WO2015146154A1 - Force detection device - Google Patents

Force detection device Download PDF

Info

Publication number
WO2015146154A1
WO2015146154A1 PCT/JP2015/001670 JP2015001670W WO2015146154A1 WO 2015146154 A1 WO2015146154 A1 WO 2015146154A1 JP 2015001670 W JP2015001670 W JP 2015001670W WO 2015146154 A1 WO2015146154 A1 WO 2015146154A1
Authority
WO
WIPO (PCT)
Prior art keywords
mesa
sensitivity
transmission block
force transmission
gauge
Prior art date
Application number
PCT/JP2015/001670
Other languages
French (fr)
Japanese (ja)
Inventor
水野 健太朗
理恵 田口
橋本 昭二
喜恵 大平
勝間田 卓
浩平 山口
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014063198A external-priority patent/JP6117139B2/en
Priority claimed from JP2015045682A external-priority patent/JP6430297B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US15/128,453 priority Critical patent/US10222281B2/en
Priority to CN201580016226.3A priority patent/CN106164634A/en
Publication of WO2015146154A1 publication Critical patent/WO2015146154A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/18Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/02Arrangements for preventing, or for compensating for, effects of inclination or acceleration of the measuring device; Zero-setting means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0051Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance
    • G01L9/0052Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements
    • G01L9/0054Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements integral with a semiconducting diaphragm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/02Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning
    • G01L9/06Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of piezo-resistive devices

Definitions

  • the present disclosure relates to a force detection device that uses a piezoresistance effect.
  • a force detection device using the piezoresistance effect has been developed, and an example thereof is disclosed in Patent Document 1.
  • This type of force detection device includes a substrate and a force transmission block.
  • a mesa gauge that forms a bridge circuit is formed on the main surface of the substrate.
  • a mesa gauge constituting a bridge circuit is arranged corresponding to a rectangular side, and a high-sensitivity mesa gauge and a compressive stress that extend in a direction in which the electrical resistance value changes relatively relative to the compressive stress.
  • a low-sensitivity mesa gauge that extends in a direction in which the electrical resistance value changes relatively small is included.
  • a mesa lead extending from a connection portion where the high sensitivity mesa gauge and the low sensitivity mesa gauge are connected is formed on the main surface of the substrate.
  • the force transmission block is provided to cover the high-sensitivity mesa gauge, low-sensitivity mesa gauge, and mesa-type lead provided on the main surface of the substrate. It contacts the top surface of the mold gauge and the top surface of the mesa lead.
  • the force transmission block presses the high-sensitivity mesa gauge, the compressive stress applied to the high-sensitivity mesa gauge increases, and the electrical resistance value of the high-sensitivity mesa gauge changes due to the piezoresistance effect.
  • the force applied to the force transmission block is detected from the change in the electrical resistance value.
  • a force detection device using the piezoresistance effect has been developed.
  • This type of force detection device includes a substrate and a force transmission block.
  • a mesa gauge that forms a bridge circuit is formed on the main surface of the substrate.
  • the force transmission block contacts the top surface of the mesa gauge.
  • the force transmission block presses the mesa gauge the compressive stress applied to the mesa gauge increases, and the electric resistance of the mesa gauge changes due to the piezoresistance effect.
  • the force applied to the force transmission block is detected from the change in electrical resistance.
  • Patent Document 2 and Patent Document 3 disclose sealed force detection devices.
  • the sealed-type force detection device is characterized in that the force transmission block is joined to the main surface of the substrate around the mesa gauge.
  • the inventors of the present application have found the following regarding the force detection device.
  • An object of the present disclosure is to provide a technique for improving the sensor sensitivity of a force detection device.
  • An object of the present disclosure is to provide a sealed force detection device with high sensor sensitivity.
  • the force detection device includes a substrate and a force transmission block.
  • the substrate includes a high sensitivity mesa gauge, a low sensitivity mesa gauge, and a mesa lead.
  • the high-sensitivity mesa gauge is provided on the main surface of the substrate, extends in a first direction in which the electrical resistance value changes relatively greatly with respect to compressive stress, and has a top surface.
  • the low-sensitivity mesa gauge is provided on the main surface of the substrate, extends in the second direction in which the electric resistance value changes relatively small with respect to the compressive stress, and has a top surface.
  • the mesa lead is provided on the main surface of the substrate, and extends in the third direction from a connection portion where the high sensitivity mesa gauge and the low sensitivity mesa gauge are connected, and has a top surface.
  • the force transmission block contacts the top surface of the high sensitivity mesa gauge and the top surface of the low sensitivity mesa gauge. The force transmission block does not contact at least a part of the top surface of the mesa-type lead.
  • the force detection device includes a substrate and a force transmission block, the substrate is provided on the main surface, and the electrical resistance value is relative to the compressive stress.
  • a high-sensitivity mesa gauge having a top surface, and a main surface, and a second direction in which the electrical resistance value changes relatively small against compressive stress.
  • a low-sensitivity mesa gauge that has a top surface and a main surface, and extends in the third direction from the connection between the high-sensitivity mesa gauge and the low-sensitivity mesa gauge.
  • a mesa-type lead having The force transmission block is in contact with only the top surface of the high-sensitivity mesa gauge and is not in contact with the low-sensitivity mesa gauge.
  • the force transmission block since the force transmission block is not in contact with at least a part of the top surface of the mesa lead, the force received by the force transmission block is efficiently transmitted to the high sensitivity mesa gauge. Is done. Thereby, the sensor sensitivity of a force detection apparatus improves.
  • the force detection device includes a substrate and a force transmission block.
  • the substrate has a mesa gauge, a sealing portion, and a support.
  • the mesa gauge is formed on the main surface of the substrate and is in contact with the force transmission block to form a bridge circuit.
  • the sealing portion is formed on the main surface of the substrate, and makes a round around the mesa gauge and contacts the force transmission block.
  • the support column is formed on the main surface of the substrate, is disposed inside the mesa gauge, and contacts the force transmission block.
  • a sealing space is formed between the substrate and the force transmission block.
  • the force transmission block is curved toward the substrate side in the sealed space.
  • a portion where the force transmission block is bent and displaced becomes a force point
  • a support column becomes a fulcrum
  • a lever relationship where the mesa gauge acts as an action point is established. For this reason, since a large compressive stress is applied to the mesa-type gauge serving as the action point, the sensor sensitivity of the force detection device is improved.
  • FIG. 1 shows a force detection device of an embodiment, and is a diagram schematically showing a cross-sectional view corresponding to line II in FIG.
  • FIG. 2 shows the force detection device of the embodiment, and is a diagram schematically showing a cross-sectional view corresponding to the line II-II in FIG.
  • FIG. 3 shows the force detection device of the embodiment, schematically showing a plan view of the substrate, and showing a range in contact with the force transmission block by a broken line, FIG.
  • FIG. 4 shows the force detection device of the embodiment, and is a diagram schematically showing an explanatory diagram for explaining the positional relationship between the pressing portion of the force transmission block and the mesa gauge of the substrate
  • FIG. 5 shows a force detection device of a modified example, and is a diagram schematically showing an explanatory diagram for explaining the positional relationship between the pressing portion of the force transmission block and the mesa gauge of the substrate
  • FIG. 6 shows a force detection device of a comparative example, and is a diagram schematically showing an explanatory diagram for explaining the positional relationship between the pressing portion of the force transmission block and the mesa gauge of the substrate
  • FIG. 5 shows a force detection device of a modified example, and is a diagram schematically showing an explanatory diagram for explaining the positional relationship between the pressing portion of the force transmission block and the mesa gauge of the substrate
  • FIG. 6 shows a force detection device of a comparative example, and is a diagram schematically showing an explanatory diagram for explaining the positional relationship between the pressing portion of
  • FIG. 7 is a diagram schematically showing an enlarged view for explaining the state of the high-sensitivity mesa gauge when the force transmission block receives pressure, showing a force detection device of a comparative example.
  • FIG. 8 shows a modified force detection device, and is a diagram schematically showing an explanatory diagram for explaining the positional relationship between the pressing portion of the force transmission block and the mesa gauge of the substrate
  • FIG. 9 shows a force detection device of a modified example, and is a diagram schematically showing an explanatory diagram for explaining the positional relationship between the pressing portion of the force transmission block and the mesa gauge of the substrate
  • FIG. 8 shows a modified force detection device, and is a diagram schematically showing an explanatory diagram for explaining the positional relationship between the pressing portion of the force transmission block and the mesa gauge of the substrate
  • FIG. 9 shows a force detection device of a modified example, and is a diagram schematically showing an explanatory diagram for explaining the positional relationship between the pressing portion of the force transmission block and the mesa gauge
  • FIG. 10 shows a modified force detection device, and is a diagram schematically showing an explanatory diagram for explaining the positional relationship between the pressing portion of the force transmission block and the mesa gauge of the substrate
  • FIG. 11 is a force detector of the example, and is a diagram schematically showing a cross-sectional view corresponding to the line XI-XI in FIG.
  • FIG. 12 is a force detection device of an example, and is a diagram schematically showing a plan view of a substrate
  • FIG. 13 is a force detection device of an example, is an enlarged cross-sectional view of the main part in the vicinity of the sealed space, and is a diagram illustrating a diagram for explaining the operation of the insulator
  • FIG. 14 is a force detection device of a modification, and is a diagram schematically showing a cross-sectional view corresponding to FIG.
  • FIG. 15 is a force detection device of a modification, and schematically shows a cross-sectional view corresponding to FIG.
  • the force detection device disclosed in the present specification is a sensor that detects various pressures.
  • the detection target may be atmospheric pressure or hydraulic pressure.
  • the force detection device may include a substrate and a force transmission block.
  • the material of the substrate is preferably one that exhibits a piezoresistance effect in which the electrical resistance changes according to the compressive stress.
  • examples of the substrate include a semiconductor substrate and an SOI substrate.
  • the substrate may include a high sensitivity mesa gauge, a low sensitivity mesa gauge, and a mesa lead.
  • the high sensitivity mesa gauge is provided on the main surface of the substrate and has a top surface.
  • the high-sensitivity mesa gauge extends in the first direction in which the electrical resistance value changes relatively greatly with respect to the compressive stress.
  • the low-sensitivity mesa type gauge is provided on the main surface of the substrate and has a top surface.
  • the low-sensitivity mesa type gauge extends in the second direction in which the electric resistance value changes relatively small with respect to the compressive stress.
  • the first direction and the second direction have a crossing relationship.
  • the high-sensitivity mesa gauge and the low-sensitivity mesa gauge may constitute a bridge circuit. In this case, a pair of high-sensitivity mesa type gauges are arranged corresponding to a pair of opposite sides of the rectangle, and a pair of low-sensitivity mesa type gauges are arranged corresponding to the other pair of opposite sides of the rectangle.
  • “relative” means a contrast between a high-sensitivity mesa gauge and a low-sensitivity mesa gauge.
  • the electric resistance value of the high-sensitivity mesa gauge changes more greatly with respect to the compressive stress than the low-sensitivity mesa gauge.
  • the mesa lead is provided on the main surface of the substrate and has a top surface.
  • the mesa lead extends in the third direction from a connection portion where the high sensitivity mesa gauge and the low sensitivity mesa gauge are connected.
  • the third direction may have a relationship that intersects both the first direction and the second direction, or may have a relationship parallel to either the first direction or the second direction.
  • the force transmission block contacts the top surface of the high sensitivity mesa gauge and the top surface of the low sensitivity mesa gauge.
  • the force transmission block does not contact at least a part of the top surface of the mesa-type lead. That is, the force transmission block is non-contact with at least a part of the top surface of the mesa lead. Desirably, the force transmission block does not contact the top surface of the mesa lead.
  • the area where the force transmission block and the top surface of the high-sensitivity mesa gauge are in contact may be larger than the area where the force transmission block and the top surface of the low-sensitivity mesa gauge are in contact.
  • the area that the force transmission block contacts is different between the high-sensitivity mesa gauge and the low-sensitivity mesa gauge, so that most of the force received by the force transmission block is transmitted to the high-sensitivity mesa gauge. be able to.
  • the force transmission block may have a plurality of portions formed apart from each other along the second direction. In this case, each of the plurality of portions may be in contact with the top surface of the low-sensitivity mesa gauge. In the force detection device of this embodiment, the deflection of the force transmission block is suppressed, and both sensor sensitivity and linearity are good.
  • the low-sensitivity mesa type gauge may have a central region extending near the center along the second direction and a peripheral region extending from the connecting portion to the central region along the second direction. Furthermore, in the force detection device in which each of the plurality of portions of the force transmission block is in contact with the top surface of the low-sensitivity mesa gauge, the area where the plurality of portions and the top surface of the central region are in contact is the area where the plurality of portions and the top surface of the peripheral region are in contact May be larger. In the force detection device of this embodiment, it is possible to effectively suppress the deflection of the force transmission block while suppressing the contact area between the force transmission block and the low sensitivity mesa gauge. Thereby, in the force detection apparatus of this embodiment, sensor sensitivity and linearity are further improved.
  • the low-sensitivity mesa type gauge may have a central region extending near the center along the second direction and a peripheral region extending from the connecting portion to the central region along the second direction. Further, in the force detection device in which each of the plurality of parts of the force transmission block is in contact with the top surface of the low-sensitivity mesa gauge, the plurality of parts arranged corresponding to the central area are arranged corresponding to the peripheral area. Compared to, the intervals may be formed more densely. In the force detection device of this embodiment, it is possible to effectively suppress the deflection of the force transmission block while suppressing the contact area between the force transmission block and the low sensitivity mesa gauge. Thereby, in the force detection apparatus of this embodiment, both sensor sensitivity and linearity are further improved. (First embodiment) As shown in FIGS. 1 to 3, the force detection device 1 is, for example, a semiconductor pressure sensor that detects the internal pressure of a pressure vessel, and includes a semiconductor substrate 2 and a force transmission block 4.
  • the semiconductor substrate 2 is n-type single crystal silicon, and its main surface 2S is a (110) crystal plane.
  • a plurality of grooves 11 are formed in the main surface 2S of the semiconductor substrate 2.
  • the plurality of grooves 11 define the detection unit 10 on the main surface 2S of the semiconductor substrate 2.
  • the detection unit 10 has mesa type gauges 12, 14, 16, and 18 constituting a bridge circuit.
  • the mesa gauges 12, 14, 16, and 18 project in a mesa shape from the bottom surface of the groove 11, and the height thereof is about 0.5 to 5 ⁇ m.
  • the top surfaces of the mesa gauges 12, 14, 16, 18 are located on the same plane as the main surface 2 ⁇ / b> S of the semiconductor substrate 2 around the groove 11. That is, the mesa gauges 12, 14, 16, and 18 are formed as a remaining portion in which the plurality of grooves 11 are formed in the main surface 2S of the semiconductor substrate 2 by using, for example, a dry etching technique.
  • the mesa gauges 12, 14, 16, 18 of the detection unit 10 are arranged corresponding to the sides of the square.
  • the mesa gauges 14 and 18 constituting a pair of opposing sides are referred to as a first high sensitivity mesa gauge 14 and a second high sensitivity mesa gauge 18, respectively.
  • the mesa-type gauges 12 and 16 constituting the other pair of opposing sides are referred to as a first low-sensitivity mesa gauge 12 and a second low-sensitivity mesa-type gauge 16, respectively.
  • the first high sensitivity mesa gauge 14 and the second high sensitivity mesa gauge 18 extend along the ⁇ 110> direction of the semiconductor substrate 2.
  • the first high-sensitivity mesa gauge 14 and the second high-sensitivity mesa gauge 18 that extend in the ⁇ 110> direction of the semiconductor substrate 2 are characterized in that the electrical resistance value changes greatly according to the compressive stress, and the piezoresistance effect
  • the first low-sensitivity mesa gauge 12 and the second low-sensitivity mesa gauge 16 extend along the ⁇ 100> direction of the semiconductor substrate 2.
  • the first low-sensitivity mesa gauge 12 and the second low-sensitivity mesa gauge 16 that extend in the ⁇ 100> direction of the semiconductor substrate 2 are characterized in that their electrical resistance values hardly change according to compressive stress, and the piezoresistance effect Is substantially absent.
  • gauge portions 12 a, 14 a, 16 a, and 18 a into which p-type impurities are introduced are formed on the surfaces of the mesa-type gauges 12, 14, 16, and 18.
  • the impurity concentration of the gauge portions 12a, 14a, 16a, and 18a is about 1 ⁇ 10 18 to 1 ⁇ 10 21 cm ⁇ 3 .
  • the gauge portions 12a, 14a, 16a, and 18a are substantially insulated from the n-type semiconductor substrate 2 by pn junctions.
  • the semiconductor substrate 2 has wiring portions 22, 24, 26, and 28 in which p-type impurities are introduced into the main surface 2 ⁇ / b> S.
  • the impurity concentration of the wiring portions 22, 24, 26, and 28 is about 1 ⁇ 10 18 to 1 ⁇ 10 21 cm ⁇ 3 .
  • the wiring parts 22, 24, 26, 28 electrically connect the detection part 10 and the electrodes 32, 34, 36, 38.
  • the electrodes 32, 34, 36, and 38 are provided on the main surface 2 ⁇ / b> S of the semiconductor substrate 2 and are disposed outside the range covered with the force transmission block 4.
  • the first wiring part 22 is connected to the first connection part 13 to which the gauge part 12a of the first low-sensitivity mesa gauge 12 and the gauge part 14a of the first high-sensitivity mesa gauge 14 are connected. Is connected to the first electrode 32.
  • the first wiring part 22 has a first mesa lead 22 a on the first connection part 13 side of the mesa gauges 12 and 14.
  • the first mesa type lead 22a protrudes in a mesa shape from the bottom surface of the groove 11 and is formed in the same process as the mesa type gauges 12, 14, 16, and 18.
  • the second wiring part 24 has one end connected to the second connection part 15 to which the gauge part 14a of the first high sensitivity mesa gauge 14 and the gauge part 16a of the second low sensitivity mesa gauge 16 are connected, and the other end. Is connected to the second electrode 34.
  • the second wiring part 24 has a second mesa type lead 24 a on the second connection part 15 side of the mesa type gauges 14 and 16.
  • the second mesa type lead 24 a protrudes in a mesa shape from the bottom surface of the groove 11 and is formed in the same process as the mesa type gauges 12, 14, 16, 18.
  • the third wiring part 26 is connected to the third connection part 17 to which the gauge part 16a of the second low-sensitivity mesa gauge 16 and the gauge part 18a of the second high-sensitivity mesa gauge 18 are connected. Is connected to the third electrode 36.
  • the third wiring portion 26 has a third mesa lead 26 a on the third connection portion 17 side of the mesa gauges 16 and 18.
  • the third mesa type lead 26 a protrudes in a mesa shape from the bottom surface of the groove 11 and is formed in the same process as the mesa type gauges 12, 14, 16, 18.
  • the fourth wiring portion 28 has one end connected to the fourth connection portion 19 to which the gauge portion 18a of the second high sensitivity mesa gauge 18 and the gauge portion 12a of the first low sensitivity mesa gauge 12 are connected, and the other end. Is connected to the fourth electrode 38.
  • the fourth wiring portion 26 has a fourth mesa lead 28 a on the fourth connecting portion 19 side of the mesa gauges 12 and 18.
  • the fourth mesa type lead 28a protrudes in a mesa shape from the bottom surface of the groove 11, and is formed in the same process as the mesa type gauges 12, 14, 16, and 18.
  • the force transmission block 4 has a rectangular parallelepiped shape and includes a silicon layer 4a and a silicon oxide layer 4b.
  • the semiconductor substrate 2 and the force transmission block 4 are bonded using a room temperature single phase bonding technique. Specifically, the main surface 2S of the semiconductor substrate 2 and the surface of the silicon oxide layer 4b of the force transmission block 4 are activated using argon ions, and then the main surface 2S of the semiconductor substrate 2 and the force are applied in an ultrahigh vacuum. The surfaces of the silicon oxide layer 4b of the transmission block 4 are brought into contact with each other to join them together.
  • a part of the silicon oxide layer 4b of the force transmission block 4 is removed, and a groove 4c is formed on the surface of the force transmission block 4 on the semiconductor substrate 2 side.
  • the silicon oxide layer 4b of the force transmission block 4 is partitioned into a sealing portion 40a and a pressing portion 40b.
  • a sealed space 6 separated from the outside is formed between the semiconductor substrate 2 and the force transmission block 4.
  • the sealing portion 40a of the force transmission block 4 is bonded to the main surface 2S of the semiconductor substrate 2 so as to make a round around the mesa gauges 12, 14, 16, and 18.
  • a portion of the semiconductor substrate 2 where the sealing portion 40 a is joined is referred to as a sealing portion 20.
  • the sealing portion 20 of the semiconductor substrate 2 and the sealing portion 40a of the force transmission block 4 are joined in an airtight manner.
  • FIG. 4 shows the positional relationship between the pressing portion 40b of the force transmission block 4 and the mesa gauges 12, 14, 16, and 18.
  • the pressing portion 40 b has a point-symmetric form and is joined to a part of the top surface of the mesa gauges 12, 14, 16, 18.
  • the pressing portion 40b is joined to most of the top surfaces of the high-sensitivity mesa gauges 14 and 18.
  • the pressing portion 40b does not contact the top surfaces of the both ends of the high-sensitivity mesa gauges 14 and 18 (the top surfaces of the portions close to the connection portions 13, 15, 17, and 19).
  • the pressing portion 40 b is joined to most of the top surfaces of the low sensitivity mesa type gauges 12 and 16.
  • the pressing portion 40b does not contact the top surfaces of the both ends of the low-sensitivity mesa gauges 12 and 16 (the top surfaces of the portions close to the connection portions 13, 15, 17, and 19).
  • the pressing portion 40b does not contact the top surfaces of the mesa-type leads 22a, 24a, 26a, and 28a and the top surfaces of the connection portions 13, 15, 17, and 19.
  • the force detection device 1 is used by connecting a constant current source to the first electrode 32, grounding the third electrode 36, and connecting a voltage measuring device between the second electrode 34 and the fourth electrode 38.
  • the compressive stress applied to the gauge portions 12 a, 14 a, 16 a, 18 a of the mesa type gauges 12, 14, 16, 18 via the force transmission block 4 is also increased. Change.
  • the electrical resistance values of the gauge portions 14a and 18a of the high-sensitivity mesa-type gauges 14 and 18 in which the piezoresistance effect appears change in proportion to the compressive stress.
  • the potential difference between the second electrode 34 and the fourth electrode 38 is proportional to the compressive stress applied to the gauge portions 14a and 18a.
  • the container internal pressure added to the force transmission block 4 is detected from the voltage change measured with a voltage measuring device.
  • the pressing portion 40b of the force transmission block 4 is not in contact with the top surfaces of the mesa-type leads 22a, 24a, 26a, and 28a. For this reason, the container internal pressure applied to the force transmission block 4 is efficiently transmitted to the high-sensitivity mesa gauges 14 and 18. Thereby, the sensor sensitivity of the force detection device 1 is improved.
  • the voltage drop due to the parasitic resistance values of the mesa-type leads 22a, 24a, 26a, and 28a deteriorates the sensor sensitivity. Therefore, in the force detection device 1, the width of the mesa type leads 22a, 24a, 26a, 28a (parallel to the main surface 2S of the semiconductor substrate 2 and in the longitudinal direction of the mesa type leads 22a, 24a, 26a, 28a).
  • the width of the mesa gauges 12, 14, 16, 18 is parallel to the main surface 2S of the semiconductor substrate 2 and the longitudinal direction of the mesa gauges 12, 14, 16, 18 It is desirable that the width is greater than As a result, the parasitic resistance values of the mesa-type leads 22a, 24a, 26a, and 28a can be reduced, so that the sensor sensitivity of the force detection device 1 is improved.
  • the force transmission block 4 does not contact the top surfaces of the mesa leads 22a, 24a, 26a, 28a, so the width of the mesa leads 22a, 24a, 26a, 28a is increased.
  • the compressive stress applied to the high-sensitivity mesa gauges 14 and 18 does not decrease.
  • the sensor sensitivity is effectively improved when the width of the mesa type leads 22a, 24a, 26a, 28a is increased.
  • the pressing portion 40 b of the force transmission block is configured with different layouts between the high-sensitivity mesa gauges 14 and 18 and the low-sensitivity mesa gauges 12 and 16.
  • the pressing portion 40b is in contact with most of the top surfaces of the high-sensitivity mesa gauges 14 and 18, and the contact area between the pressing portion 40b and the high-sensitivity mesa gauges 14 and 18 is relatively large.
  • the occupied area of the portion in contact with the pressing portion 40b in the total area of the top surfaces of the high sensitivity mesa gauges 14 and 18 is relatively large.
  • the pressing portion 40b is selectively in contact with the top surface near the center of the low-sensitivity mesa gauges 12 and 16, and the contact area between the pressing portion 40b and the low-sensitivity mesa gauges 12 and 16 is relatively small.
  • the occupied area of the portion in contact with the pressing portion 40b in the total area of the top surfaces of the low-sensitivity mesa gauges 12 and 16 is relatively small.
  • the area with which the pressing portion 40 b contacts is different between the high sensitivity mesa gauges 14 and 18 and the low sensitivity mesa gauges 12 and 16. For this reason, the container internal pressure applied to the force transmission block is efficiently transmitted to the high-sensitivity mesa gauges 14 and 18. Thereby, in the force detector of this modification, sensor sensitivity improves.
  • the pressing portion 40 b of the force transmission block contacts only the pair of high-sensitivity mesa gauges 14 and 18.
  • the container internal pressure applied to the force transmission block is efficiently transmitted to the high-sensitivity mesa gauges 14 and 18.
  • the pressing portion 40 b of the force transmission block is also in contact with part of the top surfaces of the low-sensitivity mesa gauges 12 and 16.
  • the bending of a force transmission block is suppressed and the single deformation of the high sensitivity mesa type
  • both sensor sensitivity and linearity can be achieved.
  • the pressing portion 40 b of the force transmission block has a plurality of portions 40 c that are formed apart from each other along the longitudinal direction of the low-sensitivity mesa gauges 12 and 16. .
  • Each of the plurality of portions 40 c is in contact with the top surfaces of the low-sensitivity mesa gauges 12 and 16.
  • the plurality of portions 40 c are arranged at equal intervals along the longitudinal direction of the low sensitivity mesa type gauges 12 and 16.
  • the low-sensitivity mesa gauges 12 and 16 are divided into three regions along the longitudinal direction. (For clarity of illustration, only the region corresponding to the first low-sensitivity mesa gauge 12 is shown, but the second low-sensitivity mesa gauge 16 is the same).
  • the low-sensitivity mesa gauges 12 and 16 have a central region 12A and a pair of peripheral regions 12B.
  • the center region 12A extends near the center along the longitudinal direction.
  • Each of the pair of peripheral regions 12B extends from the connecting portions 13, 15, 17, 19 of the mesa gauge to the central region 12A along the longitudinal direction.
  • the central region 12A and the pair of peripheral regions 12B have the same length in the longitudinal direction. That is, when the low-sensitivity mesa gauges 12 and 16 are equally divided into three along the longitudinal direction, the central region 12A is disposed near the center, and the peripheral region 12B is disposed near the periphery. .
  • the area where the top surface of the central region 12A and the plurality of portions 40c are in contact with each other is such that the top surface of one peripheral region 12B and the plurality of portions are in contact with each other. It is larger than the contact area of 40c.
  • the occupied area of the portion in contact with the plurality of portions 40c in the total area of the top surface of the central region 12A is larger than the occupied area of the portion in contact with the plurality of portions 40c in the total area of the top surface of one peripheral region 12B. large.
  • the force transmission block bends so that the center point of the force transmission block becomes a convex top when the container internal pressure is applied. Since the central region 12A of the low-sensitivity mesa gauges 12 and 16 is close to the center point thereof, the contact of the force transmission block with a large area can be effectively suppressed by this portion. That is, it is possible to effectively suppress the deflection of the force transmission block while suppressing an increase in the contact area between the force transmission block and the low-sensitivity mesa gauges 12 and 16. Thereby, the force detection device of this modification can achieve both sensor sensitivity and linearity. Note that the plurality of portions 40c corresponding to the peripheral region 12B may not be formed according to the required characteristics.
  • the force detection device of the modification shown in FIG. 5 can also effectively suppress the deflection of the force transmission block while suppressing an increase in the contact area between the force transmission block and the low-sensitivity mesa gauges 12 and 16.
  • the sensor sensitivity and linearity can both be achieved.
  • the plurality of portions 40c arranged corresponding to the central region 40c are plural arranged corresponding to the peripheral region 12B. Compared with the portion 40c, the intervals are formed more densely. Also in the force detection device of this modification, the occupied area of the portion in contact with the plurality of portions 40c in the total area of the top surface of the central region 12A is the portion in contact with the plurality of portions 40c in the total area of the top surface of one peripheral region 12B. A relationship larger than the occupied area of the can be obtained.
  • the force detection device is a sensor that detects atmospheric pressure, and in one example, combustion pressure may be a detection target.
  • the force detection device may include a substrate and a force transmission block.
  • the material of the substrate is preferably one that exhibits a piezoresistance effect in which the electrical resistance changes according to the compressive stress.
  • the substrate includes a semiconductor substrate and an SOI substrate.
  • substrate may have a mesa type gauge, a sealing part, and a support
  • the mesa gauge is formed on the main surface of the substrate, is in contact with the force transmission block, and may constitute a bridge circuit.
  • the mesa type gauge has a mesa shape and may be in contact with the force transmission block at its top surface.
  • the sealing portion is formed on the main surface of the substrate, and may be in contact with the force transmission block around the mesa gauge.
  • the support column is formed on the main surface of the substrate, is disposed inside the mesa gauge, and may be in contact with the force transmission block.
  • the support column has a mesa shape and may be in contact with the force transmission block at its top surface. It is desirable that the rigidity of the column is higher than that of the mesa gauge.
  • a sealed space that is airtightly separated from the outside by the substrate and the force transmission block may be configured.
  • the sealing space is disposed between the mesa gauge and the sealing portion, and may have a thickness that allows the force transmission block to bend.
  • a groove may be formed on the surface on the substrate side.
  • the groove may be disposed between a portion in contact with the mesa gauge and a portion in contact with the sealing portion. This groove constitutes a sealing space.
  • the force transmission block may have a silicon layer and a silicon oxide layer.
  • the silicon oxide layer may cover a part of the surface of the silicon layer on the substrate side.
  • the groove may be formed in an uncovered region of the silicon oxide layer.
  • the force detection device 201 is a semiconductor pressure sensor that detects a combustion pressure of an internal combustion engine, for example, and includes a semiconductor substrate 202 and a force transmission block 204.
  • the semiconductor substrate 202 is n-type single crystal silicon, and its main surface 202S is a (110) crystal plane.
  • a plurality of grooves 211 are formed in the main surface 202 ⁇ / b> S of the semiconductor substrate 202.
  • the plurality of grooves 211 define the detection unit 210, the support column 220, and the sealing unit 230 on the main surface 202 ⁇ / b> S of the semiconductor substrate 202.
  • the detection unit 210 has mesa type gauges 212, 214, 216, and 218 that constitute a bridge circuit.
  • the mesa type gauges 212, 214, 216, and 218 protrude in a mesa shape from the bottom surface of the groove 211, and the height thereof is about 0.5 to 5 ⁇ m.
  • the top surfaces of the mesa gauges 212, 214, 216, 218 are located on the same plane as the main surface 202 ⁇ / b> S of the semiconductor substrate 202 around the groove 211.
  • the mesa type gauges 212, 214, 216, and 218 are formed as a remaining portion in which a plurality of grooves 211 are formed in the main surface 202S of the semiconductor substrate 202 by using, for example, a dry etching technique.
  • the first mesa gauge 212 and the third mesa gauge 216 constitute a pair of opposing sides of a rectangle
  • the second mesa gauge 214 and the fourth mesa gauge. 218 constitutes a pair of opposing sides of a rectangle.
  • the first mesa gauge 212 and the third mesa gauge 216 extend along the ⁇ 110> direction of the semiconductor substrate 202.
  • a piezoresistance effect in which the electrical resistance changes according to the compressive stress appears.
  • the second mesa gauge 214 and the fourth mesa gauge 218 extend along the ⁇ 100> direction of the semiconductor substrate 202.
  • the second mesa gauge 214 and the fourth mesa gauge 218 extending in the ⁇ 100> direction of the semiconductor substrate 202 do not substantially exhibit a piezoresistance effect.
  • gauge portions 212a, 214a, 216a, and 218a into which p-type impurities are introduced are formed on the surfaces of the mesa-type gauges 212, 214, 216, and 218.
  • the impurity concentration of the gauge portions 212a, 214a, 216a, 218a is about 1 ⁇ 10 18 to 1 ⁇ 10 21 cm ⁇ 3 .
  • the gauge portions 212a, 214a, 216a, and 218a are substantially insulated from the n-type semiconductor substrate 202 by pn junctions.
  • the support column 220 is disposed inside the mesa type gauges 212, 214, 216, and 218.
  • the column 220 protrudes from the bottom surface of the groove 211 in a mesa shape, and its height is about 0.5 to 5 ⁇ m.
  • the top surface of the support column 220 is located on the same plane as the main surface 202 ⁇ / b> S of the semiconductor substrate 202 around the groove 211.
  • the support column 220 is formed as a remaining portion in which a plurality of grooves 211 are formed in the main surface 202S of the semiconductor substrate 202 by using, for example, a dry etching technique.
  • the support column 220 has a shape similar to the rectangle of the mesa gauges 212, 214, 216, and 218 when viewed in plan.
  • the side length of the column 220 is larger than the width of the mesa gauges 212, 214, 216 and 218 (width in the direction perpendicular to the longitudinal direction).
  • the rigidity of the column 220 is higher than the rigidity of the mesa gauges 212, 214, 216, and 218.
  • the semiconductor substrate 202 has wiring portions 232, 234, 236, and 238 in which p-type impurities are introduced into the main surface 202S.
  • the impurity concentration of the wiring portions 232, 234, 236, and 238 is approximately 1 ⁇ 10 18 to 1 ⁇ 10 21 cm ⁇ 3 .
  • One end of the first wiring part 232 is connected to the connection part of the first gauge part 212 a and the second gauge part 214 a, and the other end is connected to the first electrode 242.
  • the second wiring part 234 has one end connected to the connection part of the second gauge part 214 a and the third gauge part 216 a and the other end connected to the second electrode 244.
  • the third wiring part 236 has one end connected to the connection part between the third gauge part 216 a and the fourth gauge part 218 a and the other end connected to the third electrode 246.
  • One end of the fourth wiring part 238 is connected to the connection part between the fourth gauge part 218 a and the first gauge part 212 a, and the other end is connected to the fourth electrode 248.
  • Each of the electrodes 242, 244, 246, and 248 is provided on the main surface 202S of the semiconductor substrate 202, and is disposed outside the range covered with the force transmission block 204.
  • the force transmission block 204 has a rectangular parallelepiped shape, and includes a silicon layer 204a and a silicon oxide layer 204b.
  • the silicon oxide layer 204b covers a part of the surface of the silicon layer 204a on the semiconductor substrate 202 side.
  • the force transmission block 204 is joined to the main surface 202S of the semiconductor substrate 202 so as to make a round around the mesa gauges 212, 214, 216, and 218.
  • a portion of the semiconductor substrate 202 where the force transmission block 204 is joined is referred to as a sealing portion 230.
  • the sealing portion 230 of the semiconductor substrate 202 and the force transmission block 204 are hermetically bonded.
  • the force transmission block 204 is also joined to the top surfaces of the mesa gauges 212, 214, 216, and 218 and the top surface of the support column 220.
  • the semiconductor substrate 202 and the force transmission block 204 are bonded using a room temperature single phase bonding technique. Specifically, after activating the main surface 202S of the semiconductor substrate 202 and the surface of the silicon oxide layer 204b of the force transmission block 204 using argon ions, the force is applied to the main surface 202S of the semiconductor substrate 202 in an ultrahigh vacuum. The surfaces of the silicon oxide layer 204b of the transmission block 204 are brought into contact with each other to join them together.
  • a part of the silicon oxide layer 204b of the force transmission block 204 is removed, and a groove 204c is formed on the surface of the force transmission block 204 on the semiconductor substrate 202 side.
  • the groove 204c is disposed so as to face the region between the mesa type gauges 212, 214, 216, 218 and the sealing portion 230 of the semiconductor substrate 202, and the mesa type when the force detection device 201 is viewed in plan view. Go around the gauges 212, 214, 216 and 218.
  • a sealed space 206 separated from the outside is formed between the semiconductor substrate 202 and the force transmission block 204.
  • the force detection device 201 is used by connecting a constant current source to the first electrode 242, grounding the third electrode 246, and connecting a voltage measuring device between the second electrode 244 and the fourth electrode 248.
  • the force detection device 201 when the combustion pressure applied to the force transmission block 204 changes, the compressive stress applied to the gauge portions 212a, 214a, 216a, 218a of the mesa type gauges 212, 214, 216, 218 via the force transmission block 204 is also increased. Change. The electrical resistance of the gauge portions 212a and 216a where the piezoresistance effect appears changes in proportion to the compressive stress.
  • the potential difference between the second electrode 244 and the fourth electrode 248 is proportional to the compressive stress applied to the gauge portions 212a and 216a.
  • the combustion pressure applied to the force transmission block 204 is detected from the voltage change measured by the voltage measuring device.
  • a sealing space 206 is formed between the semiconductor substrate 202 and the force transmission block 204.
  • the sealing space 206 is separated from the outside by an airtight connection between the sealing portion 230 of the semiconductor substrate 202 and the force transmission block 204.
  • the sealed force detection device 201 has a configuration in which the pressure difference between the atmospheric pressure inside the sealed space 206 and the combustion pressure increases as the combustion pressure increases. Accordingly, the total combustion pressure applied to the pressure receiving area of the force transmission block 204 (corresponding to the area between the mesa gauges 212, 214, 216, 218 and the sealing portion 230 when the force detection device 201 is viewed in plan).
  • the force F ⁇ b> 2 which causes the force transmission block 204 to bend toward the sealing space 206 side.
  • a portion where the force transmission block 204 is bent and displaced becomes a force point
  • the support column 220 becomes a fulcrum
  • a lever relationship where the mesa gauge 212 acts as an action point is established.
  • the force F1 applied to the action point is ideal. If the effect of the insulator is exhibited, it is expressed by the following formula 1.
  • the sealing type force detection device 201 of the present embodiment has a configuration in which the insulator relationship is established, the force F1 obtained by amplifying the force F2 applied to the force transmission block 204 is expressed as a mesa gauge. 212, 216. Thereby, the sensor sensitivity of the force detection device 201 is greatly improved.
  • L2 / L1 is large, and it is desirable that L2 / L1 is 2 or more.
  • the groove 204c constituting the sealing space 206 may be formed by processing both the silicon oxide layer 204b and the silicon layer 204a.
  • the force transmission block 204 at a position corresponding to the sealing space 206 must be curved.
  • the silicon layer 204a at a position corresponding to the sealing space 206 is formed thin, the silicon layer 204a at that portion is well curved, so that the insulator effect is satisfactorily exhibited. .
  • the groove 204 c constituting the sealing space 206 may be formed by processing the main surface 202 ⁇ / b> S of the semiconductor substrate 202.
  • the groove 204c can be formed in the same process as the process of forming the mesa gauges 212, 214, 216, 218 and the support column 220 by using a dry etching technique.
  • the semiconductor substrates 2 and 202 correspond to an example of the substrate of the present disclosure.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pressure Sensors (AREA)

Abstract

This force detection device is provided with a substrate (2) and a force transmission block (4), and the substrate includes high-sensitivity mesa-type gages (14, 18), low-sensitivity mesa-type gages (12, 16), and mesa-type leads (22a, 24a, 26a, 28a). The force transmission block is in contact with the top surfaces of the high-sensitivity mesa-type gages, and the top surfaces of the low-sensitivity mesa-type gages, and is not in contact with at least a part of the top surfaces of the mesa-type leads. Alternatively, the force transmission block is in contact with merely the top surfaces of the high-sensitivity mesa-type gages, and is not in contact with the low-sensitivity mesa-type gages. The force detection device is provided with a substrate (204) and a force transmission block (204), and the substrate has mesa-type gages (212, 214, 216, 218), sealing section (230) in contact with the force transmission block, and a supporting column (220) in contact with the force transmission block.

Description

力検知装置Force detector 関連出願の相互参照Cross-reference of related applications
 本出願は、2014年6月12日に出願された日本国特許出願2014-121824号、2014年3月26日に出願された日本国特許出願2014-63198号、2015年3月9日に出願された日本国特許出願2015-45682号に基づくものであり、ここにその記載内容を参照により援用する。 This application is Japanese Patent Application No. 2014-121824 filed on June 12, 2014, Japanese Patent Application No. 2014-63198 filed on March 26, 2014, and filed on March 9, 2015. Which is based on Japanese Patent Application No. 2015-45682, which is incorporated herein by reference.
 本開示は、ピエゾ抵抗効果を利用する力検知装置に関する。 The present disclosure relates to a force detection device that uses a piezoresistance effect.
 ピエゾ抵抗効果を利用する力検知装置が開発されており、その一例が特許文献1に開示されている。この種の力検知装置は、基板及び力伝達ブロックを備える。基板の主面には、ブリッジ回路を構成するメサ型ゲージが形成されている。例えば、ブリッジ回路を構成するメサ型ゲージは、矩形の辺に対応して配置されており、圧縮応力に対して電気抵抗値が相対的に大きく変化する方向に伸びる高感度メサ型ゲージ及び圧縮応力に対して電気抵抗値が相対的に小さく変化する方向に伸びる低感度メサ型ゲージを含む。基板の主面にはさらに、高感度メサ型ゲージと低感度メサ型ゲージが接続する接続部から伸びるメサ型リードが形成されている。 A force detection device using the piezoresistance effect has been developed, and an example thereof is disclosed in Patent Document 1. This type of force detection device includes a substrate and a force transmission block. A mesa gauge that forms a bridge circuit is formed on the main surface of the substrate. For example, a mesa gauge constituting a bridge circuit is arranged corresponding to a rectangular side, and a high-sensitivity mesa gauge and a compressive stress that extend in a direction in which the electrical resistance value changes relatively relative to the compressive stress. In contrast, a low-sensitivity mesa gauge that extends in a direction in which the electrical resistance value changes relatively small is included. Further, a mesa lead extending from a connection portion where the high sensitivity mesa gauge and the low sensitivity mesa gauge are connected is formed on the main surface of the substrate.
 力伝達ブロックは、基板の主面に設けられている高感度メサ型ゲージ、低感度メサ型ゲージ及びメサ型リードを覆うように設けられており、高感度メサ型ゲージの頂面、低感度メサ型ゲージの頂面及びメサ型リードの頂面に接する。力伝達ブロックが高感度メサ型ゲージを押圧すると、高感度メサ型ゲージに加わる圧縮応力が増大し、高感度メサ型ゲージの電気抵抗値がピエゾ抵抗効果によって変化する。この電気抵抗値の変化から力伝達ブロックに加わる力が検知される。 The force transmission block is provided to cover the high-sensitivity mesa gauge, low-sensitivity mesa gauge, and mesa-type lead provided on the main surface of the substrate. It contacts the top surface of the mold gauge and the top surface of the mesa lead. When the force transmission block presses the high-sensitivity mesa gauge, the compressive stress applied to the high-sensitivity mesa gauge increases, and the electrical resistance value of the high-sensitivity mesa gauge changes due to the piezoresistance effect. The force applied to the force transmission block is detected from the change in the electrical resistance value.
 ピエゾ抵抗効果を利用する力検知装置が開発されている。この種の力検知装置は、基板及び力伝達ブロックを備える。基板の主面には、ブリッジ回路を構成するメサ型ゲージが形成されている。力伝達ブロックは、メサ型ゲージの頂面に接する。力伝達ブロックがメサ型ゲージを押圧すると、メサ型ゲージに加わる圧縮応力が増大し、メサ型ゲージの電気抵抗がピエゾ抵抗効果によって変化する。この電気抵抗の変化から力伝達ブロックに加わる力が検知される。 A force detection device using the piezoresistance effect has been developed. This type of force detection device includes a substrate and a force transmission block. A mesa gauge that forms a bridge circuit is formed on the main surface of the substrate. The force transmission block contacts the top surface of the mesa gauge. When the force transmission block presses the mesa gauge, the compressive stress applied to the mesa gauge increases, and the electric resistance of the mesa gauge changes due to the piezoresistance effect. The force applied to the force transmission block is detected from the change in electrical resistance.
 特許文献2及び特許文献3は、封止型の力検知装置を開示する。封止型の力検知装置は、力伝達ブロックがメサ型ゲージの周囲の基板の主面に一巡して接合することを特徴とする。 Patent Document 2 and Patent Document 3 disclose sealed force detection devices. The sealed-type force detection device is characterized in that the force transmission block is joined to the main surface of the substrate around the mesa gauge.
日本国公開特許公報2001-304997号Japanese Published Patent Publication No. 2001-304997 日本国公開特許公報2004-132811号Japanese Published Patent Publication No. 2004-132911 日本国公開特許公報2006-058266号Japanese Published Patent Publication No. 2006-058266
 本願発明者らは力検知装置に関して下記を見出した。 The inventors of the present application have found the following regarding the force detection device.
 この種の力検知装置では、センサ感度の向上が望まれている。本開示は、力検知装置のセンサ感度を向上させる技術を提供することを目的としている。 In this type of force detection device, improvement in sensor sensitivity is desired. An object of the present disclosure is to provide a technique for improving the sensor sensitivity of a force detection device.
 さらに、本願発明者らは力検知装置に関して下記を見出した。 Furthermore, the inventors of the present application have found the following regarding the force detection device.
 封止型の力検知装置の小型化を進めると、力伝達ブロックの受圧面積が小さくなり、メサ型ゲージに加わる圧縮応力が小さくなる。この結果、力検知装置のセンサ感度が低下する。本開示は、高センサ感度の封止型の力検知装置を提供することを目的とする。 When miniaturization of the sealed force detection device is advanced, the pressure receiving area of the force transmission block is reduced, and the compressive stress applied to the mesa gauge is reduced. As a result, the sensor sensitivity of the force detection device decreases. An object of the present disclosure is to provide a sealed force detection device with high sensor sensitivity.
 本開示の第一の態様に係る力検知装置によれば、力検知装置は、基板及び力伝達ブロックを備える。基板は、高感度メサ型ゲージ、低感度メサ型ゲージ及びメサ型リードを含む。高感度メサ型ゲージは、基板の主面に設けられており、圧縮応力に対して電気抵抗値が相対的に大きく変化する第1方向に伸びており、頂面を有する。低感度メサ型ゲージは、基板の主面に設けられており、圧縮応力に対して電気抵抗値が相対的に小さく変化する第2方向に伸びており、頂面を有する。メサ型リードは、基板の主面に設けられており、高感度メサ型ゲージと低感度メサ型ゲージが接続する接続部から第3方向に伸びており、頂面を有する。力伝達ブロックは、高感度メサ型ゲージの頂面及び低感度メサ型ゲージの頂面に接する。力伝達ブロックは、メサ型リードの頂面の少なくとも一部に接していない。 According to the force detection device according to the first aspect of the present disclosure, the force detection device includes a substrate and a force transmission block. The substrate includes a high sensitivity mesa gauge, a low sensitivity mesa gauge, and a mesa lead. The high-sensitivity mesa gauge is provided on the main surface of the substrate, extends in a first direction in which the electrical resistance value changes relatively greatly with respect to compressive stress, and has a top surface. The low-sensitivity mesa gauge is provided on the main surface of the substrate, extends in the second direction in which the electric resistance value changes relatively small with respect to the compressive stress, and has a top surface. The mesa lead is provided on the main surface of the substrate, and extends in the third direction from a connection portion where the high sensitivity mesa gauge and the low sensitivity mesa gauge are connected, and has a top surface. The force transmission block contacts the top surface of the high sensitivity mesa gauge and the top surface of the low sensitivity mesa gauge. The force transmission block does not contact at least a part of the top surface of the mesa-type lead.
 本開示の別の態様に係る力検知装置によれば、力検知装置は、基板と力伝達ブロックを備え、基板は、主面に設けられており、圧縮応力に対して電気抵抗値が相対的に大きく変化する第1方向に伸びており、頂面を有する高感度メサ型ゲージと、主面に設けられており、圧縮応力に対して電気抵抗値が相対的に小さく変化する第2方向に伸びており、頂面を有する低感度メサ型ゲージと、主面に設けられており、高感度メサ型ゲージと低感度メサ型ゲージが接続する接続部から第3方向に伸びており、頂面を有するメサ型リードと、を含む。力伝達ブロックは、高感度メサ型ゲージの頂面のみに接しており、低感度メサ型ゲージに非接触である。 According to the force detection device according to another aspect of the present disclosure, the force detection device includes a substrate and a force transmission block, the substrate is provided on the main surface, and the electrical resistance value is relative to the compressive stress. A high-sensitivity mesa gauge having a top surface, and a main surface, and a second direction in which the electrical resistance value changes relatively small against compressive stress. A low-sensitivity mesa gauge that has a top surface and a main surface, and extends in the third direction from the connection between the high-sensitivity mesa gauge and the low-sensitivity mesa gauge. A mesa-type lead having The force transmission block is in contact with only the top surface of the high-sensitivity mesa gauge and is not in contact with the low-sensitivity mesa gauge.
 上記実施形態の力検知装置によれば、力伝達ブロックがメサ型リードの頂面の少なくとも一部に接していないので、力伝達ブロックが受圧した力は、高感度メサ型ゲージに効率的に伝達される。これにより、力検知装置のセンサ感度が向上する。 According to the force detection device of the above embodiment, since the force transmission block is not in contact with at least a part of the top surface of the mesa lead, the force received by the force transmission block is efficiently transmitted to the high sensitivity mesa gauge. Is done. Thereby, the sensor sensitivity of a force detection apparatus improves.
 本開示の第二の態様に係る力検知装置によれば、力検知装置は、基板及び力伝達ブロックを備える。基板は、メサ型ゲージ、封止部及び支柱を有する。メサ型ゲージは、基板の主面に形成されており、力伝達ブロックに接しており、ブリッジ回路を構成する。封止部は、基板の主面に形成されており、メサ型ゲージの周囲を一巡して力伝達ブロックに接する。支柱は、基板の主面に形成されており、メサ型ゲージで囲まれた内部に配置されており、力伝達ブロックに接する。 According to the force detection device according to the second aspect of the present disclosure, the force detection device includes a substrate and a force transmission block. The substrate has a mesa gauge, a sealing portion, and a support. The mesa gauge is formed on the main surface of the substrate and is in contact with the force transmission block to form a bridge circuit. The sealing portion is formed on the main surface of the substrate, and makes a round around the mesa gauge and contacts the force transmission block. The support column is formed on the main surface of the substrate, is disposed inside the mesa gauge, and contacts the force transmission block.
 上記実施形態の力検知装置によれば、基板と力伝達ブロックの間に封止空間が構成される。力伝達ブロックに加わる力が増大すると、力伝達ブロックがこの封止空間内を基板側に向けて湾曲する。このとき、力伝達ブロックが湾曲して変位する部分が力点となり、支柱が支点となり、メサ型ゲージが作用点となる梃子の関係が成立する。このため、作用点となるメサ型ゲージには大きな圧縮応力が加わるので、力検知装置のセンサ感度が向上する。 According to the force detection device of the above embodiment, a sealing space is formed between the substrate and the force transmission block. When the force applied to the force transmission block is increased, the force transmission block is curved toward the substrate side in the sealed space. At this time, a portion where the force transmission block is bent and displaced becomes a force point, a support column becomes a fulcrum, and a lever relationship where the mesa gauge acts as an action point is established. For this reason, since a large compressive stress is applied to the mesa-type gauge serving as the action point, the sensor sensitivity of the force detection device is improved.
 本開示についての上記および他の目的、特徴や利点は、添付の図面を参照した下記の詳細な説明から、より明確になる。添付図面において
図1は、実施例の力検知装置を示しており、図3のI-I線に対応した断面図を模式的に示す図であり、 図2は、実施例の力検知装置を示しており、図3のII-II線に対応した断面図を模式的に示す図であり、 図3は、実施例の力検知装置を示しており、基板の平面図を模式的に示しており、力伝達ブロックとの接する範囲を破線で示す図であり、 図4は、実施例の力検知装置を示しており、力伝達ブロックの押圧部分と基板のメサ型ゲージの位置関係を説明する説明図を模式的に示す図であり、 図5は、変形例の力検知装置を示しており、力伝達ブロックの押圧部分と基板のメサ型ゲージの位置関係を説明する説明図を模式的に示す図であり、 図6は、比較例の力検知装置を示しており、力伝達ブロックの押圧部分と基板のメサ型ゲージの位置関係を説明する説明図を模式的に示す図であり、 図7は、比較例の力検知装置を示しており、力伝達ブロックが受圧したときの高感度メサ型ゲージの様子を説明する拡大図を模式的に示す図であり、 図8は、変形例の力検知装置を示しており、力伝達ブロックの押圧部分と基板のメサ型ゲージの位置関係を説明する説明図を模式的に示す図であり、 図9は、変形例の力検知装置を示しており、力伝達ブロックの押圧部分と基板のメサ型ゲージの位置関係を説明する説明図を模式的に示す図であり、 図10は、変形例の力検知装置を示しており、力伝達ブロックの押圧部分と基板のメサ型ゲージの位置関係を説明する説明図を模式的に示す図であり、 図11は、実施例の力検知装置であり、図12のXI-XI線に対応した断面図を模式的に示す図であり、 図12は、実施例の力検知装置であり、基板の平面図を模式的に示す図であり、 図13は、実施例の力検知装置であり、封止空間近傍の要部拡大断面図であり、梃子の作用を説明するための図を示す図であり、 図14は、変形例の力検知装置であり、図11に対応した断面図を模式的に示す図であり、 図15は、変形例の力検知装置であり、図11に対応した断面図を模式的に示す。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. In the attached drawings
FIG. 1 shows a force detection device of an embodiment, and is a diagram schematically showing a cross-sectional view corresponding to line II in FIG. FIG. 2 shows the force detection device of the embodiment, and is a diagram schematically showing a cross-sectional view corresponding to the line II-II in FIG. FIG. 3 shows the force detection device of the embodiment, schematically showing a plan view of the substrate, and showing a range in contact with the force transmission block by a broken line, FIG. 4 shows the force detection device of the embodiment, and is a diagram schematically showing an explanatory diagram for explaining the positional relationship between the pressing portion of the force transmission block and the mesa gauge of the substrate, FIG. 5 shows a force detection device of a modified example, and is a diagram schematically showing an explanatory diagram for explaining the positional relationship between the pressing portion of the force transmission block and the mesa gauge of the substrate, FIG. 6 shows a force detection device of a comparative example, and is a diagram schematically showing an explanatory diagram for explaining the positional relationship between the pressing portion of the force transmission block and the mesa gauge of the substrate, FIG. 7 is a diagram schematically showing an enlarged view for explaining the state of the high-sensitivity mesa gauge when the force transmission block receives pressure, showing a force detection device of a comparative example. FIG. 8 shows a modified force detection device, and is a diagram schematically showing an explanatory diagram for explaining the positional relationship between the pressing portion of the force transmission block and the mesa gauge of the substrate, FIG. 9 shows a force detection device of a modified example, and is a diagram schematically showing an explanatory diagram for explaining the positional relationship between the pressing portion of the force transmission block and the mesa gauge of the substrate, FIG. 10 shows a modified force detection device, and is a diagram schematically showing an explanatory diagram for explaining the positional relationship between the pressing portion of the force transmission block and the mesa gauge of the substrate, FIG. 11 is a force detector of the example, and is a diagram schematically showing a cross-sectional view corresponding to the line XI-XI in FIG. FIG. 12 is a force detection device of an example, and is a diagram schematically showing a plan view of a substrate, FIG. 13 is a force detection device of an example, is an enlarged cross-sectional view of the main part in the vicinity of the sealed space, and is a diagram illustrating a diagram for explaining the operation of the insulator, FIG. 14 is a force detection device of a modification, and is a diagram schematically showing a cross-sectional view corresponding to FIG. FIG. 15 is a force detection device of a modification, and schematically shows a cross-sectional view corresponding to FIG.
 以下、本明細書で開示される技術の特徴を整理する。なお、以下に記す事項は、各々単独で技術的な有用性を有している。
(第1実施形態)
 本明細書で開示される力検知装置の一実施形態は、各種圧力を検知するセンサであり、一例では、気圧又は液圧を検知対象としてもよい。この力検知装置は、基板と力伝達ブロックを備えていてもよい。基板の材料は、圧縮応力に応じて電気抵抗が変化するピエゾ抵抗効果が現われるものが望ましい。例えば、基板の例としては、半導体基板及びSOI基板が挙げられる。基板は、高感度メサ型ゲージ、低感度メサ型ゲージ及びメサ型リードを含んでいてもよい。高感度メサ型ゲージは、基板の主面に設けられており、頂面を有する。高感度メサ型ゲージは、圧縮応力に対して電気抵抗値が相対的に大きく変化する第1方向に伸びる。低感度メサ型ゲージは、基板の主面に設けられており、頂面を有する。低感度メサ型ゲージは、圧縮応力に対して電気抵抗値が相対的に小さく変化する第2方向に伸びる。第1方向と第2方向は、交わる関係を有する。典型的には、高感度メサ型ゲージと低感度メサ型ゲージは、ブリッジ回路を構成してもよい。この場合、一対の高感度メサ型ゲージが矩形の対向する一対の辺に対応して配置され、一対の低感度メサ型ゲージが矩形の対向する他の一対の辺に対応して配置されてもよい。ここでいう「相対的」とは、高感度メサ型ゲージと低感度メサ型ゲージの間の対比を意味する。換言すれば、高感度メサ型ゲージの電気抵抗値は、低感度メサ型ゲージよりも圧縮応力に対して大きく変化する。メサ型リードは、基板の主面に設けられており、頂面を有する。メサ型リードは、高感度メサ型ゲージと低感度メサ型ゲージが接続する接続部から第3方向に伸びる。第3方向は、第1方向と第2方向の双方と交わる関係を有していてもよく、第1方向と第2方向のいずれか一方と平行な関係を有していてもよい。力伝達ブロックは、高感度メサ型ゲージの頂面及び低感度メサ型ゲージの頂面に接する。力伝達ブロックは、メサ型リードの頂面の少なくとも一部に接していない。つまり、力伝達ブロックは、メサ型リードの頂面の少なくとも一部にて非接触である。望ましくは、力伝達ブロックは、メサ型リードの頂面に接していない。
The technical features disclosed in this specification will be summarized below. The items described below have technical usefulness independently.
(First embodiment)
One embodiment of the force detection device disclosed in the present specification is a sensor that detects various pressures. In one example, the detection target may be atmospheric pressure or hydraulic pressure. The force detection device may include a substrate and a force transmission block. The material of the substrate is preferably one that exhibits a piezoresistance effect in which the electrical resistance changes according to the compressive stress. For example, examples of the substrate include a semiconductor substrate and an SOI substrate. The substrate may include a high sensitivity mesa gauge, a low sensitivity mesa gauge, and a mesa lead. The high sensitivity mesa gauge is provided on the main surface of the substrate and has a top surface. The high-sensitivity mesa gauge extends in the first direction in which the electrical resistance value changes relatively greatly with respect to the compressive stress. The low-sensitivity mesa type gauge is provided on the main surface of the substrate and has a top surface. The low-sensitivity mesa type gauge extends in the second direction in which the electric resistance value changes relatively small with respect to the compressive stress. The first direction and the second direction have a crossing relationship. Typically, the high-sensitivity mesa gauge and the low-sensitivity mesa gauge may constitute a bridge circuit. In this case, a pair of high-sensitivity mesa type gauges are arranged corresponding to a pair of opposite sides of the rectangle, and a pair of low-sensitivity mesa type gauges are arranged corresponding to the other pair of opposite sides of the rectangle. Good. Here, “relative” means a contrast between a high-sensitivity mesa gauge and a low-sensitivity mesa gauge. In other words, the electric resistance value of the high-sensitivity mesa gauge changes more greatly with respect to the compressive stress than the low-sensitivity mesa gauge. The mesa lead is provided on the main surface of the substrate and has a top surface. The mesa lead extends in the third direction from a connection portion where the high sensitivity mesa gauge and the low sensitivity mesa gauge are connected. The third direction may have a relationship that intersects both the first direction and the second direction, or may have a relationship parallel to either the first direction or the second direction. The force transmission block contacts the top surface of the high sensitivity mesa gauge and the top surface of the low sensitivity mesa gauge. The force transmission block does not contact at least a part of the top surface of the mesa-type lead. That is, the force transmission block is non-contact with at least a part of the top surface of the mesa lead. Desirably, the force transmission block does not contact the top surface of the mesa lead.
 上記実施形態の力検知装置では、力伝達ブロックと高感度メサ型ゲージの頂面の接する面積が、力伝達ブロックと低感度メサ型ゲージの頂面の接する面積よりも大きくてもよい。この力検知装置では、力伝達ブロックが接する面積を高感度メサ型ゲージと低感度メサ型ゲージの間で異ならせることにより、力伝達ブロックで受圧した力の多くを高感度メサ型ゲージに伝達させることができる。これにより、高感度メサ型ゲージに加わる圧縮応力が増大するので、力検知装置のセンサ感度が向上する。なお、力検知装置のセンサ感度を向上させるためには、力伝達ブロックが高感度メサ型ゲージの頂面にのみ接する構成が考えられる。しかしながら、このような構成の力検知装置では、力伝達ブロックが低感度メサ型ゲージによって支持されていないので、力伝達ブロックが基板側に向けて撓むことで、高感度メサ型ゲージが片変形し、圧縮応力と電気抵抗値の間の直線性が悪化する。力伝達ブロックが高感度メサ型ゲージの頂面及び低感度メサ型ゲージの頂面の双方に接すると、力伝達ブロックの撓みが抑えられ、高感度メサ型ゲージの片変形が抑えられ、圧縮応力と電気抵抗値の間の直線性が良好となる。上記実施形態の力検知装置では、センサ感度と直線性の双方が良好なものとなる。 In the force detection device of the above embodiment, the area where the force transmission block and the top surface of the high-sensitivity mesa gauge are in contact may be larger than the area where the force transmission block and the top surface of the low-sensitivity mesa gauge are in contact. In this force detection device, the area that the force transmission block contacts is different between the high-sensitivity mesa gauge and the low-sensitivity mesa gauge, so that most of the force received by the force transmission block is transmitted to the high-sensitivity mesa gauge. be able to. Thereby, since the compressive stress added to a high sensitivity mesa type gauge increases, the sensor sensitivity of a force detector improves. In order to improve the sensor sensitivity of the force detection device, a configuration in which the force transmission block contacts only the top surface of the high-sensitivity mesa gauge can be considered. However, in the force detection device having such a configuration, since the force transmission block is not supported by the low-sensitivity mesa gauge, the high-sensitivity mesa gauge is deformed in one piece when the force transmission block bends toward the substrate side. However, the linearity between the compressive stress and the electric resistance value is deteriorated. When the force transmission block is in contact with both the top surface of the high-sensitivity mesa gauge and the top surface of the low-sensitivity mesa gauge, the deflection of the force transmission block is suppressed, and the single deformation of the high-sensitivity mesa gauge is suppressed. And the linearity between the electrical resistance values is good. In the force detection device of the above embodiment, both sensor sensitivity and linearity are good.
 上記実施形態の力検知装置では、力伝達ブロックが、第2方向に沿って互いに離間して形成された複数の複数部分を有していてもよい。この場合、複数部分の各々が、低感度メサ型ゲージの頂面に接してもよい。この実施形態の力検知装置では、力伝達ブロックの撓みが抑えられ、センサ感度と直線性の双方が良好なものとなる。 In the force detection device of the above-described embodiment, the force transmission block may have a plurality of portions formed apart from each other along the second direction. In this case, each of the plurality of portions may be in contact with the top surface of the low-sensitivity mesa gauge. In the force detection device of this embodiment, the deflection of the force transmission block is suppressed, and both sensor sensitivity and linearity are good.
 低感度メサ型ゲージは、第2方向に沿って中央付近を伸びる中央領域と、接続部から第2方向に沿って中央領域まで伸びる周辺領域と、を有していてもよい。さらに、力伝達ブロックの複数部分の各々が低感度メサ型ゲージの頂面に接する力検知装置では、複数部分と中央領域の頂面の接する面積が、複数部分と周辺領域の頂面の接する面積よりも大きくてもよい。この実施形態の力検知装置では、力伝達ブロックと低感度メサ型ゲージの接触面積を小さく抑えながら、力伝達ブロックの撓みを効果的に抑えることができる。これにより、この実施形態の力検知装置では、センサ感度と直線性がさらに良好なものとなる。 The low-sensitivity mesa type gauge may have a central region extending near the center along the second direction and a peripheral region extending from the connecting portion to the central region along the second direction. Furthermore, in the force detection device in which each of the plurality of portions of the force transmission block is in contact with the top surface of the low-sensitivity mesa gauge, the area where the plurality of portions and the top surface of the central region are in contact is the area where the plurality of portions and the top surface of the peripheral region are in contact May be larger. In the force detection device of this embodiment, it is possible to effectively suppress the deflection of the force transmission block while suppressing the contact area between the force transmission block and the low sensitivity mesa gauge. Thereby, in the force detection apparatus of this embodiment, sensor sensitivity and linearity are further improved.
 低感度メサ型ゲージは、第2方向に沿って中央付近を伸びる中央領域と、接続部から第2方向に沿って中央領域まで伸びる周辺領域と、を有していてもよい。さらに、力伝達ブロックの複数部分の各々が低感度メサ型ゲージの頂面に接する力検知装置では、中央領域に対応して配置される複数部分が、周辺領域に対応して配置される複数部分に比べて、間隔がより密に形成されていてもよい。この実施形態の力検知装置では、力伝達ブロックと低感度メサ型ゲージの接触面積を小さく抑えながら、力伝達ブロックの撓みを効果的に抑えることができる。これにより、この実施形態の力検知装置では、センサ感度と直線性の双方がさらに良好なものとなる。
(第1実施例)
 図1~図3に示されるように、力検知装置1は、例えば、圧力容器の容器内圧を検知する半導体圧力センサであり、半導体基板2及び力伝達ブロック4を備える。
The low-sensitivity mesa type gauge may have a central region extending near the center along the second direction and a peripheral region extending from the connecting portion to the central region along the second direction. Further, in the force detection device in which each of the plurality of parts of the force transmission block is in contact with the top surface of the low-sensitivity mesa gauge, the plurality of parts arranged corresponding to the central area are arranged corresponding to the peripheral area. Compared to, the intervals may be formed more densely. In the force detection device of this embodiment, it is possible to effectively suppress the deflection of the force transmission block while suppressing the contact area between the force transmission block and the low sensitivity mesa gauge. Thereby, in the force detection apparatus of this embodiment, both sensor sensitivity and linearity are further improved.
(First embodiment)
As shown in FIGS. 1 to 3, the force detection device 1 is, for example, a semiconductor pressure sensor that detects the internal pressure of a pressure vessel, and includes a semiconductor substrate 2 and a force transmission block 4.
 図1及び図2に示されるように、半導体基板2は、n型の単結晶シリコンであり、その主面2Sが(110)結晶面である。半導体基板2の主面2Sには複数の溝11が形成されている。複数の溝11は、半導体基板2の主面2Sに検知部10を画定する。 As shown in FIGS. 1 and 2, the semiconductor substrate 2 is n-type single crystal silicon, and its main surface 2S is a (110) crystal plane. A plurality of grooves 11 are formed in the main surface 2S of the semiconductor substrate 2. The plurality of grooves 11 define the detection unit 10 on the main surface 2S of the semiconductor substrate 2.
 図3に示されるように、検知部10は、ブリッジ回路を構成するメサ型ゲージ12,14,16,18を有する。図1及び図2に示されるように、メサ型ゲージ12,14,16,18は、溝11の底面からメサ状に突出しており、その高さは約0.5~5μmである。メサ型ゲージ12,14,16,18の頂面は、溝11の周囲の半導体基板2の主面2Sと同一面に位置する。即ち、メサ型ゲージ12,14,16,18は、例えばドライエッチング技術を利用して、半導体基板2の主面2Sに複数の溝11を形成した残部として形成される。 As shown in FIG. 3, the detection unit 10 has mesa type gauges 12, 14, 16, and 18 constituting a bridge circuit. As shown in FIGS. 1 and 2, the mesa gauges 12, 14, 16, and 18 project in a mesa shape from the bottom surface of the groove 11, and the height thereof is about 0.5 to 5 μm. The top surfaces of the mesa gauges 12, 14, 16, 18 are located on the same plane as the main surface 2 </ b> S of the semiconductor substrate 2 around the groove 11. That is, the mesa gauges 12, 14, 16, and 18 are formed as a remaining portion in which the plurality of grooves 11 are formed in the main surface 2S of the semiconductor substrate 2 by using, for example, a dry etching technique.
 図3に示されるように、検知部10のメサ型ゲージ12,14,16,18は、正方形の辺に対応して配置されている。対向する一対の辺を構成するメサ型ゲージ14,18はそれぞれ、第1高感度メサ型ゲージ14及び第2高感度メサ型ゲージ18と称する。対向する他の一対の辺を構成するメサ型ゲージ12,16はそれぞれ、第1低感度メサ型ゲージ12及び第2低感度メサ型ゲージ16と称する。 As shown in FIG. 3, the mesa gauges 12, 14, 16, 18 of the detection unit 10 are arranged corresponding to the sides of the square. The mesa gauges 14 and 18 constituting a pair of opposing sides are referred to as a first high sensitivity mesa gauge 14 and a second high sensitivity mesa gauge 18, respectively. The mesa-type gauges 12 and 16 constituting the other pair of opposing sides are referred to as a first low-sensitivity mesa gauge 12 and a second low-sensitivity mesa-type gauge 16, respectively.
 第1高感度メサ型ゲージ14及び第2高感度メサ型ゲージ18は、半導体基板2の<110>方向に沿って伸びている。半導体基板2の<110>方向に伸びる第1高感度メサ型ゲージ14及び第2高感度メサ型ゲージ18は、圧縮応力に応じて電気抵抗値が大きく変化することを特徴としており、ピエゾ抵抗効果を有する。 The first high sensitivity mesa gauge 14 and the second high sensitivity mesa gauge 18 extend along the <110> direction of the semiconductor substrate 2. The first high-sensitivity mesa gauge 14 and the second high-sensitivity mesa gauge 18 that extend in the <110> direction of the semiconductor substrate 2 are characterized in that the electrical resistance value changes greatly according to the compressive stress, and the piezoresistance effect Have
 第1低感度メサ型ゲージ12及び第2低感度メサ型ゲージ16は、半導体基板2の<100>方向に沿って伸びている。半導体基板2の<100>方向に伸びる第1低感度メサ型ゲージ12及び第2低感度メサ型ゲージ16は、圧縮応力に応じて電気抵抗値がほとんど変化しないことを特徴としており、ピエゾ抵抗効果を実質的に有しない。 The first low-sensitivity mesa gauge 12 and the second low-sensitivity mesa gauge 16 extend along the <100> direction of the semiconductor substrate 2. The first low-sensitivity mesa gauge 12 and the second low-sensitivity mesa gauge 16 that extend in the <100> direction of the semiconductor substrate 2 are characterized in that their electrical resistance values hardly change according to compressive stress, and the piezoresistance effect Is substantially absent.
 図1及び図2に示されるように、メサ型ゲージ12,14,16,18の表面には、p型不純物が導入されたゲージ部12a,14a,16a,18aが形成されている。ゲージ部12a,14a,16a,18aの不純物濃度は、約1×1018~1×1021cm-3である。ゲージ部12a,14a,16a,18aは、pn接合によって、n型の半導体基板2から実質的に絶縁されている。 As shown in FIGS. 1 and 2, gauge portions 12 a, 14 a, 16 a, and 18 a into which p-type impurities are introduced are formed on the surfaces of the mesa-type gauges 12, 14, 16, and 18. The impurity concentration of the gauge portions 12a, 14a, 16a, and 18a is about 1 × 10 18 to 1 × 10 21 cm −3 . The gauge portions 12a, 14a, 16a, and 18a are substantially insulated from the n-type semiconductor substrate 2 by pn junctions.
 図3に示されるように、半導体基板2は、主面2Sにp型不純物が導入された配線部22,24,26,28を有する。配線部22,24,26,28の不純物濃度は、約1×1018~1×1021cm-3である。配線部22,24,26,28は、検知部10と電極32,34,36,38を電気的に接続する。電極32,34,36,38は、半導体基板2の主面2S上に設けられており、力伝達ブロック4で覆われる範囲外に配置されている。 As shown in FIG. 3, the semiconductor substrate 2 has wiring portions 22, 24, 26, and 28 in which p-type impurities are introduced into the main surface 2 </ b> S. The impurity concentration of the wiring portions 22, 24, 26, and 28 is about 1 × 10 18 to 1 × 10 21 cm −3 . The wiring parts 22, 24, 26, 28 electrically connect the detection part 10 and the electrodes 32, 34, 36, 38. The electrodes 32, 34, 36, and 38 are provided on the main surface 2 </ b> S of the semiconductor substrate 2 and are disposed outside the range covered with the force transmission block 4.
 第1配線部22は、一端が第1低感度メサ型ゲージ12のゲージ部12aと第1高感度メサ型ゲージ14のゲージ部14aが接続する第1接続部13に接続されており、他端が第1電極32に接続されている。第1配線部22は、メサ型ゲージ12,14の第1接続部13側に第1メサ型リード22aを有する。第1メサ型リード22aは、溝11の底面からメサ状に突出しており、メサ型ゲージ12,14,16,18と同一工程で形成される。 One end of the first wiring part 22 is connected to the first connection part 13 to which the gauge part 12a of the first low-sensitivity mesa gauge 12 and the gauge part 14a of the first high-sensitivity mesa gauge 14 are connected. Is connected to the first electrode 32. The first wiring part 22 has a first mesa lead 22 a on the first connection part 13 side of the mesa gauges 12 and 14. The first mesa type lead 22a protrudes in a mesa shape from the bottom surface of the groove 11 and is formed in the same process as the mesa type gauges 12, 14, 16, and 18.
 第2配線部24は、一端が第1高感度メサ型ゲージ14のゲージ部14aと第2低感度メサ型ゲージ16のゲージ部16aが接続する第2接続部15に接続されており、他端が第2電極34に接続されている。第2配線部24は、メサ型ゲージ14,16の第2接続部15側に第2メサ型リード24aを有する。第2メサ型リード24aは、溝11の底面からメサ状に突出しており、メサ型ゲージ12,14,16,18と同一工程で形成される。 The second wiring part 24 has one end connected to the second connection part 15 to which the gauge part 14a of the first high sensitivity mesa gauge 14 and the gauge part 16a of the second low sensitivity mesa gauge 16 are connected, and the other end. Is connected to the second electrode 34. The second wiring part 24 has a second mesa type lead 24 a on the second connection part 15 side of the mesa type gauges 14 and 16. The second mesa type lead 24 a protrudes in a mesa shape from the bottom surface of the groove 11 and is formed in the same process as the mesa type gauges 12, 14, 16, 18.
 第3配線部26は、一端が第2低感度メサ型ゲージ16のゲージ部16aと第2高感度メサ型ゲージ18のゲージ部18aが接続する第3接続部17に接続されており、他端が第3電極36に接続されている。第3配線部26は、メサ型ゲージ16,18の第3接続部17側に第3メサ型リード26aを有する。第3メサ型リード26aは、溝11の底面からメサ状に突出しており、メサ型ゲージ12,14,16,18と同一工程で形成される。 One end of the third wiring part 26 is connected to the third connection part 17 to which the gauge part 16a of the second low-sensitivity mesa gauge 16 and the gauge part 18a of the second high-sensitivity mesa gauge 18 are connected. Is connected to the third electrode 36. The third wiring portion 26 has a third mesa lead 26 a on the third connection portion 17 side of the mesa gauges 16 and 18. The third mesa type lead 26 a protrudes in a mesa shape from the bottom surface of the groove 11 and is formed in the same process as the mesa type gauges 12, 14, 16, 18.
 第4配線部28は、一端が第2高感度メサ型ゲージ18のゲージ部18aと第1低感度メサ型ゲージ12のゲージ部12aが接続する第4接続部19に接続されており、他端が第4電極38に接続されている。第4配線部26は、メサ型ゲージ12,18の第4接続部19側に第4メサ型リード28aを有する。第4メサ型リード28aは、溝11の底面からメサ状に突出しており、メサ型ゲージ12,14,16,18と同一工程で形成される。 The fourth wiring portion 28 has one end connected to the fourth connection portion 19 to which the gauge portion 18a of the second high sensitivity mesa gauge 18 and the gauge portion 12a of the first low sensitivity mesa gauge 12 are connected, and the other end. Is connected to the fourth electrode 38. The fourth wiring portion 26 has a fourth mesa lead 28 a on the fourth connecting portion 19 side of the mesa gauges 12 and 18. The fourth mesa type lead 28a protrudes in a mesa shape from the bottom surface of the groove 11, and is formed in the same process as the mesa type gauges 12, 14, 16, and 18.
 図1及び図2に示されるように、力伝達ブロック4は、直方体形状を有しており、シリコン層4aと酸化シリコン層4bを有する。半導体基板2と力伝達ブロック4は、常温個相接合技術を利用して接合される。具体的には、アルゴンイオンを用いて半導体基板2の主面2S及び力伝達ブロック4の酸化シリコン層4bの表面を活性化させた後に、超高真空中で半導体基板2の主面2Sと力伝達ブロック4の酸化シリコン層4bの表面を接触させ、両者を接合させる。 As shown in FIGS. 1 and 2, the force transmission block 4 has a rectangular parallelepiped shape and includes a silicon layer 4a and a silicon oxide layer 4b. The semiconductor substrate 2 and the force transmission block 4 are bonded using a room temperature single phase bonding technique. Specifically, the main surface 2S of the semiconductor substrate 2 and the surface of the silicon oxide layer 4b of the force transmission block 4 are activated using argon ions, and then the main surface 2S of the semiconductor substrate 2 and the force are applied in an ultrahigh vacuum. The surfaces of the silicon oxide layer 4b of the transmission block 4 are brought into contact with each other to join them together.
 図1及び図2に示されるように、力伝達ブロック4の酸化シリコン層4bの一部が除去されており、力伝達ブロック4の半導体基板2側の面に溝4cが形成されている。溝4cが形成されていることにより、力伝達ブロック4の酸化シリコン層4bは、封止部分40aと押圧部分40bに区画される。また、このような溝4cが形成されていることにより、半導体基板2と力伝達ブロック4の間には、外部から隔てられた封止空間6が構成される。 1 and 2, a part of the silicon oxide layer 4b of the force transmission block 4 is removed, and a groove 4c is formed on the surface of the force transmission block 4 on the semiconductor substrate 2 side. By forming the groove 4c, the silicon oxide layer 4b of the force transmission block 4 is partitioned into a sealing portion 40a and a pressing portion 40b. In addition, by forming such a groove 4 c, a sealed space 6 separated from the outside is formed between the semiconductor substrate 2 and the force transmission block 4.
 力伝達ブロック4の封止部分40aは、メサ型ゲージ12,14,16,18の周囲を一巡するように、半導体基板2の主面2Sに接合する。半導体基板2のうちの封止部分40aが接合する部分を封止部20という。半導体基板2の封止部20と力伝達ブロック4の封止部分40aは、気密に接合する。 The sealing portion 40a of the force transmission block 4 is bonded to the main surface 2S of the semiconductor substrate 2 so as to make a round around the mesa gauges 12, 14, 16, and 18. A portion of the semiconductor substrate 2 where the sealing portion 40 a is joined is referred to as a sealing portion 20. The sealing portion 20 of the semiconductor substrate 2 and the sealing portion 40a of the force transmission block 4 are joined in an airtight manner.
 図4に、力伝達ブロック4の押圧部分40bとメサ型ゲージ12,14,16,18の位置関係を示す。押圧部分40bは、点対称な形態を有しており、メサ型ゲージ12,14,16,18の頂面の一部に接合する。押圧部分40bは、高感度メサ型ゲージ14,18の頂面の大部分に接合する。押圧部分40bは、高感度メサ型ゲージ14,18の両端部の頂面(接続部13,15,17,19に近接する部分の頂面)に接しない。押圧部分40bは、低感度メサ型ゲージ12,16の頂面の大部分に接合する。押圧部分40bは、低感度メサ型ゲージ12,16の両端部の頂面(接続部13,15,17,19に近接する部分の頂面)に接しない。押圧部分40bは、メサ型リード22a,24a,26a,28aの頂面及び接続部13,15,17,19の頂面に接しない。 FIG. 4 shows the positional relationship between the pressing portion 40b of the force transmission block 4 and the mesa gauges 12, 14, 16, and 18. The pressing portion 40 b has a point-symmetric form and is joined to a part of the top surface of the mesa gauges 12, 14, 16, 18. The pressing portion 40b is joined to most of the top surfaces of the high-sensitivity mesa gauges 14 and 18. The pressing portion 40b does not contact the top surfaces of the both ends of the high-sensitivity mesa gauges 14 and 18 (the top surfaces of the portions close to the connection portions 13, 15, 17, and 19). The pressing portion 40 b is joined to most of the top surfaces of the low sensitivity mesa type gauges 12 and 16. The pressing portion 40b does not contact the top surfaces of the both ends of the low-sensitivity mesa gauges 12 and 16 (the top surfaces of the portions close to the connection portions 13, 15, 17, and 19). The pressing portion 40b does not contact the top surfaces of the mesa-type leads 22a, 24a, 26a, and 28a and the top surfaces of the connection portions 13, 15, 17, and 19.
 次に、力検知装置1の動作を説明する。まず、力検知装置1は、第1電極32に定電流源が接続され、第3電極36が接地され、第2電極34と第4電極38の間に電圧測定器が接続して用いられる。力検知装置1では、力伝達ブロック4に加わる容器内圧が変化すると、力伝達ブロック4を介してメサ型ゲージ12,14,16,18のゲージ部12a,14a,16a,18aに加わる圧縮応力も変化する。ピエゾ抵抗効果が現われる高感度メサ型ゲージ14,18のゲージ部14a,18aの電気抵抗値は、圧縮応力に比例して変化する。このため、第2電極34と第4電極38の電位差は、ゲージ部14a,18aに加わる圧縮応力に比例する。これにより、電圧測定器で計測される電圧変化から力伝達ブロック4に加わる容器内圧が検知される。 Next, the operation of the force detection device 1 will be described. First, the force detection device 1 is used by connecting a constant current source to the first electrode 32, grounding the third electrode 36, and connecting a voltage measuring device between the second electrode 34 and the fourth electrode 38. In the force detection device 1, when the container internal pressure applied to the force transmission block 4 changes, the compressive stress applied to the gauge portions 12 a, 14 a, 16 a, 18 a of the mesa type gauges 12, 14, 16, 18 via the force transmission block 4 is also increased. Change. The electrical resistance values of the gauge portions 14a and 18a of the high-sensitivity mesa-type gauges 14 and 18 in which the piezoresistance effect appears change in proportion to the compressive stress. For this reason, the potential difference between the second electrode 34 and the fourth electrode 38 is proportional to the compressive stress applied to the gauge portions 14a and 18a. Thereby, the container internal pressure added to the force transmission block 4 is detected from the voltage change measured with a voltage measuring device.
 力検知装置1では、力伝達ブロック4の押圧部分40bがメサ型リード22a,24a,26a,28aの頂面に接していない。このため、力伝達ブロック4に加わる容器内圧は、高感度メサ型ゲージ14,18に効率的に伝達される。これにより、力検知装置1のセンサ感度が向上する。 In the force detection device 1, the pressing portion 40b of the force transmission block 4 is not in contact with the top surfaces of the mesa-type leads 22a, 24a, 26a, and 28a. For this reason, the container internal pressure applied to the force transmission block 4 is efficiently transmitted to the high-sensitivity mesa gauges 14 and 18. Thereby, the sensor sensitivity of the force detection device 1 is improved.
 この種の力検知装置1では、メサ型リード22a,24a,26a,28aの寄生抵抗値による電圧降下分がセンサ感度を悪化させる。このため、力検知装置1では、メサ型リード22a,24a,26a,28aの幅(半導体基板2の主面2Sに対して平行であり、メサ型リード22a,24a,26a,28aの長手方向に対して直交する方向の幅)が、メサ型ゲージ12,14,16,18の幅(半導体基板2の主面2Sに対して平行であり、メサ型ゲージ12,14,16,18の長手方向に対して直交する方向の幅)よりも大きいのが望ましい。これにより、メサ型リード22a,24a,26a,28aの寄生抵抗値を低下させることができるので、力検知装置1のセンサ感度が向上する。 In this type of force detection device 1, the voltage drop due to the parasitic resistance values of the mesa-type leads 22a, 24a, 26a, and 28a deteriorates the sensor sensitivity. Therefore, in the force detection device 1, the width of the mesa type leads 22a, 24a, 26a, 28a (parallel to the main surface 2S of the semiconductor substrate 2 and in the longitudinal direction of the mesa type leads 22a, 24a, 26a, 28a). The width of the mesa gauges 12, 14, 16, 18 is parallel to the main surface 2S of the semiconductor substrate 2 and the longitudinal direction of the mesa gauges 12, 14, 16, 18 It is desirable that the width is greater than As a result, the parasitic resistance values of the mesa-type leads 22a, 24a, 26a, and 28a can be reduced, so that the sensor sensitivity of the force detection device 1 is improved.
 なお、従来の力検知装置のように、メサ型リードの頂面にも力伝達ブロックが接する構成では、メサ型リードの幅を大きくすると、力伝達ブロックに加わる容器内圧がメサ型リードにも伝達されるので、高感度メサ型ゲージに加わる圧縮応力が低下する。このように、従来の力検知装置では、メサ型リードの幅を大きくして寄生抵抗値を下げても、高感度メサ型ゲージに加わる圧縮応力が低下するので、センサ感度を向上させることが難しい。一方、本実施例の力検知装置1では、力伝達ブロック4がメサ型リード22a,24a,26a,28aの頂面に接しないので、メサ型リード22a,24a,26a,28aの幅を大きくしても、高感度メサ型ゲージ14,18に加わる圧縮応力は低下しない。これにより、本実施例の力検知装置1では、メサ型リード22a,24a,26a,28aの幅が大きくなると、センサ感度が効果的に向上する。 In the configuration where the force transmission block is also in contact with the top surface of the mesa type lead as in the conventional force detection device, if the width of the mesa type lead is increased, the container internal pressure applied to the force transmission block is also transmitted to the mesa type lead. Therefore, the compressive stress applied to the high sensitivity mesa gauge is reduced. As described above, in the conventional force detection device, even if the width of the mesa lead is increased to reduce the parasitic resistance value, it is difficult to improve the sensor sensitivity because the compressive stress applied to the high sensitivity mesa gauge is reduced. . On the other hand, in the force detection device 1 of the present embodiment, the force transmission block 4 does not contact the top surfaces of the mesa leads 22a, 24a, 26a, 28a, so the width of the mesa leads 22a, 24a, 26a, 28a is increased. However, the compressive stress applied to the high-sensitivity mesa gauges 14 and 18 does not decrease. Thereby, in the force detection device 1 of the present embodiment, the sensor sensitivity is effectively improved when the width of the mesa type leads 22a, 24a, 26a, 28a is increased.
 以下、変形例及び比較例の力検知装置について説明する。上記実施例の力検知装置1と共通する構成については共通の符号を付し、その説明を省略する。 Hereinafter, the force detection devices of the modified example and the comparative example will be described. The components common to the force detection device 1 of the above embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 図5に示される変形例の力検知装置では、力伝達ブロックの押圧部分40bが、高感度メサ型ゲージ14,18と低感度メサ型ゲージ12,16の間で異なるレイアウトで構成されている。押圧部分40bは、高感度メサ型ゲージ14,18の頂面の大部分に接しており、押圧部分40bと高感度メサ型ゲージ14,18の接触面積が相対的に大きい。高感度メサ型ゲージ14,18の頂面の全面積に占める押圧部分40bと接する部分の占有面積は相対的に大きい。押圧部分40bは、低感度メサ型ゲージ12,16の中央付近の頂面に選択的に接しており、押圧部分40bと低感度メサ型ゲージ12,16の接触面積が相対的に小さい。低感度メサ型ゲージ12,16の頂面の全面積に占める押圧部分40bと接する部分の占有面積は相対的に小さい。このように、変形例の力検知装置では、押圧部分40bが接する面積を高感度メサ型ゲージ14,18と低感度メサ型ゲージ12,16の間で異なっている。このため、力伝達ブロックに加わる容器内圧は、高感度メサ型ゲージ14,18に効率的に伝達される。これにより、この変形例の力検知装置では、センサ感度が向上する。 In the modified force detection device shown in FIG. 5, the pressing portion 40 b of the force transmission block is configured with different layouts between the high-sensitivity mesa gauges 14 and 18 and the low-sensitivity mesa gauges 12 and 16. The pressing portion 40b is in contact with most of the top surfaces of the high-sensitivity mesa gauges 14 and 18, and the contact area between the pressing portion 40b and the high-sensitivity mesa gauges 14 and 18 is relatively large. The occupied area of the portion in contact with the pressing portion 40b in the total area of the top surfaces of the high sensitivity mesa gauges 14 and 18 is relatively large. The pressing portion 40b is selectively in contact with the top surface near the center of the low-sensitivity mesa gauges 12 and 16, and the contact area between the pressing portion 40b and the low-sensitivity mesa gauges 12 and 16 is relatively small. The occupied area of the portion in contact with the pressing portion 40b in the total area of the top surfaces of the low-sensitivity mesa gauges 12 and 16 is relatively small. As described above, in the force detection device of the modified example, the area with which the pressing portion 40 b contacts is different between the high sensitivity mesa gauges 14 and 18 and the low sensitivity mesa gauges 12 and 16. For this reason, the container internal pressure applied to the force transmission block is efficiently transmitted to the high-sensitivity mesa gauges 14 and 18. Thereby, in the force detector of this modification, sensor sensitivity improves.
 ここで、変形例の力検知装置の他の特徴を説明するために、比較例の力検知装置を説明する。図6に示される比較例の力検知装置では、力伝達ブロックの押圧部分40bが、一対の高感度メサ型ゲージ14,18にのみ接する。このような構成を採用すると、力伝達ブロックに加わる容器内圧は、高感度メサ型ゲージ14,18に効率的に伝達される。 Here, in order to explain other characteristics of the modified force detection device, a comparative force detection device will be described. In the force detection device of the comparative example shown in FIG. 6, the pressing portion 40 b of the force transmission block contacts only the pair of high-sensitivity mesa gauges 14 and 18. When such a configuration is adopted, the container internal pressure applied to the force transmission block is efficiently transmitted to the high-sensitivity mesa gauges 14 and 18.
 ところが、図7に示されるように、力伝達ブロック4に容器内圧が加わったときに、メサ型ゲージで囲まれる領域の中心点が凸の頂部となるように半導体基板2側に向けて撓む。このような力伝達ブロック4の撓みにより、高感度メサ型ゲージ14,18が内側に向けて片変形し、圧縮応力と電気抵抗値の間の直線性が悪化する。 However, as shown in FIG. 7, when the container internal pressure is applied to the force transmission block 4, it bends toward the semiconductor substrate 2 so that the center point of the region surrounded by the mesa gauge is a convex top. . Due to the bending of the force transmission block 4, the high-sensitivity mesa type gauges 14 and 18 are deformed inward and the linearity between the compressive stress and the electric resistance value is deteriorated.
 図5に示される変形例の力検知装置では、力伝達ブロックの押圧部分40bが、低感度メサ型ゲージ12,16の頂面の一部にも接する。これにより、力伝達ブロックの撓みが抑えられ、高感度メサ型ゲージ14,18の片変形が抑えられる。したがって、この変形例の力検知装置では、圧縮応力と電気抵抗値の間の直線性が良好である。このように、この変形例の力検知装置では、センサ感度と直線性を両立することができる。 In the modified force detection device shown in FIG. 5, the pressing portion 40 b of the force transmission block is also in contact with part of the top surfaces of the low-sensitivity mesa gauges 12 and 16. Thereby, the bending of a force transmission block is suppressed and the single deformation of the high sensitivity mesa type | mold gauges 14 and 18 is suppressed. Therefore, in the force detection device of this modification, the linearity between the compressive stress and the electric resistance value is good. Thus, in the force detection device of this modification, both sensor sensitivity and linearity can be achieved.
 図8に示される変形例の力検知装置では、力伝達ブロックの押圧部分40bが、低感度メサ型ゲージ12,16の長手方向に沿って互いに離間して形成された複数の複数部分40cを有する。複数部分40cの各々は、低感度メサ型ゲージ12,16の頂面に接する。複数部分40cは、低感度メサ型ゲージ12,16の長手方向に沿って等間隔に配置されている。この変形例の力検知装置では、力伝達ブロック4の撓みが抑えられ、圧縮応力と電気抵抗値の間の直線性が改善される。 In the force detection device of the modification shown in FIG. 8, the pressing portion 40 b of the force transmission block has a plurality of portions 40 c that are formed apart from each other along the longitudinal direction of the low-sensitivity mesa gauges 12 and 16. . Each of the plurality of portions 40 c is in contact with the top surfaces of the low-sensitivity mesa gauges 12 and 16. The plurality of portions 40 c are arranged at equal intervals along the longitudinal direction of the low sensitivity mesa type gauges 12 and 16. In the force detection device of this modification, the deflection of the force transmission block 4 is suppressed, and the linearity between the compressive stress and the electric resistance value is improved.
 次に、図9及び図10の変形例の力検知装置を説明する。これらの変形例の力検知装置の特徴を理解するために、図9及び図10に示されるように、低感度メサ型ゲージ12,16を長手方向に沿って3つの領域に区画して説明する(図示明瞭化のために、第1低感度メサ型ゲージ12に対応する領域のみを図示するが、第2低感度メサ型ゲージ16も同様である)。低感度メサ型ゲージ12,16は、中央領域12Aと一対の周辺領域12Bを有する。中央領域12Aは、長手方向に沿って中央付近を伸びている。一対の周辺領域12Bの各々は、メサ型ゲージの接続部13,15,17,19から長手方向に沿って中央領域12Aまで伸びている。中央領域12Aと一対の周辺領域12Bの各々の長手方向の長さは同一である。即ち、低感度メサ型ゲージ12,16を長手方向に沿って3等分したときに、中央付近に配置されるのが中央領域12Aであり、周辺付近に配置されるのが周辺領域12Bである。 Next, a modified example of the force detection device of FIGS. 9 and 10 will be described. In order to understand the characteristics of the force detection devices of these modified examples, as shown in FIGS. 9 and 10, the low-sensitivity mesa gauges 12 and 16 are divided into three regions along the longitudinal direction. (For clarity of illustration, only the region corresponding to the first low-sensitivity mesa gauge 12 is shown, but the second low-sensitivity mesa gauge 16 is the same). The low-sensitivity mesa gauges 12 and 16 have a central region 12A and a pair of peripheral regions 12B. The center region 12A extends near the center along the longitudinal direction. Each of the pair of peripheral regions 12B extends from the connecting portions 13, 15, 17, 19 of the mesa gauge to the central region 12A along the longitudinal direction. The central region 12A and the pair of peripheral regions 12B have the same length in the longitudinal direction. That is, when the low-sensitivity mesa gauges 12 and 16 are equally divided into three along the longitudinal direction, the central region 12A is disposed near the center, and the peripheral region 12B is disposed near the periphery. .
 図9に示される変形例の力検知装置では、中央領域12Aと周辺領域12Bを対比すると、中央領域12Aの頂面と複数部分40cの接する面積が、一方の周辺領域12Bの頂面と複数部分40cの接する面積よりも大きい。換言すれば、中央領域12Aの頂面の全面積に占める複数部分40cと接する部分の占有面積が、一方の周辺領域12Bの頂面の全面積に占める複数部分40cと接する部分の占有面積よりも大きい。前記したように、力伝達ブロックは、容器内圧が加わったときに、力伝達ブロックの中心点が凸の頂部となるように撓む。低感度メサ型ゲージ12,16の中央領域12Aは、その中心点に近いので、この部分で力伝達ブロックと広い面積で接することにより、力伝達ブロックの撓みを効果的に抑えることができる。即ち、力伝達ブロックと低感度メサ型ゲージ12,16の接触面積の増加を抑えながら、力伝達ブロックの撓みを効果的に抑えることができる。これにより、この変形例の力検知装置は、センサ感度と直線性を両立することができる。なお、要求される特性に応じて、周辺領域12Bに対応する複数部分40cを形成しなくてもよい。このような例は、図5に示される変形例の力検知装置に対応する。したがって、図5に示される変形例の力検知装置も、力伝達ブロックと低感度メサ型ゲージ12,16の接触面積の増加を抑えながら、力伝達ブロックの撓みを効果的に抑えることができるので、センサ感度と直線性を両立することができる。 In the modified force detection device shown in FIG. 9, when the central region 12A and the peripheral region 12B are compared, the area where the top surface of the central region 12A and the plurality of portions 40c are in contact with each other is such that the top surface of one peripheral region 12B and the plurality of portions are in contact with each other. It is larger than the contact area of 40c. In other words, the occupied area of the portion in contact with the plurality of portions 40c in the total area of the top surface of the central region 12A is larger than the occupied area of the portion in contact with the plurality of portions 40c in the total area of the top surface of one peripheral region 12B. large. As described above, the force transmission block bends so that the center point of the force transmission block becomes a convex top when the container internal pressure is applied. Since the central region 12A of the low-sensitivity mesa gauges 12 and 16 is close to the center point thereof, the contact of the force transmission block with a large area can be effectively suppressed by this portion. That is, it is possible to effectively suppress the deflection of the force transmission block while suppressing an increase in the contact area between the force transmission block and the low-sensitivity mesa gauges 12 and 16. Thereby, the force detection device of this modification can achieve both sensor sensitivity and linearity. Note that the plurality of portions 40c corresponding to the peripheral region 12B may not be formed according to the required characteristics. Such an example corresponds to the force detection device of the modification shown in FIG. Accordingly, the force detection device of the modification shown in FIG. 5 can also effectively suppress the deflection of the force transmission block while suppressing an increase in the contact area between the force transmission block and the low-sensitivity mesa gauges 12 and 16. The sensor sensitivity and linearity can both be achieved.
 図10に示される変形例の力検知装置では、中央領域12Aと周辺領域12Bを対比すると、中央領域40cに対応して配置される複数部分40cは、周辺領域12Bに対応して配置される複数部分40cに比べて、間隔がより密に形成されている。この変形例の力検知装置でも、中央領域12Aの頂面の全面積に占める複数部分40cと接する部分の占有面積が、一方の周辺領域12Bの頂面の全面積に占める複数部分40cと接する部分の占有面積よりも大きい関係が得られる。このため、この変形例の力検知装置でも、力伝達ブロックの撓みを効果的に抑えることができ、感度と直線性を両立することができる。
(第2実施形態)
 本明細書で開示される力検知装置の一実施形態は、気圧を検知するセンサであり、一例では、燃焼圧を検知対象としてもよい。この力検知装置は、基板と力伝達ブロックを備えていてもよい。基板の材料は、圧縮応力に応じて電気抵抗が変化するピエゾ抵抗効果が現われるものが望ましい。例えば、基板は、半導体基板及びSOI基板を含む。基板は、メサ型ゲージ、封止部及び支柱を有していてもよい。メサ型ゲージは、基板の主面に形成されており、力伝達ブロックに接しており、ブリッジ回路を構成してもよい。メサ型ゲージは、メサ状の形態を有しており、その頂面で力伝達ブロックに接していてもよい。封止部は、基板の主面に形成されており、メサ型ゲージの周囲を一巡して力伝達ブロックに接していてもよい。支柱は、基板の主面に形成されており、メサ型ゲージで囲まれた内部に配置されており、力伝達ブロックに接していてもよい。支柱は、メサ状の形態を有しており、その頂面で力伝達ブロックに接していてもよい。支柱の剛性は、メサ型ゲージの剛性よりも高いのが望ましい。
In the modified force detection device shown in FIG. 10, when the central region 12A and the peripheral region 12B are compared, the plurality of portions 40c arranged corresponding to the central region 40c are plural arranged corresponding to the peripheral region 12B. Compared with the portion 40c, the intervals are formed more densely. Also in the force detection device of this modification, the occupied area of the portion in contact with the plurality of portions 40c in the total area of the top surface of the central region 12A is the portion in contact with the plurality of portions 40c in the total area of the top surface of one peripheral region 12B. A relationship larger than the occupied area of the can be obtained. For this reason, even in the force detection device of this modification, the deflection of the force transmission block can be effectively suppressed, and both sensitivity and linearity can be achieved.
(Second Embodiment)
One embodiment of the force detection device disclosed in the present specification is a sensor that detects atmospheric pressure, and in one example, combustion pressure may be a detection target. The force detection device may include a substrate and a force transmission block. The material of the substrate is preferably one that exhibits a piezoresistance effect in which the electrical resistance changes according to the compressive stress. For example, the substrate includes a semiconductor substrate and an SOI substrate. The board | substrate may have a mesa type gauge, a sealing part, and a support | pillar. The mesa gauge is formed on the main surface of the substrate, is in contact with the force transmission block, and may constitute a bridge circuit. The mesa type gauge has a mesa shape and may be in contact with the force transmission block at its top surface. The sealing portion is formed on the main surface of the substrate, and may be in contact with the force transmission block around the mesa gauge. The support column is formed on the main surface of the substrate, is disposed inside the mesa gauge, and may be in contact with the force transmission block. The support column has a mesa shape and may be in contact with the force transmission block at its top surface. It is desirable that the rigidity of the column is higher than that of the mesa gauge.
 上記実施形態では、基板と力伝達ブロックで外部から気密に隔てられる封止空間が構成されていてもよい。封止空間は、メサ型ゲージと封止部の間に配置されており、力伝達ブロックが湾曲するのを許容する厚みを有していてもよい。 In the above embodiment, a sealed space that is airtightly separated from the outside by the substrate and the force transmission block may be configured. The sealing space is disposed between the mesa gauge and the sealing portion, and may have a thickness that allows the force transmission block to bend.
 上記実施形態の力伝達ブロックには、基板側の面に溝が形成されていてもよい。溝は、メサ型ゲージに接する部分と封止部に接する部分の間に配置されていてもよい。この溝により封止空間が構成される。 In the force transmission block of the above embodiment, a groove may be formed on the surface on the substrate side. The groove may be disposed between a portion in contact with the mesa gauge and a portion in contact with the sealing portion. This groove constitutes a sealing space.
 上記実施形態では、力伝達ブロックが、シリコン層と酸化シリコン層を有していてもよい。酸化シリコン層は、シリコン層の基板側の面の一部を被覆してもよい。この場合、溝は、酸化シリコン層の非被覆領域に構成されてもよい。力伝達ブロックの酸化シリコン層を加工することで、封止空間を構成するための溝を容易に形成することができる。 In the above embodiment, the force transmission block may have a silicon layer and a silicon oxide layer. The silicon oxide layer may cover a part of the surface of the silicon layer on the substrate side. In this case, the groove may be formed in an uncovered region of the silicon oxide layer. By processing the silicon oxide layer of the force transmission block, a groove for forming a sealed space can be easily formed.
 (第2実施例)
 図11及び図12に示されるように、力検知装置201は、例えば、内燃機関の燃焼圧を検知する半導体圧力センサであり、半導体基板202及び力伝達ブロック204を備える。
(Second embodiment)
As shown in FIGS. 11 and 12, the force detection device 201 is a semiconductor pressure sensor that detects a combustion pressure of an internal combustion engine, for example, and includes a semiconductor substrate 202 and a force transmission block 204.
 半導体基板202は、n型の単結晶シリコンであり、その主面202Sが(110)結晶面である。半導体基板202の主面202Sには複数の溝211が形成されている。複数の溝211は、半導体基板202の主面202Sに検知部210、支柱220及び封止部230を画定する。 The semiconductor substrate 202 is n-type single crystal silicon, and its main surface 202S is a (110) crystal plane. A plurality of grooves 211 are formed in the main surface 202 </ b> S of the semiconductor substrate 202. The plurality of grooves 211 define the detection unit 210, the support column 220, and the sealing unit 230 on the main surface 202 </ b> S of the semiconductor substrate 202.
 図12に示されるように、検知部210は、ブリッジ回路を構成するメサ型ゲージ212,214,216,218を有する。メサ型ゲージ212,214,216,218は、溝211の底面からメサ状に突出しており、その高さは約0.5~5μmである。メサ型ゲージ212,214,216,218の頂面は、溝211の周囲の半導体基板202の主面202Sと同一面に位置している。即ち、メサ型ゲージ212,214,216,218は、例えばドライエッチング技術を利用して、半導体基板202の主面202Sに複数の溝211を形成した残部として形成される。 As shown in FIG. 12, the detection unit 210 has mesa type gauges 212, 214, 216, and 218 that constitute a bridge circuit. The mesa type gauges 212, 214, 216, and 218 protrude in a mesa shape from the bottom surface of the groove 211, and the height thereof is about 0.5 to 5 μm. The top surfaces of the mesa gauges 212, 214, 216, 218 are located on the same plane as the main surface 202 </ b> S of the semiconductor substrate 202 around the groove 211. In other words, the mesa type gauges 212, 214, 216, and 218 are formed as a remaining portion in which a plurality of grooves 211 are formed in the main surface 202S of the semiconductor substrate 202 by using, for example, a dry etching technique.
 図12に示されるように、検知部210では、第1メサ型ゲージ212及び第3メサ型ゲージ216が矩形の対向する一対の辺を構成し、第2メサ型ゲージ214及び第4メサ型ゲージ218が矩形の対向する一対の辺を構成する。第1メサ型ゲージ212及び第3メサ型ゲージ216は、半導体基板202の<110>方向に沿って伸びている。半導体基板202の<110>方向に伸びる第1メサ型ゲージ212及び第3メサ型ゲージ216には、圧縮応力に応じて電気抵抗が変化するピエゾ抵抗効果が現われる。第2メサ型ゲージ214及び第4メサ型ゲージ218は、半導体基板202の<100>方向に沿って伸びている。半導体基板202の<100>方向に伸びる第2メサ型ゲージ214及び第4メサ型ゲージ218には、ピエゾ抵抗効果が実質的に現われない。 As shown in FIG. 12, in the detection unit 210, the first mesa gauge 212 and the third mesa gauge 216 constitute a pair of opposing sides of a rectangle, and the second mesa gauge 214 and the fourth mesa gauge. 218 constitutes a pair of opposing sides of a rectangle. The first mesa gauge 212 and the third mesa gauge 216 extend along the <110> direction of the semiconductor substrate 202. In the first mesa gauge 212 and the third mesa gauge 216 extending in the <110> direction of the semiconductor substrate 202, a piezoresistance effect in which the electrical resistance changes according to the compressive stress appears. The second mesa gauge 214 and the fourth mesa gauge 218 extend along the <100> direction of the semiconductor substrate 202. The second mesa gauge 214 and the fourth mesa gauge 218 extending in the <100> direction of the semiconductor substrate 202 do not substantially exhibit a piezoresistance effect.
 図11及び図12に示されるように、メサ型ゲージ212,214,216,218の表面には、p型不純物が導入されたゲージ部212a,214a,216a,218aが形成されている。ゲージ部212a,214a,216a,218aの不純物濃度は、約1×1018~1×1021cm-3である。ゲージ部212a,214a,216a,218aは、pn接合によって、n型の半導体基板202から実質的に絶縁されている。 As shown in FIGS. 11 and 12, gauge portions 212a, 214a, 216a, and 218a into which p-type impurities are introduced are formed on the surfaces of the mesa-type gauges 212, 214, 216, and 218. The impurity concentration of the gauge portions 212a, 214a, 216a, 218a is about 1 × 10 18 to 1 × 10 21 cm −3 . The gauge portions 212a, 214a, 216a, and 218a are substantially insulated from the n-type semiconductor substrate 202 by pn junctions.
 図11及び図12に示されるように、支柱220は、メサ型ゲージ212,214,216,218で囲まれた内部に配置されている。支柱220は、溝211の底面からメサ状に突出しており、その高さは約0.5~5μmである。支柱220の頂面は、溝211の周囲の半導体基板202の主面202Sと同一面に位置している。即ち、支柱220は、例えばドライエッチング技術を利用して、半導体基板202の主面202Sに複数の溝211を形成した残部として形成される。支柱220は、平面視したときに、メサ型ゲージ212,214,216,218の矩形と相似な形態を有している。支柱220の辺長は、メサ型ゲージ212,214,216,218の幅(長手方向に直交する方向の幅)よりも大きい。これにより、支柱220の剛性は、メサ型ゲージ212,214,216,218の剛性よりも高い。 11 and 12, the support column 220 is disposed inside the mesa type gauges 212, 214, 216, and 218. The column 220 protrudes from the bottom surface of the groove 211 in a mesa shape, and its height is about 0.5 to 5 μm. The top surface of the support column 220 is located on the same plane as the main surface 202 </ b> S of the semiconductor substrate 202 around the groove 211. In other words, the support column 220 is formed as a remaining portion in which a plurality of grooves 211 are formed in the main surface 202S of the semiconductor substrate 202 by using, for example, a dry etching technique. The support column 220 has a shape similar to the rectangle of the mesa gauges 212, 214, 216, and 218 when viewed in plan. The side length of the column 220 is larger than the width of the mesa gauges 212, 214, 216 and 218 (width in the direction perpendicular to the longitudinal direction). Thereby, the rigidity of the column 220 is higher than the rigidity of the mesa gauges 212, 214, 216, and 218.
 図12に示されるように、半導体基板202は、主面202Sにp型不純物が導入された配線部232,234,236,238を有する。配線部232,234,236,238の不純物濃度は、約1×1018~1×1021cm-3である。第1配線部232は、一端が第1ゲージ部212aと第2ゲージ部214aの接続部に接続されており、他端が第1電極242に接続されている。第2配線部234は、一端が第2ゲージ部214aと第3ゲージ部216aの接続部に接続されており、他端が第2電極244に接続されている。第3配線部236は、一端が第3ゲージ部216aと第4ゲージ部218aの接続部に接続されており、他端が第3電極246に接続されている。第4配線部238は、一端が第4ゲージ部218aと第1ゲージ部212aの接続部に接続されており、他端が第4電極248に接続されている。電極242,244,246,248の各々は、半導体基板202の主面202S上に設けられており、力伝達ブロック204で覆われる範囲外に配置されている。 As shown in FIG. 12, the semiconductor substrate 202 has wiring portions 232, 234, 236, and 238 in which p-type impurities are introduced into the main surface 202S. The impurity concentration of the wiring portions 232, 234, 236, and 238 is approximately 1 × 10 18 to 1 × 10 21 cm −3 . One end of the first wiring part 232 is connected to the connection part of the first gauge part 212 a and the second gauge part 214 a, and the other end is connected to the first electrode 242. The second wiring part 234 has one end connected to the connection part of the second gauge part 214 a and the third gauge part 216 a and the other end connected to the second electrode 244. The third wiring part 236 has one end connected to the connection part between the third gauge part 216 a and the fourth gauge part 218 a and the other end connected to the third electrode 246. One end of the fourth wiring part 238 is connected to the connection part between the fourth gauge part 218 a and the first gauge part 212 a, and the other end is connected to the fourth electrode 248. Each of the electrodes 242, 244, 246, and 248 is provided on the main surface 202S of the semiconductor substrate 202, and is disposed outside the range covered with the force transmission block 204.
 図11に示されるように、力伝達ブロック204は、直方体形状を有しており、シリコン層204aと酸化シリコン層204bを有する。酸化シリコン層204bは、シリコン層204aの半導体基板202側の表面の一部を被覆する。力伝達ブロック204は、メサ型ゲージ212,214,216,218の周囲を一巡するように、半導体基板202の主面202Sに接合する。半導体基板202のうちの力伝達ブロック204が接合する部分を封止部230という。半導体基板202の封止部230と力伝達ブロック204は、気密に接合する。また、力伝達ブロック204は、メサ型ゲージ212,214,216,218の頂面及び支柱220の頂面にも接合する。半導体基板202と力伝達ブロック204は、常温個相接合技術を利用して接合される。具体的には、アルゴンイオンを用いて半導体基板202の主面202S及び力伝達ブロック204の酸化シリコン層204bの表面を活性化させた後に、超高真空中で半導体基板202の主面202Sと力伝達ブロック204の酸化シリコン層204bの表面を接触させ、両者を接合させる。 As shown in FIG. 11, the force transmission block 204 has a rectangular parallelepiped shape, and includes a silicon layer 204a and a silicon oxide layer 204b. The silicon oxide layer 204b covers a part of the surface of the silicon layer 204a on the semiconductor substrate 202 side. The force transmission block 204 is joined to the main surface 202S of the semiconductor substrate 202 so as to make a round around the mesa gauges 212, 214, 216, and 218. A portion of the semiconductor substrate 202 where the force transmission block 204 is joined is referred to as a sealing portion 230. The sealing portion 230 of the semiconductor substrate 202 and the force transmission block 204 are hermetically bonded. The force transmission block 204 is also joined to the top surfaces of the mesa gauges 212, 214, 216, and 218 and the top surface of the support column 220. The semiconductor substrate 202 and the force transmission block 204 are bonded using a room temperature single phase bonding technique. Specifically, after activating the main surface 202S of the semiconductor substrate 202 and the surface of the silicon oxide layer 204b of the force transmission block 204 using argon ions, the force is applied to the main surface 202S of the semiconductor substrate 202 in an ultrahigh vacuum. The surfaces of the silicon oxide layer 204b of the transmission block 204 are brought into contact with each other to join them together.
 図11に示されるように、力伝達ブロック204の酸化シリコン層204bの一部が除去されており、力伝達ブロック204の半導体基板202側の面に溝204cが形成されている。溝204cは、半導体基板202のメサ型ゲージ212,214,216,218と封止部230の間の領域に対向するように配置されており、力検知装置201を平面視したときに、メサ型ゲージ212,214,216,218の周囲を一巡する。このような溝204cが形成されていることにより、半導体基板202と力伝達ブロック204の間には、外部から隔てられた封止空間206が構成される。 As shown in FIG. 11, a part of the silicon oxide layer 204b of the force transmission block 204 is removed, and a groove 204c is formed on the surface of the force transmission block 204 on the semiconductor substrate 202 side. The groove 204c is disposed so as to face the region between the mesa type gauges 212, 214, 216, 218 and the sealing portion 230 of the semiconductor substrate 202, and the mesa type when the force detection device 201 is viewed in plan view. Go around the gauges 212, 214, 216 and 218. By forming such a groove 204 c, a sealed space 206 separated from the outside is formed between the semiconductor substrate 202 and the force transmission block 204.
 次に、力検知装置201の動作を説明する。まず、力検知装置201は、第1電極242に定電流源が接続され、第3電極246が接地され、第2電極244と第4電極248の間に電圧測定器が接続して用いられる。力検知装置201では、力伝達ブロック204に加わる燃焼圧が変化すると、力伝達ブロック204を介してメサ型ゲージ212,214,216,218のゲージ部212a,214a,216a,218aに加わる圧縮応力も変化する。ピエゾ抵抗効果が現われるゲージ部212a,216aの電気抵抗は、圧縮応力に比例して変化する。このため、第2電極244と第4電極248の電位差は、ゲージ部212a,216aに加わる圧縮応力に比例する。これにより、電圧測定器で計測される電圧変化から力伝達ブロック204に加わる燃焼圧が検知される。 Next, the operation of the force detection device 201 will be described. First, the force detection device 201 is used by connecting a constant current source to the first electrode 242, grounding the third electrode 246, and connecting a voltage measuring device between the second electrode 244 and the fourth electrode 248. In the force detection device 201, when the combustion pressure applied to the force transmission block 204 changes, the compressive stress applied to the gauge portions 212a, 214a, 216a, 218a of the mesa type gauges 212, 214, 216, 218 via the force transmission block 204 is also increased. Change. The electrical resistance of the gauge portions 212a and 216a where the piezoresistance effect appears changes in proportion to the compressive stress. Therefore, the potential difference between the second electrode 244 and the fourth electrode 248 is proportional to the compressive stress applied to the gauge portions 212a and 216a. Thereby, the combustion pressure applied to the force transmission block 204 is detected from the voltage change measured by the voltage measuring device.
 図13に示されるように、封止型の力検知装置201は、半導体基板202と力伝達ブロック204の間に封止空間206が構成されている。封止空間206は、半導体基板202の封止部230と力伝達ブロック204の気密接合により、外部から隔てられている。このため、封止型の力検知装置201は、燃焼圧が増大すると、封止空間206の内部の気圧と燃焼圧の間の圧力差が増大する構成を有する。したがって、力伝達ブロック204の受圧面積(力検知装置201を平面視したときに、メサ型ゲージ212,214,216,218と封止部230の間の面積に相当する)に加わる燃焼圧の合計である力F2は、力伝達ブロック204を封止空間206側に向けて湾曲させる。このとき、力伝達ブロック204が湾曲して変位する部分が力点となり、支柱220が支点となり、メサ型ゲージ212が作用点となる梃子の関係が成立する。支柱220の支点とメサ型ゲージ212の作用点の間の距離をL1とし、支柱220の支点と変位する部分の力点の間の距離をL2とすると、作用点に加わる力F1は、理想的な梃子の効果が発揮されるとすると、以下の数式1で表される。
Figure JPOXMLDOC01-appb-I000001
 このように、本実施例の封止型の力検知装置201は、梃子の関係が成立する構成を有しているので、力伝達ブロック204に加わる力F2を増幅させた力F1をメサ型ゲージ212,216に加えることができる。これにより、力検知装置201のセンサ感度が大幅に向上する。
As shown in FIG. 13, in the sealing-type force detection device 201, a sealing space 206 is formed between the semiconductor substrate 202 and the force transmission block 204. The sealing space 206 is separated from the outside by an airtight connection between the sealing portion 230 of the semiconductor substrate 202 and the force transmission block 204. For this reason, the sealed force detection device 201 has a configuration in which the pressure difference between the atmospheric pressure inside the sealed space 206 and the combustion pressure increases as the combustion pressure increases. Accordingly, the total combustion pressure applied to the pressure receiving area of the force transmission block 204 (corresponding to the area between the mesa gauges 212, 214, 216, 218 and the sealing portion 230 when the force detection device 201 is viewed in plan). The force F <b> 2, which causes the force transmission block 204 to bend toward the sealing space 206 side. At this time, a portion where the force transmission block 204 is bent and displaced becomes a force point, the support column 220 becomes a fulcrum, and a lever relationship where the mesa gauge 212 acts as an action point is established. When the distance between the fulcrum of the column 220 and the action point of the mesa gauge 212 is L1, and the distance between the fulcrum of the column 220 and the force point of the displaced portion is L2, the force F1 applied to the action point is ideal. If the effect of the insulator is exhibited, it is expressed by the following formula 1.
Figure JPOXMLDOC01-appb-I000001
Thus, since the sealing type force detection device 201 of the present embodiment has a configuration in which the insulator relationship is established, the force F1 obtained by amplifying the force F2 applied to the force transmission block 204 is expressed as a mesa gauge. 212, 216. Thereby, the sensor sensitivity of the force detection device 201 is greatly improved.
 数式1に示されるように、力検知装置201のセンサ感度を向上させるためには、L2/L1が大きいのが望ましく、L2/L1が2以上であるのが望ましい。 As shown in Formula 1, in order to improve the sensor sensitivity of the force detection device 201, it is desirable that L2 / L1 is large, and it is desirable that L2 / L1 is 2 or more.
 図14に示されるように、封止空間206を構成する溝204cが、酸化シリコン層204b及びシリコン層204aの双方を加工して形成されていてもよい。梃子の効果が発揮されるためには、封止空間206に対応する位置の力伝達ブロック204が湾曲しなければならない。図14に示されるように、封止空間206に対応する位置のシリコン層204aが薄く形成されていると、その部分のシリコン層204aが良好に湾曲するので、梃子の効果が良好に発揮される。 As shown in FIG. 14, the groove 204c constituting the sealing space 206 may be formed by processing both the silicon oxide layer 204b and the silicon layer 204a. In order to exert the lever effect, the force transmission block 204 at a position corresponding to the sealing space 206 must be curved. As shown in FIG. 14, when the silicon layer 204a at a position corresponding to the sealing space 206 is formed thin, the silicon layer 204a at that portion is well curved, so that the insulator effect is satisfactorily exhibited. .
 図15に示されるように、封止空間206を構成する溝204cが、半導体基板202の主面202Sを加工して形成されていてもよい。この溝204cは、メサ型ゲージ212,214,216,218及び支柱220をドライエッチング技術を利用して形成する工程と同一工程で形成することができる。 As shown in FIG. 15, the groove 204 c constituting the sealing space 206 may be formed by processing the main surface 202 </ b> S of the semiconductor substrate 202. The groove 204c can be formed in the same process as the process of forming the mesa gauges 212, 214, 216, 218 and the support column 220 by using a dry etching technique.
 半導体基板2、202は、本開示の基板の一例に対応する。 The semiconductor substrates 2 and 202 correspond to an example of the substrate of the present disclosure.
 以上、本開示の具体例を詳細に説明したが、これらは例示に過ぎず、本開示に係わる実施形態、構成、態様を限定するものではない。本開示に関わる技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。また、本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。 Although specific examples of the present disclosure have been described in detail above, these are merely examples, and do not limit the embodiments, configurations, and aspects according to the present disclosure. Techniques related to the present disclosure include various modifications and changes of the specific examples illustrated above. The technical elements described in this specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology exemplified in this specification or the drawings can achieve a plurality of objects at the same time, and has technical usefulness by achieving one of the objects.

Claims (10)

  1.  基板(2)と力伝達ブロック(4)を備え、
     前記基板(2)は、
     主面(2S)に設けられており、圧縮応力に対して電気抵抗値が相対的に大きく変化する第1方向に伸びており、頂面を有する高感度メサ型ゲージ(14、18)と、
     前記主面(2S)に設けられており、圧縮応力に対して電気抵抗値が相対的に小さく変化する第2方向に伸びており、頂面を有する低感度メサ型ゲージ(12,16)と、
     前記主面(2S)に設けられており、前記高感度メサ型ゲージ(14、18)と前記低感度メサ型ゲージ(12,16)が接続する接続部から第3方向に伸びており、頂面を有するメサ型リード(22a,24a,26a,28a)と、を含み、
     前記力伝達ブロック(4)は、前記高感度メサ型ゲージ(14、18)の頂面及び前記低感度メサ型ゲージ(12,16)の頂面に接しており、前記メサ型リード(22a,24a,26a,28a)の頂面の少なくとも一部にて非接触である、力検知装置。
    A substrate (2) and a force transmission block (4);
    The substrate (2)
    A high-sensitivity mesa gauge (14, 18) provided on the main surface (2S), extending in a first direction in which the electrical resistance value changes relatively greatly with respect to compressive stress, and having a top surface;
    A low-sensitivity mesa gauge (12, 16) provided on the main surface (2S), extending in a second direction in which the electrical resistance value changes relatively small against compressive stress, and having a top surface; ,
    It is provided on the main surface (2S) and extends in a third direction from a connecting portion where the high sensitivity mesa gauge (14, 18) and the low sensitivity mesa gauge (12, 16) are connected. A mesa-type lead (22a, 24a, 26a, 28a) having a surface,
    The force transmission block (4) is in contact with the top surface of the high-sensitivity mesa gauge (14, 18) and the top surface of the low-sensitivity mesa gauge (12, 16), and the mesa lead (22a, 24a, 26a, 28a) A force detection device that is non-contact with at least part of the top surface.
  2.  前記力伝達ブロック(4)は、前記メサ型リード(22a,24a,26a,28a)の頂面にて非接触である、請求項1に記載の力検知装置。 The force detection device according to claim 1, wherein the force transmission block (4) is non-contact on a top surface of the mesa lead (22a, 24a, 26a, 28a).
  3.  前記力伝達ブロック(4)と前記高感度メサ型ゲージ(14、18)の頂面の接する面積が、前記力伝達ブロック(4)と前記低感度メサ型ゲージ(12,16)の頂面の接する面積よりも大きい、請求項1又は2に記載の力検知装置。 The area where the force transmission block (4) and the top surface of the high-sensitivity mesa gauge (14, 18) contact each other is the surface area of the force transmission block (4) and the top surface of the low-sensitivity mesa gauge (12, 16). The force detection device according to claim 1, wherein the force detection device is larger than a contact area.
  4.  前記力伝達ブロック(4)は、前記第2方向に沿って互いに離間して形成された複数の複数部分(40c)を有しており、
     前記複数部分(40c)の各々が、前記低感度メサ型ゲージ(12,16)の頂面に接する、請求項1~3のいずれか一項に記載の力検知装置。
    The force transmission block (4) has a plurality of portions (40c) formed apart from each other along the second direction,
    The force detection device according to any one of claims 1 to 3, wherein each of the plurality of portions (40c) is in contact with a top surface of the low-sensitivity mesa gauge (12, 16).
  5.  前記低感度メサ型ゲージ(12,16)は、前記第2方向に沿って中央付近を伸びる中央領域(12A)と、前記接続部から前記第2方向に沿って前記中央領域(12A)まで伸びる周辺領域(12B)と、を有しており、
     前記複数部分(40c)と前記中央領域(12A)の頂面の接する面積が、前記複数部分(40c)と前記周辺領域(12B)の頂面の接する面積よりも大きい、請求項4に記載の力検知装置。
    The low-sensitivity mesa type gauges (12, 16) extend along the second direction near the center (12A), and extend from the connecting portion along the second direction to the center region (12A). A peripheral area (12B),
    The area where the plurality of portions (40c) and the top surface of the central region (12A) are in contact is larger than the area where the plurality of portions (40c) and the top surface of the peripheral region (12B) are in contact with each other. Force detection device.
  6.  前記低感度メサ型ゲージ(12,16)は、前記第2方向に沿って中央付近を伸びる中央領域(12A)と、前記接続部から前記第2方向に沿って前記中央領域(12A)まで伸びる周辺領域(12B)と、を有しており、
     前記中央領域(12A)に対応して配置される前記複数部分(40c)は、前記周辺領域(12B)に対応して配置される前記複数部分(40c)に比べて、間隔がより密に形成されている、請求項4に記載の力検知装置。
    The low-sensitivity mesa type gauges (12, 16) extend along the second direction near the center (12A), and extend from the connecting portion along the second direction to the center region (12A). A peripheral area (12B),
    The plurality of portions (40c) arranged corresponding to the central region (12A) are formed at a closer interval than the plurality of portions (40c) arranged corresponding to the peripheral region (12B). The force detection device according to claim 4, wherein
  7.  基板(2)と力伝達ブロック(4)を備え、
     前記基板(2)は、
     主面(2S)に設けられており、圧縮応力に対して電気抵抗値が相対的に大きく変化する第1方向に伸びており、頂面を有する高感度メサ型ゲージ(14、18)と、
     前記主面(2S)に設けられており、圧縮応力に対して電気抵抗値が相対的に小さく変化する第2方向に伸びており、頂面を有する低感度メサ型ゲージ(12,16)と、
     前記主面(2S)に設けられており、前記高感度メサ型ゲージ(14、18)と前記低感度メサ型ゲージ(12,16)が接続する接続部から第3方向に伸びており、頂面を有するメサ型リード(22a,24a,26a,28a)と、を含み、
     前記力伝達ブロック(4)は、前記高感度メサ型ゲージ(14、18)の頂面のみに接しており、前記低感度メサ型ゲージ(12,16)に非接触である、力検知装置。
    A substrate (2) and a force transmission block (4);
    The substrate (2)
    A high-sensitivity mesa gauge (14, 18) provided on the main surface (2S), extending in a first direction in which the electrical resistance value changes relatively greatly with respect to compressive stress, and having a top surface;
    A low-sensitivity mesa gauge (12, 16) provided on the main surface (2S), extending in a second direction in which the electrical resistance value changes relatively small against compressive stress, and having a top surface; ,
    It is provided on the main surface (2S) and extends in a third direction from a connecting portion where the high sensitivity mesa gauge (14, 18) and the low sensitivity mesa gauge (12, 16) are connected. A mesa-type lead (22a, 24a, 26a, 28a) having a surface,
    The force transmission block (4) is in contact with only the top surface of the high-sensitivity mesa gauge (14, 18) and is not in contact with the low-sensitivity mesa gauge (12, 16).
  8.  基板(202)と力伝達ブロック(204)を備え、
     前記基板(202)は、
     主面(202S)に形成されており、前記力伝達ブロック(204)に接しており、ブリッジ回路を構成するメサ型ゲージ(212,214,216,218)と、
     前記主面(202S)に形成されており、前記メサ型ゲージ(212,214,216,218)の周囲を一巡して前記力伝達ブロック(204)に接する封止部(230)と、
     前記主面(202S)に形成されており、前記メサ型ゲージ(212,214,216,218)で囲まれた内部に配置されており、前記力伝達ブロック(204)に接する支柱(220)と、を有する、力検知装置。
    A substrate (202) and a force transmission block (204);
    The substrate (202)
    A mesa gauge (212, 214, 216, 218) that is formed on the main surface (202S), is in contact with the force transmission block (204), and forms a bridge circuit;
    A sealing portion (230) formed on the main surface (202S) and in contact with the force transmission block (204) around the periphery of the mesa gauge (212, 214, 216, 218);
    A pillar (220) formed on the main surface (202S), disposed inside the mesa gauge (212, 214, 216, 218) and in contact with the force transmission block (204); A force sensing device.
  9.  前記力伝達ブロック(204)には、前記基板(202)側の面に溝(204c)が形成されており、
     前記溝(204c)は、前記メサ型ゲージ(212,214,216,218)に接する部分と前記封止部に接する部分の間に配置されている、請求項8に記載の力検知装置。
    The force transmission block (204) has a groove (204c) formed on the surface on the substrate (202) side,
    The force detection device according to claim 8, wherein the groove (204c) is disposed between a portion in contact with the mesa gauge (212, 214, 216, 218) and a portion in contact with the sealing portion.
  10.  前記力伝達ブロック(204)は、
     シリコン層(204a)と、
     前記シリコン層(204a)の前記基板(202)側の面の一部を被覆する酸化シリコン層(204b)と、を有し
     前記溝(204c)は、前記酸化シリコン層(204b)の非被覆領域に構成される、請求項9に記載の力検知装置。
    The force transmission block (204)
    A silicon layer (204a);
    A silicon oxide layer (204b) covering a part of the surface of the silicon layer (204a) on the substrate (202) side, and the groove (204c) is an uncovered region of the silicon oxide layer (204b). The force detection device according to claim 9, which is configured as follows.
PCT/JP2015/001670 2014-03-26 2015-03-24 Force detection device WO2015146154A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/128,453 US10222281B2 (en) 2014-03-26 2015-03-24 Force detection apparatus having high sensor sensitivity
CN201580016226.3A CN106164634A (en) 2014-03-26 2015-03-24 Force checking device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014-063198 2014-03-26
JP2014063198A JP6117139B2 (en) 2014-03-26 2014-03-26 Force detector
JP2014-121824 2014-06-12
JP2014121824 2014-06-12
JP2015-045682 2015-03-09
JP2015045682A JP6430297B2 (en) 2014-06-12 2015-03-09 Force detector

Publications (1)

Publication Number Publication Date
WO2015146154A1 true WO2015146154A1 (en) 2015-10-01

Family

ID=54194701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001670 WO2015146154A1 (en) 2014-03-26 2015-03-24 Force detection device

Country Status (1)

Country Link
WO (1) WO2015146154A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107407610A (en) * 2015-04-06 2017-11-28 株式会社电装 Force checking device
CN107532952A (en) * 2015-04-22 2018-01-02 株式会社电装 Force checking device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08271363A (en) * 1995-03-31 1996-10-18 Toyota Central Res & Dev Lab Inc Force detecting element and manufacture thereof
JP2001304997A (en) * 2000-04-27 2001-10-31 Toyota Central Res & Dev Lab Inc Semiconductor pressure sensor
JP2004085253A (en) * 2002-08-23 2004-03-18 Toyota Central Res & Dev Lab Inc Force-sensing device and method for manufacturing semiconductor block which can be used for the device
JP2007263766A (en) * 2006-03-28 2007-10-11 Matsushita Electric Works Ltd Sensor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08271363A (en) * 1995-03-31 1996-10-18 Toyota Central Res & Dev Lab Inc Force detecting element and manufacture thereof
JP2001304997A (en) * 2000-04-27 2001-10-31 Toyota Central Res & Dev Lab Inc Semiconductor pressure sensor
JP2004085253A (en) * 2002-08-23 2004-03-18 Toyota Central Res & Dev Lab Inc Force-sensing device and method for manufacturing semiconductor block which can be used for the device
JP2007263766A (en) * 2006-03-28 2007-10-11 Matsushita Electric Works Ltd Sensor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107407610A (en) * 2015-04-06 2017-11-28 株式会社电装 Force checking device
CN107532952A (en) * 2015-04-22 2018-01-02 株式会社电装 Force checking device

Similar Documents

Publication Publication Date Title
JP2017156241A (en) Pressure sensor chip and pressure sensor
CN110168335B (en) Pressure sensor
WO2016163111A1 (en) Force detection device
US10222281B2 (en) Force detection apparatus having high sensor sensitivity
CN108351267A (en) Capacitance pressure transducer, and its manufacturing method
US10094724B2 (en) Pressure sensor
WO2015146154A1 (en) Force detection device
JP2007225344A (en) Pressure sensor
JP2007101222A (en) Pressure sensor
CN110114650A (en) Pressure sensor component and the pressure sensor module for having the pressure sensor component
KR101633027B1 (en) Mems sensor
WO2019098001A1 (en) Capacitance-type pressure sensor
JP6430297B2 (en) Force detector
JP5793700B2 (en) Semiconductor pressure sensor
JP6117139B2 (en) Force detector
KR20150129913A (en) Piezoresistive typed ceramic pressure sensor
JP2014115099A (en) Pressure sensor
JP2005156164A (en) Pressure sensor, and manufacturing method for pressure sensor
JP6687197B2 (en) Pressure sensor
JP2007071770A (en) Capacitance type pressure sensor
US10113923B2 (en) Force detection device
JP2016170121A (en) Pressure sensor, tactile sensor, and method for manufacturing pressure sensor
JP6430327B2 (en) Force detector
WO2018235415A1 (en) Physical quantity sensor
JP6075222B2 (en) Force sensing element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15769093

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15128453

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15769093

Country of ref document: EP

Kind code of ref document: A1