WO2015146518A1 - Gas circuit-breaker - Google Patents

Gas circuit-breaker Download PDF

Info

Publication number
WO2015146518A1
WO2015146518A1 PCT/JP2015/056368 JP2015056368W WO2015146518A1 WO 2015146518 A1 WO2015146518 A1 WO 2015146518A1 JP 2015056368 W JP2015056368 W JP 2015056368W WO 2015146518 A1 WO2015146518 A1 WO 2015146518A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
arc
pressure
electrode
circuit breaker
Prior art date
Application number
PCT/JP2015/056368
Other languages
French (fr)
Japanese (ja)
Inventor
内井 敏之
崇文 飯島
嵩人 石井
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Publication of WO2015146518A1 publication Critical patent/WO2015146518A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/04Means for extinguishing or preventing arc between current-carrying parts
    • H01H33/22Selection of fluids for arc-extinguishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/98Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being initiated by an auxiliary arc or a section of the arc, without any moving parts for producing or increasing the flow

Definitions

  • Embodiment of this invention is related with the gas circuit breaker which switches an electric current interruption
  • a gas circuit breaker is used to switch the current including an excessive accident current.
  • the gas circuit breaker mechanically disconnects the contactor during the disconnection process, and extinguishes the arc generated by the disconnection by blowing an insulating medium and an arc-extinguishing medium.
  • the type of gas circuit breaker as described above is now widely used as a puffer type (see, for example, Patent Document 1).
  • a fixed arc contact and a fixed energizing contact, and a movable arc contact and a movable energizing contact are respectively arranged in an airtight container filled with an arc extinguishing gas. .
  • the electric current is conducted or cut off by bringing both arc contacts and both energizing contacts into contact with or separated from each other by a mechanical driving force.
  • the volume decreases with the separation of the contacts, and the pressure-accumulating space in which the arc-extinguishing gas is accumulated and the arc-contacting properties of the pressure-accumulating space are arranged so as to surround both arc contacts.
  • An insulating nozzle is provided to guide the gas to arc discharge.
  • the fixed arc contact and the movable arc contact are separated to generate an arc between the arc contacts.
  • the arc is extinguished by strongly blowing the arc-extinguishing gas that has been sufficiently accumulated in the pressure accumulating space with the separation of the contact through the insulating nozzle, thereby restoring the insulation performance of both arc contacts.
  • SF 6 gas sulfur hexafluoride gas
  • SF 6 gas is chemically stable and non-toxic, and has excellent arc interruption performance (arc extinguishing performance) and electrical insulation performance.
  • arc interruption performance arc extinguishing performance
  • electrical insulation performance In particular, it is very suitable for high voltage gas circuit breakers.
  • it is known to have a high global warming effect, and in recent years, reduction of the amount of use is desired.
  • the magnitude of global warming action is generally expressed by the global warming potential (GWP), that is, the relative value when CO 2 gas is 1, and it is known that the global warming potential of SF 6 gas reaches 23,900. It has been.
  • GWP global warming potential
  • alternative gases such as carbon dioxide (CO 2 ) gas, nitrogen (N 2 ) gas, oxygen (O 2 ) gas, and methane (CH 4 ) gas are applied as arc extinguishing gas in the gas circuit breaker.
  • CO 2 carbon dioxide
  • N 2 nitrogen
  • O 2 oxygen
  • CH 4 methane
  • the arc discharge can be more powerful and the arc extinguishing performance can be improved. Since the compressibility of the arc extinguishing gas depends on the volume change rate of the pressure accumulating space, it is desirable that the pressure accumulating space is large.
  • the gas circuit breaker according to the present embodiment is made in order to solve the above-described problems, and is a compact and highly reliable gas circuit breaker even in the case of using an alternative gas that has little environmental impact.
  • the purpose is to provide a vessel.
  • the gas circuit breaker includes a sealed container filled with an arc extinguishing gas, and is disposed oppositely in the sealed container and can be electrically energized.
  • a pair of arc electrodes configured to be capable of generating arc discharge, and a booster that pressurizes the arc-extinguishing gas to generate boosting gas in order to blow the arc-extinguishing gas against the arc discharge.
  • the pressure accumulating space is closed or opened in a gas circuit breaker provided with a pressure accumulating space for storing the pressure increasing gas and a rectifying means for guiding the pressure increasing gas from the pressure accumulating space toward the arc discharge.
  • An openable and closable opening / closing part for making a state is provided, and the pressure increasing part has a cylinder and a piston, and adiabatically compresses the arc-extinguishing gas inside the cylinder by moving at least one of them, Configured serial to generate a boosted gas, the arc extinguishing gas, global warming potential SF 6 smaller than the gas, and wherein the specific heat ratio is greater than 1.1 at 20 ° C..
  • FIG. 1 is a cross-sectional view showing the overall configuration of the gas circuit breaker according to the present embodiment.
  • FIG. 1 is a cross-sectional view showing the overall configuration of the gas circuit breaker according to the present embodiment.
  • the gas circuit breaker connects and separates the electrodes that make up the electric circuit, and switches between current interruption and on state.
  • the electrodes are bridged by arc discharge.
  • a gas flow of arc extinguishing gas is generated, and the gas flow is guided and blown to the arc discharge to cool the arc discharge and extinguish the arc at the current zero point.
  • the gas circuit breaker has a sealed container (not shown) made of grounded metal or insulator, and the inside thereof is filled with an arc extinguishing gas.
  • the arc extinguishing gas is a gas having arc extinguishing performance and insulation performance.
  • a gas having a global warming potential smaller than that of SF 6 gas and a specific heat ratio at room temperature (here, 20 degrees Celsius) is larger than 1.1 of SF 6 gas. Is used.
  • any one of noble gases such as nitrogen (N 2 ), carbon dioxide (CO 2 ), oxygen (O 2 ), methane (CH 4 ), helium (He), argon (Ar), etc.
  • One kind of single gas can be used.
  • a mixed gas containing at least one of the above single gases is also available. Can be used. Note that “-” in the item “GWP” in FIG. 2 indicates zero or almost zero.
  • the electrode of the gas circuit breaker is roughly divided into a fixed electrode part A and a movable electrode part B, and is arranged facing the sealed container.
  • Each of the fixed electrode portion A and the movable electrode portion B is mainly composed of a plurality of members having a basic shape of an internal hollow cylinder or an internal solid column, and has a concentric arrangement having a common central axis. By matching the diameters, the related members face each other and function cooperatively.
  • the fixed electrode part A has fixed arc electrodes 30 a and 30 b and a fixed energizing electrode 3.
  • the movable electrode part B has a movable energizing electrode 5 and a trigger electrode 31.
  • the fixed arc electrodes 30a and 30b are not members included in the movable portion having the movable energizing electrode 5 and the trigger electrode 31, but are members which are fixedly disposed opposite to each other in a sealed container (not shown).
  • the movable part having the movable energizing electrode 5 and the trigger electrode 31 which are movable elements of the movable electrode part B is directly or indirectly connected to a driving device (not shown), and is fixed according to the operating force of the driving device. It approaches and separates from the part A along the center line.
  • the movable electrode part B comes in contact with and separates from the fixed electrode part A, and the arc discharge 7 is generated and extinguished in the process of turning on and off the current and interrupting the current.
  • the pressure in the sealed container is a single pressure, for example, the charging pressure of the arc extinguishing gas, at any part during normal operation.
  • the fixed energizing electrode 3 is larger in diameter than the fixed arc electrode 30a, and is arranged concentrically with the fixed arc electrode 30a with a common central axis.
  • the movable energizing electrode 5 has a cylindrical shape whose outer diameter is the same as the inner diameter of the fixed energizing electrode 3, and has a common central axis with the fixed energizing electrode 3, so that the movable energizing electrode 3 can be contacted and separated from the fixed energizing electrode 3. Has been placed. These constitute part of the electric circuit by the contact between the fixed energizing electrode 3 and the movable energizing electrode 5.
  • the pair of fixed arc electrodes 30a and 30b has a cylindrical shape having substantially the same diameter, and is fixedly disposed in the sealed container with the central axis being common and the openings being opposed to and spaced from each other.
  • the opening edges of the fixed arc electrodes 30a and 30b facing each other bulge out inside.
  • the trigger electrode 31 has a solid rod shape, and is disposed on the central axis so as to connect the fixed arc electrodes 30a and 3b inside the fixed arc electrodes 30a and 30b.
  • one end of the trigger electrode 31 is directly or indirectly connected to a driving device (not shown), and the driving force moves the inside of the fixed arc electrodes 30a and 30b along the central axis so as to advance and retreat.
  • the outer diameter of the trigger electrode 31 coincides with the inner diameter of the opening edge portion of the fixed arc electrodes 30a, 30b that bulges toward the inside.
  • the inner surface of the fixed arc electrode 30a and the outer surface of the trigger electrode 31 come into contact with each other, and a state is established in which electrical conduction is possible.
  • the inner surface of the fixed arc electrode 30b and the outer surface of the trigger electrode 31 are in contact with each other and are electrically connected.
  • the trigger electrode 31 accepts the arc discharge 7 by freely moving between an energizing position for energizing the fixed arc electrodes 30a and 30b and a blocking position away from the fixed arc electrode 30a.
  • the trigger electrode 31 When the trigger electrode 31 is located at the energization position, it contacts the fixed arc electrodes 30a and 30b. That is, the fixed arc electrodes 30a and 30b are short-circuited by the trigger electrode 31 to realize an energized state. When moving from the energized position to the cutoff position, the trigger electrode 31 is separated from the fixed arc electrode 30a, and an arc discharge 7 is generated between the trigger electrode 31 and the fixed arc electrode 30a. When the trigger electrode 31 is further away from the fixed arc electrode 30a and the distance between the fixed arc electrode 30a and the trigger electrode 31 is larger than the distance between the fixed arc electrode 30a and the fixed arc electrode 30b, the arc discharge 7 is eventually triggered. Transition from the electrode 31 to the arc electrode 30b. Thus, the trigger electrode 31 serves as a switch unit that switches between energization and interruption.
  • An insulating nozzle 32 is fixedly arranged in a sealed container around the rod-shaped trigger electrode 31.
  • the insulating nozzle 32 is provided in a sealed container so as to surround a space between the fixed arc electrodes 30a and 30b. Therefore, the trigger electrode 31 moves inside the insulating nozzle 32 during the interruption operation, and the arc discharge 7 is generated inside the insulating nozzle 32.
  • the shape of the insulating nozzle 32 has a constriction in a partial section, and the diameters of the openings at both ends are enlarged.
  • the end portion of the insulating nozzle 32 surrounds the opening edge portions of the fixed arc electrodes 30a and 30b facing each other, and the opening at one end portion of the insulating nozzle 32 is directed to the movable piston 33 described later. Yes.
  • the gas flow blown to the arc discharge 7 is generated by the pressure increasing chamber 35 and the pressure accumulating chamber 36.
  • the pressure accumulating chamber 36 and the pressure increasing chamber 35 are provided in the movable electrode portion B and are provided so as to surround the trigger electrode 31.
  • the pressure accumulating chamber 36 stores the arc extinguishing gas boosted by the boosting chamber 35 and blows the stored arc extinguishing gas to the arc discharge 7.
  • the pressure accumulating chamber 36 is formed as a space surrounded by the trigger electrode 31, the cylindrical member 40, and the fixed arc electrode 30b.
  • the cylindrical member 40 is disposed so as to surround the trigger electrode 31 with the same diameter as the outer diameter of the fixed arc electrode 30b and the central axis.
  • the opening edge of the cylindrical member 40 is connected to the opening edge opposite to the opening end that bulges inside the fixed arc electrode 30b so that the cylinder continues. Since the cylindrical member 40 has a larger diameter than the trigger electrode 31, the outer peripheral surface of the trigger electrode 31 is separated from the inner peripheral surface of the cylindrical member 40, and is surrounded by the trigger electrode 31, the cylindrical member 40, and the fixed arc electrode 30b.
  • a pressure accumulating chamber 36 is formed.
  • the pressure accumulating chamber 36 is provided with an openable / closable opening / closing portion 41 for closing or opening the internal space of the pressure accumulating chamber 36.
  • the opening / closing portion 41 is formed by a contact (sliding) portion between the portion that bulges toward the center of the tip of the fixed arc electrode 30 b and the outer peripheral surface of the trigger electrode 31. That is, this contact portion has a certain airtightness, and the opening / closing part 41 closes the accumulator chamber 36 by the contact between the fixed arc electrode 30b and the trigger electrode 31 in the first half of the current interruption process, and the arc discharge.
  • the trigger electrode 31 is separated from both the fixed arc electrodes 30a and 30b, thereby opening the pressure accumulating chamber 36.
  • the trigger electrode 31 also serves as an opening / closing means for switching between the closed state and the open state of the pressure accumulating chamber 36 in addition to the energization or cutoff switch means.
  • the pressurizing chamber 35 In the pressurizing chamber 35, the arc extinguishing gas inside is pressurized.
  • the pressurizing chamber 35 is a space provided on the outer peripheral side of the pressure accumulating chamber 36 and surrounded by the cylinder 39, the cylindrical member 40, and the movable piston 33.
  • the cylinder 39 has a cylindrical shape with a bottom end, and has an opening at the front end side of the fixed arc electrode 30b and an end surface at the rear end side of the fixed arc electrode 30b. It is fixedly placed inside. That is, the cylinder 39 is provided so as to surround the cylindrical member 40 and the fixed arc electrode 30b which are a continuous cylinder.
  • the movable piston 33 is inserted into the cylinder 39 so as to close the opening of the cylinder 39. For this reason, the thermal exhaust gas between the fixed arc electrodes 30 a and 30 b generated by the generation of the arc discharge 7 does not flow into the boosting chamber 35.
  • the movable piston 33 has a sliding inner peripheral surface 33a and a sliding outer peripheral surface 33b, and is configured to be movable along the center line. As shown in FIG. 1, in the present embodiment, the movable piston 33 has a disk whose center is an open disk and a cylinder protruding from the opening edge.
  • the sliding inner peripheral surface 33 a is a cylindrical inner peripheral surface and a disk inner peripheral surface, and is slidable with the fixed arc electrode 30 b and the cylindrical member 40.
  • the sliding outer peripheral surface 33 b is a disk outer peripheral surface and is slidable with the inner peripheral surface of the cylinder 39.
  • a seal member 47 is provided on the sliding inner peripheral surface 33a and the sliding outer peripheral surface 33b to make the inside of the pressurizing chamber 35 airtight.
  • the sliding inner peripheral surface 33 a is wide along the center line, and the seal member 47 of the sliding inner peripheral surface 33 a that slides with the cylindrical member 40 is a communication hole provided at the proximal end portion of the cylindrical member 40. 34 apart from the width of 34.
  • the movable piston 33 moves away from the arc discharge 7 by the operating force of a driving device (not shown), whereby the volume of the boosting chamber 35 decreases and the pressure in the boosting chamber 35 increases. That is, the movable piston 33 serves as a pressure increasing means.
  • the movable piston 33 and the trigger electrode 31 may be moved by separate drive devices or may be moved by a common drive device.
  • the movable piston 33 is driven by being connected to a rod 43 coupled by a trigger electrode 31 and a link 42, for example.
  • the rod 43 is separated by a predetermined angle around the center line as shown in FIG. 3 which is a cross-sectional view orthogonal to the center line. It is desirable to provide a plurality of them.
  • the same portion is sealed by the seal member 47.
  • An intake hole 17 is provided in the bottom surface of the cylinder 39, and an intake valve 19 is provided in the intake hole 17.
  • the intake valve 19 is configured to replenish the arc-extinguishing gas into the booster chamber 35 only when the pressure in the booster chamber 35 is lower than the filling pressure in the sealed container.
  • the trigger electrode 31 When it is necessary to interrupt an excessive accident current, a small advance current, a delayed load current such as a reactor cutoff, or an extremely small accident current, the trigger electrode 31 is separated from the fixed arc electrode 30a upon receiving the operating force of the driving device.
  • the arc discharge 7 is generated between the trigger electrode 31 and the fixed arc electrode 30a.
  • the thermal exhaust gas 20 generated from the arc discharge 7 flows in a direction away from the arc discharge 7 without delay by the insulating nozzle 32 at the same time as the generation. That is, the gas is discharged through the exhaust hole (not shown) provided in the fixed arc electrode 30a and the exhaust hole 37 provided in the movable energizing electrode 5 into the sealed container.
  • the trigger electrode 31 is in contact with the fixed arc electrode 30b, so the opening / closing part 41 is closed and the pressure accumulating chamber 36 is closed.
  • the heat exhaust gas 20 is prevented from entering the pressure accumulating chamber 36 by closing the opening / closing part 41.
  • the pressure increasing chamber 35 and the pressure accumulating chamber 36 are defined by the cylindrical member 40, and are formed as an integral space by the communication hole 34 provided in the proximal end portion of the cylindrical member 40. Therefore, the arc extinguishing gas existing in the sealed space composed of the pressurizing chamber 35 and the pressure accumulating chamber 36 is adiabatically compressed and boosted as the movable piston 33 moves backward. Further, since the opening / closing part 41 is closed, the outflow of the pressurized gas in the pressure accumulating chamber 36 is restricted.
  • the volume of the pressurizing chamber 35 becomes relatively small, and most of the arc extinguishing gas compressed by the movable piston 33 is stored in the pressure accumulating chamber 36 through the communication hole 34.
  • the pressure increasing chamber 35 and the pressure accumulating chamber 36 are separated in pressure by the sealing member 47 provided on the movable piston 33 closing the communication hole 34. That is, the pressure increasing chamber 35 and the pressure accumulating chamber 36 are not an integral space.
  • the pressure in the pressurizing chamber 35 is quickly released to the sealed container as the released compressed gas 49 by the pressure release mechanism 48 thereafter.
  • the pressure release mechanism 48 may be provided with a groove 43a in a part of the rod 43, but may have various other structures.
  • the compressed gas in the pressure accumulating chamber 36 travels along the trigger electrode 31 and is powerfully applied to the arc discharge 7 as the blowing gas 21. Be sprayed.
  • the gas flow is appropriately rectified so that the blowing gas 21 is effectively blown to the arc discharge 7 by the insulating nozzle 32 and the thermal exhaust gas 20 is smoothly discharged.
  • the arc discharge 7 is transferred to the fixed arc electrode 30b. Therefore, the period during which the arc discharge 7 is ignited on the trigger electrode 31 is only a limited period in the first half of the interruption process until the arc discharge 7 is transferred to the fixed arc electrode 30b.
  • the booster chamber 35 is provided with an intake hole 17 and an intake valve 19.
  • the intake valve 19 is configured to replenish the arc-extinguishing gas into the booster chamber 35 only when the pressure in the booster chamber 35 is lower than the filling pressure in the sealed container.
  • the arc-extinguishing gas is boosted by using a mechanical boosting action that compresses the arc-extinguishing gas inside the boosting unit 35 by the movable piston 33 and boosts the pressure.
  • the self-pressurizing action of the arc extinguishing gas by the heat of the arc discharge 7 is not used.
  • the gas 21 blown to the arc discharge 7 is an arc extinguishing gas whose pressure is increased by mechanical compression by the movable piston 33 without being thermally boosted by the heat of the arc discharge 7.
  • the temperature of the pressurizing gas 21 sprayed to the arc discharge 7 is much lower than the temperature of the conventional spraying gas using the self-pressurizing action.
  • the cooling effect of the arc discharge 7 by blowing the pressurizing gas 21 can be remarkably enhanced. Therefore, even in alternative gas than SF 6 gas extinguishing performance is poor, it is possible to have equivalent extinguishing performance and conventional SF 6 gas circuit breakers.
  • the arc-extinguishing gas that has a global warming potential smaller than that of SF 6 gas and a specific heat ratio at 20 ° C. larger than 1.1 of SF 6 gas is used as the arc-extinguishing gas.
  • the following effects are exhibited.
  • FIG. 5 shows a result of comparing the arc spray pressure in the arc extinguishing structure between SF 6 gas (specific heat ratio 1.1) and alternative gas (specific heat ratio 1.4). As shown in FIG. 5, a stronger arc spray pressure can be obtained in the arc extinguishing structure mainly using adiabatic compression when an alternative gas having a specific heat ratio larger than 1.1 is used.
  • the period in which the arc discharge 7 is ignited on the trigger electrode 31 is only a limited period in the first half of the interruption process until the arc discharge 7 is transferred to the fixed arc electrode 30b. Therefore, the diameter of the trigger electrode 31 may be the minimum necessary as long as the durability that can withstand this period is satisfied. That is, since it is not necessary to increase the diameter of the trigger electrode 31 more than necessary, the weight of the movable part can be reduced. On the other hand, since the fixed arc electrodes 30a and 30b fixed in the hermetic container do not affect the weight of the movable part, the fixed arc electrodes 30a and 30b can be made thick without worrying about an increase in weight.
  • the durability of the fixed arc electrodes 30a and 30b against a large current arc is remarkably improved. Furthermore, when the fixed arc electrodes 30a and 30b are made thick, it is possible to greatly reduce the electric field concentration at the tips of the fixed arc electrodes 30a and 30b when a high voltage is applied between the electrode gaps.
  • the required electrode gap interval can be shortened compared to the conventional gas circuit breaker.
  • the length of the arc discharge 7 is shortened, and the electric input power to the arc discharge 7 when the current is interrupted is reduced.
  • the pressure and flow rate of the compressed gas sprayed to the arc discharge 7 is determined according to the current conditions because the self-pressure boosting action by the arc heat is not used. It is always constant regardless. Also, the timing for starting the spraying to the arc discharge 7 is determined at the timing at which the tip of the trigger electrode 31 passes through the fixed arc electrode 30b and the two are separated from each other. Therefore, the current interruption completion time is not prolonged, and the request for shortening the current interruption completion time can be met.
  • the trigger electrode 31 has a smaller diameter than the fixed arc electrodes 30a and 30b, and can be lighter than conventional movable arc electrodes and drive rods. Further, since the insulating nozzle 32 is not included in the movable part in addition to the two fixed arc electrodes 30a and 30b, the weight of the movable part can be significantly reduced. In this embodiment in which the weight of the movable part is advanced as described above, the driving operation force can be greatly reduced in terms of obtaining the opening speed of the movable part necessary for interrupting the current.
  • the spraying pressure itself necessary to cut off the current can be reduced along with the weight reduction, the driving operation force necessary for compression can be reduced.
  • the temperature of the blowing gas 21 is much lower than that of the prior art, the cooling effect of the arc discharge 7 is remarkably increased, and the arc discharge 7 can be interrupted at a lower pressure.
  • the thermal exhaust gas 20 generated from the arc discharge 7 flows in the direction away from the arc discharge 7 without delay at the same time as the generation, and is quickly discharged into the space in the sealed container. Therefore, the blowing gas 21 to the arc discharge 7 flows due to the difference between the pressure on the upstream side, that is, the pressure in the pressure accumulating chamber 36, and the pressure on the downstream side, that is, in the vicinity of the fixed arc electrode 30a. That is, if the pressure on the downstream side is high, a sufficient blowing force cannot be obtained no matter how much the pressure in the pressure accumulating chamber 36 is increased.
  • the pressure of the thermal exhaust gas 20 is quickly discharged to the sealed container, so that the pressure on the downstream side, that is, in the vicinity of the fixed arc electrode 30a is always equal to the filling pressure of the sealed container. A nearly equivalent value is maintained. Therefore, it is possible to reduce the spray pressure necessary for interrupting the current, and to reduce the driving operation force.
  • the low-temperature pressurization gas 35 ejected from the inside of the fixed arc electrode 30b is concentrated on the root portion of the arc discharge 7 located in the vicinity of the fixed arc electrode 30b and blown across from the inside to the outside. It will be attached. Therefore, the arc can be interrupted at a lower pressure, and the driving operation force can be reduced while maintaining an excellent interrupting performance.
  • the pressure of the thermal exhaust gas 20 generated from the arc discharge 7 is quickly discharged into the space in the sealed container as described above, but the opening at one end of the insulating nozzle 32 is directed to the movable piston 33. Therefore, there is a possibility that a part of the left side surface of the movable piston 33 shown in FIG. However, even when the pressure of the thermal exhaust gas 20 is applied, the pressure becomes a force that supports the compressive force of the movable piston 33 and does not act at least as a reaction force of the driving operation force of the movable piston 33. . Also from this point, the driving operation force can be reduced.
  • the insulating nozzle 32 and the fixed arc electrodes 30a and 30b are all fixed in a sealed container. Therefore, the relative position of each member does not change, and since the self-pressure boosting action by the arc heat is not used at all, the pressure and the flow rate of the pressurizing gas 21 sprayed to the arc discharge 7 are also current. Regardless of conditions, it is always constant. Therefore, it is possible to optimally design the flow path in the insulating nozzle 32 so as to be ideal for arc interruption.
  • the pressure increasing chamber 35 is provided with an intake hole 17 and an intake valve 19, and when the pressure in each chamber becomes lower than the filling pressure in the sealed container, the arc extinguishing is performed. Sexual gas can be automatically inhaled. For this reason, the low temperature arc extinguishing gas is quickly replenished into the pressure increasing chamber 35 during the charging operation. Therefore, there is no concern at all about the deterioration of the interruption performance even in the second interruption process in the high-speed reclosing duty.
  • the gas circuit breaker according to the present embodiment is arranged in a sealed container filled with an arc-extinguishing gas and is opposed to the sealed container so that it can be electrically energized.
  • a pair of fixed arc electrodes 30a, 30b configured to be capable of being generated, and a pressurizing chamber 35 that pressurizes the arc extinguishing gas to generate the pressurizing gas in order to blow the arc extinguishing gas to the arc discharge 7;
  • a gas circuit breaker provided with a pressure accumulating chamber 36 for accumulating pressurized gas and an insulating nozzle 32 for guiding the pressurized gas from the pressure accumulating chamber 36 toward the arc discharge 7, the accumulating chamber 36 is closed or opened.
  • the pressurizing chamber 35 has a cylinder 39 and a movable piston 33, and the movable piston 33 is configured to adiabatically compress the arc extinguishing gas inside the cylinder 39 to generate the boosted gas.
  • the arc extinguishing gas was an arc extinguishing gas having a global warming potential smaller than that of SF 6 gas and a specific heat ratio at 20 ° C. larger than 1.1.
  • the pressure is increased mainly by adiabatic compression by the movement of the movable piston 33, and the adiabatic compression works as a power of the specific heat ratio, so that a remarkable pressure increasing action can be obtained. Furthermore, since it is adiabatic compression, the heat generated by the arc discharge 7 does not flow into the booster 35, and the temperature of the arc extinguishing gas is reduced as compared with the conventional gas circuit breaker into which the heat from the arc discharge 7 flows. While the temperature can be lowered, and the pressurizing gas can be stored in the pressure accumulating chamber 36 until immediately before the arc discharge 7 is sprayed by the opening / closing part 41, a sufficient spraying pressure can be secured. Therefore, it is not necessary to increase the drive energy and the device size of the drive device.
  • the opening / closing part 41 closes the pressure accumulating chamber 36 in the first half of the current interruption process, restricts the flow of the thermal exhaust gas 20 generated by the heat of the arc discharge 7 into the pressure accumulating chamber 36, or accumulates pressure.
  • the flow of the pressurization gas in the chamber 36 is limited, the pressure accumulation chamber 36 is opened in the latter half of the current interruption process, and the pressure increase gas in the pressure accumulation chamber 36 is guided to the arc discharge 7.
  • a highly reliable gas circuit breaker can be obtained.
  • the internal space of the boosting chamber 35 and the internal space of the pressure accumulating chamber 36 are configured to be separated in pressure, and the pressure in the internal space of the boosting chamber 35 is released.
  • the pressurizing chamber 35 was configured as described above. As a result, it is possible to blow the boosted gas from the pressure accumulating chamber 36 to the arc discharge 7 without being affected by the boosting chamber 35 and to release the pressure in the internal space of the boosting chamber 35 independently of the blowing. Since the reverse stroke of the stroke of the movable piston 33 due to the compression reaction force can be suppressed and excessive driving energy is not required, it is possible to avoid an increase in equipment size and driving device.
  • the arc extinguishing gas is a single gas of nitrogen (N 2 ), carbon dioxide (CO 2 ), oxygen (O 2 ), methane (CH 4 ), or a rare gas, or at least 1 A mixed gas containing seeds was used.
  • N 2 nitrogen
  • CO 2 carbon dioxide
  • O 2 oxygen
  • CH 4 methane
  • a rare gas or at least 1 A mixed gas containing seeds was used.
  • the configuration is such that the pressure of the thermal exhaust gas 20 generated from the arc discharge 7 does not act as a compression reaction force of the arc extinguishing gas by the movable piston 33. Since the temperature of the arc extinguishing gas blown to the arc discharge 7 can be made much lower than that of the prior art using the self-pressure boosting action, the cooling effect of the arc discharge 7 can be remarkably improved, and the movable piston Since the drive energy of 33 can be reduced, it is possible to avoid an increase in equipment size and drive device as a result.
  • the pair of fixed arc electrodes 30a and 30b are fixed in a sealed container, and a trigger electrode 31 having a smaller diameter than the fixed arc electrodes 30a and 30b is fixed inside the pair of fixed arc electrodes 30a and 30b.
  • 30a, 30b is movably disposed, and the trigger electrode 31 is brought into contact with the pair of fixed arc electrodes 30a, 30b to short-circuit both the fixed arc electrodes 30a, 30b.
  • An arc discharge 7 is generated between the trigger electrode 31 and one fixed arc electrode 30a, and the arc discharge 7 is finally transferred from the trigger electrode 31 to the other fixed arc electrode 30b.
  • the arc electrode is required to have durability against the arc discharge 7.
  • a gas circuit breaker having a structure in which a solid cylindrical electrode is subtracted from a conventional movable arc electrode having a cylindrical shape more durability is required.
  • the diameter of the movable arc electrode is increased, leading to an increase in the weight of the movable part.
  • the period during which the arc discharge 7 is ignited on the trigger electrode 31 is only a limited period until the arc discharge 7 is transferred to the fixed arc electrode 30b. This can reduce the weight of moving parts.
  • the fixed arc electrodes 30a and 30b are fixed in the sealed container, the fixed arc electrodes 30a and 30b can be thickened and the durability can be improved without worrying about an increase in the weight of the movable part. Thus, it is possible to achieve both improvement in durability and weight reduction of the movable part.
  • the thermal exhaust gas 20 generated from the arc discharge 7 flows in a direction away from the arc discharge 7 without delay at the same time as the generation of the thermal exhaust gas 20, and is quickly discharged into the space in the sealed container.
  • the pressure between the fixed arc electrodes 30a and 30b is always maintained at a value substantially equal to the filling pressure of the sealed container, so that the spraying pressure necessary for interrupting the current can be reduced and the driving operation force can be reduced. .
  • an insulating nozzle 32 fixed in the sealed container is provided.
  • the insulating nozzle 32 does not affect the weight of the movable part, so that the driving energy can be reduced. An increase in size can be avoided.
  • the second embodiment has the same basic structure as that of the first embodiment, but is characterized by a drive device that drives a movable part, which is not shown in FIGS.
  • the compression reaction force (a), that is, the force that the movable piston 33 receives from the pressure of the pressure-increasing chamber 35 is indicated by a solid line
  • the driving force (a) of the driving device is indicated by a dotted line
  • the force that accelerates the movable part is indicated by a one-dot chain line.
  • the horizontal axis is the drive stroke, and the complete closing position is 0 pu and the complete opening position is 1.0 pu.
  • the effective acceleration force is expressed as “driving force (A) -compression reaction force (A)”.
  • a positive value means acceleration force
  • a negative value means deceleration force.
  • the curve of the compression reaction force ((a), solid line) is known as adiabatic compression characteristics in FIG. Monotonically increasing characteristics as shown in FIG.
  • the curve of the compression reaction force (solid line) is always a constant curve regardless of the magnitude of the cutoff current or the phase of the alternating current. .
  • FIG. 6 shows a case where the driving force ((A), dotted line) of the driving device is flat with respect to the stroke.
  • FIG. 7 shows a case where the driving force ((A), dotted line) of the driving device attenuates with respect to the stroke.
  • the driving force is constant at 0.5 pu over the entire stroke position.
  • FIG. 7 shows a case where the driving force linearly attenuates from 0.8 pu to 0.2 pu as an example.
  • FIG. 6 and FIG. 7 have the same driving energy although the stroke characteristics of the driving force are different.
  • the second embodiment is characterized in that a drive device having an output attenuation type characteristic as shown in FIG. 7 is employed. That is, as the driving device, one that is configured such that the driving force decreases in the shut-off process is used.
  • the driving device having the characteristics shown in FIG. 7 that produces a large driving force in the first half of the stroke and attenuates toward the second half has a larger effective acceleration force (ear) than that in FIG. It turns out that it is a value. Since the compression reaction force characteristics (A) are the same in FIGS. 6 and 7, and the drive energy is also the same, the speed at the fully open position (stroke 1pu) is the same, but the speed during the stroke is Unlike in both cases, the top speed of the movable portion is higher in FIG. 7 where the acceleration force in the first half of the opening is larger.
  • the drive device having the output attenuation type drive characteristics as shown in FIG. 7 increases the drive speed of the movable portion compared to the drive device having the drive characteristics shown in FIG. It shows that you can. This means that the gap between the electrodes opens faster for the gas circuit breaker, which is a great merit in terms of quick recovery of electrical insulation between the electrodes. Further, if the driving speed of the movable portion is increased, the arc discharge 7 is transferred from the trigger electrode 31 to the fixed arc electrode 30b, and the time until the low-temperature compressed gas is strongly blown from the accumulator 36 to the arc discharge 7 is increased. This shortens the time required for completing the shut-off and further improves durability.
  • the gas circuit breaker mainly performs the adiabatic compression by the movable piston 33 to increase the pressure of the blowing gas, so that the compression reaction force is very small in the initial stage and toward the latter half. This is due to the rapidly increasing properties.
  • the value of the spring constant k for obtaining the same driving energy increases, and the driving force is reduced as the spring is released. It becomes the characteristic which attenuates greatly with respect to the stroke.
  • the output characteristic is attenuated without changing the operation drive energy by connecting an appropriate link structure. It is also possible to change to a type.
  • the high gas pressure in the boosting chamber 35 described in the first embodiment is disconnected from the movable piston 33, and the pressure in the boosting chamber 35 is released by the release mechanism 48, so that the driving force is greatly increased in the latter half of the opening. Even if it drops, there will be no inconvenience such as the moving part going backwards.
  • the driving force at the complete cutoff position (stroke 1 pu) is, for example, approximately 80% or less with respect to the driving force at the closing position (stroke 0 pu).
  • stroke 1 pu the driving force at the complete cutoff position
  • stroke 0 pu the driving force at the closing position
  • the driving device for mechanically compressing the arc extinguishing gas of the booster 35 is provided, and the driving device is configured such that the driving force decreases with the driving stroke.
  • the driving speed of the movable portion is increased, the arc discharge 7 is transferred from the trigger electrode 31 to the fixed arc electrode 30b, and the time until the low-temperature compressed gas is strongly blown from the accumulator 36 to the arc discharge 7 is increased.
  • the effect of shortening and shortening the time required to complete the shutoff and improving the durability can be obtained.
  • the movable piston 33 can be moved in the direction of the center line by the driving device and is used as the boosting means, but is not limited thereto.
  • the piston may be fixed, and the movable cylinder 39 'connected directly or indirectly to the driving device may be moved with respect to the fixed piston 33'.
  • the volume of the pressure increasing portion 35 is variable, so that the arc extinguishing gas inside the pressure increasing portion 35 can be compressed and pressure increased.
  • the movable cylinder 39 ′ has a sliding surface that can slide with the fixed arc electrode 30b and the cylindrical member 40 in the same manner as the movable piston 33, and the communication hole 34 can be closed by the movement of the movable cylinder 39 ′. Configure as follows.
  • the fixed electrode portion A is fixed in the sealed container and only the movable electrode portion B is moved in the axial direction, but the movable electrode portion B is moved with respect to the fixed electrode portion A.
  • the fixed electrode portion A may also be moved in the axial direction so as to move relatively, so that a so-called dual motion mechanism that improves the relative opening speed may be used.

Landscapes

  • Circuit Breakers (AREA)

Abstract

Provided is a gas circuit-breaker that is compact and highly reliable even when an alternative gas having a low environmental impact is used. In the gas circuit-breaker provided with a pair of fixed arc electrodes (30a, 30b) disposed so as to be opposite from one another inside a sealed container and constituted in such a manner that an arc discharge (7) may be generated therebetween when a current is interrupted, a pressurization chamber (35) for generating a pressurized gas for the purpose of blasting an arc-quenching gas onto the arc discharge (7), and an accumulation chamber (36) for accumulating the pressurized gas, an opening-closing portion (41) is provided, for bringing the accumulation chamber (36) into a closed state or an open state. In addition, the pressurized chamber (35) is constituted so as to have a cylinder (39) and a mobile piston (33), and generate the pressurized gas by adiabatic compression of the arc-quenching gas inside the cylinder (39) via the movement of the mobile piston (33). The arc-quenching gas has a lower global warming potential than SF6 gas and a specific heat ratio of at 20°C of greater than 1.1.

Description

ガス遮断器Gas circuit breaker
 本発明の実施形態は、電力系統において電流遮断及び投入を切り替えるガス遮断器に関する。 Embodiment of this invention is related with the gas circuit breaker which switches an electric current interruption | blocking and injection | throwing-in in an electric power grid | system.
 電力系統において、過大な事故電流を含む電流開閉のためにガス遮断器が使用されている。ガス遮断器は、遮断過程に接触子を機械的に切り離し、この切り離しによって発生したアークを絶縁媒体および消弧媒体の吹き付けによって消弧する。 In the power system, a gas circuit breaker is used to switch the current including an excessive accident current. The gas circuit breaker mechanically disconnects the contactor during the disconnection process, and extinguishes the arc generated by the disconnection by blowing an insulating medium and an arc-extinguishing medium.
 上記のようなガス遮断器は、現在パッファ形と呼ばれるタイプが広く普及している(例えば、特許文献1参照)。パッファ形ガス遮断器は、消弧性ガスが充填された密閉容器内に、固定アーク接触子及び固定通電接触子と、可動アーク接触子及び可動通電接触子とがそれぞれ対向して配置されている。両アーク接触子及び両通電接触子を機械的な駆動力によって接触又は離反させることで電流を導通し又は遮断する。 The type of gas circuit breaker as described above is now widely used as a puffer type (see, for example, Patent Document 1). In the puffer-type gas circuit breaker, a fixed arc contact and a fixed energizing contact, and a movable arc contact and a movable energizing contact are respectively arranged in an airtight container filled with an arc extinguishing gas. . The electric current is conducted or cut off by bringing both arc contacts and both energizing contacts into contact with or separated from each other by a mechanical driving force.
 このガス遮断器には、接触子の離反に伴って容積が減少し、内部の消弧性ガスが蓄圧される蓄圧空間と、両アーク接触子を取り囲むように配置され、蓄圧空間の消弧性ガスをアーク放電に誘導する絶縁ノズルが設けられている。遮断過程においては、固定アーク接触子と可動アーク接触子が離反することで、両アーク接触子間にアークが発生する。接触子の離反に伴って蓄圧空間で十分蓄圧された消弧性ガスを、絶縁ノズルを介してアークに強力に吹き付けることにより、アークを消弧し、両アーク接触子の絶縁性能を回復させ、電流の遮断を完了させる。 In this gas circuit breaker, the volume decreases with the separation of the contacts, and the pressure-accumulating space in which the arc-extinguishing gas is accumulated and the arc-contacting properties of the pressure-accumulating space are arranged so as to surround both arc contacts. An insulating nozzle is provided to guide the gas to arc discharge. In the interruption process, the fixed arc contact and the movable arc contact are separated to generate an arc between the arc contacts. The arc is extinguished by strongly blowing the arc-extinguishing gas that has been sufficiently accumulated in the pressure accumulating space with the separation of the contact through the insulating nozzle, thereby restoring the insulation performance of both arc contacts. Complete the current interruption.
 消弧性ガスとしては、SFガス(六フッ化硫黄ガス)が広く用いられている。SFガスは、化学的に安定で無毒であり、アーク遮断性能(消弧性能)および電気絶縁性能ともに非常に優れているからである。特に、高電圧用のガス遮断器において非常に適している。その一方で、高い地球温暖化作用を有することが知られており、近年その使用量の削減が望まれている。 As the arc extinguishing gas, SF 6 gas (sulfur hexafluoride gas) is widely used. This is because SF 6 gas is chemically stable and non-toxic, and has excellent arc interruption performance (arc extinguishing performance) and electrical insulation performance. In particular, it is very suitable for high voltage gas circuit breakers. On the other hand, it is known to have a high global warming effect, and in recent years, reduction of the amount of use is desired.
 地球温暖化作用の大きさは一般に地球温暖化係数(GWP)、すなわちCOガスを1とした場合の相対値により表され、SFガスの地球温暖化係数は23,900に及ぶことが知られている。このような背景で、ガス遮断器における消弧性ガスとして二酸化炭素(CO)ガスや窒素(N)ガス、酸素(O)ガス、メタン(CH)ガス等の代替ガスを適用することが提案されている(特許文献2、3参照。)。これらの代替ガスは地球温暖化作用が無いか、あってもSFガスに比べて極めて小さいため、これら代替ガスをSFガスの代わりにガス遮断器に適用することで、地球温暖化への影響を大幅に抑制することが可能である。 The magnitude of global warming action is generally expressed by the global warming potential (GWP), that is, the relative value when CO 2 gas is 1, and it is known that the global warming potential of SF 6 gas reaches 23,900. It has been. Against this background, alternative gases such as carbon dioxide (CO 2 ) gas, nitrogen (N 2 ) gas, oxygen (O 2 ) gas, and methane (CH 4 ) gas are applied as arc extinguishing gas in the gas circuit breaker. (See Patent Documents 2 and 3). These alternative gases have no global warming effect or are very small compared to SF 6 gas, so by applying these alternative gases to gas circuit breakers instead of SF 6 gas, The influence can be greatly suppressed.
特公平7―109744号公報Japanese Patent Publication No. 7-109744 特許第4660407号公報Japanese Patent No. 4660407 特許第5127569号公報Japanese Patent No. 5127469
 しかしながら、上記のような代替ガスは何れもSFガスよりも消弧性能が大きく劣ることが知られている。従って、従来のガス遮断器の構造を踏襲し、充填する消弧性ガスをSFガスから代替ガスに変えただけでは、消弧性能の低下は避けられない。 However, it is known that any of the above-described alternative gases is greatly inferior in arc extinguishing performance than SF 6 gas. Therefore, the arc extinguishing performance is inevitably lowered only by following the structure of the conventional gas circuit breaker and changing the arc extinguishing gas to be filled from SF 6 gas to alternative gas.
 一方、一般的に、同じ消弧性ガスでも蓄圧空間の圧力を高めれば、アーク放電への吹き付けがより強力になるため、消弧性能を上げることができる。消弧性ガスの圧縮性は、蓄圧空間の体積変化率に依ることから、蓄圧空間は大きいことが望ましい。 On the other hand, in general, if the pressure in the pressure accumulating space is increased even with the same arc extinguishing gas, the arc discharge can be more powerful and the arc extinguishing performance can be improved. Since the compressibility of the arc extinguishing gas depends on the volume change rate of the pressure accumulating space, it is desirable that the pressure accumulating space is large.
 しかし、蓄圧空間を画成するシリンダやシリンダ内部に挿入された固定ピストンをより大きくしその容積を大きくすると、結果として、可動部の重量の増加、圧縮のための駆動反力の増大を招いてしまう。すなわち、代替ガスを使用して現在普及しているSFガス遮断器と同等の消弧性能を得ようとすると、機器サイズの大型化、駆動装置の大型化を余儀なくされ、コストの増加や機械的信頼性能の低下を招いていた。 However, if the cylinder that defines the accumulator space or the fixed piston inserted in the cylinder is made larger and its volume is increased, the weight of the movable part and the driving reaction force for compression will increase as a result. End up. In other words, using an alternative gas to obtain an arc extinguishing performance equivalent to the currently popular SF 6 gas circuit breaker necessitates an increase in the size of the device and an increase in the size of the drive unit. This has led to a decline in the reliability of the machine.
 本実施形態に係るガス遮断器は、上記のような課題を解決するためになされたものであり、環境への影響が少ない代替ガスを用いる場合であっても、コンパクトで信頼性の高いガス遮断器を提供することを目的とする。 The gas circuit breaker according to the present embodiment is made in order to solve the above-described problems, and is a compact and highly reliable gas circuit breaker even in the case of using an alternative gas that has little environmental impact. The purpose is to provide a vessel.
 上記の目的を達成するために、本実施形態のガス遮断器は、消弧性ガスが充填された密閉容器と、前記密閉容器内に対向配置され、電気的に通電可能で、電流遮断時には互いの間にアーク放電が発生しうるように構成された一対のアーク電極と、前記アーク放電に対し前記消弧性ガスを吹き付けるために、前記消弧性ガスを昇圧させて昇圧ガスを生成する昇圧部と、前記昇圧ガスを溜めておく蓄圧空間と、前記蓄圧空間から前記アーク放電に向けて前記昇圧ガスを導く整流手段と、が設けられたガス遮断器において、前記蓄圧空間を閉塞状態あるいは開放状態とするための開閉自在な開閉部が設けられ、前記昇圧部は、シリンダとピストンを有し、その少なくともどちらかを可動することで前記シリンダ内部の前記消弧性ガスを断熱圧縮し、前記昇圧ガスを生成するように構成され、前記消弧性ガスが、地球温暖化係数がSFガスよりも小さく、かつ、20℃における比熱比が1.1よりも大きいことを特徴とする。 In order to achieve the above object, the gas circuit breaker according to the present embodiment includes a sealed container filled with an arc extinguishing gas, and is disposed oppositely in the sealed container and can be electrically energized. A pair of arc electrodes configured to be capable of generating arc discharge, and a booster that pressurizes the arc-extinguishing gas to generate boosting gas in order to blow the arc-extinguishing gas against the arc discharge. In the gas circuit breaker, the pressure accumulating space is closed or opened in a gas circuit breaker provided with a pressure accumulating space for storing the pressure increasing gas and a rectifying means for guiding the pressure increasing gas from the pressure accumulating space toward the arc discharge. An openable and closable opening / closing part for making a state is provided, and the pressure increasing part has a cylinder and a piston, and adiabatically compresses the arc-extinguishing gas inside the cylinder by moving at least one of them, Configured serial to generate a boosted gas, the arc extinguishing gas, global warming potential SF 6 smaller than the gas, and wherein the specific heat ratio is greater than 1.1 at 20 ° C..
第1の実施形態に係るガス遮断器の全体構成を示す断面図である。(a)は投入時、(b)は遮断過程前半、(c)は遮断過程後半の状態を示す断面図である。It is sectional drawing which shows the whole structure of the gas circuit breaker which concerns on 1st Embodiment. (A) is a cross-sectional view showing the state at the time of charging, (b) is the first half of the blocking process, and (c) is the second half of the blocking process. SFガスと代替ガスの一例とこれらの地球温暖化係数(GWP)と比熱比を示す表である。An example with these global warming potential of SF 6 gas and substitute gas (GWP) and a table showing the specific heat ratio. 第1の実施形態のロッドを示す断面図である。It is sectional drawing which shows the rod of 1st Embodiment. 第1の実施形態の可動ピストン周辺の構造を示す断面図である。It is sectional drawing which shows the structure around the movable piston of 1st Embodiment. 吹き付けガス圧力の昇圧特性の比較を示すグラフである。It is a graph which shows the comparison of the pressure | voltage rise characteristic of blowing gas pressure. フラットな駆動出力特性の場合における圧縮反力および可動部加速力のストローク変化を示すグラフである。It is a graph which shows the stroke change of the compression reaction force and the movable part acceleration force in the case of a flat drive output characteristic. 単調減少な駆動出力特性の場合における圧縮反力および可動部加速力のストローク変化を示すグラフである。It is a graph which shows the stroke change of the compression reaction force and the movable part acceleration force in the case of a monotonously decreasing drive output characteristic. 他の実施形態に係るガス遮断器の全体構成を示す断面図である。(a)は投入時、(b)は遮断過程前半、(c)は遮断過程後半の状態を示す断面図である。It is sectional drawing which shows the whole structure of the gas circuit breaker which concerns on other embodiment. (A) is a cross-sectional view showing the state at the time of charging, (b) is the first half of the blocking process, and (c) is the second half of the blocking process.
 [第1の実施形態]
 (構成)
 以下では、図1~図5を参照しつつ、本実施形態のガス遮断器の全体構成を説明する。図1は、本実施形態のガス遮断器の全体構成を示す断面図であり、(a)は投入時、(b)は遮断過程前半、(c)は遮断過程後半の状態を示している。
[First Embodiment]
(Constitution)
Hereinafter, the overall configuration of the gas circuit breaker of the present embodiment will be described with reference to FIGS. 1 to 5. FIG. 1 is a cross-sectional view showing the overall configuration of the gas circuit breaker according to the present embodiment. FIG.
 ガス遮断器は、電路を構成する電極同士を接離し、電流遮断と投入状態とを切り替える。電流遮断過程では、アーク放電により電極間を橋絡させる。また、電流遮断過程では、消弧性ガスのガス流を生成し、そのガス流をアーク放電に案内して吹き付けることで、アーク放電を冷却し、電流零点で消弧させる。 The gas circuit breaker connects and separates the electrodes that make up the electric circuit, and switches between current interruption and on state. In the current interruption process, the electrodes are bridged by arc discharge. In the current interruption process, a gas flow of arc extinguishing gas is generated, and the gas flow is guided and blown to the arc discharge to cool the arc discharge and extinguish the arc at the current zero point.
 ガス遮断器は、接地された金属や碍子等からなる密閉容器(図示せず)を有し、その内部には消弧性ガスが充填されている。消弧性ガスは、消弧性能及び絶縁性能を有するガスである。 The gas circuit breaker has a sealed container (not shown) made of grounded metal or insulator, and the inside thereof is filled with an arc extinguishing gas. The arc extinguishing gas is a gas having arc extinguishing performance and insulation performance.
 消弧性ガスとして、本実施形態では、SFガスよりも地球温暖化係数が小さく、かつ、常温(ここでは摂氏20度とする)における比熱比がSFガスの1.1よりも大きいガスを用いる。 As the arc extinguishing gas, in the present embodiment, a gas having a global warming potential smaller than that of SF 6 gas and a specific heat ratio at room temperature (here, 20 degrees Celsius) is larger than 1.1 of SF 6 gas. Is used.
 例えば、図2に示すように、窒素(N)、二酸化炭素(CO)、酸素(O)、メタン(CH)、ヘリウム(He)、アルゴン(Ar)等の希ガスの何れか1種の単体のガスを用いることができる。或いは、混合ガスにしても、混合前の単体ガスに比べて地球温暖化係数が大きくなったり、比熱比が小さくなったりすることはないので、上記の単体ガスの少なくとも1種を含む混合ガスも用いることができる。なお、図2の項目「GWP」の「―」はゼロ或いはほぼゼロであることを示す。 For example, as shown in FIG. 2, any one of noble gases such as nitrogen (N 2 ), carbon dioxide (CO 2 ), oxygen (O 2 ), methane (CH 4 ), helium (He), argon (Ar), etc. One kind of single gas can be used. Alternatively, even if a mixed gas is used, the global warming potential does not increase or the specific heat ratio does not decrease compared to the single gas before mixing. Therefore, a mixed gas containing at least one of the above single gases is also available. Can be used. Note that “-” in the item “GWP” in FIG. 2 indicates zero or almost zero.
 ガス遮断器の電極は、大別すると固定電極部Aと可動電極部Bに別れ、密閉容器内に対向して配置される。固定電極部Aと可動電極部Bは、それぞれ、内部中空の円筒又は内部中実の円柱を基本形とする複数の部材で主に構成され、共通の中心軸を有する同心状配置となっており、径を合わせることで関係部材同士が対向して協働的に機能する。 The electrode of the gas circuit breaker is roughly divided into a fixed electrode part A and a movable electrode part B, and is arranged facing the sealed container. Each of the fixed electrode portion A and the movable electrode portion B is mainly composed of a plurality of members having a basic shape of an internal hollow cylinder or an internal solid column, and has a concentric arrangement having a common central axis. By matching the diameters, the related members face each other and function cooperatively.
 固定電極部Aは、固定アーク電極30a、30b及び固定通電電極3を有する。可動電極部Bは、可動通電電極5とトリガー電極31を有する。 The fixed electrode part A has fixed arc electrodes 30 a and 30 b and a fixed energizing electrode 3. The movable electrode part B has a movable energizing electrode 5 and a trigger electrode 31.
 固定アーク電極30a、30bは、可動通電電極5やトリガー電極31を有する可動部に含まれる部材ではなく、密閉容器(図示せず)の内部に離間して対向し固定配置される部材である。一方、可動電極部Bの可動要素である可動通電電極5やトリガー電極31を有する可動部は、駆動装置(不図示)に直接又は間接的に連結し、駆動装置の操作力に応じて固定電極部Aに対して中心線に沿って接離する。 The fixed arc electrodes 30a and 30b are not members included in the movable portion having the movable energizing electrode 5 and the trigger electrode 31, but are members which are fixedly disposed opposite to each other in a sealed container (not shown). On the other hand, the movable part having the movable energizing electrode 5 and the trigger electrode 31 which are movable elements of the movable electrode part B is directly or indirectly connected to a driving device (not shown), and is fixed according to the operating force of the driving device. It approaches and separates from the part A along the center line.
 これにより、可動電極部Bが固定電極部Aに対して接離し、電流の投入と遮断、及び電流遮断過程でアーク放電7の発弧及び消弧が実現する。また、密閉容器内の圧力は通常運転時においていずれの部分でも単一の圧力、例えば消弧性ガスの充気圧力となっている。 Thereby, the movable electrode part B comes in contact with and separates from the fixed electrode part A, and the arc discharge 7 is generated and extinguished in the process of turning on and off the current and interrupting the current. Further, the pressure in the sealed container is a single pressure, for example, the charging pressure of the arc extinguishing gas, at any part during normal operation.
 固定電極部A及び可動電極部Bの各部材について、より詳細に説明する。固定通電電極3は、固定アーク電極30aより径が大きく、中心軸を共通にして固定アーク電極30aと同心円状に配置されている。可動通電電極5は、その外径が固定通電電極3の内径と同じの円筒形状を有し、固定通電電極3と中心軸を共通にして、固定通電電極3と接離可能に密閉容器内に配置されている。固定通電電極3と可動通電電極5の接触によってこれらが電路の一部を構成する。 Each member of the fixed electrode part A and the movable electrode part B will be described in more detail. The fixed energizing electrode 3 is larger in diameter than the fixed arc electrode 30a, and is arranged concentrically with the fixed arc electrode 30a with a common central axis. The movable energizing electrode 5 has a cylindrical shape whose outer diameter is the same as the inner diameter of the fixed energizing electrode 3, and has a common central axis with the fixed energizing electrode 3, so that the movable energizing electrode 3 can be contacted and separated from the fixed energizing electrode 3. Has been placed. These constitute part of the electric circuit by the contact between the fixed energizing electrode 3 and the movable energizing electrode 5.
 一対の固定アーク電極30a、30bは、概略同径の円筒形状を有し、中心軸を共通にして互いの開口を対向離間させて密閉容器内に固定配置されている。固定アーク電極30a、30bの互いに向かい合う開口縁は内部に膨出している。トリガー電極31は、中実のロッド形状を有し、固定アーク電極30a、30bの内部に、固定アーク電極30a、3bを繋ぐように中心軸上に配置されている。トリガー電極31は、例えばその一端が直接又は間接的に駆動装置(不図示)に連結されており、その駆動力によって固定アーク電極30a、30bの内部を中心軸に沿って進退可能に移動する。 The pair of fixed arc electrodes 30a and 30b has a cylindrical shape having substantially the same diameter, and is fixedly disposed in the sealed container with the central axis being common and the openings being opposed to and spaced from each other. The opening edges of the fixed arc electrodes 30a and 30b facing each other bulge out inside. The trigger electrode 31 has a solid rod shape, and is disposed on the central axis so as to connect the fixed arc electrodes 30a and 3b inside the fixed arc electrodes 30a and 30b. For example, one end of the trigger electrode 31 is directly or indirectly connected to a driving device (not shown), and the driving force moves the inside of the fixed arc electrodes 30a and 30b along the central axis so as to advance and retreat.
 トリガー電極31の外径は、固定アーク電極30a、30bの互いに向かい合う内側に膨出した開口縁部分の内径と一致している。固定アーク電極30aにトリガー電極31が差し込まれることで、固定アーク電極30aの内面とトリガー電極31の外面とが接触し、電気的に導通できる状態となる。同様に、固定アーク電極30bの内面とトリガー電極31の外面とが接触し、電気的に導通する。トリガー電極31は、固定アーク電極30a,30bを通電させる通電位置と、固定アーク電極30aから離れる遮断位置とを自在に移動することにより、アーク放電7の発弧を引き受ける。 The outer diameter of the trigger electrode 31 coincides with the inner diameter of the opening edge portion of the fixed arc electrodes 30a, 30b that bulges toward the inside. When the trigger electrode 31 is inserted into the fixed arc electrode 30a, the inner surface of the fixed arc electrode 30a and the outer surface of the trigger electrode 31 come into contact with each other, and a state is established in which electrical conduction is possible. Similarly, the inner surface of the fixed arc electrode 30b and the outer surface of the trigger electrode 31 are in contact with each other and are electrically connected. The trigger electrode 31 accepts the arc discharge 7 by freely moving between an energizing position for energizing the fixed arc electrodes 30a and 30b and a blocking position away from the fixed arc electrode 30a.
 トリガー電極31は、通電位置に位置すると、固定アーク電極30a、30bと接触する。つまり、トリガー電極31により固定アーク電極30a、30bは短絡し、通電状態を実現するようになっている。通電位置から遮断位置へ移動するとトリガー電極31は、固定アーク電極30aから離れ、トリガー電極31と固定アーク電極30aの間にアーク放電7が発生する。トリガー電極31が固定アーク電極30aから更に離れ、固定アーク電極30aとトリガー電極31との距離が、固定アーク電極30aと固定アーク電極30bとの距離より広がると、アーク放電7は最終的にはトリガー電極31からアーク電極30bに転移する。このように、トリガー電極31は、通電又は遮断を切り替えるスイッチ手段となる。 When the trigger electrode 31 is located at the energization position, it contacts the fixed arc electrodes 30a and 30b. That is, the fixed arc electrodes 30a and 30b are short-circuited by the trigger electrode 31 to realize an energized state. When moving from the energized position to the cutoff position, the trigger electrode 31 is separated from the fixed arc electrode 30a, and an arc discharge 7 is generated between the trigger electrode 31 and the fixed arc electrode 30a. When the trigger electrode 31 is further away from the fixed arc electrode 30a and the distance between the fixed arc electrode 30a and the trigger electrode 31 is larger than the distance between the fixed arc electrode 30a and the fixed arc electrode 30b, the arc discharge 7 is eventually triggered. Transition from the electrode 31 to the arc electrode 30b. Thus, the trigger electrode 31 serves as a switch unit that switches between energization and interruption.
 ロッド状のトリガー電極31の周囲には、絶縁ノズル32が密閉容器内に固定配置されている。絶縁ノズル32は、固定アーク電極30a、30bとの間の空間を囲むように密閉容器内に固定されて設けられる。従って、遮断動作時にトリガー電極31が絶縁ノズル32内部を移動し、アーク放電7が当該絶縁ノズル32内部に発生する。絶縁ノズル32の形状は、一部区間にくびれを有し、その両端の開口が拡径している。そのため、絶縁ノズル32の端部が固定アーク電極30a、30bの互いに対向する開口縁部分を囲むようになっているとともに、絶縁ノズル32の一端部の開口は、後述する可動ピストン33に向けられている。 An insulating nozzle 32 is fixedly arranged in a sealed container around the rod-shaped trigger electrode 31. The insulating nozzle 32 is provided in a sealed container so as to surround a space between the fixed arc electrodes 30a and 30b. Therefore, the trigger electrode 31 moves inside the insulating nozzle 32 during the interruption operation, and the arc discharge 7 is generated inside the insulating nozzle 32. The shape of the insulating nozzle 32 has a constriction in a partial section, and the diameters of the openings at both ends are enlarged. Therefore, the end portion of the insulating nozzle 32 surrounds the opening edge portions of the fixed arc electrodes 30a and 30b facing each other, and the opening at one end portion of the insulating nozzle 32 is directed to the movable piston 33 described later. Yes.
 アーク放電7に吹き付けるガス流は、昇圧室35と蓄圧室36により生成される。蓄圧室36及び昇圧室35は可動電極部Bに設けられ、トリガー電極31を囲むようにして設けられる。蓄圧室36は、昇圧室35の昇圧した消弧性ガスを溜めておき、溜めた消弧性ガスをアーク放電7に吹き付けるものである。蓄圧室36は、トリガー電極31と円筒部材40及び固定アーク電極30bとで囲んだ空間として形成される。 The gas flow blown to the arc discharge 7 is generated by the pressure increasing chamber 35 and the pressure accumulating chamber 36. The pressure accumulating chamber 36 and the pressure increasing chamber 35 are provided in the movable electrode portion B and are provided so as to surround the trigger electrode 31. The pressure accumulating chamber 36 stores the arc extinguishing gas boosted by the boosting chamber 35 and blows the stored arc extinguishing gas to the arc discharge 7. The pressure accumulating chamber 36 is formed as a space surrounded by the trigger electrode 31, the cylindrical member 40, and the fixed arc electrode 30b.
 すなわち、円筒部材40は、トリガー電極31を囲むように、固定アーク電極30bの外径と同径で中心軸を共通にして配置されている。円筒部材40の開口縁は、固定アーク電極30bの内側に膨出する開口端と反対側の開口縁と、筒が続くように連結されている。円筒部材40は、トリガー電極31より大径であるため、トリガー電極31の外周面と円筒部材40の内周面が離間しており、トリガー電極31と円筒部材40及び固定アーク電極30bとで囲んだ空間である蓄圧室36が形成される。 That is, the cylindrical member 40 is disposed so as to surround the trigger electrode 31 with the same diameter as the outer diameter of the fixed arc electrode 30b and the central axis. The opening edge of the cylindrical member 40 is connected to the opening edge opposite to the opening end that bulges inside the fixed arc electrode 30b so that the cylinder continues. Since the cylindrical member 40 has a larger diameter than the trigger electrode 31, the outer peripheral surface of the trigger electrode 31 is separated from the inner peripheral surface of the cylindrical member 40, and is surrounded by the trigger electrode 31, the cylindrical member 40, and the fixed arc electrode 30b. A pressure accumulating chamber 36 is formed.
 蓄圧室36には、蓄圧室36の内部空間を閉塞状態あるいは開放状態とするための開閉自在な開閉部41が設けられている。本実施形態では、開閉部41は、固定アーク電極30bの先端部の中心部側に膨出した部分とトリガー電極31の外周面との接触(摺動)部分によって形成される。すなわち、この接触部分は一定の気密性を有しており、開閉部41は、電流遮断過程の前半には、固定アーク電極30bとトリガー電極31の接触により蓄圧室36を閉塞状態とし、アーク放電7の熱によって生成される熱排ガス20が蓄圧室36内へ流入することを制限し、蓄圧室36内の昇圧ガスが流出することを制限する。一方、電流遮断過程の後半には、トリガー電極31が固定アーク電極30a、30bの双方から離れることで蓄圧室36を開放状態とする。本実施形態では、トリガー電極31が、通電又は遮断のスイッチ手段の以外に、蓄圧室36の閉塞状態と開放状態を切り替える開閉手段ともなる。 The pressure accumulating chamber 36 is provided with an openable / closable opening / closing portion 41 for closing or opening the internal space of the pressure accumulating chamber 36. In the present embodiment, the opening / closing portion 41 is formed by a contact (sliding) portion between the portion that bulges toward the center of the tip of the fixed arc electrode 30 b and the outer peripheral surface of the trigger electrode 31. That is, this contact portion has a certain airtightness, and the opening / closing part 41 closes the accumulator chamber 36 by the contact between the fixed arc electrode 30b and the trigger electrode 31 in the first half of the current interruption process, and the arc discharge. The thermal exhaust gas 20 generated by the heat of No. 7 is restricted from flowing into the pressure accumulating chamber 36, and the pressurized gas in the pressure accumulating chamber 36 is restricted from flowing out. On the other hand, in the second half of the current interruption process, the trigger electrode 31 is separated from both the fixed arc electrodes 30a and 30b, thereby opening the pressure accumulating chamber 36. In the present embodiment, the trigger electrode 31 also serves as an opening / closing means for switching between the closed state and the open state of the pressure accumulating chamber 36 in addition to the energization or cutoff switch means.
 昇圧室35では、その内部の消弧性ガスが昇圧される。昇圧室35は、蓄圧室36の外周側に設けられ、シリンダ39、円筒部材40及び可動ピストン33に囲まれた空間である。図1に示すように、シリンダ39は、一端面が有底の円筒形状であり、その開口を固定アーク電極30bの先端側に、その一端面を固定アーク電極30bの後端側にして密閉容器内に固定して配置されている。すなわち、シリンダ39は、一続きの筒となった円筒部材40及び固定アーク電極30bを囲むように設けられている。 In the pressurizing chamber 35, the arc extinguishing gas inside is pressurized. The pressurizing chamber 35 is a space provided on the outer peripheral side of the pressure accumulating chamber 36 and surrounded by the cylinder 39, the cylindrical member 40, and the movable piston 33. As shown in FIG. 1, the cylinder 39 has a cylindrical shape with a bottom end, and has an opening at the front end side of the fixed arc electrode 30b and an end surface at the rear end side of the fixed arc electrode 30b. It is fixedly placed inside. That is, the cylinder 39 is provided so as to surround the cylindrical member 40 and the fixed arc electrode 30b which are a continuous cylinder.
 可動ピストン33は、シリンダ39の開口を塞ぐようにしてシリンダ39内に挿入されている。このため、アーク放電7の発生により生成された固定アーク電極30a、30b間の熱排ガスが昇圧室35内部に流入することはない。 The movable piston 33 is inserted into the cylinder 39 so as to close the opening of the cylinder 39. For this reason, the thermal exhaust gas between the fixed arc electrodes 30 a and 30 b generated by the generation of the arc discharge 7 does not flow into the boosting chamber 35.
 可動ピストン33は、摺動内周面33a及び摺動外周面33bを有し、中心線に沿って移動可能に構成されている。図1に示すように、本実施形態では、可動ピストン33は、中心が開口した円盤を主材とし、その開口縁から円筒が突出した形状を有する。摺動内周面33aは、円筒内周面及び円盤内周面であり、固定アーク電極30b及び円筒部材40と摺動可能である。摺動外周面33bは、円盤外周面であり、シリンダ39の内周面と摺動可能である。 The movable piston 33 has a sliding inner peripheral surface 33a and a sliding outer peripheral surface 33b, and is configured to be movable along the center line. As shown in FIG. 1, in the present embodiment, the movable piston 33 has a disk whose center is an open disk and a cylinder protruding from the opening edge. The sliding inner peripheral surface 33 a is a cylindrical inner peripheral surface and a disk inner peripheral surface, and is slidable with the fixed arc electrode 30 b and the cylindrical member 40. The sliding outer peripheral surface 33 b is a disk outer peripheral surface and is slidable with the inner peripheral surface of the cylinder 39.
 摺動内周面33aおよび摺動外周面33bには昇圧室35内を気密にするシール部材47が設けられる。摺動内周面33aは中心線に沿って幅広になっており、円筒部材40と摺動する摺動内周面33aのシール部材47は、円筒部材40の基端部に設けられた連通穴34の幅以上に離して設けられている。可動ピストン33は、駆動装置(不図示)の操作力によりアーク放電7から遠ざかるように移動することで昇圧室35の容積が減少し、昇圧室35内の圧力は上昇する。すなわち、可動ピストン33は昇圧手段となる。 A seal member 47 is provided on the sliding inner peripheral surface 33a and the sliding outer peripheral surface 33b to make the inside of the pressurizing chamber 35 airtight. The sliding inner peripheral surface 33 a is wide along the center line, and the seal member 47 of the sliding inner peripheral surface 33 a that slides with the cylindrical member 40 is a communication hole provided at the proximal end portion of the cylindrical member 40. 34 apart from the width of 34. The movable piston 33 moves away from the arc discharge 7 by the operating force of a driving device (not shown), whereby the volume of the boosting chamber 35 decreases and the pressure in the boosting chamber 35 increases. That is, the movable piston 33 serves as a pressure increasing means.
 可動ピストン33とトリガー電極31は、別々の駆動装置により移動させても良いし、共通の駆動装置により移動させても良い。共通の駆動装置により移動させる場合は、可動ピストン33は、例えば、トリガー電極31とリンク42により結合されたロッド43と接続して駆動させる。軸ずれを防止し、過大な機械力が一か所に集中しないようにするため、ロッド43は、中心線と直交する断面図である図3に示すように、中心線周りに所定角度ずつ隔てて複数本設けることが望ましい。ロッド43とシリンダ39の摺動部分から昇圧室35内の圧力が漏れ出さないようにするために、同部はシール部材47によりシールされる。 The movable piston 33 and the trigger electrode 31 may be moved by separate drive devices or may be moved by a common drive device. When the movable piston 33 is moved by a common driving device, the movable piston 33 is driven by being connected to a rod 43 coupled by a trigger electrode 31 and a link 42, for example. In order to prevent axial misalignment and prevent excessive mechanical force from being concentrated in one place, the rod 43 is separated by a predetermined angle around the center line as shown in FIG. 3 which is a cross-sectional view orthogonal to the center line. It is desirable to provide a plurality of them. In order to prevent the pressure in the pressure increasing chamber 35 from leaking out from the sliding portion of the rod 43 and the cylinder 39, the same portion is sealed by the seal member 47.
 シリンダ39の底面には吸気穴17が設けられ、吸気穴17には吸気バルブ19が設けられている。吸気バルブ19は、昇圧室35内の圧力が密閉容器内の充填圧力よりも低くなる際に限り、消弧性ガスを昇圧室35内に吸気補充するように構成されている。 An intake hole 17 is provided in the bottom surface of the cylinder 39, and an intake valve 19 is provided in the intake hole 17. The intake valve 19 is configured to replenish the arc-extinguishing gas into the booster chamber 35 only when the pressure in the booster chamber 35 is lower than the filling pressure in the sealed container.
(通電状態)
 通電状態では、固定通電電極2と可動通電電極5が電気的に接続されており、これらの部材が電路の一つとなる。特に図示しないが、密閉容器には2本の導体がそれぞれスペーサによって固定電極部A側と可動電極部B側とに固定されている。スペーサは密閉容器と導体とを絶縁するとともに、導体を支持するものである。通電状態において電流は、ブッシング(図示しない)を介してガス遮断器に流れ込み、固定電極部A側の導体から上記電路となる部材、及び可動電極部B側の導体とブッシング(図示しない)を介してガス遮断器外部へ流れ出す。
(Energized state)
In the energized state, the fixed energizing electrode 2 and the movable energizing electrode 5 are electrically connected, and these members become one of the electric paths. Although not particularly illustrated, two conductors are fixed to the fixed electrode portion A side and the movable electrode portion B side by spacers in the sealed container, respectively. The spacer insulates the sealed container from the conductor and supports the conductor. In the energized state, the current flows into the gas circuit breaker via a bushing (not shown), and the member that becomes the above-mentioned electric path from the conductor on the fixed electrode portion A side, and the conductor and the bushing on the movable electrode portion B side (not shown). To the outside of the gas circuit breaker.
 (遮断過程の前半)
 過大な事故電流、進み小電流、リアクトル遮断等の遅れ負荷電流、又は極めて小さな事故電流の遮断を要する場合、駆動装置の操作力を受けて、トリガー電極31は固定アーク電極30aから開離すると同時に、トリガー電極31と固定アーク電極30a間でアーク放電7が発生する。アーク放電7から発生する熱排ガス20は、絶縁ノズル32によりその発生と同時に遅滞なくアーク放電7から遠ざかる方向に流れる。すなわち、固定アーク電極30aに設けられた排気穴(図示せず)や、可動通電電極5に設けられた排気穴37を抜けて、密閉容器内へと排出される。
(First half of the blocking process)
When it is necessary to interrupt an excessive accident current, a small advance current, a delayed load current such as a reactor cutoff, or an extremely small accident current, the trigger electrode 31 is separated from the fixed arc electrode 30a upon receiving the operating force of the driving device. The arc discharge 7 is generated between the trigger electrode 31 and the fixed arc electrode 30a. The thermal exhaust gas 20 generated from the arc discharge 7 flows in a direction away from the arc discharge 7 without delay by the insulating nozzle 32 at the same time as the generation. That is, the gas is discharged through the exhaust hole (not shown) provided in the fixed arc electrode 30a and the exhaust hole 37 provided in the movable energizing electrode 5 into the sealed container.
 遮断過程の前半においては、トリガー電極31が固定アーク電極30bと接触状態にあるため、開閉部41が閉じられ、蓄圧室36は閉塞状態にある。つまり、開閉部41が閉じることで、蓄圧室36へ熱排ガス20が侵入することを防いでいる。一方、昇圧室35と蓄圧室36は円筒部材40によって画成されるが、円筒部材40の基端部に設けられた連通穴34によって一体の空間となっている。従って、昇圧室35と蓄圧室36からなる密閉空間内に存在する消弧性ガスは、可動ピストン33の後退に伴い断熱圧縮され、昇圧される。また、開閉部41が閉じられていることにより、蓄圧室36の昇圧ガスの流出が制限される。 In the first half of the shut-off process, the trigger electrode 31 is in contact with the fixed arc electrode 30b, so the opening / closing part 41 is closed and the pressure accumulating chamber 36 is closed. In other words, the heat exhaust gas 20 is prevented from entering the pressure accumulating chamber 36 by closing the opening / closing part 41. On the other hand, the pressure increasing chamber 35 and the pressure accumulating chamber 36 are defined by the cylindrical member 40, and are formed as an integral space by the communication hole 34 provided in the proximal end portion of the cylindrical member 40. Therefore, the arc extinguishing gas existing in the sealed space composed of the pressurizing chamber 35 and the pressure accumulating chamber 36 is adiabatically compressed and boosted as the movable piston 33 moves backward. Further, since the opening / closing part 41 is closed, the outflow of the pressurized gas in the pressure accumulating chamber 36 is restricted.
 以上のように、アーク放電7の熱により高温となった熱排ガス20は、ほとんどが密閉容器内に排出され、蓄圧室36が閉じられているため、蓄圧室36側への流入は制限され、あったとしても極少量である。従って、遮断動作中のごく短時間では、消弧性ガスの昇圧は、アーク熱の影響をほとんど受けず、可動ピストン33による断熱圧縮作用によりほぼもたらされる。 As described above, most of the heat exhaust gas 20 that has become high temperature due to the heat of the arc discharge 7 is discharged into the sealed container and the pressure accumulation chamber 36 is closed, so that the inflow to the pressure accumulation chamber 36 side is limited, If there is, it is a very small amount. Therefore, in a very short time during the shut-off operation, the arc extinguishing gas is almost not affected by the arc heat and is almost brought about by the adiabatic compression action by the movable piston 33.
 (遮断過程の後半)
 遮断過程の後半においては、昇圧室35の体積は相対的に小さくなり、可動ピストン33により圧縮された消弧性ガスは連通穴34を介して大半が蓄圧室36内に貯留される。それと同時に、可動ピストン33に設けたシール部材47が、連通穴34を塞ぐことにより、昇圧室35と蓄圧室36とは圧力的に切り離される。すなわち、昇圧室35と蓄圧室36は一体の空間でなくなる。さらに、図4に示すように、その後速やかに放圧機構48により昇圧室35内の圧力は放出圧縮ガス49として密閉容器へと放圧される。放圧機構48は、ロッド43の一部に溝43aを設けることなどが考えられるが、他にも種々の構造が有りうる。
(Second half of the blocking process)
In the latter half of the shut-off process, the volume of the pressurizing chamber 35 becomes relatively small, and most of the arc extinguishing gas compressed by the movable piston 33 is stored in the pressure accumulating chamber 36 through the communication hole 34. At the same time, the pressure increasing chamber 35 and the pressure accumulating chamber 36 are separated in pressure by the sealing member 47 provided on the movable piston 33 closing the communication hole 34. That is, the pressure increasing chamber 35 and the pressure accumulating chamber 36 are not an integral space. Furthermore, as shown in FIG. 4, the pressure in the pressurizing chamber 35 is quickly released to the sealed container as the released compressed gas 49 by the pressure release mechanism 48 thereafter. The pressure release mechanism 48 may be provided with a groove 43a in a part of the rod 43, but may have various other structures.
 一方、トリガー電極31が固定アーク電極30bを通過して開閉部41が解放されるため、蓄圧室36内の圧縮ガスはトリガー電極31に沿って進行し吹付けガス21としてアーク放電7に強力に吹き付けられる。絶縁ノズル32によって吹付けガス21が効果的にアーク放電7に吹付けられ、また熱排ガス20がスムーズに排出されるよう、ガスの流れを適切に整流する。 On the other hand, since the trigger electrode 31 passes through the fixed arc electrode 30b and the opening / closing part 41 is released, the compressed gas in the pressure accumulating chamber 36 travels along the trigger electrode 31 and is powerfully applied to the arc discharge 7 as the blowing gas 21. Be sprayed. The gas flow is appropriately rectified so that the blowing gas 21 is effectively blown to the arc discharge 7 by the insulating nozzle 32 and the thermal exhaust gas 20 is smoothly discharged.
 この段階では、アーク放電7は固定アーク電極30bに転移される。したがって、トリガー電極31にアーク放電7が点弧している期間は、固定アーク電極30bにアーク放電7が転移されるまでの遮断過程前半の限定された期間のみである。 At this stage, the arc discharge 7 is transferred to the fixed arc electrode 30b. Therefore, the period during which the arc discharge 7 is ignited on the trigger electrode 31 is only a limited period in the first half of the interruption process until the arc discharge 7 is transferred to the fixed arc electrode 30b.
 (遮断過程の終了後)
 昇圧室35には、吸気穴17および吸気バルブ19が設けられている。吸気バルブ19は、昇圧室35内の圧力が密閉容器内の充填圧力よりも低くなる際に限り、消弧性ガスを昇圧室35内に吸気補充するように構成されている。
(After the shutdown process is complete)
The booster chamber 35 is provided with an intake hole 17 and an intake valve 19. The intake valve 19 is configured to replenish the arc-extinguishing gas into the booster chamber 35 only when the pressure in the booster chamber 35 is lower than the filling pressure in the sealed container.
 したがって、遮断過程終了後に、再び投入動作をした場合、昇圧室35には吸気穴17を通じて新鮮な消弧性ガスが密閉容器内から供給される。 Therefore, when the charging operation is performed again after the shut-off process is completed, fresh arc-extinguishing gas is supplied to the booster chamber 35 through the intake hole 17 from the sealed container.
(作用)
(a)吹付けガスの低温化
 本実施形態のガス遮断器では、消弧性ガスの昇圧は、可動ピストン33により昇圧部35内部の消弧性ガスを圧縮し昇圧させる機械的昇圧作用を利用し、アーク放電7の熱による消弧性ガスの自力昇圧作用を利用していない。アーク放電7に吹付けられるガス21は、アーク放電7の熱による熱的な昇圧はなされておらず、可動ピストン33による機械的圧縮によって圧力が高められた消弧性ガスである。したがって、アーク放電7へ吹付けられる昇圧ガス21の温度は、自力昇圧作用を利用した従来の吹付けガスの温度に比べて、はるかに低くなる。その結果、昇圧ガス21の吹付けによるアーク放電7の冷却効果を著しく高めることができる。そのため、SFガスよりも消弧性能が劣る代替ガスであっても、従来のSFガス遮断器と同等の消弧性能を有することができる。
(Function)
(A) Lowering of blowing gas In the gas circuit breaker of the present embodiment, the arc-extinguishing gas is boosted by using a mechanical boosting action that compresses the arc-extinguishing gas inside the boosting unit 35 by the movable piston 33 and boosts the pressure. However, the self-pressurizing action of the arc extinguishing gas by the heat of the arc discharge 7 is not used. The gas 21 blown to the arc discharge 7 is an arc extinguishing gas whose pressure is increased by mechanical compression by the movable piston 33 without being thermally boosted by the heat of the arc discharge 7. Therefore, the temperature of the pressurizing gas 21 sprayed to the arc discharge 7 is much lower than the temperature of the conventional spraying gas using the self-pressurizing action. As a result, the cooling effect of the arc discharge 7 by blowing the pressurizing gas 21 can be remarkably enhanced. Therefore, even in alternative gas than SF 6 gas extinguishing performance is poor, it is possible to have equivalent extinguishing performance and conventional SF 6 gas circuit breakers.
 特に、本実施形態では、消弧性ガスに、SFガスよりも地球温暖化係数が小さく、かつ、20℃における比熱比がSFガスの1.1よりも大きい消弧性ガスを用いたことにより、以下の作用を奏する。 In particular, in the present embodiment, the arc-extinguishing gas that has a global warming potential smaller than that of SF 6 gas and a specific heat ratio at 20 ° C. larger than 1.1 of SF 6 gas is used as the arc-extinguishing gas. As a result, the following effects are exhibited.
 まず、地球温暖化係数がSFガスよりも小さいので、ガス遮断器の製造及び使用段階における環境への影響を低減することができる。 First, since the global warming potential is smaller than that of SF 6 gas, it is possible to reduce the influence on the environment in the production and use stages of the gas circuit breaker.
 一方、本実施形態においては、可動ピストン33の移動により断熱圧縮を主体として昇圧するため、SFガスよりも比熱比の大きい代替ガスを用いることで顕著な昇圧作用が得られる。一般に、初期体積V0、初期圧力P0のガスを圧縮後体積V1(<V0)に断熱圧縮した場合、圧縮後の圧力P1は式1のように与えられる。
 P1=P0×(V0/V1)γ   ・・・(式1)
 ここで、γはガスの比熱比である。
On the other hand, in the present embodiment, since the pressure is increased mainly by adiabatic compression by the movement of the movable piston 33, a remarkable pressure increasing action can be obtained by using an alternative gas having a larger specific heat ratio than the SF 6 gas. In general, when a gas having an initial volume V0 and an initial pressure P0 is adiabatically compressed to a compressed volume V1 (<V0), the compressed pressure P1 is given by Equation 1.
P1 = P0 × (V0 / V1) γ (Expression 1)
Here, γ is the specific heat ratio of the gas.
 すなわち、同じ圧縮比(V0/V1)でガスを断熱圧縮する場合、圧縮後の圧力上昇はガスの比熱比のべき乗で効くことが分かる。本消弧構造におけるアーク吹付け圧力をSFガス(比熱比1.1)と代替ガス(比熱比1.4)とで比較した結果を図5に示す。図5に示すように、比熱比が1.1よりも大きい代替ガスを使用した方が、断熱圧縮を主体とした本消弧構造においてはより強力なアーク吹付け圧力が得られる。 That is, when gas is adiabatically compressed at the same compression ratio (V0 / V1), it can be seen that the pressure increase after compression works as a power of the specific heat ratio of the gas. FIG. 5 shows a result of comparing the arc spray pressure in the arc extinguishing structure between SF 6 gas (specific heat ratio 1.1) and alternative gas (specific heat ratio 1.4). As shown in FIG. 5, a stronger arc spray pressure can be obtained in the arc extinguishing structure mainly using adiabatic compression when an alternative gas having a specific heat ratio larger than 1.1 is used.
(b)耐久性の向上とメンテナンスの低減化
 本実施形態のガス遮断器では、吹き付ける消弧性ガスは低温である。そのため、アーク放電7周辺の温度が低温化する。それ故に、電流遮断に伴う固定アーク電極30a、30bおよび絶縁ノズル32の劣化を著しく軽減することができ、耐久性が向上する。その結果、固定アーク電極30a、30bおよび絶縁ノズル32のメンテナンス頻度を落とすことが可能となり、メンテナンスの負担を低減化することができる。
(B) Improvement of durability and reduction of maintenance In the gas circuit breaker of the present embodiment, the arc extinguishing gas to be blown is at a low temperature. Therefore, the temperature around the arc discharge 7 is lowered. Therefore, the deterioration of the fixed arc electrodes 30a and 30b and the insulating nozzle 32 due to the current interruption can be remarkably reduced, and the durability is improved. As a result, the maintenance frequency of the fixed arc electrodes 30a and 30b and the insulating nozzle 32 can be reduced, and the maintenance burden can be reduced.
 また、トリガー電極31にアーク放電7が点弧している期間は、固定アーク電極30bにアーク放電7が転移されるまでの遮断過程前半の限定された期間のみである。そのため、トリガー電極31の径はこの期間で耐えうる耐久性が満たされれば必要最小限で良い。すなわち、必要以上にトリガー電極31の径を大きくする必要がないので、可動部の重量を軽減できる。一方で、密閉容器内に固定された固定アーク電極30a、30bは可動部の重量には影響しないので、重量増大を懸念せずに、固定アーク電極30a、30bを太く構成することができる。このため大電流アークに対する固定アーク電極30a、30bの耐久性は著しく向上する。さらに、固定アーク電極30a、30bを太く構成した場合、電極ギャップ間に高電圧が印加されたときの固定アーク電極30a、30b先端における電界集中を大きく緩和することが可能である。 Further, the period in which the arc discharge 7 is ignited on the trigger electrode 31 is only a limited period in the first half of the interruption process until the arc discharge 7 is transferred to the fixed arc electrode 30b. Therefore, the diameter of the trigger electrode 31 may be the minimum necessary as long as the durability that can withstand this period is satisfied. That is, since it is not necessary to increase the diameter of the trigger electrode 31 more than necessary, the weight of the movable part can be reduced. On the other hand, since the fixed arc electrodes 30a and 30b fixed in the hermetic container do not affect the weight of the movable part, the fixed arc electrodes 30a and 30b can be made thick without worrying about an increase in weight. For this reason, the durability of the fixed arc electrodes 30a and 30b against a large current arc is remarkably improved. Furthermore, when the fixed arc electrodes 30a and 30b are made thick, it is possible to greatly reduce the electric field concentration at the tips of the fixed arc electrodes 30a and 30b when a high voltage is applied between the electrode gaps.
 したがって、従来のガス遮断器に比べて必要となる電極ギャップ間隔を短くすることかできる。その結果、アーク放電7の長さは短くなり、電流遮断時におけるアーク放電7への電気的入力パワーは小さくなる。 Therefore, the required electrode gap interval can be shortened compared to the conventional gas circuit breaker. As a result, the length of the arc discharge 7 is shortened, and the electric input power to the arc discharge 7 when the current is interrupted is reduced.
(c)電流遮断時間の短縮化を図る
 本実施形態によれば、アーク熱による自力昇圧作用を利用していないので、アーク放電7へと吹付けられる圧縮ガスの圧力や流量は、電流条件によらず常に一定である。また、アーク放電7への吹付け開始タイミングも、トリガー電極31の先端部が固定アーク電極30bを通過して両者が離れるタイミングで決まるので、電流条件によらず常に一定である。したがって、電流遮断の完了時間が長引くことはなく、電流遮断の完了時間の短縮化という要請に応えることができる。
(C) Achieving a reduction in current interruption time According to the present embodiment, the pressure and flow rate of the compressed gas sprayed to the arc discharge 7 is determined according to the current conditions because the self-pressure boosting action by the arc heat is not used. It is always constant regardless. Also, the timing for starting the spraying to the arc discharge 7 is determined at the timing at which the tip of the trigger electrode 31 passes through the fixed arc electrode 30b and the two are separated from each other. Therefore, the current interruption completion time is not prolonged, and the request for shortening the current interruption completion time can be met.
(d)駆動操作力の低減化を図る
 トリガー電極31等の駆動ストロークが完全遮断位置に近づくにつれて、昇圧室35および蓄圧室36内の圧縮ガスの圧力は高まり、同時に可動ピストン33に作用する圧縮反力は大きくなる。これに打ち勝つためには、それ相応の駆動力を持った駆動装置が必要となる。
(D) A reduction in driving operation force As the driving stroke of the trigger electrode 31 and the like approaches the complete cutoff position, the pressure of the compressed gas in the boosting chamber 35 and the pressure accumulating chamber 36 increases, and at the same time, compression that acts on the movable piston 33. Reaction force increases. In order to overcome this, a driving device having a corresponding driving force is required.
 完全遮断位置においては、可動ピストン33に設けたシール部材47が、連通穴34を塞ぐことにより、昇圧室35と蓄圧室36とは圧力的に切り離される。それと同時に、図4に示すように、放圧機構48により昇圧室35内の圧力は放圧される。このため、少なくとも完全遮断位置にまで可動部を引っ張ることができる駆動エネルギーさえあれば、その後は可動ピストン33にはストロークを逆行させる力は一切作用されないため、ストロークが逆行する恐れはない。 In the complete shut-off position, the pressure increasing chamber 35 and the pressure accumulating chamber 36 are separated in pressure by the seal member 47 provided on the movable piston 33 closing the communication hole 34. At the same time, as shown in FIG. 4, the pressure in the pressure increasing chamber 35 is released by the pressure release mechanism 48. For this reason, as long as there is at least driving energy capable of pulling the movable part to the complete shut-off position, no force that reverses the stroke is applied to the movable piston 33 thereafter, so there is no fear that the stroke will reverse.
 また、トリガー電極31は固定アーク電極30a、30bより径が小さく、従来の可動アーク電極および駆動ロッドと比べて軽量で済む。また、2つの固定アーク電極30a、30bに加えて、絶縁ノズル32も可動部に含まれないので、可動部の重量を大幅に低減することが可能である。このように可動部の軽量化を進めた本実施形態では、電流遮断に必要な可動部の開極速度を得る面で、駆動操作力を大幅に低減することができる。 Further, the trigger electrode 31 has a smaller diameter than the fixed arc electrodes 30a and 30b, and can be lighter than conventional movable arc electrodes and drive rods. Further, since the insulating nozzle 32 is not included in the movable part in addition to the two fixed arc electrodes 30a and 30b, the weight of the movable part can be significantly reduced. In this embodiment in which the weight of the movable part is advanced as described above, the driving operation force can be greatly reduced in terms of obtaining the opening speed of the movable part necessary for interrupting the current.
 さらに、軽量化とともに、電流を遮断するために必要な吹き付け圧力自体を低減することができれば、圧縮に必要な駆動操作力を低減することができる。本実施形態では、吹付けガス21の温度が従来に比べてはるかに低いため、アーク放電7の冷却効果が著しく高まり、より低い圧力でアーク放電7を遮断することが可能となる。 Furthermore, if the spraying pressure itself necessary to cut off the current can be reduced along with the weight reduction, the driving operation force necessary for compression can be reduced. In this embodiment, since the temperature of the blowing gas 21 is much lower than that of the prior art, the cooling effect of the arc discharge 7 is remarkably increased, and the arc discharge 7 can be interrupted at a lower pressure.
 また、アーク放電7から発生する熱排ガス20は、その発生と同時に、遅滞なくアーク放電7から遠ざかる方向に流れ、前記密閉容器内の空間へと速やかに排出される。そのため、アーク放電7への吹付けガス21は、上流側の圧力すなわち蓄圧室36の圧力と、下流側すなわち固定アーク電極30a近傍の圧力との差により流れる。すなわち、下流側の圧力が高いと、いくら蓄圧室36の圧力を高めても、十分な吹き付け力が得られない。 Also, the thermal exhaust gas 20 generated from the arc discharge 7 flows in the direction away from the arc discharge 7 without delay at the same time as the generation, and is quickly discharged into the space in the sealed container. Therefore, the blowing gas 21 to the arc discharge 7 flows due to the difference between the pressure on the upstream side, that is, the pressure in the pressure accumulating chamber 36, and the pressure on the downstream side, that is, in the vicinity of the fixed arc electrode 30a. That is, if the pressure on the downstream side is high, a sufficient blowing force cannot be obtained no matter how much the pressure in the pressure accumulating chamber 36 is increased.
 本実施形態によれば、アーク放電7の発生と同時に、熱排ガス20の圧力は速やかに密閉容器へと排出されるため、下流側すなわち固定アーク電極30a近傍の圧力は常に密閉容器の充填圧力とほぼ同等の値が維持される。そのため、電流遮断に必要な吹き付け圧力を低減することができ、駆動操作力を低減することができる。 According to the present embodiment, simultaneously with the occurrence of the arc discharge 7, the pressure of the thermal exhaust gas 20 is quickly discharged to the sealed container, so that the pressure on the downstream side, that is, in the vicinity of the fixed arc electrode 30a is always equal to the filling pressure of the sealed container. A nearly equivalent value is maintained. Therefore, it is possible to reduce the spray pressure necessary for interrupting the current, and to reduce the driving operation force.
 また、本実施形態では、固定アーク電極30bの内側から噴出した低温の昇圧ガス35は、固定アーク電極30b近傍に位置するアーク放電7の根元部に集中して、内側から外側に横切るように吹付けられる様相となる。そのため、より低い圧力でアークを遮断することが可能となり、優れた遮断性能を維持しつつ、駆動操作力の低減化を図ることができる。 In this embodiment, the low-temperature pressurization gas 35 ejected from the inside of the fixed arc electrode 30b is concentrated on the root portion of the arc discharge 7 located in the vicinity of the fixed arc electrode 30b and blown across from the inside to the outside. It will be attached. Therefore, the arc can be interrupted at a lower pressure, and the driving operation force can be reduced while maintaining an excellent interrupting performance.
 また、アーク放電7から発生する熱排ガス20の圧力は、前述の通り速やかに密閉容器内の空間へと排出されるが、絶縁ノズル32の一端部の開口が、可動ピストン33に向けられているため、図1に示す可動ピストン33の左側の面には一部作用する可能性がある。しかしながら、熱排ガス20の圧力が作用した場合においても、その圧力は可動ピストン33による圧縮力をサポートする力になりこそすれ、少なくとも可動ピストン33の駆動操作力の反力として作用することは一切ない。この点からも、駆動操作力の低減化を図ることができる。 The pressure of the thermal exhaust gas 20 generated from the arc discharge 7 is quickly discharged into the space in the sealed container as described above, but the opening at one end of the insulating nozzle 32 is directed to the movable piston 33. Therefore, there is a possibility that a part of the left side surface of the movable piston 33 shown in FIG. However, even when the pressure of the thermal exhaust gas 20 is applied, the pressure becomes a force that supports the compressive force of the movable piston 33 and does not act at least as a reaction force of the driving operation force of the movable piston 33. . Also from this point, the driving operation force can be reduced.
(e)ガス流の安定化を図る
 さらに、本実施形態では、蓄圧室36内の圧力を調整する際などにおいて複雑なバルブ制御が不要であり、消弧性ガスの吹付け圧力上昇にアーク熱による自力昇圧作用も利用していない。したがって、遮断電流条件に関係なく、常に同等の吹付けガス圧力およびガス流量を安定して得ることができる。このため、遮断電流の大きさによる性能の不安定性は全く生じることがない。
(E) Stabilization of gas flow Further, in the present embodiment, complicated valve control is not required when adjusting the pressure in the pressure accumulating chamber 36, and the arc heat is increased in increasing the blowing pressure of the arc-extinguishing gas. It does not use the self-pressurization effect by. Therefore, the same blowing gas pressure and gas flow can always be stably obtained regardless of the breaking current condition. For this reason, performance instability due to the magnitude of the cutoff current does not occur at all.
 本実施形態では、絶縁ノズル32と固定アーク電極30a、30bが全て密閉容器内で固定されている。そのため、各部材の相対的な位置が変わることがなく、また、アーク熱による自力昇圧作用を一切利用していないので、アーク放電7へと吹付けられる昇圧ガス21の圧力や流量についても、電流条件によらず、常に一定である。したがって、アーク遮断にとって理想的となるように、絶縁ノズル32内の流路を最適に設計することが可能である。 In this embodiment, the insulating nozzle 32 and the fixed arc electrodes 30a and 30b are all fixed in a sealed container. Therefore, the relative position of each member does not change, and since the self-pressure boosting action by the arc heat is not used at all, the pressure and the flow rate of the pressurizing gas 21 sprayed to the arc discharge 7 are also current. Regardless of conditions, it is always constant. Therefore, it is possible to optimally design the flow path in the insulating nozzle 32 so as to be ideal for arc interruption.
(f)高速再閉路動作時の遮断性能の向上
 さらには、昇圧室35には、吸気穴17および吸気バルブ19を設け、各室内の圧力が密閉容器内の充填圧力よりも低くなると、消弧性ガスを自動的に吸気補充できる。このため、投入動作時には低温の消弧性ガスが昇圧室35内に速やかに補充される。よって、高速再閉路責務における二回目の遮断過程においても、遮断性能の劣化は全く懸念されない。
(F) Improvement of shut-off performance during high-speed reclosing operation Further, the pressure increasing chamber 35 is provided with an intake hole 17 and an intake valve 19, and when the pressure in each chamber becomes lower than the filling pressure in the sealed container, the arc extinguishing is performed. Sexual gas can be automatically inhaled. For this reason, the low temperature arc extinguishing gas is quickly replenished into the pressure increasing chamber 35 during the charging operation. Therefore, there is no concern at all about the deterioration of the interruption performance even in the second interruption process in the high-speed reclosing duty.
(効果)
(1)本実施形態のガス遮断器は、消弧性ガスが充填された密閉容器と、密閉容器内に対向配置され、電気的に通電可能で、電流遮断時には互いの間にアーク放電7が発生しうるように構成された一対の固定アーク電極30a、30bと、アーク放電7に対し消弧性ガスを吹き付けるために、消弧性ガスを昇圧させて昇圧ガスを生成する昇圧室35と、昇圧ガスを溜めておく蓄圧室36と、蓄圧室36からアーク放電7に向けて昇圧ガスを導く絶縁ノズル32とが設けられたガス遮断器において、蓄圧室36を閉塞状態あるいは開放状態とするための開閉自在な開閉部41を設けるようにした。また、昇圧室35は、シリンダ39と可動ピストン33を有し、可動ピストン33が可動することでシリンダ39内部の消弧性ガスを断熱圧縮し、昇圧ガスを生成するように構成するようにした。消弧性ガスを、地球温暖化係数がSFガスよりも小さく、かつ、20℃における比熱比が1.1よりも大きい消弧性ガスとした。
(effect)
(1) The gas circuit breaker according to the present embodiment is arranged in a sealed container filled with an arc-extinguishing gas and is opposed to the sealed container so that it can be electrically energized. A pair of fixed arc electrodes 30a, 30b configured to be capable of being generated, and a pressurizing chamber 35 that pressurizes the arc extinguishing gas to generate the pressurizing gas in order to blow the arc extinguishing gas to the arc discharge 7; In a gas circuit breaker provided with a pressure accumulating chamber 36 for accumulating pressurized gas and an insulating nozzle 32 for guiding the pressurized gas from the pressure accumulating chamber 36 toward the arc discharge 7, the accumulating chamber 36 is closed or opened. An openable / closable opening / closing part 41 is provided. The pressurizing chamber 35 has a cylinder 39 and a movable piston 33, and the movable piston 33 is configured to adiabatically compress the arc extinguishing gas inside the cylinder 39 to generate the boosted gas. . The arc extinguishing gas was an arc extinguishing gas having a global warming potential smaller than that of SF 6 gas and a specific heat ratio at 20 ° C. larger than 1.1.
 これにより、可動ピストン33の移動により断熱圧縮を主体として昇圧するとともに、断熱圧縮が比熱比のべき乗で効くため、顕著な昇圧作用を得ることができる。さらに、断熱圧縮であるため、アーク放電7により発生した熱が昇圧部35に流入することもなく、アーク放電7による熱が流入する従来のガス遮断器と比べて、消弧性ガスの温度を低温にすることができるとともに、開閉部41によりアーク放電7への吹き付け直前まで蓄圧室36で昇圧ガスを溜めることができるので、十分な吹き付け圧力を確保することができる。よって、駆動装置の駆動エネルギーや機器サイズを大きくする必要がない。 Thereby, the pressure is increased mainly by adiabatic compression by the movement of the movable piston 33, and the adiabatic compression works as a power of the specific heat ratio, so that a remarkable pressure increasing action can be obtained. Furthermore, since it is adiabatic compression, the heat generated by the arc discharge 7 does not flow into the booster 35, and the temperature of the arc extinguishing gas is reduced as compared with the conventional gas circuit breaker into which the heat from the arc discharge 7 flows. While the temperature can be lowered, and the pressurizing gas can be stored in the pressure accumulating chamber 36 until immediately before the arc discharge 7 is sprayed by the opening / closing part 41, a sufficient spraying pressure can be secured. Therefore, it is not necessary to increase the drive energy and the device size of the drive device.
 本実施形態によれば、環境への影響が少なく、かつ、消弧性ガスの冷却効果と昇圧効果が得られるとともに、機器サイズや駆動装置の大型化を回避することができ、コンパクトで信頼性の高いガス遮断器を得ることができる。 According to the present embodiment, there is little influence on the environment, an arc extinguishing gas cooling effect and a boosting effect can be obtained, and an increase in equipment size and drive device can be avoided, which is compact and reliable. High gas circuit breaker can be obtained.
(2)開閉部41は、電流遮断過程の前半には蓄圧室36を閉塞状態とし、アーク放電7の熱によって生成される熱排ガス20が蓄圧室36内へ流入することを制限し、若しくは蓄圧室36内の昇圧ガスの流出を制限し、電流遮断過程の後半には蓄圧室36を開放状態とし、蓄圧室36内の昇圧ガスをアーク放電7に導くように構成した。これにより、昇圧ガスの冷却効果を高め、若しくは十分な吹き付け圧力を確保した状態でアーク放電7に昇圧ガスを吹き付けることができるので、機器サイズや駆動装置の大型化を回避することができ、コンパクトで信頼性の高いガス遮断器を得ることができる。 (2) The opening / closing part 41 closes the pressure accumulating chamber 36 in the first half of the current interruption process, restricts the flow of the thermal exhaust gas 20 generated by the heat of the arc discharge 7 into the pressure accumulating chamber 36, or accumulates pressure. The flow of the pressurization gas in the chamber 36 is limited, the pressure accumulation chamber 36 is opened in the latter half of the current interruption process, and the pressure increase gas in the pressure accumulation chamber 36 is guided to the arc discharge 7. As a result, it is possible to increase the cooling effect of the pressurizing gas or to spray the pressurizing gas to the arc discharge 7 in a state in which a sufficient blowing pressure is ensured. A highly reliable gas circuit breaker can be obtained.
(3)電流遮断過程の後半には、昇圧室35の内部空間と蓄圧室36の内部空間とが、圧力的に切り離されるように構成され、かつ、昇圧室35の内部空間の圧力が放圧するよう昇圧室35を構成した。これにより、昇圧室35の影響を受けずに蓄圧室36からアーク放電7に昇圧ガスを吹き付けることが可能であるとともに、当該吹き付けと独立して昇圧室35の内部空間の圧力を放圧するので、圧縮反力による可動ピストン33のストロークの逆行を抑制でき、過大な駆動エネルギーが不要になるため、機器サイズや駆動装置の大型化を回避することができる。 (3) In the latter half of the current interruption process, the internal space of the boosting chamber 35 and the internal space of the pressure accumulating chamber 36 are configured to be separated in pressure, and the pressure in the internal space of the boosting chamber 35 is released. The pressurizing chamber 35 was configured as described above. As a result, it is possible to blow the boosted gas from the pressure accumulating chamber 36 to the arc discharge 7 without being affected by the boosting chamber 35 and to release the pressure in the internal space of the boosting chamber 35 independently of the blowing. Since the reverse stroke of the stroke of the movable piston 33 due to the compression reaction force can be suppressed and excessive driving energy is not required, it is possible to avoid an increase in equipment size and driving device.
(4)消弧性ガスを、窒素(N)、二酸化炭素(CO)、酸素(O)、メタン(CH)、希ガスの何れか1種の単体のガス、又は、少なくとも1種を含む混合ガスとした。これにより、SFガスを用いる従来技術よりも地球温暖化の影響を小さくすることができる。 (4) The arc extinguishing gas is a single gas of nitrogen (N 2 ), carbon dioxide (CO 2 ), oxygen (O 2 ), methane (CH 4 ), or a rare gas, or at least 1 A mixed gas containing seeds was used. Thus, it is possible to reduce the effects of global warming than the prior art using SF 6 gas.
(5)アーク放電7から発生する熱排ガス20の圧力が、可動ピストン33による消弧性ガスの圧縮反力として作用しないように構成した。アーク放電7に吹き付ける消弧性ガスの温度が自力昇圧作用を利用する従来技術に比べて、はるかに低くすることができるので、アーク放電7の冷却効果を著しく向上させることができるとともに、可動ピストン33の駆動エネルギーを小さくすることができるので、結果的に機器サイズや駆動装置の大型化を回避することができる。 (5) The configuration is such that the pressure of the thermal exhaust gas 20 generated from the arc discharge 7 does not act as a compression reaction force of the arc extinguishing gas by the movable piston 33. Since the temperature of the arc extinguishing gas blown to the arc discharge 7 can be made much lower than that of the prior art using the self-pressure boosting action, the cooling effect of the arc discharge 7 can be remarkably improved, and the movable piston Since the drive energy of 33 can be reduced, it is possible to avoid an increase in equipment size and drive device as a result.
(6)一対の固定アーク電極30a、30bは密閉容器内に固定されており、一対の固定アーク電極30a、30bの内側には固定アーク電極30a、30bより径の小さなトリガー電極31が固定アーク電極30a、30b間を移動自在に配置され、トリガー電極31は、一対の固定アーク電極30a、30bと接触して両固定アーク電極30a、30bを短絡することで通電状態を実現し、電流遮断時には当該トリガー電極31と一方の固定アーク電極30aの間にアーク放電7が発生し、アーク放電7が最終的にはトリガー電極31から他方の固定アーク電極30bに転移するように構成した。 (6) The pair of fixed arc electrodes 30a and 30b are fixed in a sealed container, and a trigger electrode 31 having a smaller diameter than the fixed arc electrodes 30a and 30b is fixed inside the pair of fixed arc electrodes 30a and 30b. 30a, 30b is movably disposed, and the trigger electrode 31 is brought into contact with the pair of fixed arc electrodes 30a, 30b to short-circuit both the fixed arc electrodes 30a, 30b. An arc discharge 7 is generated between the trigger electrode 31 and one fixed arc electrode 30a, and the arc discharge 7 is finally transferred from the trigger electrode 31 to the other fixed arc electrode 30b.
 一般にアーク電極にはアーク放電7に対する耐久性が求められるが、従来の円筒形状の可動アーク電極に中実円柱形状の固定アーク電極を差し引きする構造のガス遮断器では、より耐久性を得ようとすれば、固定アーク電極を太くする必要があり、結果として可動アーク電極の径も大きくなり、可動部の重量の増大に繋がっていた。一方、本実施形態では、トリガー電極31にアーク放電7が点弧している期間は固定アーク電極30bにアーク放電7が転移されるまでの限定された期間のみであるため、必要最小限の径で済み、可動部の重量を軽減できる。また、固定アーク電極30a、30bは密閉容器内に固定されるので、可動部の重量増大を懸念せずに、固定アーク電極30a、30bを太くし耐久性を向上させることができる。このように、耐久性の向上と可動部の重量軽減を両立することができる。 In general, the arc electrode is required to have durability against the arc discharge 7. However, in a gas circuit breaker having a structure in which a solid cylindrical electrode is subtracted from a conventional movable arc electrode having a cylindrical shape, more durability is required. In this case, it is necessary to make the fixed arc electrode thicker. As a result, the diameter of the movable arc electrode is increased, leading to an increase in the weight of the movable part. On the other hand, in the present embodiment, the period during which the arc discharge 7 is ignited on the trigger electrode 31 is only a limited period until the arc discharge 7 is transferred to the fixed arc electrode 30b. This can reduce the weight of moving parts. Further, since the fixed arc electrodes 30a and 30b are fixed in the sealed container, the fixed arc electrodes 30a and 30b can be thickened and the durability can be improved without worrying about an increase in the weight of the movable part. Thus, it is possible to achieve both improvement in durability and weight reduction of the movable part.
(7)アーク放電7から発生する熱排ガス20が、熱排ガス20の発生と同時に、遅滞なくアーク放電7から遠ざかる方向に流れ、密閉容器内の空間へと速やかに排出されるように構成した。これにより、固定アーク電極30a、30b間の圧力を常に密閉容器の充填圧力とほぼ同等の値が維持されるので、電流遮断に必要な吹き付け圧力が低減でき、駆動操作力を低減することができる。結果として機器サイズや駆動装置の大型化を回避することができる。 (7) The thermal exhaust gas 20 generated from the arc discharge 7 flows in a direction away from the arc discharge 7 without delay at the same time as the generation of the thermal exhaust gas 20, and is quickly discharged into the space in the sealed container. As a result, the pressure between the fixed arc electrodes 30a and 30b is always maintained at a value substantially equal to the filling pressure of the sealed container, so that the spraying pressure necessary for interrupting the current can be reduced and the driving operation force can be reduced. . As a result, it is possible to avoid an increase in equipment size and drive device.
(8)整流手段として、密閉容器内に固定された絶縁ノズル32を設けた。これにより、従来の絶縁ノズルが消弧性ガスの圧縮とともに移動するガス遮断器と異なり、絶縁ノズル32が可動部の重量に影響しないので、駆動エネルギーを小さくでき、結果として機器サイズや駆動装置の大型化を回避することができる。 (8) As the rectifying means, an insulating nozzle 32 fixed in the sealed container is provided. Thereby, unlike the gas circuit breaker in which the conventional insulating nozzle moves along with the compression of the arc extinguishing gas, the insulating nozzle 32 does not affect the weight of the movable part, so that the driving energy can be reduced. An increase in size can be avoided.
[第2の実施形態]
(構成)
 第2の実施形態について、図6及び図7を用いて説明する。第2の実施形態は第1の実施形態と基本構造は同一であるが、図1~図5には図示されていない、可動部を駆動する駆動装置に特徴がある。
[Second Embodiment]
(Constitution)
A second embodiment will be described with reference to FIGS. The second embodiment has the same basic structure as that of the first embodiment, but is characterized by a drive device that drives a movable part, which is not shown in FIGS.
 図6および図7に、圧縮反力(ア)、すなわち可動ピストン33が昇圧室35の圧力から受ける力を実線で、駆動装置の駆動力(イ)を点線で、可動部を加速させる力(実効加速力,(イ-ア))を一点鎖線で示す。横軸は駆動ストロークであり、完全投入位置が0pu、完全開極位置が1.0puである。ここで摩擦等の影響は無視するとした場合、実効加速力は「駆動力(イ)-圧縮反力(ア)」で描かれる。実効加速力は正の値が加速力、負の値が減速力を意味する。 6 and 7, the compression reaction force (a), that is, the force that the movable piston 33 receives from the pressure of the pressure-increasing chamber 35 is indicated by a solid line, the driving force (a) of the driving device is indicated by a dotted line, and the force that accelerates the movable part ( The effective acceleration force ((ear)) is indicated by a one-dot chain line. The horizontal axis is the drive stroke, and the complete closing position is 0 pu and the complete opening position is 1.0 pu. Here, if the influence of friction or the like is ignored, the effective acceleration force is expressed as “driving force (A) -compression reaction force (A)”. As for the effective acceleration force, a positive value means acceleration force, and a negative value means deceleration force.
 本実施形態のガス遮断器は、吹付けガスの圧力上昇を可動ピストン33による断熱圧縮を主体として行うため、圧縮反力((ア),実線)のカーブは断熱圧縮特性として知られる図6および図7に示すような単調増加特性となる。また、吹付けガスの圧力上昇にアーク放電7からの熱エネルギーを活用しないため、圧縮反力(実線)のカーブは遮断電流の大小や交流電流の位相などによらず、常に一定のカーブとなる。 Since the gas circuit breaker of the present embodiment mainly performs adiabatic compression by the movable piston 33, the curve of the compression reaction force ((a), solid line) is known as adiabatic compression characteristics in FIG. Monotonically increasing characteristics as shown in FIG. In addition, since the thermal energy from the arc discharge 7 is not used to increase the pressure of the blowing gas, the curve of the compression reaction force (solid line) is always a constant curve regardless of the magnitude of the cutoff current or the phase of the alternating current. .
 図6は、駆動装置の駆動力((イ),点線)がストロークに対してフラットな特性の場合を示している。一方,図7は、駆動装置の駆動力((イ),点線)がストロークに対して減衰していく特性の場合を示している。図6では最も極端な例として、駆動力は全ストローク位置にわたり0.5puで一定としている。一方、図7では、駆動力が一例として0.8puから0.2puまで直線的に減衰するケースを取り上げている。 FIG. 6 shows a case where the driving force ((A), dotted line) of the driving device is flat with respect to the stroke. On the other hand, FIG. 7 shows a case where the driving force ((A), dotted line) of the driving device attenuates with respect to the stroke. In FIG. 6, as the most extreme example, the driving force is constant at 0.5 pu over the entire stroke position. On the other hand, FIG. 7 shows a case where the driving force linearly attenuates from 0.8 pu to 0.2 pu as an example.
 また、駆動装置が遮断動作のために蓄勢している駆動エネルギーは、駆動力((イ),点線)をストロークで積分した面積として与えられる。すなわち、図6の駆動力特性の場合、駆動エネルギーは、
 0.5pu×全ストローク1pu=0.5   ・・・(式2)
のエネルギー量となる。
Further, the drive energy stored in the drive device for the shut-off operation is given as an area obtained by integrating the drive force ((A), dotted line) with a stroke. That is, in the case of the driving force characteristic of FIG.
0.5 pu × full stroke 1 pu = 0.5 (Expression 2)
The amount of energy.
 一方、図7の駆動力特性の場合、駆動エネルギーは、縦軸0puのラインと駆動力(イ)の点線とで囲まれた台形の面積となり、
 (0.8pu+0.2pu)÷2×全ストローク1pu=0.5   ・・・(式3)
のエネルギー量となる。
On the other hand, in the case of the driving force characteristics of FIG. 7, the driving energy has a trapezoidal area surrounded by the vertical axis 0 pu line and the driving force (b) dotted line,
(0.8 pu + 0.2 pu) ÷ 2 × full stroke 1 pu = 0.5 (Expression 3)
The amount of energy.
 つまり、図6と図7は駆動力のストローク特性は異なるものの、駆動エネルギーとしては同一である。第2の実施形態では、駆動装置に図7に示すような出力減衰型の特性を有するものを採用することを特徴とする。すなわち、駆動装置としては、その駆動力が遮断過程で減少するように構成されたものを用いる。 That is, FIG. 6 and FIG. 7 have the same driving energy although the stroke characteristics of the driving force are different. The second embodiment is characterized in that a drive device having an output attenuation type characteristic as shown in FIG. 7 is employed. That is, as the driving device, one that is configured such that the driving force decreases in the shut-off process is used.
(作用)
 一般的に駆動装置の大きさやコストは、駆動エネルギーに対して概ね単調増加の傾向を持つ。すなわち、図6と図7の駆動装置は駆動力の特性は異なるものの、駆動エネルギーとしては同一であるため、どちらも駆動装置の大きさやコストはさほど大きな差はないといえる。
(Function)
In general, the size and cost of a drive device tend to increase monotonically with respect to drive energy. That is, although the driving devices in FIGS. 6 and 7 have different driving force characteristics, the driving energy is the same, and therefore, it can be said that there is no great difference in the size and cost of the driving devices.
 一方、駆動エネルギーは同じでも、ストロークの前半で大きな駆動力を出し、後半に向かって減衰してゆく図7の特性の駆動装置の方が、実効加速力(イ-ア)が図6より大きな値となっていることが分かる。圧縮反力の特性(ア)は図6と図7で同一で、かつ、駆動エネルギーも同一であるので、完全開極位置(ストローク1pu)での速度は同一となるが、ストローク途中の速度は両者で異なり、開極前半における加速力が大きい図7の方が可動部のトップスピードは速くなる。 On the other hand, even if the driving energy is the same, the driving device having the characteristics shown in FIG. 7 that produces a large driving force in the first half of the stroke and attenuates toward the second half has a larger effective acceleration force (ear) than that in FIG. It turns out that it is a value. Since the compression reaction force characteristics (A) are the same in FIGS. 6 and 7, and the drive energy is also the same, the speed at the fully open position (stroke 1pu) is the same, but the speed during the stroke is Unlike in both cases, the top speed of the movable portion is higher in FIG. 7 where the acceleration force in the first half of the opening is larger.
 これは、操作駆動エネルギーが同じ場合、図7に示すような出力減衰型の駆動特性をもった駆動装置の方が、図6の駆動特性の駆動装置と比べ、可動部の駆動速度を速くすることができることを示している。これはガス遮断器にとっては、より速く電極間のギャップが開くことを意味しており、電極間の速やかな電気絶縁性の回復の面で大きなメリットとなる。また、可動部の駆動速度が速くなれば、アーク放電7がトリガー電極31から固定アーク電極30bに転移し、蓄圧室36から低温の圧縮ガスが強力にアーク放電7へ吹付けられるまでの時間が短くなり、遮断完了までに要する時間の短縮、さらには耐久性の向上につながる。 This is because when the operation drive energy is the same, the drive device having the output attenuation type drive characteristics as shown in FIG. 7 increases the drive speed of the movable portion compared to the drive device having the drive characteristics shown in FIG. It shows that you can. This means that the gap between the electrodes opens faster for the gas circuit breaker, which is a great merit in terms of quick recovery of electrical insulation between the electrodes. Further, if the driving speed of the movable portion is increased, the arc discharge 7 is transferred from the trigger electrode 31 to the fixed arc electrode 30b, and the time until the low-temperature compressed gas is strongly blown from the accumulator 36 to the arc discharge 7 is increased. This shortens the time required for completing the shut-off and further improves durability.
 以上述べた作用効果が得られるのは、ガス遮断器が吹付けガスの圧力上昇を可動ピストン33による断熱圧縮を主体として行っており、そのため圧縮反力が初期は非常に小さく、後半に向かって急激に増加する特性であることに由来する。また、圧縮反力の特性が遮断電流の大小や交流電流位相などによらず、常に一定のカーブとなることも、当該作用効果を得るための必須条件である。いずれも、従来の自力昇圧作用を利用するガス遮断器の構造では達成できない特徴である。従来の遮断器では、固定ピストンに印加される圧縮反力はアーク発生熱の影響を大きく受けるため、単調増加のカーブにはならず、また遮断電流の条件により様相は大きく異なるからである。 The effects described above can be obtained because the gas circuit breaker mainly performs the adiabatic compression by the movable piston 33 to increase the pressure of the blowing gas, so that the compression reaction force is very small in the initial stage and toward the latter half. This is due to the rapidly increasing properties. In addition, it is an indispensable condition for obtaining the function and effect that the compression reaction force always has a constant curve regardless of the magnitude of the breaking current, the alternating current phase, or the like. Both are features that cannot be achieved with a conventional gas circuit breaker structure that utilizes the self-pressurizing action. This is because in the conventional circuit breaker, the compression reaction force applied to the fixed piston is greatly influenced by the heat generated by the arc, so it does not have a monotonically increasing curve, and the aspect varies greatly depending on the condition of the breaking current.
 駆動エネルギーが同一の条件で、駆動出力を図6のようなフラットな特性から、図7のような減衰型の特性とする具体的方策について説明する。これは、駆動エネルギー源として蓄勢したバネを採用すれば容易に実現できる。バネ機構の出力特性は、原理的には以下の式のように与えられ、図7に示したような単調減少直線となる。
 F=k・(L+1-x)   ・・・(式4)
ここで、F:駆動出力、k:バネ定数、x:ストローク(pu)、L:完全開極位置(ストロークx=1pu)でのバネの圧縮長(pu)である。
A specific policy for changing the drive output from a flat characteristic as shown in FIG. 6 to an attenuating characteristic as shown in FIG. 7 under the same driving energy will be described. This can be easily realized by using a stored spring as a drive energy source. In principle, the output characteristic of the spring mechanism is given by the following equation, and becomes a monotonically decreasing straight line as shown in FIG.
F = k · (L + 1−x) (Formula 4)
Here, F: drive output, k: spring constant, x: stroke (pu), L: compression length (pu) of the spring at the complete opening position (stroke x = 1 pu).
 特に、完全開極位置でバネが自由長に近くなるように構成すれば(L≒0pu)、同じ駆動エネルギーを得るためのバネ定数kの値は大きくなり、バネの放勢に伴い駆動力がストロークに対して大きく減衰する特性となる。 In particular, if the spring is configured to be close to the free length at the fully open position (L≈0 pu), the value of the spring constant k for obtaining the same driving energy increases, and the driving force is reduced as the spring is released. It becomes the characteristic which attenuates greatly with respect to the stroke.
 あるいはまた、油圧操作機構のようにストロークに対して比較的フラットな出力特性を持つ駆動装置を用いる場合は、適正なリンク構造を連結することで、操作駆動エネルギーを変えずに、出力特性を減衰型に変更することも可能である。 Alternatively, when using a drive device that has a relatively flat output characteristic with respect to the stroke, such as a hydraulic operation mechanism, the output characteristic is attenuated without changing the operation drive energy by connecting an appropriate link structure. It is also possible to change to a type.
 出力特性を減衰型にする方策は上記以外にも種々考えうるが、重要なことは、第1の実施形態で示した構造においては、駆動力がストロークに対して減衰型にある駆動装置と組み合わせることで、同一の操作駆動エネルギーであっても、電極の解離速度を効果的に上げることができ、遮断器の速やかな絶縁回復、遮断完了までに要する時間の短縮、耐久性の向上などの、特有のメリットが得られるということである。 Various measures other than the above can be considered for the output characteristics to be damped, but the important thing is that the structure shown in the first embodiment is combined with a driving device whose driving force is damped with respect to the stroke. Thus, even with the same operation drive energy, the dissociation rate of the electrode can be effectively increased, such as quick insulation recovery of the circuit breaker, reduction of time required for completion of interruption, improvement of durability, This means that a unique merit can be obtained.
 さらに、第1の実施形態で述べた昇圧室35の高いガス圧力を可動ピストン33から切り離し、かつ昇圧室35の圧力を放圧機構48により放圧することで、たとえ駆動力が開極後半に大きく低下しても、可動部が逆行するなどの不具合は生じない。 Further, the high gas pressure in the boosting chamber 35 described in the first embodiment is disconnected from the movable piston 33, and the pressure in the boosting chamber 35 is released by the release mechanism 48, so that the driving force is greatly increased in the latter half of the opening. Even if it drops, there will be no inconvenience such as the moving part going backwards.
 なお、出力低下型の駆動力特性の一つの目安として、投入位置(ストローク0pu)での駆動力に対して、完全遮断位置(ストローク1pu)での駆動力が例えば概ね80%以下とすることを提案する。完全開極位置における出力低下率を80%以下となるように設定すれば、上記の作用が実質的に得ることができる。 As one guideline for the output-decreasing type driving force characteristic, the driving force at the complete cutoff position (stroke 1 pu) is, for example, approximately 80% or less with respect to the driving force at the closing position (stroke 0 pu). suggest. If the output reduction rate at the fully open position is set to be 80% or less, the above-described action can be substantially obtained.
(効果)
 以上のように、本実施形態では、昇圧部35の消弧性ガスを機械的に圧縮するための駆動装置が設けられ、駆動装置は、その駆動力が駆動ストロークとともに減少するように構成した。これにより、開極前半における加速力が大きくなるため、電極間の速やかな電気絶縁性の回復という効果を奏する。また、可動部の駆動速度が速くなれば、アーク放電7がトリガー電極31から固定アーク電極30bに転移し、蓄圧室36から低温の圧縮ガスが強力にアーク放電7へ吹付けられるまでの時間が短くなり、遮断完了までに要する時間の短縮及び耐久性の向上という効果を得ることができる。
(effect)
As described above, in the present embodiment, the driving device for mechanically compressing the arc extinguishing gas of the booster 35 is provided, and the driving device is configured such that the driving force decreases with the driving stroke. Thereby, since the acceleration force in the first half of the opening increases, the effect of promptly restoring the electrical insulation between the electrodes is obtained. Further, if the driving speed of the movable portion is increased, the arc discharge 7 is transferred from the trigger electrode 31 to the fixed arc electrode 30b, and the time until the low-temperature compressed gas is strongly blown from the accumulator 36 to the arc discharge 7 is increased. The effect of shortening and shortening the time required to complete the shutoff and improving the durability can be obtained.
[その他の実施形態]
 本明細書においては、本発明に係る複数の実施形態を説明したが、これらの実施形態は例として提示したものであって、発明の範囲を限定することを意図していない。以上のような実施形態は、その他の様々な形態で実施されることが可能であり、発明の範囲を逸脱しない範囲で、種々の省略や置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれると同様に、請求の範囲に記載された発明とその均等の範囲に含まれるものである。
[Other Embodiments]
In the present specification, a plurality of embodiments according to the present invention have been described. However, these embodiments are presented as examples and are not intended to limit the scope of the invention. The above embodiments can be implemented in other various forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the invention described in the claims and equivalents thereof, as long as they are included in the scope and gist of the invention.
 例えば、第1及び第2の実施形態では、可動ピストン33を駆動装置によって中心線方向に移動可能とし昇圧手段としていたが、これに限られない。例えば、図8のように、ピストンを固定し、この固定ピストン33’に対して駆動装置に直接又は間接に接続した可動シリンダ39’を移動させるようにしても良い。このように可動シリンダ39’を昇圧手段としても、昇圧部35の容積が可変であるため、昇圧部35内部の消弧性ガスを圧縮、昇圧することができる。 For example, in the first and second embodiments, the movable piston 33 can be moved in the direction of the center line by the driving device and is used as the boosting means, but is not limited thereto. For example, as shown in FIG. 8, the piston may be fixed, and the movable cylinder 39 'connected directly or indirectly to the driving device may be moved with respect to the fixed piston 33'. Thus, even if the movable cylinder 39 ′ is used as a pressure increasing means, the volume of the pressure increasing portion 35 is variable, so that the arc extinguishing gas inside the pressure increasing portion 35 can be compressed and pressure increased.
 なお、可動シリンダ39’は、可動ピストン33と同様に固定アーク電極30b、円筒部材40と摺動可能な摺動面を有し、可動シリンダ39’の移動によって連通穴34を塞ぐことが可能なように構成する。 The movable cylinder 39 ′ has a sliding surface that can slide with the fixed arc electrode 30b and the cylindrical member 40 in the same manner as the movable piston 33, and the communication hole 34 can be closed by the movement of the movable cylinder 39 ′. Configure as follows.
 第1及び第2の実施形態では、固定電極部Aを密閉容器内で固定して、可動電極部Bのみを軸方向に移動させるよう構成したが、固定電極部Aに対して可動電極部Bが相対的に移動するように、固定電極部Aも軸方向に移動させ、相対的開極速度を向上させようとするいわゆるデュアルモーション機構にしても良い。 In the first and second embodiments, the fixed electrode portion A is fixed in the sealed container and only the movable electrode portion B is moved in the axial direction, but the movable electrode portion B is moved with respect to the fixed electrode portion A. The fixed electrode portion A may also be moved in the axial direction so as to move relatively, so that a so-called dual motion mechanism that improves the relative opening speed may be used.
A…固定電極部
B…可動電極部
1…ガス遮断器
2…対向通電電極
3…可動通電電極
7…アーク放電
17…吸気穴
19…吸気バルブ
20…熱排ガス
21…吹き付けガス(昇圧ガス)
30a、30b…固定アーク電極
31…トリガー電極
33…可動ピストン
33a…摺動内周面
33b…摺動外周面
33’…固定ピストン
34…連通穴
35…昇圧室
36…蓄圧室
37…排気穴
39…シリンダ
39’…可動シリンダ
40…円筒部材
41…開閉部
42…リンク
43…ロッド
43a…溝
47…シール部材
48…放圧機構
49…放出圧縮ガス
A ... Fixed electrode part B ... Movable electrode part 1 ... Gas circuit breaker 2 ... Opposite energizing electrode 3 ... Movable energizing electrode 7 ... Arc discharge 17 ... Intake hole 19 ... Intake valve 20 ... Thermal exhaust gas 21 ... Blowing gas (pressurized gas)
30a, 30b ... fixed arc electrode 31 ... trigger electrode 33 ... movable piston 33a ... sliding inner peripheral surface 33b ... sliding outer peripheral surface 33 '... fixed piston 34 ... communication hole 35 ... pressure increasing chamber 36 ... pressure accumulating chamber 37 ... exhaust hole 39 ... Cylinder 39 '... Moving cylinder 40 ... Cylinder member 41 ... Opening / closing part 42 ... Link 43 ... Rod 43a ... Groove 47 ... Seal member 48 ... Pressure release mechanism 49 ... Release compressed gas

Claims (9)

  1.  消弧性ガスが充填された密閉容器と、
     前記密閉容器内に対向配置され、電気的に通電可能で、電流遮断時には互いの間にアーク放電が発生しうるように構成された一対のアーク電極と、
     前記アーク放電に対し前記消弧性ガスを吹き付けるために、前記消弧性ガスを昇圧させて昇圧ガスを生成する昇圧部と、
     前記昇圧ガスを溜めておく蓄圧空間と、
     前記蓄圧空間から前記アーク放電に向けて前記昇圧ガスを導く整流手段と、が設けられたガス遮断器において、
     前記蓄圧空間を閉塞状態あるいは開放状態とするための開閉自在な開閉部が設けられ、
     前記昇圧部は、シリンダとピストンを有し、その少なくともどちらかを可動することで前記シリンダ内部の前記消弧性ガスを断熱圧縮し、前記昇圧ガスを生成するように構成され、
     前記消弧性ガスが、地球温暖化係数がSFガスよりも小さく、かつ、20℃における比熱比が1.1よりも大きいことを特徴とするガス遮断器。
    A sealed container filled with arc-extinguishing gas;
    A pair of arc electrodes arranged oppositely in the sealed container, electrically energized, and configured to generate arc discharge between each other when the current is interrupted,
    In order to blow the arc-extinguishing gas against the arc discharge, a pressure-increasing unit that pressurizes the arc-extinguishing gas to generate a pressure-increasing gas;
    A pressure accumulating space for storing the pressurizing gas;
    In the gas circuit breaker provided with rectifying means for guiding the boosted gas from the pressure accumulation space toward the arc discharge,
    An openable and closable opening / closing part for making the pressure accumulation space closed or open is provided,
    The pressurizing unit has a cylinder and a piston, and is configured to adiabatically compress the arc extinguishing gas inside the cylinder by moving at least one of the cylinder and generate the pressurizing gas.
    A gas circuit breaker characterized in that the arc-extinguishing gas has a global warming potential smaller than SF 6 gas and a specific heat ratio at 20 ° C. is larger than 1.1.
  2.  前記開閉部は、電流遮断過程の前半には前記蓄圧空間を閉塞状態とし、前記アーク放電の熱によって生成される熱排ガスが前記蓄圧空間内へ流入することを制限し、若しくは前記蓄圧空間内の前記昇圧ガスの流出を制限し、
     電流遮断過程の後半には前記蓄圧空間を開放状態とし、前記蓄圧空間内の前記昇圧ガスを前記アーク放電に導くように構成されたことを特徴とする請求項1に記載のガス遮断器。
    The opening / closing part closes the pressure accumulating space in the first half of the current interruption process, restricts the flow of thermal exhaust gas generated by the heat of the arc discharge into the pressure accumulating space, or Limiting outflow of the pressurizing gas,
    2. The gas circuit breaker according to claim 1, wherein, in the second half of the current interruption process, the pressure accumulating space is opened, and the boosted gas in the pressure accumulating space is guided to the arc discharge.
  3.  電流遮断過程の後半には、前記昇圧部の内部空間と前記蓄圧空間とが、圧力的に切り離されるように構成され、かつ、前記昇圧部の内部空間の圧力が放圧するよう構成されたことを特徴とする請求項1又は2に記載のガス遮断器。 In the latter half of the current interruption process, the internal space of the booster and the pressure accumulation space are configured to be separated in pressure, and the internal space of the booster is configured to release pressure. The gas circuit breaker according to claim 1 or 2, characterized by the above.
  4.  前記消弧性ガスは、窒素(N)、二酸化炭素(CO)、酸素(O)、メタン(CH)、希ガスの何れか1種の単体のガス、又は、少なくとも1種を含む混合ガスであることを特徴とする請求項1~3の何れかに記載のガス遮断器。 The arc extinguishing gas is nitrogen (N 2 ), carbon dioxide (CO 2 ), oxygen (O 2 ), methane (CH 4 ), or any one kind of rare gas, or at least one kind. The gas circuit breaker according to any one of claims 1 to 3, wherein the gas breaker is a mixed gas.
  5.  前記昇圧部の前記消弧性ガスを機械的に圧縮するための駆動装置が設けられ、
     前記駆動装置は、その駆動力が駆動ストロークとともに減少するように構成されたことを特徴とする請求項1~4の何れかに記載のガス遮断器。
    A driving device for mechanically compressing the arc-extinguishing gas of the boosting unit is provided;
    The gas circuit breaker according to any one of claims 1 to 4, wherein the driving device is configured such that a driving force thereof decreases with a driving stroke.
  6.  前記アーク放電から発生する熱排ガスの圧力が、前記ピストン又は前記シリンダによる前記消弧性ガスの圧縮反力として作用しないように構成されたことを特徴とする請求項1~5の何れかに記載のガス遮断器。 The pressure of the thermal exhaust gas generated from the arc discharge is configured not to act as a compression reaction force of the arc extinguishing gas by the piston or the cylinder. Gas circuit breaker.
  7.  前記一対のアーク電極は前記密閉容器内に固定されており、
     前記一対のアーク電極の内側には前記アーク電極より径の小さなトリガー電極が前記アーク電極間を移動自在に配置され、
     前記トリガー電極は、前記一対のアーク電極と接触して両アーク電極を短絡することで通電状態を実現し、電流遮断時には当該トリガー電極と一方の前記アーク電極の間に前記アーク放電が発生し、前記アーク放電が最終的には前記トリガー電極から他方の前記アーク電極に転移するように構成されたことを特徴とする請求項1~6の何れかに記載のガス遮断器。
    The pair of arc electrodes are fixed in the sealed container,
    Inside the pair of arc electrodes, a trigger electrode having a smaller diameter than the arc electrodes is disposed so as to be movable between the arc electrodes,
    The trigger electrode is brought into an energized state by short-circuiting both arc electrodes in contact with the pair of arc electrodes, and when the current is interrupted, the arc discharge occurs between the trigger electrode and the one arc electrode, 7. The gas circuit breaker according to claim 1, wherein the arc discharge is finally transferred from the trigger electrode to the other arc electrode.
  8.  前記アーク放電から発生する熱排ガスは、前記熱排ガスの発生と同時に、遅滞なく前記アーク放電から遠ざかる方向に流れ、前記密閉容器内の空間へと速やかに排出されるように構成されたことを特徴とする請求項1~7の何れかに記載のガス遮断器。 The thermal exhaust gas generated from the arc discharge is configured to flow in a direction away from the arc discharge without delay at the same time as the generation of the thermal exhaust gas, and to be quickly discharged into the space in the sealed container. The gas circuit breaker according to any one of claims 1 to 7.
  9.  前記整流手段は、前記密閉容器内に固定された絶縁ノズルであることを特徴とする請求項1~8の何れかに記載のガス遮断器。 The gas circuit breaker according to any one of claims 1 to 8, wherein the rectifying means is an insulating nozzle fixed in the sealed container.
PCT/JP2015/056368 2014-03-24 2015-03-04 Gas circuit-breaker WO2015146518A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014060958A JP6382543B2 (en) 2014-03-24 2014-03-24 Gas circuit breaker
JP2014-060958 2014-03-24

Publications (1)

Publication Number Publication Date
WO2015146518A1 true WO2015146518A1 (en) 2015-10-01

Family

ID=54195048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056368 WO2015146518A1 (en) 2014-03-24 2015-03-04 Gas circuit-breaker

Country Status (2)

Country Link
JP (1) JP6382543B2 (en)
WO (1) WO2015146518A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109742001A (en) * 2019-01-24 2019-05-10 武汉司德宝电气有限公司 A kind of fast current cutting cut-off device and equipment
CN113330529A (en) * 2019-03-19 2021-08-31 株式会社东芝 Gas circuit breaker

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6289856B2 (en) 2013-10-16 2018-03-07 株式会社東芝 Gas circuit breaker
EP3561840A4 (en) 2016-12-16 2020-08-19 Toshiba Energy Systems & Solutions Corporation Gas-insulation switch device
CN111357074B (en) 2017-11-10 2021-12-24 株式会社东芝 Gas circuit breaker
WO2019106841A1 (en) 2017-12-01 2019-06-06 株式会社 東芝 Gas circuit breaker

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6198482U (en) * 1984-12-06 1986-06-24
JPH11329191A (en) * 1998-04-14 1999-11-30 Abb Res Ltd Breaker
JP2002075148A (en) * 2000-08-31 2002-03-15 Hitachi Ltd Puffer type gas-blast circuit breaker
JP2007258137A (en) * 2006-03-27 2007-10-04 Toshiba Corp Gas-insulated switch

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19816509B4 (en) * 1998-04-14 2006-08-10 Abb Schweiz Ag consumable
JP2000348580A (en) * 1999-01-07 2000-12-15 Fuji Electric Co Ltd Puffer type gas-blast breaker
EP1207544B1 (en) * 2000-11-17 2006-06-14 ABB Schweiz AG Contact area for a circuit breaker
JP4865467B2 (en) * 2006-09-15 2012-02-01 中部電力株式会社 Arc extinguishing method for power distribution equipment and power distribution equipment
JP5127569B2 (en) * 2008-05-29 2013-01-23 株式会社東芝 Gas insulated switch
JP2013191466A (en) * 2012-03-14 2013-09-26 Toshiba Corp Gas circuit breaker

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6198482U (en) * 1984-12-06 1986-06-24
JPH11329191A (en) * 1998-04-14 1999-11-30 Abb Res Ltd Breaker
JP2002075148A (en) * 2000-08-31 2002-03-15 Hitachi Ltd Puffer type gas-blast circuit breaker
JP2007258137A (en) * 2006-03-27 2007-10-04 Toshiba Corp Gas-insulated switch

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109742001A (en) * 2019-01-24 2019-05-10 武汉司德宝电气有限公司 A kind of fast current cutting cut-off device and equipment
CN109742001B (en) * 2019-01-24 2024-05-03 武汉司德宝电气有限公司 Quick current cut-off breaker and equipment
CN113330529A (en) * 2019-03-19 2021-08-31 株式会社东芝 Gas circuit breaker
EP3944277A4 (en) * 2019-03-19 2023-01-04 Kabushiki Kaisha Toshiba Gas circuit breaker
US11764012B2 (en) 2019-03-19 2023-09-19 Kabushiki Kaisha Toshiba Gas circuit breaker
CN113330529B (en) * 2019-03-19 2024-04-02 株式会社东芝 Gas circuit breaker

Also Published As

Publication number Publication date
JP6382543B2 (en) 2018-08-29
JP2015185381A (en) 2015-10-22

Similar Documents

Publication Publication Date Title
JP6289856B2 (en) Gas circuit breaker
WO2015146518A1 (en) Gas circuit-breaker
JP6320106B2 (en) Gas circuit breaker
WO2014050108A1 (en) Gas-blast circuit breaker
US9312085B2 (en) Circuit breaker with fluid injection
JP5221367B2 (en) Shut-off chamber with two compression chambers
JP2015041504A (en) Gas circuit breaker
CN113330529B (en) Gas circuit breaker
WO2018229972A1 (en) Gas circuit breaker
JP2013054989A (en) Gas circuit breaker
WO2019092861A1 (en) Gas circuit breaker
EP2791958B1 (en) Circuit breaker with fluid injection
EP2791959B1 (en) Circuit breaker with fluid injection
WO2019092866A1 (en) Gas circuit breaker
WO2019092864A1 (en) Gas circuit breaker
WO2019092862A1 (en) Gas circuit breaker
WO2019092865A1 (en) Gas circuit breaker
JP2014002868A (en) Gas-blast circuit breaker
JP2014179305A (en) Gas circuit breaker
JP2013171747A (en) Gas circuit breaker
JP2015122273A (en) Gas circuit breaker for power
JP2017199616A (en) Gas circuit breaker
JP2016143473A (en) Gas circuit breaker
JP2015065005A (en) Gas circuit breaker

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15768560

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15768560

Country of ref document: EP

Kind code of ref document: A1