WO2015146885A1 - Three-dimensional shaping device - Google Patents

Three-dimensional shaping device Download PDF

Info

Publication number
WO2015146885A1
WO2015146885A1 PCT/JP2015/058683 JP2015058683W WO2015146885A1 WO 2015146885 A1 WO2015146885 A1 WO 2015146885A1 JP 2015058683 W JP2015058683 W JP 2015058683W WO 2015146885 A1 WO2015146885 A1 WO 2015146885A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
supply
hole
amount
supplied
Prior art date
Application number
PCT/JP2015/058683
Other languages
French (fr)
Japanese (ja)
Inventor
栄一 藤原
Original Assignee
ブラザー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブラザー工業株式会社 filed Critical ブラザー工業株式会社
Publication of WO2015146885A1 publication Critical patent/WO2015146885A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/38Automated lay-up, e.g. using robots, laying filaments according to predetermined patterns
    • B29C70/386Automated tape laying [ATL]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Robotics (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)

Abstract

Provided is a three-dimensional shaping device which achieves a reduction in the amount of usage of powder by preventing the powder from being scattered to the sides of a stage. A supply mechanism (16) of a powder supplier is provided with a supply plate (17) in which supply holes (70) through which powder in a storage part passes are open. Among the supply holes (70), the number of supply holes (73) which are open in an intermediate section (17C) in the left-right direction of the supply plate (17) is larger than the numbers of supply holes (71, 72) which are open in a left end section (17A) and a right end section (17B), respectively. Therefore, in a supply receiving surface, the amounts of the powder supplied to both the end sections in the left-right direction are smaller than the amount of the powder supplied to the intermediate section. When a flattening roller flattens the powder on a stage surface, the powder is pushed by the flattening roller to create a pile of the powder, then collapses, and spreads in the light-left direction. Since the amounts of the powder in both the end sections in the left-right direction are smaller than that in the intermediate section, the heights of the pile created therein are lower than that in the intermediate section, and thereby the powder does not easily spread in the left-right direction.

Description

立体造形装置3D modeling equipment
 本発明は、立体造形粉体に造形液を吐出して固化することで立体造形物を造形する立体造形装置に関する。 The present invention relates to a three-dimensional modeling apparatus for modeling a three-dimensional model by discharging a modeling liquid onto a three-dimensional modeling powder and solidifying the modeling liquid.
 従来、ステージ上に供給する立体造形粉体(以下、単に「粉体」ともいう。)を薄層状に均した粉体層に造形液を吐出し、粉体層と造形液が混合して固化した造形層を積層することで立体造形物を造形する立体造形装置が知られている(例えば特許文献1参照)。特許文献1に記載の3Dプリンタは、供給リザーバから造形ボックスに供給される粉末状の造形材料を、造形ボックスを横切って移動するガントリによって、造形ボックス全体にわたって広げる。3Dプリンタは、ガントリに取り付けられたプリントヘッドから結合剤を噴射し、造形材料を硬化させて、各層ごとに3Dの実物モデルの層を制作する。 Conventionally, a modeling liquid is discharged into a powder layer obtained by leveling a three-dimensional modeling powder (hereinafter also simply referred to as “powder”) supplied on a stage into a thin layer, and the powder layer and the modeling liquid are mixed and solidified. There is known a three-dimensional modeling apparatus that models a three-dimensional modeled object by stacking the modeled layers (for example, see Patent Document 1). The 3D printer described in Patent Document 1 spreads a powdery modeling material supplied from a supply reservoir to a modeling box over the entire modeling box by a gantry that moves across the modeling box. The 3D printer ejects a binder from a print head attached to the gantry, cures the modeling material, and creates a 3D real model layer for each layer.
 3Dプリンタは、造形ボックスの周囲に、造形工程の間に拡散する造形材料が積もるデッキを備える。デッキは、上面を造形ボックス側壁の上縁よりも下方に下げ、造形材料が落下するガターを形成する。ガターは、造形ボックス側壁の上縁から溢れてデッキ上に拡散する造形材料を捕集する。さらに、3Dプリンタは、ガントリの下部に固定され、ばねまたは磁石で造形ボックスの側壁に密着するプラウを備える。プラウは、ガントリが造形材料を広げる動作の間に造形材料が造形ボックス側壁の上縁から溢れ出すのを防ぐ。ガントリが広げた造形材料のうち、造形ボックスに収容されず、造形ボックスからの溢れ出しがプラウに防がれた過剰な量の造形材料は、ガントリの移動方向で造形ボックスの下流に設けられたオーバーフローキャビティに落下して収容される。 The 3D printer has a deck around the modeling box on which modeling materials that diffuse during the modeling process are stacked. The deck lowers the upper surface below the upper edge of the modeling box side wall to form a gutter from which the modeling material falls. The gutter collects the modeling material that overflows from the upper edge of the modeling box side wall and diffuses onto the deck. Further, the 3D printer includes a plow that is fixed to the lower part of the gantry and is in close contact with the side wall of the modeling box with a spring or a magnet. The plow prevents the build material from overflowing from the upper edge of the build box sidewall during the operation of the gantry spreading the build material. Of the molding material spread out by the gantry, an excessive amount of modeling material that was not accommodated in the modeling box and prevented from overflowing from the modeling box was provided downstream of the modeling box in the direction of movement of the gantry. Dropped into the overflow cavity and stored.
特表2005-503939号公報JP 2005-503939 A
 ところで、粉体供給部からステージ上に供給されながらも造形層の造形に利用されなかった粉体は、使用済み粉体として回収され、再利用される。特許文献1における使用済み粉体は、造形ボックス上に供給された造形材料のうち、粉体層形成時に造形ボックス側壁の上縁から溢れた造形材料、粉体層の形成で余って造形ボックスの下流に設けられたオーバーフローキャビティに落下して収容された造形材料等である。しかしながら、使用済み粉体は、粉体供給部から一度も供給されたことがなく、造形層の造形に一度も利用されていない未使用の粉体と比べ、吸湿したり、塵埃など異物が混入したりして劣化する可能性がある。このため、立体造形装置は、粉体の使用量の低減が求められていた。 By the way, the powder that has been supplied from the powder supply unit onto the stage but has not been used for modeling the modeling layer is recovered as a used powder and reused. The used powder in Patent Document 1 is the modeling material supplied on the modeling box, the modeling material overflowing from the upper edge of the modeling box side wall when forming the powder layer, and the formation of the powder layer is excessive. It is a modeling material or the like that is dropped and accommodated in an overflow cavity provided downstream. However, the used powder has never been supplied from the powder supply unit, and it absorbs moisture or contains foreign matter such as dust compared to unused powder that has never been used for modeling the modeling layer. Or may deteriorate. For this reason, the three-dimensional modeling apparatus has been required to reduce the amount of powder used.
 本発明は、ステージの側方に粉体が拡散することを防止することで粉体の使用量を少なくすることができる立体造形装置を提供することを目的とする。 An object of the present invention is to provide a three-dimensional modeling apparatus capable of reducing the amount of powder used by preventing the powder from diffusing to the side of the stage.
 本発明に拘わる立体造形装置は、粉体を収容する収容部と、前記収容部内に収容する前記粉体を外部に供給する供給手段とを備えた粉体供給部と、前記粉体供給部から前記粉体が供給される面である被供給面と、前記被供給面に供給された前記粉体を層状に均した粉体層が形成される面であるステージ面とを有するステージ部と、前記ステージ部に対し、前記ステージ面に平行な所定の第一方向に相対移動して、前記粉体供給部によって前記被供給面に供給された前記粉体を前記ステージ面上に広げ、且つ前記粉体の表面を平坦化し、前記粉体層を形成する平坦化部と、を備え、前記供給手段は、前記ステージ面に平行且つ前記第一方向に交差する第二方向において三等分した部位のうち、前記第二方向の一端側に設け、所定の第一量の前記粉体を前記被供給面に供給する第一供給部と、前記第二方向に三等分した部位のうち、前記第二方向の他端側に設け、所定の第二量の前記粉体を前記被供給面に供給する第二供給部と、前記第一供給部と前記第二供給部との間に設け、少なくとも前記第一量および前記第二量のうちの一方の量よりも多い第三量の前記粉体を前記被供給面に供給する第三供給部と、を含んでいる。 The three-dimensional modeling apparatus according to the present invention includes: a powder supply unit including a storage unit that stores powder; a supply unit that supplies the powder stored in the storage unit to the outside; and the powder supply unit. A stage portion having a supply surface that is a surface to which the powder is supplied, and a stage surface that is a surface on which a powder layer obtained by leveling the powder supplied to the supply surface is formed; Relative movement in a predetermined first direction parallel to the stage surface with respect to the stage portion, the powder supplied to the supply surface by the powder supply portion is spread on the stage surface, and A flattening portion for flattening the surface of the powder and forming the powder layer, wherein the supply means is divided into three equal parts in a second direction parallel to the stage surface and intersecting the first direction. Provided on one end side in the second direction, before a predetermined first amount A first supply unit for supplying powder to the supply surface and a portion divided into three equal parts in the second direction are provided on the other end side in the second direction, and a predetermined second amount of the powder is provided. A second supply unit that supplies the surface to be supplied; and a first supply unit that is provided between the first supply unit and the second supply unit, and that is at least larger than one of the first amount and the second amount. And a third supply unit for supplying three quantities of the powder to the supply surface.
 粉体供給部の第二方向両側の端部において、少なくとも供給手段の第一供給部および第二供給部のうちの一方が供給する粉体の量は、中間部において第三供給部が供給する第三量よりも少ない第一量または第二量である。平坦化部が粉体をステージ面に広げる際に、端部に供給された粉体は、中間部に供給された粉体と比べ、量が少ないので第二方向に広がりにくい。故に、立体造形装置は、粉体を均す場合において、ステージ面の両端部から粉体をはみ出させにくいので、ステージ部の側方に粉体が拡散することを防止し、粉体の使用量を低減できる。 At the ends on both sides in the second direction of the powder supply unit, at least the amount of powder supplied by one of the first supply unit and the second supply unit of the supply means is supplied by the third supply unit in the intermediate part. The first or second amount is less than the third amount. When the flattening part spreads the powder on the stage surface, the amount of powder supplied to the end part is less than that of the powder supplied to the intermediate part, so it is difficult to spread in the second direction. Therefore, the three-dimensional modeling device prevents powder from spreading out from both ends of the stage surface when leveling the powder. Can be reduced.
 ところで、被供給面の両端部に供給される粉体の量が中間部に供給される粉体の量よりも少ない場合、平坦化部が粉体をステージ面に広げる際に、粉体は、ステージ面の両端部に十分に行き渡らない可能性がある。しかし、平坦化部が粉体を均す過程において、平坦化部に押された粉体は山を盛り、頂点側から崩れて低い側に流れる。このため、粉体は、ステージ面の中間部側から両端部側に広がって伸ばされる。すなわち、被供給面の中間部に供給された粉体の一部は、平坦化部の押圧によって両端部側に広げられ、被供給面の両端部に供給された粉体に加えられて、ステージ面の両端部で粉体層を形成する。故に、たとえ、被供給面の両端部に供給される粉体の量が、ステージ面の両端部における一層分の粉体層の形成に必要な粉体の量よりも少なくとも、被供給面の中間部に供給された粉体の一部によって補うことができる。本態様に係る立体造形装置は、被供給面の中間部に両端部よりも多くの粉体を供給するので、両端部と中間部に同量の粉体を供給する場合と比べ、ステージ面全体を確実に粉体で覆って粉体層を形成でき、且つ、粉体の使用量を少なくすることができる。 By the way, when the amount of the powder supplied to both ends of the supplied surface is smaller than the amount of the powder supplied to the intermediate portion, when the flattening unit spreads the powder on the stage surface, There is a possibility that it does not reach both ends of the stage surface. However, in the process of leveling the powder by the flattening portion, the powder pushed by the flattening portion is piled up and collapses from the apex side and flows to the lower side. For this reason, the powder spreads and extends from the intermediate part side to the both end parts side of the stage surface. That is, a part of the powder supplied to the intermediate portion of the supplied surface is spread to both end sides by the pressing of the flattening portion, added to the powder supplied to both end portions of the supplied surface, and the stage A powder layer is formed at both ends of the surface. Therefore, even if the amount of powder supplied to both ends of the surface to be supplied is at least intermediate between the amounts of powder necessary for forming a powder layer for one layer at both ends of the stage surface, It can be supplemented by a part of the powder supplied to the part. Since the three-dimensional modeling apparatus according to this aspect supplies more powder than the both ends to the intermediate portion of the supply surface, the entire stage surface is compared with the case where the same amount of powder is supplied to both ends and the intermediate portion. Can be reliably covered with powder to form a powder layer, and the amount of powder used can be reduced.
 また、前記立体造形装置において、前記供給手段は、前記収容部内から前記被供給面に供給される粉体が通過する複数の孔が形成された供給板を備え、前記第一供給部は、前記供給板の前記一端側で、前記第一量の前記粉体が通過する第一孔が形成された部位であり、前記第二供給部は、前記供給板の前記他端側で、前記第二量の前記粉体が通過する第二孔が形成された部位であり、前記第三供給部は、前記供給板の前記第一供給部と前記第二供給部との間で、前記第三量の前記粉体が通過する第三孔が形成された部位であってもよい。第一供給部が第一孔を介して供給する第一量の粉体よりも多い第三量の粉体を第三供給部が供給するためには、第三供給部は、第一孔よりも多くの粉体が第三孔を通過できるようにすればよい。同様に、第二供給部が第二孔を介して供給する第二量の粉体よりも多い第三量の粉体を第三供給部が供給するためには、第三供給部は、第二孔よりも多くの粉体が第三孔を通過できるようにすればよい。粉体供給部は、例えば、第一孔および第二孔のうち少なくとも一方よりも第三孔を大きく形成したり、第一孔および第二孔のうち少なくとも一方よりも第三孔の数を増やしたりするなど、簡易な構成で、第一孔および第二孔のうち少なくとも一方よりも第三孔から多くの粉体を被供給面に供給することが可能である。 Further, in the three-dimensional modeling apparatus, the supply unit includes a supply plate in which a plurality of holes through which powder supplied from the storage unit to the supply surface passes is formed, and the first supply unit includes the first supply unit, A first hole through which the first amount of the powder passes is formed on the one end side of the supply plate, and the second supply unit is on the other end side of the supply plate, The third hole is formed between the first supply portion and the second supply portion of the supply plate. The site | part in which the 3rd hole through which the said powder passes was formed may be sufficient. In order for the third supply unit to supply a third amount of powder that is greater than the first amount of powder supplied by the first supply unit through the first hole, It is sufficient that a large amount of powder can pass through the third hole. Similarly, in order for the third supply unit to supply a third amount of powder that is greater than the second amount of powder supplied by the second supply unit through the second hole, What is necessary is just to allow more powder than two holes to pass through the third hole. The powder supply unit, for example, forms a third hole larger than at least one of the first hole and the second hole, or increases the number of third holes than at least one of the first hole and the second hole. It is possible to supply more powder to the supply surface from the third hole than at least one of the first hole and the second hole with a simple configuration.
 また、前記立体造形装置において、前記第一孔、前記第二孔および前記第三孔が前記第一方向において同じ位置に形成された場合、前記第一孔、前記第二孔および前記第三孔は、隣り合う2つの孔の開口領域のうち、少なくとも一部の領域が前記第二方向に重なってもよい。
第一孔、第二孔および第三孔を介して被供給面に供給される粉体は、それぞれ個別に粉体の山を形成する場合がある。仮に、第一孔、第二孔および第三孔が第一方向において同じ位置に形成された場合、隣り合う2つの孔は、それぞれの開口領域の少なくとも一部が第二方向に重なる。故に、粉体供給時に第一孔、第二孔および第三孔を介して被供給面上に供給されて形成される個々の粉体の山が、仮に、第一方向において同じ位置に揃えて配置された場合、隣り合う山同士は、少なくとも一部が第二方向に重なる配置となる。故に、平坦化部が粉体をステージ面に運ぶ過程において、個々の粉体の山は、被供給面において平坦化部が粉体に接触してから直ちに第二方向に連続して繋がる。よって、平坦化部がステージ面上で粉体を均し始める際に、第二方向においてステージ面上を覆う粉体が足りなくなる部分がないので、立体造形装置は、造形層を確実に形成することができる。個々の粉体の山が、仮に、第一方向において同じ位置に揃えて配置されても、隣り合う山同士が第二方向に重ならない配置となる場合、ステージ面上を確実に粉体で覆うためには、平坦化部は、粉体を運ぶ過程で個々の粉体の山を第二方向に繋げる必要がある。平坦化部が個々の粉体の山を第二方向に繋げるためには、被供給面は、粉体の供給位置とステージ面との間に所定の距離を必要とする。しかし、本態様は、平坦化部が被供給面から粉体を運び始めて直ちに個々の粉体の山を第二方向に繋げることができるため、上記の所定の距離が不要である。故に、立体造形装置は、粉体の供給位置とステージ面との間の距離を短くすることで小型化を図ることができる。また、平坦化部の移動距離を短くでき、立体造形装置による造形の高速化を図ることができる。
In the three-dimensional modeling apparatus, when the first hole, the second hole, and the third hole are formed at the same position in the first direction, the first hole, the second hole, and the third hole May be such that at least a part of the opening regions of two adjacent holes overlaps in the second direction.
The powder supplied to the surface to be supplied through the first hole, the second hole, and the third hole may individually form a powder crest. If the first hole, the second hole, and the third hole are formed at the same position in the first direction, at least a part of the respective opening regions of the two adjacent holes overlap in the second direction. Therefore, when the powder is supplied, the individual powder piles formed on the surface to be supplied through the first hole, the second hole, and the third hole are arranged at the same position in the first direction. When arranged, adjacent mountains are arranged such that at least a part thereof overlaps in the second direction. Therefore, in the process in which the flattening unit carries the powder to the stage surface, the individual powder piles are continuously connected in the second direction immediately after the flattening unit contacts the powder on the surface to be supplied. Therefore, when the flattening portion starts to level the powder on the stage surface, there is no portion that lacks the powder covering the stage surface in the second direction, so the three-dimensional modeling apparatus reliably forms the modeling layer. be able to. Even if individual powder ridges are arranged in the same position in the first direction, if the adjacent hills are arranged so that they do not overlap in the second direction, the stage surface is reliably covered with powder. For this purpose, the flattening section needs to connect the individual powder piles in the second direction in the course of carrying the powder. In order for the flattening portion to connect the individual powder peaks in the second direction, the surface to be supplied needs a predetermined distance between the powder supply position and the stage surface. However, in this aspect, since the flattening portion starts to carry the powder from the surface to be supplied, the individual powder peaks can be connected in the second direction, and thus the predetermined distance is unnecessary. Therefore, the three-dimensional modeling apparatus can be downsized by shortening the distance between the powder supply position and the stage surface. Moreover, the moving distance of the flattening part can be shortened, and the modeling can be speeded up by the three-dimensional modeling apparatus.
 また、平坦化部が粉体を運ぶ距離が長くなるほど、被供給面に供給された粉体は、中間部から両端部により多く流れて広がる。仮に、被供給面の両端部と中間部にそれぞれ同様の配置で且つ同量の粉体が供給された場合、平坦化部が粉体を押し運ぶ距離が長くなるほど、ステージ面の両端部からはみ出す粉体の量は、多くなる。本態様に係る立体造形装置は、上記のように、粉体の供給位置とステージ面との間の距離を短くすることで、ステージ面の両端部からはみ出す粉体の量を減らすことができるので、粉体の使用量をさらに少なくすることができる。 Also, the longer the distance that the flattening section carries the powder, the more powder supplied to the surface to be supplied flows and spreads from the intermediate section to both ends. If the same amount of powder is supplied to both ends and the intermediate portion of the surface to be supplied and the same amount of powder is supplied, the longer the distance that the flattening portion pushes the powder, the longer it protrudes from both ends of the stage surface. The amount of powder increases. As described above, the three-dimensional modeling apparatus according to this aspect can reduce the amount of powder protruding from both ends of the stage surface by shortening the distance between the powder supply position and the stage surface. Further, the amount of powder used can be further reduced.
 また、前記立体造形装置において、前記第三供給部は、開口領域の占める面積の割合が、少なくとも前記第一供給部において前記第一孔の開口領域が占める面積の割合、および前記第二供給部において前記第二孔の開口領域が占める面積の割合のうちの一方の割合よりも大きな割合を占める第三孔が形成されていてもよい。第三供給部は、第三供給部において占める大きさの割合が、第一供給部における第一孔および第二供給部における第二孔のうち少なくとも一方が占める大きさの割合よりも大きな第三孔から、粉体を供給できる。故に、粉体供給部は、第一孔および第二孔のうち少なくとも一方よりも第三孔から多くの粉体を被供給面に供給することができる。よって、立体造形装置は、粉体を均す場合において、ステージ面の両端部から粉体をはみ出させにくいので、簡易な構成で、ステージ部の側方に粉体が拡散することを防止し、粉体の使用量を低減できる。 Further, in the three-dimensional modeling apparatus, in the third supply unit, the ratio of the area occupied by the opening region is at least the ratio of the area occupied by the opening region of the first hole in the first supply unit, and the second supply unit A third hole may be formed that occupies a proportion greater than one of the proportions of the area occupied by the opening region of the second hole. The third supply unit has a third ratio in which the ratio of the size occupied in the third supply unit is larger than the ratio of the size occupied by at least one of the first hole in the first supply unit and the second hole in the second supply unit. Powder can be supplied from the hole. Therefore, the powder supply unit can supply more powder to the supply surface from the third hole than at least one of the first hole and the second hole. Therefore, the three-dimensional modeling apparatus, when leveling the powder, it is difficult for the powder to protrude from both ends of the stage surface, so the powder is prevented from diffusing to the side of the stage portion with a simple configuration, The amount of powder used can be reduced.
 また、前記立体造形装置において、前記第三孔の数は、少なくとも前記第一孔の数および前記第二孔の数のうちの一方の数よりも多くてもよい。第三孔が第一孔および第二孔のうち少なくとも一方よりも数が多いので、粉体供給部は、第一孔および第二孔のうち少なくとも一方よりも第二孔から多くの粉体を被供給面に供給することができる。よって、立体造形装置は、粉体を均す場合において、ステージ面の両端部から粉体をはみ出させにくいので、簡易な構成で、ステージ部の側方に粉体が拡散することを防止し、粉体の使用量を低減できる。 In the three-dimensional modeling apparatus, the number of the third holes may be larger than at least one of the number of the first holes and the number of the second holes. Since the third hole has a larger number than at least one of the first hole and the second hole, the powder supply unit draws more powder from the second hole than at least one of the first hole and the second hole. It can be supplied to the surface to be supplied. Therefore, the three-dimensional modeling apparatus, when leveling the powder, it is difficult for the powder to protrude from both ends of the stage surface, so the powder is prevented from diffusing to the side of the stage portion with a simple configuration, The amount of powder used can be reduced.
 また、前記立体造形装置において、前記第三孔の大きさは、少なくとも前記第一孔の大きさおよび前記第二孔の大きさのうちの一方の大きさよりも大きくてもよい。第三孔が第一孔および第二孔のうち少なくとも一方よりも大きいので、故に、粉体供給部は、第一孔および第二孔のうち少なくとも一方よりも第三孔から多くの粉体を被供給面に供給することができる。よって、立体造形装置は、粉体を均す場合において、ステージ面の両端部から粉体をはみ出させにくいので、簡易な構成で、ステージ部の側方に粉体が拡散することを防止し、粉体の使用量を低減できる。 Further, in the three-dimensional modeling apparatus, the size of the third hole may be larger than at least one of the size of the first hole and the size of the second hole. Since the third hole is larger than at least one of the first hole and the second hole, therefore, the powder supply unit draws more powder from the third hole than at least one of the first hole and the second hole. It can be supplied to the surface to be supplied. Therefore, the three-dimensional modeling apparatus, when leveling the powder, it is difficult for the powder to protrude from both ends of the stage surface, so the powder is prevented from diffusing to the side of the stage portion with a simple configuration, The amount of powder used can be reduced.
 また、前記立体造形装置において、前記供給手段は、前記収容部内に配置され、前記第一孔を介して前記粉体を外部に押し出す第一押出部と、前記収容部内に配置され、前記第二孔を介して前記粉体を外部に押し出す第二押出部と、前記収容部内に配置され、前記第三孔を介して前記粉体を外部に押し出す第三押出部と、をさらに備え、前記第三押出部と前記第三孔との最短距離は、少なくとも前記第一押出部と前記第一孔との最短距離および前記第二押出部と前記第二孔との最短距離のうちの一方の最短距離よりも短くてもよい。 第一押出部、第二押出部および第三押出部は、それぞれ、第一孔、第二孔および第三孔との距離に応じて、第一孔、第二孔および第三孔から押し出す粉体の量が異なり、最短距離が短いほど多くの粉体を押し出すことができる。第三押出部と第三孔との最短距離が第一押出部と第一孔との最短距離および第二押出部と第二孔との最短距離のうち少なくとも一方よりも短いので、第三供給部は、第一供給部および第二供給部のうち少なくとも一方よりも多くの粉体を被供給面に供給することができる。よって、立体造形装置は、粉体を均す場合において、ステージ面の両端部から粉体をはみ出させにくいので、簡易な構成で、ステージ部の側方に粉体が拡散することを防止し、粉体の使用量を低減できる。 Further, in the three-dimensional modeling apparatus, the supply means is disposed in the accommodating portion, and is disposed in the accommodating portion, a first extruding portion that extrudes the powder to the outside through the first hole, and the second A second extruding part for extruding the powder to the outside through a hole; and a third extruding part arranged in the housing part and for extruding the powder to the outside through the third hole, The shortest distance between the three extrusion parts and the third hole is at least one of the shortest distance between the first extrusion part and the first hole and the shortest distance between the second extrusion part and the second hole. It may be shorter than the distance. The first extruding part, the second extruding part and the third extruding part are respectively extruded from the first hole, the second hole and the third hole in accordance with the distances from the first hole, the second hole and the third hole. The amount of body is different and the shorter the shortest distance, the more powder can be extruded. Since the shortest distance between the third extrusion part and the third hole is shorter than at least one of the shortest distance between the first extrusion part and the first hole and the shortest distance between the second extrusion part and the second hole, the third supply The unit can supply more powder than at least one of the first supply unit and the second supply unit to the supply surface. Therefore, the three-dimensional modeling apparatus, when leveling the powder, it is difficult for the powder to protrude from both ends of the stage surface, so the powder is prevented from diffusing to the side of the stage portion with a simple configuration, The amount of powder used can be reduced.
 また、前記立体造形装置において、前記第一孔、前記第二孔および前記第三孔は、前記第二方向に沿って配置されており、前記供給手段は、前記第二方向に沿って延びる回転軸をさらに備え、前記第一押出部、前記第二押出部および前記第三押出部は、前記回転軸の周囲を回転し、それぞれ前記第一孔、前記第二孔および前記第三孔を介して前記粉体を押し出し、前記第三押出部が前記回転軸の周囲を回転する回転半径は、少なくとも前記第一押出部の回転半径および前記第二押出部の回転半径のうちの一方の回転半径よりも大きくてもよい。第三押出部は、第一押出部および第二押出部のうち少なくとも一方よりも大きな回転半径で回転軸の周囲を回転する。故に、第三押出部と第三孔との最短距離は、第一押出部と第一孔との最短距離および第二押出部と第二孔との最短距離のうち少なくとも一方よりも短い。したがって、第三供給部は、第一供給部および第二供給部のうち少なくとも一方よりも多くの粉体を被供給面に供給することができる。よって、立体造形装置は、粉体を均す場合において、ステージ面の両端部から粉体をはみ出させにくいので、簡易な構成で、ステージ部の側方に粉体が拡散することを防止し、粉体の使用量を低減できる。 Further, in the three-dimensional modeling apparatus, the first hole, the second hole, and the third hole are arranged along the second direction, and the supply means rotates extending along the second direction. The shaft further includes a shaft, and the first push portion, the second push portion, and the third push portion rotate around the rotation shaft, and pass through the first hole, the second hole, and the third hole, respectively. The rotational radius at which the powder is extruded and the third extrusion portion rotates around the rotation axis is at least one of the rotation radius of the first extrusion portion and the rotation radius of the second extrusion portion. May be larger. The third extruding part rotates around the rotating shaft with a larger radius of rotation than at least one of the first extruding part and the second extruding part. Therefore, the shortest distance between the third extruded portion and the third hole is shorter than at least one of the shortest distance between the first extruded portion and the first hole and the shortest distance between the second extruded portion and the second hole. Therefore, the third supply unit can supply more powder than at least one of the first supply unit and the second supply unit to the supply surface. Therefore, the three-dimensional modeling apparatus, when leveling the powder, it is difficult for the powder to protrude from both ends of the stage surface, so the powder is prevented from diffusing to the side of the stage portion with a simple configuration, The amount of powder used can be reduced.
 また、前記立体造形装置において、前記供給手段は、前記第二方向に沿って延びる回転軸と、前記収容部内に配置され、前記回転軸の周囲を回転し、前記第一孔、前記第二孔および前記第三孔を介して前記粉体を押し出す第四押出部とをさらに備え、前記供給板において、前記第三孔は、少なくとも前記第一孔および前記第二孔のうちの一方の孔よりも前記第一方向で前記回転軸に近い位置に配置されてもよい。第三孔は、第一孔および第二孔のうち少なくとも一方の孔よりも、第一方向において第四押出部の回転軸に近い位置に配置されるので、第二供給部は第一供給部よりも多くの粉体を被供給面に供給することができる。よって、立体造形装置は、粉体を均す場合において、ステージ面の両端部から粉体をはみ出させにくいので、簡易な構成で、ステージ部の側方に粉体が拡散することを防止し、粉体の使用量を低減できる。 Further, in the three-dimensional modeling apparatus, the supply unit is disposed in the housing portion with a rotation shaft extending along the second direction, rotates around the rotation shaft, and includes the first hole and the second hole. And a fourth extruding part for extruding the powder through the third hole, wherein in the supply plate, the third hole is at least one of the first hole and the second hole. May be arranged at a position close to the rotation axis in the first direction. Since the third hole is disposed at a position closer to the rotation axis of the fourth extrusion part in the first direction than at least one of the first hole and the second hole, the second supply part is the first supply part. More powder can be supplied to the supply surface. Therefore, the three-dimensional modeling apparatus, when leveling the powder, it is difficult for the powder to protrude from both ends of the stage surface, so the powder is prevented from diffusing to the side of the stage portion with a simple configuration, The amount of powder used can be reduced.
 また、前記立体造形装置において、前記第一供給部は、前記第一孔を開閉し、前記粉体の供給時に、前記第一孔を所定の第一時間、開放してから閉鎖する第一扉を備え、前記第二供給部は、前記第二孔を開閉し、前記粉体の供給時に、前記第二孔を所定の第二時間、開放してから閉鎖する第二扉を備え、前記第三供給部は、前記第三孔を開閉し、前記粉体の供給時に、前記第三孔を、少なくとも前記第一時間および前記第二時間のうちの一方の時間よりも長い第三時間、開放してから閉鎖する第三扉を備えてもよい。粉体供給部は、粉体供給時に、第一時間開放される第一孔および第二時間開放される第二孔のうち少なくとも一方よりも、第三時間開放される第三孔から多くの粉体を被供給面に供給することができる。よって、立体造形装置は、粉体を均す場合において、ステージ面の両端部から粉体をはみ出させにくいので、簡易な構成で、ステージ部の側方に粉体が拡散することを防止し、粉体の使用量を低減できる。 Further, in the three-dimensional modeling apparatus, the first supply part opens and closes the first hole, and when supplying the powder, the first door opens and closes the first hole for a predetermined first time. The second supply part includes a second door that opens and closes the second hole, and opens and closes the second hole for a predetermined second time when supplying the powder. The three supply parts open and close the third hole, and when supplying the powder, the third hole is opened for at least a third time longer than one of the first time and the second time. You may provide the 3rd door which closes after that. At the time of powder supply, the powder supply unit has more powder from the third hole opened for the third time than at least one of the first hole opened for the first time and the second hole opened for the second time. The body can be supplied to the supplied surface. Therefore, the three-dimensional modeling apparatus, when leveling the powder, it is difficult for the powder to protrude from both ends of the stage surface, so the powder is prevented from diffusing to the side of the stage portion with a simple configuration, The amount of powder used can be reduced.
 また、前記立体造形装置において、前記供給手段は、前記粉体を内部に収容する凹部が形成され、前記収容部内に収容する前記粉体のうち、前記凹部内に取り込んだ前記粉体を前記被供給面に供給する取込部をさらに備え、前記第一供給部は、前記取込部の前記一端側で、前記第一量の前記粉体を収容可能な収容量を有する第一凹部が形成された部位であり、前記第二供給部は、前記取込部の前記他端側で、前記第二量の前記粉体を収容可能な収容量を有する第二凹部が形成された部位であり、前記第三供給部は、前記取込部の前記第一供給部と前記第二供給部との間で、少なくとも前記第一量および前記第二量のうちの一方の量よりも多い前記第三量の前記粉体を収容可能な収容量を有する第三凹部が形成された部位であってもよい。第三供給部は、第三凹部内に、第一量および第二量のうち少なくとも一方よりも多い第三量の粉体を収容できるので、第一供給部および第二供給部のうち少なくとも一方よりも多くの粉体を被供給面に供給することができる。よって、立体造形装置は、粉体を均す場合において、ステージ面の両端部から粉体をはみ出させにくいので、簡易な構成で、ステージ部の側方に粉体が拡散することを防止し、粉体の使用量を低減できる。 Further, in the three-dimensional modeling apparatus, the supply unit includes a concave portion that accommodates the powder therein, and among the powders accommodated in the accommodating portion, the powder that has been taken into the concave portion is the object to be covered. The first supply unit is further provided with a first recess having a storage capacity capable of storing the first amount of the powder on the one end side of the capture unit. The second supply part is a part in which a second recess having a storage capacity capable of storing the second amount of the powder is formed on the other end side of the take-in part. The third supply part is larger than at least one of the first quantity and the second quantity between the first supply part and the second supply part of the intake part. The site | part in which the 3rd recessed part which has the accommodation capacity which can accommodate three quantities of said powder may be formed. Since the third supply unit can accommodate a third amount of powder larger than at least one of the first amount and the second amount in the third recess, at least one of the first supply unit and the second supply unit More powder can be supplied to the supply surface. Therefore, the three-dimensional modeling apparatus, when leveling the powder, it is difficult for the powder to protrude from both ends of the stage surface, so the powder is prevented from diffusing to the side of the stage portion with a simple configuration, The amount of powder used can be reduced.
立体造形装置1の外観を示す斜視図である。1 is a perspective view showing an appearance of a three-dimensional modeling apparatus 1. FIG. 造形台6付近の構成を示す斜視図である。It is a perspective view which shows the structure of modeling stand 6 vicinity. 供給機構16の平面図である。3 is a plan view of a supply mechanism 16. FIG. 立体造形装置1の電気的構成を示すブロック図である。3 is a block diagram showing an electrical configuration of the three-dimensional modeling apparatus 1. FIG. 造形台6付近を上方から見た図である。It is the figure which looked at the modeling stand 6 vicinity from upper direction. 平坦化ローラ28で粉体を均す様子を説明するための図である。It is a figure for demonstrating a mode that powder is equalized with the flattening roller. 供給機構116の平面図である。3 is a plan view of a supply mechanism 116. FIG. 粉体供給器214の斜視図である。It is a perspective view of the powder feeder 214. 粉体供給器314の斜視図である。It is a perspective view of powder feeder 314. 粉体供給器414の斜視図である。It is a perspective view of the powder feeder 414. 粉体供給器514の斜視図である。It is a perspective view of the powder feeder 514. 粉体供給器614の斜視図である。It is a perspective view of the powder feeder 614.
 以下、本発明の一実施形態について、図面を参照して説明する。なお、参照する図面は、本発明が採用し得る技術的特徴を説明するために用いられるものである。図面に記載する装置の構成、各種処理のフローチャート等は、それのみに限定する趣旨ではなく、単なる説明例である。以下の説明では、図1に示す、土台部2に対し、造形台6がレール3に沿って移動する方向を立体造形装置1の前後方向とし、レール3に対し操作パネル83が設けられた側を前側とする。また、土台部2に対し、吐出ヘッド21がガイドレール23に沿って移動する方向を立体造形装置1の左右方向とし、ガイドレール23に対し操作パネル83が設けられた側を右側とする。土台部2に対し、昇降ステージ9(図2参照)が昇降する方向を上下方向とし、昇降ステージ9のステージ面9Aに対し粉体供給器14が配置された側を上側とする。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. The drawings to be referred to are used for explaining technical features that can be adopted by the present invention. The configuration of the apparatus, the flowcharts of various processes, and the like described in the drawings are not intended to be limited to these, but are merely illustrative examples. In the following description, the direction in which the modeling table 6 moves along the rail 3 with respect to the base portion 2 shown in FIG. 1 is the front-rear direction of the three-dimensional modeling apparatus 1, and the side on which the operation panel 83 is provided with respect to the rail 3 Is the front side. The direction in which the ejection head 21 moves along the guide rail 23 with respect to the base portion 2 is the left-right direction of the three-dimensional modeling apparatus 1, and the side on which the operation panel 83 is provided with respect to the guide rail 23 is the right side. A direction in which the elevating stage 9 (see FIG. 2) moves up and down with respect to the base portion 2 is defined as an up and down direction, and a side on which the powder feeder 14 is disposed with respect to the stage surface 9A of the elevating stage 9 is defined as an upper side.
 図1,図2を参照し、立体造形装置1の構成について説明する。立体造形装置1は、造形データにしたがって、無色の造形液(無色造形液)および着色した造形液(カラー造形液)を吐出する吐出ヘッド21等を駆動し、立体造形物を造形する。立体造形装置1は、有線または無線によるローカル接続あるいはネットワーク等を介し、パーソナルコンピュータ(以下、「PC」という。)100(図4参照)から造形データを受信する。PC100は、物体の三次元形状および色を示す立体データに基づいて造形データを作成し、立体造形装置1に送信する。なお立体造形装置1は、造形データを他のデバイスから取得してもよい。また立体造形装置1は、物体の三次元形状および色を示す立体データをPC100から取得し、取得した立体データに基づいて造形データを作成してもよい。 The configuration of the three-dimensional modeling apparatus 1 will be described with reference to FIGS. The three-dimensional modeling apparatus 1 drives a discharge head 21 that discharges a colorless modeling liquid (colorless modeling liquid) and a colored modeling liquid (color modeling liquid) according to the modeling data to model a three-dimensional modeled object. The three-dimensional modeling apparatus 1 receives modeling data from a personal computer (hereinafter referred to as “PC”) 100 (see FIG. 4) via a wired or wireless local connection or a network. The PC 100 creates modeling data based on the three-dimensional data indicating the three-dimensional shape and color of the object, and transmits the modeling data to the three-dimensional modeling apparatus 1. Note that the three-dimensional modeling apparatus 1 may acquire modeling data from another device. The three-dimensional modeling apparatus 1 may acquire three-dimensional data indicating the three-dimensional shape and color of the object from the PC 100 and create modeling data based on the acquired three-dimensional data.
 図1に示すように、立体造形装置1は、土台部2、造形台6、粉体供給器14、平坦化ローラ28、吐出ヘッド21および吸引部13を主に備える。土台部2は、立体造形装置1の全体を支える土台である。造形台6は、昇降ステージ9を備える。立体造形装置1は、昇降ステージ9上で立体造形物を造形する。粉体供給器14は、造形台6の被供給面12A上に粉体(立体造形粉体)を供給する。平坦化ローラ28は、被供給面12A上に供給された粉体を昇降ステージ9のステージ面9A上へ移動させ、平坦に均して立体造形粉体の層(以下、「粉体層」という。)を形成する。吐出ヘッド21は、ステージ面9A上に形成された粉体層に、無色造形液およびカラー造形液を吐出する。粉体層は、吐出ヘッド21が吐出する造形液と混合することによって固化する。以下、粉体層に造形液を吐出して固化した層を、「造形層」という。吸引部13は、粉体層の形成において余る粉体(以下「、余剰粉体」という。)と、造形層の形成において固化せずに立体造形物の周辺に残存する余分な粉体(以下、「未硬化粉体」という。)を回収する。以下、各構成について説明する。 As shown in FIG. 1, the three-dimensional modeling apparatus 1 mainly includes a base unit 2, a modeling table 6, a powder feeder 14, a flattening roller 28, a discharge head 21, and a suction unit 13. The base part 2 is a base that supports the whole of the three-dimensional modeling apparatus 1. The modeling table 6 includes an elevating stage 9. The three-dimensional modeling apparatus 1 models a three-dimensional modeled object on the lifting stage 9. The powder supply unit 14 supplies powder (three-dimensional modeling powder) onto the supply surface 12A of the modeling table 6. The flattening roller 28 moves the powder supplied onto the supply surface 12A onto the stage surface 9A of the elevating stage 9 and leveles it evenly (hereinafter referred to as “powder layer”). .). The discharge head 21 discharges the colorless modeling liquid and the color modeling liquid onto the powder layer formed on the stage surface 9A. The powder layer is solidified by mixing with the modeling liquid discharged from the discharge head 21. Hereinafter, the layer formed by discharging the modeling liquid onto the powder layer and solidifying is referred to as a “modeling layer”. The suction part 13 includes a powder remaining in the formation of the powder layer (hereinafter referred to as “excess powder”) and an extra powder remaining in the periphery of the three-dimensional structure without being solidified in the formation of the modeling layer (hereinafter referred to as “powder”). , "Uncured powder"). Each configuration will be described below.
 土台部2は、上下方向を厚み方向とし、左右方向を長手方向とする矩形板状であり、立体造形装置1の全体を支える。土台部2は、左右方向の両端に、それぞれ上方へ向けて立設する2つの支持部35,36を備える。左側の支持部35は、内部に、タンク31と吸引部13(後述)を備える。右側の支持部36は、内部に、立体造形装置1を電気的に制御するCPU80(図4参照)を備える。支持部36は、前面に、作業者からの操作入力を受け付ける入力部、および作業者への指示等を表示する表示部を有する操作パネル83を備える。土台部2は、支持部35と支持部36の間に、左右に平行に並んで前後方向に延びる2本のレール3を備える。2本のレール3は、土台部2の前側端部に設けた前固定部4と、後側端部に設けた後固定部(図示略)との間に架かる。前固定部4と後固定部は、レール3を土台部2の上面から所定の高さに固定する。2本のレール3は、造形台6を支持し、前後方向への移動を案内する。 The base part 2 is a rectangular plate having a vertical direction as a thickness direction and a horizontal direction as a longitudinal direction, and supports the entire three-dimensional modeling apparatus 1. The base part 2 is provided with two support parts 35 and 36 that are erected upward at both ends in the left-right direction. The left support part 35 includes a tank 31 and a suction part 13 (described later) inside. The right support portion 36 includes a CPU 80 (see FIG. 4) that electrically controls the three-dimensional modeling apparatus 1 inside. The support unit 36 includes, on the front surface, an operation panel 83 having an input unit that receives an operation input from an operator and a display unit that displays an instruction to the operator. The base portion 2 includes two rails 3 extending in the front-rear direction so as to be parallel to the left and right between the support portion 35 and the support portion 36. The two rails 3 are bridged between a front fixing portion 4 provided at the front end portion of the base portion 2 and a rear fixing portion (not shown) provided at the rear end portion. The front fixing part 4 and the rear fixing part fix the rail 3 to a predetermined height from the upper surface of the base part 2. The two rails 3 support the modeling table 6 and guide the movement in the front-rear direction.
 造形台6は、支持部35と支持部36の間に配置される。造形台6は、基部7、造形部8、被供給部12、回収部11を有する。基部7は、造形部8、被供給部12および回収部11を支える略直方体形状の台座である。基部7は、左右に並び、前後方向に貫通する2つの貫通穴(図示略)を有する。土台部2の2本のレール3は、基部7の貫通穴に挿通される。土台部2は、レール3の後端部に台移動モータ43(図4参照)を備える。造形台6は、台移動モータ43の動力によって、2本のレール3に沿って前後方向に移動する。粉体供給器14、平坦化ローラ28および吐出ヘッド21は、造形台6に対して相対的に前後方向へ移動する。 The modeling table 6 is disposed between the support part 35 and the support part 36. The modeling table 6 includes a base part 7, a modeling part 8, a supplied part 12, and a recovery part 11. The base portion 7 is a substantially rectangular parallelepiped base that supports the modeling portion 8, the supplied portion 12, and the recovery portion 11. The base 7 has two through holes (not shown) that are arranged side by side and penetrate in the front-rear direction. The two rails 3 of the base part 2 are inserted through the through holes of the base part 7. The base unit 2 includes a table moving motor 43 (see FIG. 4) at the rear end of the rail 3. The modeling table 6 is moved in the front-rear direction along the two rails 3 by the power of the table moving motor 43. The powder feeder 14, the flattening roller 28, and the discharge head 21 move in the front-rear direction relative to the modeling table 6.
 図2に示すように、造形部8は、立体造形物を形成する直方体形状の部位である。造形部8は、上面中央に、平面視略矩形状の凹部32を開口する。造形部8は、凹部32内に、昇降ステージ9、昇降機構37およびステージ昇降モータ38を備える。昇降機構37は、ステージ昇降モータ38の動力によって凹部32内で昇降ステージ9を上下に昇降する。昇降ステージ9は、立体造形装置1が立体造形物を造形する台であり、平面視略長方形(例えば100mm×100mm)の板体である。昇降ステージ9の大きさは、凹部32の開口と略同じである。凹部32内で、昇降ステージ9の上面であるステージ面9Aは、水平に保たれる。造形部8は、左側面に、凹部32内で昇降ステージ9の下方の空間から未硬化粉体を、支持部35に設けた吸引部13(図1参照)に導く吸引ホース10(図1参照)に接続する。 As shown in FIG. 2, the modeling part 8 is a rectangular parallelepiped part which forms a three-dimensional molded item. The modeling portion 8 opens a concave portion 32 having a substantially rectangular shape in plan view at the center of the upper surface. The modeling unit 8 includes a lift stage 9, a lift mechanism 37, and a stage lift motor 38 in the recess 32. The elevating mechanism 37 moves the elevating stage 9 up and down in the recess 32 by the power of the stage elevating motor 38. The elevating stage 9 is a table on which the three-dimensional modeling apparatus 1 models a three-dimensional model, and is a plate body having a substantially rectangular shape (for example, 100 mm × 100 mm) in plan view. The size of the elevating stage 9 is substantially the same as the opening of the recess 32. Within the recess 32, the stage surface 9A which is the upper surface of the elevating stage 9 is kept horizontal. The modeling unit 8 has a suction hose 10 (see FIG. 1) that guides uncured powder from the space below the elevating stage 9 in the recess 32 to the suction unit 13 (see FIG. 1) provided in the support unit 35 on the left side. ).
 被供給部12は、造形部8の前面側上端部から前方へ向けて板状に突出する部位である。被供給部12の上面は、粉体供給器14から粉体が供給される被供給面12Aであり、水平に保たれる。被供給面12Aに供給される粉体は、造形時に、平坦化ローラ28によって昇降ステージ9上に運ばれる。回収部11は、造形部8の後端側に接続する部位であり、上面に、平面視矩形の凹部である粉体落下口11Aを開口する。平坦化ローラ28は、昇降ステージ9上での粉体層の形成において余った余剰粉体を、粉体落下口11Aに落とす。粉体落下口11Aは、底部が造形部8の凹部32内で昇降ステージ9の下方の部位に接続する。 The supplied part 12 is a part protruding in a plate shape from the upper end on the front side of the modeling part 8 toward the front. The upper surface of the supplied portion 12 is a supplied surface 12A to which the powder is supplied from the powder supplier 14 and is kept horizontal. The powder supplied to the supply surface 12A is carried onto the elevating stage 9 by the flattening roller 28 during modeling. The collection unit 11 is a part connected to the rear end side of the modeling unit 8, and opens a powder dropping port 11 </ b> A that is a concave portion having a rectangular shape in plan view on the upper surface. The flattening roller 28 drops excess powder remaining in the formation of the powder layer on the elevating stage 9 to the powder dropping port 11A. The bottom of the powder dropping port 11 </ b> A is connected to a portion below the elevating stage 9 in the recess 32 of the modeling unit 8.
 立体造形装置1は、昇降範囲の上部から昇降ステージ9を徐々に下降させながら立体造形物を造形する。昇降ステージ9は、上部ステージおよび下部ステージ(図示略)を備える。上部ステージおよび下部ステージは、略同一形状の板状部材であり、水平に配置される。上部ステージおよび下部ステージは、それぞれ、厚み方向に貫通する複数の孔(図1参照)を備える。立体造形装置1は、造形時に、上部ステージの孔の位置と下部ステージの孔の位置を、平面視において重複しない位置にずらして配置する。昇降ステージ9が静止している状態では、粉体は、ステージ面9A上に堆積する。立体造形装置1は、造形後に、上部ステージの孔の位置と下部ステージの孔の位置を、平面視において重複する位置に合わせて配置する。造形層の形成において固化しなかった未硬化粉体は、上部ステージおよび下部ステージの孔を通って凹部32内下方に落下する。凹部32内に溜まった未硬化粉体と余剰粉体は、吸引ホース10を通じて吸引部13(図1参照)に吸引される。 The three-dimensional modeling apparatus 1 forms a three-dimensional modeled object while gradually lowering the lifting / lowering stage 9 from the upper part of the lifting / lowering range. The elevating stage 9 includes an upper stage and a lower stage (not shown). The upper stage and the lower stage are plate members having substantially the same shape, and are arranged horizontally. Each of the upper stage and the lower stage includes a plurality of holes (see FIG. 1) penetrating in the thickness direction. The three-dimensional modeling apparatus 1 arranges the position of the hole of the upper stage and the position of the hole of the lower stage so as not to overlap in plan view during modeling. In the state where the elevating stage 9 is stationary, the powder is deposited on the stage surface 9A. The three-dimensional modeling apparatus 1 arranges the position of the hole of the upper stage and the position of the hole of the lower stage in accordance with the overlapping position in plan view after modeling. The uncured powder that has not solidified in the formation of the modeling layer falls down in the recess 32 through the holes of the upper stage and the lower stage. Uncured powder and excess powder accumulated in the recess 32 are sucked into the suction portion 13 (see FIG. 1) through the suction hose 10.
 粉体供給器14は、造形台6の上面よりも上方の位置に固定される。粉体供給器14は、収容部15と供給機構16を備える。収容部15は、平面視、左右方向に長い略矩形形状で、上下方向に延び、上端および下端を開放する筒体である。収容部15の左右方向の長さは、昇降ステージ9の左右方向の長さと略同じである。収容部15の下部は、前後方向の幅が等幅の筒状に形成される。収容部15の下部上端から上部にかけての部分は、上方へ向けて徐々に幅が広がるテーパ状に形成される。収容部15は、内部に粉体を収容する。粉体は、例えば周知の石膏粉体である。石膏は焼石膏とすることが好ましい。また、粉体の粒子径は10μm~500μmとすることが好ましい。 The powder feeder 14 is fixed at a position above the upper surface of the modeling table 6. The powder feeder 14 includes a storage unit 15 and a supply mechanism 16. The accommodating portion 15 is a cylindrical body that is substantially rectangular in a plan view and is long in the left-right direction, extends in the up-down direction, and opens the upper end and the lower end. The length of the storage portion 15 in the left-right direction is substantially the same as the length of the lifting stage 9 in the left-right direction. The lower part of the accommodating part 15 is formed in a cylindrical shape having a uniform width in the front-rear direction. A portion from the lower upper end to the upper portion of the accommodating portion 15 is formed in a tapered shape in which the width gradually increases upward. The accommodating part 15 accommodates powder inside. The powder is, for example, a well-known gypsum powder. The gypsum is preferably calcined gypsum. The particle diameter of the powder is preferably 10 μm to 500 μm.
 供給機構16は、収容部15の下部に設けられる。供給機構16は、収容部15内の粉体を外部に排出する機構である。粉体供給時、造形台6の被供給面12Aは、粉体供給器14の下方に配置される。供給機構16は、粉体を収容部15内から被供給面12A上に供給する。なお、供給機構16の詳細については後述する。 The supply mechanism 16 is provided in the lower part of the accommodating part 15. The supply mechanism 16 is a mechanism for discharging the powder in the storage unit 15 to the outside. At the time of powder supply, the supply surface 12 </ b> A of the modeling table 6 is disposed below the powder supplier 14. The supply mechanism 16 supplies the powder from the accommodating portion 15 onto the supply surface 12A. The details of the supply mechanism 16 will be described later.
 平坦化ローラ28は、造形台6の被供給面12Aに供給された粉体を昇降ステージ9上に移動し、且つ平坦化して、粉体層を形成する。図1,図2に示すように、平坦化ローラ28は、粉体供給器14の前側に配置され、昇降ステージ9の上面と平行な状態(つまり、水平な状態)で、造形台6の移動方向(前後方向)と交差する方向(左右方向)に延びる。平坦化ローラ28の直径は、例えば12mmである。平坦化ローラ28の回転軸29は、左右の支持部35,36間に架け渡される。回転軸29は、ローラ回転モータ45(図4参照)に接続され、ローラ回転モータ45の駆動によって、右側面視、反時計回りの方向に回転する。粉体層を形成する場合、立体造形装置1は、被供給面12Aを粉体供給器14の下方に配置して粉体を供給した後、平坦化ローラ28を回転させながら、造形台6を後方から前方へ移動する。平坦化ローラ28は造形台6に対する相対的な後方側へ向けて移動し、粉体を被供給部12から昇降ステージ9上に運び、昇降ステージ9上で平坦化する。平坦化ローラ28が粉体を均す場合の回転速度は、例えば、1分あたり60~1800回転であり、相対的な移動速度は、例えば、1~200mm/sである。また、平坦化ローラ28は、造形台6の前方への移動によって、余剰粉体を昇降ステージ9から回収部11へ運び、粉体落下口11Aに落下させる。 The flattening roller 28 moves the powder supplied to the supply surface 12A of the modeling table 6 onto the lifting stage 9 and flattens it to form a powder layer. As shown in FIGS. 1 and 2, the flattening roller 28 is arranged on the front side of the powder feeder 14, and moves the modeling table 6 in a state parallel to the upper surface of the elevating stage 9 (that is, in a horizontal state). It extends in the direction (left-right direction) intersecting the direction (front-rear direction). The diameter of the flattening roller 28 is 12 mm, for example. The rotating shaft 29 of the flattening roller 28 is bridged between the left and right support portions 35 and 36. The rotation shaft 29 is connected to a roller rotation motor 45 (see FIG. 4), and rotates in the counterclockwise direction when viewed from the right side when the roller rotation motor 45 is driven. In the case of forming a powder layer, the three-dimensional modeling apparatus 1 disposes the modeling table 6 while rotating the flattening roller 28 after supplying the powder by supplying the supplied surface 12A below the powder supplier 14. Move from the back to the front. The flattening roller 28 moves toward the rear side relative to the modeling table 6, carries the powder from the supplied portion 12 onto the lift stage 9, and flattens on the lift stage 9. The rotation speed when the flattening roller 28 levels the powder is, for example, 60 to 1800 rotations per minute, and the relative movement speed is, for example, 1 to 200 mm / s. Further, the flattening roller 28 carries the excess powder from the ascending / descending stage 9 to the collection unit 11 by the movement of the modeling table 6 forward, and drops it to the powder dropping port 11A.
 粉体供給器14は、収容部15の前面に板状のブレード20を有する。ブレード20は、収容部15前面下部の壁面から前方斜め下方へ延び、平坦化ローラ28の後面側に隙間無く接触する。ブレード20は、平坦化ローラ28に付着した粉体を除去する。また、ブレード20は、平坦化ローラ28後面側の粉体が平坦化ローラ28を乗り越えて、均し終えた粉体層上に落ちることを防止する。 The powder feeder 14 has a plate-like blade 20 on the front surface of the accommodating portion 15. The blade 20 extends obliquely downward from the wall surface at the lower front surface of the housing portion 15 and contacts the rear surface side of the flattening roller 28 without a gap. The blade 20 removes the powder adhering to the flattening roller 28. Further, the blade 20 prevents the powder on the rear surface side of the flattening roller 28 from getting over the flattening roller 28 and falling onto the finished powder layer.
 吐出ヘッド21は、昇降ステージ9上に形成された粉体層に、造形液(無色造形液およびカラー造形液)を吐出する。吐出ヘッド21は例えばピエゾ方式で造形液を下方に吐出可能なインクジェットヘッドである。粉体層は、吐出ヘッド21が吐出する造形液と混合することによって固化する。カラー造形液は、無色造形液をあらかじめインクで着色した造形液であり、粉体層を固化し、且つ着色できる。なお無色造形液は、カラー造形液よりも粉体層を良好に固化させることができる。 The discharge head 21 discharges modeling liquid (colorless modeling liquid and color modeling liquid) to the powder layer formed on the lift stage 9. The discharge head 21 is an inkjet head that can discharge a modeling liquid downward by, for example, a piezo method. The powder layer is solidified by mixing with the modeling liquid discharged from the discharge head 21. The color modeling liquid is a modeling liquid obtained by previously coloring a colorless modeling liquid with ink, and can solidify and color the powder layer. The colorless modeling liquid can solidify the powder layer better than the color modeling liquid.
 吐出ヘッド21は、下面に、造形液を吐出するノズルを各色ごとに前後方向に沿って並べた複数のノズル列(図示略)を有する。複数のノズル列は、それぞれ、シアン(C)、マゼンタ(M)、イエロー(Y)およびブラック(K)に着色したカラー造形液と、無色造形液を吐出する。なお、吐出ヘッド21は、単色の造形液を吐出するノズル列を1列以上有する構成であってもよい。図1に示すように、立体造形装置1は、支持部35内上部に、造形液を貯蔵するタンク31を備える。タンク31は、複数のチューブからなる接続管(図示略)で吐出ヘッド21に接続し、接続管を通じて吐出ヘッド21に造形液を供給する。接続管は、例えば、C,M,Y,K各色のカラー造形液と無色造形液を輸送する5本のチューブである。造形時、吐出ヘッド21は、平坦化ローラ28が平坦化した粉体層の上面に、造形液を吐出する。 The discharge head 21 has a plurality of nozzle rows (not shown) in which nozzles for discharging the modeling liquid are arranged on the lower surface along the front-rear direction for each color. Each of the plurality of nozzle arrays ejects a color modeling liquid colored cyan (C), magenta (M), yellow (Y), and black (K), and a colorless modeling liquid. The ejection head 21 may have a configuration having one or more nozzle rows that eject a monochromatic modeling liquid. As shown in FIG. 1, the three-dimensional modeling apparatus 1 includes a tank 31 that stores a modeling liquid in an upper part of the support portion 35. The tank 31 is connected to the discharge head 21 by a connection pipe (not shown) including a plurality of tubes, and supplies the modeling liquid to the discharge head 21 through the connection pipe. The connecting pipes are, for example, five tubes that transport the color modeling liquid and the colorless modeling liquid for each color of C, M, Y, and K. At the time of modeling, the discharge head 21 discharges the modeling liquid onto the upper surface of the powder layer flattened by the flattening roller 28.
 立体造形装置1は、造形台6の上方、且つ平坦化ローラ28の前方に、吐出ヘッド21の左右方向の移動を案内するガイドレール23を備える。ガイドレール23は、左右の支持部35,36間に架け渡される。吐出ヘッド21は、ガイドレール23に取り付けられ、ガイドレール23に沿って左右方向に移動できる。支持部35は、吐出ヘッド21を移動させるためのヘッド移動モータ44(図4参照)を備える。ヘッド移動モータ44は、ガイドレール23に沿って設けたキャリッジベルト(図示略)を動かし、吐出ヘッド21を左右方向に移動する。 The three-dimensional modeling apparatus 1 includes a guide rail 23 that guides the movement of the ejection head 21 in the left-right direction above the modeling table 6 and in front of the flattening roller 28. The guide rail 23 is bridged between the left and right support portions 35 and 36. The discharge head 21 is attached to the guide rail 23 and can move in the left-right direction along the guide rail 23. The support unit 35 includes a head moving motor 44 (see FIG. 4) for moving the ejection head 21. The head moving motor 44 moves a carriage belt (not shown) provided along the guide rail 23 to move the ejection head 21 in the left-right direction.
 吸引部13は、支持部35に設けられる。吸引部13は、造形台6内の未硬化粉体を、吸引ホース10を介して吸引するポンプ(図示略)を備える。吸引ホース10は、造形台6の前後方向への移動に合わせて自在に曲がる。 The suction part 13 is provided in the support part 35. The suction unit 13 includes a pump (not shown) that sucks uncured powder in the modeling table 6 through the suction hose 10. The suction hose 10 bends freely according to the movement of the modeling table 6 in the front-rear direction.
 次に、図2,図3を参照し、粉体供給器14の供給機構16について説明する。前述したように、供給機構16は、収容部15の下部に設けられ、収容部15内の粉体を外部に排出する機構である。供給機構16は、供給板17、弁体18および粉体供給モータ19を備える。供給板17は、収容部15下部の底部に設けられ、収容部15の下端を蓋する。供給板17は、粉体が通過する複数の供給孔70を開口する。弁体18は、供給板17の面に沿ってスライド移動する板体であり、供給孔70を開閉する。粉体供給モータ19は、回転軸にギアを設け、例えば、ラックアンドピニオン型のギア機構(図示略)によって弁体18を移動する。粉体供給時に、立体造形装置1のCPU80(図4参照)は、粉体供給モータ19の駆動を制御し、予め設定された所定時間、供給孔70を開放する。 Next, the supply mechanism 16 of the powder supplier 14 will be described with reference to FIGS. As described above, the supply mechanism 16 is a mechanism that is provided in the lower portion of the storage unit 15 and discharges the powder in the storage unit 15 to the outside. The supply mechanism 16 includes a supply plate 17, a valve body 18, and a powder supply motor 19. The supply plate 17 is provided at the bottom of the lower portion of the housing portion 15 and covers the lower end of the housing portion 15. The supply plate 17 opens a plurality of supply holes 70 through which the powder passes. The valve body 18 is a plate body that slides along the surface of the supply plate 17 and opens and closes the supply hole 70. The powder supply motor 19 is provided with a gear on a rotating shaft, and moves the valve body 18 by, for example, a rack and pinion type gear mechanism (not shown). At the time of powder supply, the CPU 80 (see FIG. 4) of the three-dimensional modeling apparatus 1 controls the driving of the powder supply motor 19 and opens the supply hole 70 for a predetermined time set in advance.
 図3に示すように、上記の供給板17は、左右方向に長く延び、複数の供給孔70が開口する板体である。供給孔70は、例えば、左右方向に長いスリット状に形成される。1つの供給孔70の大きさ(開口面積)は、他の供給孔70の大きさと同じである。なお、図3では、説明の便宜上、供給孔70の大きさを実際よりも大きく図示している。1つの供給孔70の大きさは、一例として、左右方向の最大長さが3mmであり、前後方向の最大長さが1mmである。ここで、供給板17を左右方向に3等分し、左端側の左端部17Aと、右端側の右端部17Bと、左端部17Aおよび右端部17B間の中間部17Cとに部位分けした場合を考える。供給孔70のうち、左端部17Aに設けられた供給孔70と、右端部17Bに設けられた供給孔70を、それぞれ、供給孔71,72とし、中間部17Cに設けられた供給孔70を、供給孔73とする。また、供給機構16において、供給板17の左端部17Aおよび右端部17Bに対応し、供給孔71,72を介して粉体を供給する部位をそれぞれ供給部51,52とする。同様に、供給機構16において、供給板17の中間部17Cに対応し、供給孔73を介して粉体を供給する部位を、供給部53とする。 As shown in FIG. 3, the supply plate 17 is a plate that extends in the left-right direction and has a plurality of supply holes 70 opened. The supply hole 70 is formed in a slit shape that is long in the left-right direction, for example. The size (opening area) of one supply hole 70 is the same as the size of the other supply holes 70. In FIG. 3, for convenience of explanation, the size of the supply hole 70 is shown larger than the actual size. As for the size of one supply hole 70, for example, the maximum length in the left-right direction is 3 mm, and the maximum length in the front-rear direction is 1 mm. Here, the supply plate 17 is divided into three equal parts in the left-right direction and divided into a left end part 17A on the left end side, a right end part 17B on the right end side, and an intermediate part 17C between the left end part 17A and the right end part 17B. Think. Of the supply holes 70, the supply hole 70 provided in the left end portion 17A and the supply hole 70 provided in the right end portion 17B are referred to as supply holes 71 and 72, respectively, and the supply hole 70 provided in the intermediate portion 17C is used as the supply hole 70. The supply hole 73 is used. Further, in the supply mechanism 16, portions corresponding to the left end portion 17 </ b> A and the right end portion 17 </ b> B of the supply plate 17 and supplying powder through the supply holes 71 and 72 are referred to as supply portions 51 and 52, respectively. Similarly, in the supply mechanism 16, a part that corresponds to the intermediate part 17 </ b> C of the supply plate 17 and supplies powder through the supply hole 73 is referred to as a supply part 53.
 本実施形態において、左端側の供給部51が備える供給孔71の数は、右端側の供給部52が備える供給孔72の数と同じである。一例として、供給部51,52は、それぞれ3つの供給孔71,72を備える。また、供給部53が備える供給孔73の数は、供給部51が備える供給孔71の数よりも多く、同様に、供給部52が備える供給孔72の数よりも多い。一例として、供給部53は、6つの供給孔73を備える。つまり、供給部53が備える複数の供給孔73の開口面積の合計面積は、供給部51が備える複数の供給孔71の開口面積の合計面積よりも大きく、同様に、供給部52が備える複数の供給孔72の開口面積の合計面積よりも大きい。言い換えると、供給部53において供給孔73の開口が占める大きさは、供給部51において供給孔71の開口が占める大きさよりも大きく、同様に、供給部52において供給孔72の開口が占める大きさよりも大きい。さらに言い換えると、弁体18が供給孔70を所定時間開放する間に、供給部53が複数の供給孔73を介して供給する粉体の量は、左端側の供給部51が複数の供給孔71を介して供給する粉体の量よりも多い。同様に、弁体18が供給孔70を所定時間開放する間に、供給部53が供給する粉体の量は、右端側の供給部52が複数の供給孔72を介して供給する粉体の量よりも多い。すなわち、1層の粉体層を形成するための1回の粉体の供給において、供給部53が供給する粉体の量(第三量)は、供給部51,52のそれぞれが供給する粉体の量(第一量,第二量)よりも多い。なお、弁体18が供給孔70を開放する所定時間は、例えば、15秒である。供給部53が1回の粉体の供給において供給する粉体の量である第三量は、例えば、0.8gである。供給部51,52が1回の粉体の供給においてそれぞれ供給する粉体の量である第一量、第二量は、例えば、0.4gである。 In the present embodiment, the number of supply holes 71 provided in the supply unit 51 on the left end side is the same as the number of supply holes 72 provided in the supply unit 52 on the right end side. As an example, the supply units 51 and 52 include three supply holes 71 and 72, respectively. Further, the number of supply holes 73 included in the supply unit 53 is larger than the number of supply holes 71 included in the supply unit 51, and similarly, the number of supply holes 72 included in the supply unit 52 is larger. As an example, the supply unit 53 includes six supply holes 73. That is, the total area of the opening areas of the plurality of supply holes 73 included in the supply unit 53 is larger than the total area of the opening areas of the plurality of supply holes 71 included in the supply part 51. It is larger than the total area of the opening areas of the supply holes 72. In other words, the size occupied by the opening of the supply hole 73 in the supply portion 53 is larger than the size occupied by the opening of the supply hole 71 in the supply portion 51, and similarly, the size occupied by the opening of the supply hole 72 in the supply portion 52. Is also big. Furthermore, in other words, while the valve body 18 opens the supply hole 70 for a predetermined time, the amount of the powder supplied by the supply unit 53 via the plurality of supply holes 73 is the same as that of the supply unit 51 on the left end side. More than the amount of powder supplied via 71. Similarly, while the valve element 18 opens the supply hole 70 for a predetermined time, the amount of powder supplied by the supply unit 53 is the amount of powder supplied by the right end supply unit 52 via the plurality of supply holes 72. More than the amount. That is, in the single supply of powder for forming one powder layer, the amount of powder supplied by the supply unit 53 (third amount) is the powder supplied by the supply units 51 and 52, respectively. More than the amount of the body (first amount, second amount). The predetermined time for the valve body 18 to open the supply hole 70 is, for example, 15 seconds. The third amount, which is the amount of powder supplied by the supply unit 53 in one supply of powder, is, for example, 0.8 g. The first amount and the second amount, which are amounts of powder respectively supplied by the supply units 51 and 52 in one supply of powder, are, for example, 0.4 g.
 次に、図4を参照し、立体造形装置1の電気的な構成について説明する。立体造形装置1は、立体造形装置1の制御を司るCPU80を備える。CPU80は、バス89を介し、RAM81、ROM82、操作パネル83、外部通信インターフェイス(以下、「I/F」と略す。)85、モータ駆動部61,63,64,65,66、およびヘッド駆動部62と電気的に接続する。RAM81は、PC100から受信した造形データ等の各種データを一時的に記憶する。ROM82は、立体造形装置1の動作を制御するための制御プログラムおよび初期値等を記憶する。 Next, the electrical configuration of the three-dimensional modeling apparatus 1 will be described with reference to FIG. The three-dimensional modeling apparatus 1 includes a CPU 80 that controls the three-dimensional modeling apparatus 1. The CPU 80 is provided with a RAM 81, a ROM 82, an operation panel 83, an external communication interface (hereinafter abbreviated as “I / F”) 85, motor drive units 61, 63, 64, 65, 66, and a head drive unit via a bus 89. 62 is electrically connected. The RAM 81 temporarily stores various data such as modeling data received from the PC 100. The ROM 82 stores a control program and initial values for controlling the operation of the three-dimensional modeling apparatus 1.
 操作パネル83の入力部は、作業者からの操作入力を受け付ける。操作パネル83の表示部は、作業者への指示等を表示する。外部通信I/F85は、立体造形装置1をPC100等の外部機器に電気的に接続する。なお、立体造形装置1は、USBインターフェイス、インターネット等を介し、他のデバイス(例えば、USBメモリ、サーバ等)から各種データを取得することも可能である。モータ駆動部61,63~66は、CPU80の制御に従い、それぞれ、粉体供給モータ19、台移動モータ43、ヘッド移動モータ44、ローラ回転モータ45、ステージ昇降モータ38の動作を制御する。ヘッド駆動部62は吐出ヘッド21に電気的に接続し、各吐出チャンネルに設けられた圧電素子を駆動して、各ノズルから造形液を吐出する。 The input unit of the operation panel 83 receives an operation input from an operator. The display unit of the operation panel 83 displays instructions to the worker. The external communication I / F 85 electrically connects the three-dimensional modeling apparatus 1 to an external device such as the PC 100. Note that the three-dimensional modeling apparatus 1 can also acquire various data from other devices (for example, a USB memory, a server, etc.) via a USB interface, the Internet, or the like. The motor driving units 61 and 63 to 66 control operations of the powder supply motor 19, the table moving motor 43, the head moving motor 44, the roller rotating motor 45, and the stage elevating motor 38, respectively, according to the control of the CPU 80. The head driving unit 62 is electrically connected to the ejection head 21 and drives a piezoelectric element provided in each ejection channel to eject the modeling liquid from each nozzle.
 このような構造を有する本実施形態の立体造形装置1は、PC100から受信した造形データにしたがって、概略、以下のように立体造形物を造形する。図2に示すように、立体造形装置1のCPU80は、台移動モータ43の駆動を制御して造形台6を移動させ、粉体供給器14の下方に被供給部12の被供給面12Aを配置する。CPU80は、粉体供給モータ19の駆動を制御して弁体18を所定時間開放させ、収容部15内の粉体を被供給面12A上に供給する。造形時の粉体層の厚みは、例えば0.1mmである。CPU80は、1層分の粉体層の形成に必要な粉体の量として、例えば1.6g供給する。図5に示すように、供給機構16の供給部53は、供給部51,52よりも多くの量の粉体を造形台6の被供給面12Aに供給する。すなわち、被供給面12Aには、左右方向中間部に多くの量の粉体が供給され、両端部に、中間部よりも少ない量の粉体が供給される。 The three-dimensional modeling apparatus 1 of the present embodiment having such a structure models a three-dimensional modeled object roughly as follows according to the modeling data received from the PC 100. As shown in FIG. 2, the CPU 80 of the three-dimensional modeling apparatus 1 controls the drive of the table moving motor 43 to move the modeling table 6, and the supplied surface 12 </ b> A of the supplied part 12 is placed below the powder supplier 14. Deploy. The CPU 80 controls the drive of the powder supply motor 19 to open the valve body 18 for a predetermined time, and supplies the powder in the storage unit 15 onto the supply surface 12A. The thickness of the powder layer during modeling is, for example, 0.1 mm. The CPU 80 supplies 1.6 g, for example, as the amount of powder necessary for forming one powder layer. As shown in FIG. 5, the supply unit 53 of the supply mechanism 16 supplies a larger amount of powder than the supply units 51 and 52 to the supply surface 12 </ b> A of the modeling table 6. That is, a large amount of powder is supplied to the supply surface 12A in the intermediate portion in the left-right direction, and a smaller amount of powder is supplied to both ends than in the intermediate portion.
 なお、本実施形態では、1層分の粉体層の形成においてCPU80が供給機構16に供給させる粉体の量を、以下のように設定する。1層分の粉体層の形成に必要な粉体の体積は、100mm×100mm×0.1mm=1000mm3=1cm3である。また、石膏のかさ密度は、実測値で、略1.4g/cm3である。したがって、1層の粉体層の形成に、少なくとも1cm3×1.4g/cm3=1.4gの石膏が必要である。ここで、粉体層形成時に平坦化ローラ28が粉体を運搬する過程において、粉体は、舞ったり、昇降ステージ9の側方に流れ出たりして、粉体層の形成に寄与しないことがある。本実施形態では、粉体層の形成に寄与しない粉体の重量を考慮し、1層の粉体層の形成に要する石膏の重量を、1.6gに設定している。 In the present embodiment, the amount of powder that the CPU 80 supplies to the supply mechanism 16 in forming one powder layer is set as follows. The volume of the powder necessary for forming one powder layer is 100 mm × 100 mm × 0.1 mm = 1000 mm 3 = 1 cm 3 . The bulk density of gypsum is an actual measurement value of about 1.4 g / cm 3 . Therefore, at least 1 cm 3 × 1.4 g / cm 3 = 1.4 g of gypsum is required to form one powder layer. Here, in the process in which the flattening roller 28 conveys the powder during the formation of the powder layer, the powder may fly or flow to the side of the elevating stage 9 and may not contribute to the formation of the powder layer. is there. In the present embodiment, considering the weight of the powder that does not contribute to the formation of the powder layer, the weight of gypsum required for forming one powder layer is set to 1.6 g.
 CPU80は、ローラ回転モータ45の駆動を制御して平坦化ローラ28を回転させながら、台移動モータ43の駆動を制御して造形台6を移動させ、被供給面12A上の粉体を造形部8の昇降ステージ9上に運ぶ。図6に示すように、被供給面12Aの左右方向中間部に供給された粉体によって形成される山の高さは、両端部に供給された粉体の山の高さよりも高い。粉体は、造形台6に対して相対的に後方へ向けて移動する平坦化ローラ28よって押圧される。粉体の山は崩れ、粉体は、高く積もった側から低い側に流れる。すなわち粉体は、左右方向において、中央から両端側へ広がる。前後方向において、粉体は、造形台6に対する相対的な前方側から平坦化ローラ28に押され、相対的な後方側へ広がる。また、粉体は、後方側および左右両端側への落差による移動だけでなく、平坦化ローラ28の押圧によって後方側に位置する他の粉体上に乗り上げることで上方へも移動し、粉体の山を積み増す。上記のように、供給部53によって被供給面12Aの左右方向中間部に供給された粉体の量が、供給部51,52によって両端部に供給された粉体の量よりも多いので、中間部において積み増される粉体の山の高さは両端部よりも高い。積み上がった粉体は、平坦化ローラ28に押されて山を崩し、落差によって、昇降ステージ9上における相対的な後方側および左右両端側へさらに広がる。 The CPU 80 controls the driving of the roller rotation motor 45 to rotate the flattening roller 28 and controls the driving of the table moving motor 43 to move the modeling table 6 to move the powder on the supplied surface 12A to the modeling unit. It is carried on 8 lifting stages 9. As shown in FIG. 6, the height of the crest formed by the powder supplied to the intermediate portion in the left-right direction of the supply surface 12A is higher than the height of the crest of the powder supplied to both ends. The powder is pressed by the flattening roller 28 that moves backward relative to the modeling table 6. The pile of powder collapses and the powder flows from the high pile side to the low side. That is, the powder spreads from the center to both ends in the left-right direction. In the front-rear direction, the powder is pushed by the flattening roller 28 from the front side relative to the modeling table 6 and spreads to the rear side. In addition, the powder moves not only by the drop to the rear side and the left and right ends, but also moves upward by riding on another powder located on the rear side by the pressing of the flattening roller 28. More piles. As described above, the amount of powder supplied to the intermediate portion in the left-right direction of the supply surface 12A by the supply unit 53 is larger than the amount of powder supplied to both ends by the supply units 51 and 52. The height of the pile of powder accumulated in the part is higher than that of both ends. The accumulated powder is pushed by the flattening roller 28 to break the mountain, and further spreads to the relative rear side and the left and right end sides on the lifting stage 9 by the drop.
 CPU80は、平坦化ローラ28によってステージ面9A上で粉体を均して平坦化させ、粉体層を形成する。図5において、一点鎖線Eで示すように、粉体層の形成過程において、粉体は、造形台6に対する平坦化ローラ28の相対的な後方側への移動にしたがって、造形台6上で左右方向両側へ広がっていく。本実施形態では、上記のように、供給部51,52によって供給される左右方向両端部の粉体の量が、供給部53によって供給される中間部よりも少ない。故に、平坦化ローラ28が左右方向両端部において積み増す粉体の山の高さは、中間部よりも低い。粉体の山を平坦化ローラ28で均す場合、粉体は、供給時の山の高さが高いほど、左右方向に大きく広がる。発明者の行った試験によれば、例えば、山の高さを3mmとし、左右方向に20mmの範囲に広げて配置した粉体を、平坦化ローラ28で前後方向に200mm均した場合、粉体は、左右方向に約27mm広がった。一方、山の高さを6mmとし、同様に左右方向に20mmの範囲に広げて配置した粉体を平坦化ローラ28で前後方向に200mm均した場合、粉体は、左右方向に約32mm広がった。したがって、左右方向両端部において、平坦化ローラ28に押されて山を崩し、さらに左右両端側へ広がる粉体の量は、中間部と比べて少ない。よって、粉体全体でみた場合の粉体の左右方向両端側への広がりは、供給部51,52と供給部53とが同量の粉体を供給する場合と比べ、小さくなる。 CPU 80 equalizes and flattens the powder on the stage surface 9A by the flattening roller 28 to form a powder layer. In FIG. 5, as indicated by the alternate long and short dash line E, in the process of forming the powder layer, the powder is left and right on the modeling table 6 according to the movement of the flattening roller 28 relative to the modeling table 6 toward the rear side. It spreads in both directions. In the present embodiment, as described above, the amount of the powder at both ends in the left-right direction supplied by the supply units 51 and 52 is smaller than that of the intermediate portion supplied by the supply unit 53. Therefore, the height of the pile of powder that the flattening roller 28 accumulates at both ends in the left-right direction is lower than that of the intermediate portion. When leveling the crest of the powder with the flattening roller 28, the powder spreads more in the left-right direction as the crest height at the time of supply increases. According to the test conducted by the inventor, for example, when the height of a mountain is 3 mm and the powder arranged in a range of 20 mm in the left-right direction is leveled by 200 mm in the front-rear direction with the flattening roller 28, Spread about 27 mm in the left-right direction. On the other hand, when the height of the mountain is 6 mm and the powder arranged in the range of 20 mm in the left-right direction is averaged by 200 mm in the front-rear direction by the flattening roller 28, the powder spreads by about 32 mm in the left-right direction. . Therefore, the amount of powder that is pushed by the flattening roller 28 at the both ends in the left-right direction and breaks down the mountain and further spreads to the left and right ends is smaller than that in the middle portion. Therefore, the spread of the powder toward the both ends in the left-right direction when viewed as a whole of the powder is smaller than when the supply units 51 and 52 and the supply unit 53 supply the same amount of powder.
 ところで、中間部において粉体の山の高さを大きくするほど、粉体は、上記のように、平坦化時に左右方向へ大きく広がる。このため、中間部に供給する粉体の量をさらに多くし、両端部に供給する粉体の量をさらに少なくすれば、ステージ面9Aの側方から粉体がさらに漏れ出しにくくなることが考えられる。しかし、平坦化時に、粉体が左右方向に広がるよりも早く平坦化ローラ28がステージ面9A上で粉体を移動させ、ステージ面9Aの左右端部に十分に粉体が行き渡らなくなる可能性がある。故に、粉体の供給は、被供給面12Aの左右方向中間部だけでなく両端部にも行い、且つ、ステージ面9Aの左右端部に粉体が行き渡るように、平坦化ローラ28の駆動条件や大きさを考慮した上で、両端部よりも中間部に多くの粉体を供給することが好ましい。 By the way, as the height of the peak of the powder is increased in the intermediate portion, the powder spreads in the left-right direction when flattening as described above. For this reason, if the amount of powder supplied to the intermediate portion is further increased and the amount of powder supplied to both ends is further decreased, it is considered that the powder is more difficult to leak from the side of the stage surface 9A. It is done. However, at the time of flattening, there is a possibility that the flattening roller 28 moves the powder on the stage surface 9A faster than the powder spreads in the left-right direction, and the powder does not spread sufficiently to the left and right ends of the stage surface 9A. is there. Therefore, the powder is supplied not only to the intermediate portion in the left-right direction of the supply surface 12A but also to both ends, and the driving conditions of the flattening roller 28 so that the powder reaches the left and right ends of the stage surface 9A. In consideration of size and size, it is preferable to supply more powder to the intermediate portion than to the both end portions.
 CPU80は、平坦化ローラ28による粉体層の形成を行いながら、ヘッド移動モータ44および吐出ヘッド21の駆動を制御し、粉体層に造形液を吐出させる。粉体層で造形液が着滴した部分は固化して造形層を形成し、着滴しなかった部分は固化せずに未硬化粉体として残る。CPU80は、粉体層の形成において残った余剰粉体を平坦化ローラ28で昇降ステージ9上から押し出し、回収部11の粉体落下口11Aに落下させる。CPU80は、ステージ昇降モータ38の駆動を制御して昇降ステージ9を造形層1層分の厚み分下降させる。CPU80は、台移動モータ43の駆動制御によって粉体供給器14の下方に被供給面12Aが配置される位置に造形台6を移動させる。CPU80は、以上の動作を造形データにしたがって繰り返すことで、造形層を下層から上層へ向けて1層ずつ形成し、造形層を積層した立体造形物を造形する。 The CPU 80 controls the driving of the head moving motor 44 and the discharge head 21 while forming the powder layer by the flattening roller 28, and discharges the modeling liquid onto the powder layer. The portion where the modeling liquid is deposited on the powder layer is solidified to form a modeling layer, and the portion where the modeling liquid is not deposited is not solidified and remains as an uncured powder. The CPU 80 pushes the surplus powder remaining in the formation of the powder layer from the ascending / descending stage 9 by the flattening roller 28 and drops it onto the powder dropping port 11A of the collection unit 11. The CPU 80 controls the drive of the stage elevating motor 38 to lower the elevating stage 9 by the thickness of one modeling layer. The CPU 80 moves the modeling table 6 to a position where the supply surface 12 </ b> A is disposed below the powder supplier 14 by driving control of the table moving motor 43. CPU80 repeats the above operation | movement according to modeling data, forms a modeling layer one layer at a time from a lower layer to an upper layer, and models the three-dimensional molded item which laminated | stacked the modeling layer.
 以上説明したように、本実施形態の立体造形装置1において、粉体供給器14の左右方向両側の端部において、供給機構16の供給部51,52が供給する粉体の量(第一量,第二量)は、それぞれ中間部において供給部53が供給する量(第三量)よりも少ない。平坦化ローラ28が粉体をステージ面9Aに広げる際に、端部に供給された粉体は、中間部に供給された粉体と比べ、量が少ないので左右方向に広がりにくい。故に、立体造形装置1は、粉体を均す場合において、ステージ面9Aの両端部から粉体をはみ出させにくいので、昇降ステージ9の側方に粉体が拡散することを防止し、粉体の使用量を低減できる。なお、供給部53が供給する粉体の量が、少なくとも供給部51および供給部52のうちの一方が供給する粉体の量よりも多ければ、立体造形装置1は、ステージ面9Aの少なくとも一方の端部から粉体をはみ出させにくくでき、粉体の使用量低減において効果を奏することができる。 As described above, in the three-dimensional modeling apparatus 1 of the present embodiment, the amount of powder (first amount) supplied by the supply units 51 and 52 of the supply mechanism 16 at the left and right ends of the powder supplier 14. , Second amount) is smaller than the amount (third amount) supplied by the supply unit 53 in the intermediate portion. When the flattening roller 28 spreads the powder on the stage surface 9A, the amount of powder supplied to the end portion is smaller than that of the powder supplied to the intermediate portion, so it is difficult to spread in the left-right direction. Therefore, the three-dimensional modeling apparatus 1 prevents the powder from diffusing to the side of the ascending / descending stage 9 because it is difficult for the powder to protrude from both ends of the stage surface 9A when leveling the powder. Can be reduced. If the amount of the powder supplied by the supply unit 53 is at least larger than the amount of the powder supplied by one of the supply unit 51 and the supply unit 52, the three-dimensional modeling apparatus 1 will at least one of the stage surfaces 9A. It is possible to make it difficult for the powder to protrude from the end portion of the film, and to achieve an effect in reducing the amount of powder used.
 ところで、被供給面12Aの両端部に供給される粉体の量が中間部に供給される粉体の量よりも少ない場合、平坦化ローラ28が粉体をステージ面9Aに広げる際に、粉体は、ステージ面9Aの両端部に十分に行き渡らない可能性がある。しかし、平坦化ローラ28が粉体を均す過程において、平坦化ローラ28に押された粉体は山を盛り、頂点側から崩れて低い側に流れる。このため、粉体は、ステージ面9Aの中間部側から両端部側に広がって伸ばされる。すなわち、被供給面12Aの中間部に供給された粉体の一部は、平坦化ローラ28の押圧によって両端部側に広げられ、被供給面12Aの両端部に供給された粉体に加えられて、ステージ面9Aの両端部で粉体層を形成する。故に、たとえ、被供給面12Aの両端部に供給される粉体の量が、ステージ面9Aの両端部における一層分の粉体層の形成に必要な粉体の量よりも少なくとも、被供給面12Aの中間部に供給された粉体の一部によって補うことができる。本実施形態の立体造形装置1は、被供給面12Aの中間部に両端部よりも多くの粉体を供給できるので、両端部と中間部に同量の粉体を供給する場合と比べ、ステージ面9A全体を確実に粉体で覆って粉体層を形成でき、且つ、粉体の使用量を少なくすることができる。 By the way, when the amount of powder supplied to both ends of the supplied surface 12A is smaller than the amount of powder supplied to the intermediate portion, when the flattening roller 28 spreads the powder on the stage surface 9A, the powder There is a possibility that the body does not sufficiently reach both ends of the stage surface 9A. However, in the process of leveling the powder by the flattening roller 28, the powder pushed by the flattening roller 28 is piled up and collapses from the apex side and flows to the lower side. For this reason, the powder spreads and extends from the intermediate portion side of the stage surface 9A to both end portions. That is, a part of the powder supplied to the intermediate portion of the supplied surface 12A is spread to both ends by the pressing of the flattening roller 28, and added to the powder supplied to both ends of the supplied surface 12A. Thus, a powder layer is formed at both ends of the stage surface 9A. Therefore, even if the amount of powder supplied to both ends of the surface to be supplied 12A is at least the amount of powder to be supplied to form a powder layer for one layer at both ends of the stage surface 9A. It can be supplemented by a part of the powder supplied to the intermediate part of 12A. Since the three-dimensional modeling apparatus 1 of this embodiment can supply more powder than the both ends to the intermediate portion of the supplied surface 12A, the stage is compared with the case where the same amount of powder is supplied to both ends and the intermediate portion. The entire surface 9A can be reliably covered with powder to form a powder layer, and the amount of powder used can be reduced.
 また、供給部51,52が供給孔71,72を介して供給する粉体の量(第一量,第二量)よりも多い量(第三量)の粉体を供給部53が供給するためには、供給部53は、供給孔71,72よりも多くの粉体が供給孔73を通過できるようにすればよい。粉体供給器14の供給機構16は、例えば、供給孔71,72よりも供給孔73を大きく形成したり、供給孔71,72よりも供給孔73の数を増やしたりするなど、簡易な構成で、供給孔71,72よりも供給孔73から多くの粉体を被供給面12Aに供給することが可能である。 Further, the supply unit 53 supplies a larger amount (third amount) of powder than the amount (first amount, second amount) of powder supplied by the supply units 51 and 52 through the supply holes 71 and 72. For this purpose, the supply unit 53 only needs to allow more powder than the supply holes 71 and 72 to pass through the supply hole 73. The supply mechanism 16 of the powder supplier 14 has a simple configuration such as forming the supply holes 73 larger than the supply holes 71 and 72 or increasing the number of supply holes 73 than the supply holes 71 and 72. Thus, it is possible to supply more powder from the supply hole 73 to the supply surface 12A than the supply holes 71 and 72.
 そして、供給板17の左右方向の中間部17Cに設けた供給孔73は、左端部17A,右端部17Bにそれぞれ設けた供給孔71,72よりも数が多い。すなわち、供給板17の中間部17Cにおいて供給孔73の開口が占める大きさの割合が、左端部17A,右端部17Bそれぞれにおいて供給孔71,72の開口が占める大きさの割合よりも大きい。故に、供給機構16は、供給孔71,72よりも供給孔73から多くの粉体を被供給面12Aに供給することができる。よって、立体造形装置1は、粉体を均す場合において、ステージ面9Aの両端部から粉体をはみ出させにくいので、簡易な構成で、昇降ステージ9の側方に粉体が拡散することを防止し、粉体の使用量を低減できる。なお、供給孔73の数が、少なくとも供給孔71および供給孔72のうちの一方の数よりも多ければ、立体造形装置1は、ステージ面9Aの少なくとも一方の端部から粉体をはみ出させにくくでき、粉体の使用量低減において効果を奏することができる。 The supply holes 73 provided in the intermediate portion 17C in the left-right direction of the supply plate 17 have a larger number than the supply holes 71 and 72 provided in the left end portion 17A and the right end portion 17B, respectively. That is, the ratio of the size occupied by the opening of the supply hole 73 in the intermediate portion 17C of the supply plate 17 is larger than the ratio of the size occupied by the openings of the supply holes 71 and 72 in the left end portion 17A and the right end portion 17B, respectively. Therefore, the supply mechanism 16 can supply more powder from the supply holes 73 than the supply holes 71 and 72 to the supply surface 12A. Therefore, when the three-dimensional modeling apparatus 1 leveles the powder, it is difficult for the powder to protrude from both ends of the stage surface 9A, so that the powder is diffused to the side of the lifting stage 9 with a simple configuration. And the amount of powder used can be reduced. If the number of supply holes 73 is at least larger than the number of one of the supply holes 71 and the supply holes 72, the three-dimensional modeling apparatus 1 hardly causes the powder to protrude from at least one end of the stage surface 9A. This can be effective in reducing the amount of powder used.
 なお、本発明は上記実施形態に限定されず、種々の変更が可能である。例えば、図7に示す、供給機構116のように、供給板117に開口する複数の供給孔170のうち、供給孔171,172の大きさ(開口面積)と、供給孔173の大きさとを異ならせてもよい。なお、図7では、説明の便宜上、供給孔170の大きさを実際よりも大きく図示している。この構成において、供給部153が備える供給孔173の開口面積は、供給部151が備える供給孔171の開口面積よりも大きく、同様に、供給部152が備える供給孔172の開口面積よりも大きい。一例として、供給孔173は、左右方向の最大長さが5mmであり、前後方向の最大長さが1mmである。また、供給孔171,172は、一例として、左右方向の最大長さが2mmであり、前後方向の最大長さが1mmである。故に、弁体18が供給孔170を所定時間開放する間に、供給部153が供給孔173を介して供給する粉体の量を、供給部151,152がそれぞれ供給孔171,172を介して供給する粉体の量よりも多くすることができる。すなわち、供給部153が供給する粉体の量を、供給部151,152のそれぞれが供給する粉体の量よりも多くすることができる。 In addition, this invention is not limited to the said embodiment, A various change is possible. For example, as in the supply mechanism 116 shown in FIG. 7, the size (opening area) of the supply holes 171 and 172 and the size of the supply hole 173 out of the plurality of supply holes 170 opening in the supply plate 117 are different. It may be allowed. In FIG. 7, for convenience of explanation, the size of the supply hole 170 is shown larger than the actual size. In this configuration, the opening area of the supply hole 173 included in the supply unit 153 is larger than the opening area of the supply hole 171 included in the supply unit 151, and is similarly larger than the opening area of the supply hole 172 included in the supply unit 152. As an example, the supply hole 173 has a maximum length in the left-right direction of 5 mm and a maximum length in the front-rear direction of 1 mm. Further, as an example, the supply holes 171 and 172 have a maximum length in the left-right direction of 2 mm and a maximum length in the front-rear direction of 1 mm. Therefore, while the valve body 18 opens the supply hole 170 for a predetermined time, the supply unit 153 supplies the amount of powder supplied through the supply hole 173, and the supply units 151 and 152 through the supply holes 171 and 172, respectively. The amount can be larger than the amount of powder to be supplied. That is, the amount of powder supplied by the supply unit 153 can be made larger than the amount of powder supplied by each of the supply units 151 and 152.
 このように、供給機構116の供給板117の左右方向中間部に設けた供給孔173は、両側の端部に設けた供給孔171,172よりも大きさが大きい。故に、供給板117は、供給孔171,172よりも供給孔173から多くの粉体を被供給面12Aに供給することができる。よって、立体造形装置1は、粉体を均す場合において、ステージ面9Aの両端部から粉体をはみ出させにくいので、簡易な構成で、昇降ステージ9の側方に粉体が拡散することを防止し、粉体の使用量を低減できる。なお、供給孔173の大きさが、少なくとも供給孔171および供給孔172のうちの一方の大きさよりも大きければ、立体造形装置1は、ステージ面9Aの少なくとも一方の端部から粉体をはみ出させにくくでき、粉体の使用量低減において効果を奏することができる。 Thus, the supply holes 173 provided in the intermediate portion in the left-right direction of the supply plate 117 of the supply mechanism 116 are larger in size than the supply holes 171 and 172 provided at the end portions on both sides. Therefore, the supply plate 117 can supply more powder from the supply holes 173 to the supply surface 12A than the supply holes 171 and 172. Therefore, when the three-dimensional modeling apparatus 1 leveles the powder, it is difficult for the powder to protrude from both ends of the stage surface 9A, so that the powder is diffused to the side of the lifting stage 9 with a simple configuration. And the amount of powder used can be reduced. If the size of the supply hole 173 is larger than at least one of the supply hole 171 and the supply hole 172, the three-dimensional modeling apparatus 1 causes the powder to protrude from at least one end of the stage surface 9A. It can be made difficult, and can be effective in reducing the amount of powder used.
 また、図8に示す、粉体供給器214の供給機構216のように、収容部215内の粉体を供給板217の供給孔270から押し出す押出ローラ241を備えてもよい。押出ローラ241は、例えば、供給板217の左右方向の長さと略同じ長さに延びる3本の棒状体を、左右方向に延びる軸体240の周囲に等間隔に配置し、軸体240と一体に固定した部材である。軸体240は、収容部215下部の側部に設ける粉体供給モータ219の回転軸に接続する。押出ローラ241が軸体240の周囲で回転する回転半径R1は、一例として、15mmである。なお、回転半径R1は、軸体240の軸心と直交する断面において、軸体240を中心に回転する押出ローラ241の軌跡に外接する円の半径である。供給板217は、同じ大きさ(開口面積)の複数の供給孔270を開口する。供給孔270は、供給板217の左端から右端にかけて、前後方向に対して斜め方向に整列する。例えば、右端側の供給部251が備える供給孔271は、供給板217の前後方向において後寄りの位置に設けられる。左端側の供給部252が備える供給孔272は、供給板217の前後方向において前寄りの位置に設けられる。供給部253が備える供給孔273は、供給板217の前後方向において中央寄りの位置に設けられる。 Further, as in the supply mechanism 216 of the powder supplier 214 shown in FIG. 8, an extrusion roller 241 that extrudes the powder in the container 215 from the supply hole 270 of the supply plate 217 may be provided. For example, the extruding roller 241 includes three rod-like bodies extending substantially the same length as the length of the supply plate 217 in the left-right direction, arranged at equal intervals around the shaft body 240 extending in the left-right direction, and integrated with the shaft body 240. It is the member fixed to. The shaft body 240 is connected to a rotating shaft of a powder supply motor 219 provided on a side portion below the housing portion 215. As an example, the radius of rotation R1 at which the extrusion roller 241 rotates around the shaft body 240 is 15 mm. The rotation radius R <b> 1 is a radius of a circle circumscribing the locus of the extrusion roller 241 that rotates about the shaft body 240 in a cross section orthogonal to the axis of the shaft body 240. The supply plate 217 opens a plurality of supply holes 270 having the same size (opening area). The supply holes 270 are aligned obliquely with respect to the front-rear direction from the left end to the right end of the supply plate 217. For example, the supply hole 271 provided in the supply unit 251 on the right end side is provided at a rearward position in the front-rear direction of the supply plate 217. The supply hole 272 provided in the supply unit 252 on the left end side is provided at a position closer to the front in the front-rear direction of the supply plate 217. The supply hole 273 provided in the supply unit 253 is provided at a position closer to the center in the front-rear direction of the supply plate 217.
 押出ローラ241は、粉体供給モータ219が軸体240を回転することによって、収容部215内の粉体を押出ローラ241の回転円に対して外向きに押圧し、供給板217に対して粉体を押しつける。ここで、図8の二点鎖線Aで囲う円内に、供給部252の左右方向と直交する断面を示す。同様に、二点鎖線Bで囲う円内に、供給部253の左右方向と直交する断面を示す。二点鎖線Bに示すように、供給孔273は、押出ローラ241を支える軸体240の直下の位置に開口する。一方、供給孔272は、軸体240の直下の位置から前方にずれた位置に開口する。粉体供給時、3本の押出ローラ241は、軸体240を軸にして軸体240の周囲を回転する。すなわち、押出ローラ241の外周面と供給孔273との最短距離L2は、押出ローラ241の外周面と供給孔272との最短距離L1よりも短い。一例として、L1の大きさは、押出ローラ241と供給孔272との位置が最も大きく離れたもので、3mmである。また、L2の大きさは、一例として、押出ローラ241と供給孔273との位置が最も近いもので、1mmである。なお、図8では、説明の便宜上、L1,L2の大きさを回転半径R1と比べて大きく図示している。また、供給部251は、供給部252と同様の構成であり、説明を省略する。 When the powder supply motor 219 rotates the shaft body 240, the extrusion roller 241 presses the powder in the housing portion 215 outwardly with respect to the rotation circle of the extrusion roller 241, and the powder is pressed against the supply plate 217. Press the body. Here, the cross section orthogonal to the left-right direction of the supply part 252 is shown in the circle | round | yen enclosed with the dashed-two dotted line A of FIG. Similarly, a cross section orthogonal to the left-right direction of the supply unit 253 is shown in a circle surrounded by a two-dot chain line B. As indicated by a two-dot chain line B, the supply hole 273 opens at a position immediately below the shaft body 240 that supports the extrusion roller 241. On the other hand, the supply hole 272 opens at a position shifted forward from a position immediately below the shaft body 240. When supplying powder, the three extrusion rollers 241 rotate around the shaft body 240 around the shaft body 240. That is, the shortest distance L2 between the outer peripheral surface of the extrusion roller 241 and the supply hole 273 is shorter than the shortest distance L1 between the outer peripheral surface of the extrusion roller 241 and the supply hole 272. As an example, the size of L1 is 3 mm, with the positions of the extrusion roller 241 and the supply hole 272 being the largest apart. Further, as an example, the size of L2 is 1 mm where the positions of the extrusion roller 241 and the supply hole 273 are the closest. In FIG. 8, for the convenience of explanation, the sizes of L1 and L2 are shown larger than the rotation radius R1. The supply unit 251 has the same configuration as the supply unit 252 and will not be described.
 粉体は、圧力を受けると圧縮されるため、押出ローラ241と供給孔270との間の距離が離れるほど、押出ローラ241が押出ローラ241の位置の粉体に与える押圧力が供給孔270の位置の粉体に伝わりにくい。故に、押出ローラ241の右端部241Bが供給孔272を介して粉体を押し出す場合の押圧力は、押出ローラ241の中間部241Cが供給孔273を介して粉体を押し出す場合の押圧力よりも小さい。同様に、押出ローラ241の左端部241Aが供給孔271を介して粉体を押し出す場合の押圧力は、押出ローラ241の中間部241Cが供給孔273を介して粉体を押し出す場合の押圧力よりも小さい。よって、粉体供給時に、供給部253が供給孔273を介して供給する粉体の量は、供給部251,252がそれぞれ供給孔271,272を介して供給する粉体の量よりも多い。すなわち、供給機構216は、供給部253が供給する粉体の量を、供給部251,252のそれぞれが供給する粉体の量よりも多くすることができる。 Since the powder is compressed when subjected to pressure, the pressing force applied to the powder at the position of the extrusion roller 241 by the extrusion roller 241 increases as the distance between the extrusion roller 241 and the supply hole 270 increases. Difficult to be transmitted to the powder at the position. Therefore, the pressing force when the right end portion 241B of the extrusion roller 241 pushes out the powder through the supply hole 272 is larger than the pressing force when the intermediate portion 241C of the extrusion roller 241 pushes out the powder through the supply hole 273. small. Similarly, the pressing force when the left end portion 241A of the extrusion roller 241 pushes out the powder through the supply hole 271 is greater than the pressing force when the intermediate portion 241C of the extrusion roller 241 pushes out the powder through the supply hole 273. Is also small. Therefore, the amount of powder supplied by the supply unit 253 through the supply hole 273 when the powder is supplied is larger than the amount of powder supplied by the supply units 251 and 252 through the supply holes 271 and 272, respectively. That is, the supply mechanism 216 can increase the amount of powder supplied by the supply unit 253 than the amount of powder supplied by each of the supply units 251 and 252.
 このように、供給部253の供給孔273は、供給部251,252の第一孔よりも、前後方向において押出ローラ241の軸体240に近い位置に配置される。すなわち、供給部253は、押出ローラ241の中間部241Cと供給孔273との最短距離L2が、供給部251,252の押出ローラ241の左端部241A,右端部241Bと供給孔271,272との最短距離L1よりも短い。故に、供給部253は供給部251,252よりも多くの粉体を被供給面12Aに供給することができる。よって、立体造形装置1は、粉体を均す場合において、ステージ面9Aの両端部から粉体をはみ出させにくいので、簡易な構成で、昇降ステージ9の側方に粉体が拡散することを防止し、粉体の使用量を低減できる。なお、押出ローラ241と供給孔273との最短距離が、少なくとも押出ローラ241と供給孔271との最短距離および押出ローラ241と供給孔272との最短距離のうちの一方の大きさよりも大きければ、立体造形装置1は、ステージ面9Aの少なくとも一方の端部から粉体をはみ出させにくくでき、粉体の使用量低減において効果を奏することができる。 Thus, the supply hole 273 of the supply unit 253 is disposed at a position closer to the shaft 240 of the extrusion roller 241 in the front-rear direction than the first holes of the supply units 251 and 252. That is, in the supply unit 253, the shortest distance L2 between the intermediate portion 241C of the extrusion roller 241 and the supply hole 273 is such that the left end 241A, the right end 241B of the extrusion roller 241 and the supply holes 271 and 272 It is shorter than the shortest distance L1. Therefore, the supply unit 253 can supply more powder than the supply units 251 and 252 to the supply surface 12A. Therefore, when the three-dimensional modeling apparatus 1 leveles the powder, it is difficult for the powder to protrude from both ends of the stage surface 9A, so that the powder is diffused to the side of the lifting stage 9 with a simple configuration. And the amount of powder used can be reduced. If the shortest distance between the extrusion roller 241 and the supply hole 273 is greater than at least one of the shortest distance between the extrusion roller 241 and the supply hole 271 and the shortest distance between the extrusion roller 241 and the supply hole 272, The three-dimensional modeling apparatus 1 can make it difficult for the powder to protrude from at least one end of the stage surface 9A, and can achieve an effect in reducing the amount of powder used.
 また、図9に示す、粉体供給器314の供給機構316のように、収容部315内の粉体を供給板317の供給孔370から押し出す2種類の押出ローラ341,342,343を備えてもよい。押出ローラ341,342は、例えば、供給板317の略3分の1の長さで左右方向に延びる3本の棒状体を、供給板317の左右方向両側の端部の位置で軸体340の周囲に等間隔にそれぞれ配置し、軸体340と一体に固定した部材である。すなわち、押出ローラ341,342は、それぞれ、供給板317の供給孔371,372を介して粉体を供給する供給部351,352に設ける。また、押出ローラ343は、例えば、供給板317の略3分の1の長さで左右方向に延びる3本の棒状体を、供給板317の左右方向略中央の位置で軸体340の周囲に等間隔に配置し、軸体340と一体に固定した部材である。すなわち、押出ローラ343は、供給板317の供給孔373を介して粉体を供給する供給部353に設ける。軸体340は粉体供給モータ319の回転軸に接続する。供給板317は、同じ大きさ(開口面積)に開口する複数の供給孔370を、軸体340の下方の位置で左右方向に整列して設ける。 Further, like the supply mechanism 316 of the powder supplier 314 shown in FIG. 9, there are provided two types of extrusion rollers 341, 342, and 343 that extrude the powder in the container 315 from the supply hole 370 of the supply plate 317. Also good. For example, the extrusion rollers 341 and 342 include three rod-like bodies extending in the left-right direction with a length that is approximately one-third of the supply plate 317, and the shaft body 340 at the positions of both ends in the left-right direction of the supply plate 317. These members are arranged at equal intervals around the periphery and fixed integrally with the shaft body 340. That is, the extrusion rollers 341 and 342 are provided in the supply units 351 and 352 for supplying powder through the supply holes 371 and 372 of the supply plate 317, respectively. Further, the extrusion roller 343 has, for example, three rod-like bodies extending in the left-right direction with a length of approximately one third of the supply plate 317 around the shaft body 340 at a position approximately in the center in the left-right direction of the supply plate 317. The members are arranged at equal intervals and fixed integrally with the shaft body 340. That is, the extrusion roller 343 is provided in the supply unit 353 that supplies powder through the supply hole 373 of the supply plate 317. The shaft body 340 is connected to the rotating shaft of the powder supply motor 319. The supply plate 317 is provided with a plurality of supply holes 370 that have the same size (opening area) and are aligned in the left-right direction at a position below the shaft body 340.
 押出ローラ343は、軸体340との距離を、押出ローラ341,342と軸体340との距離よりも長く設ける。押出ローラ341,342が軸体340の周囲で回転する回転半径R2は、一例として、15mmである。また、押出ローラ343が軸体340の周囲で回転する回転半径R3は、一例として、17mmである。なお、回転半径R2は、軸体340の軸心と直交する断面において、軸体340を中心に回転する押出ローラ341,342の軌跡に外接する円の半径である。同様に、回転半径R3は、軸体340の軸心と直交する断面において、軸体340を中心に回転する押出ローラ343の軌跡に外接する円の半径である。このように、軸体340の軸心を中心に回転する押出ローラ343の回転半径R3は、軸体340の軸心を中心に回転する押出ローラ341,342の回転半径R2よりも大きい。 The extrusion roller 343 is provided with a longer distance from the shaft body 340 than a distance between the extrusion rollers 341 and 342 and the shaft body 340. As an example, the rotation radius R2 at which the extrusion rollers 341 and 342 rotate around the shaft body 340 is 15 mm. Further, a rotation radius R3 at which the extrusion roller 343 rotates around the shaft body 340 is, for example, 17 mm. The rotation radius R2 is a radius of a circle circumscribing the locus of the extrusion rollers 341 and 342 rotating around the shaft body 340 in a cross section orthogonal to the axis of the shaft body 340. Similarly, the rotation radius R3 is a radius of a circle circumscribing the locus of the extrusion roller 343 that rotates about the shaft body 340 in a cross section orthogonal to the axis of the shaft body 340. Thus, the rotation radius R3 of the extrusion roller 343 that rotates about the axis of the shaft body 340 is larger than the rotation radius R2 of the extrusion rollers 341 and 342 that rotate about the axis of the shaft 340.
 押出ローラ341,342,343は、粉体供給モータ319が軸体340を回転することによって、それぞれ、収容部315内の粉体を押出ローラ341,342,343の回転円に対して外向きに押圧し、供給板317に対して粉体を押しつける。ここで、図9の二点鎖線Cで囲う円内に、供給部352の左右方向と直交する断面を示す。供給部352に設けた押出ローラ342の外周面と供給孔372との最短距離をL3とする。同様に、二点鎖線Dで囲う円内に、供給部353の左右方向と直交する断面を示す。供給部353に設けた押出ローラ343の外周面と供給孔373との最短距離をL4とする。押出ローラ343は、軸体340を中心に回転する回転半径が供給部352の押出ローラ342よりも大きい。故に、供給部353における押出ローラ343と供給孔373との最短距離L4は、供給部352における押出ローラ342と供給孔372との最短距離L3よりも短い。一例として、L3の大きさは3mmであり、L4の大きさは1mmである。なお、図9では、説明の便宜上、L3,L4の大きさを回転半径R2,R3と比べて大きく図示している。また、供給部351は、供給部352と同様の構成であり、説明を省略する。したがって、粉体供給時に、供給部353が供給孔373を介して供給する粉体の量は、供給部352が供給孔372を介して供給する粉体の量よりも多い。供給部351についても供給部352と同様である。すなわち、供給機構316は、供給部353が供給する粉体の量を、供給部351,352のそれぞれが供給する粉体の量よりも多くすることができる。 The extrusion rollers 341, 342, and 343 are configured so that the powder supply motor 319 rotates the shaft body 340 so that the powder in the storage portion 315 is directed outward with respect to the rotation circles of the extrusion rollers 341, 342, and 343, respectively. The powder is pressed against the supply plate 317. Here, the cross section orthogonal to the left-right direction of the supply part 352 is shown in the circle | round | yen enclosed with the dashed-two dotted line C of FIG. The shortest distance between the outer peripheral surface of the extrusion roller 342 provided in the supply unit 352 and the supply hole 372 is L3. Similarly, the cross section orthogonal to the left-right direction of the supply part 353 is shown in the circle | round | yen enclosed with the dashed-two dotted line D. FIG. The shortest distance between the outer peripheral surface of the extrusion roller 343 provided in the supply unit 353 and the supply hole 373 is L4. The pushing roller 343 has a larger radius of rotation around the shaft body 340 than the pushing roller 342 of the supply unit 352. Therefore, the shortest distance L4 between the extrusion roller 343 and the supply hole 373 in the supply unit 353 is shorter than the shortest distance L3 between the extrusion roller 342 and the supply hole 372 in the supply unit 352. As an example, the size of L3 is 3 mm, and the size of L4 is 1 mm. In FIG. 9, for the convenience of explanation, the sizes of L3 and L4 are shown larger than the rotation radii R2 and R3. Further, the supply unit 351 has the same configuration as the supply unit 352, and a description thereof will be omitted. Therefore, the amount of powder supplied by the supply unit 353 via the supply hole 373 when supplying the powder is larger than the amount of powder supplied by the supply unit 352 via the supply hole 372. The supply unit 351 is the same as the supply unit 352. That is, the supply mechanism 316 can make the amount of powder supplied by the supply unit 353 larger than the amount of powder supplied by each of the supply units 351 and 352.
 このように、押出ローラ341,342よりも大きな回転半径で軸体340の周囲を回転する押出ローラ343は、供給孔373との最短距離L4が、押出ローラ341,342と供給孔371,372との最短距離L3よりも短い。故に、供給部353は供給部351,352よりも多くの粉体を被供給面12Aに供給することができる。よって、立体造形装置1は、粉体を均す場合において、ステージ面9Aの両端部から粉体をはみ出させにくいので、簡易な構成で、昇降ステージ9の側方に粉体が拡散することを防止し、粉体の使用量を低減できる。なお、押出ローラ343と供給孔373との最短距離が、少なくとも押出ローラ341と供給孔371との最短距離および押出ローラ342と供給孔372との最短距離のうちの一方の大きさよりも大きければ、立体造形装置1は、ステージ面9Aの少なくとも一方の端部から粉体をはみ出させにくくでき、粉体の使用量低減において効果を奏することができる。 Thus, the extrusion roller 343 rotating around the shaft body 340 with a larger radius of rotation than the extrusion rollers 341 and 342 has the shortest distance L4 from the supply hole 373 such that the extrusion rollers 341 and 342 and the supply holes 371 and 372 Shorter than the shortest distance L3. Therefore, the supply unit 353 can supply more powder than the supply units 351 and 352 to the supply surface 12A. Therefore, when the three-dimensional modeling apparatus 1 leveles the powder, it is difficult for the powder to protrude from both ends of the stage surface 9A, so that the powder is diffused to the side of the lifting stage 9 with a simple configuration. And the amount of powder used can be reduced. If the shortest distance between the extrusion roller 343 and the supply hole 373 is larger than at least one of the shortest distance between the extrusion roller 341 and the supply hole 371 and the shortest distance between the extrusion roller 342 and the supply hole 372, The three-dimensional modeling apparatus 1 can make it difficult for the powder to protrude from at least one end of the stage surface 9A, and can achieve an effect in reducing the amount of powder used.
 また、図10に示す、粉体供給器414の供給機構416のように、供給部451,452,453ごとに、供給板417の供給孔471,472,473を開閉する弁体481,482,483をそれぞれ別体に設けてもよい。供給板417は、同じ大きさ(開口面積)に開口する複数の供給孔471,472,473を、粉体供給モータ419の回転軸に接続する軸体440の下方の位置で左右方向に整列して設ける。供給部451,452,453は、それぞれの供給孔471,472,473を開閉する弁体481,482,483を備える。弁体481,482,483は、それぞれ、ラックアンドピニオン型のギア機構によって移動する。軸体440は、弁体481,482,483のそれぞれに設けたラックに噛み合う扇歯車441,442,443を固定する。扇歯車443が弁体483のラックと噛み合う位置と、扇歯車441,442が弁体481,482のラックと噛み合う位置は異なる。 Further, like the supply mechanism 416 of the powder supplier 414 shown in FIG. 10, valve bodies 481, 482 that open and close the supply holes 471, 472, 473 of the supply plate 417 for each of the supply units 451, 452, 453. 483 may be provided separately. The supply plate 417 has a plurality of supply holes 471, 472, 473 that open to the same size (opening area) aligned in the left-right direction at a position below the shaft body 440 that connects to the rotating shaft of the powder supply motor 419. Provide. The supply units 451, 452, and 453 include valve bodies 481, 482, 483 that open and close the respective supply holes 471, 472, 473. Each of the valve bodies 481, 482, 483 is moved by a rack and pinion type gear mechanism. The shaft body 440 fixes the fan gears 441, 442, 443 that mesh with the racks provided in the valve bodies 481, 482, 483, respectively. The position at which the sector gear 443 meshes with the rack of the valve body 483 is different from the position at which the sector gears 441, 442 mesh with the rack of the valve bodies 481, 482.
 粉体供給時、立体造形装置1のCPU80は、粉体供給モータ419の駆動を制御し、軸体440を一方向に回転する。まず、扇歯車443が弁体483のラックに噛み合い、弁体483が供給孔473を開放する。供給部453は、被供給面12Aの左右方向中間部に粉体を供給する。軸体440が回転を続け、扇歯車441,442が弁体481,482のラックにそれぞれ噛み合うと、弁体481,482が供給孔471,472を開放する。弁体483は、供給孔473の開放を継続する。供給部451,452と供給部453は、それぞれ、被供給面12Aの左右方向両端部と中間部に粉体を供給する。軸体440が逆方向に回転すると、扇歯車441,442が弁体482,481を移動して、供給孔471,472を閉鎖する。弁体483は、供給孔473の開放を継続し、被供給面12Aの左右方向中間部への粉体の供給が継続される。軸体440が逆方向に回転を続け、扇歯車443が弁体483を移動すると、供給孔473が閉鎖される。供給機構416は、粉体の供給を終了する。このように、CPU80は、粉体供給時、粉体供給モータ419を駆動して軸体440を一方向に回転させた後、逆方向に回転させることで、供給部453の弁体483が供給孔473を開放する時間(第三時間)を、供給部451,452の弁体481,482が供給孔471,472を開放する時間(第一時間,第二時間)よりも長くすることができる。一例として、供給孔473を弁体483が開放する時間は15秒間であり、供給孔471,472を弁体481,482が開放する開放時間は8秒間である。供給機構416は、供給部453が供給する粉体の量を、供給部451,452のそれぞれが供給する粉体の量よりも多くすることができる。 At the time of powder supply, the CPU 80 of the three-dimensional modeling apparatus 1 controls the drive of the powder supply motor 419 to rotate the shaft body 440 in one direction. First, the fan gear 443 meshes with the rack of the valve body 483, and the valve body 483 opens the supply hole 473. The supply unit 453 supplies powder to the intermediate portion in the left-right direction of the supply surface 12A. When the shaft body 440 continues to rotate and the sector gears 441 and 442 engage with the racks of the valve bodies 481 and 482, the valve bodies 481 and 482 open the supply holes 471 and 472, respectively. The valve body 483 continues to open the supply hole 473. The supply parts 451 and 452 and the supply part 453 supply the powder to both the left and right end parts and the intermediate part of the supplied surface 12A, respectively. When the shaft body 440 rotates in the reverse direction, the fan gears 441 and 442 move the valve bodies 482 and 481 to close the supply holes 471 and 472. The valve body 483 continues to open the supply hole 473, and the supply of powder to the intermediate portion in the left-right direction of the supply surface 12A is continued. When the shaft body 440 continues to rotate in the reverse direction and the sector gear 443 moves the valve body 483, the supply hole 473 is closed. The supply mechanism 416 ends the supply of powder. As described above, when supplying the powder, the CPU 80 drives the powder supply motor 419 to rotate the shaft body 440 in one direction and then in the opposite direction, whereby the valve body 483 of the supply unit 453 supplies the valve body 483. The time for opening the hole 473 (third time) can be made longer than the time (first time, second time) for the valve bodies 481, 482 of the supply parts 451, 452 to open the supply holes 471, 472. . As an example, the time for the valve body 483 to open the supply hole 473 is 15 seconds, and the time for the valve bodies 481 and 482 to open the supply holes 471 and 472 is 8 seconds. The supply mechanism 416 can make the amount of powder supplied by the supply unit 453 larger than the amount of powder supplied by each of the supply units 451 and 452.
 このように、粉体供給器414の供給機構416は、粉体供給時に、第一時間開放される供給孔471,472よりも、第二時間開放される供給孔473から多くの粉体を被供給面12Aに供給することができる。よって、立体造形装置1は、粉体を均す場合において、ステージ面9Aの両端部から粉体をはみ出させにくいので、簡易な構成で、昇降ステージ9の側方に粉体が拡散することを防止し、粉体の使用量を低減できる。なお、弁体483が供給孔473を開放する時間が、少なくとも弁体481が供給孔471を開放する時間および弁体482が供給孔472を開放する時間のうちの一方の時間よりも長ければ、立体造形装置1は、ステージ面9Aの少なくとも一方の端部から粉体をはみ出させにくくでき、粉体の使用量低減において効果を奏することができる。 As described above, the supply mechanism 416 of the powder supplier 414 receives more powder from the supply holes 473 opened for the second time than the supply holes 471 and 472 opened for the first time. It can be supplied to the supply surface 12A. Therefore, when the three-dimensional modeling apparatus 1 leveles the powder, it is difficult for the powder to protrude from both ends of the stage surface 9A, so that the powder is diffused to the side of the lifting stage 9 with a simple configuration. And the amount of powder used can be reduced. If the time for the valve body 483 to open the supply hole 473 is longer than at least one of the time for the valve body 481 to open the supply hole 471 and the time for the valve body 482 to open the supply hole 472, The three-dimensional modeling apparatus 1 can make it difficult for the powder to protrude from at least one end of the stage surface 9A, and can achieve an effect in reducing the amount of powder used.
 なお、供給機構416は、扇歯車441,442,443が弁体481,482,483のラックに噛み合うタイミングを調整することで、機械的に弁体481,482が供給孔471,472を開放する時間よりも、弁体483が供給孔473を開放する時間を長くした。これに限らず、例えば供給機構416が粉体供給モータ419を2つ備え、一方が弁体481,482を開閉し、他方が弁体483を開閉し、CPU80が、弁体481,482および弁体483の開閉時間を管理してもよい。 The supply mechanism 416 mechanically opens the supply holes 471 and 472 by adjusting the timing at which the fan gears 441, 442 and 443 mesh with the racks of the valve bodies 481, 482 and 483. The time for the valve body 483 to open the supply hole 473 was made longer than the time. For example, the supply mechanism 416 includes two powder supply motors 419, one of which opens and closes the valve bodies 481 and 482, the other opens and closes the valve body 483, and the CPU 80 controls the valve bodies 481 and 482 and the valve bodies 481 and 482. The opening / closing time of the body 483 may be managed.
 また、図11に示す、粉体供給器514の供給機構516のように、収容部515内の粉体を収容する溝部541,542,543を形成した回転体540を備え、回転体540の回転によって、被供給面12Aに粉体を供給してもよい。供給機構516は、収容部515の下端に左右方向を軸方向とする円柱状の回転体540を設ける。回転体540は、収容部515と、粉体供給器514の下端に設けた開口570との間を塞ぐ。粉体供給モータ519の回転軸は、回転体540の軸に接続する。回転体540には、軸方向に延び、外周面に開口する溝部541,542,543が形成されている。 Further, like the supply mechanism 516 of the powder supplier 514 shown in FIG. 11, a rotating body 540 having grooves 541, 542, and 543 that store the powder in the storage portion 515 is provided, and the rotation of the rotating body 540 is provided. Thus, the powder may be supplied to the supply surface 12A. The supply mechanism 516 is provided with a columnar rotator 540 whose axial direction is the left-right direction at the lower end of the housing portion 515. The rotating body 540 closes the space between the housing portion 515 and the opening 570 provided at the lower end of the powder supplier 514. The rotating shaft of the powder supply motor 519 is connected to the shaft of the rotating body 540. The rotating body 540 is formed with grooves 541, 542, and 543 that extend in the axial direction and open to the outer peripheral surface.
 溝部541,542は、回転体540を左右方向に略3等分した部位のうち、左側の端部である回転体左端部540Aと右側の端部である回転体右端部540Bとにそれぞれ形成される。溝部541,542は、例えば、回転体540の外周面で中心軸に対する角度が45度の範囲を深さ1mmに欠き切って形成される。回転体左端部540Aは、溝部541内に粉体を収容して被供給面12Aの左右方向左端部に供給する供給部551である。供給部551は、粉体を、開口570を左右方向に略3等分した部位のうち左側の端部である開口左端部571を通過させて供給する。回転体右端部540Bは、溝部542内に粉体を収容して被供給面12Aの左右方向右端部に粉体を供給する供給部552である。供給部552は、粉体を、開口570を左右方向に略3等分した部位のうち右側の端部である開口右端部572を通過させて供給する。 The groove portions 541 and 542 are respectively formed in a left end portion of the rotating body 540A that is the left end portion and a right end portion 540B of the rotating body that is the right end portion of the portion obtained by equally dividing the rotating body 540 in the left-right direction. The For example, the grooves 541 and 542 are formed on the outer peripheral surface of the rotating body 540 by cutting out a range of 45 degrees with respect to the central axis to a depth of 1 mm. The rotating body left end portion 540A is a supply portion 551 that stores powder in the groove portion 541 and supplies the powder to the left end portion in the left-right direction of the supply surface 12A. The supply unit 551 supplies the powder through the opening left end 571 that is the left end of the portion obtained by dividing the opening 570 into approximately three equal parts in the left-right direction. The rotating body right end 540B is a supply unit 552 that stores powder in the groove 542 and supplies powder to the right end in the left-right direction of the supply surface 12A. The supply unit 552 supplies the powder through the opening right end 572 that is the right end of the portion obtained by dividing the opening 570 into approximately three equal parts in the left-right direction.
 溝部543は、回転体左端部540Aと回転体右端部540Bの間の部位である回転体中間部540Cに形成される。溝部543は、例えば、回転体540の外周面で中心軸に対する角度が90度の範囲を深さ1mmに欠き切って形成される。回転体中間部540Cは、溝部543内に粉体を収容して被供給面12Aの左右方向中間部に粉体を供給する供給部553である。供給部553は、粉体を、開口570の開口左端部571と開口右端部572の間の部位である開口中間部573を通過させて供給する。回転体中間部540Cは、溝部543内に、回転体左端部540Aの溝部541内よりも多くの量の粉体を収容できる。また、回転体中間部540Cは、溝部543内に、回転体右端部540Bの溝部542内よりも多くの量の粉体を収容できる。 The groove portion 543 is formed in the rotor intermediate portion 540C, which is a portion between the rotor left end 540A and the rotor right end 540B. The groove portion 543 is formed, for example, by cutting out the range of the angle of 90 degrees with respect to the central axis on the outer peripheral surface of the rotating body 540 to a depth of 1 mm. The rotating body intermediate portion 540C is a supply portion 553 that stores the powder in the groove portion 543 and supplies the powder to the intermediate portion in the left-right direction of the supply surface 12A. The supply unit 553 supplies the powder through the opening intermediate portion 573 that is a portion between the opening left end portion 571 and the opening right end portion 572 of the opening 570. The rotating body intermediate portion 540C can accommodate a larger amount of powder in the groove portion 543 than in the groove portion 541 of the rotating body left end portion 540A. Further, the rotating body intermediate portion 540C can accommodate a larger amount of powder in the groove portion 543 than in the groove portion 542 of the rotating body right end portion 540B.
 CPU80は粉体供給モータ519を駆動して回転体540を回動し、溝部541,542,543の開口を収容部515内に向ける。回転体左端部540A、回転体右端部540Bおよび回転体中間部540Cは、それぞれ溝部541,542,543内に、収容部515内の粉体を取り込む。CPU80は粉体供給モータ519を駆動して回転体540をさらに回動し、溝部541,542,543の開口を粉体供給器514下端の開口570に向ける。溝部541,542,543内に取り込まれた粉体は、それぞれ、開口左端部571,開口右端部572,開口中間部573を通過して、被供給面12A上に落下する。CPU80は、1層の粉体層を形成する際の1回の粉体の供給において、回転体540を、例えば1回転/秒の速度で10回転させることで、収容部515内から溝部541,542,543内に取り込んだ粉体を被供給面12A上に供給する。溝部543の収容量が、溝部541,542それぞれの収容量よりも大きいので、回転体中間部540Cが溝部543内に取り込む粉体の量は、回転体左端部540A,回転体右端部540Bがそれぞれ溝部541,542内に取り込む粉体の量よりも多い。したがって、供給機構516は、供給部553が供給する粉体の量を、供給部551,252のそれぞれが供給する粉体の量よりも多くすることができる。 The CPU 80 drives the powder supply motor 519 to rotate the rotating body 540 so that the openings of the grooves 541, 542 and 543 are directed into the housing 515. Rotating body left end portion 540A, rotating body right end portion 540B, and rotating body intermediate portion 540C take in powder in storage portion 515 into grooves 541, 542, and 543, respectively. The CPU 80 drives the powder supply motor 519 to further rotate the rotating body 540 so that the openings of the grooves 541, 542 and 543 are directed to the opening 570 at the lower end of the powder supplier 514. The powder taken into the groove portions 541, 542, and 543 passes through the opening left end portion 571, the opening right end portion 572, and the opening intermediate portion 573, and falls onto the supplied surface 12A. The CPU 80 rotates the rotating body 540 10 times, for example, at a speed of 1 rotation / second in supplying powder once for forming one powder layer, so that the groove portion 541 The powder taken in 542 and 543 is supplied onto the supply surface 12A. Since the accommodation amount of the groove portion 543 is larger than the accommodation amounts of the groove portions 541 and 542, the amount of powder taken into the groove portion 543 by the rotating body intermediate portion 540C is the rotating body left end portion 540A and the rotating body right end portion 540B, respectively. The amount of powder taken into the groove portions 541 and 542 is larger. Therefore, the supply mechanism 516 can make the amount of powder supplied by the supply unit 553 larger than the amount of powder supplied by each of the supply units 551 and 252.
 このように、粉体供給時に、回転体中間部540Cが溝部543内に収容し、開口中間部573を介して被供給面12Aに供給する粉体の量は、回転体左端部540A,回転体右端部540Bが溝部541,542に収容し、開口左端部571,開口右端部572を介して被供給面12Aにそれぞれ供給する粉体の量よりも多い。故に、粉体供給器514の供給機構516は、開口左端部571,開口右端部572よりも開口中間部573から多くの粉体を被供給面12Aに供給することができる。よって、立体造形装置1は、粉体を均す場合において、ステージ面9Aの両端部から粉体をはみ出させにくいので、簡易な構成で、昇降ステージ9の側方に粉体が拡散することを防止し、粉体の使用量を低減できる。なお、回転体中間部540Cが溝部543内に収容する粉体の量が、少なくとも回転体左端部540Aが溝部541内に収容する粉体の量、および回転体右端部540Bが溝部542内に収容する粉体の量のうちの一方の量よりも多ければ、立体造形装置1は、ステージ面9Aの少なくとも一方の端部から粉体をはみ出させにくくでき、粉体の使用量低減において効果を奏することができる。 Thus, during powder supply, the rotating body intermediate portion 540C is accommodated in the groove portion 543, and the amount of powder supplied to the supply surface 12A via the opening intermediate portion 573 is the rotating body left end 540A, rotating body. The right end portion 540B is accommodated in the groove portions 541 and 542, and is larger than the amount of powder supplied to the supplied surface 12A via the opening left end portion 571 and the opening right end portion 572, respectively. Therefore, the supply mechanism 516 of the powder supplier 514 can supply more powder from the opening intermediate portion 573 to the supply surface 12A than the opening left end portion 571 and the opening right end portion 572. Therefore, when the three-dimensional modeling apparatus 1 leveles the powder, it is difficult for the powder to protrude from both ends of the stage surface 9A, so that the powder is diffused to the side of the lifting stage 9 with a simple configuration. And the amount of powder used can be reduced. Note that the amount of powder accommodated in the groove portion 543 by the rotor intermediate portion 540C is at least the amount of powder accommodated in the groove portion 541 by the left end portion 540A of the rotor, and the right end portion 540B of the rotor is accommodated in the groove portion 542. If the amount is larger than one of the amounts of powder to be produced, the three-dimensional modeling apparatus 1 can make it difficult for the powder to protrude from at least one end of the stage surface 9A, which is effective in reducing the amount of powder used. be able to.
 また、図12に示す、粉体供給器614の供給機構616のように、供給板617に開口する複数の供給孔670の形成位置を、前後方向に重なる配置にしてもよい。供給板617に形成する供給孔670の数を、左右方向中間部の供給部653と両端部の供給部651,652とで異ならせ、供給部653が供給する粉体の量を、供給部651,652のそれぞれが供給する粉体の量よりも多くする点は、本実施形態と同様である。供給板617は、同じ大きさ(開口面積)に開口する複数の供給孔670を、仮に、前後方向にずらして左右方向に一列に並ぶように配置した場合に、それぞれの供給孔670が左右方向において隣り合う供給孔670と重なる配置となるように形成したものである。なお、個々の供給孔670の大きさは、同じであっても異なってもよい。 Further, like the supply mechanism 616 of the powder supplier 614 shown in FIG. 12, the formation positions of the plurality of supply holes 670 opened in the supply plate 617 may be arranged to overlap in the front-rear direction. The number of supply holes 670 formed in the supply plate 617 is made different between the supply unit 653 at the intermediate portion in the left-right direction and the supply units 651 and 652 at both ends, and the amount of powder supplied by the supply unit 653 is changed to the supply unit 651. , 652 is the same as this embodiment in that it is larger than the amount of powder supplied. The supply plate 617 has a plurality of supply holes 670 that have the same size (opening area) and are shifted in the front-rear direction and arranged in a line in the left-right direction. Are formed so as to overlap with the adjacent supply holes 670. The sizes of the individual supply holes 670 may be the same or different.
 例えば、供給孔670のうち、左端から順に3つの供給孔670を、供給孔670A,670B,670Cとする。供給孔670A,670B,670Cの左右方向の長さは、いずれも同じL5である。供給孔670Aと供給孔670Cは、前後方向において同じ位置に揃えられ、左右方向に離れて形成されている。供給孔670Aと供給孔670Cは、左右方向に長さL6離れている。長さL6は、長さL5よりも短い。一例として、L5の大きさは5mmであり、L6の大きさは3mmである。この場合に、供給孔670Aと供給孔670Bとが左右方向に重なり合う大きさは1mmである。供給孔670Bは、供給孔670A,670Cとは前後方向にずれた位置に形成されている。且つ、供給孔670Bは、仮に、供給孔670Bの形成位置を前後方向にずらして供給孔670A,670Cと揃えた場合に、供給孔670Bの左端が供給孔670Aの右端に重なり、供給孔670Bの右端が供給孔670Cの左端に重なる位置に形成されている。他の供給孔670についても同様である。 For example, among the supply holes 670, three supply holes 670 in order from the left end are referred to as supply holes 670A, 670B, and 670C. The supply holes 670A, 670B, and 670C have the same length L5 in the left-right direction. The supply hole 670A and the supply hole 670C are aligned at the same position in the front-rear direction and are separated from each other in the left-right direction. Supply hole 670A and supply hole 670C are separated by a length L6 in the left-right direction. The length L6 is shorter than the length L5. As an example, the size of L5 is 5 mm, and the size of L6 is 3 mm. In this case, the size of the supply hole 670A and the supply hole 670B overlapping in the left-right direction is 1 mm. The supply hole 670B is formed at a position shifted in the front-rear direction from the supply holes 670A and 670C. Further, if the supply hole 670B is aligned with the supply holes 670A and 670C by shifting the formation position of the supply hole 670B in the front-rear direction, the left end of the supply hole 670B overlaps the right end of the supply hole 670A, and the supply hole 670B The right end is formed at a position overlapping the left end of the supply hole 670C. The same applies to the other supply holes 670.
 なお、上記において、供給孔670が重なる配置には、前後方向においてずれた2つの供給孔670の端部同士が、左右方向において同じ位置に形成される配置関係となる場合を含む。例えば、供給孔670Aの右端と、供給孔670Bの左端とが、左右方向において同じ位置にある場合における供給孔670の配置関係である。また、供給孔670が重なる配置には、前後方向においてずれた2つの供給孔670が、左右方向において同じ位置に形成される配置関係となる場合を含む。例えば、供給孔670Aの右端および左端がそれぞれ左右方向において供給孔670Bの右端および左端と同じ位置にある場合における供給孔670の配置関係である。また、供給孔670が重なる配置には、前後方向においてずれた2つの供給孔670の一方が他方よりも左右方向に大きく、且つ、一方の左右両端の間に他方の左右両端が位置する配置関係となる場合を含む。例えば、2つの供給孔670の一方が供給孔670Bであり、他方が、供給孔670Aと供給孔670Cが繋がった1つの供給孔である場合における供給孔670の配置関係である。また、供給孔670が重なる配置には、隣り合う2つの供給孔670が、必ずしも前後方向にずれていない配置関係となる場合も含む。例えば、2つの供給孔670からそれぞれ供給された粉体が被供給面12A上で山を形成し、粉体の供給に伴って山の裾野が広がり、粉体供給終了時に、隣り合う粉体の山を左右方向に繋げた状態にすることができる供給孔670の配置関係である。 In the above description, the arrangement in which the supply holes 670 overlap includes a case where the ends of the two supply holes 670 that are displaced in the front-rear direction have an arrangement relationship in which they are formed at the same position in the left-right direction. For example, the arrangement relationship of the supply holes 670 when the right end of the supply hole 670A and the left end of the supply hole 670B are at the same position in the left-right direction. The arrangement in which the supply holes 670 overlap includes a case where the two supply holes 670 that are shifted in the front-rear direction have an arrangement relationship in which they are formed at the same position in the left-right direction. For example, the arrangement relationship of the supply holes 670 when the right end and the left end of the supply hole 670A are in the same position as the right end and the left end of the supply hole 670B in the left-right direction, respectively. Further, in the arrangement in which the supply holes 670 overlap each other, one of the two supply holes 670 shifted in the front-rear direction is larger in the left-right direction than the other, and the other left-right ends are positioned between the left and right ends. Including cases where For example, one of the two supply holes 670 is the supply hole 670B, and the other is the arrangement relationship of the supply holes 670 when the supply hole 670A and the supply hole 670C are connected to each other. In addition, the arrangement in which the supply holes 670 overlap includes a case where two adjacent supply holes 670 are not necessarily displaced in the front-rear direction. For example, the powders respectively supplied from the two supply holes 670 form a mountain on the supplied surface 12A, and the bottom of the mountain spreads with the supply of the powder. This is an arrangement relationship of the supply holes 670 that can connect the mountains in the left-right direction.
 このように、供給孔670を介して被供給面12Aに供給される粉体は、それぞれ個別に粉体の山を形成する。仮に、供給孔670が前後方向において同じ位置に形成された場合に、隣り合う供給孔670は、それぞれの開口領域の少なくとも一部が左右方向に重なる。故に、粉体供給時に供給孔670を介して被供給面12A上に供給されて形成される個々の粉体の山が、仮に、前後方向において同じ位置に揃えて配置された場合、隣り合う山同士は、少なくとも一部が左右方向に重なる配置となる。故に、平坦化ローラ28が粉体をステージ面9Aに運ぶ過程において、個々の粉体の山は、被供給面12Aにおいて平坦化ローラ28が粉体に接触してから直ちに左右方向に連続して繋がる。よって、平坦化ローラ28がステージ面9A上で粉体を均し始める際に、左右方向においてステージ面9A上を覆う粉体が足りなくなる部分がないので、立体造形装置1は、造形層を確実に形成することができる。仮に、個々の粉体の山が前後方向において同じ位置に揃えて配置されても、隣り合う山同士が左右方向に重ならない配置となる場合、ステージ面9A上を確実に粉体で覆うためには、平坦化ローラ28は、粉体を運ぶ過程で個々の粉体の山を左右方向に繋げる必要がある。平坦化ローラ28が個々の粉体の山を左右方向に繋げるためには、被供給面12Aは、粉体の供給位置とステージ面9Aとの間に所定の距離を必要とする。しかし、本変形例の立体造形装置1は、平坦化ローラ28が被供給面12Aから粉体を運び始めて直ちに個々の粉体の山を左右方向に繋げることができるため、上記の所定の距離が不要である。故に、立体造形装置1は、粉体の供給位置とステージ面9Aとの間の距離を短くすることで小型化を図ることができる。また、平坦化ローラ28の移動距離を短くでき、立体造形装置1による造形の高速化を図ることができる。 Thus, the powder supplied to the supply surface 12A via the supply hole 670 individually forms a powder pile. If the supply holes 670 are formed at the same position in the front-rear direction, adjacent supply holes 670 have at least a part of their respective opening regions overlapped in the left-right direction. Therefore, if the individual powder peaks formed by being supplied onto the supplied surface 12A via the supply hole 670 during powder supply are arranged at the same position in the front-rear direction, the adjacent peaks are arranged. They are arranged such that at least a part thereof overlaps in the left-right direction. Therefore, in the process in which the flattening roller 28 transports the powder to the stage surface 9A, the individual powder piles continue in the left-right direction immediately after the flattening roller 28 contacts the powder on the supplied surface 12A. Connected. Therefore, when the flattening roller 28 starts to level the powder on the stage surface 9A, there is no portion where the powder covering the stage surface 9A is insufficient in the left-right direction. Can be formed. Even if the individual powder peaks are arranged in the same position in the front-rear direction, if the adjacent peaks do not overlap in the left-right direction, the stage surface 9A is reliably covered with the powder. The flattening roller 28 needs to connect the piles of individual powders in the left-right direction in the course of carrying the powders. In order for the flattening roller 28 to connect the individual powder peaks in the left-right direction, the supplied surface 12A requires a predetermined distance between the powder supply position and the stage surface 9A. However, in the three-dimensional modeling apparatus 1 of this modification, since the flattening roller 28 starts to carry the powder from the supplied surface 12A, the individual powder piles can be immediately connected in the left-right direction. It is unnecessary. Therefore, the three-dimensional modeling apparatus 1 can be downsized by shortening the distance between the powder supply position and the stage surface 9A. Further, the moving distance of the flattening roller 28 can be shortened, and the modeling can be speeded up by the three-dimensional modeling apparatus 1.
 また、本実施形態では、収容部15が筒状で、供給板17を収容部15下部の底部に設けたが、例えば、収容部15下部と供給板17とが一体の凹部形状をなし、凹部の底壁に供給孔70を開口してもよい。粉体は、石膏に限らない。粉体は、造形液との混合によって固化し、造形層を形成できるものであればよい。 In the present embodiment, the accommodating portion 15 has a cylindrical shape, and the supply plate 17 is provided at the bottom of the lower portion of the accommodating portion 15. However, for example, the lower portion of the accommodating portion 15 and the supply plate 17 form an integral recessed portion. You may open the supply hole 70 in the bottom wall of this. The powder is not limited to gypsum. The powder should just be solidified by mixing with modeling liquid and can form a modeling layer.
 また、平坦化ローラ28は、軸心を中心に回転するローラ状の回転体に限らない。例えば、平坦化ローラ28は、ブレード状の部材であり、刃先を昇降ステージ9上に当接させた状態で造形台6に対して相対的に移動させることで、粉体を運搬し、且つ均すことができてもよい。 Further, the flattening roller 28 is not limited to a roller-like rotating body that rotates about an axis. For example, the flattening roller 28 is a blade-shaped member, and conveys the powder and moves the powder by moving it relative to the modeling table 6 with the cutting edge in contact with the elevating stage 9. It may be possible.
 上記実施形態において、供給機構16が、本発明の「供給手段」に相当する。粉体供給器14が「粉体供給部」に相当する。造形台6が「ステージ部」に相当する。前後方向が「第一方向」に相当する。平坦化ローラ28が「平坦化部」に相当する。左右方向が「第二方向」に相当する。供給部51,151,251,351,451,551,651が「第一供給部」に相当する。供給部52,152,252,352,452,552,652が「第二供給部」に相当する。供給部53,153,253,353,453,553,653が「第三供給部」に相当する。 In the above embodiment, the supply mechanism 16 corresponds to the “supply means” of the present invention. The powder supply unit 14 corresponds to a “powder supply unit”. The modeling table 6 corresponds to a “stage part”. The front-rear direction corresponds to the “first direction”. The flattening roller 28 corresponds to a “flattening portion”. The left-right direction corresponds to the “second direction”. The supply parts 51, 151, 251 and 351, 451, 551, and 651 correspond to the “first supply part”. The supply units 52, 152, 252, 352, 452, 552, and 652 correspond to the “second supply unit”. The supply units 53, 153, 253, 353, 453, 553, and 653 correspond to the “third supply unit”.
 供給孔71,171,271,371,471,670Aが「第一孔」に相当する。供給孔72,172,272,372,472,670Bが「第二孔」に相当する。供給孔73,173,273,373,473,670Cが「第三孔」に相当する。押出ローラ341が「第一押出部」に相当する。押出ローラ342が「第二押出部」に相当する。押出ローラ343が「第三押出部」に相当する。軸体240,340が「回転軸」に相当する。押出ローラ241が「第四押出部」に相当する。弁体481,482が「第一扉」に相当する。弁体482が「第二扉」に相当する。弁体483が「第三扉」に相当する。回転体540が「取込部」に相当する。溝部541が「第一凹部」に相当する。溝部542が「第二凹部」に相当する。溝部543が「第三凹部」に相当する。 The supply holes 71, 171, 271, 371, 471, 670A correspond to the “first hole”. The supply holes 72, 172, 272, 372, 472, and 670B correspond to “second holes”. The supply holes 73, 173, 273, 373, 473, and 670C correspond to the “third hole”. The extrusion roller 341 corresponds to the “first extrusion unit”. The extrusion roller 342 corresponds to a “second extrusion portion”. The extrusion roller 343 corresponds to a “third extrusion portion”. The shaft bodies 240 and 340 correspond to “rotating shafts”. The extrusion roller 241 corresponds to a “fourth extrusion unit”. The valve bodies 481 and 482 correspond to the “first door”. The valve body 482 corresponds to a “second door”. The valve body 483 corresponds to a “third door”. The rotating body 540 corresponds to the “take-in part”. The groove portion 541 corresponds to the “first concave portion”. The groove 542 corresponds to a “second recess”. The groove portion 543 corresponds to a “third concave portion”.
  1                         立体造形装置
  9                         昇降ステージ
  9A                        ステージ面
 12A                        被供給面
 14,214,314,414,514,614     粉体供給器
 15,215,315,515             収容部
 16,116,216,316,416,516,616 供給機構
 17,117,217,317,417,617     供給板
 17A                        左端部
 17B                        右端部
 17C                        中間部
 28                         平坦化ローラ
 51,52,53,151,152,153      供給部
251,252,253,351,352,353    供給部
451,452,453,551,552,553    供給部
651,652,653                 供給部
 71,72,73,171,172,173      供給孔
271,272,273,371,372,373    供給孔
471,472,473,670A,670B,670C  供給孔
240,340                     軸体
241,341,342,343             押出ローラ
241A                        左端部
241B                        右端部
241C                        中間部
481,482,483                 弁体
540                         回転体
540A                        回転体左端部
540B                        回転体右端部
540C                        回転体中間部
541,542,543                 溝部
570                         開口
571                         開口左端部
572                         開口右端部
573                         開口中間部
DESCRIPTION OF SYMBOLS 1 Three-dimensional modeling apparatus 9 Elevating stage 9A Stage surface 12A Supply surface 14,214,314,414,514,614 Powder feeder 15,215,315,515 Storage part 16,116,216,316,416,516,16 616 Supply mechanism 17, 117, 217, 317, 417, 617 Supply plate 17A Left end portion 17B Right end portion 17C Intermediate portion 28 Flattening rollers 51, 52, 53, 151, 152, 153 Supply portions 251, 252, 253, 351 352, 353 supply unit 451, 452, 453, 551, 552, 553 supply unit 651, 652, 653 supply unit 71, 72,73,171,172,173 Supply hole 271,272,273,371,372,373 Supply hole 471,472,473,670A, 670B, 670C Supply hole 240,340 Shaft body 241,341,342,343 Extrusion Roller 241A Left end 241B Right end 241C Intermediate part 481, 482, 483 Valve body 540 Rotating body 540A Rotating body left end 540B Rotating body right end 540C Rotating body intermediate part 541, 542, 543 Groove 570 Opening 571 Opening left end 572 Opening right end Part 573 opening middle part

Claims (11)

  1.  粉体を収容する収容部と、前記収容部内に収容する前記粉体を外部に供給する供給手段とを備えた粉体供給部と、
     前記粉体供給部から前記粉体が供給される面である被供給面と、前記被供給面に供給された前記粉体を層状に均した粉体層が形成される面であるステージ面とを有するステージ部と、
     前記ステージ部に対し、前記ステージ面に平行な所定の第一方向に相対移動して、前記粉体供給部によって前記被供給面に供給された前記粉体を前記ステージ面上に広げ、且つ前記粉体の表面を平坦化し、前記粉体層を形成する平坦化部と、
    を備え、
     前記供給手段は、
       前記ステージ面に平行且つ前記第一方向に交差する第二方向において三等分した部位のうち、前記第二方向の一端側に設け、所定の第一量の前記粉体を前記被供給面に供給する第一供給部と、
       前記第二方向に三等分した部位のうち、前記第二方向の他端側に設け、所定の第二量の前記粉体を前記被供給面に供給する第二供給部と、
       前記第一供給部と前記第二供給部との間に設け、少なくとも前記第一量および前記第二量のうちの一方の量よりも多い第三量の前記粉体を前記被供給面に供給する第三供給部と、
    を含むことを特徴とする立体造形装置。
    A powder supply unit comprising: a storage unit that stores powder; and a supply unit that supplies the powder stored in the storage unit to the outside.
    A supply surface that is a surface to which the powder is supplied from the powder supply unit, and a stage surface that is a surface on which a powder layer obtained by leveling the powder supplied to the supply surface is formed. A stage portion having
    Relative movement in a predetermined first direction parallel to the stage surface with respect to the stage portion, the powder supplied to the supply surface by the powder supply portion is spread on the stage surface, and Planarizing the surface of the powder and forming the powder layer; and
    With
    The supply means includes
    Of the portion that is divided into three equal parts in the second direction that is parallel to the stage surface and intersects the first direction, it is provided on one end side of the second direction, and a predetermined first amount of the powder is applied to the surface to be supplied. A first supply section for supplying;
    A second supply unit that is provided on the other end side in the second direction among the parts divided into three equal parts in the second direction, and supplies a predetermined second amount of the powder to the supply surface;
    Provided between the first supply portion and the second supply portion, and supplies at least a third amount of the powder larger than one of the first amount and the second amount to the supply surface. A third supply section to
    3D modeling apparatus characterized by including.
  2.  前記供給手段は、前記収容部内から前記被供給面に供給される粉体が通過する複数の孔が形成された供給板を備え、
     前記第一供給部は、前記供給板の前記一端側で、前記第一量の前記粉体が通過する第一孔が形成された部位であり、
     前記第二供給部は、前記供給板の前記他端側で、前記第二量の前記粉体が通過する第二孔が形成された部位であり、
     前記第三供給部は、前記供給板の前記第一供給部と前記第二供給部との間で、前記第三量の前記粉体が通過する第三孔が形成された部位であること
    を特徴とする請求項1に記載の立体造形装置。
    The supply means includes a supply plate in which a plurality of holes through which the powder supplied to the supply surface passes from the inside of the housing portion is formed,
    The first supply portion is a portion where a first hole through which the first amount of the powder passes is formed on the one end side of the supply plate,
    The second supply part is a portion where a second hole through which the second amount of the powder passes is formed on the other end side of the supply plate,
    The third supply part is a part in which a third hole through which the third amount of the powder passes is formed between the first supply part and the second supply part of the supply plate. The three-dimensional modeling apparatus according to claim 1, wherein the three-dimensional modeling apparatus is characterized.
  3.  前記第一孔、前記第二孔および前記第三孔が前記第一方向において同じ位置に形成された場合、前記第一孔、前記第二孔および前記第三孔は、隣り合う2つの孔の開口領域のうち、少なくとも一部の領域が前記第二方向に重なることを特徴とする請求項2に記載の立体造形装置。 When the first hole, the second hole, and the third hole are formed at the same position in the first direction, the first hole, the second hole, and the third hole are two adjacent holes. The three-dimensional modeling apparatus according to claim 2, wherein at least a part of the opening region overlaps in the second direction.
  4.  前記第三供給部は、開口領域の占める面積の割合が、少なくとも前記第一供給部において前記第一孔の開口領域が占める面積の割合、および前記第二供給部において前記第二孔の開口領域が占める面積の割合のうちの一方の割合よりも大きな割合を占める第三孔が形成されたことを特徴とする請求項2に記載の立体造形装置。 In the third supply section, the ratio of the area occupied by the opening area is at least the ratio of the area occupied by the opening area of the first hole in the first supply section, and the opening area of the second hole in the second supply section. The three-dimensional modeling apparatus according to claim 2, wherein a third hole occupying a larger proportion than one of the proportions of the area occupied by is formed.
  5.  前記第三孔の数は、少なくとも前記第一孔の数および前記第二孔の数のうちの一方の数よりも多いことを特徴とする請求項4に記載の立体造形装置。 The three-dimensional modeling apparatus according to claim 4, wherein the number of the third holes is larger than at least one of the number of the first holes and the number of the second holes.
  6.  前記第三孔の大きさは、少なくとも前記第一孔の大きさおよび前記第二孔の大きさのうちの一方の大きさよりも大きいことを特徴とする請求項4に記載の立体造形装置。 The three-dimensional modeling apparatus according to claim 4, wherein the size of the third hole is larger than at least one of the size of the first hole and the size of the second hole.
  7.  前記供給手段は、
       前記収容部内に配置され、前記第一孔を介して前記粉体を外部に押し出す第一押出部と、
       前記収容部内に配置され、前記第二孔を介して前記粉体を外部に押し出す第二押出部と、
       前記収容部内に配置され、前記第三孔を介して前記粉体を外部に押し出す第三押出部と、
    をさらに備え、
     前記第三押出部と前記第三孔との最短距離は、少なくとも前記第一押出部と前記第一孔との最短距離および前記第二押出部と前記第二孔との最短距離のうちの一方の最短距離よりも短いことを特徴とする請求項2に記載の立体造形装置。
    The supply means includes
    A first extruding portion that is disposed in the accommodating portion and extrudes the powder to the outside through the first hole;
    A second extruding part that is arranged in the housing part and extrudes the powder to the outside through the second hole;
    A third extruding part which is arranged in the housing part and extrudes the powder to the outside through the third hole;
    Further comprising
    The shortest distance between the third extruding part and the third hole is at least one of the shortest distance between the first extruding part and the first hole and the shortest distance between the second extruding part and the second hole. The three-dimensional modeling apparatus according to claim 2, wherein the three-dimensional modeling apparatus is shorter than the shortest distance.
  8.  前記第一孔、前記第二孔および前記第三孔は、前記第二方向に沿って配置されており、
     前記供給手段は、前記第二方向に沿って延びる回転軸をさらに備え、
     前記第一押出部、前記第二押出部および前記第三押出部は、前記回転軸の周囲を回転し、それぞれ前記第一孔、前記第二孔および前記第三孔を介して前記粉体を押し出し、
     前記第三押出部が前記回転軸の周囲を回転する回転半径は、少なくとも前記第一押出部の回転半径および前記第二押出部の回転半径のうちの一方の回転半径よりも大きいことを特徴とする請求項7に記載の立体造形装置。
    The first hole, the second hole, and the third hole are arranged along the second direction,
    The supply means further includes a rotating shaft extending along the second direction,
    The first extruding part, the second extruding part, and the third extruding part rotate around the rotation shaft, and respectively pass the powder through the first hole, the second hole, and the third hole. Extrude,
    A radius of rotation at which the third extruded portion rotates around the rotation axis is greater than at least one of the rotational radius of the first extruded portion and the rotational radius of the second extruded portion. The three-dimensional modeling apparatus according to claim 7.
  9.  前記供給手段は、
       前記第二方向に沿って延びる回転軸と、
       前記収容部内に配置され、前記回転軸の周囲を回転し、前記第一孔、前記第二孔および前記第三孔を介して前記粉体を押し出す第四押出部と、
    をさらに備え、
     前記供給板において、前記第三孔は、少なくとも前記第一孔および前記第二孔のうちの一方の孔よりも前記第一方向で前記回転軸に近い位置に配置されたことを特徴とする請求項2に記載の立体造形装置。
    The supply means includes
    A rotation axis extending along the second direction;
    A fourth extruding part that is disposed in the accommodating part, rotates around the rotation shaft, and extrudes the powder through the first hole, the second hole, and the third hole;
    Further comprising
    In the supply plate, the third hole is disposed at a position closer to the rotation shaft in the first direction than at least one of the first hole and the second hole. Item 3. The three-dimensional modeling apparatus according to Item 2.
  10.  前記第一供給部は、前記第一孔を開閉し、前記粉体の供給時に、前記第一孔を所定の第一時間、開放してから閉鎖する第一扉を備え、
     前記第二供給部は、前記第二孔を開閉し、前記粉体の供給時に、前記第二孔を所定の第二時間、開放してから閉鎖する第二扉を備え、
     前記第三供給部は、前記第三孔を開閉し、前記粉体の供給時に、前記第三孔を、少なくとも前記第一時間および前記第二時間のうちの一方の時間よりも長い第三時間、開放してから閉鎖する第三扉を備えたこと
    を特徴とする請求項2に記載の立体造形装置。
    The first supply unit includes a first door that opens and closes the first hole and opens and closes the first hole for a predetermined first time when supplying the powder.
    The second supply unit includes a second door that opens and closes the second hole and opens the second hole for a predetermined second time and then closes the powder when supplying the powder.
    The third supply part opens and closes the third hole, and at the time of supplying the powder, the third hole has a third time longer than at least one of the first time and the second time. The three-dimensional modeling apparatus according to claim 2, further comprising a third door that is opened and then closed.
  11.  前記供給手段は、前記粉体を内部に収容する凹部が形成され、前記収容部内に収容する前記粉体のうち、前記凹部内に取り込んだ前記粉体を前記被供給面に供給する取込部をさらに備え、
     前記第一供給部は、前記取込部の前記一端側で、前記第一量の前記粉体を収容可能な収容量を有する第一凹部が形成された部位であり、
     前記第二供給部は、前記取込部の前記他端側で、前記第二量の前記粉体を収容可能な収容量を有する第二凹部が形成された部位であり、
     前記第三供給部は、前記取込部の前記第一供給部と前記第二供給部との間で、少なくとも前記第一量および前記第二量のうちの一方の量よりも多い前記第三量の前記粉体を収容可能な収容量を有する第三凹部が形成された部位であること
    を特徴とする請求項1に記載の立体造形装置。
    The supply means is formed with a recess for storing the powder therein, and out of the powder stored in the storage section, the intake section for supplying the powder taken into the recess to the supply surface Further comprising
    The first supply part is a part where a first recess having a storage capacity capable of storing the first amount of the powder is formed on the one end side of the intake part;
    The second supply part is a part in which a second recess having an accommodation amount capable of accommodating the second amount of the powder is formed on the other end side of the intake part,
    The third supply part is more than at least one of the first quantity and the second quantity between the first supply part and the second supply part of the intake part. The three-dimensional modeling apparatus according to claim 1, wherein the three-dimensional modeling apparatus is a portion in which a third concave portion having a capacity capable of accommodating an amount of the powder is formed.
PCT/JP2015/058683 2014-03-24 2015-03-23 Three-dimensional shaping device WO2015146885A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-060618 2014-03-24
JP2014060618A JP2015182303A (en) 2014-03-24 2014-03-24 Three-dimensional shaping device

Publications (1)

Publication Number Publication Date
WO2015146885A1 true WO2015146885A1 (en) 2015-10-01

Family

ID=54195399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058683 WO2015146885A1 (en) 2014-03-24 2015-03-23 Three-dimensional shaping device

Country Status (2)

Country Link
JP (1) JP2015182303A (en)
WO (1) WO2015146885A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111163881A (en) * 2017-10-06 2020-05-15 株式会社Ihi Powder supply device and three-dimensional lamination molding device
CN111225758A (en) * 2017-10-13 2020-06-02 株式会社Ihi Powder supply device and three-dimensional lamination molding device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10328525B2 (en) 2015-08-25 2019-06-25 General Electric Company Coater apparatus and method for additive manufacturing
EP3400126B1 (en) * 2016-05-12 2021-11-10 Hewlett-Packard Development Company, L.P. Distributing powder
KR101820754B1 (en) * 2016-12-09 2018-01-23 한국생산기술연구원 3d printer and the printing method using the same
WO2023238436A1 (en) * 2022-06-08 2023-12-14 ローランドディー.ジー.株式会社 Three-dimensional shaping apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0655642A (en) * 1992-08-03 1994-03-01 Sanyo Mach Works Ltd Method and system for forming three-dimensional material body
JP2002067174A (en) * 2000-08-30 2002-03-05 Minolta Co Ltd Device and method for data processing, and device and method for three-dimensional molding
JP2011020412A (en) * 2009-07-17 2011-02-03 Altech Co Ltd Three dimensional molding method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0655642A (en) * 1992-08-03 1994-03-01 Sanyo Mach Works Ltd Method and system for forming three-dimensional material body
JP2002067174A (en) * 2000-08-30 2002-03-05 Minolta Co Ltd Device and method for data processing, and device and method for three-dimensional molding
JP2011020412A (en) * 2009-07-17 2011-02-03 Altech Co Ltd Three dimensional molding method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111163881A (en) * 2017-10-06 2020-05-15 株式会社Ihi Powder supply device and three-dimensional lamination molding device
US20200238432A1 (en) * 2017-10-06 2020-07-30 Ihi Corporation Powder supply device and additive manufacturing device
JPWO2019070070A1 (en) * 2017-10-06 2020-08-06 株式会社Ihi Powder supply device and three-dimensional additive manufacturing device
EP3693103A4 (en) * 2017-10-06 2020-08-12 IHI Corporation Powder supply device and three-dimensional laminate modeling device
CN111163881B (en) * 2017-10-06 2022-04-05 株式会社Ihi Powder supply device and three-dimensional lamination molding device
US11890638B2 (en) 2017-10-06 2024-02-06 Ihi Corporation Powder supply device and additive manufacturing device
CN111225758A (en) * 2017-10-13 2020-06-02 株式会社Ihi Powder supply device and three-dimensional lamination molding device
EP3695922A4 (en) * 2017-10-13 2020-12-02 IHI Corporation Powder feeding device and three-dimensional additive fabrication device
CN111225758B (en) * 2017-10-13 2022-04-29 株式会社Ihi Powder supply device and three-dimensional lamination molding device
US11717909B2 (en) 2017-10-13 2023-08-08 Ihi Corporation Powder feeding device and additive manufacturing device

Also Published As

Publication number Publication date
JP2015182303A (en) 2015-10-22

Similar Documents

Publication Publication Date Title
WO2015146885A1 (en) Three-dimensional shaping device
JP2015150804A (en) Stereoscopic molding device and drive control method thereof
JP2013075390A (en) Three-dimensional modeling apparatus and three-dimensional modeling data creation program
JP6425222B2 (en) Powder material supply device of three-dimensional modeling device
JP5408151B2 (en) 3D modeling equipment
JP4545748B2 (en) Method and system for creating an object using solid freeform manufacturing
JP2015066872A (en) Stereoscopic molding apparatus
JP6443410B2 (en) 3D modeling system and 3D modeling method
JPH10513130A (en) High-speed cross-section lamination method for three-dimensional objects
KR20160109706A (en) Printing apparatus for building three-dimensional object
JP2015044299A (en) Solid shaping data creation apparatus and program
JP2013136169A (en) Three-dimensional shaping apparatus and three-dimensional shaping data creation program
JP6743434B2 (en) Device, program, and method for forming three-dimensional object
JP6620505B2 (en) Powder additive manufacturing apparatus and powder layer manufacturing method
EP3401082B1 (en) Device for fabricating three-dimensional fabrication object and method of manufacturing three-dimensional fabrication object
JP2013075392A (en) Three dimensional molding apparatus, three dimensional molding method, and three dimensional molding data creating program
JP2017170875A (en) Device for molding solid molded object, program and method for molding solid molded object
CN112247146B (en) Multi-material powder laying mechanism of metal three-dimensional printer
JP2017007321A (en) Three-dimensional shaping apparatus, three-dimensional shaping method, and program
JP6967141B2 (en) Coater assembly for 3D printers
JP2018118501A (en) Apparatus for creating three-dimensional object, method for creating three-dimensional object, and three-dimensional object
JP6905677B2 (en) Manufacturing method of 3D modeling equipment and 3D modeled objects
JP6909643B2 (en) Manufacturing method of the modeled object
JP2013208757A (en) Synthetic modeling data generation device and synthetic modeling data generation program
JP6880492B2 (en) 3D modeling equipment, manufacturing methods and programs for 3D models

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15769680

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15769680

Country of ref document: EP

Kind code of ref document: A1