cyclic structures having a coumarin skeleton.
  • a compound having a coumarin skeleton has a sensitization property and the like as described in “Sensitization and cross-reactivity of simple coumarins (YAKUGAKU ZASSHI 121 (1) 97-103 (2001))”. May cause irritation.
  • the ultraviolet absorbing compound I is a compound that does not have a structure composed of a plurality of cyclic structures derived from coumarin, it is possible to provide an ultraviolet absorbing cosmetic material with low irritation while suppressing the occurrence of irritation.
  • the structure is not composed of a plurality of the above-mentioned cyclic structures, it will be clearly distinguished that an ultraviolet-absorbing cosmetic material as a substance having a heterocyclic structure composed of a monocyclic ring structure may exist.
  • the ultraviolet-absorbing cosmetic material of the present invention is characterized by containing an ultraviolet-absorbing compound II having an excitation band at 260 to 330 nm and an emission band at 320 to 550 nm.
  • an ultraviolet-absorbing compound II having an excitation band at 260 to 330 nm and an emission band at 320 to 550 nm.
  • the ultraviolet-absorbing cosmetic material of the present invention preferably contains the ultraviolet-absorbing compound II and a metal atom.
  • a metal atom By containing a metal atom, the intensity of light in the excitation band or emission band can be further increased.
  • the metal atom contained together with the UV-absorbing compound II is present as a metal ion, and the ion radius of the metal ion is 30 to 90 pm, 35 More preferably, it is ⁇ 70 pm, and even more preferably 50-65 pm. Since the metal atom is present as a metal ion, it has a charge, so that the intensity of light in the excitation band and the emission band can be further increased. Furthermore, the intensity of light in the excitation band or the emission band can be further increased by containing the metal ions having the above-mentioned ion radius.
  • the metal ion contained together with the ultraviolet absorbing compound II is not particularly limited as long as the effect of the present invention is obtained, but is preferably Al 3+ or Mg 2+ , and more preferably Al 3+ .
  • Al 3+ can take an ionic radius of 50 pm
  • Mg 2+ can take an ionic radius of 65 pm.
  • the ultraviolet absorbing cosmetic material of the present invention contains the ultraviolet absorbing compound II in addition to the ultraviolet absorbing compound I and the metal atom.
  • the synergistic effect of the ultraviolet absorbing compound I and the ultraviolet absorbing compound II can increase the light intensity in a wider range of excitation band and wider range of emission band, thereby providing an ultraviolet shielding and visible light enhancement effect. Can be made larger.
  • the UV-absorbing cosmetic material is not particularly limited as long as it has the above characteristics. Specific examples of the ultraviolet absorbing cosmetic material will be described below.
  • the ultraviolet-absorbing cosmetic material can be obtained, for example, from a complex or mixture of a compound synthesized from arginine and a coumarin dye and aluminum chloride.
  • the ultraviolet ray absorbing cosmetic material will be described.
  • 4-Hydroxycoumarin is a light yellow or light brown crystalline powder at room temperature.
  • Today, over 1,000 kinds of coumarin compounds have been found as natural or synthetic products.
  • 4-hydroxycoumarin has a possibility of synthesizing various substances because its structure is simple as the derivative warfarin is currently used as a blood anticoagulant or rodenticide.
  • Simple coumarin also includes 7-hydroxy-4-methylcoumarin (hereinafter sometimes abbreviated as 7C) as shown in (2) below.
  • 4-Hydroxycoumarin has a light absorption spectrum as shown by the curve (a) in FIG.
  • This light absorption characteristic is large in light absorption in the ultraviolet region and suitable for light absorption in the ultraviolet region of solar energy, but has a small light absorption band in the visible region. There are two major absorption peaks, and their wavelength bands are close.
  • 7-hydroxy-4-methylcoumarin it has a light absorption spectrum as shown in the curve (b) of FIG.
  • This light absorption characteristic is suitable for light absorption in the ultraviolet region, and has a light absorption band slightly longer than 4-hydroxycoumarin, but still has little light absorption band in the visible region.
  • Major absorption peaks are dense.
  • FIG. 1 shows that 7-hydroxy-4-methylcoumarin has major absorption bands at wavelengths of 290 nm and 322 nm. If you look closely, absorption at 322 nm is also in 4-hydroxycoumarin. This is from the basic molecular structure.
  • the light absorption band In order to make a UV-absorbing cosmetic material that effectively protects against UV rays, the light absorption band must be in the UV region. In addition, control of the excitation emission peak in the fluorescence spectrum is important.
  • FIG. 2 shows the pH dependence of the light absorption spectrum of 7-hydroxy-4-methylcoumarin aqueous solution.
  • FIG. 3 shows the absorption intensity at 320 nm ( ⁇ ) or 360 nm (nm) with respect to pH. According to this, it can be seen that an absorption peak appears at around 320 nm below pH 7, and an absorption peak appears at around 360 nm above pH 7. It can also be seen that as pH increases, the absorption at 320 nm decreases, and conversely, the absorption at 360 nm increases.
  • FIG. 4 shows the fluorescence spectrum when a 7-hydroxy-4-methylcoumarin aqueous solution was excited with light of 360 nm.
  • the fluorescence peak wavelength was 450 nm, and it was found that the fluorescence intensity increased as the pH increased.
  • Arginine is a kind of basic amino acid having the following structure (3).
  • Arginine is an ⁇ -amino acid having a side chain R of CH 2 CH 2 CH 2 NH (C ⁇ NH) NH 2 , a charged polar side chain amino acid, and a basic amino acid. Is one of the higher classes).
  • the structure of the side chain R means that it becomes a material that forms a polymer compound different from a normal polypeptide. That is, it means that it becomes a polymer material such as polyarginine that is polymerized through the amino group of the side chain instead of the main chain.
  • Polyamino acids also exist in a variety of ways, including glutamic acid, which is polymerized via a carboxyl group on the side chain. Examples of applications other than food and pharmaceutical materials include biodegradable plastics, enzyme-cured hydrogels, and injections. Examples of possible biomaterials include cell scaffold materials, DDS matrices, biomedical hemostats and adhesives.
  • the reaction between arginine and a coumarin dye was performed by irradiating microwaves.
  • the microwave used for chemical synthesis in the present invention refers to an electromagnetic wave having a wavelength of 0.3 mm to 30 cm and a frequency of 1 GHz to 1 THz.
  • the microwave oscillating electric field and oscillating magnetic field interact with permanent and induced dipoles or charges in the material. This generates heat at the molecular level and directly heats the material.
  • rapid, uniform direct heating without heat conduction and convection selective heating of only the substance that interacts with microwaves, precise control of heating mode by pulse, continuous irradiation, etc. Is possible.
  • the ultraviolet-visible light absorption of an aqueous solution containing only the amino acid arginine used in the reaction has only an absorption wavelength band in the ultraviolet region near 207 nm.
  • FIG. 6 is a schematic diagram of a microwave application device.
  • 1 is a microwave oven main body
  • 2 is a portion where an irradiated material is placed
  • 3 is a magnetron for generating microwaves
  • 4 is a high pressure glass tube
  • 5 is a beaker.
  • a high pressure glass tube 4 placed in a beaker 5 was placed in a portion 2 where a substance to be irradiated of the microwave oven 1 was placed, and was irradiated with microwaves.
  • the light absorption spectra before and after microwave irradiation are shown in FIG.
  • line segment 1 is a spectrum before irradiation
  • line segment 2 is a spectrum after irradiation for 2 minutes
  • line segment 3 is a spectrum after irradiation for 4 minutes. No absorption was observed in the visible wavelength region, and absorption maximums were observed at 208 nm, 287 nm, and 300 nm.
  • FIG. 7 shows a graph obtained by calculating the difference spectrum from the light absorption spectrum data before and after this reaction.
  • FIG. 7 is a graph showing the ultraviolet-visible light absorption difference spectrum of an aqueous solution containing arginine and 4-hydroxycoumarin before and after irradiation with microwaves for 2 minutes and 4 minutes.
  • Lines 1 and 2 have a concentration of 0.05 mM
  • lines 3 and 4 have a concentration of 0.1 mM
  • lines 5 and 6 have a concentration of 0.2 mM.
  • reaction product was stable even after being stored for a long period of 10 months or longer, and did not return to the original arginine and 4-hydroxycoumarin.
  • the entire substance having the light absorption spectrum characteristics of the compound obtained by the above chemical synthesis is Arginine and 4-hydroxycoumarin can be clearly distinguished from each other and can be referred to as a group of compounds synthesized from arginine and 4-hydroxycoumarin (provisionally named arginylcoumarin).
  • Line segment 1 is an excitation emission spectrum of a mixture of arginine and 4-hydroxycoumarin before microwave irradiation.
  • Line 2 is the excitation emission spectrum of the product.
  • the light emission intensity maximum was in the vicinity of 374 nm, but it was found that the light emission intensity maximum point of the product arginylcoumarin was shifted to 348 nm by 26 nm.
  • the product arginyl coumarin has the property of emitting photons with higher energy than the original 4-hydroxycoumarin.
  • the long wavelength shift from 348 nm to 363 nm and the intensity decrease are caused by pH change caused by increase of chloride ions.
  • the increase in emission at 475 nm is that the complex excited by light at 280 nm emits light having an emission maximum at 363 nm, and this light becomes excitation light to excite the complex, and the excited complex has an emission maximum at 475 nm. This indicates that light (light blue) is emitted.
  • FIG. 9 shows that the emission intensity of the 475 nm peak increases as AlCl 3 is further added.
  • FIG. 10 shows a difference spectrum obtained by subtracting a spectrum (Series 2) obtained by adding 10 ⁇ L of AlCl 3 to arginyl coumarin from a spectrum of only arginyl coumarin (Series 1). According to this, it can be clearly seen that the emission of the 348 nm peak peculiar to arginyl coumarin disappears by the addition of AlCl 3 .
  • FIG. 11 plots the emission intensity of 475 nm obtained by exciting 280 nm light against the complex aqueous solution of arginylcoumarin and AlCl 3 shown in FIG. 9 against the added amount of AlCl 3 .
  • a graph is shown. From this, it was shown that the emission intensity of the complex increases as the addition amount of AlCl 3 increases. Moreover, when the addition amount of AlCl 3 increased, the increase in fluorescence intensity tended to reach its peak.
  • the complex of arginyl coumarin and AlCl 3, in a molar ratio of AlCl 3 to arginyl coumarin preferably be added 5000 times or more, more preferably be added 10,000 times or more, adding 20,000 times Is more preferable.
  • the upper limit is preferably 60,000 times or less, and more preferably 50,000 times or less.
  • FIG. 12 shows the emission intensity obtained by irradiating a complex aqueous solution of arginylcoumarin and AlCl 3 with light of 340 nm to 400 nm to excite the complex. All were luminescences having a luminescence peak at 475.
  • FIG. 13 shows an excitation spectrum in which the emission intensity at 475 nm is plotted with respect to the excited excitation wavelength of 340 to 400 nm. According to this, it was shown that the emission intensity (475 nm) was the strongest when excited at 370 nm.
  • the complex of arginyl coumarin and AlCl 3 emits internal light having an emission maximum at 363 nm by excitation with external light of 280 nm.
  • the internal light excites the complex, and the excited complex emits visible light having an emission maximum at 475 nm.
  • the complex has the maximum emission intensity of visible light when the excitation wavelength is 370 nm as shown in FIG. That is, the closer the excitation wavelength is to 370 nm, the stronger the emission of visible light.
  • the ultraviolet light can be efficiently converted into visible light.
  • the complex of arginyl coumarin and AlCl 3 emits internal light having an emission maximum at 363 nm. This is close to the above 370 nm. For this reason, it is considered that ultraviolet rays could be efficiently converted into visible light, and a very strong 475 nm blue light emission was obtained.
  • FIG. 14 shows an emission spectrum when AlCl 3 is added to 4C.
  • the complex (4C-AlCl 3 complex) emits internal light having an emission maximum at 363 nm by irradiation with light at 280 nm.
  • the complex maximizes the emission of visible light (450 nm) when the excitation wavelength is 320 nm.
  • the emitted internal light (363 nm) cannot be fully utilized, and ultraviolet rays cannot be efficiently converted into visible light. As a result, strong light emission cannot be obtained.
  • FIG. 15 shows the wavelength dependence of the transmittance of arginyl coumarin (Arg-C) in the ultraviolet to visible light region by concentration.
  • Line 1 is a measurement result in the case of 0.002 mM
  • line 2 is 0.04 mM
  • line 3 is 0.02 mM. It can be seen that both are transparent in the visible light region of 400 nm or more. In the ultraviolet region, as the concentration increases, the transmittance decreases because of absorption in a region of 330 nm or less.
  • FIG. 16 shows the wavelength dependence of the transmittance of Arg-C + AlCl 3 in the ultraviolet to visible light region by concentration.
  • Line segment 1 is a measurement result in the case of 0.02 mM Arg-C and 0.0005 M AlCl 3 , and in such a low concentration, it is 100% transparent in a visible light region of 400 nm or more. Recognize.
  • Line segment 2 is the measurement result in the case of 0.05 M AlCl 3 in 2.00 mM Arg-C at a very high concentration of 100 times that.
  • the transmittance in the visible light region is high, with a transmittance of about 70% at a wavelength of 400 nm, a transmittance of about 90% at a wavelength of 450 nm, and a transmittance of about 95% at a wavelength of 500 nm.
  • UV absorbing compound I Ultraviolet absorbing compound I was prepared from a complex of a compound synthesized from L-arginine and 4-hydroxycoumarin (arginylcoumarin) and AlCl 3 . Details thereof will be described below. First, 0.00025 mol of L-arginine, 0.00025 mol of 4-hydroxycoumarin, and 5 mL of water were prepared, and 5 mL was placed in a high-pressure glass tube (manufactured by Ace) having a volume of 15 mL and a maximum withstand pressure of 1400 kPa. 45 GHz, about 900 W) was applied for 60 seconds. 5 ⁇ L of the obtained solution was sampled, diluted 200 times, and the light absorption spectrum was measured. As a result, it was confirmed that the solution had a light absorption spectrum peculiar to arginyl coumarin of curve 3 in FIG. .
  • FIG. 17 is a diagram showing fractionation of the ultraviolet absorbing compound I by high performance liquid chromatography.
  • the fourth fraction, ie, the fraction (*) indicated by the arrow in the figure was the strongest. Visible light was emitted. From this, it was considered that this component absorbed ultraviolet rays and emitted visible light, and was designated as an ultraviolet absorbing compound I.
  • the horizontal axis represents the retention time (min), and the vertical value represents the detected voltage value (au).
  • the obtained solution was separately transferred to a glass container and covered with a resin film (parafilm) with a small hole, and then placed in a vacuum specimen dryer (Tokyo Rika Kikai Co., Ltd., VOM1000A). It was connected to a cooling trap (manufactured by Tokyo Rika Kikai Co., Ltd., UT-1000) with (Tokyo Glassware Co., Ltd. (TGK), 6 ⁇ 15 mm, 2 m). A glass condenser (Tokyo Rika Kikai Co., Ltd., 500 mL) was set in the cooling trap, and the trap was filled with methanol. Furthermore, a vacuum hose (Tokyo Glassware Co., Ltd.
  • FIG. 18 is a graph showing an ultraviolet absorption spectrum of the ultraviolet absorbing compound I.
  • the ultraviolet-absorbing compound I was subjected to ultraviolet-visible absorption spectrum measurement analysis using an ultraviolet-visible spectrophotometer (SHIMADZU • UV1240, manufactured by Shimadzu Corporation), and showed ultraviolet-visible absorption spectrum characteristics as shown in FIG. Absorption was observed in the vicinity of 210 nm, 250 nm, and 325 nm. This was a characteristic close to the spectral curve 3 in FIG. In FIG. 18, it is observed that the UV-visible light absorption spectrum characteristics after adding AlCl 3 are slightly shifted in wavelength.
  • SHIMADZU • UV1240 ultraviolet-visible spectrophotometer
  • FIG. 19 is a graph showing a light absorption spectrum (difference spectrum) before and after the addition of AlCl 3 to the ultraviolet absorbing compound I.
  • the generation of 194.5 nm absorption was thought to be due to Al.
  • Other specific absorptions at 225.5 nm, 269 nm, and 371 nm were considered to be peculiar to the complex formed by the ultraviolet absorbing compound I and Al.
  • excitation is performed at 250 nm, 325 nm, and 375 nm using a fluorescence spectrometer (SHIMADZU / RF5300, manufactured by Shimadzu Corporation) using the UV absorption maximum wavelength of 250 nm and 325 nm and the differential absorption maximum wavelength of 371 nm as a guide.
  • a fluorescence spectrometer SHIMADZU / RF5300, manufactured by Shimadzu Corporation
  • results as shown in FIGS. 20 to 22 were obtained.
  • 20 is a graph showing the fluorescence spectrum measured by excitation of the ultraviolet absorbing compound I at 250 nm
  • FIG. 21 is a graph showing the fluorescence spectrum measured by excitation of the ultraviolet absorbing compound I at 325 nm. These are the graphs which showed the fluorescence spectrum measured by excitation at 375 nm of the ultraviolet absorbing compound I. From these, it was found that the ultraviolet absorbing compound I per se absorbs ultraviolet rays but does not emit light without being excited.
  • FIG. 23 is a graph showing a fluorescence spectrum and an excitation spectrum measured by excitation at 368 nm after adding AlCl 3 to the ultraviolet absorbing compound I. Furthermore, when the excitation spectrum was measured by scanning at this maximum wavelength, it became clear that it had an excitation maximum at 224 nm, 267.4 nm, and 368.2 nm.
  • UV absorbing compounds I AlCl 3 In addition to absorbing 250 to 320 nm of medium wavelength ultraviolet light (UVB wave) having a maximum of 267.4 nm, and emitting 320 to 400 nm of long wavelength ultraviolet light (UVA wave) having a maximum of 368.2 nm. It has become clear that it has a characteristic of emitting visible light (Visible Light) of 400 to 600 nm having a maximum of 470.6 nm.
  • FIG. 24 is a diagram showing fractionation of the ultraviolet absorbing compound II by high performance liquid chromatography. In FIG. 24, about 12 fractions are distinguished and displayed.
  • FIG. 25 is a graph showing light absorption spectra of a solution containing the ultraviolet absorbing compound II and a solution containing the ultraviolet absorbing compound I and AlCl 3 .
  • the light absorption spectrum of this component is as shown in FIG. 25, that is, the absorption near 300 nm serving as a standard is maximized, and the maximum wavelength is changed by the addition of AlCl 3 .
  • FIG. 26 is a graph showing a differential absorption spectrum showing a difference in absorption spectrum before and after the addition of AlCl 3 to the ultraviolet absorbing compound II. Absorption at 213 nm, 245 nm, and 317 nm was considered to be peculiar to the complex formed by ultraviolet absorbing compound II and Al.
  • FIG. 27 is a graph showing a fluorescence spectrum and an excitation spectrum measured by excitation at 300 nm of the ultraviolet absorbing compound II. As shown by curve 2 in FIG. 27, visible light emission having a maximum at 406.6 nm was observed. Further, when the excitation spectrum was measured by scanning at this maximum wavelength, it became clear that the curve 1 had an excitation maximum at 228.6 nm and 294.8 nm.
  • FIG. 28 is a graph showing a fluorescence spectrum and an excitation spectrum measured by excitation at 300 nm after addition of AlCl 3 to the ultraviolet absorbing compound II.
  • the visible light emission which had a maximum at 406.6 nm before the addition of AlCl 3 , was observed as if it shifted to a short wavelength to 377.2 nm.
  • the curve 1 had excitation maximums at 235.8 nm and 309.6 nm.
  • the component (**) in FIG. 24 having such characteristics can thus be referred to as the second ultraviolet absorbing compound II, and is a substance that can more fully understand the ultraviolet-visible light conversion function of the substance group arginylcoumarin. I found out that there was.
  • This UV-absorbing compound II ideally enhances the UV-visible light conversion function in the wavelength region near 300 nm where the absorption and excitation levels of the UV-absorbing compound I are low. This is because UV-absorbing compound II absorbs 260 to 350 nm of medium wavelength ultraviolet light (UVB wave) having a maximum of 309.6 nm and 320 to 500 nm of long wavelength ultraviolet light (UVB wave) having a maximum of 377.2 nm. And visible light (Visible Light) is emitted, and the most commonly emitted ultraviolet light in the vicinity of 377.2 nm almost overlaps the absorption and excitation maximum of the ultraviolet absorbing compound I, and the maximum ultraviolet-visible light conversion function Will be strengthened. These results were completely unexpected. In this way, UV absorbing compound II was prepared.
  • FIG. 29 is a diagram showing a fraction of the ultraviolet absorbing compound III by high performance liquid chromatography. As shown in FIG. 29, it was able to be obtained as a component indicated by (***) in the figure in the same fractionation process by HPLC as the ultraviolet absorbing compound II.
  • FIG. 29 is a diagram showing a fraction of the ultraviolet absorbing compound III by high performance liquid chromatography. As shown in FIG. 29, it was able to be obtained as a component indicated by (***) in the figure in the same fractionation process by HPLC as the ultraviolet absorbing compound II.
  • FIG. 30 is a graph showing light absorption spectra of a solution containing the ultraviolet absorbing compound III and a solution containing the ultraviolet absorbing compound III and AlCl 3 .
  • the substance of this component had a medium wavelength ultraviolet (UVB wave) absorption spectrum characteristic having a maximum at 300 nm.
  • UVB wave medium wavelength ultraviolet
  • FIG. 31 is a graph showing the fluorescence spectrum and excitation spectrum of the ultraviolet absorbing compound III. As indicated by curve 2 in FIG. 31, visible light emission having a maximum at 378 nm was observed.
  • the excitation spectrum was measured by scanning with this maximum wavelength, it became clear that the curve 1 had excitation maximums at 230.8 nm, 289.6 nm, and 303.4 nm. In this way, UV absorbing compound III was prepared.
  • the cosmetic of the present invention is characterized by containing the ultraviolet absorbing cosmetic material.
  • the ultraviolet-absorbing cosmetic material contains the above-described ultraviolet-absorbing compound I, metal atoms, and ultraviolet-absorbing compound II, and the cosmetic is a broad concept including cosmetics, quasi-drugs, pharmaceuticals, and the like. It is. Further, it includes not only basic cosmetics but also makeup, hair cosmetics, cleaning materials and the like.
  • Example 1 An aqueous solution containing a compound synthesized from arginine and 4-hydroxycoumarin was treated according to the procedure described above (Preparation of UV-absorbing compound I) to prepare UV-absorbing compound 1.
  • Example 2 An aqueous solution containing a compound synthesized from arginine and 4-hydroxycoumarin was treated according to the procedure described above (Preparation of UV-absorbing compound II) to prepare UV-absorbing compound 2.
  • Example 3 An aqueous solution containing a compound synthesized from arginine and 4-hydroxycoumarin was treated according to the procedure described above (Preparation of UV-absorbing compound III) to prepare UV-absorbing compound 3.
  • SPF measurement test using SPF analyzer An SPF measurement sample of 2.0 mg / cm 2 was applied to a transpore surge curl tape (manufactured by Sumitomo 3M), and SPF analyzer UV-1000S (manufactured by Labsphere) was used to measure 9 points to obtain SPF value and UVA. / UVB Ratio was determined. This operation was repeated three times, and the average values were taken as the SPF value and UVA / UVB Ratio.
  • Example 4 A 50% by mass aqueous solution of ethanol was prepared, and 2.75 g of UV absorbing compound 1, 0.00275 g of UV absorbing compound 2 and 0.49 g of AlCl 3 .6H 2 O were added thereto, and UV absorbing compound 1 and UV absorbing were added.
  • the sample of Example 4 was produced so that the compound 2 might be 5 mass%.
  • the measurement results with the SPF analyzer are shown in Table 1 below.
  • Example 5 Adjust ethanol 50% by weight aqueous solution, to which the ultraviolet absorbing compound 1 3.036G, an ultraviolet absorbing compound 2 0.00275G, an ultraviolet absorbing compound 3 0.00275G, the AlCl 3 ⁇ 6H 2 O was added 5.88g Then, the sample of Example 5 was prepared so that the ultraviolet absorbing compound 1, the ultraviolet absorbing compound 2, and the ultraviolet absorbing compound 3 might be 5% by mass.
  • the measurement results with the SPF analyzer are shown in Table 1 below.
  • Example 4 and Example 5 showed SPF values equal to or higher than those of the comparative test example. From this, it was found that there was an ultraviolet ray prevention effect equivalent to 2-ethylhexyl methoxycinnamate.
  • sample of the present invention a complex aqueous solution of a compound synthesized from L-arginine and 4-hydroxycoumarin (arginylcoumarin) and AlCl 3 containing ultraviolet absorbing compounds I to III (hereinafter referred to as “sample of the present invention”)
  • white petrolatum Nakko Rica Co., Ltd.
  • physiological saline Otsuka Pharmaceutical Co., Ltd.
  • distilled water for injection Otsuka Pharmaceutical Co., Ltd.
  • Example 6 In accordance with the formulation shown in Table 2 below, an anti-UV lotion was prepared. In addition, the numerical value in prescription shows mass% hereafter.
  • Example 7 In accordance with the formulation described in Table 3 below, an anti-ultraviolet lotion was prepared.
  • Example 8 In accordance with the formulation shown in Table 4 below, an ultraviolet protection cream was prepared.
  • Example 9 In accordance with the formulation shown in Table 5 below, an ultraviolet protection cream was prepared.
  • Example 10 In accordance with the formulation shown in Table 6 below, an anti-UV serum was prepared.
  • Example 12 According to the formulation shown in Table 8 below, an ultraviolet-proof cleansing foam was prepared.
  • Comparative Examples 6-12 The cosmetics of Comparative Examples 6 to 12 were prepared in the same manner as the UV-preventing cosmetics of Examples 6 to 12 except that Example 4 or Example 5 was replaced with purified water in the formulations shown in Tables 2 to 8. Produced.
  • Examples 6-12 and Comparative Examples 6-12 there was no irritation and the safety was high. Further, Examples 6 to 12 had an ultraviolet ray preventing effect, but Comparative Examples 6 to 12 did not have an ultraviolet ray preventing effect.
  • FIG. 32 is a graph showing the influence of addition of metal ions of arginylcoumarin on the fluorescence spectrum.
  • the fluorescence spectrum of addition of metal ions of arginylcoumarin is represented by the metal species, Mg, Cu, Ca, Co. , Al, In, K.
  • Al has the specificity of visible light emission. For other elements, weak emission was observed in the range of 380 to 500 nm, where Mg has a maximum near 420 nm.
  • UVA long wavelength ultraviolet
  • FIG. 33 is a graph showing the influence on the fluorescence spectrum due to the concentration change of Mg ions and Cu ions of arginyl coumarin. As shown in FIG. 33, in Mg, the fluorescence intensity remained increased even when the concentration changed, but in the case of Cu, it continued to decrease. From these results, Al reacts particularly with Arg-4C to give photoactivity, while Mg is not as much as Al, but obviously, unlike other metal ions, it reacts with Arg-4C to give a slight photoactivity. It turned out to give.
  • the ion radius of Al 3+ is 50 pm (picometer), the ion radius of Mg 2+ is 65 pm, and other metal ions are Cu 2+ ion radius 96 pm, Ca 2+ ion radius 99 pm, Co 2+ ion radius 72 pm.
  • the ion radius of In 3+ is 81 pm and the ion radius of K + is 133 pm. From this, it was suggested that the increase in long-wavelength ultraviolet (UVA) emission intensity or the development of visible emission characteristics is a large factor due to a small ionic radius.
  • UVA ultraviolet
  • UVB medium wavelength ultraviolet rays
  • Cytokines are small amounts of physiologically active proteins that are released from cells and become various intercellular signal transduction molecules, and usually have low molecular weights (molecular weights are many less than 80,000 and less than 30,000) and have sugar chains. In many cases, it is known to bind to high affinity receptors on the cell surface through body fluids to express multifaceted biological activities. Many of its functions are related to immunity and inflammation. Among cytokines, it is known that inflammatory cytokines include interleukins IL-1 ⁇ , IL-6 and IL-8.
  • IL interleukin
  • ⁇ Test method> Normal human epidermis cells were seeded in a 48-well plate at a cell density of 5.0 ⁇ 10 4 cells / well using HuMedia KG2 medium. Forty-eight hours after seeding, the medium was replaced with Hanks buffer (Ca 2+ , Mg 2+ not contained), and cells were irradiated with a predetermined dose of UVB. The UVB non-irradiated group was covered with aluminum foil to shield UVB. Immediately after irradiation, the Hanks buffer was replaced with HuMedia-KB2 (KB2) containing a test sample at a non-toxic concentration and cultured for an additional 24 hours.
  • HuMedia-KB2 HuMedia-KB2
  • the medium was collected and replaced with KB2 containing 33 ⁇ g / mL neutral red (NR) for the purpose of measuring cell viability and cultured for 2 hours. Thereafter, the cells were washed with PBS, and NR taken into the cells was extracted with a 0.1M HCl solution containing 30% ethanol, and the absorbance at 550 nm was measured. The cytotoxic effect of UVB was shown by Index (%) with respect to the absorbance of the UVB non-irradiated group at each concentration.
  • NR neutral red
  • Measurement of IL-1 ⁇ , IL-6 and IL-8 in the collected medium was performed using a commercially available ELISA kit (R & D systems) according to the attached protocol. For statistical processing, a significant difference test using a Student t test was performed, and the difference from the untreated test sample was evaluated.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Cosmetics (AREA)

Abstract

Provided are: an ultraviolet light-absorbing cosmetic material that has effects of blocking ultraviolet light and intensifying visible light, is minimally irritating and exhibits high stability when used in cosmetics; and a cosmetic containing the ultraviolet light-absorbing cosmetic material. A method for blocking ultraviolet light from penetrating human skin, said method comprising applying a cosmetic, which contains an ultraviolet light-absorbing cosmetic material having a light absorption peak at least at 250-300 nm, to the skin. The ultraviolet light-absorbing cosmetic material is characterized by containing an ultraviolet light-absorbing compound comprising a compound with cyclic structure, which is synthesized from a coumarin pigment and arginine and has one or more cyclic structures differing from the coumarin-derived structure, together with a metal ion having an ionic radius of 30-70 pm, and thus having an excitation band at 250-430 nm and a light emission band at 320-600 nm.

Description

紫外線吸収化粧品素材およびこれを含有する化粧品、紫外線遮断方法UV-absorbing cosmetic material, cosmetic containing the same, and UV blocking method
 本発明は、紫外線吸収化粧品素材および該紫外線吸収化粧品素材を含有する化粧品、紫外線遮断方法に関し、特に、紫外線遮蔽および可視光増強効果を有し、低刺激で、さらに化粧品に使用した際の安定性の良好な紫外線吸収化粧品素材および該紫外線吸収化粧品素材を含有する化粧品、紫外線遮断方法に関する。 The present invention relates to a UV-absorbing cosmetic material, a cosmetic containing the UV-absorbing cosmetic material, and a UV-blocking method, and in particular, has UV-blocking and visible light enhancing effects, low irritation, and stability when used in cosmetics The present invention relates to an excellent UV-absorbing cosmetic material, a cosmetic containing the UV-absorbing cosmetic material, and an ultraviolet blocking method.
 近年、紫外線による肌への悪影響が多数報告されている。そのため、日焼け止め化粧品は、夏場のレジャーだけでなく日常生活の中でも必需品となり、さらに女性だけでなく男性や幼児まで幅広く使用されている。また、かかる日焼け止め化粧品では、より高い紫外線防御効果が求められ、その結果、高いSPFの日焼け止め化粧品が求められ、より多くの紫外線吸収剤や紫外線散乱剤が配合されるようになった。 In recent years, many adverse effects of UV rays on the skin have been reported. For this reason, sunscreen cosmetics have become a necessity in daily life as well as in summer leisure, and are widely used not only for women but also for men and infants. In addition, such sunscreen cosmetics are required to have a higher UV protection effect. As a result, high SPF sunscreen cosmetics are required, and more UV absorbers and UV scattering agents are added.
 上記の紫外線吸収剤としては、例えば、パラメトキシケイ皮酸2-エチルヘキシル、t-ブチルメトキシジベンゾイルメタン等の有機系紫外線吸収剤が使用されていた。しかしながら、有機系紫外線吸収剤は、肌に接触した際に、炎症を引き起こすなど皮膚トラブルの原因となっていた。また、有機系紫外線吸収剤では、極性が強く難溶性であるため、化粧品等に使用した場合に結晶などを生成し、安定性が悪いという問題点があった。 As the above ultraviolet absorber, organic ultraviolet absorbers such as 2-ethylhexyl paramethoxycinnamate and t-butylmethoxydibenzoylmethane have been used. However, organic ultraviolet absorbers have caused skin problems such as causing inflammation when in contact with the skin. In addition, since the organic ultraviolet absorber has a strong polarity and is hardly soluble, there is a problem that crystals are formed when used in cosmetics and the stability is poor.
 そこで、特許文献1~4には、有機系紫外線吸収剤をカプセルに内包することで有機系紫外線吸収剤による肌トラブルを防止する技術が開示されている。また、特許文献5には、有機系紫外線吸収剤とポリオキシエチレン硬化ヒマシ油等を配合することで、有機系紫外線吸収剤の結晶化を防止する技術が開示されている。 Therefore, Patent Documents 1 to 4 disclose techniques for preventing skin troubles caused by an organic ultraviolet absorber by encapsulating the organic ultraviolet absorber in a capsule. Patent Document 5 discloses a technique for preventing crystallization of an organic ultraviolet absorbent by blending an organic ultraviolet absorbent and polyoxyethylene hydrogenated castor oil.
 一方、無機系の紫外線散乱剤としては、酸化チタン、酸化亜鉛等が使用されていた。これら無機系紫外線散乱剤では、凝集して十分な紫外線防止効果が得られなかったり、日焼け止め化粧品の塗布時の感触がべたついたりする問題があった。 On the other hand, titanium oxide, zinc oxide and the like have been used as inorganic ultraviolet scattering agents. These inorganic ultraviolet scattering agents have a problem that they aggregate and cannot provide a sufficient ultraviolet ray preventing effect, or have a sticky feel when a sunscreen cosmetic is applied.
 そこで、特許文献6および特許文献7には、無機系紫外線散乱剤の分散状態を改良して凝集を防止する技術が開示されている。また、特許文献8および特許文献9には、特定の成分を配合することで無機系紫外線散乱剤のベタツキ感を改良する技術が開示されている。 Therefore, Patent Documents 6 and 7 disclose a technique for preventing aggregation by improving the dispersion state of the inorganic ultraviolet scattering agent. Patent Documents 8 and 9 disclose a technique for improving the stickiness of an inorganic ultraviolet scattering agent by blending specific components.
 更に、特許文献10乃至12には、クマリン色素を原材料とした紫外線~可視光の波長範囲に光吸収帯を有する蛍光性化合物が開示されており、このような化合物の利用も考慮される。 Furthermore, Patent Documents 10 to 12 disclose fluorescent compounds having a light absorption band in the wavelength range of ultraviolet to visible light using coumarin dyes as raw materials, and the use of such compounds is also considered.
特開2012-136453号公報JP 2012-136453 A 特開2009-167168号公報JP 2009-167168 A 特開2009-23955号公報JP 2009-23955 A 特開2001-106612号公報JP 2001-106612 A 特開2013-47206号公報JP 2013-47206 A 特開2013-221148号公報JP 2013-221148 A 特開2013-203708号公報JP 2013-203708 A 特開2013-224276号公報JP 2013-224276 A 特開2013-203716号公報JP2013-203716A 特開2008-195677号公報JP 2008-195567 A 特開2009-179623号公報JP 2009-179623 A 特開2012-25870号公報JP 2012-25870 A
 ところで、有機系紫外線吸収剤は、紫外線を熱エネルギーに変換するものであるため、肌にほてり等を与えて肌トラブルを生じさせるおそれを有するという問題点もある。また、上記特許文献1~4記載の技術は、カプセルの中に有機系紫外線吸収剤を内包するものであるため、化粧品を塗布する際に肌に化粧品を擦りつけてカプセルの中の有機系紫外線吸収剤が排出されると、やはり肌トラブルを生じさせるおそれがある。また、肌に化粧品を擦りつけてもカプセルが壊れないようにカプセルの被膜を強固にすると、使用時の感触が悪くなり、化粧品の使用感の悪化の一因となるおそれがある。さらに、上記特許文献5記載の技術は、有機系紫外線吸収剤の結晶化は防止できるものの肌トラブルを完全に防止できるものではない。 By the way, since organic ultraviolet absorbers convert ultraviolet rays into heat energy, there is also a problem in that they may cause skin trouble by giving hot flashes to the skin. In addition, since the technologies described in Patent Documents 1 to 4 include an organic ultraviolet absorber in the capsule, the organic ultraviolet light in the capsule is rubbed against the skin when applying the cosmetic. If the absorbent is discharged, it may cause skin troubles. Further, if the capsule coating is made strong so that the capsules are not broken even when the cosmetics are rubbed against the skin, the feel during use may be deteriorated, which may contribute to a deterioration in the feeling of use of the cosmetics. Furthermore, although the technique of the said patent document 5 can prevent crystallization of an organic type ultraviolet absorber, it cannot prevent skin trouble completely.
 また、上記特許文献6および7記載の技術は、無機系紫外線散乱剤の分散状態を改良して凝集を防止する一定の効果はあるものの十分ではなく、さらに無機系紫外線散乱剤を配合することによるベタツキ感等を完全に改良できるものではない。また、上記特許文献8および9記載の技術は、無機系紫外線散乱剤を配合することによるベタツキ感等を完全に改良できるものではなく、さらに特定の成分を配合することが必須であるため化粧品への配合に制限があり、十分な感触改良の効果が得られていない。 Moreover, although the technique of the said patent documents 6 and 7 has the fixed effect which prevents the aggregation by improving the dispersion state of an inorganic type ultraviolet scattering agent, it is not enough, and also by mix | blending an inorganic type ultraviolet scattering agent. The sticky feeling cannot be completely improved. In addition, the techniques described in Patent Documents 8 and 9 do not completely improve the stickiness and the like due to the blending of the inorganic ultraviolet scattering agent, and it is essential to blend specific components into the cosmetic. However, the effect of improving the touch is not obtained.
 以上のように、従来の有機系紫外線吸収剤や無機系紫外線散乱剤に置き換わり得る、低刺激で、化粧品に使用した際の安定性の良好な紫外線吸収化粧品素材の開発が望まれている。 As described above, it is desired to develop a UV-absorbing cosmetic material that can replace conventional organic UV absorbers and inorganic UV scattering agents with low irritation and good stability when used in cosmetics.
 そこで本発明の目的は、前記の従来技術の問題を解決し、紫外線遮蔽および可視光増強効果を有し、低刺激で、さらに化粧品に使用した際の安定性の良好な紫外線吸収化粧品素材および該紫外線吸収化粧品素材を含有する化粧品を提供することにある。 Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art, have an ultraviolet shielding effect and a visible light enhancement effect, have low irritation, and have good stability when used in cosmetics. The object is to provide a cosmetic containing a UV-absorbing cosmetic material.
 本発明者は、前記課題を解決すべく鋭意検討を行った結果、特定の波長の励起帯を有し、かつ他の特定の波長の発光帯を有する紫外線吸収化合物を含有することによって、前記目的を達成し得ることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventor has an ultraviolet absorbing compound having an excitation band of a specific wavelength and an emission band of another specific wavelength. The present invention has been completed.
 すなわち、本発明の紫外線遮断方法は、少なくとも250~300nmに光吸収を有する紫外線吸収化粧品素材を含む化粧品をヒトの肌に塗布することで該肌を紫外線から遮断する方法であって、前記紫外線吸収化粧品素材はクマリン色素及びアルギニンから合成されクマリン由来のとは異なる1つ以上の環式構造を有する環状構造化合物からなる紫外線吸収化合物とともに30~70pmのイオン半径を有する金属イオンを含むことで250~430nmに励起帯かつ320~600nmに発光帯を有することを特徴とするものである。 That is, the ultraviolet blocking method of the present invention is a method of blocking the skin from ultraviolet rays by applying a cosmetic containing an ultraviolet absorbing cosmetic material having light absorption at least 250 to 300 nm to human skin, A cosmetic material is synthesized from a coumarin pigment and arginine and contains a metal ion having an ionic radius of 30 to 70 pm together with an ultraviolet absorbing compound composed of a cyclic structure compound having one or more cyclic structures different from those derived from coumarin. It has an excitation band at 430 nm and an emission band at 320 to 600 nm.
 また、前記環状構造化合物はクマリン骨格を含まないことが好ましく、前記クマリン色素は4-ヒドロキシクマリンであることが好ましく、前記金属イオンはAl3+またはMg2+であることが好ましい。 The cyclic structure compound preferably does not contain a coumarin skeleton, the coumarin dye is preferably 4-hydroxycoumarin, and the metal ion is preferably Al 3+ or Mg 2+ .
 さらに、前記紫外線吸収化粧品素材は250~300nm及び330~430nmの励起帯かつ400~600nmの発光帯を有することを特徴としてもよい。 Furthermore, the ultraviolet ray absorbing cosmetic material may have excitation bands of 250 to 300 nm and 330 to 430 nm and an emission band of 400 to 600 nm.
 また、前記紫外線吸収化粧品素材は260~350nmの励起帯かつ320~550nmの発光帯を有することを特徴としてもよい。 The UV-absorbing cosmetic material may have an excitation band of 260 to 350 nm and an emission band of 320 to 550 nm.
 また、本発明の紫外線吸収化粧品素材は、クマリン色素及びアルギニンから合成されながらクマリン由来のとは異なる1つ以上の環式構造を有し少なくとも250~300nmに光吸収を有する環状構造化合物を含む紫外線吸収化粧品素材であって、30~70pmのイオン半径を有する金属イオンを与えられ250~430nmに励起帯かつ320~600nmに発光帯を有することを特徴とするものである。 Further, the ultraviolet-absorbing cosmetic material of the present invention is an ultraviolet ray containing a cyclic structure compound that is synthesized from coumarin pigment and arginine and has one or more cyclic structures different from those derived from coumarin and has light absorption at least 250 to 300 nm. An absorbent cosmetic material characterized by being provided with metal ions having an ionic radius of 30 to 70 pm and having an excitation band at 250 to 430 nm and an emission band at 320 to 600 nm.
 また、前記環状構造化合物はクマリン骨格を含まないことが好ましく、前記クマリン色素は4-ヒドロキシクマリンであることが好ましく、前記金属イオンはAl3+またはMg2+であることが好ましい。 The cyclic structure compound preferably does not contain a coumarin skeleton, the coumarin dye is preferably 4-hydroxycoumarin, and the metal ion is preferably Al 3+ or Mg 2+ .
 さらに、250~300nm及び330~430nmの励起帯かつ400~600nmの発光帯を有することを特徴としてもよい。 Further, it may be characterized by having excitation bands of 250 to 300 nm and 330 to 430 nm and an emission band of 400 to 600 nm.
 また、260~350nmの励起帯かつ320~550nmの発光帯を有することを特徴としてもよい。 Further, it may be characterized by having an excitation band of 260 to 350 nm and an emission band of 320 to 550 nm.
 また、本発明による化粧品は、上記した紫外線吸収化粧品素材を含有することを特徴とする。 Further, the cosmetic according to the present invention is characterized by containing the above-described ultraviolet absorbing cosmetic material.
 また、本発明の紫外線吸収化粧品素材は、250~300nmに光吸収を有する紫外線吸収化合物Iと、金属原子とを含有し、250~300nmおよび330~430nmに励起帯を有し、かつ400~600nmに発光帯を有することを特徴とするものである。 The ultraviolet-absorbing cosmetic material of the present invention contains an ultraviolet-absorbing compound I having light absorption at 250 to 300 nm and a metal atom, has excitation bands at 250 to 300 nm and 330 to 430 nm, and 400 to 600 nm. It has a light emission band.
 また、本発明の紫外線吸収化粧品素材は、前記金属原子が、金属イオンで存在し、前記金属イオンのイオン半径が、30~90pmであることが好ましく、前記金属イオンが、Al3+またはMg2+であることが好ましい。 In the ultraviolet-absorbing cosmetic material according to the present invention, the metal atom is present as a metal ion, and the ion radius of the metal ion is preferably 30 to 90 pm, and the metal ion is Al 3+ or Mg 2+ . Preferably there is.
 さらに、本発明の紫外線吸収化粧品素材は、前記紫外線吸収化合物Iが、クマリン由来の複数の環状構造から構成された構造を有しない化合物であることが好ましい。 Furthermore, in the ultraviolet absorbing cosmetic material of the present invention, it is preferable that the ultraviolet absorbing compound I is a compound having no structure composed of a plurality of cyclic structures derived from coumarin.
 また、本発明の紫外線吸収化粧品素材は、260~330nmに励起帯を有し、かつ320~550nmに発光帯を有する紫外線吸収化合物IIを含有することを特徴とするものである。 The ultraviolet-absorbing cosmetic material of the present invention is characterized by containing an ultraviolet-absorbing compound II having an excitation band at 260 to 330 nm and an emission band at 320 to 550 nm.
 さらに、本発明の紫外線吸収化粧品素材は、前記紫外線吸収化合物IIと、金属原子とを含有することが好ましい。 Furthermore, the ultraviolet-absorbing cosmetic material of the present invention preferably contains the ultraviolet-absorbing compound II and a metal atom.
 さらにまた、本発明の紫外線吸収化粧品素材は、前記金属原子が、金属イオンで存在し、前記金属イオンのイオン半径が、30~90pmであることが好ましく、前記金属イオンが、Al3+またはMg2+であることが好ましい。 Furthermore, in the ultraviolet-absorbing cosmetic material of the present invention, it is preferable that the metal atom is present as a metal ion, and the ion radius of the metal ion is 30 to 90 pm, and the metal ion is Al 3+ or Mg 2+. It is preferable that
 さらに、本発明の紫外線吸収化粧品素材は、前記紫外線吸収化合物Iと前記金属原子に加えて、前記紫外線吸収化合物IIを含有することが好ましい。 Furthermore, the ultraviolet-absorbing cosmetic material of the present invention preferably contains the ultraviolet-absorbing compound II in addition to the ultraviolet-absorbing compound I and the metal atom.
 また、本発明の化粧品は、前記紫外線吸収化粧品素材を含有することを特徴とするものである。 The cosmetic of the present invention is characterized by containing the ultraviolet absorbing cosmetic material.
 本発明によると、紫外線遮蔽および可視光増強効果を有し、低刺激で、さらに化粧品に使用した際の安定性の良好な紫外線吸収化粧品素材および該紫外線吸収化粧品素材を含有する化粧品を提供することができる。 According to the present invention, there are provided an ultraviolet-absorbing cosmetic material having an ultraviolet shielding effect and a visible light enhancing effect, low irritation, and good stability when used in cosmetics, and a cosmetic containing the ultraviolet-absorbing cosmetic material. Can do.
4-ヒドロキシクマリン(a)および7-ヒドロキシ-4-メチルクマリン(b)の光吸収スペクトルである。It is a light absorption spectrum of 4-hydroxycoumarin (a) and 7-hydroxy-4-methylcoumarin (b). 7-ヒドロキシ-4-メチルクマリン水溶液の光吸収スペクトルのpH依存性を示すグラフである。6 is a graph showing the pH dependence of the light absorption spectrum of a 7-hydroxy-4-methylcoumarin aqueous solution. 7-ヒドロキシ-4-メチルクマリン水溶液における、pHに対する320nm(●)および360nm(▲)における吸収強度を示すグラフである。3 is a graph showing the absorption intensity at 320 nm (●) and 360 nm (▲) with respect to pH in a 7-hydroxy-4-methylcoumarin aqueous solution. 7-ヒドロキシ-4-メチルクマリン水溶液を360nmの光で励起した場合における蛍光スペクトルを示したグラフである。3 is a graph showing a fluorescence spectrum when a 7-hydroxy-4-methylcoumarin aqueous solution is excited with light of 360 nm. 4-ヒドロキシクマリンおよびアルギニン混合物へのマイクロ波照射前後の光吸収スペクトルである。It is a light absorption spectrum before and after microwave irradiation to a 4-hydroxycoumarin and arginine mixture. マイクロ波印加装置の概略図である。It is the schematic of a microwave application apparatus. 4-ヒドロキシクマリンおよびアルギニン混合物へのマイクロ波照射前後の光吸収スペクトル(差スペクトル)である。It is a light absorption spectrum (difference spectrum) before and after microwave irradiation to a 4-hydroxycoumarin and arginine mixture. 4-ヒドロキシクマリンとアルギニルクマリンの励起発光スペクトルである。It is an excitation emission spectrum of 4-hydroxycoumarin and arginylcoumarin. アルギニルクマリンとAlClの混合溶液の蛍光スペクトル(Series1~9で、AlClの添加量を変化させている)を示したグラフである。6 is a graph showing fluorescence spectra of a mixed solution of arginyl coumarin and AlCl 3 (in the series 1 to 9, the addition amount of AlCl 3 is changed). Series1からSeries2を引いた差スペクトルを示したグラフである。It is the graph which showed the difference spectrum which subtracted Series2 from Series1. アルギニルクマリンの475nmでの蛍光強度vsAlCl添加量(280nm励起)を示したグラフである。Fluorescence intensity VsAlCl 3 amount at 475nm of arginyl coumarin is a graph showing a (280 nm excitation). 蛍光スペクトル(アルギニルクマリン+AlCl)の励起波長依存性(340~400nm)を示したグラフである。 3 is a graph showing the excitation wavelength dependence (340 to 400 nm) of a fluorescence spectrum (arginyl coumarin + AlCl 3 ). アルギニルクマリンの発光強度(475nm)の励起波長依存性(340~400nm)を示したグラフである。3 is a graph showing the excitation wavelength dependence (340 to 400 nm) of luminescence intensity (475 nm) of arginyl coumarin. 4-ヒドロキシクマリンにAlClを添加した場合の発光スペクトルを示したグラフである。Is a graph showing an emission spectrum in the case of adding AlCl 3 to 4-hydroxy coumarin. アルギニルクマリンの光透過スペクトルである。It is a light transmission spectrum of arginyl coumarin. アルギニルクマリンとAlClの混合溶液の光透過スペクトルである。It is a light transmission spectrum of a mixed solution of arginyl coumarin and AlCl 3 . 高速液体クロマトグラフによる紫外線吸収化合物Iの分画を示した図である。It is the figure which showed the fraction of the ultraviolet absorption compound I by a high performance liquid chromatograph. 紫外線吸収化合物Iの紫外線吸収スペクトルを示したグラフである。2 is a graph showing an ultraviolet absorption spectrum of an ultraviolet absorbing compound I. 紫外線吸収化合物IにAlCl添加前後の光吸収スペクトル(差スペクトル)を示したグラフである。2 is a graph showing a light absorption spectrum (difference spectrum) before and after addition of AlCl 3 to the ultraviolet absorbing compound I. 紫外線吸収化合物Iの250nmにおける励起よって測定した蛍光スペクトルを示したグラフである。It is the graph which showed the fluorescence spectrum measured by excitation at 250 nm of the ultraviolet absorption compound I. 紫外線吸収化合物Iの325nmにおける励起よって測定した蛍光スペクトルを示したグラフである。It is the graph which showed the fluorescence spectrum measured by excitation of 325 nm of the ultraviolet absorption compound I. 紫外線吸収化合物Iの375nmにおける励起よって測定した蛍光スペクトルを示したグラフである。It is the graph which showed the fluorescence spectrum measured by excitation at 375 nm of the ultraviolet absorption compound I. 紫外線吸収化合物IにAlCl添加後に368nmにおける励起よって測定した蛍光スペクトルおよび励起スペクトルを示したグラフである。The ultraviolet absorbing compound I is a graph showing the fluorescence and excitation spectra were excited Thus measurement at 368nm after AlCl 3 addition. 高速液体クロマトグラフによる紫外線吸収化合物IIの分画を示した図である。It is the figure which showed the fraction of the ultraviolet absorption compound II by a high performance liquid chromatograph. 紫外線吸収化合物IIを含有する溶液、および紫外線吸収化合物IとAlClを含有する溶液の光吸収スペクトルを示したグラフである。Solution containing an ultraviolet-absorbing compound II, and is a graph illustrating a light absorption spectrum of the solution containing the ultraviolet absorbing compound I and AlCl 3. 紫外線吸収化合物IIにAlCl添加前後における吸収スペクトルの差を示す差吸収スペクトルを示したグラフである。The ultraviolet absorbing compound II is a graph showing the difference absorption spectra showing the difference in absorption spectrum in AlCl 3 before and after addition. 紫外線吸収化合物IIの300nmにおける励起よって測定した蛍光スペクトルおよび励起スペクトルを示したグラフである。It is the graph which showed the fluorescence spectrum and excitation spectrum which were measured by excitation at 300 nm of the ultraviolet absorption compound II. 紫外線吸収化合物IIにAlCl添加後の300nmにおける励起よって測定した蛍光スペクトルおよび励起スペクトルを示したグラフである。The ultraviolet absorbing compound II is a graph showing the fluorescence and excitation spectra were excited Thus measurement at 300nm after AlCl 3 addition. 高速液体クロマトグラフによる紫外線吸収化合物IIIの分画を示した図である。It is the figure which showed the fraction of the ultraviolet absorption compound III by a high performance liquid chromatograph. 紫外線吸収化合物IIIを含有する溶液、および紫外線吸収化合物IIIとAlClを含有する溶液の光吸収スペクトルを示したグラフである。The solution containing the ultraviolet absorbing compound III, and is a graph illustrating a light absorption spectrum of the solution containing the ultraviolet absorbing compound III and AlCl 3. 紫外線吸収化合物IIIの蛍光スペクトルおよび励起スペクトルを示したグラフである。It is the graph which showed the fluorescence spectrum and excitation spectrum of the ultraviolet absorption compound III. アルギニルクマリンの金属イオン添加による蛍光スペクトルへの影響を示したグラフである。It is the graph which showed the influence on the fluorescence spectrum by the metal ion addition of arginyl coumarin. アルギニルクマリンのMgイオン、Cuイオン添加濃度変化による蛍光スペクトルへの影響を示したグラフである。It is the graph which showed the influence on the fluorescence spectrum by Mg ion and Cu ion addition density | concentration change of arginyl coumarin. 正常ヒト表皮細胞に対するUVBによる炎症抑制作用(IL-1α、IL-6およびIL-8に関する作用)を示す図である。It is a figure which shows the inflammation inhibitory effect (effect | action regarding IL-1 (alpha), IL-6, and IL-8) by UVB with respect to a normal human epidermal cell.
 以下、本発明の紫外線吸収化粧品素材および該紫外線吸収化粧品素材を含有する化粧品について具体的に説明する。
 本発明の紫外線吸収化粧品素材は、250~300nmに光吸収を有する紫外線吸収化合物Iと、金属原子とを含有し、250~300nmおよび330~430nmに励起帯を有し、かつ400~600nmに発光帯を有することを特徴とするものである。これにより、紫外線遮蔽および可視光増強効果を有し、低刺激で、さらに化粧品に使用した際の安定性の良好なものとすることができる。ここで、「励起帯」とは、物質がエネルギー的に取りうる状態のうち、エネルギー的に最低の状態を基底状態、それよりも高い状態を励起状態としたときに、物質が光吸収によって基底状態から励起状態へと上がることができる光波長帯のことであり、「発光帯」とは、励起状態から光を外部に放出してエネルギー的により低い状態へと移行することができる光波長帯のことである。
Hereinafter, the ultraviolet-absorbing cosmetic material of the present invention and the cosmetic containing the ultraviolet-absorbing cosmetic material will be specifically described.
The ultraviolet-absorbing cosmetic material of the present invention contains an ultraviolet-absorbing compound I having light absorption at 250 to 300 nm and a metal atom, has excitation bands at 250 to 300 nm and 330 to 430 nm, and emits light at 400 to 600 nm. It is characterized by having a belt. Thereby, it has an ultraviolet shielding effect and a visible light enhancement effect, has low irritation, and can have good stability when used in cosmetics. Here, the “excitation band” refers to a state in which a substance can take energy energetically when the lowest energy state is a ground state and a higher state is an excited state. An optical wavelength band that can go from the excited state to the excited state. The “emission band” is an optical wavelength band in which light can be emitted from the excited state to the outside and shifted to a lower energy state. That is.
 また、本発明の紫外線吸収化粧品素材は、紫外線吸収化合物Iとともに含有される前記金属原子が、金属イオンで存在し、前記金属イオンのイオン半径が、30~90pm(ピコメートル)であることが好ましく、35~70pmであることがより好ましく、50~65pmであることがさらにより好ましい。金属原子が金属イオンとして存在することで、電荷を有するため、より励起帯や発光帯での光の強度を大きくすることができる。さらに、前記イオン半径の金属イオンを含有することで、励起帯や発光帯での光の強度をより大きくすることができる。 In the UV-absorbing cosmetic material of the present invention, the metal atom contained together with the UV-absorbing compound I is preferably a metal ion, and the ion radius of the metal ion is preferably 30 to 90 pm (picometer). 35 to 70 pm is more preferable, and 50 to 65 pm is even more preferable. Since the metal atom is present as a metal ion, it has a charge, so that the intensity of light in the excitation band and the emission band can be further increased. Furthermore, the intensity of light in the excitation band and the emission band can be further increased by containing metal ions having the ionic radius.
 前記紫外線吸収化合物Iとともに含有される前記金属イオンとしては、本発明の効果が得られれば特に限定されないが、Al3+またはMg2+であることが好ましく、Al3+であることがより好ましい。Al3+は、50pmのイオン半径を取ることができ、Mg2+は65pmのイオン半径をとることができる。これにより、励起帯や発光帯での光の強度をさらに大きくすることができる。 The metal ion contained together with the ultraviolet absorbing compound I is not particularly limited as long as the effect of the present invention is obtained, but is preferably Al 3+ or Mg 2+ , and more preferably Al 3+ . Al 3+ can take an ionic radius of 50 pm, and Mg 2+ can take an ionic radius of 65 pm. Thereby, the intensity of light in the excitation band and the emission band can be further increased.
 また、前記金属イオンは水溶性であることが好ましく、さらに、前記紫外線吸収化合物Iに配位する金属であることが好ましい。これにより、励起帯や発光帯での光の強度をさらにより大きくすることができる。 The metal ion is preferably water-soluble, and more preferably a metal that coordinates to the ultraviolet absorbing compound I. Thereby, the intensity of light in the excitation band and the emission band can be further increased.
 さらにまた、本発明の紫外線吸収化粧品素材は、前記紫外線吸収化合物Iが、クマリン由来の複数の環状構造から構成された構造を有しない化合物であることが好ましい。ここで、クマリン由来の複数の環状構造から構成された構造と一般に定義されている複素環構造とを区別するために明記すると、一般に複素環構造とは、環構造中に炭素以外の原子を有する構造であり、例えば、窒素、酸素、イオウ等の原子を有する環構造である。然るにクマリン由来の複数の環状構造から構成された構造としては、例えば、クマリン骨格を有する複数の環状構造から構成された化合物等を挙げることができる。クマリン骨格を有する化合物は、「単純クマリン類の感作性及び交差反応性(YAKUGAKU ZASSHI 121(1)97-103(2001))」にも記載されているように感作性等を有し肌に刺激を与えるおそれがある。本発明において、前記紫外線吸収化合物Iがクマリン由来の複数の環状構造から構成された構造を有しない化合物であるため、刺激の発生を抑えて低刺激の紫外線吸収化粧品素材を提供することができる。ただし、上記複数の環状構造から構成された構造でなければ、単環の環状構造から構成された複素環構造の物質としての紫外線吸収化粧品素材は存在しうることを峻別しておくとする。 Furthermore, in the ultraviolet absorbing cosmetic material of the present invention, it is preferable that the ultraviolet absorbing compound I is a compound having no structure composed of a plurality of cyclic structures derived from coumarin. Here, in order to distinguish between a structure composed of a plurality of cyclic structures derived from coumarin and a generally defined heterocyclic structure, the heterocyclic structure generally has an atom other than carbon in the ring structure. For example, a ring structure having atoms such as nitrogen, oxygen, sulfur and the like. However, examples of the structure composed of a plurality of cyclic structures derived from coumarin include compounds composed of a plurality of cyclic structures having a coumarin skeleton. A compound having a coumarin skeleton has a sensitization property and the like as described in “Sensitization and cross-reactivity of simple coumarins (YAKUGAKU ZASSHI 121 (1) 97-103 (2001))”. May cause irritation. In the present invention, since the ultraviolet absorbing compound I is a compound that does not have a structure composed of a plurality of cyclic structures derived from coumarin, it is possible to provide an ultraviolet absorbing cosmetic material with low irritation while suppressing the occurrence of irritation. However, if the structure is not composed of a plurality of the above-mentioned cyclic structures, it will be clearly distinguished that an ultraviolet-absorbing cosmetic material as a substance having a heterocyclic structure composed of a monocyclic ring structure may exist.
 さらに、本発明の紫外線吸収化粧品素材は、260~330nmに励起帯を有し、かつ320~550nmに発光帯を有する紫外線吸収化合物IIを含有することを特徴とするものである。かかる紫外線吸収化合物IIを含有することで、励起帯や発光帯での光の強度を大きくすることができ、紫外線遮蔽および可視光増強効果をさらに大きくし、低刺激で、さらに化粧品に使用した際の安定性の良好なものとすることができる。 Furthermore, the ultraviolet-absorbing cosmetic material of the present invention is characterized by containing an ultraviolet-absorbing compound II having an excitation band at 260 to 330 nm and an emission band at 320 to 550 nm. By containing such UV-absorbing compound II, it is possible to increase the intensity of light in the excitation band and emission band, further increase the UV shielding and visible light enhancement effect, and when used in cosmetics with low irritation. The stability can be improved.
 さらに、本発明の紫外線吸収化粧品素材は、前記紫外線吸収化合物IIと、金属原子とを含有することが好ましい。金属原子を含有することで、励起帯や発光帯での光の強度をより大きくすることができる。 Furthermore, the ultraviolet-absorbing cosmetic material of the present invention preferably contains the ultraviolet-absorbing compound II and a metal atom. By containing a metal atom, the intensity of light in the excitation band or emission band can be further increased.
 さらにまた、本発明の紫外線吸収化粧品素材は、前記紫外線吸収化合物IIとともに含有される前記金属原子が、金属イオンで存在し、前記金属イオンのイオン半径が、30~90pmであることが好ましく、35~70pmであることがより好ましく、50~65pmであることがさらにより好ましい。金属原子が金属イオンとして存在することで、電荷を有するため、より励起帯や発光帯での光の強度を大きくすることができる。さらに、前記のイオン半径の金属イオンを含有することで、励起帯や発光帯での光の強度をより大きくすることができる。 Furthermore, in the UV-absorbing cosmetic material of the present invention, it is preferable that the metal atom contained together with the UV-absorbing compound II is present as a metal ion, and the ion radius of the metal ion is 30 to 90 pm, 35 More preferably, it is ˜70 pm, and even more preferably 50-65 pm. Since the metal atom is present as a metal ion, it has a charge, so that the intensity of light in the excitation band and the emission band can be further increased. Furthermore, the intensity of light in the excitation band or the emission band can be further increased by containing the metal ions having the above-mentioned ion radius.
 前記紫外線吸収化合物IIとともに含有される前記金属イオンとしては、本発明の効果が得られれば特に限定されないが、Al3+またはMg2+であることが好ましく、Al3+であることがより好ましい。Al3+は、50pmのイオン半径を取ることができ、Mg2+は65pmのイオン半径をとることができる。これにより、励起帯や発光帯での光の強度をさらに大きくすることができる。 The metal ion contained together with the ultraviolet absorbing compound II is not particularly limited as long as the effect of the present invention is obtained, but is preferably Al 3+ or Mg 2+ , and more preferably Al 3+ . Al 3+ can take an ionic radius of 50 pm, and Mg 2+ can take an ionic radius of 65 pm. Thereby, the intensity of light in the excitation band and the emission band can be further increased.
 また、本発明の紫外線吸収化粧品素材は、前記紫外線吸収化合物Iと前記金属原子に加えて、前記紫外線吸収化合物IIを含有することが好ましい。これにより、前記紫外線吸収化合物Iと前記紫外線吸収化合物IIの相乗効果で、より広い範囲の励起帯やより広い範囲の発光帯で光の強度を大きくすることができ、紫外線遮蔽および可視光増強効果をより大きくすることができる。 Moreover, it is preferable that the ultraviolet absorbing cosmetic material of the present invention contains the ultraviolet absorbing compound II in addition to the ultraviolet absorbing compound I and the metal atom. As a result, the synergistic effect of the ultraviolet absorbing compound I and the ultraviolet absorbing compound II can increase the light intensity in a wider range of excitation band and wider range of emission band, thereby providing an ultraviolet shielding and visible light enhancement effect. Can be made larger.
 前記紫外線吸収化粧品素材としては、前記特徴を有するものであれば、特に限定されない。前記紫外線吸収化粧品素材の具体例については、以下に説明する。 The UV-absorbing cosmetic material is not particularly limited as long as it has the above characteristics. Specific examples of the ultraviolet absorbing cosmetic material will be described below.
<紫外線吸収化粧品素材>
 前記紫外線吸収化粧品素材は、例えば、アルギニンおよびクマリン色素から合成した化合物と、塩化アルミニウムとの錯体または混合物から得ることができる。以下、この前記紫外線吸収化粧品素材について説明する。
<UV absorbing cosmetic material>
The ultraviolet-absorbing cosmetic material can be obtained, for example, from a complex or mixture of a compound synthesized from arginine and a coumarin dye and aluminum chloride. Hereinafter, the ultraviolet ray absorbing cosmetic material will be described.
(クマリン色素)
 4-ヒドロキシクマリン(以下、4Cと略記する場合あり)とは、下記(1)の構造を有する単純クマリン化合物の一種である。
(Coumarin dye)
4-hydroxycoumarin (hereinafter sometimes abbreviated as 4C) is a kind of simple coumarin compound having the following structure (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 4-ヒドロキシルクマリンは、常温では淡黄色もしくは淡茶色の結晶性粉末である。今日では、天然物また合成物として1,000種類以上のクマリン化合物が見出されている。中でも4-ヒドロキシクマリンは、現在、誘導体のワーファリンが血液の抗凝固剤や殺鼠剤として用いられているように、構造が単純なため、多様な物質合成の可能性を持っている。単純クマリンにはまた、下記(2)に示すような、7-ヒドロキシ-4-メチルクマリン(以下、7Cと略記場合あり)なども存在する。 4-Hydroxycoumarin is a light yellow or light brown crystalline powder at room temperature. Today, over 1,000 kinds of coumarin compounds have been found as natural or synthetic products. Among them, 4-hydroxycoumarin has a possibility of synthesizing various substances because its structure is simple as the derivative warfarin is currently used as a blood anticoagulant or rodenticide. Simple coumarin also includes 7-hydroxy-4-methylcoumarin (hereinafter sometimes abbreviated as 7C) as shown in (2) below.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 クマリンは、従来から香料などに応用されたり医学目的に使用されたりしてきたが、最近ではクマリンの光吸収と発光特性を利用した有機色素レーザー材料などへの応用も多く試みられるようになってきた。また、近年、太陽エネルギー利用の新形態として注目されている色素増感太陽電池の増感剤となる効果的な物質がクマリンの誘導体として実現された例も出てきているなど光エネルギー利用材料物質として工業的利用の可能性が広がりつつある。 Coumarins have been applied to fragrances and used for medical purposes, but recently, many attempts have been made to apply them to organic dye laser materials that utilize the light absorption and emission characteristics of coumarins. . In addition, in recent years, examples of effective materials that can be used as sensitizers for dye-sensitized solar cells, which are attracting attention as a new form of solar energy utilization, have been realized as derivatives of coumarin. As a result, the possibility of industrial use is expanding.
 4-ヒドロキシクマリンは、図1の曲線(a)に示すような光吸収スペクトルを有する。この光吸収特性は紫外部における光吸収が大きく太陽エネルギーの紫外線領域の光吸収には向いているが、可視領域における光吸収帯は少ない。主要な吸収ピークは二つ有りその波長帯は接近している。7-ヒドロキシ-4-メチルクマリンの場合は、図1の曲線(b)に示すような光吸収スペクトルを有する。この光吸収特性は紫外線領域の光吸収には向いていて、4-ヒドロキシクマリンよりも少し長波長側に光吸収帯があるが、可視領域における光吸収帯はやはり少ない。主要な吸収ピークは密集している。上記式(1)および(2)を比較して分かるように、ヒドロキシル基(-OH)の位置の違いが、スペクトルにおいて大きな違いとなって現れている。図1により7-ヒドロキシ-4-メチルクマリンは波長290nmと322nmに主要な吸収帯があることがわかる。よくみると、322nmの吸収は4-ヒドロキシクマリンにもある。これは基本的な分子構造由来である。 4-Hydroxycoumarin has a light absorption spectrum as shown by the curve (a) in FIG. This light absorption characteristic is large in light absorption in the ultraviolet region and suitable for light absorption in the ultraviolet region of solar energy, but has a small light absorption band in the visible region. There are two major absorption peaks, and their wavelength bands are close. In the case of 7-hydroxy-4-methylcoumarin, it has a light absorption spectrum as shown in the curve (b) of FIG. This light absorption characteristic is suitable for light absorption in the ultraviolet region, and has a light absorption band slightly longer than 4-hydroxycoumarin, but still has little light absorption band in the visible region. Major absorption peaks are dense. As can be seen by comparing the above formulas (1) and (2), the difference in the position of the hydroxyl group (—OH) appears as a large difference in the spectrum. FIG. 1 shows that 7-hydroxy-4-methylcoumarin has major absorption bands at wavelengths of 290 nm and 322 nm. If you look closely, absorption at 322 nm is also in 4-hydroxycoumarin. This is from the basic molecular structure.
 紫外線を効果的に防御するための紫外線吸収化粧品素材とするには、光吸収帯が紫外の領域にあることが必要である。また、蛍光スペクトルにおける励起発光ピークの制御が重要となる。 In order to make a UV-absorbing cosmetic material that effectively protects against UV rays, the light absorption band must be in the UV region. In addition, control of the excitation emission peak in the fluorescence spectrum is important.
 図2に、7-ヒドロキシ-4-メチルクマリン水溶液の光吸収スペクトルのpH依存性を示した。また、図3には、pHに対する320nm(●)または360nm(▲)における吸収強度を示した。これによると、pH7未満では320nm付近に吸収ピークが現れ、pH7以上では360nm付近に吸収ピークが現れることが分かる。また、pHが大きくなるにつれ、320nmでの吸収が小さくなり、逆に、360nmでの吸収が大きくなることが分かる。 FIG. 2 shows the pH dependence of the light absorption spectrum of 7-hydroxy-4-methylcoumarin aqueous solution. FIG. 3 shows the absorption intensity at 320 nm (●) or 360 nm (nm) with respect to pH. According to this, it can be seen that an absorption peak appears at around 320 nm below pH 7, and an absorption peak appears at around 360 nm above pH 7. It can also be seen that as pH increases, the absorption at 320 nm decreases, and conversely, the absorption at 360 nm increases.
 図4に、7-ヒドロキシ-4-メチルクマリン水溶液を360nmの光で励起した場合における蛍光スペクトルを示した。蛍光ピーク波長は450nmであり、pHが大きくなるに従って、蛍光強度が大きくなることが分かった。 FIG. 4 shows the fluorescence spectrum when a 7-hydroxy-4-methylcoumarin aqueous solution was excited with light of 360 nm. The fluorescence peak wavelength was 450 nm, and it was found that the fluorescence intensity increased as the pH increased.
(アルギニン)
 アルギニンは、下記(3)の構造を有する塩基性アミノ酸の一種である。
(Arginine)
Arginine is a kind of basic amino acid having the following structure (3).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 アルギニンは側鎖RがCHCHCHNH(C=NH)NHであるα-アミノ酸で、荷電極性側鎖アミノ酸であり、塩基性アミノ酸である(蛋白質を構成するアミノ酸としては塩基性の高い部類の一つである)。側鎖Rの構造は通常のポリペプチドとは異なる高分子化合物を形成する材料となることを意味している。すなわち主鎖ではなく、側鎖のアミノ基を介して高分子化するポリアルギニン等の高分子材料となることを意味している。ポリアミノ酸にはまた、側鎖のカルボキシル基を介して高分子化するグルタミン酸など多様に存在し、食品、医薬品以外の材料系の応用例としては、生分解性プラスチックスや酵素硬化ハイドロゲル、インジェクション可能な生体材料として、細胞足場材料、DDSマトリックス、生医学用止血剤・接着剤等様々である。 Arginine is an α-amino acid having a side chain R of CH 2 CH 2 CH 2 NH (C═NH) NH 2 , a charged polar side chain amino acid, and a basic amino acid. Is one of the higher classes). The structure of the side chain R means that it becomes a material that forms a polymer compound different from a normal polypeptide. That is, it means that it becomes a polymer material such as polyarginine that is polymerized through the amino group of the side chain instead of the main chain. Polyamino acids also exist in a variety of ways, including glutamic acid, which is polymerized via a carboxyl group on the side chain. Examples of applications other than food and pharmaceutical materials include biodegradable plastics, enzyme-cured hydrogels, and injections. Examples of possible biomaterials include cell scaffold materials, DDS matrices, biomedical hemostats and adhesives.
(アルギニンと4-ヒドロキシクマリンから合成した化合物)
 本発明者は、クマリン分子本体のいずれかの原子団が脱離し、そこにアルギニンが結合すると電子密度分布が大きく変化し、光吸収過程におけるエネルギー値に大きな変化が現れるのではないかと予測した。あるいは、クマリン分子構造の解裂とアルギニン分子構造の解裂による部分構造の再編成によって生じる分子種の生成により、光吸収されたのではないかと予測した。また、クマリンとアミン類の化学合成に効果があるマイクロ波合成の方法は、アルギニンと4-ヒドロキシクマリンとの反応にも有効に働くのではないかと予測した。これは、アミノ酸はアミン類と機能は異なるが、構造上アミノ基を有していることがその理由である。
(Compound synthesized from arginine and 4-hydroxycoumarin)
The present inventor predicted that when any atomic group of the coumarin molecule main body is desorbed and arginine is bonded thereto, the electron density distribution changes greatly, and a large change appears in the energy value in the light absorption process. Alternatively, it was predicted that light was absorbed by the generation of molecular species generated by the cleavage of the coumarin molecular structure and the reorganization of the partial structure by the cleavage of the arginine molecular structure. In addition, it was predicted that the microwave synthesis method effective for the chemical synthesis of coumarin and amines would also work effectively for the reaction between arginine and 4-hydroxycoumarin. This is because amino acids have different functions from amines but structurally have amino groups.
 本発明においては、一例として、アルギニンとクマリン色素との反応を、マイクロ波を照射することにより行った。本発明で化学合成に用いるマイクロ波とは、波長0.3mm~30cm、周波数1GHz~1THzの電磁波を指し、マイクロ波の振動電場および振動磁場が物質中の永久・誘起双極子あるいは電荷と相互作用することにより、分子レベルで熱を発生し、物質を直接加熱する。化学反応系に利用した場合、迅速に、熱伝導および対流によらない均一な直接加熱、マイクロ波と相互作用をする物質のみの選択的加熱、パルス、連続照射による加熱モードの精密制御、といったことが可能である。また、反応器壁や物質移動の影響のない、また熱伝導の良否にかかわらない加熱が可能であり、外部熱源からの加熱では得られない精密な反応制御プロセスが構成できるものである。 In the present invention, as an example, the reaction between arginine and a coumarin dye was performed by irradiating microwaves. The microwave used for chemical synthesis in the present invention refers to an electromagnetic wave having a wavelength of 0.3 mm to 30 cm and a frequency of 1 GHz to 1 THz. The microwave oscillating electric field and oscillating magnetic field interact with permanent and induced dipoles or charges in the material. This generates heat at the molecular level and directly heats the material. When used in a chemical reaction system, rapid, uniform direct heating without heat conduction and convection, selective heating of only the substance that interacts with microwaves, precise control of heating mode by pulse, continuous irradiation, etc. Is possible. In addition, it is possible to perform heating that is not affected by the reactor wall and mass transfer, and that is not affected by whether heat conduction is good or not, and a precise reaction control process that cannot be obtained by heating from an external heat source can be configured.
 以下、アルギニンと4-ヒドロキシクマリンから合成した化合物の製造方法について、図面を用いて詳細に説明する。反応に用いたアミノ酸のアルギニンだけを含む水溶液の紫外可視光吸収は、207nm近傍の紫外部に吸収波長帯があるだけである。 Hereinafter, a method for producing a compound synthesized from arginine and 4-hydroxycoumarin will be described in detail with reference to the drawings. The ultraviolet-visible light absorption of an aqueous solution containing only the amino acid arginine used in the reaction has only an absorption wavelength band in the ultraviolet region near 207 nm.
 アルギニンと4-ヒドロキシクマリンを1:1のモル比で混合した場合、両者は反応するかどうかを確かめる実験を行った。アルギニンと4-ヒドロキシクマリンを1:1のモル比で混合したサンプル(それぞれの濃度は、0.2mM)の光吸収スペクトルは図5の1のような結果となった。205nm,286nm,299nmに吸収極大が見られただけであり、これは、4-ヒドロキシクマリンの極大波長206nm,286nm,300nmとほぼ一致しており、4-ヒドロキシクマリンの存在が確認されただけである。アルギニンの光吸収帯と4-ヒドロキシクマリンの205nmピークをもつ光吸収帯はほぼ重なっている。この実験結果からは、単に両者を混合しただけでは反応しないことが分かった。 When arginine and 4-hydroxycoumarin were mixed at a molar ratio of 1: 1, an experiment was conducted to confirm whether or not both would react. The light absorption spectrum of a sample in which arginine and 4-hydroxycoumarin were mixed at a molar ratio of 1: 1 (each concentration was 0.2 mM) was as shown in FIG. Only absorption maxima were observed at 205 nm, 286 nm, and 299 nm, which almost coincided with the maximum wavelengths of 206 nm, 286 nm, and 300 nm of 4-hydroxycoumarin, and the presence of 4-hydroxycoumarin was only confirmed. is there. The light absorption band of arginine and the light absorption band having a 205 nm peak of 4-hydroxycoumarin almost overlap. From this experimental result, it was found that simply mixing both would not react.
 次に、三段階の濃度の混合溶液をそれぞれ、容積15mL、最大耐圧1400kPaの高耐圧ガラスチューブ(Ace社製)に5mL入れ、それぞれ別々にマイクロ波を4分間印加した場合について説明する。図6はマイクロ波印加装置の概略図である。1は電子レンジ本体、2は被照射物質を設置する部分、3はマイクロ波を発生させるマグネトロン、4は高耐圧ガラスチューブ、および5はビーカーである。マイクロ波印加装置には一般家庭用電子レンジ(2.45GHz約900W)を使用した。ビーカー5に入れた高耐圧ガラスチューブ4を電子レンジ1の被照射物質を設置する部分2に設置し、マイクロ波を照射した。マイクロ波照射前後の光吸収スペクトルを図5に示す。線分1は上記したように照射前のスペクトルであり、線分2は2分間照射後、線分3は4分照射後のそれぞれのスペクトルである。可視波長域には吸収は見られず、208nm,287nm,300nmに吸収極大が見られた。これは、4-ヒドロキシクマリンの極大波長207nm,286nm,299nmとほぼ一致しており、4-ヒドロキシクマリンの存在が確認された。マイクロ波を印加させるに伴い、4-ヒドロキシクマリンに特有の吸収領域の吸光度が減少し、253nmと331nm近傍の吸光度が増加した。これは、アルギニンと4-ヒドロキシクマリンが、何らかの反応を起こして吸収極大がシフトしたためと考えられる。 Next, a case will be described in which 5 mL of a mixed solution having three stages of concentration is placed in a high pressure glass tube (manufactured by Ace) having a volume of 15 mL and a maximum pressure resistance of 1400 kPa, and microwaves are separately applied for 4 minutes. FIG. 6 is a schematic diagram of a microwave application device. 1 is a microwave oven main body, 2 is a portion where an irradiated material is placed, 3 is a magnetron for generating microwaves, 4 is a high pressure glass tube, and 5 is a beaker. A general household microwave oven (2.45 GHz, about 900 W) was used as the microwave application device. A high pressure glass tube 4 placed in a beaker 5 was placed in a portion 2 where a substance to be irradiated of the microwave oven 1 was placed, and was irradiated with microwaves. The light absorption spectra before and after microwave irradiation are shown in FIG. As described above, line segment 1 is a spectrum before irradiation, line segment 2 is a spectrum after irradiation for 2 minutes, and line segment 3 is a spectrum after irradiation for 4 minutes. No absorption was observed in the visible wavelength region, and absorption maximums were observed at 208 nm, 287 nm, and 300 nm. This almost coincided with the maximum wavelengths of 207 nm, 286 nm, and 299 nm of 4-hydroxycoumarin, and the presence of 4-hydroxycoumarin was confirmed. As the microwave was applied, the absorbance in the absorption region peculiar to 4-hydroxycoumarin decreased, and the absorbance near 253 nm and 331 nm increased. This is probably because arginine and 4-hydroxycoumarin caused some kind of reaction and shifted the absorption maximum.
 このマイクロ波印加時間を2分で行なった場合、図5の線分2に示したように、吸収スペクトルの変化が観察されたが吸収値の変化量は少なく、この変化を詳しく観るため差吸収スペクトルとして図7のように三段階の濃度と三段階の反応時間で比較してみると、0.05mMのサンプル(図7の1)において、286nmで吸光度は0.125下がった。4-ヒドロキシクマリン水溶液の検量線を別途実験的に求め、0.01mM~0.04mMの濃度においては、吸光度をy、濃度をxとすると、関数y=54.44x+0.055で近似されることが分かっている。
よって、Δy=-0.125として、
Δy=-0.125=54.44Δx、
Δx=-2.30×10-3mM
When the microwave application time was 2 minutes, as shown by line 2 in FIG. 5, a change in the absorption spectrum was observed, but the amount of change in the absorption value was small. As a spectrum, as shown in FIG. 7, when comparing the concentration at three levels and the reaction time at three levels, the absorbance decreased by 0.125 at 286 nm in the 0.05 mM sample (1 in FIG. 7). A calibration curve of a 4-hydroxycoumarin aqueous solution is experimentally obtained separately, and at a concentration of 0.01 mM to 0.04 mM, if the absorbance is y and the concentration is x, the function y is approximated by 54.44x + 0.055. I know.
Therefore, as Δy = −0.125,
Δy = −0.125 = 54.44Δx,
Δx = -2.30 × 10 −3 mM
 つまり、0.05mMのサンプルでは、4-ヒドロキシクマリンは、2.30×10-3mM減少したことになり、全体の(2.30×10-3/0.05)×100=4.6%が反応したと考えられる。同様にして、0.1mMのサンプル(図7の線分3)では4.2%、0.2mMのサンプル(図7の線分5)では3.1%(吸光度が0.25~0.7を大きく越えているため誤差が大きい。)となり、2分間のマイクロ波照射により、4-ヒドロキシクマリンは、約4%近く反応したと考えられる。なお、4分間のマイクロ波照射となると、図5の線分3、および図7の線分6に示したような劇的な変化が生じ、90%以上が反応したものと考えられる。 That is, in the 0.05 mM sample, 4-hydroxycoumarin decreased by 2.30 × 10 −3 mM, and the total (2.30 × 10 −3 /0.05)×100=4.6. % Are considered to have reacted. Similarly, the 0.1 mM sample (line 3 in FIG. 7) is 4.2%, and the 0.2 mM sample (line 5 in FIG. 7) is 3.1% (absorbance is 0.25 to 0.00). It is considered that 4-hydroxycoumarin reacted nearly 4% by microwave irradiation for 2 minutes. When microwave irradiation is performed for 4 minutes, dramatic changes as shown in line segment 3 in FIG. 5 and line segment 6 in FIG. 7 occur, and it is considered that 90% or more reacted.
 この反応の前後における光吸収スペクトルデータから差スペクトルを計算し、グラフ化したものが図7である。図7はマイクロ波2分間及び4分間照射前後における、アルギニンと4-ヒドロキシクマリンを含む水溶液の紫外可視光吸収差スペクトルを示すグラフ図である。線分1,2は濃度0.05mMの場合、線分3,4は濃度0.1mMの場合、線分5,6は濃度0.2mMの場合である。可視波長域には吸収は見られず、208nm,253nm,330nm近傍に吸収極大が見られた。これは、4-ヒドロキシクマリンの極大波長207nm,286nm,299nmと比べると短波長の208nmのみほぼ一致し、それ以外は一致せず、吸収極大のシフトが見られた。 FIG. 7 shows a graph obtained by calculating the difference spectrum from the light absorption spectrum data before and after this reaction. FIG. 7 is a graph showing the ultraviolet-visible light absorption difference spectrum of an aqueous solution containing arginine and 4-hydroxycoumarin before and after irradiation with microwaves for 2 minutes and 4 minutes. Lines 1 and 2 have a concentration of 0.05 mM, lines 3 and 4 have a concentration of 0.1 mM, and lines 5 and 6 have a concentration of 0.2 mM. No absorption was observed in the visible wavelength region, and absorption maximums were observed in the vicinity of 208 nm, 253 nm, and 330 nm. Compared with the maximum wavelengths of 207 nm, 286 nm, and 299 nm of 4-hydroxycoumarin, only the short wavelength of 208 nm almost coincides, and the others do not coincide, and a shift of the absorption maximum is observed.
 また、2分間照射の場合、約4%が反応したと考えられるが、4分間照射の場合、4-ヒドロキシクマリンの吸収領域である286nm,300nm付近の吸収帯がほとんどシフトしているので、前述のようにほとんどが反応したと考えられ、照射時間2分間と4分間の間で大幅に反応割合が増加している。このことから、ある一定の高温高圧の条件でこの反応過程が急速に進むと考えられる。 In the case of irradiation for 2 minutes, about 4% is considered to have reacted. However, in the case of irradiation for 4 minutes, the absorption bands near 286 nm and 300 nm, which are the absorption regions of 4-hydroxycoumarin, are almost shifted. It is thought that most of the reaction occurred, and the reaction rate greatly increased between the irradiation time of 2 minutes and 4 minutes. From this, it is considered that this reaction process proceeds rapidly under certain high temperature and high pressure conditions.
 この反応をさらに続けて4分超行なうと、高耐圧ガラスチューブ4といえども耐え切れない圧力となり、破壊現象が起きることも確かめることができた。様々な条件で実験を試みたところ、以下の事象が確認できた。 When this reaction was further continued for more than 4 minutes, it was confirmed that even the high pressure glass tube 4 could not withstand the pressure, and the destruction phenomenon occurred. When the experiment was tried under various conditions, the following events were confirmed.
 ビーカー5に高耐圧ガラスチューブ4をそのまま入れた場合は4分の照射でほぼ反応物は全て生成物となり、その後は化学反応にエネルギーが消費されることがないために高耐圧ガラスチューブ4内のエネルギーの充満によって圧力が一気に上昇し破壊現象が起きる。 When the high pressure glass tube 4 is put in the beaker 5 as it is, almost all of the reaction product becomes a product after irradiation for 4 minutes, and thereafter, no energy is consumed in the chemical reaction. When the energy is full, the pressure rises all at once and the destruction occurs.
 ビーカー5内に酸化アルミニウムの粉末を敷き詰めて同様の反応を行なった場合、約半分の2分間の照射で反応生成物が飽和し、破壊現象が始まる。これはマイクロ波のエネルギーの反応物への効率的な伝達が起きるためであると考えられる。 When the same reaction is carried out by spreading aluminum oxide powder in the beaker 5, the reaction product is saturated with irradiation for about half of 2 minutes, and the destruction phenomenon starts. This is thought to be due to the efficient transmission of microwave energy to the reactants.
 反応生成物は10ヶ月以上の長期間保存しておいても安定しており、元のアルギニンと4-ヒドロキシクマリンに戻ることはなかった。 The reaction product was stable even after being stored for a long period of 10 months or longer, and did not return to the original arginine and 4-hydroxycoumarin.
 この化学合成で得られる合成物の大きな特徴は、吸収スペクトル上ふたつある。ひとつは4-ヒドロキシクマリン特有の波長286nm,300nm近傍の吸収極大が消失し、324nmへと長波長側へシフトしている点、もうひとつは253へ短波長シフトしている点である。これは、分子の鎖の長さが長くなると、電気的対称性の変化によって光吸収過程に大きな変化が生じ、吸収極大波長が長波長側へシフトするという特徴がある、という考察から、4-ヒドロキシクマリンとアルギニンが反応し、生成物の鎖の長さが長くなったためであると考えられる。 There are two major characteristics of the compound obtained by this chemical synthesis in the absorption spectrum. One is that the absorption maxima near the wavelength of 286 nm and 300 nm, which are peculiar to 4-hydroxycoumarin, disappear and shift to the long wavelength side to 324 nm, and the other is that the short wavelength shift to 253. From the consideration that when the length of the molecular chain is increased, a large change occurs in the light absorption process due to the change in electrical symmetry, and the absorption maximum wavelength shifts to the longer wavelength side. This is probably because hydroxycoumarin and arginine reacted to increase the product chain length.
 上記化学合成で得られる合成物の光吸収スペクトル特性は、原物質であるアルギニンと4-ヒドロキシクマリンとは大きく異なることから、上記化学合成で得られる合成物の光吸収スペクトル特性を有する物質全体をアルギニンと4-ヒドロキシクマリンとは明確に区別して、アルギニンと4-ヒドロキシクマリンから合成された化合物群(仮称 アルギニルクマリンと略称する)と呼ぶことができる。 Since the light absorption spectrum characteristics of the compound obtained by the above chemical synthesis are significantly different from arginine which is the original substance and 4-hydroxycoumarin, the entire substance having the light absorption spectrum characteristics of the compound obtained by the above chemical synthesis is Arginine and 4-hydroxycoumarin can be clearly distinguished from each other and can be referred to as a group of compounds synthesized from arginine and 4-hydroxycoumarin (provisionally named arginylcoumarin).
 次に得られた生成物アルギニルクマリンの励起発光スペクトルを測定したところ、図8のようになった。線分1はマイクロ波照射前のアルギニンと4-ヒドロキシクマリンの混合物の励起発光スペクトルである。線分2は生成物の励起発光スペクトルである。反応前は374nm近傍に発光強度の極大があるが、生成物アルギニルクマリンの発光強度極大点は348nmに26nmも短波長シフトしていることが分かった。よって生成物アルギニルクマリンには元の4-ヒドロキシクマリンよりも高エネルギーの光量子が放出される性質が備わっていることが明らかになった。 Next, when the excitation emission spectrum of the obtained product arginyl coumarin was measured, it was as shown in FIG. Line segment 1 is an excitation emission spectrum of a mixture of arginine and 4-hydroxycoumarin before microwave irradiation. Line 2 is the excitation emission spectrum of the product. Before the reaction, the light emission intensity maximum was in the vicinity of 374 nm, but it was found that the light emission intensity maximum point of the product arginylcoumarin was shifted to 348 nm by 26 nm. Thus, it was revealed that the product arginyl coumarin has the property of emitting photons with higher energy than the original 4-hydroxycoumarin.
(アルギニルクマリンとAlClとの錯体)
 次に、蒸留水2995μLに0.22mMのアルギニルクマリン5μLを添加し3000μLとし、0.05MのAlClを10μLずつ添加して、280nm励起による発光スペクトルを測定した。結果を図9に示す。AlClを添加しない場合(Series1)では、348nmに発光極大のある発光スペクトルが得られたが、AlClを添加すると、このスペクトルは強度低下して長波長シフトした363nmおよび475nmに発光極大のある発光スペクトルが得られた。348nmから363nmへの長波長シフトと強度低下は塩素イオンの増大によって起きるpH変化が原因である。一方475nmの発光の増大は、280nmの光により励起された錯体が、363nmに発光極大のある光を発光し、この光が励起光となって錯体を励起させ、励起した錯体が475nmに発光極大のある光(水色)を発光していることを示している。また、図9より、AlClをさらに加えていくと、475nmピークの発光強度が大きくなることが分かる。
(Complex of arginyl coumarin and AlCl 3 )
Next, 5 μL of 0.22 mM arginylcoumarin was added to 2995 μL of distilled water to give 3000 μL, and 10 μL of 0.05 M AlCl 3 was added, and an emission spectrum by excitation at 280 nm was measured. The results are shown in FIG. When AlCl 3 was not added (Series 1), an emission spectrum having an emission maximum at 348 nm was obtained. However, when AlCl 3 was added, the spectrum decreased in intensity and shifted to a long wavelength, and the emission maximum was at 363 nm and 475 nm. An emission spectrum was obtained. The long wavelength shift from 348 nm to 363 nm and the intensity decrease are caused by pH change caused by increase of chloride ions. On the other hand, the increase in emission at 475 nm is that the complex excited by light at 280 nm emits light having an emission maximum at 363 nm, and this light becomes excitation light to excite the complex, and the excited complex has an emission maximum at 475 nm. This indicates that light (light blue) is emitted. Further, FIG. 9 shows that the emission intensity of the 475 nm peak increases as AlCl 3 is further added.
 図10に、アルギニルクマリンのみのスペクトル(Series1)から、アルギニルクマリンにAlClを10μL加えたもののスペクトル(Series2)を引いて得られた差スペクトルを示した。これによると、AlClの添加により、アルギニルクマリン固有の348nmピークの発光が消失していることが、はっきりと分かる。 FIG. 10 shows a difference spectrum obtained by subtracting a spectrum (Series 2) obtained by adding 10 μL of AlCl 3 to arginyl coumarin from a spectrum of only arginyl coumarin (Series 1). According to this, it can be clearly seen that the emission of the 348 nm peak peculiar to arginyl coumarin disappears by the addition of AlCl 3 .
 図11に、上記図9で示したアルギニルクマリンとAlClとの錯体水溶液に対し、280nmの光をあて励起させて得られた475nmの発光強度を、AlClの添加量に対してプロットしたグラフを示す。これより、AlClの添加量が増加するにつれて、錯体の発光強度が増加することが示された。また、AlClの添加量が多くなると、蛍光強度の増大が頭打ちとなる傾向が見られた。これより、アルギニルクマリンとAlClとの錯体では、アルギニルクマリンに対しAlClをモル比で、5000倍以上加えることが好ましく、1万倍以上加えることがより好ましく、2万倍以上加えることがさらに好ましい。また、発光強度の増加が頭打ちとなることから、上限としては、6万倍以下とすることが好ましく、5万倍以下とすることがより好ましい。 FIG. 11 plots the emission intensity of 475 nm obtained by exciting 280 nm light against the complex aqueous solution of arginylcoumarin and AlCl 3 shown in FIG. 9 against the added amount of AlCl 3 . A graph is shown. From this, it was shown that the emission intensity of the complex increases as the addition amount of AlCl 3 increases. Moreover, when the addition amount of AlCl 3 increased, the increase in fluorescence intensity tended to reach its peak. Than this, the complex of arginyl coumarin and AlCl 3, in a molar ratio of AlCl 3 to arginyl coumarin, preferably be added 5000 times or more, more preferably be added 10,000 times or more, adding 20,000 times Is more preferable. In addition, since the increase in emission intensity reaches its peak, the upper limit is preferably 60,000 times or less, and more preferably 50,000 times or less.
 図12に、アルギニルクマリンとAlClとの錯体水溶液に対して、340nm~400nmの光を当て、錯体を励起させて得られた発光強度を示した。いずれも、475に発光ピークを有する発光であった。また、図13には、該励起させた340~400nmの励起波長に対する、475nmでの発光強度をプロットした励起スペクトルである。これによると、370nmにおける励起で、最も発光強度(475nm)が強いことが示された。 FIG. 12 shows the emission intensity obtained by irradiating a complex aqueous solution of arginylcoumarin and AlCl 3 with light of 340 nm to 400 nm to excite the complex. All were luminescences having a luminescence peak at 475. FIG. 13 shows an excitation spectrum in which the emission intensity at 475 nm is plotted with respect to the excited excitation wavelength of 340 to 400 nm. According to this, it was shown that the emission intensity (475 nm) was the strongest when excited at 370 nm.
 以上の結果をまとめると、上記アルギニルクマリンとAlClとの錯体においては、280nmの外部光による励起により、363nmに発光極大を有する内部光を発光する。該内部光が錯体を励起して、励起した錯体が475nmに発光極大を有する可視光を発光する。この際、錯体は、図13で示したように励起波長が370nmとなるときに、可視光の発光強度が最大となる。つまり、励起波長が370nmに近ければ近いほど、可視光の発光が強く、言い換えれば、紫外線を可視光へ効率的に変換できることになる。上記アルギニルクマリンとAlClとの錯体では、363nmに発光極大を有する内部光を発光する。これは、上記370nmに近い。このため、効率的に紫外線を可視光に変換でき、非常に強い475nmの青水色発光が得られたのだと考えられる。 To summarize the above results, the complex of arginyl coumarin and AlCl 3 emits internal light having an emission maximum at 363 nm by excitation with external light of 280 nm. The internal light excites the complex, and the excited complex emits visible light having an emission maximum at 475 nm. At this time, the complex has the maximum emission intensity of visible light when the excitation wavelength is 370 nm as shown in FIG. That is, the closer the excitation wavelength is to 370 nm, the stronger the emission of visible light. In other words, the ultraviolet light can be efficiently converted into visible light. The complex of arginyl coumarin and AlCl 3 emits internal light having an emission maximum at 363 nm. This is close to the above 370 nm. For this reason, it is considered that ultraviolet rays could be efficiently converted into visible light, and a very strong 475 nm blue light emission was obtained.
 図14には、4CにAlClを添加した場合の発光スペクトルを示したが、この場合、280nmの光の照射により錯体(4C-AlCl錯体)は、363nmに発光極大を有する内部光を発光する。しかしながら、該錯体は、励起波長が320nmとなるときに可視光(450nm)の発光が最大とする。このため、発光した内部光(363nm)を十分に利用することができず、効率的に紫外線を可視光に変換できない。結果として、強い発光は得られない。 FIG. 14 shows an emission spectrum when AlCl 3 is added to 4C. In this case, the complex (4C-AlCl 3 complex) emits internal light having an emission maximum at 363 nm by irradiation with light at 280 nm. To do. However, the complex maximizes the emission of visible light (450 nm) when the excitation wavelength is 320 nm. For this reason, the emitted internal light (363 nm) cannot be fully utilized, and ultraviolet rays cannot be efficiently converted into visible light. As a result, strong light emission cannot be obtained.
<可視光透過性>
 図15にアルギニルクマリン(Arg-C)の紫外光~可視光領域の透過率の波長依存性を、濃度別で表す。線分1は、0.002mM、線分2は0.04mM、線分3は0.02mMの場合の測定結果である。いずれも400nm以上の可視光領域では透明であることがわかる。紫外線領域では濃度が高くなるにつれて330nm以下の領域で吸収があるため透過率は低下する。
<Visible light transmission>
FIG. 15 shows the wavelength dependence of the transmittance of arginyl coumarin (Arg-C) in the ultraviolet to visible light region by concentration. Line 1 is a measurement result in the case of 0.002 mM, line 2 is 0.04 mM, and line 3 is 0.02 mM. It can be seen that both are transparent in the visible light region of 400 nm or more. In the ultraviolet region, as the concentration increases, the transmittance decreases because of absorption in a region of 330 nm or less.
 図16にArg-C+AlClの紫外光~可視光領域の透過率の波長依存性を、濃度別で表す。線分1は、0.02mMのArg-Cに0.0005MのAlCl、の場合の測定結果であり、このような低濃度の場合は400nm以上の可視光領域では100%透明であることがわかる。線分2は、その100倍という極めて高い濃度の2.00mMのArg-Cに0.05MのAlClの場合の測定結果である。この場合であっても、波長400nmで透過率約70%、波長450nmで透過率約90%、波長500nmで透過率約95%と可視光領域での透過性は高い。 FIG. 16 shows the wavelength dependence of the transmittance of Arg-C + AlCl 3 in the ultraviolet to visible light region by concentration. Line segment 1 is a measurement result in the case of 0.02 mM Arg-C and 0.0005 M AlCl 3 , and in such a low concentration, it is 100% transparent in a visible light region of 400 nm or more. Recognize. Line segment 2 is the measurement result in the case of 0.05 M AlCl 3 in 2.00 mM Arg-C at a very high concentration of 100 times that. Even in this case, the transmittance in the visible light region is high, with a transmittance of about 70% at a wavelength of 400 nm, a transmittance of about 90% at a wavelength of 450 nm, and a transmittance of about 95% at a wavelength of 500 nm.
(紫外線吸収化合物Iの作製)
 L-アルギニンと4-ヒドロキシクマリンから合成した化合物(アルギニルクマリン)とAlClとの錯体から、紫外線吸収化合物Iを作製した。その詳細について以下説明する。
 まず、L-アルギニン0.00025mol量と4-ヒドロキシクマリン0.00025mol量および水5mLを用意し、容積15mL、最大耐圧1400kPaの高耐圧ガラスチューブ(Ace社製)に5mL入れ、マイクロ波(2.45GHz、約900W)を60秒間印加した。得られた溶液は5μL採取し、200倍希釈の上、光吸収スペクトルを測定したところ、図5の曲線3のアルギニルクマリン特有の光吸収スペクトルを有していることを確認することができた。
(Preparation of UV absorbing compound I)
Ultraviolet absorbing compound I was prepared from a complex of a compound synthesized from L-arginine and 4-hydroxycoumarin (arginylcoumarin) and AlCl 3 . Details thereof will be described below.
First, 0.00025 mol of L-arginine, 0.00025 mol of 4-hydroxycoumarin, and 5 mL of water were prepared, and 5 mL was placed in a high-pressure glass tube (manufactured by Ace) having a volume of 15 mL and a maximum withstand pressure of 1400 kPa. 45 GHz, about 900 W) was applied for 60 seconds. 5 μL of the obtained solution was sampled, diluted 200 times, and the light absorption spectrum was measured. As a result, it was confirmed that the solution had a light absorption spectrum peculiar to arginyl coumarin of curve 3 in FIG. .
 次に、得られた溶液を、フィルター(日本ポール社製、GHPアクロディスク、25mm、0.2μ)でろ過後、2mLを高速液体クロマトグラフ(株式会社島津製作所製、SHIMADZU・LC-20APシステム)で成分を分析した。このときのクロマトグラフ条件は、アセトニトリル80%、10mMギ酸水20%の溶媒であった。図17は、高速液体クロマトグラフによる紫外線吸収化合物Iの分画を示した図である。大きく分けて4つの分画が得られたが、これらを分画後にAlClを添加した上で375nmの紫外線を照射すると、第4の分画すなわち図中矢印の分画(*)が最も強く可視発光した。このことから、この成分は紫外線を吸収し可視発光したと考えられ、紫外線吸収化合物Iとした。図中横軸はリテンションタイム(min)、縦方向の値は検出電圧値(a.u.)である。 Next, the obtained solution was filtered with a filter (Nippon Pole Co., Ltd., GHP Acrodisc, 25 mm, 0.2 μ), and 2 mL was then subjected to a high performance liquid chromatograph (Shimadzu Corporation, SHIMADZU · LC-20AP system). The ingredients were analyzed with The chromatographic conditions at this time were a solvent of acetonitrile 80%, 10 mM formic acid 20%. FIG. 17 is a diagram showing fractionation of the ultraviolet absorbing compound I by high performance liquid chromatography. Four fractions were obtained, and when these were fractionated and AlCl 3 was added and then irradiated with UV light at 375 nm, the fourth fraction, ie, the fraction (*) indicated by the arrow in the figure was the strongest. Visible light was emitted. From this, it was considered that this component absorbed ultraviolet rays and emitted visible light, and was designated as an ultraviolet absorbing compound I. In the figure, the horizontal axis represents the retention time (min), and the vertical value represents the detected voltage value (au).
 また、この得られた溶液を、別途、ガラス容器に移し小孔をあけた樹脂フィルム(パラフィルム)で覆った後、真空検体乾燥機(東京理化器械株式会社製、VOM1000A)に入れ、真空ホース(東京硝子器機株式会社製(TGK)、6×15mm、2m)で、冷却トラップ(東京理化器械株式会社製、UT-1000)に接続した。冷却トラップにはガラスコンデンサ(東京理化器械株式会社製、500mL)をセットし、トラップ内にはメタノールを満たした。さらに、真空ホース(東京硝子器機株式会社製(TGK)、6×15mm、1m)で、真空ポンプ(東京理化器械株式会社製、EVP-1000)に接続して、減圧を行った。十分な時間減圧を実施したところ、ガラス容器中には着色した固体粉末が残留し、ガラスコンデンサ内には氷結した無色の固体(氷のような状態)が残留した。このうち、氷結した無色の固体を昇温させて融解させた後、次に、フィルター(日本ポール社製、GHPアクロディスク、25mm、0.2μ)でろ過後、高速液体クロマトグラフ(株式会社島津製作所製、SHIMADZU・LC-20APシステム)で成分を上記と同様の条件で分析したところ、上記の第4の分画のみが検出された。すなわち第1~3の分画は検出されず、図中矢印の分画(*)のみが検出された。この成分にAlClを添加した上で375nmの紫外線を照射すると同様に強く可視発光したことから、この成分は前述の紫外線吸収化合物Iと同一のものであると確認できた。また、この結果から、前述の図17の(*)以外の分画の成分は減圧の過程を経た場合、ガラス容器中に残留した着色した固体粉末として得られた。 The obtained solution was separately transferred to a glass container and covered with a resin film (parafilm) with a small hole, and then placed in a vacuum specimen dryer (Tokyo Rika Kikai Co., Ltd., VOM1000A). It was connected to a cooling trap (manufactured by Tokyo Rika Kikai Co., Ltd., UT-1000) with (Tokyo Glassware Co., Ltd. (TGK), 6 × 15 mm, 2 m). A glass condenser (Tokyo Rika Kikai Co., Ltd., 500 mL) was set in the cooling trap, and the trap was filled with methanol. Furthermore, a vacuum hose (Tokyo Glassware Co., Ltd. (TGK), 6 × 15 mm, 1 m) was connected to a vacuum pump (Tokyo Rika Kikai Co., Ltd., EVP-1000) to reduce the pressure. When the pressure was reduced for a sufficient time, a colored solid powder remained in the glass container, and an iced colorless solid (in an ice-like state) remained in the glass capacitor. Among these, the frozen, colorless solid was heated and melted, and then filtered through a filter (Nihon Pole, GHP Acrodisc, 25 mm, 0.2 μ), and then a high performance liquid chromatograph (Shimadzu Corporation). When the components were analyzed under the same conditions as described above using a SHIMADZU · LC-20AP system manufactured by Seisakusho, only the fourth fraction was detected. That is, the first to third fractions were not detected, and only the arrow fraction (*) in the figure was detected. When this component was added with AlCl 3 and irradiated with UV light at 375 nm, it was confirmed that this component was the same as the above-mentioned UV-absorbing compound I. Also, from this result, the fractional components other than the above-mentioned (*) in FIG. 17 were obtained as a colored solid powder remaining in the glass container when subjected to the decompression process.
<紫外線吸収化合物Iのスペクトル特性>
 図18は、紫外線吸収化合物Iの紫外線吸収スペクトルを示したグラフである。紫外線吸収化合物Iは、紫外可視分光光度計(株式会社島津製作所製、SHIMADZU・UV1240)による紫外可視光吸収スペクトル測定分析を行ったところ、図18のような紫外可視光吸収スペクトル特性を示した。210nm、250nm、325nm各近傍に吸収が観測された。これは、図5のスペクトル曲線3に近い特性であった。AlClを添加した後の紫外可視光吸収スペクトル特性は図18ではわずかに長波長シフトしていることが観測され、これを詳しく検出するために、AlCl添加前後の差吸収スペクトルデータ解析を行ったところ、図19のようになった。図19は、紫外線吸収化合物IにAlCl添加前後の光吸収スペクトル(差スペクトル)を示したグラフである。194.5nmの吸収の生成はAlによると考えられた。その他の特異的な、225.5nm、269nm、371nmにおける吸収は紫外線吸収化合物IとAlの形成する錯体に特有のものであると考えられた。
<Spectral characteristics of ultraviolet absorbing compound I>
FIG. 18 is a graph showing an ultraviolet absorption spectrum of the ultraviolet absorbing compound I. The ultraviolet-absorbing compound I was subjected to ultraviolet-visible absorption spectrum measurement analysis using an ultraviolet-visible spectrophotometer (SHIMADZU • UV1240, manufactured by Shimadzu Corporation), and showed ultraviolet-visible absorption spectrum characteristics as shown in FIG. Absorption was observed in the vicinity of 210 nm, 250 nm, and 325 nm. This was a characteristic close to the spectral curve 3 in FIG. In FIG. 18, it is observed that the UV-visible light absorption spectrum characteristics after adding AlCl 3 are slightly shifted in wavelength. In order to detect this in detail, differential absorption spectrum data analysis before and after the addition of AlCl 3 was performed. As a result, it became like FIG. FIG. 19 is a graph showing a light absorption spectrum (difference spectrum) before and after the addition of AlCl 3 to the ultraviolet absorbing compound I. The generation of 194.5 nm absorption was thought to be due to Al. Other specific absorptions at 225.5 nm, 269 nm, and 371 nm were considered to be peculiar to the complex formed by the ultraviolet absorbing compound I and Al.
 次に、紫外線吸収極大波長250nm、325nmおよび、差吸収極大波長371nmを目安に、蛍光スペクトロメーター(株式会社島津製作所製、SHIMADZU・RF5300)を用いて250nm、325nm、375nmにおける励起を行い、蛍光スペクトル測定を行ったところ、図20~図22のような結果を得た。図20は、紫外線吸収化合物Iの250nmにおける励起よって測定した蛍光スペクトルを示したグラフであり、図21は、紫外線吸収化合物Iの325nmにおける励起よって測定した蛍光スペクトルを示したグラフであり、図22は、紫外線吸収化合物Iの375nmにおける励起よって測定した蛍光スペクトルを示したグラフである。これらから、紫外線吸収化合物Iは、それ自体では、紫外線吸収はするが、励起されず発光しないことがわかった。 Next, excitation is performed at 250 nm, 325 nm, and 375 nm using a fluorescence spectrometer (SHIMADZU / RF5300, manufactured by Shimadzu Corporation) using the UV absorption maximum wavelength of 250 nm and 325 nm and the differential absorption maximum wavelength of 371 nm as a guide. As a result of measurement, results as shown in FIGS. 20 to 22 were obtained. 20 is a graph showing the fluorescence spectrum measured by excitation of the ultraviolet absorbing compound I at 250 nm, and FIG. 21 is a graph showing the fluorescence spectrum measured by excitation of the ultraviolet absorbing compound I at 325 nm. These are the graphs which showed the fluorescence spectrum measured by excitation at 375 nm of the ultraviolet absorbing compound I. From these, it was found that the ultraviolet absorbing compound I per se absorbs ultraviolet rays but does not emit light without being excited.
 次に、AlClを添加した後、蛍光スペクトル測定を行ったところ、図23のように470.6nmに極大のある可視発光が観測された。図23は、紫外線吸収化合物IにAlCl添加後に368nmにおける励起よって測定した蛍光スペクトルおよび励起スペクトルを示したグラフである。さらに、この極大波長でスキャンして励起スペクトル測定を行ったところ、224nm、267.4nm、368.2nmにおける励起極大を有することが明確になった。しかも267.4nmで励起する場合、368.2nm近傍の発光強度がわずかに観測されるも、ほとんどが470.6nmに極大のある可視発光が観測されたことから、この紫外線吸収化合物IはAlClを添加することによって、267.4nmを極大とする250~320nmの中波長紫外線(UVB波)を吸収し、368.2nmを極大とする320~400nmの長波長紫外線(UVA波)を発光した上で再吸収し、470.6nmを極大とする400~600nmの可視光線(Visible Light)を発光するという特性があることが明確になった。 Next, after adding AlCl 3 and measuring the fluorescence spectrum, visible light emission having a maximum at 470.6 nm was observed as shown in FIG. FIG. 23 is a graph showing a fluorescence spectrum and an excitation spectrum measured by excitation at 368 nm after adding AlCl 3 to the ultraviolet absorbing compound I. Furthermore, when the excitation spectrum was measured by scanning at this maximum wavelength, it became clear that it had an excitation maximum at 224 nm, 267.4 nm, and 368.2 nm. Moreover when exciting with 267.4Nm, also the emission intensity of 368.2nm vicinity is slightly observed, since the most visible emission with a maximum at 470.6nm was observed, the UV absorbing compounds I AlCl 3 In addition to absorbing 250 to 320 nm of medium wavelength ultraviolet light (UVB wave) having a maximum of 267.4 nm, and emitting 320 to 400 nm of long wavelength ultraviolet light (UVA wave) having a maximum of 368.2 nm. It has become clear that it has a characteristic of emitting visible light (Visible Light) of 400 to 600 nm having a maximum of 470.6 nm.
(紫外線吸収化合物IIの作製)
 まず、上記のように、物質群アルギニルクマリンの光吸収特性(図5)の主要な特性を紫外線吸収化合物Iの光吸収特性(図18)でほぼ代表することが明らかになったが、その他の成分に紫外可視光変換に大きな役割を果たす成分があるかについて次のように考察した。紫外線吸収化合物Iは図18をみると、300nm近傍の吸収はゼロではないが低く、図23の励起スペクトル特性では300nm近傍の励起レベルが極小に近いという点から考えて、紫外線吸収化合物Iは本発明の中心的な物質であるものの、これだけでは物質群アルギニルクマリンの紫外可視光変換機能全てを包含できてはいないのではないか、と考察した。そこで、AlClを添加によって300nm近傍の吸収と励起の特性が大きく変化することを目安として光活性の高い物質を探索することとした。以下、第二の紫外線吸収化合物IIを見出し、作製するに至った過程を詳述する。
(Preparation of UV absorbing compound II)
First, as described above, it has been clarified that the main characteristics of the light absorption characteristics (FIG. 5) of the substance group arginylcoumarin are mostly represented by the light absorption characteristics of the ultraviolet absorbing compound I (FIG. 18). Whether there is a component that plays a major role in UV-Vis conversion is considered as follows. In view of FIG. 18, the ultraviolet absorbing compound I shows that the absorption near 300 nm is not zero, but is low, and the excitation spectrum characteristic of FIG. Although it is a central substance of the invention, it was considered that this alone could not include all the ultraviolet-visible light conversion functions of the substance group arginylcoumarin. Therefore, it was decided to search for a substance having high photoactivity with reference to the fact that the absorption and excitation characteristics in the vicinity of 300 nm greatly change by adding AlCl 3 . Hereinafter, the process of finding and producing the second ultraviolet absorbing compound II will be described in detail.
 まず、第一に、上記と同様にしてL-アルギニン0.00025mol量と4-ヒドロキシクマリン0.00025mol量および水5mLを用意し、容積15mL、最大耐圧1400kPaの高耐圧ガラスチューブ(Ace社製)に5mL入れ、マイクロ波(2.45GHz、約900W)を60秒間印加して得られた溶液を、上記方法と同様の方法で減圧を行った。ガラス容器中に得た着色した固体粉末をアセトニトリル20%、10mMギ酸水80%の溶媒で溶解させた後、次に、フィルター(日本ポール社製、GHPアクロディスク、25mm、0.2μ)でろ過後、高速液体クロマトグラフ(株式会社島津製作所製、SHIMADZU・LC-20APシステム)で、アセトニトリル20%、10mMギ酸水80%からアセトニトリル80%、10mMギ酸水20%までの時間に比例して変化させる濃度勾配のある溶出条件によって分析した。モニターした分画状況を、図24に示す。図24は、高速液体クロマトグラフによる紫外線吸収化合物IIの分画を示した図である。図24中、およそ12の分画を区別して表示した。 First, in the same manner as above, 0.00025 mol of L-arginine, 0.00025 mol of 4-hydroxycoumarin, and 5 mL of water were prepared, and a high-pressure glass tube (made by Ace) with a volume of 15 mL and a maximum pressure resistance of 1400 kPa. The solution obtained by applying microwaves (2.45 GHz, about 900 W) for 60 seconds was decompressed in the same manner as described above. The colored solid powder obtained in a glass container was dissolved in a solvent of 20% acetonitrile and 80% aqueous 10 mM formic acid, and then filtered with a filter (manufactured by Nippon Pall Co., Ltd., GHP Acrodisc, 25 mm, 0.2 μ). Then, change with a high performance liquid chromatograph (SHIMADZU · LC-20AP system manufactured by Shimadzu Corporation) in proportion to the time from acetonitrile 20%, 10 mM formic acid 80% to acetonitrile 80%, 10 mM formic acid 20%. Analysis was carried out under elution conditions with a concentration gradient. The monitored fractionation status is shown in FIG. FIG. 24 is a diagram showing fractionation of the ultraviolet absorbing compound II by high performance liquid chromatography. In FIG. 24, about 12 fractions are distinguished and displayed.
 これらを分画後に、全ての成分について紫外可視光吸収スペクトル測定および蛍光スペクトル測定と励起スペクトル測定分析を行ったところ、図24の(**)の成分が、AlClを添加によって蛍光強度が増大するという特性があることがわかった。その詳細を説明する。図25は、紫外線吸収化合物IIを含有する溶液、および紫外線吸収化合物IとAlClを含有する溶液の光吸収スペクトルを示したグラフである。この成分の光吸収スペクトルは図25のようになり、すなわち目安となる300nm近傍の吸収が極大となること、AlClの添加によって極大波長が変化していた。これを詳しく検出するために、AlCl添加前後の差吸収スペクトルデータ解析を行ったところ、図26のようになった。図26は、紫外線吸収化合物IIにAlCl添加前後における吸収スペクトルの差を示す差吸収スペクトルを示したグラフである。213nm、245nm、317nmにおける吸収は紫外線吸収化合物IIとAlの形成する錯体に特有のものであると考えられた。 After fractionation, UV-visible absorption spectrum measurement, fluorescence spectrum measurement, and excitation spectrum measurement analysis were performed on all components. As a result, the fluorescence intensity of the component (**) in FIG. 24 increased by adding AlCl 3. It turns out that there is a characteristic to do. Details will be described. FIG. 25 is a graph showing light absorption spectra of a solution containing the ultraviolet absorbing compound II and a solution containing the ultraviolet absorbing compound I and AlCl 3 . The light absorption spectrum of this component is as shown in FIG. 25, that is, the absorption near 300 nm serving as a standard is maximized, and the maximum wavelength is changed by the addition of AlCl 3 . In order to detect this in detail, differential absorption spectrum data analysis before and after the addition of AlCl 3 was performed, and the result was as shown in FIG. FIG. 26 is a graph showing a differential absorption spectrum showing a difference in absorption spectrum before and after the addition of AlCl 3 to the ultraviolet absorbing compound II. Absorption at 213 nm, 245 nm, and 317 nm was considered to be peculiar to the complex formed by ultraviolet absorbing compound II and Al.
 次に、それ自体の蛍光スペクトル測定を行った。図27は、紫外線吸収化合物IIの300nmにおける励起よって測定した蛍光スペクトルおよび励起スペクトルを示したグラフである。図27の曲線2のように、406.6nmに極大のある可視発光が観測された。さらに、この極大波長でスキャンして励起スペクトル測定を行ったところ、228.6nm、294.8nmにおける励起極大を有する曲線1のようになることが明確になった。 Next, the fluorescence spectrum of itself was measured. FIG. 27 is a graph showing a fluorescence spectrum and an excitation spectrum measured by excitation at 300 nm of the ultraviolet absorbing compound II. As shown by curve 2 in FIG. 27, visible light emission having a maximum at 406.6 nm was observed. Further, when the excitation spectrum was measured by scanning at this maximum wavelength, it became clear that the curve 1 had an excitation maximum at 228.6 nm and 294.8 nm.
 次に、AlCl添加後の蛍光スペクトル測定を行った。図28は、紫外線吸収化合物IIにAlCl添加後の300nmにおける励起よって測定した蛍光スペクトルおよび励起スペクトルを示したグラフである。図28のように意外なことが明らかになった。それは、図中曲線2のように、AlCl添加前に406.6nmに極大のあった可視発光が377.2nmに短波長シフトするかのごとくに観測されたということである。次に、この極大波長でスキャンして励起スペクトル測定を行ったところ、235.8nm、309.6nmにおける励起極大を有する曲線1のようになることが明確になった。このような特性を有する図24の(**)の成分はこうして第二の紫外線吸収化合物IIと呼ぶことができ、物質群アルギニルクマリンの紫外可視光変換機能をさらに網羅的に理解できる物質であるということ見出したのである。 Next, fluorescence spectrum measurement after addition of AlCl 3 was performed. FIG. 28 is a graph showing a fluorescence spectrum and an excitation spectrum measured by excitation at 300 nm after addition of AlCl 3 to the ultraviolet absorbing compound II. As shown in FIG. That is, as indicated by curve 2 in the figure, the visible light emission, which had a maximum at 406.6 nm before the addition of AlCl 3 , was observed as if it shifted to a short wavelength to 377.2 nm. Next, when the excitation spectrum was measured by scanning at this maximum wavelength, it became clear that the curve 1 had excitation maximums at 235.8 nm and 309.6 nm. The component (**) in FIG. 24 having such characteristics can thus be referred to as the second ultraviolet absorbing compound II, and is a substance that can more fully understand the ultraviolet-visible light conversion function of the substance group arginylcoumarin. I found out that there was.
 この紫外線吸収化合物IIは、紫外線吸収化合物Iの吸収と励起のレベルが低い300nm近傍の波長域の紫外可視光変換機能を理想的に強化するものである。なぜならば、紫外線吸収化合物IIは、309.6nmを極大とする260~350nmの中波長紫外線(UVB波)をよく吸収し、377.2nmを極大とする320~500nmの長波長紫外線(UVB波)と可視光線(Visible Light)を発光するという特性があり、最もよく放出する377.2nm近傍の紫外線は、紫外線吸収化合物Iの吸収と励起の極大にほぼ重なっており、最大の紫外可視光変換機能を強化することになるのである。これらの結果は全く予想できないものであった。このようにして、紫外線吸収化合物IIを作製した。 This UV-absorbing compound II ideally enhances the UV-visible light conversion function in the wavelength region near 300 nm where the absorption and excitation levels of the UV-absorbing compound I are low. This is because UV-absorbing compound II absorbs 260 to 350 nm of medium wavelength ultraviolet light (UVB wave) having a maximum of 309.6 nm and 320 to 500 nm of long wavelength ultraviolet light (UVB wave) having a maximum of 377.2 nm. And visible light (Visible Light) is emitted, and the most commonly emitted ultraviolet light in the vicinity of 377.2 nm almost overlaps the absorption and excitation maximum of the ultraviolet absorbing compound I, and the maximum ultraviolet-visible light conversion function Will be strengthened. These results were completely unexpected. In this way, UV absorbing compound II was prepared.
(紫外線吸収化合物IIIの作製)
 前記までの紫外線吸収化合物Iと紫外線吸収化合物IIは、特に機能性の高い紫外可視光変換物質である。これらに比して光活性は劣るが中波長紫外線(UVB波)吸収能と長波長紫外線(UVA)発光特性のある物質は、物質群アルギニルクマリン中に他に見出すことができた。図29は、高速液体クロマトグラフによる紫外線吸収化合物IIIの分画を示した図である。図29に示すように、紫外線吸収化合物IIと同様のHPLCによる分画過程で、図中(***)で示す成分として得ることができた。また、図30は、紫外線吸収化合物IIIを含有する溶液、および紫外線吸収化合物IIIとAlClを含有する溶液の光吸収スペクトルを示したグラフである。この成分の物質は図30のように、300nmに極大のある中波長紫外線(UVB波)吸収スペクトル特性を有していた。紫外線吸収化合物IIと酷似しているようではあったが、相違点があり、AlCl添加によって発光特性が変化することがなかった。この成分自体の蛍光スペクトル測定を行った。図31は、紫外線吸収化合物IIIの蛍光スペクトルおよび励起スペクトルを示したグラフである。図31の曲線2のように、378nmに極大のある可視発光が観測された。次に、この極大波長でスキャンして励起スペクトル測定を行ったところ、230.8nm、289.6nm、303.4nmにおける励起極大を有する曲線1のようになることが明確になった。このようにして、紫外線吸収化合物IIIを作製した。
(Preparation of UV absorbing compound III)
The ultraviolet absorbing compound I and the ultraviolet absorbing compound II described above are particularly highly functional ultraviolet-visible light converting substances. Compared with these substances, other substances having a medium wavelength ultraviolet (UVB wave) absorption ability and a long wavelength ultraviolet (UVA) emission characteristic were found in the substance group arginyl coumarin. FIG. 29 is a diagram showing a fraction of the ultraviolet absorbing compound III by high performance liquid chromatography. As shown in FIG. 29, it was able to be obtained as a component indicated by (***) in the figure in the same fractionation process by HPLC as the ultraviolet absorbing compound II. FIG. 30 is a graph showing light absorption spectra of a solution containing the ultraviolet absorbing compound III and a solution containing the ultraviolet absorbing compound III and AlCl 3 . As shown in FIG. 30, the substance of this component had a medium wavelength ultraviolet (UVB wave) absorption spectrum characteristic having a maximum at 300 nm. Although it seemed to be very similar to the ultraviolet absorbing compound II, there was a difference, and the emission characteristics were not changed by the addition of AlCl 3 . The fluorescence spectrum of this component itself was measured. FIG. 31 is a graph showing the fluorescence spectrum and excitation spectrum of the ultraviolet absorbing compound III. As indicated by curve 2 in FIG. 31, visible light emission having a maximum at 378 nm was observed. Next, when the excitation spectrum was measured by scanning with this maximum wavelength, it became clear that the curve 1 had excitation maximums at 230.8 nm, 289.6 nm, and 303.4 nm. In this way, UV absorbing compound III was prepared.
 また、本発明の化粧品は、前記紫外線吸収化粧品素材を含有することを特徴とするものである。これにより、紫外線遮蔽および可視光増強効果を有し、低刺激で、さらに化粧品に使用した際の安定性の良好な化粧品を提供することができる。ここで、紫外線吸収化粧品素材とは、上記の紫外線吸収化合物I、金属原子および紫外線吸収化合物II等を含有するものであり、化粧品とは、化粧品、医薬部外品、医薬品等を含めた広い概念である。また、基礎化粧品だけでなく、メイクアップ、毛髪化粧品、洗浄料等を含むものである。 The cosmetic of the present invention is characterized by containing the ultraviolet absorbing cosmetic material. As a result, it is possible to provide a cosmetic product that has an ultraviolet shielding effect and a visible light enhancement effect, has low irritation, and has good stability when used in a cosmetic product. Here, the ultraviolet-absorbing cosmetic material contains the above-described ultraviolet-absorbing compound I, metal atoms, and ultraviolet-absorbing compound II, and the cosmetic is a broad concept including cosmetics, quasi-drugs, pharmaceuticals, and the like. It is. Further, it includes not only basic cosmetics but also makeup, hair cosmetics, cleaning materials and the like.
 また、本発明の化粧品において、本発明の効果が損なわれない範囲で、適宜他の成分等を添加することもできる。質的、量的範囲で上記以外の任意の成分を配合することができ、化粧品に通常配合される成分、例えば、油性成分、界面活性剤、増粘剤、保湿剤、酸化防止剤、防腐剤、香料、各種ビタミン剤、キレート剤、pH調整剤、着色剤、他の紫外線吸収剤、薬効成分、他の無機塩類等を配合することができる。 In addition, in the cosmetic of the present invention, other components and the like can be appropriately added within the range where the effects of the present invention are not impaired. Arbitrary ingredients other than the above can be blended in the qualitative and quantitative ranges, and ingredients usually blended in cosmetics, for example, oily ingredients, surfactants, thickeners, moisturizers, antioxidants, preservatives , Fragrances, various vitamin agents, chelating agents, pH adjusters, colorants, other ultraviolet absorbers, medicinal ingredients, other inorganic salts, and the like.
 以下、本発明について、実施例を用いてさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail using examples, but the present invention is not limited to these examples.
(実施例1)
 アルギニンと4-ヒドロキシクマリンから合成した化合物を含有する水溶液を、上記(紫外線吸収化合物Iの作製)に記載した手順に従って処理して、紫外線吸収化合物1を作製した。
Example 1
An aqueous solution containing a compound synthesized from arginine and 4-hydroxycoumarin was treated according to the procedure described above (Preparation of UV-absorbing compound I) to prepare UV-absorbing compound 1.
(実施例2)
 アルギニンと4-ヒドロキシクマリンから合成した化合物を含有する水溶液を、上記(紫外線吸収化合物IIの作製)に記載した手順に従って処理して、紫外線吸収化合物2を作製した。
(Example 2)
An aqueous solution containing a compound synthesized from arginine and 4-hydroxycoumarin was treated according to the procedure described above (Preparation of UV-absorbing compound II) to prepare UV-absorbing compound 2.
(実施例3)
 アルギニンと4-ヒドロキシクマリンから合成した化合物を含有する水溶液を、上記(紫外線吸収化合物IIIの作製)に記載した手順に従って処理して、紫外線吸収化合物3を作製した。
Example 3
An aqueous solution containing a compound synthesized from arginine and 4-hydroxycoumarin was treated according to the procedure described above (Preparation of UV-absorbing compound III) to prepare UV-absorbing compound 3.
(SPFアナライザーによるSPF測定試験)
 SPF測定用サンプル2.0mg/cmをトランスポア サージカールテープ(住友3M社製)に塗布し、SPFアナライザー UV-1000S (Labsphere社製)を用いて、9箇所測定を行ってSPF値及びUVA/UVB Ratioを求めた。この操作を3回繰り返して平均値をSPF値及びUVA/UVB Ratioとした。
(SPF measurement test using SPF analyzer)
An SPF measurement sample of 2.0 mg / cm 2 was applied to a transpore surge curl tape (manufactured by Sumitomo 3M), and SPF analyzer UV-1000S (manufactured by Labsphere) was used to measure 9 points to obtain SPF value and UVA. / UVB Ratio was determined. This operation was repeated three times, and the average values were taken as the SPF value and UVA / UVB Ratio.
(実施例4)
 エタノール50質量%水溶液を調整し、これに紫外線吸収化合物1を2.75g、紫外線吸収化合物2を0.00275g、AlCl・6HOを0.49g添加して、紫外線吸収化合物1および紫外線吸収化合物2が5質量%となるように実施例4のサンプルを作製した。SPFアナライザーによる測定結果を下記表1に記す。
Example 4
A 50% by mass aqueous solution of ethanol was prepared, and 2.75 g of UV absorbing compound 1, 0.00275 g of UV absorbing compound 2 and 0.49 g of AlCl 3 .6H 2 O were added thereto, and UV absorbing compound 1 and UV absorbing were added. The sample of Example 4 was produced so that the compound 2 might be 5 mass%. The measurement results with the SPF analyzer are shown in Table 1 below.
(実施例5)
 エタノール50質量%水溶液を調整し、これに紫外線吸収化合物1を3.036g、紫外線吸収化合物2を0.00275g、紫外線吸収化合物3を0.00275g、AlCl・6HOを5.88g添加して、紫外線吸収化合物1、紫外線吸収化合物2および紫外線吸収化合物3が5質量%となるように実施例5のサンプルを作製した。SPFアナライザーによる測定結果を下記表1に記す。
(Example 5)
Adjust ethanol 50% by weight aqueous solution, to which the ultraviolet absorbing compound 1 3.036G, an ultraviolet absorbing compound 2 0.00275G, an ultraviolet absorbing compound 3 0.00275G, the AlCl 3 · 6H 2 O was added 5.88g Then, the sample of Example 5 was prepared so that the ultraviolet absorbing compound 1, the ultraviolet absorbing compound 2, and the ultraviolet absorbing compound 3 might be 5% by mass. The measurement results with the SPF analyzer are shown in Table 1 below.
(比較試験例)
 メトキシケイ皮酸2-エチルヘキシルを5質量%、界面活性剤(EMALEX ML-158、日本エマルション社製)5質量%、エタノール35質量%、精製水50質量%となるように混合溶解して、比較試験例のサンプルを作製した。SPFアナライザーによる測定結果を下記表1に記す。
(Comparative test example)
Mix and dissolve so that 2-ethylhexyl methoxycinnamate is 5% by mass, surfactant (EMALEX ML-158, manufactured by Nippon Emulsion Co., Ltd.) 5% by mass, ethanol 35% by mass, and purified water 50% by mass. Samples of test examples were prepared. The measurement results with the SPF analyzer are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1の結果から、実施例4および実施例5は比較試験例と同等以上のSPF値を示した。このことから、メトキシケイ皮酸2-エチルヘキシルと同等の紫外線防止効果があることがわかった。 From the results in Table 1, Example 4 and Example 5 showed SPF values equal to or higher than those of the comparative test example. From this, it was found that there was an ultraviolet ray prevention effect equivalent to 2-ethylhexyl methoxycinnamate.
(皮膚刺激性試験)
 Finn Chambers on Scanpor Tape(株式会社スマートプラクティスジャパン製)を使用して、年齢20歳以上60歳未満の健康状態が良好な日本人20名(男性6名、女性14名)の背部に、各サンプルをチャンバーに30mg塗布してパッチテストを行った。サンプルとしては、紫外線吸収化合物I~IIIを含んでいる、L-アルギニンと4-ヒドロキシクマリンから合成した化合物(アルギニルクマリン)とAlClとの錯体水溶液(以下、「本発明サンプル」と称す)を使用し、比較サンプルとして、白色ワセリン(日興リカ株式会社製)、生理食塩水(大塚製薬株式会社製)、注射用蒸留水(大塚製薬株式会社製)を使用した。24時間後と48時間後の肌状態を下記<パッチテスト判定基準>に従って評価し、さらに下記<皮膚刺激評点>および下記皮膚刺激指数計算式(S1)に従って、評価した。
(Skin irritation test)
Using Finn Chambers on Scampor Tape (manufactured by Smart Practice Japan Co., Ltd.), each sample was placed on the back of 20 Japanese people (6 men, 14 women) who were in good health and aged 20 to 60 years old. 30 mg was applied to the chamber and a patch test was performed. As a sample, a complex aqueous solution of a compound synthesized from L-arginine and 4-hydroxycoumarin (arginylcoumarin) and AlCl 3 containing ultraviolet absorbing compounds I to III (hereinafter referred to as “sample of the present invention”) As a comparative sample, white petrolatum (Nikko Rica Co., Ltd.), physiological saline (Otsuka Pharmaceutical Co., Ltd.), and distilled water for injection (Otsuka Pharmaceutical Co., Ltd.) were used. The skin condition after 24 hours and 48 hours was evaluated according to the following <patch test criteria>, and further evaluated according to the following <skin irritation score> and the following skin irritation index formula (S1).
<パッチテスト判定基準>
反応なし                     -
かるい紅班                    +-
紅班                       +
紅班+浮腫+丘疹                 ++
紅班+浮腫+丘疹、しょう液性丘疹、小水疱     +++
大水疱                      ++++
<Patch test criteria>
No response-
Karui Red Group +-
Red group +
Erythema + edema + papules ++
Erythema + edema + papules, serous papules, small blisters +++
Great blister ++++
<皮膚刺激評点>
反応なし                     0
かるい紅班                    0.5
紅班                       1.0
紅班+浮腫+丘疹                 2.0
紅班+浮腫+丘疹、しょう液性丘疹、小水疱     3.0
大水疱                      4.0
<Skin irritation score>
No response 0
Karui Red Group 0.5
Red Group 1.0
Erythema + edema + papule 2.0
Erythema + edema + papules, serous papules, small blisters 3.0
Great blister 4.0
<皮膚刺激指数計算式(S1)>
皮膚刺激指数=(24時間あるいは48時間後の反応の強い方の総評点和/被験者数)×100    (S1)
<Skin irritation index calculation formula (S1)>
Skin irritation index = (total score sum of responders with strong response after 24 or 48 hours / number of subjects) × 100 (S1)
 本発明サンプル、白色ワセリン、生理食塩水、注射用蒸留水のいずれのサンプルも、24時間後および48時間後の<パッチテスト判定基準>による評価は、「反応なし」であった。また、皮膚刺激指数も0であった。その結果、本発明サンプルは、白色ワセリン、生理食塩水、注射用蒸留水等と同様に極めて刺激がないことが判った。 The samples according to the present invention, white petrolatum, physiological saline, and distilled water for injection were evaluated according to <Patch Test Criteria> after 24 hours and 48 hours as “no reaction”. The skin irritation index was also 0. As a result, it was found that the sample of the present invention was not very irritating like white petrolatum, physiological saline, distilled water for injection and the like.
 上記より、皮膚刺激性試験の結果は、良好であった。このことから、紫外線吸収化合物1~3は、肌に対し、低刺激であることがわかった。 From the above, the result of the skin irritation test was good. From this, it was found that the ultraviolet absorbing compounds 1 to 3 were mild to the skin.
(実施例6)
 下記表2記載の処方に従って、紫外線防止化粧水を作製した。なお、以下、処方中の数値は質量%を示す。
(Example 6)
In accordance with the formulation shown in Table 2 below, an anti-UV lotion was prepared. In addition, the numerical value in prescription shows mass% hereafter.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
(実施例7)
 下記表3記載の処方に従って、紫外線防止化粧水を作製した。
(Example 7)
In accordance with the formulation described in Table 3 below, an anti-ultraviolet lotion was prepared.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
(実施例8)
 下記表4記載の処方に従って、紫外線防止クリームを作製した。
(Example 8)
In accordance with the formulation shown in Table 4 below, an ultraviolet protection cream was prepared.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
(実施例9)
 下記表5記載の処方に従って、紫外線防止クリームを作製した。
Example 9
In accordance with the formulation shown in Table 5 below, an ultraviolet protection cream was prepared.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
(実施例10)
 下記表6記載の処方に従って、紫外線防止美容液を作製した。
(Example 10)
In accordance with the formulation shown in Table 6 below, an anti-UV serum was prepared.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
(実施例11)
 下記表7記載の処方に従って、紫外線防止美容液を作製した。
(Example 11)
In accordance with the prescription in Table 7 below, an anti-UV serum was prepared.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
(実施例12)
 下記表8記載の処方に従って、紫外線防止クレンジングフォームを作製した。
Example 12
According to the formulation shown in Table 8 below, an ultraviolet-proof cleansing foam was prepared.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
(比較例6~12)
 表2~表8記載の処方で、実施例4または実施例5を精製水に置き換えた以外は実施例6~実施例12の紫外線防止化粧品と同様にして比較例6~比較例12の化粧品を作製した。
(Comparative Examples 6-12)
The cosmetics of Comparative Examples 6 to 12 were prepared in the same manner as the UV-preventing cosmetics of Examples 6 to 12 except that Example 4 or Example 5 was replaced with purified water in the formulations shown in Tables 2 to 8. Produced.
 実施例6~12と比較例6~12は、いずれも刺激等が無く、安全性が高かった。また、実施例6~12では紫外線防止効果を有したが、比較例6~12では紫外線防止効果を有しなかった。 In Examples 6-12 and Comparative Examples 6-12, there was no irritation and the safety was high. Further, Examples 6 to 12 had an ultraviolet ray preventing effect, but Comparative Examples 6 to 12 did not have an ultraviolet ray preventing effect.
 (金属イオン種の相違による蛍光スペクトルの比較)
 物質群アルギニルクマリン(Arg-4C)にAlを含めて、他の金属イオンとの蛍光スペクトル特性の比較を行った。図32は、アルギニルクマリンの金属イオン添加による蛍光スペクトルへの影響を示したグラフであり、詳細にはアルギニルクマリンの金属イオン添加による蛍光スペクトルを、金属種を、Mg、Cu、Ca、Co、Al、In、K と置き換えて測定比較した結果である。上記で説明したように、Alは可視発光するという特異性がある。その他の元素では、Mgに420nm近傍に極大がある380~500nmの範囲に弱い発光が観測された。またMgの場合、長波長紫外線(UVA)発光強度はArg-4Cそのものよりも増大するということがわかった。次にCaにおいてさらに微弱な発光が認められたが、その他のCu、Co、In、Kでは可視発光は観測されず、長波長紫外線(UVA)発光強度は減少した。
(Comparison of fluorescence spectra due to different metal ion species)
The substance group arginyl coumarin (Arg-4C) was included in Al, and the fluorescence spectrum characteristics were compared with other metal ions. FIG. 32 is a graph showing the influence of addition of metal ions of arginylcoumarin on the fluorescence spectrum. Specifically, the fluorescence spectrum of addition of metal ions of arginylcoumarin is represented by the metal species, Mg, Cu, Ca, Co. , Al, In, K. As explained above, Al has the specificity of visible light emission. For other elements, weak emission was observed in the range of 380 to 500 nm, where Mg has a maximum near 420 nm. It was also found that in the case of Mg, the long wavelength ultraviolet (UVA) emission intensity is higher than that of Arg-4C itself. Next, even weaker light emission was observed in Ca, but no visible light emission was observed in other Cu, Co, In, and K, and the long-wavelength ultraviolet (UVA) emission intensity decreased.
 次に、長紫外線(UVA)発光強度が増大するMgと減少するCuとの比較を、濃度依存性においてどのようになるかを測定した。図33は、アルギニルクマリンのMgイオン、Cuイオン添加濃度変化による蛍光スペクトルへの影響を示したグラフである。図33に示すように、Mgでは、濃度変化しても蛍光強度は増大したままであったが、Cuの場合は減少の一途をたどった。これらの結果から、Alが特にArg-4Cと反応して光活性を与えること、MgがAlほどではないが、明らかに他の金属イオンとは違い、Arg-4Cと反応して若干光活性を与えるということが判明した。 Next, it was measured how the long-ultraviolet (UVA) emission intensity increased in Mg and decreased Cu in terms of concentration dependency. FIG. 33 is a graph showing the influence on the fluorescence spectrum due to the concentration change of Mg ions and Cu ions of arginyl coumarin. As shown in FIG. 33, in Mg, the fluorescence intensity remained increased even when the concentration changed, but in the case of Cu, it continued to decrease. From these results, Al reacts particularly with Arg-4C to give photoactivity, while Mg is not as much as Al, but obviously, unlike other metal ions, it reacts with Arg-4C to give a slight photoactivity. It turned out to give.
 以上の相違点について、発明者は次のような考察を行った。Al3+のイオン半径は、50pm(ピコメートル)、Mg2+のイオン半径は、65pmであり、その他の金属イオンは、Cu2+のイオン半径96pm、Ca2+のイオン半径99pm、Co2+のイオン半径72pm、In3+のイオン半径81pm、Kのイオン半径133pm、と大きい値をとる。このことから、上記の長波長紫外線(UVA)発光強度の増大または、可視発光特性の発現は、小さいイオン半径が大きな因子であると示唆された。ただし、Ca2+のようにMg2+より1.5倍程度大きいイオン半径でも、Mg2+ほどではないがスペクトル特性がやや似た変化をもたらすものもあり、一概には規定できない例外因子もあるが、Al3+、Mg2+のイオン半径の小さいことが上位にあることから、紫外可視光変換機能を付与する金属イオンとしてAl3+、Mg2+の順に好ましいことがわかった。 The inventor considered the following differences as follows. The ion radius of Al 3+ is 50 pm (picometer), the ion radius of Mg 2+ is 65 pm, and other metal ions are Cu 2+ ion radius 96 pm, Ca 2+ ion radius 99 pm, Co 2+ ion radius 72 pm. The ion radius of In 3+ is 81 pm and the ion radius of K + is 133 pm. From this, it was suggested that the increase in long-wavelength ultraviolet (UVA) emission intensity or the development of visible emission characteristics is a large factor due to a small ionic radius. However, even 1.5 times larger ion radius than Mg 2+ as Ca 2+, to a lesser extent Mg 2+ but also those that result in the change of spectral characteristics is somewhat similar, but categorically is also an exception factor can not be defined, Since Al 3+ and Mg 2+ have a small ionic radius at the top, it was found that Al 3+ and Mg 2+ are preferable in this order as metal ions imparting the ultraviolet-visible light conversion function.
(アルギニンと4-ヒドロキシクマリンから合成した化合物の固形成分の、正常ヒト表皮細胞に対するUVBによる炎症抑制作用について)
 中波長紫外線(UVB)が皮膚に照射されると、紫外線照射により種々の現象が起きることが知られているが、その中でもケラチノサイトや肥満細胞がサイトカインを産生・抑制することがよく知られている。
(Inhibition of UVB-induced inflammation of normal human epidermal cells by a solid component of a compound synthesized from arginine and 4-hydroxycoumarin)
When skin is irradiated with medium wavelength ultraviolet rays (UVB), it is known that various phenomena occur due to ultraviolet irradiation, and among them, it is well known that keratinocytes and mast cells produce and suppress cytokines. .
 ここでサイトカインとは、細胞から放出され、種々の細胞間情報伝達分子となる微量生理活性タンパク質で、通常低分子量(分子量は8万以下、3万以下が多数)で、糖鎖を持つものが多く、体液を通って細胞表面の高親和性受容体などに結合し、多面的な生物活性を発現させることが知られている。その働きは、免疫、炎症に関係したものが多く知られる。サイトカインの中でも炎症性のサイトカインには、インターロイキンIL-1α、IL-6およびIL-8が存在していることが知られている。これらのサイトカインの産生量が増大すると、皮膚組織内でコラーゲン分解酵素であるコラゲナーゼが活性化し、皮膚を形成している重要なタンパク質コラーゲンが分解され、結果として老化現象が促進されることになる。よって、UVBを浴びた皮膚組織内でこれらのサイトカインの産生が抑制されれば、結果として「光による老化」を低減できることになる。 Cytokines are small amounts of physiologically active proteins that are released from cells and become various intercellular signal transduction molecules, and usually have low molecular weights (molecular weights are many less than 80,000 and less than 30,000) and have sugar chains. In many cases, it is known to bind to high affinity receptors on the cell surface through body fluids to express multifaceted biological activities. Many of its functions are related to immunity and inflammation. Among cytokines, it is known that inflammatory cytokines include interleukins IL-1α, IL-6 and IL-8. When the production amount of these cytokines increases, collagenase, which is a collagenolytic enzyme, is activated in the skin tissue, the important protein collagen forming the skin is decomposed, and as a result, the aging phenomenon is promoted. Therefore, if the production of these cytokines is suppressed in the skin tissue exposed to UVB, “aging due to light” can be reduced as a result.
 そこで、本発明者は、前記アルギニンと4-ヒドロキシクマリンから合成した化合物の固形成分の、正常ヒト表皮細胞に対するUVBによる細胞傷害緩和作用、および、UVBによる炎症抑制作用について、インターロイキン(以下、ILと称す)のうち、IL-1α、IL-6およびIL-8の産生量の測定による検討を行った。 Therefore, the present inventor has examined the interleukin (hereinafter referred to as IL) about the action of UVB to reduce the cytotoxicity and the anti-inflammatory action of UVB on the normal human epidermal cells of the compound synthesized from arginine and 4-hydroxycoumarin. Of the production of IL-1α, IL-6 and IL-8.
<試験方法>
 正常ヒト表皮細胞をHuMedia KG2培地を用いて、5.0×104 cells/wellの細胞密度にて48穴プレートに播種した。播種48時間後に培地をハンクス緩衝液(Ca2+、Mg2+未含有)に交換し、所定の線量のUVBを細胞に照射した。UVB未照射群は、アルミ箔にてカバーしUVBを遮蔽した。照射後、ただちにハンクス緩衝液を、毒性を示さない濃度の試験試料を含有するHuMedia-KB2(KB2)に交換し、さらに24時間培養した。
<Test method>
Normal human epidermis cells were seeded in a 48-well plate at a cell density of 5.0 × 10 4 cells / well using HuMedia KG2 medium. Forty-eight hours after seeding, the medium was replaced with Hanks buffer (Ca 2+ , Mg 2+ not contained), and cells were irradiated with a predetermined dose of UVB. The UVB non-irradiated group was covered with aluminum foil to shield UVB. Immediately after irradiation, the Hanks buffer was replaced with HuMedia-KB2 (KB2) containing a test sample at a non-toxic concentration and cultured for an additional 24 hours.
 培養後に培地を回収し、細胞生存率を測定する目的で、33μg/mL neutral red(NR)を含有するKB2に交換し、2時間培養した。その後、PBSにて細胞を洗浄し、細胞内に取り込まれたNRを30%エタノール含有0.1M HCl溶液にて抽出し、550nmにおける吸光度を測定した。UVBによる細胞傷害緩和作用は、各濃度におけるUVB未照射群の吸光度に対するIndex(%)で示した。 After culturing, the medium was collected and replaced with KB2 containing 33 μg / mL neutral red (NR) for the purpose of measuring cell viability and cultured for 2 hours. Thereafter, the cells were washed with PBS, and NR taken into the cells was extracted with a 0.1M HCl solution containing 30% ethanol, and the absorbance at 550 nm was measured. The cytotoxic effect of UVB was shown by Index (%) with respect to the absorbance of the UVB non-irradiated group at each concentration.
 回収した培地中のIL-1α、IL-6およびIL-8の測定は、市販のELISAキット(R&D systems)を用い、添付のプロトコールに準じて実施した。統計処理は、Student t検定をもちいた有意差検定を行い、試験試料未処理との差を評価した。 Measurement of IL-1α, IL-6 and IL-8 in the collected medium was performed using a commercially available ELISA kit (R & D systems) according to the attached protocol. For statistical processing, a significant difference test using a Student t test was performed, and the difference from the untreated test sample was evaluated.
<結果>
 結果を表9~12(Table1~4)に示すとともに、図34にまとめて示した。UVB照射直後に処理した試験試料によるUVBによる細胞傷害緩和作用は認められなかった(表9)。一方、UVBによるIL-1α、IL-6およびIL-8の増加に対し、試験試料による有意な増加抑制作用は認められた(表10~12)。
<Result>
The results are shown in Tables 9 to 12 (Tables 1 to 4) and collectively shown in FIG. The cytotoxicity mitigating action by UVB by the test sample processed immediately after UVB irradiation was not recognized (Table 9). On the other hand, the increase in IL-1α, IL-6 and IL-8 by UVB was significantly inhibited by the test sample (Tables 10 to 12).
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
<得られる効果>
 以上より、アルギニンと4ヒドロキシクマリンの反応生成物は、UVBによる細胞傷害緩和作用を示さなかったが、炎症抑制作用(IL-1α、IL-6およびIL-8の増加抑制)を有することが確認された。その効果は、3種の炎症性インターロイキンに対して、重量比で0.1mg/mLの含有量で効果が明確である。この効果は化粧品重量に対して重量百分率で0.01%(w/w)で効果があることを意味している。今日、従来から知られている炎症抑制作用効果を目的とした添加物質の最適配合割合は0.1~0.03%(w/w)程度のものがよく知られていて使用されている。これに比べるとアルギニンと4ヒドロキシクマリンの反応生成物はより少ない含有率の使用で効果が期待できることが明確となった。
 

 
<Effects obtained>
Based on the above, it was confirmed that the reaction product of arginine and 4-hydroxycoumarin did not show the cytotoxic effect of UVB, but has an anti-inflammatory action (inhibition of IL-1α, IL-6 and IL-8). It was done. The effect is clear with respect to three kinds of inflammatory interleukins at a content of 0.1 mg / mL by weight. This effect means that there is an effect at a weight percentage of 0.01% (w / w) with respect to the cosmetic weight. Today, the conventionally known optimum blending ratio of additive substances for the purpose of anti-inflammatory effect is about 0.1 to 0.03% (w / w) and is used. Compared with this, it became clear that the reaction product of arginine and 4-hydroxycoumarin can be expected to be effective by using a smaller content.


Claims (13)

  1.  少なくとも250~300nmに光吸収を有する紫外線吸収化粧品素材を含む化粧品をヒトの肌に塗布することで該肌を紫外線から遮断する方法であって、
     前記紫外線吸収化粧品素材はクマリン色素及びアルギニンから合成されクマリン由来のとは異なる1つ以上の環式構造を有する環状構造化合物からなる紫外線吸収化合物とともに30~70pmのイオン半径を有する金属イオンを含むことで250~430nmに励起帯かつ320~600nmに発光帯を有することを特徴とする紫外線遮断方法。
    A method of shielding a skin from ultraviolet rays by applying a cosmetic containing an ultraviolet-absorbing cosmetic material having light absorption at least 250 to 300 nm to human skin,
    The UV-absorbing cosmetic material contains a metal ion having an ionic radius of 30 to 70 pm together with an UV-absorbing compound composed of a cyclic structure compound having one or more cyclic structures different from those derived from coumarin and synthesized from a coumarin pigment and arginine. A method for blocking ultraviolet rays, which has an excitation band at 250 to 430 nm and an emission band at 320 to 600 nm.
  2.  前記環状構造化合物はクマリン骨格を含まないことを特徴とする請求項1記載の紫外線遮断方法。 The ultraviolet blocking method according to claim 1, wherein the cyclic structure compound does not contain a coumarin skeleton.
  3.  前記クマリン色素は4-ヒドロキシクマリンであることを特徴とする請求項2記載の紫外線遮断方法。 3. The ultraviolet blocking method according to claim 2, wherein the coumarin dye is 4-hydroxycoumarin.
  4.  前記金属イオンはAl3+またはMg2+であることを特徴とする請求項3記載の紫外線遮断方法。 4. The ultraviolet blocking method according to claim 3, wherein the metal ion is Al3 + or Mg2 + .
  5.  前記紫外線吸収化粧品素材は250~300nm及び330~430nmの励起帯かつ400~600nmの発光帯を有することを特徴とする請求項4記載の紫外線遮断方法。 5. The ultraviolet blocking method according to claim 4, wherein the ultraviolet absorbing cosmetic material has excitation bands of 250 to 300 nm and 330 to 430 nm and an emission band of 400 to 600 nm.
  6.  前記紫外線吸収化粧品素材は260~350nmの励起帯かつ320~550nmの発光帯を有することを特徴とする請求項4記載の紫外線遮断方法。 5. The ultraviolet blocking method according to claim 4, wherein the ultraviolet absorbing cosmetic material has an excitation band of 260 to 350 nm and an emission band of 320 to 550 nm.
  7.  クマリン色素及びアルギニンから合成されながらクマリン由来のとは異なる1つ以上の環式構造を有し少なくとも250~300nmに光吸収を有する環状構造化合物を含む紫外線吸収化粧品素材であって、
     30~70pmのイオン半径を有する金属イオンを与えられ250~430nmに励起帯かつ320~600nmに発光帯を有することを特徴とする紫外線吸収化粧品素材。
    An ultraviolet-absorbing cosmetic material comprising a cyclic structure compound synthesized from a coumarin dye and arginine and having one or more cyclic structures different from those derived from coumarin and having light absorption at least 250 to 300 nm,
    An ultraviolet-absorbing cosmetic material characterized by being provided with metal ions having an ionic radius of 30 to 70 pm and having an excitation band at 250 to 430 nm and an emission band at 320 to 600 nm.
  8.  前記環状構造化合物はクマリン骨格を含まないことを特徴とする請求項7記載の紫外線吸収化粧品素材。 The ultraviolet-absorbing cosmetic material according to claim 7, wherein the cyclic structure compound does not contain a coumarin skeleton.
  9.  前記クマリン色素は4-ヒドロキシクマリンであることを特徴とする請求項8記載の紫外線吸収化粧品素材。 The ultraviolet-absorbing cosmetic material according to claim 8, wherein the coumarin dye is 4-hydroxycoumarin.
  10.  前記金属イオンはAl3+またはMg2+であることを特徴とする請求項9記載の紫外線吸収化粧品素材。 The ultraviolet-absorbing cosmetic material according to claim 9, wherein the metal ion is Al 3+ or Mg 2+ .
  11.  250~300nm及び330~430nmの励起帯かつ400~600nmの発光帯を有することを特徴とする請求項10記載の紫外線吸収化粧品素材。 The ultraviolet-absorbing cosmetic material according to claim 10, which has excitation bands of 250 to 300 nm and 330 to 430 nm and an emission band of 400 to 600 nm.
  12.  260~350nmの励起帯かつ320~550nmの発光帯を有することを特徴とする請求項10記載の紫外線吸収化粧品素材。 The ultraviolet-absorbing cosmetic material according to claim 10, having an excitation band of 260 to 350 nm and an emission band of 320 to 550 nm.
  13.  請求項7~12のうちいずれか1つに記載の紫外線吸収化粧品素材を含有することを特徴とする化粧品。
     

     
    A cosmetic comprising the ultraviolet-absorbing cosmetic material according to any one of claims 7 to 12.


PCT/JP2015/059270 2014-03-26 2015-03-25 Ultraviolet light-absorbing cosmetic material, cosmetic containing same, and method for blocking ultraviolet light WO2015147117A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016510458A JPWO2015147117A1 (en) 2014-03-26 2015-03-25 UV-absorbing cosmetic material, cosmetic containing the same, and UV blocking method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-062830 2014-03-26
JP2014062830 2014-03-26

Publications (1)

Publication Number Publication Date
WO2015147117A1 true WO2015147117A1 (en) 2015-10-01

Family

ID=54195625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059270 WO2015147117A1 (en) 2014-03-26 2015-03-25 Ultraviolet light-absorbing cosmetic material, cosmetic containing same, and method for blocking ultraviolet light

Country Status (2)

Country Link
JP (1) JPWO2015147117A1 (en)
WO (1) WO2015147117A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015221879A (en) * 2014-05-23 2015-12-10 国立大学法人秋田大学 Resin composition that absorbs ultraviolet light and converts ultraviolet light to visible light, resin molding, and method for shielding ultraviolet light and enhancing visible light

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005306816A (en) * 2004-04-26 2005-11-04 Pola Chem Ind Inc Skin care external preparation for summer
JP2006036704A (en) * 2004-07-28 2006-02-09 Yukihiro Hirose Cosmetic for sun screen
JP2006160701A (en) * 2004-12-10 2006-06-22 Noevir Co Ltd Tyrosinase activity inhibitor and external preparation for skin
JP2009019041A (en) * 2007-07-12 2009-01-29 L'oreal Sa Aqueous liquid photoprotective composition based on tertiary amide-terminated polyamide polymer
JP2012025870A (en) * 2010-07-26 2012-02-09 Akita Univ Method for shielding ultraviolet radiation and intensifying visible light, and ultraviolet-radiation-shielding, visible-light-intensifying material capable of achieving the method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005306816A (en) * 2004-04-26 2005-11-04 Pola Chem Ind Inc Skin care external preparation for summer
JP2006036704A (en) * 2004-07-28 2006-02-09 Yukihiro Hirose Cosmetic for sun screen
JP2006160701A (en) * 2004-12-10 2006-06-22 Noevir Co Ltd Tyrosinase activity inhibitor and external preparation for skin
JP2009019041A (en) * 2007-07-12 2009-01-29 L'oreal Sa Aqueous liquid photoprotective composition based on tertiary amide-terminated polyamide polymer
JP2012025870A (en) * 2010-07-26 2012-02-09 Akita Univ Method for shielding ultraviolet radiation and intensifying visible light, and ultraviolet-radiation-shielding, visible-light-intensifying material capable of achieving the method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015221879A (en) * 2014-05-23 2015-12-10 国立大学法人秋田大学 Resin composition that absorbs ultraviolet light and converts ultraviolet light to visible light, resin molding, and method for shielding ultraviolet light and enhancing visible light

Also Published As

Publication number Publication date
JPWO2015147117A1 (en) 2017-04-13

Similar Documents

Publication Publication Date Title
Wróblewska et al. In vitro antioxidant and photoprotective activity of five native Brazilian bamboo species
AU2006207330B2 (en) Sunscreen compositions comprising carotenoids
CN107889468A (en) Congruent melting extractant, use the solvent, the extracting process carried out according to congruent melting method of formation, and the extract as caused by the extracting process
CN103083203A (en) Sunscreen composition and preparation method thereof
Chiang et al. Photoirradiation of azulene and guaiazulene—formation of reactive oxygen species and induction of lipid peroxidation
Yarovaya et al. Effect of Grape Seed Extract as a Sunscreening Booster
Suryanto et al. The evaluation of singlet oxygen quenching and sunscreen activity of corn cob extract
Wusigale et al. Mechanism for inhibition of folic acid photodecomposition by various antioxidants
EP2809295B1 (en) Composition and association of sunscreens for photostabilizing butyl methoxydibenzoylmethane (bmdbm)
RU2341252C2 (en) Carotinoid composition and method of skin protection
Wolnicka‐Glubisz et al. The role of singlet oxygen in photoreactivity and phototoxicity of curcumin
WO2015147117A1 (en) Ultraviolet light-absorbing cosmetic material, cosmetic containing same, and method for blocking ultraviolet light
Turcov et al. Physico-chemical characterization of the antioxidant mixture resveratrol-ferulic acid for applications in dermato-cosmetic products
Parwaiz et al. Recent developments in tuning the efficacy of different types of sunscreens
KR20190038789A (en) Cosmetics of water insoluble sponge containing cosmetic compositions of sunscreen function
Limsuwan et al. Effect of grape seed extract in sunscreen lotion on sun protection factor (SPF) determined by in vitro method
Breheret et al. Electronic relaxation of troponoids: tropolone fluorescence
CN108553332A (en) A kind of cosmetic composition, Its Preparation Method And Use including α-mangostin
KR20150071133A (en) Oil in water in oil cosmetic composition for UV protection
Yaseen et al. Formulation, characterization and in-vitro sun protection factor of a lemongrass sunscreen lotion: Sun protection factor of a lemongrass sunscreen lotion
JP2006315957A (en) Singlet oxygen scavenger and external preparation for skin using the same
KR20210074927A (en) Blue light blocking composition comprising curcuma aromatica salisb extract
KR102396785B1 (en) Antioxidant complex and composition forming the same
EP1937206A1 (en) Mixtures of ethylhexyl p-methoxycinnamate and ethylhexyl salicylate
CN118058998B (en) Solubilized photo-thermal stable sun-screening agent and preparation method and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15770069

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016510458

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15770069

Country of ref document: EP

Kind code of ref document: A1