WO2015146423A1 - Positive electrode active material, positive electrode for secondary batteries, secondary battery and method for producing positive electrode active material - Google Patents

Positive electrode active material, positive electrode for secondary batteries, secondary battery and method for producing positive electrode active material Download PDF

Info

Publication number
WO2015146423A1
WO2015146423A1 PCT/JP2015/055130 JP2015055130W WO2015146423A1 WO 2015146423 A1 WO2015146423 A1 WO 2015146423A1 JP 2015055130 W JP2015055130 W JP 2015055130W WO 2015146423 A1 WO2015146423 A1 WO 2015146423A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
lithium
cation exchange
Prior art date
Application number
PCT/JP2015/055130
Other languages
French (fr)
Japanese (ja)
Inventor
吉則 風間
可織 関根
真也 敷島
英 今井
耕二 幡谷
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to KR1020157023303A priority Critical patent/KR20150135245A/en
Priority to CN201580000366.1A priority patent/CN105144441A/en
Priority to JP2015532206A priority patent/JP6046259B2/en
Publication of WO2015146423A1 publication Critical patent/WO2015146423A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0419Methods of deposition of the material involving spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an iron manganese silicate lithium-based positive electrode active material used for a secondary battery.
  • lithium ion secondary batteries replace the conventional NiCd batteries and Ni hydrogen batteries due to the high energy density obtained from the high voltage of the positive electrode active material and the negative electrode active material used, and the position of the mainstream of secondary batteries It has come to occupy.
  • the lithium ion secondary battery using a combination of a lithium cobalt oxide (LiCoO 2 ) positive electrode active material and a graphite-based carbon negative electrode active material, which is used as a standard in current lithium ion batteries has a high performance in recent years. The power consumption of high-load electronic components cannot be sufficiently supplied, and the required performance cannot be satisfied as a portable power source.
  • lithium cobaltate uses cobalt, which is a rare metal, resource constraints are large, it is expensive, and there is a problem in price stability. Further, since lithium cobaltate releases a large amount of oxygen at a high temperature of 180 ° C. or higher, there is a possibility that explosion occurs during abnormal heat generation or short-circuiting of the battery.
  • lithium silicate transition metals such as lithium iron silicate (Li 2 FeSiO 4 ) and lithium manganese silicate (Li 2 MnSiO 4 ), which have better thermal stability than lithium cobaltate, are a resource. It is attracting attention as a material that satisfies the requirements of cost, cost and safety.
  • the lithium silicate transition metal lithium has two Li in the composition formula, and is a material that can be expected to have a high capacity by a two-electron reaction.
  • Lithium iron silicate as a positive electrode material is known to be able to remove and insert only one Li when charge and discharge are performed after synthesis, and it is difficult to realize a high capacity for two Li ( For example, Non-Patent Document 1). This is because the reaction potential of the second electron is as high as 4.8 V (Non-patent Document 2), and when the battery cell is actually charged and discharged, the electrolytic solution is decomposed at a high potential of 4.5 V or higher. This is due to the inability to charge and discharge. On the other hand, it is known that the crystal structure of lithium iron silicate that reacts only with one electron changes during the first charge (for example, Patent Document 1, Non-Patent Documents 1 and 3).
  • Li When lithium iron silicate is charged, Li is desorbed from some Li sites. At this time, Fe atoms move to the Li sites where Li atoms originally existed. As a result, at the time of discharge, Li is inserted into the conventional Fe site, and after such a cation exchange structure is obtained, the Li insertion and removal is stably performed by charge and discharge.
  • lithium manganese silicate as the positive electrode material is charged and discharged after synthesis, and the reaction potential is 4.5 V or less for both the first and second electrons. It is known that the material can achieve a high capacity.
  • the lithium manganese silicate has an amorphous crystal structure due to the first charge, and the two-electron reaction cannot be performed with good cycle characteristics (for example, Non-Patent Document 4).
  • Patent Document 1 describes lithium iron silicate and lithium manganese silicate, and also discloses an XRD pattern resulting from the crystal structure after charging.
  • manganese-manganese silicate and manganese-manganese silicate containing manganese are amorphous during the first charge and do not retain the crystal structure.
  • a good quality cation exchange structure of lithium manganese silicate cannot be stably formed.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide a lithium iron silicate lithium-based positive electrode active material having a stable cation exchange structure.
  • the first invention is represented by the general formula Li X Fe Y Mn (1-Y) SiO 4 (0 ⁇ X ⁇ 2.5, 0 ⁇ Y ⁇ 1), and the space group P2 1 / n or Pmn2 1 having a crystal structure, a Li atom in part of the Fe / Mn site, and a Fe atom or Mn atom in part of the Li site It is a positive electrode active material characterized by having an exchange structure.
  • the crystal structure of at least one of the space group P2 1 / n or Pmn2 1 described above includes a crystal structure having the space group P2 1 / n or Pmn2 1 as a base structure.
  • the space group P2 1 / n or Pmn2 1 the base material structure, and the space group P2 1 / n, such as Non-Patent Document 5 is a crystal structure with a space group Pmn2 1 such as Non-Patent Document 6 It does not mean that, but describes only the relative positional relationship of the atoms based on their crystal structure. Journal of the American chemical society, 2011, 133, 1263-1265. Electrochemistry Communications, 7, 156, 2005.
  • the crystal structure represented by the space group P2 1 / n and the crystal structure represented by the space group Pmn2 1 are very close to each other. These crystal structures are obtained by manufacturing a material having a composition represented by the general formula Li X Fe Y Mn (1-Y) SiO 4 (0 ⁇ X ⁇ 2.5, 0 ⁇ Y ⁇ 1) by firing. In the present specification, it is called a normal structure because it is a stable crystal structure that is normally generated.
  • Non-Patent Document 5 when Y is close to 1 at a certain firing temperature, P2 1 / n is obtained, and when Y is close to 0, Pmn2 1 is present, and P2 1 / n and Pmn2 1 coexist in the meantime. It is known that it is common to be in a state or a solid solution state. ((Non-Patent Document 7) Journal of Materials Chemistry 2011, 21, 17823-17831)
  • the space group P2 1 It is defined as having a crystal structure of at least one of / n or Pmn21.
  • a crystal structure in which an Fe atom or Mn atom and a Li atom are replaced from the position of the normal structure with respect to these normal structures is called a cation exchange structure.
  • the Fe / Mn site is a position where Fe atoms or Mn atoms are present in the normal structure.
  • the Li site is a position where a Li atom exists in a normal structure.
  • At least one of Co or Ni may be substituted.
  • At least one of Mg, Ca, Ti, V, Cr, Cu, Zn, Sr, Zr, and Mo may be substituted.
  • Fe or Mn has a valence of +2.5 to +3.5.
  • a cation exchange structure can be obtained by a synthetic chemical method without using a conventional electrochemical method.
  • the present invention can also be applied to lithium iron manganese silicate that could not be transferred to the cation exchange structure because it was made amorphous by an electrochemical method.
  • the lithium iron manganese silicate having a cation exchange structure does not become amorphous during subsequent charge and discharge, and can maintain the crystal structure.
  • any one of Mg, Ca, Ti, V, Cr, Zn, and Mo is added to increase the capacity and increase the energy density.
  • the crystal structure can be stabilized and cycle characteristics can be improved.
  • At least one of Mg, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Zr, and Mo is substituted.
  • effects such as increased capacity, increased energy density, stabilized crystal structure, and improved cycle characteristics can be obtained.
  • Fe or Mn has a valence of +2.5 to +3.5, and Si or O changes in valence by changing the valence of Fe or Mn. It can be seen that the stable structure is maintained.
  • a second invention is a positive electrode for a secondary battery comprising: a current collector; and a positive electrode active material layer containing the positive electrode active material according to the first invention on at least one surface of the current collector. is there.
  • the third invention includes a positive electrode for a secondary battery according to the second invention, a negative electrode capable of inserting and extracting lithium ions, and a separator disposed between the positive electrode and the negative electrode,
  • the secondary battery is characterized in that the positive electrode, the negative electrode, and the separator are provided in an electrolyte having lithium ion conductivity.
  • a positive electrode for a secondary battery and a secondary battery excellent in cycle characteristics can be obtained.
  • a fourth invention includes a step of synthesizing an iron manganese silicate lithium-based active material using at least a lithium source, an iron source, a manganese source, and a silicon source, and a step of desorbing a part of lithium from the active material And a step of heating the active material so that a part of the lithium site and a part of the iron site are exchanged and transferred to a cation exchange structure.
  • a positive electrode active material having a cation exchange structure can be obtained without using an electrochemical technique.
  • a lithium iron manganese silicate positive electrode active material having a stable cation exchange structure can be provided.
  • the figure which shows the nonaqueous electrolyte secondary battery. 1 is a schematic view showing a fine particle manufacturing apparatus 1.
  • FIG. It shows a unit cell of space group Pmn2 1.
  • Lithium iron manganese silicate is represented by the general formula Li X Fe Y Mn (1-Y) SiO 4 (0 ⁇ X ⁇ 2.5, 0 ⁇ Y ⁇ 1). In general, the range is 0 ⁇ X ⁇ 2. Moreover, it is desirable that 0 ⁇ Y ⁇ 1.
  • a part of Fe and / or Mn may be replaced with at least one of Co and Ni that can be expected to improve the energy density by increasing the practical amount and improving the average potential, and Fe and / or Mn A part of may be substituted with at least one of Mg, Ca, Ti, V, Cr, Zn, and Mo.
  • the particles of lithium iron manganese silicate of the present invention are present in the range of 10 to 200 nm when the particle size distribution of primary particles is determined by measuring the particle size by observation with a transmission electron microscope (TEM). Is preferably present at 25 to 100 nm.
  • the particle size distribution is more preferably in the range of 10 to 150 nm and the average particle size in the range of 25 to 80 nm. Note that the existence of the particle size distribution in the range of 10 to 200 nm does not require the obtained particle size distribution to cover the entire range of 10 to 200 nm, the lower limit of the obtained particle size distribution is 10 nm or more, and the upper limit is It means 200 nm or less. That is, the obtained particle size distribution may be 10 to 100 nm or 50 to 150 nm.
  • SiO 4 can be substituted with other anions.
  • transition metal acids such as titanic acid (TiO 4 ), chromic acid (CrO 4 ), vanadic acid (VO 4 , V 2 O 7 ), zirconic acid (ZrO 4 ), molybdic acid (MoO 4 , Mo 7) O 24 ), tungstic acid (WO 4 ), etc., or substitution with boric acid (BO 3 ) or phosphoric acid (PO 4 ).
  • transition metal acids such as titanic acid (TiO 4 ), chromic acid (CrO 4 ), vanadic acid (VO 4 , V 2 O 7 ), zirconic acid (ZrO 4 ), molybdic acid (MoO 4 , Mo 7) O 24 ), tungstic acid (WO 4 ), etc.
  • Replacing a part of the silicate ions with these anion species contributes to the suppression and stabilization of the
  • the positive electrode active material preferably has a carbon coating on the surface. Furthermore, the positive electrode active material having a carbon coating preferably has a powder conductivity of 10 ⁇ 3 S / cm or more. When the powder conductivity of the positive electrode active material is 10 ⁇ 3 S / cm or more, sufficient conductivity can be obtained when used for the positive electrode.
  • the carbon content in the positive electrode active material having a carbon coating is preferably 1.5% by weight or more. When the carbon content is 1.5% by weight or more, the powder conductivity is increased, and sufficient conductivity can be obtained when the positive electrode active material is used for the positive electrode.
  • the positive electrode active material can be used as a positive electrode active material used for a positive electrode for a nonaqueous electrolyte secondary battery.
  • a conductive additive such as carbon black is further added to the powder of the positive electrode active material as necessary, and polytetrafluoroethylene or 95% by weight of aluminum is used as a slurry by adding a binder such as polyvinylidene fluoride and polyimide, a dispersant such as butadiene rubber, and a thickener such as carboxymethylcellulose and cellulose derivatives in an aqueous or organic solvent.
  • the positive electrode for nonaqueous electrolyte secondary batteries which has an active material layer containing a positive electrode active material on a collector is obtained.
  • the positive electrode active material is granulated with a carbon source or the like by a spray drying method in order to improve the slurry coating property, the adhesion between the current collector and the active material layer, and the current collecting property. May be.
  • the granulated secondary particle lump becomes a large lump of about 1 to 20 ⁇ m, which improves the slurry coating property and further improves the characteristics and life of the battery electrode.
  • the slurry used for the spray drying method either an aqueous solvent or a non-aqueous solvent can be used.
  • the current collector surface roughness of the active material layer forming surface conforms to Japanese Industrial Standard (JIS B 0601-1994).
  • JIS B 0601-1994 The specified ten-point average roughness Rz is desirably 0.5 ⁇ m or more.
  • the adhesiveness between the formed active material layer and the current collector is excellent, the electron conductivity accompanying the insertion and release of Li ions and the current collecting power to the current collector are increased, and the cycle life of charge / discharge is improved.
  • Non-aqueous electrolyte secondary battery In order to obtain a high-capacity secondary battery using the positive electrode of the present embodiment, various materials such as a negative electrode, an electrolytic solution, a separator, and a battery case using a conventionally known negative electrode active material should be used without particular limitation. Can do.
  • FIG. 1 is a cross-sectional view showing a non-aqueous electrolyte secondary battery 30.
  • the nonaqueous electrolyte secondary battery 30 includes a positive electrode 33, a negative electrode 35 that can occlude and release lithium ions, and a separator 37.
  • the positive electrode 33, the negative electrode 35, and the separator 37 are stacked in the order of separator 37-negative electrode 35-separator 37-positive electrode 33.
  • the positive electrode 33 is wound so as to be on the inner side to constitute an electrode plate group, and is inserted into the battery can 41.
  • the positive electrode 33 is connected to the positive electrode terminal 47 through the positive electrode lead 43, and the negative electrode 35 is connected to the battery can 41 through the negative electrode lead 45.
  • the chemical energy generated inside the nonaqueous electrolyte secondary battery 30 can be taken out as electric energy.
  • the battery can 41 is filled with an electrolyte 31 having lithium ion conductivity so as to cover the electrode plate group.
  • a sealing body 39 is attached to the upper end (opening) of the battery can 41 via an annular insulating gasket.
  • the sealing body 39 is composed of a circular lid plate and a positive electrode terminal 47 on the upper portion thereof, and a safety valve mechanism is built therein.
  • the nonaqueous electrolyte secondary battery 30 is manufactured.
  • the secondary battery using the positive electrode according to the present embodiment has a high capacity and good electrode characteristics
  • the non-aqueous solvent containing fluorine is used in the electrolytic solution using the non-aqueous solvent constituting the secondary battery.
  • the capacity is hardly lowered even after repeated charging and discharging, resulting in a long life.
  • the electrolyte contains fluorine, It is desirable to use an electrolytic solution containing a non-aqueous solvent as a substituent.
  • fluorine-containing solvent relaxes the volume expansion of the silicon-based film due to alloying with Li ions during charging, particularly during the first charging process, it is possible to suppress a decrease in capacity due to charging and discharging.
  • fluorine-containing non-aqueous solvent fluorinated ethylene carbonate, fluorinated chain carbonate, or the like can be used.
  • Mono-tetra-fluoroethylene carbonate (4-fluoro-1,3-dioxolan-2-one, FEC) is used for fluorinated ethylene carbonate, and methyl 2,2,2-trifluoroethyl carbonate is used for fluorinated chain carbonate.
  • Ethyl 2,2,2-trifluoroethyl carbonate, etc. can be used alone or in combination with a plurality of electrolytes. Since the fluorine group is easy to bond with silicon and is strong, it is considered that the film can be stabilized and contribute to suppression of expansion even when it is expanded by charging alloy with Li ion.
  • a precursor of lithium manganese manganese silicate is fired.
  • the precursor of lithium manganese manganese silicate is synthesized by a production method including a reaction process such as flame hydrolysis or thermal oxidation, for example, a spray combustion method.
  • the obtained precursor is mixed with a carbon source and fired in an inert gas atmosphere.
  • a mixture of an amorphous compound or an oxide form contained in the precursor particles is changed to a crystalline iron-manganese silicate-based compound by firing to obtain a positive electrode active material.
  • the positive electrode active material since it is preferable to coat the surface of the positive electrode active material with carbon, it is preferable to anneal the positive electrode active material in an atmosphere of hydrocarbon gas.
  • FIG. 1 An example of a fine particle production apparatus 1 that produces precursor particles by spray combustion is shown in FIG.
  • a fine particle synthesis nozzle 9 is disposed in the reaction vessel 11, and a combustion gas supply unit 5, a combustion support gas supply unit 7, and a raw material solution supply unit 3 are connected to the reaction vessel 11.
  • Combustible gas, air, raw material solution, and the like are supplied from the combustion gas supply unit 5, the combustion-supporting gas supply unit 7, and the raw material solution supply unit 3 to the flame generated from the fine particle synthesis nozzle 9. Further, the precursor particles 15 in the exhaust gas generated in the reaction vessel 11 are collected by the filter 13.
  • the spray combustion method consists of supplying raw materials into the flame together with the combustion-supporting gas and the combustible gas by supplying a raw material gas such as chloride or supplying a raw material liquid or raw material solution through a vaporizer. In this method, raw materials are reacted to obtain a target substance.
  • a VAD (Vapor-phase Axial Deposition) method or the like can be cited as a suitable example.
  • the temperature of these flames varies depending on the mixing ratio of the flammable gas and the combustion-supporting gas and the addition ratio of the constituent raw materials, but is usually between 1000 and 3000 ° C., particularly about 1500 to 2500 ° C. It is more preferable that the temperature is about 1500 to 2000 ° C.
  • the flame temperature When the flame temperature is low, there is a possibility that the fine particles may come out of the flame before the reaction in the flame is completed. Further, if the flame temperature is high, the crystallinity of the generated fine particles becomes too high, and a phase that is a stable phase but is not preferable as a positive electrode active material tends to be generated in the subsequent firing step.
  • the flame hydrolysis method is a method in which constituent raw materials are hydrolyzed in a flame.
  • an oxyhydrogen flame is generally used as a flame.
  • a solution containing the constituent material of the positive electrode active material under the flame supplied with hydrogen gas as a combustible gas and oxygen gas as a combustible gas, and a flame raw material (oxygen gas and hydrogen gas) are simultaneously supplied from the nozzle. Synthesize the target substance.
  • nanoscale ultrafine, mainly amorphous particles of the target substance can be obtained in an inert gas-filled atmosphere.
  • the thermal oxidation method is a method in which constituent raw materials are thermally oxidized in a flame.
  • a hydrocarbon flame is generally used as the flame.
  • a target material is synthesized while simultaneously supplying constituent raw materials and flame raw materials (for example, propane gas and oxygen gas) from a nozzle to a flame in which hydrocarbon gas is supplied as combustible gas and air is supplied as combustible gas.
  • hydrocarbon-based gas paraffin-based hydrocarbon gases such as methane, ethane, propane, and butane, and olefin-based hydrocarbon gases such as ethylene, propylene, and butylene can be used.
  • the constituent raw materials for obtaining the precursor particles of the present embodiment are at least a lithium source, an iron source, a manganese source, and a silicon source. Furthermore, you may use the addition raw material of another element as needed.
  • the raw material is solid, it is supplied as a powder, dispersed in a liquid, or dissolved in a solvent to form a solution, which is supplied to a flame through a vaporizer.
  • the raw material is liquid, in addition to passing through the vaporizer, it can be vaporized and supplied by increasing the vapor pressure by heating or pressure reduction and bubbling before the supply nozzle.
  • lithium sources include lithium inorganic acid salts such as lithium chloride, lithium hydroxide, lithium carbonate, lithium nitrate, lithium bromide, lithium phosphate, and lithium sulfate, and lithium organic acids such as lithium oxalate, lithium acetate, and lithium naphthenate.
  • a salt, a lithium alkoxide such as lithium ethoxide, an organic lithium compound such as a ⁇ -diketonate compound of lithium, lithium oxide, lithium peroxide, or the like can be used.
  • Naphthenic acid is a mixture of different carboxylic acids mainly mixed with a plurality of acidic substances in petroleum, and the main component is a carboxylic acid compound of cyclopentane and cyclohexane.
  • iron source ferric chloride, iron oxalate, iron acetate, ferrous sulfate, iron nitrate, iron hydroxide, ferric 2-ethylhexanoate, iron naphthenate and the like can be used.
  • iron organic metal salts such as stearic acid, dimethyldithiocarbamic acid, acetylacetonate, oleic acid, linoleic acid, and linolenic acid, and iron oxide are also used depending on conditions.
  • manganese source manganese chloride, manganese oxalate, manganese acetate, manganese sulfate, manganese nitrate, manganese oxyhydroxide, manganese 2-ethylhexanoate, manganese naphthenate, hexoate manganese and the like can be used.
  • organic metal salts of manganese such as stearic acid, dimethyldithiocarbamic acid, acetylacetonate, oleic acid, linoleic acid, and linolenic acid, and manganese oxide are also used depending on conditions.
  • Silicon sources include silicon tetrachloride, octamethylcyclotetrasiloxane (OMCTS), silicon dioxide, silicon monoxide or hydrates of these silicon oxides, condensed silicic acid such as orthosilicic acid, metasilicic acid, metadisilicic acid, tetraethyl Orthosilicate (tetraethoxysilane, TEOS), tetramethylorthosilicate (tetramethoxysilane, TMOS), methyltrimethoxysilane (MTMS), methyltriethoxysilane (MTES), hexamethyldisiloxane (HMDSO), tetramethyldisiloxane (TMDSO), tetramethylcyclotetrasiloxane (TMCTS), octamethyltrisiloxane (OMTSO), tetra-n-butoxysilane, and the like can be used.
  • OMC octamethylcyclot
  • titanium oxide metal titanates such as iron titanate and manganese titanate, titanates such as zinc titanate, magnesium titanate, barium titanate, vanadium oxide, ammonium metavanadate, chromium oxide, chromium Acid salts and dichromates, manganese oxides, permanganates and manganates, cobaltates, zirconium oxides, zirconates, molybdenum oxides, molybdates, tungsten oxides, tungstates, boric acid and trioxides Various borates such as diboron, sodium metaborate, sodium tetraborate, borax, phosphoric acid, phosphoric acid such as orthophosphoric acid and metaphosphoric acid, phosphoric acid such as diammonium hydrogen phosphate, ammonium dihydrogen phosphate Use ammonium hydrogen salt, etc., depending on the desired anion source and synthesis conditions. Can.
  • the produced precursor particles can be recovered from the exhaust gas with a filter. It can also be generated around the core rod as follows.
  • a silica or silicon-based core rod (also called a seed rod) is installed in the reactor, and the lithium source, iron source, manganese source, and silicon source together with the flame raw material in the oxyhydrogen flame or propane flame sprayed on it. Is supplied and hydrolyzed or oxidized to produce fine particles of nanometer order mainly on the surface of the core rod.
  • These generated fine particles are collected and, if necessary, passed through a filter or sieve to remove impurities and agglomerated parts.
  • Precursor particles obtained in this manner are composed of fine particles having a nanoscale ultrafine particle size and mainly amorphous.
  • the precursor particles that can be produced are amorphous and the size of the particles is small. Furthermore, in the spray combustion method, a large amount of synthesis is possible in a short time compared to the conventional hydrothermal synthesis method and solid phase method, and homogeneous precursor particles can be obtained at low cost.
  • a positive electrode active material having a normal structure can be obtained by mixing the precursor particles with a reducing agent and baking.
  • the precursor in this embodiment is a material capable of obtaining crystals of lithium iron manganese silicate by firing.
  • the precursor in this embodiment is amorphous in which the valence of iron or manganese is trivalent, but the valence of iron or manganese is changed from trivalent to divalent by baking with a reducing agent. To do. It is desirable that the composition of the precursor particles satisfies the stoichiometric composition.
  • the shape of the precursor particles is substantially spherical, and the average aspect ratio (major axis / minor axis) of the particles is 1.5 or less, preferably 1.2 or less, more preferably 1.1 or less. It should be noted that the fact that the particle is substantially spherical does not mean that the particle shape is a geometrically strict spherical or elliptical sphere, and the surface of the particle is generally a smooth curved surface even if there are a few protrusions. It only has to be configured.
  • carbon burns in the flame, so the obtained precursor particles do not contain carbon. Even if a carbon component is mixed, the amount is very small and is not so large as to be a conductive aid when used for the positive electrode.
  • the precursor particles obtained by the spray combustion method are further mixed with a carbon source, and then fired in an inert gas-filled atmosphere. At this time, the amorphous compound or oxide mixture contained in the precursor particles is changed into a polyanion-based iron manganese lithium silicate-based crystal form compound by firing.
  • a polyhydric alcohol such as polyvinyl alcohol, a polymer such as polyvinyl pyrrolidone, carboxymethyl cellulose, and acetyl cellulose, a saccharide such as sucrose, and a conductive carbon such as carbon black are used as a carbon source.
  • firing is performed before firing.
  • Polyvinyl alcohol is particularly preferable because it plays a role as a binder for the precursor particles before firing, and can favorably reduce iron and manganese during firing.
  • Calcination conditions can be suitably obtained by combining a temperature of 300 to 900 ° C. and a treatment time of 0.5 to 10 hours to obtain a fired product having desired crystallinity and particle size. Excessive heat load due to high temperature or prolonged firing can generate coarse crystal grains, and should be avoided, under heating conditions such that the desired crystalline or microcrystalline lithium iron manganese silicate is obtained, Firing conditions that can suppress the crystallite size as small as possible are desirable.
  • the firing temperature is preferably about 400 to 700 ° C.
  • a positive electrode active material is formed by firing, and then annealed with a hydrocarbon gas to form a carbon coating on the surface of the positive electrode active material.
  • the temperature during annealing is preferably 600 ° C. to 750 ° C. This is because if the annealing temperature is too low, the deposition of carbon from the hydrocarbon gas is slow, and if it is too high, the crystal grows excessively.
  • the hydrocarbon gas is preferably one or more selected from methane, ethane, propane, and butane.
  • the hydrocarbon gas also has a reducing property, but a reducing gas may be mixed and supplied for further reduction.
  • the reducing gas is preferably one or more selected from hydrogen, acetylene, carbon monoxide, hydrogen sulfide, sulfur dioxide, and formaldehyde.
  • the hydrocarbon gas reacts with iron or particles containing iron carbide, the hydrocarbon gas is decomposed and combined, and the surface of the positive electrode active material can be coated with carbon.
  • the obtained positive electrode active material is often agglomerated in the firing step or the annealing step, it can be made into fine particles again by applying to a mortar, a ball mill or other pulverizing means.
  • FIG. 4 (a) is a diagram showing a crystal structure having a space group Pmn2 1.
  • FIG. 4 shows a crystal structure having the space group Pmn2 1 , but the following description is the same for the crystal structure having the space group P2 1 / n.
  • the crystal structure having the space group Pmn2 1 is a crystal structure having an orthorhombic crystal as a unit cell and 16 atoms in the unit cell. When the unit cell is represented by a perspective view, it is as shown in FIG. 3, and each side of a, b, and c is orthogonal.
  • the lengths (lattice constants) of a, b, and c are each 6.3 angstroms. It has values of about 5.3 angstroms and 5.0 angstroms, and can vary by about 1% depending on the composition.
  • the result is as shown in FIG. 4A, but the atom indicated by A in FIG. 4A is an Fe atom or Mn atom.
  • the atom shown by B is a Si atom.
  • the atom represented by C is a Li atom.
  • An atom represented by O is an O atom.
  • the crystal structure having a space group of P2 1 / n refers to the four faces of O atoms surrounding atoms in a row parallel to the a axis formed by the Fe / Mn site and Si site of Pmn2 1 in FIG. It is a structure in which the body orientation changes periodically. Therefore, unlike the orthorhombic crystal shown in FIG. 3, the unit cell of P2 1 / n is a monoclinic crystal having a different axis and has a long-period structure, but it is understood that the atomic arrangement is very close.
  • the crystal structure shown in FIG. 4 (a) is called a normal structure.
  • This normal structure is composed of a chain portion in which a tetrahedron formed by Si—O bonds (shown by a broken line in FIG. 4) and a tetrahedron formed by Fe / Mn—O bonds (not shown in FIG. 4), and a tetrahedron formed by Li—O bonds. It is composed of chain parts that are connected to each other (not shown in FIG. 4).
  • a position where an Fe atom or Mn atom exists is called an Fe / Mn site
  • a position where a Li atom exists is called a Li site.
  • the normal structure has a structure in which Fe atoms or Mn atoms are contained in the Fe / Mn site and Li atoms are contained in the Li site. Note that the tetrahedrons formed by the respective atoms and O atoms in FIG. 4 are shown only for the tetrahedrons with Si—O bonds for the sake of clarity in the drawing.
  • FIG. 5 (a) is a conceptual diagram showing a crystal structure 20a that is two-dimensionally expressed by simplifying the normal structure shown in FIG. 4 (a).
  • Si and Fe combine with oxygen to form a tetrahedron, but illustration thereof is omitted.
  • the normal structure takes a structure in which Fe atoms or Mn atoms are contained in the Fe / Mn site and Li atoms are contained in the Li site, and is usually used as a positive electrode active material in this state.
  • further chemical treatment is performed from this state.
  • acid treatment with hydrochloric acid or immersion in water is performed.
  • Li atoms can be desorbed from a part of the Li site as in the crystal structure 20b shown in FIG. That is, a part of the Li site becomes a hole.
  • FIG. 6A is a diagram showing the crystal structure 20c in a state where Fe atoms or Mn atoms move to the Li site and vacancies are formed in the Fe / Mn site. This state becomes the crystal structure of the positive electrode active material having a cation exchange structure.
  • the crystal structure 20c can be obtained by charging from the crystal structure 20a.
  • a cation exchange structure can be obtained without using such an electrochemical technique. Therefore, a cation exchange structure can be obtained synthetically and chemically by this method even for lithium iron manganese silicate containing manganese that becomes amorphous when charged from the state of the crystal structure 20a.
  • the crystal structure 20d shown in FIG. 6B is obtained. This is shown three-dimensionally as shown in FIG. In the figure, AC indicates that both Fe atom or Mn atom and Li atom can be arranged. That is, Li atoms are inserted into vacancies formed at the Fe / Mn site. After this, even if charging / discharging is repeated, the change of the crystal structures 20c and 20d is repeated while maintaining the cation exchange structure.
  • D is a measurement result of the normal structure (crystal structure 20a) of Li x FeSiO 4 , and it is possible that the space group P2 1 / n is included or a part of the crystal structure of Pmn2 1 is included. It is a measurement result to have.
  • E is the measurement result of the cation exchange structure (crystal structure 20d) of Li x FeSiO 4 (0 ⁇ X ⁇ 2.5), and F is Li x (Fe 0.75 Mn 0.25 ) SiO 4 (0 ⁇ X It is a measurement result of the cation exchange structure (crystal structure 20d) of ⁇ 2.5).
  • Li x FeSiO 4 and Li x (Fe 0.75 Mn 0.25 ) SiO 4 at least one of the cation exchange structures of the space group P2 1 / n or Pmn2 1 is not electrochemical but synthetic chemistry. You can see that it was obtained. In particular, two peaks near 22.2 degrees and 23.0 degrees are characteristic of the cation exchange structure in this composition. These have the same peak as the cation exchange structure shown in Non-Patent Document 1 or Non-Patent Document 2. That is, even Li 2 (Fe 0.75 Mn 0.25 ) SiO 4 containing Mn could be transferred to a cation exchange structure without being substantially amorphous.
  • the positive electrode active material obtained above was mixed with a conductive assistant (carbon black) at 10% by weight, and further mixed for 5 hours using a ball mill in which the inside was replaced with nitrogen.
  • the mixed powder and polyvinylidene fluoride (PVdF) as a binder were mixed at a weight ratio of 95: 5, and N-methyl-2-pyrrolidone (NMP) was added and kneaded sufficiently to obtain a positive electrode slurry.
  • the positive electrode slurry was applied to an aluminum foil current collector with a thickness of 15 ⁇ m at a coating amount of 50 g / m 2 and dried at 120 ° C. for 30 minutes. Thereafter, it was rolled to a density of 2.0 g / cm 3 with a roll press, punched into a 2 cm 2 disk shape, and used as a positive electrode.
  • test evaluation of the electrode characteristics of the positive electrode active material It carried out as follows. Charging to 4.5 V (vs. Li / Li +) by CC-CV method (constant current constant voltage) at a test temperature of 25 ° C. or 60 ° C. and a current rate of 0.1 C, and then a current rate of 0.01 C The charging was stopped after it dropped to. Thereafter, the battery was discharged at a rate of 0.1 C to 1.5 V (same as above) by the CC method (constant current), and the charge / discharge capacity and cycle life were measured.
  • CC-CV method constant current constant voltage
  • Table 1 shows the results of the initial discharge capacity.
  • Table 2 shows the discharge capacity after 30 cycles. Examples of the present invention are indicated as “cation exchange structure” in the table, and the crystal structure before the first charge (discharge state) is a cation exchange structure.
  • the comparative example is indicated as “normal structure” in the table, and the crystal structure before the first charge (discharge state) is the normal structure.
  • Tables 1 and 2 by using a positive electrode active material having a cation exchange structure before the first charge and charging and discharging, a high capacity and a normal structure (before the first charge) It can be seen that better cycle characteristics are obtained.
  • FIG. 9A in the normal structure and the cation exchange structure of the positive electrode active materials Li x FeSiO 4 and Li x (Fe 0.75 Mn 0.25 ) SiO 4 in the uncharged / discharged state prepared by the above method,
  • XANES X-ray Absorption Near Edge Structure
  • 9B with reference to the measurement method disclosed in Non-Patent Document 8, the energy at the 90% position of the normalized XANES spectral intensity is defined as the absorption edge rising, and the valence of Fe and the absorption edge rising position are measured. The correlation was estimated.
  • FIG. 10 shows Fe2p 3/2 in the normal structure and the cation exchange structure of the positive and negative electrode active materials Li x FeSiO 4 and Li x (Fe 0.75 Mn 0.25 ) SiO 4 prepared by the above method.
  • Results of XPS X-ray Photoelectron Spectroscopy
  • FIG. 11A shows XANES at the Mn—K end in the normal structure and the cation exchange structure of the uncharged / discharged positive electrode active material Li x (Fe 0.75 Mn 0.25 ) SiO 4 produced by the above-described method. The results are shown.
  • FIG. 11B referring to the measurement method disclosed in Non-Patent Document 8, the energy at the 90% position of the normalized XANES spectral intensity is defined as the absorption edge rising, and the Mn valence and the absorption edge rising are illustrated. The position correlation was estimated. From these, it can be seen that Mn having +2 valence in the normal structure is oxidized by becoming a cation exchange structure and approaches the +3 valence direction. The valence estimated at this time was 2.6.
  • FIG. 12 shows the XPS results of Mn2p 3/2 in the normal structure and cation exchange structure of the positive electrode active material Li 2 (Fe 0.5 Mn 0.5 ) SiO 4 produced by the above method.
  • a broad peak (deviation from the comparison target) structure is observed in the vicinity of 647 eV as in the case of the standard sample having Mn of +2, indicating that Mn has a vicinity of +2.
  • the cation exchange structure since this peak structure is not seen, it is suggested that Mn is approaching in the +3 valence direction. From the results of XANES and XPS, it was confirmed that the valence of Mn having a cation exchange structure was increased from the valence of Mn having a normal structure.
  • the composition Li X Fe Y in an uncharged / discharged state (before use as a battery) is obtained by changing the lithium silicate transition metal to a cation exchange structure regardless of the electrochemical method.
  • Mn (1-Y) SiO 4 (0.5 ⁇ X ⁇ 1.5, 0 ⁇ Y ⁇ 1)
  • Fe or Mn has a valence of +2.5 to +3.5.
  • Si or O does not change in valence and maintains a stable structure. For this reason, since the stable crystal structure is maintained also in subsequent charging / discharging, the secondary battery excellent in cycling characteristics can be obtained.
  • FIG. 8 shows a change in crystal structure when Li x (Fe 0.75 Mn 0.25 ) SiO 4 is repeatedly charged and discharged.
  • G is the result before charging / discharging
  • H is the result after one cycle of charging / discharging
  • I is the result after five cycles of charging / discharging.
  • lithium metal silicate can be changed into a cation exchange structure regardless of an electrochemical method. For this reason, in the past, even with lithium manganese silicate containing Mn that becomes amorphous by charge / discharge, a stable cation exchange structure is obtained, and a stable crystal structure is maintained during subsequent charge / discharge. A secondary battery can be obtained.

Abstract

To provide a lithium iron manganese silicate-based positive electrode active material having a stable cation exchange structure, and the like. A positive electrode active material which is characterized by being represented by general formula LiXFeYMn(1-Y)SiO4 (0 < X ≤ 2.5, 0 < Y ≤ 1), by having a space group P21/n or a space group Pmn21 and by having a cation exchange structure wherein Li is introduced into an Fe/Mn site and Fe/Mn or Li is introduced into an Li site is obtained without using an electrochemical method. According to the present invention, even lithium iron manganese silicate which contains Mn that is amorphousized by charging and discharging is able to obtain a cation exchange structure. Since the cation exchange structure maintains a stable crystal structure during the subsequent charge and discharge, a secondary battery having excellent cycle characteristics is able to be achieved.

Description

正極活物質、二次電池用正極、二次電池、および正極活物質の製造方法Positive electrode active material, positive electrode for secondary battery, secondary battery, and method for producing positive electrode active material
 本発明は、二次電池に用いられるケイ酸鉄マンガンリチウム系正極活物質等に関する。 The present invention relates to an iron manganese silicate lithium-based positive electrode active material used for a secondary battery.
 近年、電子機器のモバイル化と高機能化に伴い、駆動電源である二次電池は最重要部品のひとつになっている。特に、リチウムイオン二次電池は、用いられる正極活物質と負極活物質の高い電圧から得られるエネルギー密度の高さから、従来のNiCd電池やNi水素電池に替わり、二次電池の主流の位置を占めるに至っている。しかしながら、現在のリチウムイオン電池に用いられ、標準となっているコバルト酸リチウム(LiCoO)系正極活物質と黒鉛主体のカーボン系負極活物質の組み合わせによるリチウムイオン二次電池は、昨今の高機能高負荷電子部品の消費電力量を充分に供給することができず、携帯電源としては要求性能を満たすことができなくなっている。 In recent years, with the increasing mobility and functionality of electronic devices, secondary batteries, which are driving power sources, have become one of the most important components. In particular, lithium ion secondary batteries replace the conventional NiCd batteries and Ni hydrogen batteries due to the high energy density obtained from the high voltage of the positive electrode active material and the negative electrode active material used, and the position of the mainstream of secondary batteries It has come to occupy. However, the lithium ion secondary battery using a combination of a lithium cobalt oxide (LiCoO 2 ) positive electrode active material and a graphite-based carbon negative electrode active material, which is used as a standard in current lithium ion batteries, has a high performance in recent years. The power consumption of high-load electronic components cannot be sufficiently supplied, and the required performance cannot be satisfied as a portable power source.
 さらに、コバルト酸リチウムは、レアメタルであるコバルトを用いているため、資源的制約が大きく、高価であり、価格安定性に課題がある。また、コバルト酸リチウムは、180℃以上の高温になると、多量の酸素を放出するため、異常発熱時や電池の短絡時には爆発が起きる可能性がある。 Furthermore, since lithium cobaltate uses cobalt, which is a rare metal, resource constraints are large, it is expensive, and there is a problem in price stability. Further, since lithium cobaltate releases a large amount of oxygen at a high temperature of 180 ° C. or higher, there is a possibility that explosion occurs during abnormal heat generation or short-circuiting of the battery.
 そのため、コバルト酸リチウムよりも熱的安定性に優れる、ケイ酸鉄リチウム(LiFeSiO)やケイ酸マンガンリチウム(LiMnSiO)を始めとするポリアニオン系のケイ酸遷移金属リチウムが、資源面、コスト面、安全面を満たす材料として、注目を集めている。このケイ酸遷移金属リチウムは、組成式内にLiを2個保有しており、2電子反応による高容量を期待できる材料である。 Therefore, polyanionic lithium silicate transition metals such as lithium iron silicate (Li 2 FeSiO 4 ) and lithium manganese silicate (Li 2 MnSiO 4 ), which have better thermal stability than lithium cobaltate, are a resource. It is attracting attention as a material that satisfies the requirements of cost, cost and safety. The lithium silicate transition metal lithium has two Li in the composition formula, and is a material that can be expected to have a high capacity by a two-electron reaction.
 正極材料としてのケイ酸鉄リチウムは、合成後、充放電を行うと、Liを1個分しか脱挿入することができず、Li2個分の高容量の実現が難しいことが知られている(たとえば非特許文献1)。これは2電子目の反応電位が4.8Vと高く(非特許文献2)、実際に電池セルの充放電を行うと、4.5V以上の高電位において電解液の分解を伴い、それ以上の充放電ができないことに起因する。一方で、1電子のみ反応するケイ酸鉄リチウムにおいては、初回の充電時にその結晶構造が変化することが知られている(たとえば、特許文献1、非特許文献1、3)。ケイ酸鉄リチウムを充電すると、一部のLiサイトからLiが脱離するが、この際、Fe原子が、もともとLi原子がいたLiサイトへ移動する。この結果、放電時には、従来のFeサイトにLiが挿入され、このようなカチオン交換構造となった後は、充放電によって、Liの脱挿入が安定して行われる。 Lithium iron silicate as a positive electrode material is known to be able to remove and insert only one Li when charge and discharge are performed after synthesis, and it is difficult to realize a high capacity for two Li ( For example, Non-Patent Document 1). This is because the reaction potential of the second electron is as high as 4.8 V (Non-patent Document 2), and when the battery cell is actually charged and discharged, the electrolytic solution is decomposed at a high potential of 4.5 V or higher. This is due to the inability to charge and discharge. On the other hand, it is known that the crystal structure of lithium iron silicate that reacts only with one electron changes during the first charge (for example, Patent Document 1, Non-Patent Documents 1 and 3). When lithium iron silicate is charged, Li is desorbed from some Li sites. At this time, Fe atoms move to the Li sites where Li atoms originally existed. As a result, at the time of discharge, Li is inserted into the conventional Fe site, and after such a cation exchange structure is obtained, the Li insertion and removal is stably performed by charge and discharge.
 一方、正極材料としてのケイ酸マンガンリチウムは、合成後、充放電を行うことで、その反応電位が1電子目も2電子目も4.5V以下であることから、Liを2個分脱挿入することができ、高容量を実現し得る材料であることが知られている。しかし、ケイ酸マンガンリチウムは初回の充電によって、結晶構造がアモルファス化し、2電子反応をサイクル特性良く行うことができない(たとえば非特許文献4)。 On the other hand, lithium manganese silicate as the positive electrode material is charged and discharged after synthesis, and the reaction potential is 4.5 V or less for both the first and second electrons. It is known that the material can achieve a high capacity. However, the lithium manganese silicate has an amorphous crystal structure due to the first charge, and the two-electron reaction cannot be performed with good cycle characteristics (for example, Non-Patent Document 4).
特許5298286号公報Japanese Patent No. 5298286
 特許文献1においては、ケイ酸鉄リチウムおよびケイ酸マンガンリチウムが記載されており、充電後の結晶構造に起因するXRDパターンについても開示されている。しかし、マンガンを含むケイ酸マンガンリチウムやケイ酸鉄マンガンリチウムは、最初の充電の際にアモルファス化して、結晶構造を保持しないことが知られており、実際には、特許文献1の方法で、ケイ酸マンガンリチウムの良質なカチオン交換構造を安定的に形成することはできない。 Patent Document 1 describes lithium iron silicate and lithium manganese silicate, and also discloses an XRD pattern resulting from the crystal structure after charging. However, it is known that manganese-manganese silicate and manganese-manganese silicate containing manganese are amorphous during the first charge and do not retain the crystal structure. A good quality cation exchange structure of lithium manganese silicate cannot be stably formed.
 本発明は、前述した問題点に鑑みてなされたもので、安定したカチオン交換構造を有するケイ酸鉄マンガンリチウム系の正極活物質等を提供することを目的とする。 The present invention has been made in view of the above-described problems, and an object thereof is to provide a lithium iron silicate lithium-based positive electrode active material having a stable cation exchange structure.
 前述した目的を達成するため、第1の発明は、一般式LiFeMn(1-Y)SiO(0<X≦2.5,0<Y≦1)で表され、空間群P2/nまたはPmn2の少なくともいずれか一方の結晶構造を持ち、さらにFe/Mnサイトの一部にLi原子が入り、Liサイトの一部にFe原子またはMn原子のいずれかが入った、カチオン交換構造を持つことを特徴とする正極活物質である。前述の、空間群P2/nまたはPmn2の少なくともいずれか一方の結晶構造、とは空間群P2/nまたはPmn2を母体構造とした結晶構造も含む。 In order to achieve the above-described object, the first invention is represented by the general formula Li X Fe Y Mn (1-Y) SiO 4 (0 <X ≦ 2.5, 0 <Y ≦ 1), and the space group P2 1 / n or Pmn2 1 having a crystal structure, a Li atom in part of the Fe / Mn site, and a Fe atom or Mn atom in part of the Li site It is a positive electrode active material characterized by having an exchange structure. The crystal structure of at least one of the space group P2 1 / n or Pmn2 1 described above includes a crystal structure having the space group P2 1 / n or Pmn2 1 as a base structure.
ここで、空間群P2/nまたはPmn2を母体構造とは、非特許文献5のような空間群P2/nや、非特許文献6のような空間群Pmn2を持つ結晶構造であるという意味ではなく、それらの結晶構造を基とし、その原子の相対的な位置関係だけを述べているものである。
Journal of the American chemical society,2011,133,1263-1265. Electrochemistry Communications,7,156,2005.
Here, the space group P2 1 / n or Pmn2 1 the base material structure, and the space group P2 1 / n, such as Non-Patent Document 5, is a crystal structure with a space group Pmn2 1 such as Non-Patent Document 6 It does not mean that, but describes only the relative positional relationship of the atoms based on their crystal structure.
Journal of the American chemical society, 2011, 133, 1263-1265. Electrochemistry Communications, 7, 156, 2005.
 空間群P2/nで表される結晶構造と、空間群Pmn2で表される結晶構造は、非常に近い関係にある。これらの結晶構造は、一般式LiFeMn(1-Y)SiO(0<X≦2.5,0<Y≦1)で表される組成の物質を、焼成によって製造することで通常生成する安定的な結晶構造なので、本明細書では通常構造と呼ぶ。ここで、非特許文献5のように、ある焼成温度において、Yが1に近いとP2/nになり、Yが0に近いとPmn2となり、その間ではP2/nとPmn2の共存状態、あるいは固溶体状態になることが一般的であることが知られている。((非特許文献7)Journal of Materials Chemistry 2011,21,17823-17831) The crystal structure represented by the space group P2 1 / n and the crystal structure represented by the space group Pmn2 1 are very close to each other. These crystal structures are obtained by manufacturing a material having a composition represented by the general formula Li X Fe Y Mn (1-Y) SiO 4 (0 <X ≦ 2.5, 0 <Y ≦ 1) by firing. In the present specification, it is called a normal structure because it is a stable crystal structure that is normally generated. Here, as in Non-Patent Document 5, when Y is close to 1 at a certain firing temperature, P2 1 / n is obtained, and when Y is close to 0, Pmn2 1 is present, and P2 1 / n and Pmn2 1 coexist in the meantime. It is known that it is common to be in a state or a solid solution state. ((Non-Patent Document 7) Journal of Materials Chemistry 2011, 21, 17823-17831)
 しかし、実際の材料では必ずしも平衡状態は得られず、また結晶構造の差もわずかのため、X線回折による同定も困難であるため、結晶構造を組成との関係で一義的に決定するのは難しい。また、正極活物質として実用に供する場合は、上記の範囲の組成であればどちらの結晶構造であっても同様に使用が可能なので、本発明ではこれらを厳密に区別せず、空間群P2/nまたはPmn2の少なくともいずれか一方の結晶構造を持つもの、と定義する。 However, since an equilibrium state is not always obtained with an actual material and the difference in crystal structure is slight, identification by X-ray diffraction is difficult. Therefore, the crystal structure is uniquely determined in relation to the composition. difficult. Further, when practically used as a positive electrode active material, any crystal structure can be used in the same manner as long as the composition is in the above range. Therefore, in the present invention, these are not strictly distinguished, and the space group P2 1 It is defined as having a crystal structure of at least one of / n or Pmn21.
 一方、これらの通常構造に対し、Fe原子またはMn原子と、Li原子が、通常構造の位置から入れ替わった結晶構造を、カチオン交換構造と呼ぶ。ここで、Fe/Mnサイトとは、通常構造でFe原子またはMn原子が存在する位置である。Liサイトとは、通常構造でLi原子が存在する位置である。 On the other hand, a crystal structure in which an Fe atom or Mn atom and a Li atom are replaced from the position of the normal structure with respect to these normal structures is called a cation exchange structure. Here, the Fe / Mn site is a position where Fe atoms or Mn atoms are present in the normal structure. The Li site is a position where a Li atom exists in a normal structure.
 Feおよび/またはMnの一部に代えて、CoまたはNiの少なくとも一方が置換されてもよい。 In place of a part of Fe and / or Mn, at least one of Co or Ni may be substituted.
 Feおよび/またはMnの一部に代えて、Mg、Ca、Ti、V、Cr、Cu、Zn、Sr、Zr、Moの少なくともいずれかが置換されてもよい。 Instead of a part of Fe and / or Mn, at least one of Mg, Ca, Ti, V, Cr, Cu, Zn, Sr, Zr, and Mo may be substituted.
また、カチオン交換構造においては、FeまたはMnは価数が+2.5~+3.5価である。 In the cation exchange structure, Fe or Mn has a valence of +2.5 to +3.5.
 第1の発明によれば、従来の電気化学的な手法を用いずに、合成化学的手法でカチオン交換構造を得ることができる。このため、電気化学的な手法ではアモルファス化してしまうためにカチオン交換構造に転移することができなかったケイ酸鉄マンガンリチウムに対しても、本発明を適用することができる。また、カチオン交換構造となったケイ酸鉄マンガンリチウムは、その後の充放電においてもアモルファス化せず、結晶構造を維持することができる。 According to the first invention, a cation exchange structure can be obtained by a synthetic chemical method without using a conventional electrochemical method. For this reason, the present invention can also be applied to lithium iron manganese silicate that could not be transferred to the cation exchange structure because it was made amorphous by an electrochemical method. Further, the lithium iron manganese silicate having a cation exchange structure does not become amorphous during subsequent charge and discharge, and can maintain the crystal structure.
 このように、Mn含有のケイ酸鉄マンガンリチウムのカチオン交換構造を製造することができるため、2電子反応をサイクル特性良く得ることができ、容量の増大およびエネルギー密度の増大した活物質を得ることができる。 Thus, since a cation exchange structure of Mn-containing lithium manganese manganese silicate can be produced, a two-electron reaction can be obtained with good cycle characteristics, and an active material with increased capacity and increased energy density can be obtained. Can do.
 また、Feおよび/またはMnの一部に代えて、CoまたはNiの少なくとも一方が置換されても、同様の効果を得ることができる。 Further, the same effect can be obtained even when at least one of Co and Ni is substituted in place of a part of Fe and / or Mn.
 また、Feおよび/またはMnの一部に代えて、さらにMg、Ca、Ti、V、Cr、Zn、Moのいずれかが添加されることで、容量の増大およびエネルギー密度の増大という前記同様の効果に加え、結晶構造の安定化や、サイクル特性を向上させることができる。 Further, in place of a part of Fe and / or Mn, any one of Mg, Ca, Ti, V, Cr, Zn, and Mo is added to increase the capacity and increase the energy density. In addition to the effects, the crystal structure can be stabilized and cycle characteristics can be improved.
 また、Liの一部に代えて、Mg、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Sr、Zr、Moの少なくともいずれかが置換されることで、前項同様に、容量の増大、エネルギー密度の増大、結晶構造の安定化、サイクル特性の向上といった効果を得ることができる。 Further, in place of a part of Li, at least one of Mg, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Zr, and Mo is substituted. In addition, effects such as increased capacity, increased energy density, stabilized crystal structure, and improved cycle characteristics can be obtained.
 また、このようなカチオン交換構造においては、FeまたはMnは価数が+2.5~+3.5価であることが分かり、FeまたはMnが価数変化することで、SiやOが価数変化せず安定構造を保っていることが分かる。 In addition, in such a cation exchange structure, it is understood that Fe or Mn has a valence of +2.5 to +3.5, and Si or O changes in valence by changing the valence of Fe or Mn. It can be seen that the stable structure is maintained.
 第2の発明は、集電体と、前記集電体の少なくとも片面に、第1の発明にかかる正極活物質を含む正極活物質層と、を有することを特徴とする二次電池用正極である。 A second invention is a positive electrode for a secondary battery comprising: a current collector; and a positive electrode active material layer containing the positive electrode active material according to the first invention on at least one surface of the current collector. is there.
 また、第3の発明は、第2の発明にかかる二次電池用正極と、リチウムイオンを吸蔵および放出可能な負極と、前記正極と前記負極との間に配置されたセパレータとを有し、リチウムイオン伝導性を有する電解質中に、前記正極と前記負極と前記セパレータとを設けたことを特徴とする二次電池である。 The third invention includes a positive electrode for a secondary battery according to the second invention, a negative electrode capable of inserting and extracting lithium ions, and a separator disposed between the positive electrode and the negative electrode, The secondary battery is characterized in that the positive electrode, the negative electrode, and the separator are provided in an electrolyte having lithium ion conductivity.
 第2、第3の発明によれば、サイクル特性に優れた二次電池用正極および二次電池を得ることができる。 According to the second and third inventions, a positive electrode for a secondary battery and a secondary battery excellent in cycle characteristics can be obtained.
 第4の発明は、少なくともリチウム源、鉄源、マンガン源およびシリコン源を用いて、ケイ酸鉄マンガンリチウム系の活物質を合成する工程と、前記活物質からリチウムの一部を脱離する工程と、前記活物質を加熱して、リチウムサイトの一部と鉄サイトの一部とが入れ替わり、カチオン交換構造に転移させる工程と、を具備することを特徴とする正極活物質の製造方法である。 A fourth invention includes a step of synthesizing an iron manganese silicate lithium-based active material using at least a lithium source, an iron source, a manganese source, and a silicon source, and a step of desorbing a part of lithium from the active material And a step of heating the active material so that a part of the lithium site and a part of the iron site are exchanged and transferred to a cation exchange structure. .
 第4の発明によれば、電気化学的な手法を用いずに、カチオン交換構造を有する正極活物質を得ることができる。 According to the fourth invention, a positive electrode active material having a cation exchange structure can be obtained without using an electrochemical technique.
 本発明により、安定したカチオン交換構造を有するケイ酸鉄マンガンリチウム系の正極活物質等を提供することができる。 According to the present invention, a lithium iron manganese silicate positive electrode active material having a stable cation exchange structure can be provided.
非水電解質二次電池30を示す図。The figure which shows the nonaqueous electrolyte secondary battery. 微粒子製造装置1を示す概略図。1 is a schematic view showing a fine particle manufacturing apparatus 1. FIG. 空間群Pmn2の単位格子を示す図。It shows a unit cell of space group Pmn2 1. 空間群Pmn2を持つ結晶構造を示す図で、通常構造を示す図。The figure which shows the crystal structure with space group Pmn2 1, and is a figure which shows a normal structure. 空間群Pmn2を持つ結晶構造を示す図で、カチオン交換構造を示す図。The figure which shows the crystal structure with space group Pmn2 1, and is a figure which shows a cation exchange structure. 合成直後の結晶構造20aを示す概念図。The conceptual diagram which shows the crystal structure 20a immediately after a synthesis | combination. Liの一部を脱離させた状態の結晶構造20bを示す概念図。The conceptual diagram which shows the crystal structure 20b of the state which remove | eliminated a part of Li. カチオン交換構造を示す図で、1電子充電状態の結晶構造20cを示す概念図。The figure which shows a cation exchange structure, and is the conceptual diagram which shows the crystal structure 20c of a one-electron charge state. カチオン交換構造を示す図で、放電状態の結晶構造20dを示す概念図。It is a figure which shows a cation exchange structure, and is a conceptual diagram which shows the crystal structure 20d of a discharge state. X線回折測定におけるピークを示す図。The figure which shows the peak in a X-ray-diffraction measurement. X線回折測定におけるピークを示す図。The figure which shows the peak in a X-ray-diffraction measurement. 通常構造とカチオン交換構造におけるFe-K端のXANES(X-ray Absorption Near Edge Structure)の結果。Results of XANES (X-ray Absorption Near Edge Structure) of Fe-K end in normal structure and cation exchange structure. 図9(a)のXANESスペクトルから見積もられるFeの価数。The valence of Fe estimated from the XANES spectrum of FIG. 通常構造とカチオン交換構造におけるXPS(X-ray Photoelectron Spectroscopy)の結果。The result of XPS (X-ray Photoelectron Spectroscopy) in the normal structure and the cation exchange structure. 通常構造とカチオン交換構造におけるMn-K端のXANESの結果。XANES results for Mn-K ends in normal and cation exchange structures. 図11(a)のXANESスペクトルから見積もられるMnの価数。The valence of Mn estimated from the XANES spectrum of FIG. 通常構造とカチオン交換構造におけるXPSの結果。XPS results for normal and cation exchange structures.
 (正極活物質)
 以下図面に基づいて、本発明の実施の形態を詳細に説明する。ケイ酸鉄マンガンリチウムは、一般式LiFeMn(1-Y)SiO(0<X≦2.5,0<Y≦1)で表される。なお、通常は、0<X≦2の範囲である。また、0<Y<1であることが望ましい。
(Positive electrode active material)
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Lithium iron manganese silicate is represented by the general formula Li X Fe Y Mn (1-Y) SiO 4 (0 <X ≦ 2.5, 0 <Y ≦ 1). In general, the range is 0 <X ≦ 2. Moreover, it is desirable that 0 <Y <1.
 また、Feおよび/またはMnの一部を、実用量の増大や平均電位の向上による、エネルギー密度の向上が期待できるCoまたはNiの少なくとも一方に置換してもよく、また、Feおよび/またはMnの一部を、Mg、Ca、Ti、V、Cr、Zn、Moの少なくともいずれかに置換してもよい。このような元素を添加することで、結晶構造を安定化させて、サイクル寿命の向上を見込むことができ、さらに実容量の増大や電位の向上によるエネルギー密度の増大を見込むことができる。なお、ケイ酸鉄マンガンリチウムの結晶構造については、詳細を後述する。 Further, a part of Fe and / or Mn may be replaced with at least one of Co and Ni that can be expected to improve the energy density by increasing the practical amount and improving the average potential, and Fe and / or Mn A part of may be substituted with at least one of Mg, Ca, Ti, V, Cr, Zn, and Mo. By adding such an element, the crystal structure can be stabilized, the cycle life can be expected to be increased, and the energy density can be expected to be increased by increasing the actual capacity and the potential. Details of the crystal structure of lithium iron manganese silicate will be described later.
 本発明のケイ酸鉄マンガンリチウムの粒子は、透過型電子顕微鏡(TEM)観察により粒径を測定して1次粒子の粒径分布を求めると、10~200nmの範囲に存在し、平均粒径が25~100nmに存在することが好ましい。また、粒径分布は、10~150nmの範囲、平均粒径が25~80nmに存在することがより好ましい。なお、粒径分布が10~200nmの範囲に存在するとは、得られた粒径分布が10~200nmの全範囲にわたる必要はなく、得られた粒径分布の下限が10nm以上であり、上限が200nm以下であることを意味する。つまり、得られた粒径分布が10~100nmであってもよいし、50~150nmであってもよい。 The particles of lithium iron manganese silicate of the present invention are present in the range of 10 to 200 nm when the particle size distribution of primary particles is determined by measuring the particle size by observation with a transmission electron microscope (TEM). Is preferably present at 25 to 100 nm. The particle size distribution is more preferably in the range of 10 to 150 nm and the average particle size in the range of 25 to 80 nm. Note that the existence of the particle size distribution in the range of 10 to 200 nm does not require the obtained particle size distribution to cover the entire range of 10 to 200 nm, the lower limit of the obtained particle size distribution is 10 nm or more, and the upper limit is It means 200 nm or less. That is, the obtained particle size distribution may be 10 to 100 nm or 50 to 150 nm.
 また、SiOの一部を他のアニオンにより置換させることもできる。例えば、遷移金属の酸である、チタン酸(TiO)やクロム酸(CrO)、バナジン酸(VO、V)、ジルコン酸(ZrO)、モリブデン酸(MoO、Mo24)、タングステン酸(WO)、等々であり、あるいはホウ酸(BO)やリン酸(PO)による置換である。ケイ酸イオンの一部をこれらのアニオン種により置換することにより、Liイオンの脱離と挿入の繰り返しによる結晶構造変化の抑制と安定化に寄与し、サイクル寿命を向上させる。また、これらのアニオン種は、高温においても酸素を放出し難いので、発火につながることもなく安全に用いることができる。 Moreover, a part of SiO 4 can be substituted with other anions. For example, transition metal acids such as titanic acid (TiO 4 ), chromic acid (CrO 4 ), vanadic acid (VO 4 , V 2 O 7 ), zirconic acid (ZrO 4 ), molybdic acid (MoO 4 , Mo 7) O 24 ), tungstic acid (WO 4 ), etc., or substitution with boric acid (BO 3 ) or phosphoric acid (PO 4 ). Replacing a part of the silicate ions with these anion species contributes to the suppression and stabilization of the crystal structure change due to repeated desorption and insertion of Li ions, and improves the cycle life. In addition, these anionic species are less likely to release oxygen even at high temperatures, and can be used safely without causing ignition.
 正極活物質は、表面に炭素被覆を有することが好ましい。さらに、炭素被覆を有する正極活物質の粉体導電率が10-3S/cm以上であることが好ましい。正極活物質の粉体導電率が10-3S/cm以上であれば、正極に使用された際に十分な導電性を得ることができる。また、炭素被覆を有する正極活物質中の炭素の含有量が1.5重量%以上であることが好ましい。炭素の含有量が1.5重量%以上であれば、粉体導電率も高くなり、正極活物質を正極に使用する際に十分な導電性を得ることができる。 The positive electrode active material preferably has a carbon coating on the surface. Furthermore, the positive electrode active material having a carbon coating preferably has a powder conductivity of 10 −3 S / cm or more. When the powder conductivity of the positive electrode active material is 10 −3 S / cm or more, sufficient conductivity can be obtained when used for the positive electrode. The carbon content in the positive electrode active material having a carbon coating is preferably 1.5% by weight or more. When the carbon content is 1.5% by weight or more, the powder conductivity is increased, and sufficient conductivity can be obtained when the positive electrode active material is used for the positive electrode.
 (非水電解質二次電池用正極)
 正極活物質は、非水電解質二次電池用正極に使用される正極活物質として使用可能である。正極活物質を用いて非水電解質二次電池用正極を形成するには、正極活物質の粉末に対して、必要に応じてさらにカーボンブラックなどの導電助剤を加えると共に、ポリテトラフルオロエチレンやポリフッ化ビニリデン、ポリイミドなどの結着剤、ブタジエンゴムなどの分散剤、カルボキシメチルセルロースほかセルロース誘導体などの増粘剤を加え水系溶媒か有機溶媒中に加えてスラリーとしたものを、アルミニウムを95重量%以上含むアルミニウム合金箔などの集電体上に、片面ないしは両面に塗布し、焼成して溶媒を揮発乾固する。これにより、集電体上に正極活物質を含む活物質層を有する、非水電解質二次電池用正極が得られる。
(Positive electrode for non-aqueous electrolyte secondary battery)
The positive electrode active material can be used as a positive electrode active material used for a positive electrode for a nonaqueous electrolyte secondary battery. In order to form a positive electrode for a non-aqueous electrolyte secondary battery using a positive electrode active material, a conductive additive such as carbon black is further added to the powder of the positive electrode active material as necessary, and polytetrafluoroethylene or 95% by weight of aluminum is used as a slurry by adding a binder such as polyvinylidene fluoride and polyimide, a dispersant such as butadiene rubber, and a thickener such as carboxymethylcellulose and cellulose derivatives in an aqueous or organic solvent. On the current collector such as an aluminum alloy foil as described above, it is applied on one or both sides and baked to evaporate and dry the solvent. Thereby, the positive electrode for nonaqueous electrolyte secondary batteries which has an active material layer containing a positive electrode active material on a collector is obtained.
 正極活物質の粒径が小さい場合、スラリーの塗布性や集電体と活物質層との密着性、集電性を上げるために、正極活物質を、スプレードライ法により炭素源等と造粒してもよい。造粒した二次粒子の塊は概略1~20μm程度の大きな塊になるが、これによりスラリー塗布性が向上して、電池電極の特性と寿命もさらに良好となる。スプレードライ法に用いるスラリーは水系溶媒または非水系溶媒のいずれも用いることができる。 When the particle size of the positive electrode active material is small, the positive electrode active material is granulated with a carbon source or the like by a spray drying method in order to improve the slurry coating property, the adhesion between the current collector and the active material layer, and the current collecting property. May be. The granulated secondary particle lump becomes a large lump of about 1 to 20 μm, which improves the slurry coating property and further improves the characteristics and life of the battery electrode. As the slurry used for the spray drying method, either an aqueous solvent or a non-aqueous solvent can be used.
 さらに、正極活物質を含むスラリーをアルミニウム合金箔等の集電体上に塗工形成した正極において、活物質層形成面の集電体表面粗さとして日本工業規格(JIS B 0601-1994)に規定される十点平均粗さRzが0.5μm以上であることが望ましい。形成した活物質層と集電体との密着性に優れ、Liイオンの挿入脱離に伴う電子伝導性および集電体までの集電性が増し、充放電のサイクル寿命が向上する。 Furthermore, in a positive electrode in which a slurry containing a positive electrode active material is applied and formed on a current collector such as an aluminum alloy foil, the current collector surface roughness of the active material layer forming surface conforms to Japanese Industrial Standard (JIS B 0601-1994). The specified ten-point average roughness Rz is desirably 0.5 μm or more. The adhesiveness between the formed active material layer and the current collector is excellent, the electron conductivity accompanying the insertion and release of Li ions and the current collecting power to the current collector are increased, and the cycle life of charge / discharge is improved.
 (非水電解質二次電池)
 本実施の形態の正極を用いた高容量な二次電池を得るには、従来公知の負極活物質を用いた負極や電解液、セパレータ、電池ケース等の各種材料を、特に制限なく使用することができる。
(Non-aqueous electrolyte secondary battery)
In order to obtain a high-capacity secondary battery using the positive electrode of the present embodiment, various materials such as a negative electrode, an electrolytic solution, a separator, and a battery case using a conventionally known negative electrode active material should be used without particular limitation. Can do.
 図1は、非水電解質二次電池30を示す断面図である。本実施の形態の非水電解質二次電池30は、正極33、リチウムイオンを吸蔵および放出可能な負極35、およびセパレータ37から構成される。正極33、負極35およびセパレータ37は、セパレータ37-負極35-セパレータ37-正極33の順に積層配置される。また、正極33が内側になるように巻回して極板群が構成され、電池缶41内に挿入される。正極33は正極リード43を介して正極端子47に接続され、負極35は負極リード45を介して電池缶41に接続される。以上により、非水電解質二次電池30内部で生じた化学エネルギーを電気エネルギーとして外部に取り出し得るようになる。電池缶41内には、リチウムイオン伝導性を有する電解質31が、極板群を覆うように充填される。電池缶41の上端(開口部)には、環状の絶縁ガスケットを介して、封口体39が取り付けられる。封口体39は、円形蓋板とその上部の正極端子47からなり、その内部に安全弁機構を内蔵する。以上により、非水電解質二次電池30が製造される。 FIG. 1 is a cross-sectional view showing a non-aqueous electrolyte secondary battery 30. The nonaqueous electrolyte secondary battery 30 according to the present embodiment includes a positive electrode 33, a negative electrode 35 that can occlude and release lithium ions, and a separator 37. The positive electrode 33, the negative electrode 35, and the separator 37 are stacked in the order of separator 37-negative electrode 35-separator 37-positive electrode 33. Further, the positive electrode 33 is wound so as to be on the inner side to constitute an electrode plate group, and is inserted into the battery can 41. The positive electrode 33 is connected to the positive electrode terminal 47 through the positive electrode lead 43, and the negative electrode 35 is connected to the battery can 41 through the negative electrode lead 45. As described above, the chemical energy generated inside the nonaqueous electrolyte secondary battery 30 can be taken out as electric energy. The battery can 41 is filled with an electrolyte 31 having lithium ion conductivity so as to cover the electrode plate group. A sealing body 39 is attached to the upper end (opening) of the battery can 41 via an annular insulating gasket. The sealing body 39 is composed of a circular lid plate and a positive electrode terminal 47 on the upper portion thereof, and a safety valve mechanism is built therein. Thus, the nonaqueous electrolyte secondary battery 30 is manufactured.
 本実施の形態に係る正極を用いた二次電池は、容量が高く、良好な電極特性が得られるが、二次電池を構成する非水溶媒を用いる電解液に、フッ素を含有する非水溶媒を用いるか、または添加すると、充放電による繰り返しを経ても容量が低下し難く長寿命となる。
例えば、特にはシリコン系の高容量な負極活物質を含む負極を用いる場合には、Liイオンのドープ・脱ドープによる大きな膨張収縮を抑制するために、電解液にフッ素を含有するか、フッ素を置換基として有する非水溶媒を含む電解液を用いることが望ましい。フッ素含有溶媒は充電時、特に初めての充電処理の際のLiイオンとの合金化によるシリコン系皮膜の体積膨張を緩和するので、充放電による容量低下を抑制することができる。フッ素含有非水溶媒にはフッ素化エチレンカーボネートやフッ素化鎖状カーボネートなどを用いることができる。フッ素化エチレンカーボネートにはモノ-テトラ-フルオロエチレンカーボネート(4-フルオロ-1,3-ジオキソラン-2-オン、FEC)が、フッ素化鎖状カーボネートにはメチル2,2,2-トリフルオロエチルカーボネート、エチル2,2,2-トリフルオロエチルカーボネートなどがあり、これらを単一または複数併用して電解液に添加して用いることができる。フッ素基はシリコンと結合し易く強固でもあるので、Liイオンとの充電合金化による膨張の際にも皮膜を安定化させ膨張の抑制に寄与することができるとみられる。
Although the secondary battery using the positive electrode according to the present embodiment has a high capacity and good electrode characteristics, the non-aqueous solvent containing fluorine is used in the electrolytic solution using the non-aqueous solvent constituting the secondary battery. When or is added, the capacity is hardly lowered even after repeated charging and discharging, resulting in a long life.
For example, in particular, when using a negative electrode containing a silicon-based high-capacity negative electrode active material, in order to suppress large expansion and contraction due to Li ion doping / dedoping, the electrolyte contains fluorine, It is desirable to use an electrolytic solution containing a non-aqueous solvent as a substituent. Since the fluorine-containing solvent relaxes the volume expansion of the silicon-based film due to alloying with Li ions during charging, particularly during the first charging process, it is possible to suppress a decrease in capacity due to charging and discharging. As the fluorine-containing non-aqueous solvent, fluorinated ethylene carbonate, fluorinated chain carbonate, or the like can be used. Mono-tetra-fluoroethylene carbonate (4-fluoro-1,3-dioxolan-2-one, FEC) is used for fluorinated ethylene carbonate, and methyl 2,2,2-trifluoroethyl carbonate is used for fluorinated chain carbonate. Ethyl 2,2,2-trifluoroethyl carbonate, etc., and these can be used alone or in combination with a plurality of electrolytes. Since the fluorine group is easy to bond with silicon and is strong, it is considered that the film can be stabilized and contribute to suppression of expansion even when it is expanded by charging alloy with Li ion.
 (本実施の形態に係る正極活物質の製造方法)
 まず、ケイ酸鉄マンガンリチウムの前駆体を焼成する。ケイ酸鉄マンガンリチウムの前駆体は、火炎加水分解や熱酸化などの反応過程を含む製造方法、例えば噴霧燃焼法により合成される。
(Method for producing positive electrode active material according to the present embodiment)
First, a precursor of lithium manganese manganese silicate is fired. The precursor of lithium manganese manganese silicate is synthesized by a production method including a reaction process such as flame hydrolysis or thermal oxidation, for example, a spray combustion method.
 次に、得られた前駆体を炭素源と混合し、不活性ガス雰囲気中で焼成する。前駆体粒子に含まれる非晶質な化合物や酸化物形態の混合物が、焼成によりケイ酸鉄マンガンリチウム系の結晶形態の化合物に変化し、正極活物質が得られる。 Next, the obtained precursor is mixed with a carbon source and fired in an inert gas atmosphere. A mixture of an amorphous compound or an oxide form contained in the precursor particles is changed to a crystalline iron-manganese silicate-based compound by firing to obtain a positive electrode active material.
 さらに、正極活物質の表面を炭素で被覆することが好ましいため、正極活物質を炭化水素ガスの雰囲気下でアニールすることが好ましい。 Furthermore, since it is preferable to coat the surface of the positive electrode active material with carbon, it is preferable to anneal the positive electrode active material in an atmosphere of hydrocarbon gas.
 (噴霧燃焼法による前駆体粒子の製造方法)
 噴霧燃焼法により前駆体粒子を製造する微粒子製造装置1の例を図2に示す。反応容器11には、微粒子合成ノズル9が配置され、燃焼ガス供給部5、支燃性ガス供給部7、及び原料溶液供給部3が接続される。燃焼ガス供給部5、支燃性ガス供給部7、及び原料溶液供給部3からはそれぞれ、可燃性ガス、エア、原料溶液等が、微粒子合成ノズル9から生じる火炎中に供給される。また、反応容器11内で生成された排気中の前駆体粒子15が、フィルタ13により回収される。
(Precursor particle production method by spray combustion method)
An example of a fine particle production apparatus 1 that produces precursor particles by spray combustion is shown in FIG. A fine particle synthesis nozzle 9 is disposed in the reaction vessel 11, and a combustion gas supply unit 5, a combustion support gas supply unit 7, and a raw material solution supply unit 3 are connected to the reaction vessel 11. Combustible gas, air, raw material solution, and the like are supplied from the combustion gas supply unit 5, the combustion-supporting gas supply unit 7, and the raw material solution supply unit 3 to the flame generated from the fine particle synthesis nozzle 9. Further, the precursor particles 15 in the exhaust gas generated in the reaction vessel 11 are collected by the filter 13.
 噴霧燃焼法は、塩化物などの原料気体を供給する方法や、気化器を通して原料液体または原料溶液を供給する方法により、支燃性ガスと可燃性ガスとともに構成原料を火炎中へ供給し、構成原料を反応させ、目的物質を得る方法である。噴霧燃焼法として、VAD(Vapor-phase Axial Deposition)法などが好適な例として挙げられる。これらの火炎の温度は、可燃性ガスと支燃性ガスの混合比や、さらに構成原料の添加割合によって変化するが、通常1000~3000℃の間にあり、特に1500~2500℃程度であることが好ましく、さらに1500~2000℃程度であることがより好ましい。火炎温度が低温であると、火炎中での反応が完了する前に、微粒子が火炎の外へ出てしまう可能性がある。また、火炎温度が高温であると、生成する微粒子の結晶性が高くなりすぎ、その後の焼成工程において、安定相であるが、正極活物質としては好ましくない相が生成しやすくなってしまう。 The spray combustion method consists of supplying raw materials into the flame together with the combustion-supporting gas and the combustible gas by supplying a raw material gas such as chloride or supplying a raw material liquid or raw material solution through a vaporizer. In this method, raw materials are reacted to obtain a target substance. As a spray combustion method, a VAD (Vapor-phase Axial Deposition) method or the like can be cited as a suitable example. The temperature of these flames varies depending on the mixing ratio of the flammable gas and the combustion-supporting gas and the addition ratio of the constituent raw materials, but is usually between 1000 and 3000 ° C., particularly about 1500 to 2500 ° C. It is more preferable that the temperature is about 1500 to 2000 ° C. When the flame temperature is low, there is a possibility that the fine particles may come out of the flame before the reaction in the flame is completed. Further, if the flame temperature is high, the crystallinity of the generated fine particles becomes too high, and a phase that is a stable phase but is not preferable as a positive electrode active material tends to be generated in the subsequent firing step.
 また、火炎加水分解法は、火炎中で構成原料が加水分解される方法である。火炎加水分解法では、火炎として酸水素火炎が一般に用いられる。可燃性ガスとして水素ガスが、支燃性ガスとして酸素ガスが供給された火炎の元に正極活物質の構成原料を含む溶液と、火炎原料(酸素ガスと水素ガス)を同時にノズルから供給して目的物質を合成する。火炎加水分解法では、不活性ガス充填雰囲気中、ナノスケールの極微小な、主として非晶質からなる目的物質の微粒子を得ることができる。 Further, the flame hydrolysis method is a method in which constituent raw materials are hydrolyzed in a flame. In the flame hydrolysis method, an oxyhydrogen flame is generally used as a flame. A solution containing the constituent material of the positive electrode active material under the flame supplied with hydrogen gas as a combustible gas and oxygen gas as a combustible gas, and a flame raw material (oxygen gas and hydrogen gas) are simultaneously supplied from the nozzle. Synthesize the target substance. In the flame hydrolysis method, nanoscale ultrafine, mainly amorphous particles of the target substance can be obtained in an inert gas-filled atmosphere.
 また、熱酸化法とは、火炎中で構成原料が熱酸化される方法である。熱酸化法では、火炎として炭化水素火炎が一般に用いられる。可燃性ガスとして炭化水素系ガスが、支燃性ガスとして空気が供給された火炎の元に、構成原料と火炎原料(例えば、プロパンガスと酸素ガス)を同時にノズルから供給しながら目的物質を合成する。炭化水素系ガスとしては、メタン、エタン、プロパン、ブタンなどのパラフィン系炭化水素ガスや、エチレン、プロピレン、ブチレンなどのオレフィン系炭化水素ガスを使用できる。 Also, the thermal oxidation method is a method in which constituent raw materials are thermally oxidized in a flame. In the thermal oxidation method, a hydrocarbon flame is generally used as the flame. A target material is synthesized while simultaneously supplying constituent raw materials and flame raw materials (for example, propane gas and oxygen gas) from a nozzle to a flame in which hydrocarbon gas is supplied as combustible gas and air is supplied as combustible gas. To do. As the hydrocarbon-based gas, paraffin-based hydrocarbon gases such as methane, ethane, propane, and butane, and olefin-based hydrocarbon gases such as ethylene, propylene, and butylene can be used.
 (前駆体粒子を得るための構成原料)
 本実施の形態の前駆体粒子を得るための構成原料は、少なくともリチウム源、鉄源、マンガン源、シリコン源である。さらに、必要に応じて他の元素の添加原料を用いてもよい。原料が固体の場合は、粉末のまま供給するか、液体に分散して、または溶媒に溶かして溶液とし、気化器を通じて、火炎に供給する。原料が液体の場合には、気化器を通じるほかに、供給ノズル前に加熱または減圧およびバブリングによって蒸気圧を高めて気化供給することもできる。特に、リチウム源、鉄源、マンガン源、シリコン源の混合溶液を、直径20μm以下の霧状の液滴にて供給することが好ましい。
(Constituent material for obtaining precursor particles)
The constituent raw materials for obtaining the precursor particles of the present embodiment are at least a lithium source, an iron source, a manganese source, and a silicon source. Furthermore, you may use the addition raw material of another element as needed. When the raw material is solid, it is supplied as a powder, dispersed in a liquid, or dissolved in a solvent to form a solution, which is supplied to a flame through a vaporizer. When the raw material is liquid, in addition to passing through the vaporizer, it can be vaporized and supplied by increasing the vapor pressure by heating or pressure reduction and bubbling before the supply nozzle. In particular, it is preferable to supply a mixed solution of a lithium source, an iron source, a manganese source, and a silicon source as mist droplets having a diameter of 20 μm or less.
 リチウム源としては、塩化リチウム、水酸化リチウム、炭酸リチウム、硝酸リチウム、臭化リチウム、リン酸リチウム、硫酸リチウムなどのリチウム無機酸塩、シュウ酸リチウム、酢酸リチウム、ナフテン酸リチウムなどのリチウム有機酸塩、リチウムエトキシドなどのリチウムアルコキシド、リチウムのβ―ジケトナト化合物などの有機リチウム化合物、酸化リチウム、過酸化リチウム、などを用いることができる。なお、ナフテン酸とは、主に石油中の複数の酸性物質が混合した異なるカルボン酸の混合物で、主成分はシクロペンタンとシクロヘキサンのカルボン酸化合物である。 Examples of lithium sources include lithium inorganic acid salts such as lithium chloride, lithium hydroxide, lithium carbonate, lithium nitrate, lithium bromide, lithium phosphate, and lithium sulfate, and lithium organic acids such as lithium oxalate, lithium acetate, and lithium naphthenate. A salt, a lithium alkoxide such as lithium ethoxide, an organic lithium compound such as a β-diketonate compound of lithium, lithium oxide, lithium peroxide, or the like can be used. Naphthenic acid is a mixture of different carboxylic acids mainly mixed with a plurality of acidic substances in petroleum, and the main component is a carboxylic acid compound of cyclopentane and cyclohexane.
 鉄源としては、塩化第二鉄、シュウ酸鉄、酢酸鉄、硫酸第一鉄、硝酸鉄、水酸化鉄、2-エチルヘキサン酸第二鉄、ナフテン酸鉄等を用いることができる。さらに、ステアリン酸、ジメチルジチオカルバミン酸、アセチルアセトネート、オレイン酸、リノール酸、リノレン酸などの鉄の有機金属塩や、酸化鉄なども条件により使用される。 As the iron source, ferric chloride, iron oxalate, iron acetate, ferrous sulfate, iron nitrate, iron hydroxide, ferric 2-ethylhexanoate, iron naphthenate and the like can be used. Furthermore, iron organic metal salts such as stearic acid, dimethyldithiocarbamic acid, acetylacetonate, oleic acid, linoleic acid, and linolenic acid, and iron oxide are also used depending on conditions.
 マンガン源としては、塩化マンガン、シュウ酸マンガン、酢酸マンガン、硫酸マンガン、硝酸マンガン、オキシ水酸化マンガン、2-エチルヘキサン酸第二マンガン、ナフテン酸マンガン、ヘキソエートマンガン等を用いることができる。さらに、ステアリン酸、ジメチルジチオカルバミン酸、アセチルアセトネート、オレイン酸、リノール酸、リノレン酸などのマンガンの有機金属塩、酸化マンガンなども条件により使用される。 As the manganese source, manganese chloride, manganese oxalate, manganese acetate, manganese sulfate, manganese nitrate, manganese oxyhydroxide, manganese 2-ethylhexanoate, manganese naphthenate, hexoate manganese and the like can be used. Furthermore, organic metal salts of manganese such as stearic acid, dimethyldithiocarbamic acid, acetylacetonate, oleic acid, linoleic acid, and linolenic acid, and manganese oxide are also used depending on conditions.
 シリコン源としては、四塩化ケイ素、オクタメチルシクロテトラシロキサン(OMCTS)、二酸化ケイ素や一酸化ケイ素またはこれら酸化ケイ素の水和物、オルトケイ酸やメタケイ酸、メタ二ケイ酸等の縮合ケイ酸、テトラエチルオルトシリケート(テトラエトキシシラン、TEOS)、テトラメチルオルトシリケート(テトラメトキシシラン、TMOS)、メチルトリメトキシシラン(MTMS)、メチルトリエトキシシラン(MTES)、ヘキサメチルジシロキサン(HMDSO)、テトラメチルジシロキサン(TMDSO)、テトラメチルシクロテトラシロキサン(TMCTS)、オクタメチルトリシロキサン(OMTSO)、テトラ-n-ブトキシシラン、等々を用いることができる。 Silicon sources include silicon tetrachloride, octamethylcyclotetrasiloxane (OMCTS), silicon dioxide, silicon monoxide or hydrates of these silicon oxides, condensed silicic acid such as orthosilicic acid, metasilicic acid, metadisilicic acid, tetraethyl Orthosilicate (tetraethoxysilane, TEOS), tetramethylorthosilicate (tetramethoxysilane, TMOS), methyltrimethoxysilane (MTMS), methyltriethoxysilane (MTES), hexamethyldisiloxane (HMDSO), tetramethyldisiloxane (TMDSO), tetramethylcyclotetrasiloxane (TMCTS), octamethyltrisiloxane (OMTSO), tetra-n-butoxysilane, and the like can be used.
 また、ケイ酸鉄マンガンリチウムのケイ酸の一部を他のアニオンにより置換する場合は、アニオン源として、遷移金属の酸化物、ホウ酸、リン酸の原料を加える。 In addition, when a part of silicic acid of lithium iron manganese silicate is replaced with other anions, transition metal oxides, boric acid, and phosphoric acid raw materials are added as anion sources.
 例えば、酸化チタン、亜チタン酸鉄や亜チタン酸マンガンなどの亜チタン酸金属塩、チタン酸亜鉛やチタン酸マグネシウム、チタン酸バリウムなどのチタン酸塩、酸化バナジウム、メタバナジン酸アンモニウム、酸化クロム、クロム酸塩や二クロム酸塩、酸化マンガン、過マンガン酸塩やマンガン酸塩、コバルト酸塩、酸化ジルコニウム、ジルコン酸塩、酸化モリブデン、モリブデン酸塩、酸化タングステン、タングステン酸塩、ホウ酸や三酸化二ホウ素、メタホウ酸ナトリウムや四ホウ酸ナトリウム、ホウ砂などの各種ホウ酸塩、亜リン酸、オルトリン酸やメタリン酸などのリン酸、リン酸水素2アンモニウム、リン酸2水素アンモニウムなどのリン酸水素アンモニウム塩などを、それぞれ所望のアニオン源と合成条件に応じて用いることができる。 For example, titanium oxide, metal titanates such as iron titanate and manganese titanate, titanates such as zinc titanate, magnesium titanate, barium titanate, vanadium oxide, ammonium metavanadate, chromium oxide, chromium Acid salts and dichromates, manganese oxides, permanganates and manganates, cobaltates, zirconium oxides, zirconates, molybdenum oxides, molybdates, tungsten oxides, tungstates, boric acid and trioxides Various borates such as diboron, sodium metaborate, sodium tetraborate, borax, phosphoric acid, phosphoric acid such as orthophosphoric acid and metaphosphoric acid, phosphoric acid such as diammonium hydrogen phosphate, ammonium dihydrogen phosphate Use ammonium hydrogen salt, etc., depending on the desired anion source and synthesis conditions. Can.
 これらの原料を同一反応系に火炎原料と共に供給して前駆体粒子を合成する。生成した前駆体粒子は、排気中からフィルタで回収することができる。また、以下のように芯棒の周囲に生成させることもできる。反応器の中にシリカやシリコン系の芯棒(種棒とも呼ばれる)を設置し、これに吹き付けている酸水素火炎中やプロパン火炎中に火炎原料と共にリチウム源、鉄源、マンガン源、シリコン源を供給し、加水分解または酸化反応させると、芯棒表面に主にナノメートルオーダーの微粒子が生成付着する。これらの生成微粒子を回収し、場合によってはフィルタやふるいに掛けて、不純物や凝集粗大化した部分を除く。このようにして得られた前駆体粒子は、ナノスケールの極微小な粒径を持ち、主として非晶質である微粒子からなる。 These raw materials are supplied to the same reaction system together with the flame raw material to synthesize precursor particles. The produced precursor particles can be recovered from the exhaust gas with a filter. It can also be generated around the core rod as follows. A silica or silicon-based core rod (also called a seed rod) is installed in the reactor, and the lithium source, iron source, manganese source, and silicon source together with the flame raw material in the oxyhydrogen flame or propane flame sprayed on it. Is supplied and hydrolyzed or oxidized to produce fine particles of nanometer order mainly on the surface of the core rod. These generated fine particles are collected and, if necessary, passed through a filter or sieve to remove impurities and agglomerated parts. Precursor particles obtained in this manner are composed of fine particles having a nanoscale ultrafine particle size and mainly amorphous.
 本実施の形態に係る前駆体粒子の製造方法である噴霧燃焼法は、製造できる前駆体粒子が、非晶質であり、粒子の大きさも小さい。さらに、噴霧燃焼法では、従来の水熱合成法や固相法に比べて、短時間で大量の合成が可能であり、低コストで均質な前駆体粒子を得ることができる。 In the spray combustion method, which is a method for producing precursor particles according to the present embodiment, the precursor particles that can be produced are amorphous and the size of the particles is small. Furthermore, in the spray combustion method, a large amount of synthesis is possible in a short time compared to the conventional hydrothermal synthesis method and solid phase method, and homogeneous precursor particles can be obtained at low cost.
 本発明においては、前駆体粒子を還元剤と混ぜて焼成することで、通常構造の正極活物質を得ることができる。本実施の形態における前駆体とは、焼成することで、ケイ酸鉄マンガンリチウムの結晶を得ることができる材料である。特に、本実施の形態における前駆体は、鉄やマンガンの価数が3価でありアモルファスであるが、還元剤と混ぜて焼成することで鉄やマンガンの価数が3価から2価に変化する。前駆体粒子の組成は、化学量論的組成を満足することが望ましい。 In the present invention, a positive electrode active material having a normal structure can be obtained by mixing the precursor particles with a reducing agent and baking. The precursor in this embodiment is a material capable of obtaining crystals of lithium iron manganese silicate by firing. In particular, the precursor in this embodiment is amorphous in which the valence of iron or manganese is trivalent, but the valence of iron or manganese is changed from trivalent to divalent by baking with a reducing agent. To do. It is desirable that the composition of the precursor particles satisfies the stoichiometric composition.
 また、前駆体粒子の形状が略球形であり、粒子の平均アスペクト比(長径/短径)が、1.5以下、好ましくは1.2以下、より好ましくは1.1以下である。なお、粒子が略球形であるとは、粒子形状が幾何学的に厳密な球形や楕円球形であることまでは意味せず、わずかな突起部があっても粒子の表面がおおむね滑らかな曲面で構成されていればよい。 Further, the shape of the precursor particles is substantially spherical, and the average aspect ratio (major axis / minor axis) of the particles is 1.5 or less, preferably 1.2 or less, more preferably 1.1 or less. It should be noted that the fact that the particle is substantially spherical does not mean that the particle shape is a geometrically strict spherical or elliptical sphere, and the surface of the particle is generally a smooth curved surface even if there are a few protrusions. It only has to be configured.
 これら前駆体粒子を2θ=10~60°の範囲の粉末法X線回折を測定すると、ほとんど回折ピークを有しないか、有したとしても回折ピークが小さく幅の広い回折角を示す。すなわち、前駆体粒子は、結晶子の小さい微粒子または小さな単結晶の集まった多結晶微粒子で構成されるか、これら微粒子の周囲に非晶質成分が存在する微結晶形態である。 When these precursor particles are measured by powder method X-ray diffraction in the range of 2θ = 10 to 60 °, they have little or no diffraction peaks, and even if they have, they show a wide diffraction angle. That is, the precursor particles are composed of fine particles having small crystallites or polycrystalline fine particles in which small single crystals are gathered, or are in a microcrystalline form in which an amorphous component exists around these fine particles.
 本実施の形態の噴霧燃焼法では、火炎中で炭素は燃焼するので、得られた前駆体粒子には、炭素が含まれない。仮に炭素成分が混入したとしても、ごく微量であり、正極に使用する際の導電助剤となるほどの量ではない。 In the spray combustion method of the present embodiment, carbon burns in the flame, so the obtained precursor particles do not contain carbon. Even if a carbon component is mixed, the amount is very small and is not so large as to be a conductive aid when used for the positive electrode.
 (正極活物質の製造)
 噴霧燃焼法による得られた、前駆体粒子をさらに炭素源と混合した後に、不活性ガス充填雰囲気下で焼成する。この際、前駆体粒子に含まれる非晶質な化合物や酸化物形態の混合物が、焼成により主にポリアニオン系のケイ酸鉄マンガンリチウム系の結晶形態の化合物に変化する。
(Manufacture of positive electrode active material)
The precursor particles obtained by the spray combustion method are further mixed with a carbon source, and then fired in an inert gas-filled atmosphere. At this time, the amorphous compound or oxide mixture contained in the precursor particles is changed into a polyanion-based iron manganese lithium silicate-based crystal form compound by firing.
 また、不活性ガス充填雰囲気下では、焼成時に炭素源が燃焼してしまうこと、正極活物質が酸化してしまうことを防ぐことができる。不活性ガスとしては、窒素ガス、アルゴンガス、ネオンガス、ヘリウムガス、二酸化炭素ガスなどを使用することができる。焼成後の生成物の導電性を高めるために、ポリビニルアルコールなどの多価アルコール、ポリビニルピロリドン、カルボキシメチルセルロース、アセチルセルロースなどのポリマー、ショ糖などの糖類、カーボンブラックなどの導電性炭素を、炭素源として焼成前に前駆体粒子に加えて焼成する。ポリビニルアルコールは、焼成前の前駆体粒子のバインダとしての役割を果たすうえ、焼成中に鉄やマンガンを良好に還元できるので、特に好ましい。 Further, under an inert gas filled atmosphere, it is possible to prevent the carbon source from burning during firing and the positive electrode active material from being oxidized. Nitrogen gas, argon gas, neon gas, helium gas, carbon dioxide gas, etc. can be used as the inert gas. In order to increase the conductivity of the product after firing, a polyhydric alcohol such as polyvinyl alcohol, a polymer such as polyvinyl pyrrolidone, carboxymethyl cellulose, and acetyl cellulose, a saccharide such as sucrose, and a conductive carbon such as carbon black are used as a carbon source. In addition to the precursor particles, firing is performed before firing. Polyvinyl alcohol is particularly preferable because it plays a role as a binder for the precursor particles before firing, and can favorably reduce iron and manganese during firing.
 焼成条件は温度300~900℃と処理時間0.5~10時間の組み合わせで適宜所望の結晶性と粒径の焼成物を得ることができる。高温や長時間の焼成による過大な熱負荷は粗大な結晶粒を生成させ得るので回避すべきであり、所望の結晶性または微結晶性のケイ酸鉄マンガンリチウムが得られる程度の加熱条件で、結晶子の大きさを極力小さく抑制できる焼成条件が望ましい。焼成温度は400~700℃程度であることが好ましい。 Calcination conditions can be suitably obtained by combining a temperature of 300 to 900 ° C. and a treatment time of 0.5 to 10 hours to obtain a fired product having desired crystallinity and particle size. Excessive heat load due to high temperature or prolonged firing can generate coarse crystal grains, and should be avoided, under heating conditions such that the desired crystalline or microcrystalline lithium iron manganese silicate is obtained, Firing conditions that can suppress the crystallite size as small as possible are desirable. The firing temperature is preferably about 400 to 700 ° C.
 (炭化水素ガスによるアニール)
 焼成により正極活物質を形成した後、炭化水素ガスでアニールして、正極活物質の表面に炭素被覆を形成する。
(Annealing with hydrocarbon gas)
A positive electrode active material is formed by firing, and then annealed with a hydrocarbon gas to form a carbon coating on the surface of the positive electrode active material.
 アニールの際の温度が、600℃~750℃であることが好ましい。アニール温度が低すぎると炭化水素ガスからの炭素の析出が遅く、高すぎると結晶が過大に成長してしまうからである。 The temperature during annealing is preferably 600 ° C. to 750 ° C. This is because if the annealing temperature is too low, the deposition of carbon from the hydrocarbon gas is slow, and if it is too high, the crystal grows excessively.
 炭化水素ガスは、メタン、エタン、プロパン、ブタンの中から選択される1種又は2種以上であることが好ましい。炭化水素ガスにも還元性があるが、さらに還元を進めるために還元性ガスを混合して供給してもよい。 The hydrocarbon gas is preferably one or more selected from methane, ethane, propane, and butane. The hydrocarbon gas also has a reducing property, but a reducing gas may be mixed and supplied for further reduction.
 還元性ガスは、水素、アセチレン、一酸化炭素、硫化水素、二酸化硫黄、ホルムアルデヒドの中から選択される1種又は2種以上であることが好ましい。 The reducing gas is preferably one or more selected from hydrogen, acetylene, carbon monoxide, hydrogen sulfide, sulfur dioxide, and formaldehyde.
 アニールにより、炭化水素ガスが鉄または炭化鉄を含む粒子と反応し、炭化水素ガスが分解・結合し、正極活物質の表面を炭素被覆することができる。 By annealing, the hydrocarbon gas reacts with iron or particles containing iron carbide, the hydrocarbon gas is decomposed and combined, and the surface of the positive electrode active material can be coated with carbon.
 なお、得られた正極活物質は、焼成工程やアニール工程において凝集していることが多いため、乳鉢やボールミルほか粉砕手段に掛けることにより、再び微粒子とすることができる。 In addition, since the obtained positive electrode active material is often agglomerated in the firing step or the annealing step, it can be made into fine particles again by applying to a mortar, a ball mill or other pulverizing means.
 図4(a)は、以上のようにして形成された微粒子の、空間群Pmn2を持つ結晶構造を示す図である。なお、図4は、空間群Pmn2を持つ結晶構造を示すが、以下の説明は、空間群P2/nを持つ結晶構造についても同様である。空間群Pmn2を持つ結晶構造は、斜方晶を単位格子とし、単位格子中に16個の原子を持つ結晶構造である。
 単位格子を斜視図で表すと図3のようになり、a、b、cの各辺は直交している。LiFeMn(1-Y)SiO(0<X≦2.5,0<Y≦1)の系においては、a、b、cの長さ(格子定数)はそれぞれ6.3オングストローム、5.3オングストローム、5.0オングストローム程度の値を持ち、組成によって1%程度の変化がありうる。
FIG. 4 (a), the fine particles formed as described above, is a diagram showing a crystal structure having a space group Pmn2 1. FIG. 4 shows a crystal structure having the space group Pmn2 1 , but the following description is the same for the crystal structure having the space group P2 1 / n. The crystal structure having the space group Pmn2 1 is a crystal structure having an orthorhombic crystal as a unit cell and 16 atoms in the unit cell.
When the unit cell is represented by a perspective view, it is as shown in FIG. 3, and each side of a, b, and c is orthogonal. In the system of Li X Fe Y Mn (1-Y) SiO 4 (0 <X ≦ 2.5, 0 <Y ≦ 1), the lengths (lattice constants) of a, b, and c are each 6.3 angstroms. It has values of about 5.3 angstroms and 5.0 angstroms, and can vary by about 1% depending on the composition.
 単位格子を繰り返し並べると、図4(a)のようになるが、図4(a)上でAで示される原子がFe原子またはMn原子ある。同様に、Bで示される原子がSi原子である。Cで示される原子がLi原子である。Oで示される原子がO原子である。 When the unit cells are arranged repeatedly, the result is as shown in FIG. 4A, but the atom indicated by A in FIG. 4A is an Fe atom or Mn atom. Similarly, the atom shown by B is a Si atom. The atom represented by C is a Li atom. An atom represented by O is an O atom.
 また、P2/nの空間群を持つ結晶構造とは、図4(a)のPmn2の、Fe/MnサイトとSiサイトがなすa軸に平行な列の原子を取り囲む、O原子の四面体の向きが周期的に変化した構造である。よってP2/nの単位格子は図3に示す斜方晶とは異なり、軸の異なる単斜晶で長周期構造を持つが、原子の配列としては非常に近い関係にあることがわかる。 In addition, the crystal structure having a space group of P2 1 / n refers to the four faces of O atoms surrounding atoms in a row parallel to the a axis formed by the Fe / Mn site and Si site of Pmn2 1 in FIG. It is a structure in which the body orientation changes periodically. Therefore, unlike the orthorhombic crystal shown in FIG. 3, the unit cell of P2 1 / n is a monoclinic crystal having a different axis and has a long-period structure, but it is understood that the atomic arrangement is very close.
 図4(a)に示す結晶構造を通常構造と呼ぶ。この通常構造は、Si-O結合による四面体(図4に破線で記載)とFe/Mn-O結合による四面体(図4に不記載)が連なった鎖部分と、Li-O結合による四面体(図4に不記載)が連なった鎖部分で構成される。図4(a)において、Fe原子またはMn原子が存在する位置をFe/Mnサイト、Li原子が存在する位置をLiサイトと呼ぶこととする。すなわち、通常構造では、Fe/MnサイトにFe原子またはMn原子が、LiサイトにLi原子が入った構造を取っている。なお図4における、それぞれ各原子とO原子が作る四面体については、図での説明を明快にするため、Si-O結合による四面体のみ記載している。 The crystal structure shown in FIG. 4 (a) is called a normal structure. This normal structure is composed of a chain portion in which a tetrahedron formed by Si—O bonds (shown by a broken line in FIG. 4) and a tetrahedron formed by Fe / Mn—O bonds (not shown in FIG. 4), and a tetrahedron formed by Li—O bonds. It is composed of chain parts that are connected to each other (not shown in FIG. 4). In FIG. 4A, a position where an Fe atom or Mn atom exists is called an Fe / Mn site, and a position where a Li atom exists is called a Li site. That is, the normal structure has a structure in which Fe atoms or Mn atoms are contained in the Fe / Mn site and Li atoms are contained in the Li site. Note that the tetrahedrons formed by the respective atoms and O atoms in FIG. 4 are shown only for the tetrahedrons with Si—O bonds for the sake of clarity in the drawing.
 図5(a)は、図4(a)に示す通常構造を簡略化し、二次元的に表した結晶構造20aを示す概念図である。なお、実際には、SiおよびFeは、酸素と結合して四面体を構成しているが、図示は省略する。通常構造では、Fe/MnサイトにFe原子またはMn原子が、LiサイトにLi原子が入った構造を取り、通常は、この状態で、正極活物質として用いられる。 FIG. 5 (a) is a conceptual diagram showing a crystal structure 20a that is two-dimensionally expressed by simplifying the normal structure shown in FIG. 4 (a). In practice, Si and Fe combine with oxygen to form a tetrahedron, but illustration thereof is omitted. The normal structure takes a structure in which Fe atoms or Mn atoms are contained in the Fe / Mn site and Li atoms are contained in the Li site, and is usually used as a positive electrode active material in this state.
 本発明では、この状態から、さらに化学処理を行う。例えば、塩酸による酸処理や、水への浸漬を行う。この処理を行うことで、図5(b)に示す結晶構造20bのように、Liサイトの一部から、Li原子を脱離することができる。すなわち、Liサイトの一部が空孔となる。 In the present invention, further chemical treatment is performed from this state. For example, acid treatment with hydrochloric acid or immersion in water is performed. By performing this treatment, Li atoms can be desorbed from a part of the Li site as in the crystal structure 20b shown in FIG. That is, a part of the Li site becomes a hole.
 この状態から、不活性ガス雰囲気下において、所定の温度で加熱処理すると、Fe/MnサイトのFe原子またはMn原子の一部が、空孔となったLiサイトに移動すると考えられる。
 図6(a)は、Fe原子またはMn原子がLiサイトに移動し、Fe/Mnサイトに空孔ができた状態の結晶構造20cを示す図である。この状態が、カチオン交換構造を有する正極活物質の結晶構造となる。
When heat treatment is performed at a predetermined temperature in an inert gas atmosphere from this state, it is considered that Fe atoms or part of Mn atoms in the Fe / Mn sites move to Li sites that are vacant.
FIG. 6A is a diagram showing the crystal structure 20c in a state where Fe atoms or Mn atoms move to the Li site and vacancies are formed in the Fe / Mn site. This state becomes the crystal structure of the positive electrode active material having a cation exchange structure.
 すなわち、従来は、この形態にするために、結晶構造20aから充電を行うことで、結晶構造20cとすることができる。しかし、本発明では、このような電気化学的な手法を用いずに、カチオン交換構造を得ることができる。したがって、結晶構造20aの状態から充電を行うことでアモルファス化するようなマンガンを含んだケイ酸鉄マンガンリチウムであっても、本手法により合成化学的にカチオン交換構造を得ることができる。 That is, conventionally, in order to obtain this form, the crystal structure 20c can be obtained by charging from the crystal structure 20a. However, in the present invention, a cation exchange structure can be obtained without using such an electrochemical technique. Therefore, a cation exchange structure can be obtained synthetically and chemically by this method even for lithium iron manganese silicate containing manganese that becomes amorphous when charged from the state of the crystal structure 20a.
 この状態から放電を行うと、図6(b)に示す結晶構造20dとなる。これを立体的に示すと、図4(b)のようになる。なお、図中ACは、Fe原子またはMn原子とLi原子の両者が配置しうることを示す。すなわち、Li原子が、Fe/Mnサイトにできた空孔に挿入される。この後は、充放電を繰り返しても、このカチオン交換構造を維持した状態で、結晶構造20c、20dの変化を繰り返す。 When discharging from this state, the crystal structure 20d shown in FIG. 6B is obtained. This is shown three-dimensionally as shown in FIG. In the figure, AC indicates that both Fe atom or Mn atom and Li atom can be arranged. That is, Li atoms are inserted into vacancies formed at the Fe / Mn site. After this, even if charging / discharging is repeated, the change of the crystal structures 20c and 20d is repeated while maintaining the cation exchange structure.
 次に、上記方法で得られた正極活物質の結晶構造を、CuKα線を用いたX線回折測定で評価した。図7、図8は、測定結果である。 Next, the crystal structure of the positive electrode active material obtained by the above method was evaluated by X-ray diffraction measurement using CuKα rays. 7 and 8 show the measurement results.
 図7において、Dは、LixFeSiOの通常構造(結晶構造20a)の測定結果であり、空間群P2/nを含み、またはPmn2の結晶構造が一部含まれている可能性を有する測定結果である。Eは、LixFeSiO(0<X≦2.5)のカチオン交換構造(結晶構造20d)の測定結果、Fは、Lix(Fe0.75Mn0.25)SiO(0<X≦2.5)のカチオン交換構造(結晶構造20d)の測定結果である。 In FIG. 7, D is a measurement result of the normal structure (crystal structure 20a) of Li x FeSiO 4 , and it is possible that the space group P2 1 / n is included or a part of the crystal structure of Pmn2 1 is included. It is a measurement result to have. E is the measurement result of the cation exchange structure (crystal structure 20d) of Li x FeSiO 4 (0 <X ≦ 2.5), and F is Li x (Fe 0.75 Mn 0.25 ) SiO 4 (0 <X It is a measurement result of the cation exchange structure (crystal structure 20d) of ≦ 2.5).
 LixFeSiOとLix(Fe0.75Mn0.25)SiOのいずれも、空間群P2/nまたはPmn2の少なくともいずれか一方のカチオン交換構造が、電気化学的ではなく合成化学的に得られたことが分かる。特に22.2度付近と23.0度付近にある2つのピークが、本組成でのカチオン交換構造の特徴である。これらは、非特許文献1、または非特許文献2に示されたカチオン交換構造と同様のピークを有している。すなわち、Mnを含むLi(Fe0.75Mn0.25)SiOであっても、実質的にアモルファス化することなくカチオン交換構造へ転移することができた。 In both Li x FeSiO 4 and Li x (Fe 0.75 Mn 0.25 ) SiO 4 , at least one of the cation exchange structures of the space group P2 1 / n or Pmn2 1 is not electrochemical but synthetic chemistry. You can see that it was obtained. In particular, two peaks near 22.2 degrees and 23.0 degrees are characteristic of the cation exchange structure in this composition. These have the same peak as the cation exchange structure shown in Non-Patent Document 1 or Non-Patent Document 2. That is, even Li 2 (Fe 0.75 Mn 0.25 ) SiO 4 containing Mn could be transferred to a cation exchange structure without being substantially amorphous.
 前記により得られた正極活物質に対して、導電助剤(カーボンブラック)を10重量%となるように混合し、内部を窒素で置換したボールミルを用いて更に5時間混合した。混合粉末と結着剤であるポリフッ化ビニリデン(PVdF)を、重量比95:5の割合で混合し、N-メチル-2-ピロリドン(NMP)を加えて十分混練し、正極スラリーを得た。 The positive electrode active material obtained above was mixed with a conductive assistant (carbon black) at 10% by weight, and further mixed for 5 hours using a ball mill in which the inside was replaced with nitrogen. The mixed powder and polyvinylidene fluoride (PVdF) as a binder were mixed at a weight ratio of 95: 5, and N-methyl-2-pyrrolidone (NMP) was added and kneaded sufficiently to obtain a positive electrode slurry.
 厚さ15μmのアルミニウム箔集電体に、正極スラリーを50g/mの塗工量で塗布し、120℃で30分間乾燥した。その後、ロールプレスで2.0g/cmの密度になるように圧延加工し、2cmの円盤状に打抜いて正極とした。 The positive electrode slurry was applied to an aluminum foil current collector with a thickness of 15 μm at a coating amount of 50 g / m 2 and dried at 120 ° C. for 30 minutes. Thereafter, it was rolled to a density of 2.0 g / cm 3 with a roll press, punched into a 2 cm 2 disk shape, and used as a positive electrode.
 これらの正極と、負極に金属リチウム、電解液にエチレンカーボネート及びジエチルカーボネートを体積比1:1の割合で混合した混合溶媒にLiPFを1Mの濃度で溶解したものを用い、リチウム二次電池を作製した。なお、作製雰囲気は露点が-50℃以下とした。各極は集電体の付いた電槽缶に圧着して用いた。上記正極、負極、電解質及びセパレータを用いて直径25mm、厚さ1.6mmのコイン型リチウム二次電池とした。 Using these positive electrodes, metallic lithium for the negative electrode, and a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1 in the electrolyte solution, LiPF 6 was dissolved at a concentration of 1M, and a lithium secondary battery was used. Produced. The production atmosphere was a dew point of −50 ° C. or lower. Each electrode was used by being crimped to a battery case with a current collector. A coin-type lithium secondary battery having a diameter of 25 mm and a thickness of 1.6 mm was formed using the positive electrode, the negative electrode, the electrolyte, and the separator.
 次に、前記のコイン型リチウム二次電池により、正極活物質の電極特性の試験評価を、
次のように実施した。
 試験温度25℃または60℃、0.1Cの電流レートにて、CC-CV法(定電流定電圧)により、4.5V(対Li/Li+)まで充電を行い、その後電流レートが0.01Cまで低下した後に充電を停止した。その後、0.1Cレートにて、CC法(定電流)により1.5V(前記に同じ)まで放電を行って、充放電容量およびサイクル寿命を測定した。
Next, with the coin-type lithium secondary battery, test evaluation of the electrode characteristics of the positive electrode active material,
It carried out as follows.
Charging to 4.5 V (vs. Li / Li +) by CC-CV method (constant current constant voltage) at a test temperature of 25 ° C. or 60 ° C. and a current rate of 0.1 C, and then a current rate of 0.01 C The charging was stopped after it dropped to. Thereafter, the battery was discharged at a rate of 0.1 C to 1.5 V (same as above) by the CC method (constant current), and the charge / discharge capacity and cycle life were measured.
 表1に、初回放電容量の結果を示す。また、表2には、30サイクル後の放電容量を示す。本発明の実施例は、表中「カチオン交換構造」と示したものであり、これは初回充電の前(放電状態)の結晶構造がカチオン交換構造である。比較例は表中「通常構造」と示したものであり、初回充電の前(放電状態)の結晶構造が通常構造である。表1、表2を見て分かるように、初回の充電の前からカチオン交換構造となった正極活物質を使用し、充放電を行うことで、高容量かつ、通常構造(初回充電の前で)より良好なサイクル特性が得られていることが分かる。 Table 1 shows the results of the initial discharge capacity. Table 2 shows the discharge capacity after 30 cycles. Examples of the present invention are indicated as “cation exchange structure” in the table, and the crystal structure before the first charge (discharge state) is a cation exchange structure. The comparative example is indicated as “normal structure” in the table, and the crystal structure before the first charge (discharge state) is the normal structure. As can be seen from Tables 1 and 2, by using a positive electrode active material having a cation exchange structure before the first charge and charging and discharging, a high capacity and a normal structure (before the first charge) It can be seen that better cycle characteristics are obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
図9(a)に、前記の方法で作製した、未充放電状態の正極活物質LixFeSiOおよびLix(Fe0.75Mn0.25)SiOの通常構造とカチオン交換構造における、Fe-K端のXANES(X-ray Absorption Near Edge Structure)の結果を示す。また図9(b)では、非特許文献8で開示された測定手法を参考に、規格化したXANESスペクトル強度の90%位置のエネルギーを吸収端立ち上がりとして、Feの価数および吸収端立ち上がり位置の相関を見積もった。これらを見ると、通常構造では+2価を持つFeが、カチオン交換構造になることで酸化し、+3価付近へ変化している様子が分かる。この時見積もったカチオン交換構造におけるFeの価数は3.1~3.2であった。
(非特許文献8)Electrochimica Acta 55 (2010) 8876.
In FIG. 9A, in the normal structure and the cation exchange structure of the positive electrode active materials Li x FeSiO 4 and Li x (Fe 0.75 Mn 0.25 ) SiO 4 in the uncharged / discharged state prepared by the above method, The result of XANES (X-ray Absorption Near Edge Structure) of Fe-K end is shown. 9B, with reference to the measurement method disclosed in Non-Patent Document 8, the energy at the 90% position of the normalized XANES spectral intensity is defined as the absorption edge rising, and the valence of Fe and the absorption edge rising position are measured. The correlation was estimated. From these, it can be seen that in the normal structure, Fe having +2 valence is oxidized by becoming a cation exchange structure and is changed to around +3 valence. The valence of Fe in the cation exchange structure estimated at this time was 3.1 to 3.2.
(Non-patent Document 8) Electrochimica Acta 55 (2010) 8876.
図10に、前記の方法で作製した未充放電状態の正極活物質LiFeSiOおよびLi(Fe0.75Mn0.25)SiOの通常構造とカチオン交換構造における、Fe2p3/2のXPS(X-ray Photoelectron Spectroscopy)の結果を示す。通常構造の結果を見ると、Feが+2価の標準サンプルと同様に710eV付近と716eV付近にブロードなピーク(比較対象とのズレ)構造が見られることから、Feが+2価付近を持つことが分かる。一方でカチオン交換構造では、これらのピーク構造が見られないため、Feが+3価付近を持つことが示唆される。XANES,XPSの結果から、カチオン交換構造のFeの価数が通常構造のFeの価数より増加していると確認できた。 FIG. 10 shows Fe2p 3/2 in the normal structure and the cation exchange structure of the positive and negative electrode active materials Li x FeSiO 4 and Li x (Fe 0.75 Mn 0.25 ) SiO 4 prepared by the above method. Results of XPS (X-ray Photoelectron Spectroscopy) are shown. Looking at the results of the normal structure, it can be seen that a broad peak (deviation from the comparison target) structure is observed in the vicinity of 710 eV and 716 eV in the same manner as the standard sample in which Fe is +2 valent. I understand. On the other hand, in the cation exchange structure, since these peak structures are not seen, it is suggested that Fe has +3 valence vicinity. From the results of XANES and XPS, it was confirmed that the valence of Fe having a cation exchange structure was increased from the valence of Fe having a normal structure.
図11(a)に、前記の方法で作製した未充放電状態の正極活物質Li(Fe0.75Mn0.25)SiOの通常構造とカチオン交換構造における、Mn-K端のXANESの結果を示す。また図11(b)には、非特許文献8で開示された測定手法を参考に、、規格化したXANESスペクトル強度の90%位置のエネルギーを吸収端立ち上がりとして、Mnの価数および吸収端立ち上がり位置の相関を見積もった。これらを見ると、通常構造では+2価を持つMnが、カチオン交換構造になることで酸化し、+3価方向へ近づいている様子が分かる。この時見積もった価数は2.6であった。 FIG. 11A shows XANES at the Mn—K end in the normal structure and the cation exchange structure of the uncharged / discharged positive electrode active material Li x (Fe 0.75 Mn 0.25 ) SiO 4 produced by the above-described method. The results are shown. In FIG. 11B, referring to the measurement method disclosed in Non-Patent Document 8, the energy at the 90% position of the normalized XANES spectral intensity is defined as the absorption edge rising, and the Mn valence and the absorption edge rising are illustrated. The position correlation was estimated. From these, it can be seen that Mn having +2 valence in the normal structure is oxidized by becoming a cation exchange structure and approaches the +3 valence direction. The valence estimated at this time was 2.6.
図12に、前記の方法で作製した正極活物質Li(Fe0.5Mn0.5)SiOの通常構造とカチオン交換構造における、Mn2p3/2のXPSの結果を示す。通常構造の結果を見ると、Mnが+2価の標準サンプルと同様に647eV付近にブロードなピーク(比較対象とのズレ)構造が見られることから、Mnが+2価付近を持つことが分かる。一方でカチオン交換構造では、このピーク構造が見られないため、Mnが+3価方向へ近づいている様子がことが示唆される。XANES,XPSの結果から、カチオン交換構造のMnの価数が通常構造のMnの価数より増加していると確認できた。 FIG. 12 shows the XPS results of Mn2p 3/2 in the normal structure and cation exchange structure of the positive electrode active material Li 2 (Fe 0.5 Mn 0.5 ) SiO 4 produced by the above method. When the result of the normal structure is seen, a broad peak (deviation from the comparison target) structure is observed in the vicinity of 647 eV as in the case of the standard sample having Mn of +2, indicating that Mn has a vicinity of +2. On the other hand, in the cation exchange structure, since this peak structure is not seen, it is suggested that Mn is approaching in the +3 valence direction. From the results of XANES and XPS, it was confirmed that the valence of Mn having a cation exchange structure was increased from the valence of Mn having a normal structure.
以上のことから、本発明によれば、電気化学的な方法によらず、ケイ酸遷移金属リチウムをカチオン交換構造に変化させ、未充放電状態(電池として使用する前)の組成LiFeMn(1-Y)SiO(0.5<X≦1.5,0<Y≦1)において、FeまたはMnは価数が+2.5~+3.5価であることが分かり、FeまたはMnが価数変化することで、SiやOが価数変化せず安定構造を保っていることが分かる。このため、その後の充放電においても安定した結晶構造を維持するため、サイクル特性に優れた二次電池を得ることができる。 From the above, according to the present invention, the composition Li X Fe Y in an uncharged / discharged state (before use as a battery) is obtained by changing the lithium silicate transition metal to a cation exchange structure regardless of the electrochemical method. In Mn (1-Y) SiO 4 (0.5 <X ≦ 1.5, 0 <Y ≦ 1), it can be seen that Fe or Mn has a valence of +2.5 to +3.5. It can be seen that when Fe or Mn changes in valence, Si or O does not change in valence and maintains a stable structure. For this reason, since the stable crystal structure is maintained also in subsequent charging / discharging, the secondary battery excellent in cycling characteristics can be obtained.
 図8は、Li(Fe0.75Mn0.25)SiOについて、充放電を繰り返した際の結晶構造の変化を示す。Gは、充放電前の結果であり、Hは、1サイクルの充放電後の結果であり、Iは、5サイクルの充放電後の結果である。 FIG. 8 shows a change in crystal structure when Li x (Fe 0.75 Mn 0.25 ) SiO 4 is repeatedly charged and discharged. G is the result before charging / discharging, H is the result after one cycle of charging / discharging, and I is the result after five cycles of charging / discharging.
 結果より、Mnを含むLi(Fe0.75Mn0.25)SiOであっても、アモルファス化することなくカチオン交換構造を維持した。 From the result, even if Li x (Fe 0.75 Mn 0.25 ) SiO 4 containing Mn was maintained, the cation exchange structure was maintained without being amorphized.
 以上、本発明によれば、電気化学的な方法によらず、ケイ酸遷移金属リチウムをカチオン交換構造に変化させることができる。このため、従来は充放電によってアモルファス化するMnを含んだケイ酸鉄マンガンリチウムでも、カチオン交換構造を得ることによって、その後の充放電においても安定した結晶構造を維持するため、サイクル特性に優れた二次電池を得ることができる。 As described above, according to the present invention, lithium metal silicate can be changed into a cation exchange structure regardless of an electrochemical method. For this reason, in the past, even with lithium manganese silicate containing Mn that becomes amorphous by charge / discharge, a stable cation exchange structure is obtained, and a stable crystal structure is maintained during subsequent charge / discharge. A secondary battery can be obtained.
 以上、添付図面を参照しながら、本発明の好適な実施の形態について説明したが、本発明は係る例に限定されない。当業者であれば、本願で開示した技術的思想の範疇内において、各種の変更例または修正例に想到しえることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
 なお、図中、「O」は通常構造、「CM」は、カチオン交換構造をそれぞれ意味する。
The preferred embodiments of the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to such examples. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the technical idea disclosed in the present application, and these are naturally within the technical scope of the present invention. Understood.
In the figure, “O” means a normal structure, and “CM” means a cation exchange structure.
 1………微粒子製造装置
 3………原料溶液供給部
 5………燃焼ガス供給部
 7………エア供給部
 9………微粒子合成ノズル
 11………反応容器
 13………フィルタ
 15………前駆体微粒子
 20a、20b、20c、20d………結晶構造
 30………非水電解質二次電池
 31………電解質
 33………正極
 35………負極
 37………セパレータ
 39………封口体
 41………電池缶
 43………正極リード
 45………負極リード
 47………正極端子
DESCRIPTION OF SYMBOLS 1 ......... Particle production apparatus 3 ......... Raw material solution supply part 5 ......... Combustion gas supply part 7 ......... Air supply part 9 ......... Particle synthesis nozzle 11 ......... Reaction vessel 13 ......... Filter 15 ... …… Precursor fine particles 20a, 20b, 20c, 20d ……… Crystal structure 30 ………… Non-aqueous electrolyte secondary battery 31 ………… Electrolyte 33 ……… Positive electrode 35 ……… Negative electrode 37 ……… Separator 39 …… ... Sealing body 41 ... ... Battery can 43 ... ... Positive electrode lead 45 ... ... Negative electrode lead 47 ... ... Positive electrode terminal

Claims (8)

  1.  一般式LiFeMn(1-Y)SiO(0<X≦2.5,0<Y≦1)で表され、
     空間群P2/nまたはPmn2の少なくともいずれか一方の結晶構造を持ち、さらにFe/Mnサイトの一部にLi原子が入り、Liサイトの一部にFe原子またはMn原子のいずれかが入った、カチオン交換構造を持つことを特徴とする正極活物質。
    Represented by the general formula Li X Fe Y Mn (1-Y) SiO 4 (0 <X ≦ 2.5, 0 <Y ≦ 1),
    It has a crystal structure of at least one of space group P2 1 / n or Pmn2 1 , and further Li atoms enter part of the Fe / Mn site, and either Fe atoms or Mn atoms enter part of the Li site. A positive electrode active material characterized by having a cation exchange structure.
  2.  Feおよび/またはMnの一部に代えて、CoまたはNiの少なくとも一方が置換されることを特徴とする請求項1に記載の正極活物質。 2. The positive electrode active material according to claim 1, wherein at least one of Co and Ni is substituted in place of a part of Fe and / or Mn.
  3.  Feおよび/またはMnの一部に代えて、Mg、Ca、Ti、V、Cr、Cu、Zn、Sr、Zr、Moの少なくともいずれかが置換されることを特徴とする請求項1または2のいずれか1項に記載の正極活物質。 3. Instead of a part of Fe and / or Mn, at least one of Mg, Ca, Ti, V, Cr, Cu, Zn, Sr, Zr, and Mo is substituted. The positive electrode active material of any one of Claims.
  4.  Liの一部に代えて、Mg、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Sr、Zr、Moの少なくともいずれかが置換されることを特徴とする請求項1から3のいずれか1項に記載の正極活物質。 The at least one of Mg, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Zr, and Mo is substituted for a part of Li. The positive electrode active material according to any one of 1 to 3.
  5.  集電体と、
     前記集電体の少なくとも片面に、請求項1から請求項3のいずれかに記載の正極活物質を含む正極活物質層と、
     を有することを特徴とする二次電池用正極。
    A current collector,
    The positive electrode active material layer containing the positive electrode active material according to any one of claims 1 to 3, on at least one surface of the current collector;
    A positive electrode for a secondary battery, comprising:
  6.  請求項4に記載の二次電池用正極と、
     リチウムイオンを吸蔵および放出可能な負極と、
     前記正極と前記負極との間に配置されたセパレータとを有し、
     リチウムイオン伝導性を有する電解質中に、前記正極と前記負極と前記セパレータとを設けたことを特徴とする二次電池。
    A positive electrode for a secondary battery according to claim 4,
    A negative electrode capable of inserting and extracting lithium ions;
    Having a separator disposed between the positive electrode and the negative electrode;
    A secondary battery, wherein the positive electrode, the negative electrode, and the separator are provided in an electrolyte having lithium ion conductivity.
  7.  少なくともリチウム源、鉄源、マンガン源およびシリコン源を用いて、ケイ酸鉄マンガンリチウム系の活物質を合成する工程と、
     前記活物質からリチウムの一部を脱離する工程と、
     前記活物質を加熱して、Liサイトの一部とFe/Mnサイトの一部とが入れ替わり、
    カチオン交換構造に転移させる工程と、
     を具備することを特徴とする正極活物質の製造方法。
    Using at least a lithium source, an iron source, a manganese source and a silicon source to synthesize an iron manganese silicate lithium-based active material;
    Desorbing a portion of lithium from the active material;
    The active material is heated to replace a part of the Li site and a part of the Fe / Mn site,
    Transferring to a cation exchange structure;
    The manufacturing method of the positive electrode active material characterized by comprising.
  8. 一般式LiFeMn(1-Y)SiO(0.5≦X<1.5,0<Y≦1)で表され、
     空間群P2/nまたはPmn2の少なくともいずれか一方の結晶構造を持ち、さらにFe/Mnサイトの一部にLi原子が入り、Liサイトの一部にFe原子またはMn原子のいずれかが入り、FeまたはMnの価数が+2.5~+3.5価であるカチオン交換構造を持つことを特徴とする正極活物質。
    Represented by the general formula Li X Fe Y Mn (1-Y) SiO 4 (0.5 ≦ X <1.5, 0 <Y ≦ 1),
    It has a crystal structure of at least one of space group P2 1 / n or Pmn2 1 , and further Li atoms enter part of the Fe / Mn site, and either Fe atoms or Mn atoms enter part of the Li site. A positive electrode active material having a cation exchange structure in which the valence of Fe or Mn is +2.5 to +3.5.
PCT/JP2015/055130 2014-03-27 2015-02-24 Positive electrode active material, positive electrode for secondary batteries, secondary battery and method for producing positive electrode active material WO2015146423A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157023303A KR20150135245A (en) 2014-03-27 2015-02-24 Anode active material, anode for secondary battery, secondary battery, and method for manufacturing the anode active material
CN201580000366.1A CN105144441A (en) 2014-03-27 2015-02-24 Positive electrode active material, positive electrode for secondary batteries, secondary battery and method for producing positive electrode active material
JP2015532206A JP6046259B2 (en) 2014-03-27 2015-02-24 Positive electrode active material, positive electrode for secondary battery, secondary battery, and method for producing positive electrode active material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014066792 2014-03-27
JP2014-066792 2014-03-27

Publications (1)

Publication Number Publication Date
WO2015146423A1 true WO2015146423A1 (en) 2015-10-01

Family

ID=54194957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055130 WO2015146423A1 (en) 2014-03-27 2015-02-24 Positive electrode active material, positive electrode for secondary batteries, secondary battery and method for producing positive electrode active material

Country Status (5)

Country Link
JP (1) JP6046259B2 (en)
KR (1) KR20150135245A (en)
CN (1) CN105144441A (en)
TW (1) TW201542459A (en)
WO (1) WO2015146423A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020181046A1 (en) * 2019-03-06 2020-09-10 The Trustees Of Indiana University Lithium silicate cathodes for lithium-ion batteries

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106025189A (en) * 2016-03-18 2016-10-12 潍坊学院 Method for preparing magnesium lithium ion exchange type lithium ion battery positive electrode material
CN110364729B (en) * 2019-07-01 2022-10-18 湖北锂诺新能源科技有限公司 Tungsten-doped ferrous silicate lithium cathode material and preparation method thereof
TWI736105B (en) 2020-01-16 2021-08-11 國立清華大學 Anode material for secondary battery, anode for secondary battery and secondary battery
CN111647863B (en) * 2020-07-02 2022-03-25 河北大学 Li2FexSiO4Preparation method and application of positive electrode film
CN114975873B (en) * 2022-06-02 2024-02-09 深圳新宙邦科技股份有限公司 Positive plate and lithium ion battery

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011178601A (en) * 2010-03-01 2011-09-15 Furukawa Electric Co Ltd:The Fine particle mixture, active material aggregate, positive electrode active material, positive electrode, secondary battery and method for producing these
JP2012033479A (en) * 2010-07-01 2012-02-16 Semiconductor Energy Lab Co Ltd Positive electrode active material for power storage device, positive electrode for power storage device, power storage device, and manufacturing method of positive electrode active material for power storage device
WO2012060085A1 (en) * 2010-11-05 2012-05-10 株式会社豊田自動織機 Lithium silicate compound and method for producing same
WO2012105039A1 (en) * 2011-02-04 2012-08-09 株式会社日立製作所 Positive electrode material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
WO2012133584A1 (en) * 2011-03-28 2012-10-04 旭硝子株式会社 Positive electrode active material for secondary battery, positive electrode for secondary battery, and method for producing secondary battery
WO2012137703A1 (en) * 2011-04-07 2012-10-11 古河電気工業株式会社 Positive electrode active material, non-aqueous electrolyte secondary battery, and process for producing positive electrode active material
WO2013005704A1 (en) * 2011-07-04 2013-01-10 昭栄化学工業株式会社 Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5298286B2 (en) * 2009-02-04 2013-09-25 独立行政法人産業技術総合研究所 Method for producing lithium silicate compound
JP2013211209A (en) * 2012-03-30 2013-10-10 Furukawa Electric Co Ltd:The Positive electrode active material, production method thereof, and negative electrode and nonaqueous electrolyte secondary battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102088074B (en) * 2009-12-02 2013-03-20 深圳市贝特瑞新能源材料股份有限公司 Preparation method of anode material of composite silicate
CN102969503B (en) * 2012-12-04 2015-08-12 奇瑞汽车股份有限公司 Composite material of composition silicate and carbon and preparation method thereof, lithium ion battery containing this material

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5298286B2 (en) * 2009-02-04 2013-09-25 独立行政法人産業技術総合研究所 Method for producing lithium silicate compound
JP2011178601A (en) * 2010-03-01 2011-09-15 Furukawa Electric Co Ltd:The Fine particle mixture, active material aggregate, positive electrode active material, positive electrode, secondary battery and method for producing these
JP2012033479A (en) * 2010-07-01 2012-02-16 Semiconductor Energy Lab Co Ltd Positive electrode active material for power storage device, positive electrode for power storage device, power storage device, and manufacturing method of positive electrode active material for power storage device
WO2012060085A1 (en) * 2010-11-05 2012-05-10 株式会社豊田自動織機 Lithium silicate compound and method for producing same
WO2012105039A1 (en) * 2011-02-04 2012-08-09 株式会社日立製作所 Positive electrode material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
WO2012133584A1 (en) * 2011-03-28 2012-10-04 旭硝子株式会社 Positive electrode active material for secondary battery, positive electrode for secondary battery, and method for producing secondary battery
WO2012137703A1 (en) * 2011-04-07 2012-10-11 古河電気工業株式会社 Positive electrode active material, non-aqueous electrolyte secondary battery, and process for producing positive electrode active material
WO2013005704A1 (en) * 2011-07-04 2013-01-10 昭栄化学工業株式会社 Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2013211209A (en) * 2012-03-30 2013-10-10 Furukawa Electric Co Ltd:The Positive electrode active material, production method thereof, and negative electrode and nonaqueous electrolyte secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020181046A1 (en) * 2019-03-06 2020-09-10 The Trustees Of Indiana University Lithium silicate cathodes for lithium-ion batteries

Also Published As

Publication number Publication date
CN105144441A (en) 2015-12-09
TW201542459A (en) 2015-11-16
JP6046259B2 (en) 2016-12-14
JPWO2015146423A1 (en) 2017-04-13
KR20150135245A (en) 2015-12-02

Similar Documents

Publication Publication Date Title
JP5950823B2 (en) Positive electrode active material, non-aqueous electrolyte secondary battery, and method for producing positive electrode active material
US9136535B2 (en) Cathode active material, cathode, secondary battery and manufacturing methods for the same
JP5566723B2 (en) Fine particle mixture, active material aggregate, positive electrode active material, positive electrode, secondary battery, and production method thereof
JP5995726B2 (en) Fine particle mixture, positive electrode active material, positive electrode, secondary battery, and production method thereof
JP6046259B2 (en) Positive electrode active material, positive electrode for secondary battery, secondary battery, and method for producing positive electrode active material
JP5847329B2 (en) Positive electrode active material, method for producing the same, and positive electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery
WO2015002297A1 (en) Positive electrode active substance, positive electrode for nonaqueous electrolyte secondary cell, nonaqueous electrolyte secondary cell, and method for producing positive electrode active substance
JP5718111B2 (en) Lithium transition metal silicate positive electrode active material and method for producing positive electrode for non-aqueous electrolyte secondary battery
JP5877112B2 (en) Positive electrode active material, method for producing the same, negative electrode and non-aqueous electrolyte secondary battery
GB2588264A (en) Active electrode material
JP2016197539A (en) Lithium ion battery positive electrode active material and method for producing the same
JP6026457B2 (en) Positive electrode active material, positive electrode for secondary battery, secondary battery, and method for producing positive electrode active material
JP2016177984A (en) Positive electrode active material for lithium ion battery and method for producing the same
JP2016018588A (en) Lithium ion secondary battery, and method for manufacturing the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201580000366.1

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2015532206

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157023303

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15769976

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15769976

Country of ref document: EP

Kind code of ref document: A1