WO2015146109A1 - Flaw analysis device, flaw analysis method, and storage medium - Google Patents

Flaw analysis device, flaw analysis method, and storage medium Download PDF

Info

Publication number
WO2015146109A1
WO2015146109A1 PCT/JP2015/001584 JP2015001584W WO2015146109A1 WO 2015146109 A1 WO2015146109 A1 WO 2015146109A1 JP 2015001584 W JP2015001584 W JP 2015001584W WO 2015146109 A1 WO2015146109 A1 WO 2015146109A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
pipe
fluid
changing
flow
Prior art date
Application number
PCT/JP2015/001584
Other languages
French (fr)
Japanese (ja)
Inventor
裕文 井上
慎 冨永
尚武 高橋
純一郎 又賀
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2016510013A priority Critical patent/JPWO2015146109A1/en
Publication of WO2015146109A1 publication Critical patent/WO2015146109A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/24Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/24Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations
    • G01M3/243Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations for pipes

Definitions

  • the present invention relates to a defect analyzer and the like, for example, to a device for detecting a position where a fluid leaks from a pipe.
  • a leakage inspection by a correlation method As a method for inspecting the leakage of fluid from piping, for example, a leakage inspection by a correlation method is known.
  • a pair of vibration sensors are arranged on the pipe at a predetermined distance so as to sandwich the defective portion on both sides. Vibration sound (leakage vibration) caused by leakage propagates through the pipe. The time for the vibration sound generated by this leakage to reach each of the pair of vibration sensors is measured. Then, the fluid leakage position is estimated from the product of the difference between the two measured values of the vibration arrival time (vibration arrival time difference) and the sound velocity.
  • the cross-correlation function of the time series data is calculated, and the time corresponding to the maximum value of the function is used.
  • Patent Document 1 discloses that the frequency spectrum of the power spectrum of the leakage vibration that fluctuates when the pressure of the fluid is changed, and the signal detected in the frequency band is subjected to correlation processing, thereby leaking.
  • a technique for specifying a position is disclosed.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a defect analysis apparatus capable of more accurately detecting a fluid leakage position of a pipe.
  • the defect analysis apparatus includes: a vibration changing unit that changes a vibration that propagates through the pipe or the fluid by changing characteristics related to a flow vibration that is a vibration caused by a flow of the fluid flowing through the pipe; and the vibration change.
  • a pair of vibration detecting means for detecting vibrations in change which are vibrations propagating through the pipe or the fluid flowing in the pipe while being changed by the means, and the change detected by the pair of vibration detecting means.
  • Leakage position specifying calculation means for calculating a fluid leakage position, which is a position where the fluid is leaking from the pipe, based on internal vibrations.
  • the control device of the present invention outputs a vibration change instruction signal for changing the vibration propagating through the pipe or the fluid by changing the characteristics relating to the flow vibration, which is vibration generated by the flow of the fluid flowing through the pipe, An input of a vibration detection signal when detecting a changing vibration that is a vibration propagating through the pipe or a fluid flowing in the pipe while changing based on a vibration change instruction signal is received.
  • a fluid leakage position calculation instruction signal for calculating a fluid leakage position, which is a position where the fluid is leaking from the pipe, is output based on the vibration that is included.
  • the defect analysis method changes the vibration related to flow vibration, which is vibration generated by the flow of the fluid flowing in the pipe, thereby changing the vibration propagating the pipe or the fluid and propagating the pipe or the fluid. While the vibration to be changed is changing, the vibration in the change that is the vibration propagating through the pipe or the fluid flowing in the pipe is detected, and the fluid flows from the pipe based on the detection result of the vibration in the change.
  • the fluid leak position which is the leaking position, is calculated.
  • the storage medium of the present invention changes the vibration related to the flow vibration, which is vibration generated by the flow of the fluid flowing in the pipe, thereby changing the vibration propagating the pipe or the fluid and propagating the pipe or the fluid. While the vibration is changing, the vibration in the change that is the vibration that propagates the pipe or the fluid flowing in the pipe is detected, and the fluid leaks from the pipe based on the detection result of the vibration in the change.
  • a program for causing a computer to perform processing for calculating a fluid leakage position, which is a position where the fluid is leaking, is stored.
  • the fluid leakage position of the pipe can be detected more accurately.
  • fluid flow vibration in the case where fluid flow vibration flowing in a pipe is steady will be described. It is an example of a cross-correlation function when the flow vibration of the fluid flowing in the pipe is steady. An example of fluid flow vibration when the flow vibration of the fluid flowing in the pipe is unsteady (the frequency varies) will be described. It is an example of a cross-correlation function when the flow vibration of the fluid flowing in the pipe is unsteady (frequency varies). An example of fluid flow vibration when the flow vibration of the fluid flowing in the pipe is unsteady (amplitude varies) will be described. It is an example of a cross-correlation function when the flow vibration of a fluid flowing in a pipe is unsteady (amplitude varies).
  • FIG. 1 is a conceptual diagram of the defect analysis apparatus 100 according to the first embodiment of the present invention.
  • the defect analysis apparatus 100 includes at least a first vibration detection unit 110 ⁇ / b> A, a second vibration detection unit 110 ⁇ / b> B, a vibration change unit 120, and a leakage position specification calculation unit 134.
  • the leakage position specifying calculation unit 134 is provided in the processing unit 130.
  • the communication between the vibration changing unit 120 and the processing unit 130 is wired or wirelessly connected.
  • the first and second vibration detection units 110A and 110B and the processing unit 130 are connected to each other by wired or wireless communication.
  • the first vibration detection unit 110 ⁇ / b> A and the second vibration detection unit 110 ⁇ / b> B are configured to transmit vibration propagating through the pipe 900 or the fluid 910 (liquid or gas) in the pipe 900 via the pipe 900. It is installed so that it can be detected.
  • the first vibration detection unit 110 ⁇ / b> A and the second vibration detection unit 110 ⁇ / b> B may be attached to the inner wall surface of the pipe 900.
  • the first vibration detection unit 110A and the second vibration detection unit 110B are installed on the outer surface or inside of a flange (not shown) installed in the pipe 900 or an accessory (not shown) such as a valve plug. May be.
  • the pipe 900 is embedded in the underground 600 as shown in FIG.
  • the pipe 900 may be installed in an attic or a basement of a building, and may be embedded in a wall, a pillar, or the like of the building.
  • FIG. 1 shows a leak hole 920.
  • the leak hole 920 is a hole formed in the pipe 900 due to aging or external damage.
  • the fluid 910 flowing through the pipe 900 leaks from the leak hole 920.
  • FIG. 2 is a functional block diagram of the first vibration detection unit 110A and the second vibration detection unit 110B. As shown in FIG. 2, each of the first vibration detection unit 110 ⁇ / b> A and the second vibration detection unit 110 ⁇ / b> B includes a vibration detection sensor 111 and a vibration detection side transmission unit 112.
  • the vibration detection sensor 111 is connected to the vibration detection side transmission unit 112.
  • the vibration detection sensor 111 may be permanently installed at the installation location to detect vibration constantly, or may be installed for a predetermined period to detect vibration intermittently.
  • a sensor that measures solid vibration can be used.
  • the vibration detection sensor 111 can be a piezoelectric acceleration sensor, an electrodynamic acceleration sensor, a capacitance acceleration sensor, an optical speed sensor, a dynamic strain sensor, or the like.
  • the vibration detection sensor 111 detects “vibration generated due to the state of the pipe 900 or the fluid 910 flowing in the pipe 900 and propagating the fluid 910 flowing in the pipe 900”. Further, the vibration detection sensor 111 also detects vibrations that are changing. The vibration being changed is vibration that propagates through the pipe 900 or the fluid 910 flowing through the pipe 900 while being changed by a vibration changing unit 120 described later.
  • the vibration detection side transmission unit 112 is connected to the vibration detection sensor 111.
  • the vibration detection side transmission unit 112 is also connected to the processing device 130.
  • the vibration detection side transmission unit 112 transmits the vibration data detected by the vibration detection sensor 111 to the processing unit 130.
  • the vibration changing unit 120 changes to a characteristic (referred to as a flow vibration characteristic) related to vibration (referred to as flow vibration) caused by the fluid flowing in the pipe 900 through the pipe 900 or the fluid 910 flowing in the pipe 900.
  • a flow vibration characteristic referred to as flow vibration
  • the vibration changing unit 120 is attached to the outer wall surface of the pipe 900.
  • the vibration changing unit 120 may be attached to the inner wall surface of the pipe 900.
  • the vibration changing unit 120 may be installed on the outer surface or inside of a flange (not shown) installed in the pipe 900 or an accessory (not shown) such as a valve plug.
  • the vibration changing unit 120 changes vibration characteristics (flow vibration characteristics) relating to flow vibration, which is vibration generated by the flow of the fluid 910 flowing in the pipe 900, thereby causing vibration propagating in the pipe 900 or the fluid 910 flowing in the pipe 900. Change.
  • the vibration change unit 120 is preferably provided on the upstream side of the attachment position of the pipe 900 of the first and second vibration detection units 110A and 110B. Thereby, the characteristic (flow vibration characteristic) regarding the flow vibration which is the vibration generated by the flow of the fluid 910 flowing in the pipe 900 can be changed more efficiently.
  • the vibration changing unit 120 may operate independently with respect to the first and second vibration detecting units 110A and 110B (a pair of vibration detecting units) and the leakage position specifying calculating unit 134. Accordingly, the vibration changing unit 120 can operate without being affected by the first and second vibration detecting units 110A and 110B and the leakage position specifying calculating unit 134.
  • the vibration changing unit 120 does not necessarily follow the control signal.
  • the vibration changing unit 120 is expected to have the same effect even if the fluid leakage position is specified using vibration data in a time zone where the fluid is used frequently, for example.
  • the vibration data in the time zone in which the fluid is frequently used is vibration data in the time zone in which the pressure fluctuation in the pipe frequently occurs and the fluid leakage vibration changes accordingly.
  • a water distribution facility that controls the water network can be used as the vibration changing unit 120.
  • a device such as a pressure pump or a pressure reducing valve can be used.
  • FIG. 3 is a functional block diagram of the vibration changing unit 120. As shown in FIG. 3, the vibration changing unit 120 includes a vibration changing unit 121 and a control signal receiving unit 122.
  • the vibration changing means 121 is connected to the control signal receiving unit 122.
  • the vibration changing unit 121 changes the vibration propagating through the pipe 900 or the fluid 910 flowing in the pipe 900 by changing the flow vibration characteristics based on the control signal received by the control signal receiving unit 122.
  • the vibration changing means 121 changes the flow vibration characteristics to vibration having a large autocorrelation as compared with the stationary case based on the control signal. If the autocorrelation of the fluid flow vibration (fluid leakage vibration) in the leak hole 920 is large, the cross-correlation in the true arrival time difference of the vibration detected by the two vibration detectors 110A and 110B separated from the leak hole 920 also increases.
  • the amplitude of the fluid flow vibration may be changed by the vibration changing means 121, the frequency may be changed, or a combination of both may be used.
  • the control signal is output by the control unit 131 described later.
  • the control signal is a vibration change instruction signal for changing vibration propagating in the pipe 900 or the fluid 910 flowing in the pipe 900 by changing characteristics relating to flow vibration, which is vibration generated by the flow of the fluid 910 flowing in the pipe 900. is there. This control signal is generated by the control unit 131 described later.
  • control signal receiving unit 122 is connected to the vibration changing means 121.
  • the control signal receiving unit 122 is also connected to the processing unit 130.
  • the control signal receiving unit 122 receives a control signal transmitted by the control unit 131 described later and outputs it to the vibration changing unit 121.
  • vibration changing unit 120 (vibration changing means 121) will be described in more detail later.
  • the processing unit 130 is connected to the first vibration detection unit 110 ⁇ / b> A, the second vibration detection unit 110 ⁇ / b> B, and the vibration change unit 120.
  • the processing unit 130 receives data of vibrations detected by the first and second vibration detection units 110A and 110B.
  • FIG. 4 is a diagram showing functional blocks of the processing unit 130.
  • the processing unit 130 includes a control unit 131, a processing unit side transmission unit 132, a control signal storage unit 133, a leakage position specifying calculation unit 134, a leakage determination unit 135, and a processing unit side.
  • a receiving unit 136 is a diagram showing functional blocks of the processing unit 130.
  • the processing unit 130 includes a control unit 131, a processing unit side transmission unit 132, a control signal storage unit 133, a leakage position specifying calculation unit 134, a leakage determination unit 135, and a processing unit side.
  • control unit 131 is connected to the processing unit side transmission unit 132, the control signal storage unit 133, the leakage position specifying calculation unit 134, the leakage determination unit 135, and the processing unit side reception unit 136.
  • the control unit 131 corresponds to the control device of the present invention.
  • the control unit 131 generates a control signal to be transmitted to the processing unit side transmission unit 132 and outputs the control signal to the processing unit side transmission unit 132.
  • the control signal changes the vibration propagating through the pipe 900 or the fluid 910 flowing in the pipe 900 by changing the characteristics relating to the flow vibration, which is the vibration generated by the flow of the fluid 910 flowing in the pipe 900.
  • This is a vibration change instruction signal.
  • control unit 131 receives an input of a vibration detection signal when detecting vibration in change by a processing unit side receiving unit 136 described later.
  • the vibration under change is vibration that propagates through the pipe 900 or the fluid 910 flowing in the pipe 900 while being changed based on the vibration change instruction signal (control signal).
  • the control unit 131 outputs a fluid leakage position calculation instruction signal to the leakage position specifying calculation unit 134 based on the changing vibration included in the vibration detection signal.
  • the fluid leakage position calculation instruction signal is a signal for calculating a fluid leakage position (position of the leakage hole 920) that is a position where the fluid 910 is leaking from the pipe 900.
  • the processing unit side transmission unit 132 is connected to the control unit 131.
  • the processing unit side transmission unit 132 is connected to the vibration changing unit 120.
  • the processing unit side transmission unit 132 transmits a control signal (vibration change instruction signal) generated by the control unit 131 to the vibration change unit 120.
  • the control signal storage unit 133 is connected to the control unit 131.
  • a plurality of control signals ((vibration change instruction signals) are stored in the control signal storage unit 133. That is, the control signal storage unit 133 is referred to by the vibration change unit 120 to change the fluid leakage vibration characteristics. For example, a signal that changes the amplitude of fluid flow vibration (fluid leakage vibration), a signal that changes frequency, or a combination of both is changed with respect to the vibration changing unit 120 (vibration changing means 121).
  • the signal to be stored is stored in the control signal storage unit 133.
  • the leakage position specifying calculation unit 134 is connected to the control unit 131 and the processing unit side receiving unit 136.
  • the leakage position specifying calculation unit 134 calculates the fluid leakage position (the position of the leakage hole 920) based on the changing vibration detected by the first and second vibration detection units 110A and 110B.
  • the fluid leakage position is a position where the fluid 910 is leaking from the pipe 900.
  • the leakage position specifying calculation unit 134 receives, from the processing unit side receiving unit 136, data on the vibrations being detected detected by the first and second vibration detecting units 110A and 110B. Then, the leakage position specifying calculation unit 134 analyzes the vibration data being changed.
  • the characteristic component of the specific frequency resulting from the leak hole 920 (defect) is referred to as a “first characteristic component”.
  • the leak position specifying calculation unit 134 includes the first feature component appearing in the vibration data acquired by the first vibration detection unit 110A and the first feature component appearing in the vibration data acquired by the second vibration detection unit 110B.
  • the fluid leak position (position of the leak hole 920) formed in the pipe 900 is specified using the correlation (eg, phase difference, time difference) with the one feature component and the vibration propagation speed.
  • the leakage determination unit 135 is connected to the control unit 131 and the processing unit side receiving unit 136.
  • the leakage determination unit 135 determines whether there is a leakage in the pipe 900. That is, the leakage determination unit 135 determines whether or not the leakage hole 920 is formed in the pipe 900 based on at least one of the vibration data detected by the first and second vibration detection units 110A and 110B.
  • the specific vibration frequency component shows a larger amplitude than when the leak hole 920 is not formed.
  • a case where the leak hole 920 is not formed in the pipe 900 is regarded as a normal state. That is, when the leak hole 920 is formed in the pipe 900, the vibration frequency component in a specific range is normal (normal) in the vibration data detected by the first and second vibration detectors 110A and 110B. A characteristic showing a large amplitude appears.
  • the leakage determination unit 135 analyzes the vibration data detected by the first and second vibration detection units 110A and 110B, and determines whether or not the above-described feature appears. More specifically, the fluid leakage determination unit 135 determines whether or not the leakage hole 920 is formed in the pipe 900 by determining whether or not the amplitude threshold value at the normal time is exceeded.
  • the leakage determination unit 135 is not an indispensable component of the present invention. Therefore, the leakage determination unit 135 can be omitted.
  • the processing unit side receiving unit 136 is connected to the control unit 131, the leakage position specifying calculation unit 134, and the leakage determination unit 135.
  • the processing unit side reception unit 136 is also connected to the first vibration detection unit 110A and the second vibration detection unit 110B.
  • the processing unit side receiving unit 136 receives the vibration data detected by the first and second vibration detection units 110A and 110B from the first and second vibration detection units 110A and 110B.
  • FIG. 5 is a diagram showing an operation flow of the defect analysis apparatus 100 according to the first embodiment of the present invention.
  • the first and second vibration detection units 110A and 110B measure the first and second vibration data (step (STEP: hereinafter referred to as S) 1). More specifically, the vibration that each vibration detection sensor 111 in the first and second vibration detection units 110A and 110B propagates in the pipe 900 or the fluid 910 flowing in the pipe 900 is represented by the first and second vibration data. Detect as. Then, the vibration detection side transmission unit 112 receives the first and second vibration data from the vibration detection sensors 111 of the first and second vibration detection units 110 ⁇ / b> A and 110 ⁇ / b> B and transmits them to the processing unit 130. Next, the processing unit side receiving unit 136 of the processing unit 130 receives the first and second vibration data.
  • the leakage determination unit 135 performs a defect presence / absence determination process (S2). Specifically, the leak determination unit 135 determines whether there is a leak in the pipe 900. That is, as described above, the leak determination unit 135 determines whether or not the leak hole 920 is formed in the pipe 900 based on at least one of the first and second vibration data (whether or not the pipe 900 is defective). ). Leakage determination unit 135 may determine whether or not leakage hole 920 is formed in pipe 900 based on both the first and second vibration data.
  • the process of S1 is repeated again.
  • the processing of S2 and S3 may not be included in the configuration requirements of the present invention. In this case, the processes of S2 and S3 can be omitted. That is, after the process of S1 is completed, the process of S4 is performed.
  • the vibration changing unit 120 changes the vibration (S4).
  • the vibration changing unit 120 changes the vibration propagating through the pipe 900 or the fluid 910 flowing in the pipe 900 by changing the characteristics (flow vibration characteristics) related to the flow vibration.
  • the characteristic regarding the flow vibration is vibration generated by the flow of the fluid 910 flowing in the pipe 900 as described above.
  • control unit 131 generates a control signal to be output to the processing unit side transmission unit 132, and inputs this to the processing unit side transmission unit 132.
  • the control unit 131 may extract the vibration change instruction signal from the control signal storage unit 133 and output it to the processing unit side transmission unit 132 as a control signal.
  • the control signal changes the vibration propagating through the pipe 900 or the fluid 910 flowing in the pipe 900 by changing the characteristics related to the flow vibration, which is the vibration generated by the flow of the fluid 910 flowing in the pipe 900 as described above. This is a vibration change instruction signal.
  • the processing unit side transmission unit 132 transmits a control signal to the vibration changing unit 120.
  • the control signal receiving unit 122 receives the control signal from the processing unit side transmitting unit 132 and outputs it to the vibration changing unit 121.
  • the vibration changing unit 121 changes the vibration propagating through the pipe 900 or the fluid 910 flowing in the pipe 900 by changing the flow vibration characteristics based on the control signal.
  • vibration changing unit 120 vibration changing means 121
  • the vibration changing unit 120 changes the characteristics (flow vibration characteristics) related to the flow vibration, which is vibration generated by the flow of the fluid 910 flowing in the pipe 900, thereby changing the pipe 900 or the fluid 910 flowing in the pipe 900. Change propagating vibration. Examples of the flow vibration characteristics include amplitude and frequency.
  • Examples of means for changing the amplitude and frequency of the fluid vibration include applying pressure to the fluid 910 and applying a temperature change.
  • the vibration changing unit 120 changes the temperature of the fluid 910 flowing in the pipe 900 or a pressure control unit (not shown, for example, a pressure pump or a pressure reducing valve) that changes the pressure of the fluid 910 flowing in the pipe 900.
  • a temperature control unit (not shown, for example, a heater) is included as the vibration changing unit 121.
  • FIG. 6 is a diagram showing an example of the relationship between the frequency and amplitude acceleration of fluid vibration when different pressures are applied to the fluid 910.
  • the amplitude and frequency of the fluid wave change. Specifically, when the pressure applied to the fluid 910 is changed from P1 to P2, the amplitude acceleration decreases and the frequency increases. Note that when changing the pressure applied to the fluid 910, the pressure may be increased or decreased.
  • FIG. 7 is a diagram showing an example of the relationship between the frequency and amplitude acceleration of the fluid vibration when different temperature changes are given to the fluid 910.
  • the amplitude and frequency of the fluid wave change. Specifically, when the temperature of the fluid 910 is changed from T1 to T2, the amplitude acceleration decreases and the frequency increases.
  • the temperature may be increased or decreased.
  • the vibration changing unit 120 changes the amplitude or frequency of the flow vibration as the characteristic (flow vibration characteristic) related to the flow vibration, which is the vibration generated by the flow of the fluid 910 flowing in the pipe 900, thereby the pipe 900 or the pipe 900.
  • the vibration propagating through the fluid 910 flowing inside can be changed.
  • the first and second vibration detection units 110A and 110B measure the first and second unsteady vibration data (S5).
  • the first unsteady vibration data is data detected by the first vibration detection unit 110 ⁇ / b> A and propagates through the pipe 900 and the fluid 910 flowing through the pipe 900 after being changed by the vibration change unit 120.
  • the second unsteady vibration data is data detected by the second vibration detection unit 110B and propagates through the pipe 900 and the fluid 910 flowing through the pipe 900 after being changed by the vibration change unit 120.
  • the steady state refers to a state in which no change is applied by the vibration change unit 120
  • the non-steady state refers to a state in which a change is applied by the vibration change unit 120.
  • the vibration detection sensors 111 of the first and second vibration detection units 110A and 110B measure the first and second unsteady vibration data, and output them to the vibration detection side transmission unit 112.
  • the vibration detection side transmission unit 112 transmits the first and second unsteady vibration data to the processing unit 130.
  • the processing unit side receiving unit 136 receives the first and second unsteady vibration data.
  • the leakage position specification calculating unit 134 calculates the arrival time difference ⁇ T by correlation calculation (S6).
  • the arrival time difference ⁇ T is a difference value between the arrival time TA until the first vibration detection unit 110A detects vibration and the arrival time TB until the second vibration detection unit 110B detects vibration.
  • a method for calculating the arrival time difference ⁇ T by the leakage position specifying calculation unit 134 will be specifically described.
  • the operation of the leakage position specifying calculation unit 134 will be described while comparing the case where the flow vibration of the fluid 910 flowing in the pipe 900 is steady and the case where it is unsteady.
  • FIG. 8 shows an example of the flow vibration of the fluid 910 when the flow vibration of the fluid 910 flowing through the pipe 900 is steady.
  • FIG. 9 is an example of a cross-correlation function when the flow vibration of the fluid 910 flowing in the pipe 900 is steady.
  • the leakage vibration of the fluid 910 is a sine wave having an amplitude of 1 and a frequency of 125 Hz.
  • the distance between the first vibration detection unit 110A (vibration detection sensor 111) and the second vibration detection unit 110B (vibration detection sensor 111) is 100 m.
  • the noise of the first vibration detection unit 110A (vibration detection sensor 111) and the second vibration detection unit 110B (vibration detection sensor 111) is represented by a normal random number of variance 1.
  • the distance from the vibration detection unit 110A (vibration detection sensor 111) at the fluid leakage position was set to 30 m, the sound speed was set to 1300 m / s, that is, the arrival time difference of the fluid leakage vibration was set to 30.8 ms.
  • the maximum value does not appear at the arrival time difference of 30.8 ms that should originally appear, and the value of the maximum value is likely to change due to noise because the value of the peak having the maximum value is close to the value of the adjacent peak.
  • the arrival time difference ⁇ T between the arrival time TA until the first vibration detection unit 110A detects the vibration and the arrival time TB until the second vibration detection unit 110B detects the vibration is accurately detected. I could't. That is, the leakage position specifying calculation unit 134 can accurately calculate the arrival time difference ⁇ T based on the vibration data acquired by the first and second vibration detection units 110A and 110B in a state where the vibration change unit 120 does not operate. Can not.
  • FIG. 10 shows an example of the flow vibration of the fluid 910 when the flow vibration of the fluid 910 flowing in the pipe 900 is unsteady (frequency fluctuates).
  • FIG. 11 is an example of a cross-correlation function when the flow vibration of the fluid 910 flowing in the pipe 900 is non-stationary (frequency varies).
  • the leakage vibration of the fluid 910 changed by the vibration changing unit 120 is a chirp wave whose amplitude is 1 and whose frequency is changed from 50 Hz to 200 Hz.
  • the distance between the first vibration detection unit 110A (vibration detection sensor 111) and the second vibration detection unit 110B (vibration detection sensor 111) is 100 m.
  • the noise of the first vibration detection unit 110A (vibration detection sensor 111) and the second vibration detection unit 110B (vibration detection sensor 111) is represented by a normal random number of variance 1.
  • the distance from the vibration detection unit 110A (vibration detection sensor 111) at the fluid leakage position is set to 100 m
  • the sound speed is set to 1300 m / s
  • the arrival time difference of the fluid leakage vibration is set to 30.8 ms.
  • the maximum value P1 clearly appears at an arrival time difference of 30.8 ms at which the maximum value should appear.
  • the point that the maximum value P1 is clearly displayed is clear when compared with FIG. That is, in FIG. 11, compared to the steady-state cross-correlation function shown in FIG. 9, there is a large level difference between the value of the peak having the maximum value P1 and the adjacent peak, so that it is less susceptible to noise.
  • the arrival time difference ⁇ T between the arrival time TA until the first vibration detection unit 110A detects vibration and the arrival time TB until the second vibration detection unit 110B detects vibration is shown in FIG. As shown, it can be detected accurately. That is, when the vibration data (first and second unsteady vibration data) acquired by the first and second vibration detection units 110A and 110B is used in a state where the vibration changing unit 120 is operated, the leak position specifying calculation is performed. The unit 134 can accurately calculate the arrival time difference ⁇ T.
  • the vibration changing unit 120 changes the vibration propagating in the pipe 900 or the fluid 910 flowing in the pipe 900 by changing the characteristic (flow vibration characteristic) related to the flow vibration will be described.
  • FIG. 12 shows an example of the flow vibration of the fluid 910 when the flow vibration of the fluid 910 flowing in the pipe 900 is unsteady (amplitude varies).
  • FIG. 13 is an example of a cross-correlation function when the flow vibration of the fluid 910 flowing in the pipe 900 is non-stationary (amplitude varies).
  • the leakage vibration of the fluid 910 changed by the vibration changing unit 120 is a wave whose amplitude changes while the frequency remains 125 Hz.
  • the distance between the first vibration detection unit 110A (vibration detection sensor 111) and the second vibration detection unit 110B (vibration detection sensor 111) is 100 m.
  • the noise of the first vibration detection unit 110A (vibration detection sensor 111) and the second vibration detection unit 110B (vibration detection sensor 111) is represented by a normal random number of variance 1.
  • the distance from the vibration detection unit 110A (vibration detection sensor 111) at the fluid leakage position was set to 30 m
  • the sound velocity was set to 1300 m / s
  • the arrival time difference of the fluid leakage vibration was set to 30.8 ms.
  • the maximum value P2 clearly appears at an arrival time difference of 30.8 ms where the maximum value should appear.
  • the point that the maximum value P2 is clearly displayed is clear when compared with FIG. That is, in FIG. 13, compared to the steady-state cross-correlation function shown in FIG. 9, the value of the peak having the maximum value P ⁇ b> 2 and the value of the adjacent peak have a large level difference.
  • the arrival time difference ⁇ T between the arrival time TA until the first vibration detection unit 110A detects vibration and the arrival time TB until the second vibration detection unit 110B detects vibration is shown in FIG. As shown, it can be detected accurately. That is, when the vibration data (first and second unsteady vibration data) acquired by the first and second vibration detection units 110A and 110B is used in a state where the vibration changing unit 120 is operated, the leak position specifying calculation is performed. The unit 134 can accurately calculate the arrival time difference ⁇ T.
  • the vibration changing unit 120 changes the vibration propagating through the pipe 900 or the fluid 910 flowing in the pipe 900 by changing the characteristics (flow vibration characteristics) related to the flow vibration, explain.
  • FIG. 14 shows an example of the flow vibration of the fluid 910 when the flow vibration of the fluid 910 flowing in the pipe 900 is unsteady (frequency and amplitude fluctuate).
  • FIG. 15 is an example of a cross-correlation function when the flow vibration of the fluid 910 flowing in the pipe 900 is nonstationary (frequency and amplitude fluctuate).
  • the leakage vibration of the fluid 910 changed by the vibration changing unit 120 is a chirp wave whose amplitude varies and the frequency also changes from 50 Hz to 200 Hz.
  • the distance between the first vibration detection unit 110A (vibration detection sensor 111) and the second vibration detection unit 110B (vibration detection sensor 111) is 100 m.
  • the noise of the first vibration detection unit 110A (vibration detection sensor 111) and the second vibration detection unit 110B (vibration detection sensor 111) is represented by a normal random number of variance 1.
  • the distance from the vibration detection unit 110A (vibration detection sensor 111) at the fluid leakage position was set to 30 m
  • the sound velocity was set to 1300 m / s
  • the arrival time difference of the fluid leakage vibration was set to 30.8 ms.
  • the maximum value P3 clearly appears at an arrival time difference of 30.8 ms where the maximum value should appear.
  • the point that the maximum value P3 is clearly displayed is clear when compared with FIG. That is, in FIG. 15, compared to the steady-state cross-correlation function shown in FIG. 9, the value of the peak having the maximum value P ⁇ b> 3 and the value of the adjacent peak have a large level difference, and thus are less susceptible to noise.
  • the arrival time difference ⁇ T between the arrival time TA until the first vibration detection unit 110A detects vibration and the arrival time TB until the second vibration detection unit 110B detects vibration is shown in FIG. As shown, it can be detected accurately. That is, when the vibration data (first and second unsteady vibration data) acquired by the first and second vibration detection units 110A and 110B is used in a state where the vibration changing unit 120 is operated, the leak position specifying calculation is performed. The unit 134 can accurately calculate the arrival time difference ⁇ T.
  • the leakage position specifying calculation unit 134 specifies the defect position (S7).
  • the leakage position specifying calculation unit 134 causes the fluid 910 to flow from the pipe 900 based on the vibration (first and second unsteady vibration data) detected by the first and second vibration detection units.
  • the fluid leakage position (defect position) which is the leaking position, is calculated.
  • the fluid leakage position (defect position) is calculated from the arrival time difference ⁇ T calculated in the process of S6 and the preset sound speed.
  • defect analysis apparatus 100 The operation of the defect analysis apparatus 100 according to the first embodiment of the present invention has been described above.
  • the defect analysis apparatus 100 includes the vibration changing unit 120 (vibration changing unit) and the first and second vibration detecting units 110A and 110B (a pair of vibration detecting units). , A pair of vibration detection units) and a leakage position specifying calculation unit (leakage position specifying calculation means) 134.
  • the vibration changing unit 120 changes the vibration propagating in the pipe 900 or the fluid 910 flowing in the pipe 900 by changing the characteristics related to the flow vibration that is the vibration generated by the flow of the fluid 910 flowing in the pipe 900.
  • the first and second vibration detection units 110 ⁇ / b> A and 110 ⁇ / b> B detect vibrations that are changing, which are vibrations that propagate through the pipe 900 or the fluid 910 that flows in the pipe 900 while being changed by the vibration change unit 120.
  • the leakage position specifying calculation unit 134 calculates a fluid leakage position, which is a position where the fluid 910 is leaking from the pipe 900, based on the changing vibration detected by the first and second vibration detection units 110A and 110B. To do.
  • the vibration changing unit 120 changes the characteristics (for example, frequency, amplitude, frequency, and amplitude) related to the flow vibration, which is vibration generated by the flow of the fluid 910 flowing in the pipe 900, thereby the pipe 900 or the pipe 900.
  • the vibration propagating through the fluid 910 flowing inside is changed.
  • the vibration that is changing which is the vibration that propagates through the pipe 900 or the fluid 910 that flows in the pipe 900, is changed to a signal with a clear autocorrelation function such as a chirp wave.
  • the first and second vibration detection units 110A and 110B detect the vibration that is changing as a signal with a clear maximum value of the autocorrelation function.
  • the vibration under change is vibration that propagates through the pipe 900 or the fluid 910 that flows in the pipe 900 while being changed by the vibration changing unit 120.
  • the fluid flow The maximum value of the cross-correlation function when is non-stationary is clear.
  • the leak position specifying calculation unit 134 detects it accurately. Then, the fluid leakage position (leakage hole 920) can be calculated more accurately by using the arrival time difference ⁇ T and a preset sound velocity.
  • a cross-correlation function with a clear maximum value can be used, and leakage vibration to the first and second vibration detection units 110A and 110B. Can be accurately determined.
  • the fluid leakage position (leakage hole 920) can be specified with high accuracy.
  • the vibration changing unit 120 changes the flow frequency as a characteristic relating to the flow vibration, so that the inside of the pipe 900 or the pipe 910 is changed.
  • the vibration propagating through the fluid 910 flowing through the fluid is changed.
  • the vibration propagating through the fluid 910 flowing in the pipe 900 or the pipe 910 can be easily changed by changing the flow frequency.
  • the vibration changing unit 120 flows in the pipe 900 or the pipe 910 by changing the amplitude of the flow as a characteristic relating to the flow vibration.
  • the vibration propagating through the fluid 910 is changed.
  • the vibration propagating through the fluid 910 flowing in the pipe 900 or the pipe 910 can be easily changed by changing the amplitude of the flow.
  • the vibration changing unit 120 changes the frequency and amplitude of the flow as characteristics relating to the flow vibration, so that the inside of the pipe 900 or the pipe 910 The vibration propagating through the fluid 910 flowing through the fluid is changed.
  • the vibration propagating in the fluid 910 flowing in the pipe 900 or the pipe 910 can be easily changed by changing the amplitude and frequency of the flow as the characteristics related to the flow vibration.
  • the leakage position specification calculation unit 134 (leakage position specification calculation unit) includes first and second vibration detection units 110A and 110B (a pair of vibration detection units, The measurement value of the vibration in change detected by the pair of vibration detection units) is subjected to correlation processing. Thereby, the leakage position specifying calculation unit 134 calculates a time difference in which the vibration under change propagates between each of the first and second vibration detection units 110A and 110B and the leakage position (leakage hole 920). The leak position is calculated using the calculated time difference. Thus, by correlating the measured vibration values detected by the first and second vibration detection units 110A and 110B (a pair of vibration detection units), the fluid flow is unsteady.
  • the maximum value of the cross correlation function becomes clear. Thereby, the arrival time difference ⁇ T between the arrival time TA until the first vibration detection unit 110A detects the vibration and the arrival time TB until the second vibration detection unit 110B detects the vibration is described later.
  • the leak position specifying calculation unit 134 detects it accurately.
  • the vibration changing unit 120 is a pressure control unit (pressure control unit) that changes the pressure of the fluid 910 flowing in the pipe 900, or a pipe.
  • a temperature control unit temperature control means that changes the temperature of the fluid 910 flowing through the inside 900 is provided.
  • the vibration changing unit 120 (vibration changing unit) includes first and second vibration detecting units 110A and 110B (a pair of vibration detecting units and a pair of vibration detecting units). Part) is provided on the upstream side of the attachment position to the pipe 900. Thereby, the characteristic (flow vibration characteristic) regarding the flow vibration which is the vibration generated by the flow of the fluid 910 flowing in the pipe 900 can be changed more efficiently.
  • the vibration changing unit 120 (vibration changing unit) includes first and second vibration detecting units 110A and 110B (a pair of vibration detecting units and a pair of vibration detecting units). Section) and the leakage position specifying calculation section 134 may be operated independently. Accordingly, the vibration changing unit 120 can operate without being affected by the first and second vibration detecting units 110A and 110B and the leakage position specifying calculating unit 134.
  • the vibration changing unit 120 (vibration changing means) operates within a time when the flow rate of the fluid 910 flowing through the pipe 900 is equal to or less than a predetermined threshold.
  • the usage-amount of the fluid 910 can be reduced. That is, when the fluid 910 is water and the pipe 900 is a water pipe, if the analysis by the defect analysis apparatus 100 is performed at a predetermined time when the frequency of the original fluid operation is low, the influence on the original fluid operation is reduced. can do. That is, for example, when the amount of water used is small, such as at midnight, even if the analysis by the defect analyzer 100 is performed, the water is transported to the faucet of the water user equipment (original (Fluid operation) can be reduced.
  • control unit 131 (control device) changes the characteristic relating to the flow vibration, which is the vibration generated by the flow of the fluid 910 flowing through the pipe 900, thereby generating a vibration change instruction signal.
  • the vibration change instruction signal is a signal that changes the vibration propagating through the fluid flowing in the pipe 900 or the pipe 910.
  • control unit 131 detects vibrations that are changing, which are vibrations that propagate through the pipe 900 or the fluid 910 that flows through the pipe 900 while being changed based on the vibration change instruction signal. Receives detection signal input.
  • control unit 131 calculates a fluid leakage position calculation instruction signal for calculating a fluid leakage position that is a position where the fluid 910 is leaking from the pipe 900 based on the vibration under change included in the vibration detection signal. Is output.
  • the signal processing for operating the main functions of the defect analysis apparatus 100 described above can be integrated into the control unit 131 (control apparatus).
  • the defect analysis method in the first embodiment of the present invention includes a vibration changing process, a vibration detecting process, and a leak position specifying process.
  • the vibration changing process the vibration propagating in the pipe 900 or the fluid 910 flowing in the pipe 900 is changed by changing the characteristics relating to the flow vibration that is the vibration generated by the flow of the fluid 910 flowing in the pipe 900.
  • vibration detection step vibration during change is detected.
  • the vibration being changed is vibration that propagates through the pipe 900 or the fluid 910 flowing in the pipe 900 while being changed by the vibration changing process.
  • a fluid leakage position which is a position where the fluid 910 is leaking from the pipe 900, is calculated based on the changing vibration detected by the vibration detection step.
  • the storage medium according to the first embodiment of the present invention stores a program that causes a computer to perform the steps indicated in the defect analysis method described above. This storage medium also has the same effect as the defect analysis apparatus 100 described above.
  • FIG. 16 is a diagram showing an operation flow of the defect analysis apparatus according to the second embodiment of the present invention.
  • FIG. 5 and FIG. 16 are compared.
  • the vibration changing process (S4) is performed after the first and second vibration data measurement processes (S1).
  • the process (S4) for changing the vibration is performed before the first and second vibration data measurement processes (S1). In this respect, they are different from each other.
  • the vibration changing unit 120 changes the vibration (S4). That is, the vibration changing unit 120 propagates the pipe 900 or the fluid 910 flowing in the pipe 900 by changing the characteristic (flow vibration characteristics) related to the flow vibration that is vibration generated by the flow of the fluid 910 flowing in the pipe 900. Change the vibration.
  • the first and second vibration detection units 110A and 110B measure the first and second vibration data (S1). More specifically, the vibration that each vibration detection sensor 111 in the first and second vibration detection units 110A and 110B propagates in the pipe 900 or the fluid 910 flowing in the pipe 900 is represented by the first and second vibration data. Detect as. Then, the vibration detection side transmission unit 112 receives the first and second vibration data from the vibration detection sensors 111 of the first and second vibration detection units 110 ⁇ / b> A and 110 ⁇ / b> B and transmits them to the processing unit 130. Next, the processing unit side receiving unit 136 of the processing unit 130 receives the first and second vibration data.
  • the leakage determination unit 135 performs a defect presence / absence determination process (S2). Specifically, the leak determination unit 135 determines whether there is a leak in the pipe 900. That is, as described above, the leak determination unit 135 determines whether or not the leak hole 920 is formed in the pipe 900 based on at least one of the first and second vibration data (whether or not the pipe 900 is defective). ). Leakage determination unit 135 may determine whether or not leakage hole 920 is formed in pipe 900 based on both the first and second vibration data.
  • the processes after S4 are repeated again.
  • the processing of S2 and S3 may not be included in the configuration requirements of the present invention. In this case, the processes of S2 and S3 can be omitted. That is, after the process of S1 is completed, the process of S4 is performed.
  • the leakage position specification calculation unit 134 calculates the arrival time difference ⁇ T by correlation calculation (S6).
  • the leakage position specification calculation unit 134 specifies the defect position (S7).
  • the leakage position specifying calculation unit 134 causes the fluid 910 to flow from the pipe 900 based on the vibration (first and second unsteady vibration data) detected by the first and second vibration detection units.
  • the fluid leakage position (defect position) which is the leaking position, is calculated. More specifically, the fluid leakage position (defect position) is calculated from the arrival time difference ⁇ T calculated in the process of S6 and the preset sound speed.
  • the operation of the defect analysis apparatus according to the second embodiment of the present invention has been described above.
  • the effects of the defect analysis method in the present embodiment are the same as those described in the first embodiment.
  • the time zone in which the pressure deviates from the pressure optimized for the original operation purpose can be reduced, and the vibration can be reduced. Unnecessary driving of the changing portion can be reduced.
  • the apparatus of each embodiment of the present invention is centered on an arbitrary computer CPU (Central Processing Unit), a memory, a program loaded in the memory, a storage unit such as a hard disk for storing the program, and a network connection interface. It is realized by any combination of hardware and software.
  • the program includes a program downloaded from a storage medium such as a CD (Compact Disc) or a server on the Internet, in addition to a program stored in the memory from the stage of shipping the device in advance. It will be understood by those skilled in the art that there are various modifications to the implementation method and apparatus.
  • each device is described as being realized by one device, but the means for realizing it is not limited to this. That is, it may be a physically separated configuration or a logically separated configuration.
  • Vibration changing means for changing vibrations propagating through the pipe or the fluid by changing characteristics relating to flow vibration, which is vibration generated by the flow of fluid flowing in the pipe;
  • a pair of vibration detecting means for detecting vibrations in change which are vibrations propagating through the pipe or the fluid flowing in the pipe while being changed by the vibration changing means;
  • a defect analysis apparatus comprising: a leakage position specifying calculation means for calculating a fluid leakage position, which is a position where the fluid is leaking from the pipe, based on the vibration under change detected by the pair of vibration detection means. .
  • the leakage position specifying calculation means includes: By correlating the measurement values of the vibration under change detected by the pair of vibration detection means, a time difference in which the vibration under change propagates between each of the pair of vibration detection means and the leakage position is obtained. 5.
  • the defect analysis apparatus calculates the leakage position using the calculated time difference.
  • Appendix 6 The defect analysis apparatus according to any one of appendices 1 to 5, wherein the vibration changing unit includes a pressure control unit that changes the pressure of the fluid, or a temperature control unit that changes the temperature of the fluid flowing in the pipe. .
  • Appendix 7 The defect analysis apparatus according to any one of appendices 1 to 6, wherein the vibration changing unit is provided upstream of a position where the pair of vibration detection units are attached to the pipe.
  • the defect analysis apparatus according to any one of appendices 1 to 7, wherein the vibration changing unit operates independently with respect to the vibration detection unit and the leakage position specifying calculation unit.
  • a defect analysis method including a leakage position specifying step of calculating a fluid leakage position, which is a position where the fluid is leaking from the pipe, based on the vibration under change detected by the vibration detection step.
  • Information that causes a computer to perform processing including a leakage position specifying step of calculating a fluid leakage position, which is a position where the fluid is leaking from the pipe, based on the vibration under change detected by the vibration detection step. Processing program.

Abstract

By changing the characteristics of flow vibrations caused by a fluid (910) flowing through a pipe (900), a vibration-changing unit (120) changes vibrations propagating through either the pipe (900) or the fluid (910) flowing through the pipe (900). While said characteristics are being changed by the vibration-changing unit (120), first and second vibration detection units (110A, 110B) detect the changing vibrations propagating through either the pipe (900) or the fluid (910) flowing through the pipe (900). On the basis of the changing vibrations detected by the first and second vibration detection units (110A, 110B), a leak-location-identifying computation unit (134) computes a fluid-leak location, i.e. a location at which the fluid (910) is leaking from the pipe (900). This makes it possible to detect a fluid-leak location in a pipe more accurately.

Description

欠陥分析装置、欠陥分析方法および記憶媒体Defect analysis apparatus, defect analysis method, and storage medium
 本発明は、欠陥分析装置等に関し、例えば、配管から流体が漏洩している位置を検出するものに関する。 The present invention relates to a defect analyzer and the like, for example, to a device for detecting a position where a fluid leaks from a pipe.
 近年、多数の配管が地中等に配置されている。配管が経年劣化等することにより、配管内を流れる流体が配管外へ漏洩する場合がある。 In recent years, many pipes are arranged underground. When the piping deteriorates with age, the fluid flowing in the piping may leak out of the piping.
 配管からの流体の漏洩を検査する方法として、例えば、相関法による漏洩検査が知られている。この検査方法では、まず、欠陥部を両側で挟むように、一対の振動センサを、所定の距離を隔てて配管に配置する。漏洩によって生じる振動音(漏洩振動)は配管を伝搬する。この漏洩によって生じる振動音が一対の振動センサの各々に到達する時間を測定する。そして、振動の到達時間の2つの測定値の差分(振動の到達時間差)と、音速の積から、流体漏洩位置を推測する。このとき、振動の到達時間差の算出では、時系列データの相互相関関数を算出し、当該関数の最大値となる時間を用いる。 As a method for inspecting the leakage of fluid from piping, for example, a leakage inspection by a correlation method is known. In this inspection method, first, a pair of vibration sensors are arranged on the pipe at a predetermined distance so as to sandwich the defective portion on both sides. Vibration sound (leakage vibration) caused by leakage propagates through the pipe. The time for the vibration sound generated by this leakage to reach each of the pair of vibration sensors is measured. Then, the fluid leakage position is estimated from the product of the difference between the two measured values of the vibration arrival time (vibration arrival time difference) and the sound velocity. At this time, in calculating the arrival time difference of vibration, the cross-correlation function of the time series data is calculated, and the time corresponding to the maximum value of the function is used.
 これに関連する発明として、特許文献1には、流体の圧力を変更した際に変動する漏洩振動のパワースペクトルの周波数帯を検出し、当該周波数帯で検出した信号を相関処理することで、漏洩位置を特定する技術が開示されている。 As an invention related to this, Patent Document 1 discloses that the frequency spectrum of the power spectrum of the leakage vibration that fluctuates when the pressure of the fluid is changed, and the signal detected in the frequency band is subjected to correlation processing, thereby leaking. A technique for specifying a position is disclosed.
特開2005-265663号公報JP 2005-265663 A
 しかしながら、特許文献1に記載の技術では、漏洩振動が、振動センサ自体の雑音や、外乱に対して、微小である場合、相互相関関数の真の最大値が雑音や外乱に埋もれてしまうことがあった。この場合、2つの振動センサの到達時間差を正確に検出できず、誤った漏洩位置を検出してしまうという問題があった。 However, in the technique described in Patent Document 1, when the leakage vibration is very small with respect to noise or disturbance of the vibration sensor itself, the true maximum value of the cross-correlation function may be buried in the noise or disturbance. there were. In this case, there is a problem that the arrival time difference between the two vibration sensors cannot be accurately detected, and an erroneous leakage position is detected.
 本発明は、このような事情を鑑みてなされたものであり、本発明の目的は、配管の流体漏洩位置をより正確に検出することができる欠陥分析装置を提供することにある。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a defect analysis apparatus capable of more accurately detecting a fluid leakage position of a pipe.
 本発明の欠陥分析装置は、配管内を流れる流体の流動により生じる振動である流動振動に関する特性を変化させることにより、前記配管または前記流体を伝搬する振動を変化させる振動変化手段と、前記振動変化手段により変化されている間に前記配管または前記配管内を流れる前記流体を伝搬する振動である変化中の振動を検知する一対の振動検知手段と、前記一対の振動検知手段により検知された前記変化中の振動に基づいて、前記配管から前記流体が漏洩している位置である流体漏洩位置を算出する漏洩位置特定演算手段とを備えている。 The defect analysis apparatus according to the present invention includes: a vibration changing unit that changes a vibration that propagates through the pipe or the fluid by changing characteristics related to a flow vibration that is a vibration caused by a flow of the fluid flowing through the pipe; and the vibration change. A pair of vibration detecting means for detecting vibrations in change which are vibrations propagating through the pipe or the fluid flowing in the pipe while being changed by the means, and the change detected by the pair of vibration detecting means. Leakage position specifying calculation means for calculating a fluid leakage position, which is a position where the fluid is leaking from the pipe, based on internal vibrations.
 本発明の制御装置は、配管内を流れる流体の流動により生じる振動である流動振動に関する特性を変化させることにより、前記配管または前記流体を伝搬する振動を変化させる振動変化指示信号を出力し、前記振動変化指示信号に基づいて変化している間に前記配管または前記配管内を流れる流体を伝搬する振動である変化中の振動を検知した際の振動検知信号の入力を受け、前記振動検知信号に含まれる前記変化中の振動に基づいて、前記配管から前記流体が漏洩している位置である流体漏洩位置を算出させる流体漏洩位置算出指示信号を出力する。 The control device of the present invention outputs a vibration change instruction signal for changing the vibration propagating through the pipe or the fluid by changing the characteristics relating to the flow vibration, which is vibration generated by the flow of the fluid flowing through the pipe, An input of a vibration detection signal when detecting a changing vibration that is a vibration propagating through the pipe or a fluid flowing in the pipe while changing based on a vibration change instruction signal is received. A fluid leakage position calculation instruction signal for calculating a fluid leakage position, which is a position where the fluid is leaking from the pipe, is output based on the vibration that is included.
 本発明の欠陥分析方法は、配管内を流れる流体の流動により生じる振動である流動振動に関する特性を変化させることにより、前記配管または前記流体を伝搬する振動を変化させ、前記配管または前記流体を伝搬する振動が変化している間に前記配管または前記配管内を流れる流体を伝搬する振動である変化中の振動を検知し、前記変化中の振動の検知結果に基づいて、前記配管から前記流体が漏洩している位置である流体漏洩位置を算出する。 The defect analysis method according to the present invention changes the vibration related to flow vibration, which is vibration generated by the flow of the fluid flowing in the pipe, thereby changing the vibration propagating the pipe or the fluid and propagating the pipe or the fluid. While the vibration to be changed is changing, the vibration in the change that is the vibration propagating through the pipe or the fluid flowing in the pipe is detected, and the fluid flows from the pipe based on the detection result of the vibration in the change. The fluid leak position, which is the leaking position, is calculated.
 本発明の記憶媒体は、配管内を流れる流体の流動により生じる振動である流動振動に関する特性を変化させることにより、前記配管または前記流体を伝搬する振動を変化させ、前記配管または前記流体を伝搬する振動が変化している間に前記配管または前記配管内を流れる流体を伝搬する振動である変化中の振動を検知し、前記変化中の振動の検知結果に基づいて、前記配管から前記流体が漏洩している位置である流体漏洩位置を算出する処理をコンピュータに行わせるプログラムを記憶する。 The storage medium of the present invention changes the vibration related to the flow vibration, which is vibration generated by the flow of the fluid flowing in the pipe, thereby changing the vibration propagating the pipe or the fluid and propagating the pipe or the fluid. While the vibration is changing, the vibration in the change that is the vibration that propagates the pipe or the fluid flowing in the pipe is detected, and the fluid leaks from the pipe based on the detection result of the vibration in the change. A program for causing a computer to perform processing for calculating a fluid leakage position, which is a position where the fluid is leaking, is stored.
 本発明にかかる欠陥分析装置等によれば、配管の流体漏洩位置をより正確に検出することができる。 According to the defect analysis apparatus and the like according to the present invention, the fluid leakage position of the pipe can be detected more accurately.
本発明の第1の実施の形態における欠陥分析装置の概念図である。It is a conceptual diagram of the defect analyzer in the 1st Embodiment of this invention. 第1の振動検知部および第2の振動検知部の機能ブロック図である。It is a functional block diagram of a 1st vibration detection part and a 2nd vibration detection part. 振動変化部の機能ブロック図である。It is a functional block diagram of a vibration change part. 処理部の機能ブロック図である。It is a functional block diagram of a processing part. 本発明の第1の実施の形態における欠陥分析装置の動作フローを示す図である。It is a figure which shows the operation | movement flow of the defect analyzer in the 1st Embodiment of this invention. 流体に異なる圧力を加えた際の流体振動の周波数および振幅加速度の関係の一例を示す図である。It is a figure which shows an example of the relationship between the frequency of a fluid vibration at the time of applying different pressure to a fluid, and an amplitude acceleration. 流体に異なる温度変化を与えた際の流体振動の周波数および振幅加速度の関係の一例を示す図である。It is a figure which shows an example of the relationship of the frequency and amplitude acceleration of a fluid vibration at the time of giving a different temperature change to a fluid. 配管内を流れる流体の流動振動が定常的な場合における流体の流動振動の一例を示す。An example of fluid flow vibration in the case where fluid flow vibration flowing in a pipe is steady will be described. 配管内を流れる流体の流動振動が定常的な場合における相互相関関数の一例である。It is an example of a cross-correlation function when the flow vibration of the fluid flowing in the pipe is steady. 配管内を流れる流体の流動振動が非定常的(周波数が変動)な場合における流体の流動振動の一例を示す。An example of fluid flow vibration when the flow vibration of the fluid flowing in the pipe is unsteady (the frequency varies) will be described. 配管内を流れる流体の流動振動が非定常的(周波数が変動)な場合における相互相関関数の一例である。It is an example of a cross-correlation function when the flow vibration of the fluid flowing in the pipe is unsteady (frequency varies). 配管内を流れる流体の流動振動が非定常的(振幅が変動)な場合における流体の流動振動の一例を示す。An example of fluid flow vibration when the flow vibration of the fluid flowing in the pipe is unsteady (amplitude varies) will be described. 配管内を流れる流体の流動振動が非定常的(振幅が変動)な場合における相互相関関数の一例である。It is an example of a cross-correlation function when the flow vibration of a fluid flowing in a pipe is unsteady (amplitude varies). 配管内を流れる流体の流動振動が非定常的(周波数および振幅が変動)な場合における流体の流動振動の一例を示す。An example of fluid flow vibration when the flow vibration of the fluid flowing in the pipe is unsteady (frequency and amplitude fluctuate) is shown. 配管内を流れる流体の流動振動が非定常的(周波数および振幅が変動)な場合における相互相関関数の一例である。It is an example of a cross-correlation function when the flow vibration of the fluid flowing in the pipe is unsteady (frequency and amplitude fluctuate). 本発明の第2の実施の形態における欠陥分析装置の動作フローを示す図である。It is a figure which shows the operation | movement flow of the defect analyzer in the 2nd Embodiment of this invention.
<第1の実施の形態>
 本発明の第1の実施の形態における欠陥分析装置100の構成について説明する。
<First Embodiment>
A configuration of the defect analysis apparatus 100 according to the first embodiment of the present invention will be described.
 図1は、本発明の第1の実施の形態における欠陥分析装置100の概念図である。 FIG. 1 is a conceptual diagram of the defect analysis apparatus 100 according to the first embodiment of the present invention.
 図1に示されるように、欠陥分析装置100は、少なくとも第1の振動検知部110Aと、第2の振動検知部110Bと、振動変化部120と、漏洩位置特定演算部134とを備えている。漏洩位置特定演算部134は、処理部130に設けられている。 As shown in FIG. 1, the defect analysis apparatus 100 includes at least a first vibration detection unit 110 </ b> A, a second vibration detection unit 110 </ b> B, a vibration change unit 120, and a leakage position specification calculation unit 134. . The leakage position specifying calculation unit 134 is provided in the processing unit 130.
 振動変化部120と処理部130の間は、有線または無線により通信接続されている。また、第1および第2の振動検知部110A、110Bと、処理部130の間は、有線または無線により通信接続されている。 The communication between the vibration changing unit 120 and the processing unit 130 is wired or wirelessly connected. The first and second vibration detection units 110A and 110B and the processing unit 130 are connected to each other by wired or wireless communication.
 図1に示されるように、第1の振動検知部110Aおよび第2の振動検知部110Bは、配管900または配管900内の流体910(液体または気体)を伝搬する振動を、配管900を介して検知できるように設置されている。第1の振動検知部110Aおよび第2の振動検知部110Bは、配管900の内壁面に取り付けられてもよい。さらに、第1の振動検知部110Aおよび第2の振動検知部110Bは、配管900に設置されたフランジ(不図示)や、弁栓等の付属物(不図示)の外表面や内部に設置されてもよい。第1の振動検知部110Aおよび第2の振動検知部110Bを配管900や配管900の付属物に設置する方法としては、例えば磁石の利用、専用冶具の利用、接着剤の利用が考えられる。なお、配管900は、図1に示すように地中600に埋設されている。一方、配管900は、建造物の屋根裏や地下に設置されていてもよく、さらに、建造物の壁、柱等に埋設されていてもよい。 As shown in FIG. 1, the first vibration detection unit 110 </ b> A and the second vibration detection unit 110 </ b> B are configured to transmit vibration propagating through the pipe 900 or the fluid 910 (liquid or gas) in the pipe 900 via the pipe 900. It is installed so that it can be detected. The first vibration detection unit 110 </ b> A and the second vibration detection unit 110 </ b> B may be attached to the inner wall surface of the pipe 900. Furthermore, the first vibration detection unit 110A and the second vibration detection unit 110B are installed on the outer surface or inside of a flange (not shown) installed in the pipe 900 or an accessory (not shown) such as a valve plug. May be. As a method of installing the first vibration detection unit 110A and the second vibration detection unit 110B in the pipe 900 or the accessory of the pipe 900, for example, use of a magnet, use of a dedicated jig, use of an adhesive may be considered. The pipe 900 is embedded in the underground 600 as shown in FIG. On the other hand, the pipe 900 may be installed in an attic or a basement of a building, and may be embedded in a wall, a pillar, or the like of the building.
 なお、図1の例では、第1の振動検知部110Aおよび第2の検知部110Bは、配管900の外壁面に取り付けられている。図1には、漏洩孔920を示す。漏洩孔920は、経年劣化や外部損傷により配管900に形成された孔である。配管900内を流れる流体910は、この漏洩孔920から漏洩している。 In the example of FIG. 1, the first vibration detection unit 110 </ b> A and the second detection unit 110 </ b> B are attached to the outer wall surface of the pipe 900. FIG. 1 shows a leak hole 920. The leak hole 920 is a hole formed in the pipe 900 due to aging or external damage. The fluid 910 flowing through the pipe 900 leaks from the leak hole 920.
 図2は、第1の振動検知部110Aおよび第2の振動検知部110Bの機能ブロック図である。図2に示されるように、第1の振動検知部110Aおよび第2の振動検知部110Bの各々は、振動検知センサ111および振動検知側送信部112を備えている。 FIG. 2 is a functional block diagram of the first vibration detection unit 110A and the second vibration detection unit 110B. As shown in FIG. 2, each of the first vibration detection unit 110 </ b> A and the second vibration detection unit 110 </ b> B includes a vibration detection sensor 111 and a vibration detection side transmission unit 112.
 図2に示されるように、振動検知センサ111は、振動検知側送信部112に接続されている。振動検知センサ111は、設置箇所に常設されて常時振動を検知してもよいし、あるいは所定期間設置されて間欠的に振動を検知してもよい。振動検知センサ111には、例えば固体の振動を計測するセンサを用いることができる。具体的には、振動検知センサ111には、圧電型加速度センサ、動電型加速度センサ、静電容量型加速度センサ、光学式速度センサ、動ひずみセンサなどを用いることができる。 2, the vibration detection sensor 111 is connected to the vibration detection side transmission unit 112. The vibration detection sensor 111 may be permanently installed at the installation location to detect vibration constantly, or may be installed for a predetermined period to detect vibration intermittently. As the vibration detection sensor 111, for example, a sensor that measures solid vibration can be used. Specifically, the vibration detection sensor 111 can be a piezoelectric acceleration sensor, an electrodynamic acceleration sensor, a capacitance acceleration sensor, an optical speed sensor, a dynamic strain sensor, or the like.
 振動検知センサ111は、「配管900または配管900内を流れる流体910の状態に起因して発生し、配管900または配管900内を流れる流体910を伝搬する振動」を検知する。また、振動検知センサ111は、変化中の振動も検知する。変化中の振動とは、後述する振動変化部120により変化されている間に配管900または配管900内を流れる流体910を伝搬する振動である。 The vibration detection sensor 111 detects “vibration generated due to the state of the pipe 900 or the fluid 910 flowing in the pipe 900 and propagating the fluid 910 flowing in the pipe 900”. Further, the vibration detection sensor 111 also detects vibrations that are changing. The vibration being changed is vibration that propagates through the pipe 900 or the fluid 910 flowing through the pipe 900 while being changed by a vibration changing unit 120 described later.
 図2に示されるように、振動検知側送信部112は、振動検知センサ111に接続されている。また、振動検知側送信部112は、処理装置130にも接続されている。振動検知側送信部112は、振動検知センサ111により検知された振動のデータを、処理部130へ送信する。 As shown in FIG. 2, the vibration detection side transmission unit 112 is connected to the vibration detection sensor 111. The vibration detection side transmission unit 112 is also connected to the processing device 130. The vibration detection side transmission unit 112 transmits the vibration data detected by the vibration detection sensor 111 to the processing unit 130.
 図1に戻って、振動変化部120は、配管900または配管900内を流れる流体910を通して、配管900内を流れる流体により生じる振動(流動振動とする)に関する特性(流動振動特性とする)に変化を与えられるように、配置されている。図1の例では、振動変化部120は、配管900の外壁面に取り付けられている。一方、振動変化部120は、配管900の内壁面に取り付けられてもよい。さらに、振動変化部120は、配管900に設置されたフランジ(不図示)や、弁栓等の付属物(不図示)の外表面や内部に設置されてもよい。 Returning to FIG. 1, the vibration changing unit 120 changes to a characteristic (referred to as a flow vibration characteristic) related to vibration (referred to as flow vibration) caused by the fluid flowing in the pipe 900 through the pipe 900 or the fluid 910 flowing in the pipe 900. Is arranged to be given. In the example of FIG. 1, the vibration changing unit 120 is attached to the outer wall surface of the pipe 900. On the other hand, the vibration changing unit 120 may be attached to the inner wall surface of the pipe 900. Furthermore, the vibration changing unit 120 may be installed on the outer surface or inside of a flange (not shown) installed in the pipe 900 or an accessory (not shown) such as a valve plug.
 振動変化部120は、配管900内を流れる流体910の流動により生じる振動である流動振動に関する特性(流動振動特性)を変化させることにより、配管900または配管900内を流れる流体910を伝搬する振動を変化させる。 The vibration changing unit 120 changes vibration characteristics (flow vibration characteristics) relating to flow vibration, which is vibration generated by the flow of the fluid 910 flowing in the pipe 900, thereby causing vibration propagating in the pipe 900 or the fluid 910 flowing in the pipe 900. Change.
 ここで、振動変化部120は、好ましくは、第1および第2の振動検知部110A、110Bの配管900の取り付け位置よりも、上流側に設けられている。これにより、配管900内を流れる流体910の流動により生じる振動である流動振動に関する特性(流動振動特性)をより効率よく変化させることができる。 Here, the vibration change unit 120 is preferably provided on the upstream side of the attachment position of the pipe 900 of the first and second vibration detection units 110A and 110B. Thereby, the characteristic (flow vibration characteristic) regarding the flow vibration which is the vibration generated by the flow of the fluid 910 flowing in the pipe 900 can be changed more efficiently.
 また、振動変化部120は、第1および第2の振動検知部110A、110B(一対の振動検知部)と、漏洩位置特定演算部134に対して、独立して動作してもよい。これにより、振動変化部120は、第1および第2の振動検知部110A、110Bや、漏洩位置特定演算部134の影響を受けることなく、動作できる。 Further, the vibration changing unit 120 may operate independently with respect to the first and second vibration detecting units 110A and 110B (a pair of vibration detecting units) and the leakage position specifying calculating unit 134. Accordingly, the vibration changing unit 120 can operate without being affected by the first and second vibration detecting units 110A and 110B and the leakage position specifying calculating unit 134.
 なお、振動変化部120は、必ずしも制御信号に従う必要はない。振動変化部120は、例えば流体使用頻度の高い時間帯の振動データを用いて流体漏洩位置特定を行っても、同様の効果が期待される。流体使用頻度の高い時間帯の振動データは、配管内圧力変動が頻繁に起こり、それに伴い流体漏洩振動が変化する時間帯の振動データである。 Note that the vibration changing unit 120 does not necessarily follow the control signal. The vibration changing unit 120 is expected to have the same effect even if the fluid leakage position is specified using vibration data in a time zone where the fluid is used frequently, for example. The vibration data in the time zone in which the fluid is frequently used is vibration data in the time zone in which the pressure fluctuation in the pipe frequently occurs and the fluid leakage vibration changes accordingly.
 振動変化部120として水道網の制御を行う配水施設等を用いることができる。また、他の例として圧力ポンプや減圧弁等の装置を用いることができる。 A water distribution facility that controls the water network can be used as the vibration changing unit 120. As another example, a device such as a pressure pump or a pressure reducing valve can be used.
 図3は、振動変化部120の機能ブロック図である。図3に示されるように、振動変化部120は、振動変化手段121と、制御信号受信部122とを備えている。 FIG. 3 is a functional block diagram of the vibration changing unit 120. As shown in FIG. 3, the vibration changing unit 120 includes a vibration changing unit 121 and a control signal receiving unit 122.
 図3に示されるように、振動変化手段121は、制御信号受信部122に接続されている。振動変化手段121は、制御信号受信部122により受信される制御信号に基づいて、流動振動特性を変化させることにより、配管900または配管900内を流れる流体910を伝搬する振動を変化させる。このとき、振動変化手段121は、制御信号に基づいて、流動振動特性を定常的な場合と比較して自己相関の大きな振動に変化させる。漏洩孔920における流体流動振動(流体漏洩振動)の自己相関が大きいと、漏洩孔920から離れた二つの振動検知部110A、110Bで検知した振動の真の到達時刻差における相互相関も大きくなる。例えば、振動変化手段121によって流体流動振動(流体漏洩振動)の振幅を変化させてもよいし、周波数を変化させてもよいし、その両方の組み合わせであってもよい。なお、制御信号は、後述の制御部131により出力される。制御信号は、配管900内を流れる流体910の流動により生じる振動である流動振動に関する特性を変化させることにより、配管900または配管900内を流れる流体910を伝搬する振動を変化させる振動変化指示信号である。この制御信号は、後述の制御部131により生成される。 As shown in FIG. 3, the vibration changing means 121 is connected to the control signal receiving unit 122. The vibration changing unit 121 changes the vibration propagating through the pipe 900 or the fluid 910 flowing in the pipe 900 by changing the flow vibration characteristics based on the control signal received by the control signal receiving unit 122. At this time, the vibration changing means 121 changes the flow vibration characteristics to vibration having a large autocorrelation as compared with the stationary case based on the control signal. If the autocorrelation of the fluid flow vibration (fluid leakage vibration) in the leak hole 920 is large, the cross-correlation in the true arrival time difference of the vibration detected by the two vibration detectors 110A and 110B separated from the leak hole 920 also increases. For example, the amplitude of the fluid flow vibration (fluid leakage vibration) may be changed by the vibration changing means 121, the frequency may be changed, or a combination of both may be used. The control signal is output by the control unit 131 described later. The control signal is a vibration change instruction signal for changing vibration propagating in the pipe 900 or the fluid 910 flowing in the pipe 900 by changing characteristics relating to flow vibration, which is vibration generated by the flow of the fluid 910 flowing in the pipe 900. is there. This control signal is generated by the control unit 131 described later.
 図3に示されるように、制御信号受信部122は、振動変化手段121に接続されている。また、制御信号受信部122は、処理部130にも接続されている。制御信号受信部122は、後述の制御部131により送信される制御信号を受信し、これを振動変化手段121へ出力する。 As shown in FIG. 3, the control signal receiving unit 122 is connected to the vibration changing means 121. The control signal receiving unit 122 is also connected to the processing unit 130. The control signal receiving unit 122 receives a control signal transmitted by the control unit 131 described later and outputs it to the vibration changing unit 121.
 なお、振動変化部120(振動変化手段121)の動作について、後でさらに詳しく説明する。 The operation of the vibration changing unit 120 (vibration changing means 121) will be described in more detail later.
 図1に示されるように、処理部130は、第1の振動検知部110A、第2の振動検知部110Bおよび振動変化部120に接続されている。処理部130は、第1および第2の振動検知部110A、110Bにより検知された振動のデータを受信する。 As shown in FIG. 1, the processing unit 130 is connected to the first vibration detection unit 110 </ b> A, the second vibration detection unit 110 </ b> B, and the vibration change unit 120. The processing unit 130 receives data of vibrations detected by the first and second vibration detection units 110A and 110B.
 図4は、処理部130の機能ブロックを示す図である。図4に示されるように、処理部130は、制御部131と、処理部側送信部132と、制御信号記憶部133と、漏洩位置特定演算部134と、漏洩判定部135と、処理部側受信部136とを備えている。 FIG. 4 is a diagram showing functional blocks of the processing unit 130. As illustrated in FIG. 4, the processing unit 130 includes a control unit 131, a processing unit side transmission unit 132, a control signal storage unit 133, a leakage position specifying calculation unit 134, a leakage determination unit 135, and a processing unit side. A receiving unit 136.
 図4に示されるように、制御部131は、処理部側送信部132、制御信号記憶部133、漏洩位置特定演算部134、漏洩判定部135および処理部側受信部136に接続されている。制御部131は、本発明の制御装置に対応する。 As shown in FIG. 4, the control unit 131 is connected to the processing unit side transmission unit 132, the control signal storage unit 133, the leakage position specifying calculation unit 134, the leakage determination unit 135, and the processing unit side reception unit 136. The control unit 131 corresponds to the control device of the present invention.
 制御部131は、処理部側送信部132へ送信する制御信号を生成し、これを処理部側送信部132へ出力する。ここで制御信号は、前述の通り、配管900内を流れる流体910の流動により生じる振動である流動振動に関する特性を変化させることにより、配管900または配管900内を流れる流体910を伝搬する振動を変化させる振動変化指示信号である。 The control unit 131 generates a control signal to be transmitted to the processing unit side transmission unit 132 and outputs the control signal to the processing unit side transmission unit 132. Here, as described above, the control signal changes the vibration propagating through the pipe 900 or the fluid 910 flowing in the pipe 900 by changing the characteristics relating to the flow vibration, which is the vibration generated by the flow of the fluid 910 flowing in the pipe 900. This is a vibration change instruction signal.
 また、制御部131は、変化中の振動を検知した際の振動検知信号の入力を、後述の処理部側受信部136により受ける。変化中の振動は、振動変化指示信号(制御信号)に基づいて変化されている間に配管900または配管900内を流れる流体910を伝搬する振動である。 Further, the control unit 131 receives an input of a vibration detection signal when detecting vibration in change by a processing unit side receiving unit 136 described later. The vibration under change is vibration that propagates through the pipe 900 or the fluid 910 flowing in the pipe 900 while being changed based on the vibration change instruction signal (control signal).
 また、制御部131は、振動検知信号に含まれる変化中の振動に基づいて、流体漏洩位置算出指示信号を、漏洩位置特定演算部134へ出力する。流体漏洩位置算出指示信号は、配管900から流体910が漏洩している位置である流体漏洩位置(漏洩孔920の位置)を算出させる信号である。 Further, the control unit 131 outputs a fluid leakage position calculation instruction signal to the leakage position specifying calculation unit 134 based on the changing vibration included in the vibration detection signal. The fluid leakage position calculation instruction signal is a signal for calculating a fluid leakage position (position of the leakage hole 920) that is a position where the fluid 910 is leaking from the pipe 900.
 図4に示されるように、処理部側送信部132は、制御部131に接続されている。また、処理部側送信部132は、振動変化部120に接続されている。処理部側送信部132は、制御部131により生成される制御信号(振動変化指示信号)を振動変化部120へ送信する。 As shown in FIG. 4, the processing unit side transmission unit 132 is connected to the control unit 131. In addition, the processing unit side transmission unit 132 is connected to the vibration changing unit 120. The processing unit side transmission unit 132 transmits a control signal (vibration change instruction signal) generated by the control unit 131 to the vibration change unit 120.
 図4に示されるように、制御信号記憶部133は、制御部131に接続されている。制御信号記憶部133には、複数の制御信号((振動変化指示信号)が記憶されている。すなわち、制御信号記憶部133は、振動変化部120が流体漏洩振動特性を変化させるために参照する信号を記憶する。例えば、振動変化部120(振動変化手段121)に対して、流体流動振動(流体漏洩振動)の振幅を変化させる信号や、周波数を変化させる信号や、その両方の組み合わせを変化させる信号が、制御信号記憶部133に記憶されている。 As shown in FIG. 4, the control signal storage unit 133 is connected to the control unit 131. A plurality of control signals ((vibration change instruction signals) are stored in the control signal storage unit 133. That is, the control signal storage unit 133 is referred to by the vibration change unit 120 to change the fluid leakage vibration characteristics. For example, a signal that changes the amplitude of fluid flow vibration (fluid leakage vibration), a signal that changes frequency, or a combination of both is changed with respect to the vibration changing unit 120 (vibration changing means 121). The signal to be stored is stored in the control signal storage unit 133.
 図4に示されるように、漏洩位置特定演算部134は、制御部131および処理部側受信部136に接続されている。 As shown in FIG. 4, the leakage position specifying calculation unit 134 is connected to the control unit 131 and the processing unit side receiving unit 136.
 漏洩位置特定演算部134は、第1および第2の振動検知部110A、110Bにより検知された変化中の振動に基づいて、流体漏洩位置(漏洩孔920の位置)を算出する。流体漏洩位置は、配管900から流体910が漏洩している位置である。 The leakage position specifying calculation unit 134 calculates the fluid leakage position (the position of the leakage hole 920) based on the changing vibration detected by the first and second vibration detection units 110A and 110B. The fluid leakage position is a position where the fluid 910 is leaking from the pipe 900.
 漏洩位置特定演算部134は、まず、第1および第2の振動検知部110A、110Bにより検知された変化中の振動のデータを、処理部側受信部136から受け取る。そして、漏洩位置特定演算部134は、変化中の振動データを解析する。ここで、漏洩孔920(欠陥)に起因した特定の周波数の特徴成分を「第1の特徴成分」と呼ぶ。漏洩位置特定演算部134は、第1の振動検知部110Aにより取得された振動データに現れている第1の特徴成分と、第2の振動検知部110Bにより取得された振動データに現れている第1の特徴成分との相関(例:位相差、時間差)と、振動伝搬速度を利用して、配管900に形成された流体漏洩位置(漏洩孔920の位置)を特定する。 First, the leakage position specifying calculation unit 134 receives, from the processing unit side receiving unit 136, data on the vibrations being detected detected by the first and second vibration detecting units 110A and 110B. Then, the leakage position specifying calculation unit 134 analyzes the vibration data being changed. Here, the characteristic component of the specific frequency resulting from the leak hole 920 (defect) is referred to as a “first characteristic component”. The leak position specifying calculation unit 134 includes the first feature component appearing in the vibration data acquired by the first vibration detection unit 110A and the first feature component appearing in the vibration data acquired by the second vibration detection unit 110B. The fluid leak position (position of the leak hole 920) formed in the pipe 900 is specified using the correlation (eg, phase difference, time difference) with the one feature component and the vibration propagation speed.
 図4に示されるように、漏洩判定部135は、制御部131および処理部側受信部136に接続されている。漏洩判定部135は、配管900に漏洩があるか否かを判断する。すなわち、漏洩判定部135は、第1および第2の振動検知部110A、110Bにより検知された振動データの少なくとも一方に基づいて、配管900に漏洩孔920が形成されているか否かを判定する。 As shown in FIG. 4, the leakage determination unit 135 is connected to the control unit 131 and the processing unit side receiving unit 136. The leakage determination unit 135 determines whether there is a leakage in the pipe 900. That is, the leakage determination unit 135 determines whether or not the leakage hole 920 is formed in the pipe 900 based on at least one of the vibration data detected by the first and second vibration detection units 110A and 110B.
 ここで、配管900に漏洩孔920が形成されている場合、特定の振動周波数成分が、漏洩孔920が形成されていない場合に比べて、大きな振幅を示すことが一般的に知られている。配管900に漏洩孔920が形成されていない場合を正常な状態とする。すなわち、配管900に漏洩孔920が形成されている場合、第1および第2の振動検知部110A、110Bにより検知された振動のデータ中に、ある特定の範囲の振動周波数成分が正常時(正常な状態)に対して大きな振幅を示す特徴が現れる。 Here, it is generally known that when the leak hole 920 is formed in the pipe 900, the specific vibration frequency component shows a larger amplitude than when the leak hole 920 is not formed. A case where the leak hole 920 is not formed in the pipe 900 is regarded as a normal state. That is, when the leak hole 920 is formed in the pipe 900, the vibration frequency component in a specific range is normal (normal) in the vibration data detected by the first and second vibration detectors 110A and 110B. A characteristic showing a large amplitude appears.
 漏洩判定部135は、第1および第2の振動検知部110A、110Bにより検知された振動のデータを解析し、前述の特徴が現れていないかを判断する。より具体的には、流体漏洩判定部135は、正常時の振幅の閾値を超えているかいないか判断することで、配管900に漏洩孔920が形成されているか否かを判断する。なお、漏洩判定部135は、本発明の必須の構成要件ではない。したがって、この漏洩判定部135を省略することもできる。 The leakage determination unit 135 analyzes the vibration data detected by the first and second vibration detection units 110A and 110B, and determines whether or not the above-described feature appears. More specifically, the fluid leakage determination unit 135 determines whether or not the leakage hole 920 is formed in the pipe 900 by determining whether or not the amplitude threshold value at the normal time is exceeded. The leakage determination unit 135 is not an indispensable component of the present invention. Therefore, the leakage determination unit 135 can be omitted.
 図4に示されるように、処理部側受信部136は、制御部131、漏洩位置特定演算部134および漏洩判定部135に接続されている。また、処理部側受信部136は、第1の振動検知部110Aおよび第2の振動検知部110Bにも接続されている。処理部側受信部136は、第1および第2の振動検知部110A、110Bにより検知された振動のデータを、第1および第2の振動検知部110A、110Bから受信する。 As shown in FIG. 4, the processing unit side receiving unit 136 is connected to the control unit 131, the leakage position specifying calculation unit 134, and the leakage determination unit 135. The processing unit side reception unit 136 is also connected to the first vibration detection unit 110A and the second vibration detection unit 110B. The processing unit side receiving unit 136 receives the vibration data detected by the first and second vibration detection units 110A and 110B from the first and second vibration detection units 110A and 110B.
 次に、本発明の第1の実施の形態における欠陥分析装置100の動作について、説明する。 Next, the operation of the defect analysis apparatus 100 according to the first embodiment of the present invention will be described.
 図5は、本発明の第1の実施の形態における欠陥分析装置100の動作フローを示す図である。 FIG. 5 is a diagram showing an operation flow of the defect analysis apparatus 100 according to the first embodiment of the present invention.
 図5に示されるように、まず、第1および第2の振動検知部110A、110Bが、第1および第2の振動データを計測する(ステップ(STEP:以下、Sを称する)1)。より具体的には、第1および第2の振動検知部110A、110B内の各振動検知センサ111が配管900または配管900内を流れる流体910を伝搬する振動を、第1および第2の振動データとして、検知する。そして、振動検知側送信部112が、第1および第2の振動検知部110A、110Bの各振動検知センサ111から、第1および第2の振動データを受け取り、これらを処理部130へ送信する。つぎに、処理部130の処理部側受信部136が、第1および第2の振動データを受信する。 As shown in FIG. 5, first, the first and second vibration detection units 110A and 110B measure the first and second vibration data (step (STEP: hereinafter referred to as S) 1). More specifically, the vibration that each vibration detection sensor 111 in the first and second vibration detection units 110A and 110B propagates in the pipe 900 or the fluid 910 flowing in the pipe 900 is represented by the first and second vibration data. Detect as. Then, the vibration detection side transmission unit 112 receives the first and second vibration data from the vibration detection sensors 111 of the first and second vibration detection units 110 </ b> A and 110 </ b> B and transmits them to the processing unit 130. Next, the processing unit side receiving unit 136 of the processing unit 130 receives the first and second vibration data.
 次に、漏洩判定部135が欠陥有無判定処理を行う(S2)。具体的には、漏洩判定部135が、配管900に漏洩があるか否かを判断する。すなわち、漏洩判定部135は、前述の通り、第1および第2の振動データの少なくとも一方に基づいて、配管900に漏洩孔920が形成されているか否か(配管900に欠陥があるか否か)を判定する。なお、漏洩判定部135は、第1および第2の振動データの双方に基づいて、配管900に漏洩孔920が形成されているか否かを判定してもよい。 Next, the leakage determination unit 135 performs a defect presence / absence determination process (S2). Specifically, the leak determination unit 135 determines whether there is a leak in the pipe 900. That is, as described above, the leak determination unit 135 determines whether or not the leak hole 920 is formed in the pipe 900 based on at least one of the first and second vibration data (whether or not the pipe 900 is defective). ). Leakage determination unit 135 may determine whether or not leakage hole 920 is formed in pipe 900 based on both the first and second vibration data.
 漏洩判定部135が、配管に欠陥がないと判定した場合(S3、NO)、S1の処理を再び繰り返す。なお、S2、S3の処理は、本発明の構成要件に含まなくてもよい。この場合、S2、S3の処理を省略することができる。すなわち、S1の処理が終了した後、S4の処理を行う。 If the leakage determination unit 135 determines that the piping is not defective (S3, NO), the process of S1 is repeated again. Note that the processing of S2 and S3 may not be included in the configuration requirements of the present invention. In this case, the processes of S2 and S3 can be omitted. That is, after the process of S1 is completed, the process of S4 is performed.
 一方、漏洩判定部135が、配管に欠陥があると判定した場合(S3、YES)、振動変化部120が振動を変化させる(S4)。すなわち、振動変化部120は、流動振動に関する特性(流動振動特性)を変化させることにより、配管900または配管900内を流れる流体910を伝搬する振動を変化させる。なお、流動振動に関する特性は、前述の通り、配管900内を流れる流体910の流動により生じる振動である。 On the other hand, when the leakage determining unit 135 determines that the piping is defective (S3, YES), the vibration changing unit 120 changes the vibration (S4). In other words, the vibration changing unit 120 changes the vibration propagating through the pipe 900 or the fluid 910 flowing in the pipe 900 by changing the characteristics (flow vibration characteristics) related to the flow vibration. In addition, the characteristic regarding the flow vibration is vibration generated by the flow of the fluid 910 flowing in the pipe 900 as described above.
 より具体的には、まず、制御部131は、処理部側送信部132へ出力する制御信号を生成し、これを処理部側送信部132へ入力する。制御部131は、制御信号記憶部133から振動変化指示信号を取り出し、これを制御信号として、処理部側送信部132へ出力してもよい。なお、制御信号は、前述の通り、配管900内を流れる流体910の流動により生じる振動である流動振動に関する特性を変化させることにより、配管900または配管900内を流れる流体910を伝搬する振動を変化させる振動変化指示信号である。 More specifically, first, the control unit 131 generates a control signal to be output to the processing unit side transmission unit 132, and inputs this to the processing unit side transmission unit 132. The control unit 131 may extract the vibration change instruction signal from the control signal storage unit 133 and output it to the processing unit side transmission unit 132 as a control signal. The control signal changes the vibration propagating through the pipe 900 or the fluid 910 flowing in the pipe 900 by changing the characteristics related to the flow vibration, which is the vibration generated by the flow of the fluid 910 flowing in the pipe 900 as described above. This is a vibration change instruction signal.
 そして、処理部側送信部132が、制御信号を振動変化部120へ送信する。振動変化部120では、制御信号受信部122が、制御信号を処理部側送信部132から受信し、これを振動変化手段121へ出力する。振動変化手段121は、前述の通り、制御信号に基づいて、流動振動特性を変化させることにより、配管900または配管900内を流れる流体910を伝搬する振動を変化させる。 Then, the processing unit side transmission unit 132 transmits a control signal to the vibration changing unit 120. In the vibration changing unit 120, the control signal receiving unit 122 receives the control signal from the processing unit side transmitting unit 132 and outputs it to the vibration changing unit 121. As described above, the vibration changing unit 121 changes the vibration propagating through the pipe 900 or the fluid 910 flowing in the pipe 900 by changing the flow vibration characteristics based on the control signal.
 ここで、振動変化部120(振動変化手段121)の動作について、さらに詳しく説明する。 Here, the operation of the vibration changing unit 120 (vibration changing means 121) will be described in more detail.
 前述の通り、振動変化部120は、配管900内を流れる流体910の流動により生じる振動である流動振動に関する特性(流動振動特性)を変化させることにより、配管900または配管900内を流れる流体910を伝搬する振動を変化させる。流動振動特性としては、例えば、振幅や周波数が挙げられる。 As described above, the vibration changing unit 120 changes the characteristics (flow vibration characteristics) related to the flow vibration, which is vibration generated by the flow of the fluid 910 flowing in the pipe 900, thereby changing the pipe 900 or the fluid 910 flowing in the pipe 900. Change propagating vibration. Examples of the flow vibration characteristics include amplitude and frequency.
 流体振動の振幅や周波数を変化させる手段として、例えば、流体910に圧力を加えたり、温度変化を加えたりすることが挙げられる。ここでは、振動変化部120は、配管900内を流れる流体910の圧力を変化させる圧力制御部(不図示、例えば、圧力ポンプや減圧弁)、または配管900内を流れる流体910の温度を変化させる温度制御部(不図示、例えば、ヒーター)を、振動変化手段121として有するものとする。 Examples of means for changing the amplitude and frequency of the fluid vibration include applying pressure to the fluid 910 and applying a temperature change. Here, the vibration changing unit 120 changes the temperature of the fluid 910 flowing in the pipe 900 or a pressure control unit (not shown, for example, a pressure pump or a pressure reducing valve) that changes the pressure of the fluid 910 flowing in the pipe 900. It is assumed that a temperature control unit (not shown, for example, a heater) is included as the vibration changing unit 121.
 図6は、流体910に異なる圧力を加えた際の流体振動の周波数および振幅加速度の関係の一例を示す図である。図6に示されるように、流体910に異なる圧力P1、P2を加えると、流体波動の振幅および周波数が変化する。具体的には、流体910に加える圧力をP1からP2へ変更すると、振幅加速度が小さくなり、周波数が大きくなる。なお、流体910に加える圧力を変更する際に、圧力を大きくしても、小さくしてもよい。 FIG. 6 is a diagram showing an example of the relationship between the frequency and amplitude acceleration of fluid vibration when different pressures are applied to the fluid 910. As shown in FIG. 6, when different pressures P1 and P2 are applied to the fluid 910, the amplitude and frequency of the fluid wave change. Specifically, when the pressure applied to the fluid 910 is changed from P1 to P2, the amplitude acceleration decreases and the frequency increases. Note that when changing the pressure applied to the fluid 910, the pressure may be increased or decreased.
 図7は、流体910に異なる温度変化を与えた際の流体振動の周波数および振幅加速度の関係の一例を示す図である。図7に示されるように、流体910を異なる温度T1、T2に設定すると、流体波動の振幅および周波数が変化する。具体的には、流体910の温度をT1からT2へ変更すると、振幅加速度が小さくなり、周波数が大きくなる。なお、流体910の温度を変更する際に、温度を高くしても、低くしてもよい。 FIG. 7 is a diagram showing an example of the relationship between the frequency and amplitude acceleration of the fluid vibration when different temperature changes are given to the fluid 910. As shown in FIG. 7, when the fluid 910 is set to different temperatures T1 and T2, the amplitude and frequency of the fluid wave change. Specifically, when the temperature of the fluid 910 is changed from T1 to T2, the amplitude acceleration decreases and the frequency increases. When changing the temperature of the fluid 910, the temperature may be increased or decreased.
 以上、図6および図7を用いて説明したように、流体の振幅または周波数を変化させることにより、振幅加速度および周波数が変動することがわかる。 As described above, as described with reference to FIGS. 6 and 7, it can be seen that the amplitude acceleration and the frequency are changed by changing the amplitude or frequency of the fluid.
 したがって、振動変化部120は、配管900内を流れる流体910の流動により生じる振動である流動振動に関する特性(流動振動特性)として、流動振動の振幅や周波数を変化させることにより、配管900または配管900内を流れる流体910を伝搬する振動を変化させることができる。 Therefore, the vibration changing unit 120 changes the amplitude or frequency of the flow vibration as the characteristic (flow vibration characteristic) related to the flow vibration, which is the vibration generated by the flow of the fluid 910 flowing in the pipe 900, thereby the pipe 900 or the pipe 900. The vibration propagating through the fluid 910 flowing inside can be changed.
 次に、第1および第2の振動検知部110A、110Bが、第1および第2の非定常振動データを計測する(S5)。ここで、第1の非定常振動データとは、第1の振動検知部110Aが検知するデータであって、振動変化部120により変化された後に配管900および配管900内を流れる流体910を伝搬する流動振動のデータをいう。同様に、第2の非定常振動データとは、第2の振動検知部110Bが検知するデータであって、振動変化部120により変化された後に配管900および配管900内を流れる流体910を伝搬する流動振動のデータをいう。ここでは、定常とは、振動変化部120により変化が加えられていない状態をいい、非定常とは、振動変化部120により変化が加えられている状態をいう。 Next, the first and second vibration detection units 110A and 110B measure the first and second unsteady vibration data (S5). Here, the first unsteady vibration data is data detected by the first vibration detection unit 110 </ b> A and propagates through the pipe 900 and the fluid 910 flowing through the pipe 900 after being changed by the vibration change unit 120. Flow vibration data. Similarly, the second unsteady vibration data is data detected by the second vibration detection unit 110B and propagates through the pipe 900 and the fluid 910 flowing through the pipe 900 after being changed by the vibration change unit 120. Flow vibration data. Here, the steady state refers to a state in which no change is applied by the vibration change unit 120, and the non-steady state refers to a state in which a change is applied by the vibration change unit 120.
 第1および第2の振動検知部110A、110B各々の振動検知センサ111が、第1および第2の非定常振動データを計測し、これらを振動検知側送信部112へ出力する。振動検知側送信部112は、第1および第2の非定常振動データを処理部130へ向けて送信する。そして、処理部130では、処理部側受信部136が、第1および第2の非定常振動データを受信する。 The vibration detection sensors 111 of the first and second vibration detection units 110A and 110B measure the first and second unsteady vibration data, and output them to the vibration detection side transmission unit 112. The vibration detection side transmission unit 112 transmits the first and second unsteady vibration data to the processing unit 130. In the processing unit 130, the processing unit side receiving unit 136 receives the first and second unsteady vibration data.
 次に、漏洩位置特定算出部134が、相関演算により、到達時刻差ΔTを算出する(S6)。ここでの到達時間差ΔTは、第1の振動検知部110Aが振動を検知するまでの到達時間TAと、第2の振動検知部110Bが振動を検知するまでの到達時間TBの差分値である。 Next, the leakage position specification calculating unit 134 calculates the arrival time difference ΔT by correlation calculation (S6). The arrival time difference ΔT here is a difference value between the arrival time TA until the first vibration detection unit 110A detects vibration and the arrival time TB until the second vibration detection unit 110B detects vibration.
 漏洩位置特定算出部134により、到達時間差ΔTを算出する方法を具体的に説明する。 A method for calculating the arrival time difference ΔT by the leakage position specifying calculation unit 134 will be specifically described.
 ここでは、配管内900を流れる流体910の流動振動が定常であった場合と、非定常であった場合を対比しながら、漏洩位置特定算出部134の動作を説明する。 Here, the operation of the leakage position specifying calculation unit 134 will be described while comparing the case where the flow vibration of the fluid 910 flowing in the pipe 900 is steady and the case where it is unsteady.
 まず、配管内900を流れる流体910の流動振動が定常であった場合について説明する。この場合は、振動変化部120が動作しない状態で、第1および第2の振動検知部110A、110Bが、配管900および配管900内を流れる流体910を伝搬する振動データを取得した場合を想定している。 First, a case where the flow vibration of the fluid 910 flowing in the pipe 900 is steady will be described. In this case, it is assumed that the vibration change unit 120 does not operate and the first and second vibration detection units 110A and 110B acquire vibration data propagating the pipe 900 and the fluid 910 flowing through the pipe 900. ing.
 図8は、配管内900を流れる流体910の流動振動が定常的な場合における流体910の流動振動の一例を示す。図9は、配管内900を流れる流体910の流動振動が定常的な場合における相互相関関数の一例である。 FIG. 8 shows an example of the flow vibration of the fluid 910 when the flow vibration of the fluid 910 flowing through the pipe 900 is steady. FIG. 9 is an example of a cross-correlation function when the flow vibration of the fluid 910 flowing in the pipe 900 is steady.
 図8の例では、流体910の漏洩振動は、振幅1で、周波数125Hzの正弦波とした。 8, the leakage vibration of the fluid 910 is a sine wave having an amplitude of 1 and a frequency of 125 Hz.
 図9で示す相互相関関数では、第1の振動検知部110A(振動検知センサ111)と第2の振動検知部110B(振動検知センサ111)の間の距離を100mとした。また、第1の振動検知部110A(振動検知センサ111)と第2の振動検知部110B(振動検知センサ111)の雑音を分散1の正規乱数で表した。また、流体漏洩位置の振動検知部110A(振動検知センサ111)からの距離を30mとし、音速を1300m/s、つまり流体漏洩振動の到達時刻差が30.8msとなるように、設定した。 In the cross-correlation function shown in FIG. 9, the distance between the first vibration detection unit 110A (vibration detection sensor 111) and the second vibration detection unit 110B (vibration detection sensor 111) is 100 m. Further, the noise of the first vibration detection unit 110A (vibration detection sensor 111) and the second vibration detection unit 110B (vibration detection sensor 111) is represented by a normal random number of variance 1. The distance from the vibration detection unit 110A (vibration detection sensor 111) at the fluid leakage position was set to 30 m, the sound speed was set to 1300 m / s, that is, the arrival time difference of the fluid leakage vibration was set to 30.8 ms.
 図9に示す例では、本来現れるべき到達時刻差30.8msに最大値が現れず、また最大値を持つ山と隣の山の値が近いため、雑音により最大値の位置が変化しやすいという特性を持つ。このため、第1の振動検知部110Aが振動を検知するまでの到達時間TAと、第2の振動検知部110Bが振動を検知するまでの到達時間TBとの間の到達時間差ΔTを正確に検出することができなかった。すなわち、振動変化部120が動作しない状態で、第1および第2の振動検知部110A、110Bにより取得された振動データによって、漏洩位置特定算出部134は、到達時間差ΔTを正確に算出することができない。 In the example shown in FIG. 9, the maximum value does not appear at the arrival time difference of 30.8 ms that should originally appear, and the value of the maximum value is likely to change due to noise because the value of the peak having the maximum value is close to the value of the adjacent peak. Has characteristics. Therefore, the arrival time difference ΔT between the arrival time TA until the first vibration detection unit 110A detects the vibration and the arrival time TB until the second vibration detection unit 110B detects the vibration is accurately detected. I couldn't. That is, the leakage position specifying calculation unit 134 can accurately calculate the arrival time difference ΔT based on the vibration data acquired by the first and second vibration detection units 110A and 110B in a state where the vibration change unit 120 does not operate. Can not.
 次に、配管内900を流れる流体910の流動振動が非定常であった場合について説明する。すなわち、振動変化部120が、流動振動に関する特性(流動振動特性)を変化させることにより、配管900または配管900内を流れる流体910を伝搬する振動を変化させた場合について、説明する。この場合は、振動変化部120が動作した状態で、第1および第2の振動検知部110A、110Bが、配管900および配管900内を流れる流体910を伝搬する振動データを取得した場合を想定している。 Next, a case where the flow vibration of the fluid 910 flowing in the pipe 900 is unsteady will be described. That is, the case where the vibration changing unit 120 changes the vibration propagating in the pipe 900 or the fluid 910 flowing in the pipe 900 by changing the characteristic (flow vibration characteristic) related to the flow vibration will be described. In this case, it is assumed that the vibration change unit 120 is operating and the first and second vibration detection units 110A and 110B acquire vibration data that propagates the pipe 900 and the fluid 910 flowing through the pipe 900. ing.
 図10は、配管内900を流れる流体910の流動振動が非定常的(周波数が変動)な場合における流体910の流動振動の一例を示す。図11は、配管内900を流れる流体910の流動振動が非定常的(周波数が変動)な場合における相互相関関数の一例である。 FIG. 10 shows an example of the flow vibration of the fluid 910 when the flow vibration of the fluid 910 flowing in the pipe 900 is unsteady (frequency fluctuates). FIG. 11 is an example of a cross-correlation function when the flow vibration of the fluid 910 flowing in the pipe 900 is non-stationary (frequency varies).
 図10の例では、振動変化部120により変化された流体910の漏洩振動は、振幅1、周波数が50Hzから200Hzに変化するチャープ波とした。 In the example of FIG. 10, the leakage vibration of the fluid 910 changed by the vibration changing unit 120 is a chirp wave whose amplitude is 1 and whose frequency is changed from 50 Hz to 200 Hz.
 図11に示す相互相関関数では、第1の振動検知部110A(振動検知センサ111)と第2の振動検知部110B(振動検知センサ111)の間の距離を100mとした。また、第1の振動検知部110A(振動検知センサ111)と第2の振動検知部110B(振動検知センサ111)の雑音を分散1の正規乱数で表した。また、流体漏洩位置の振動検知部110A(振動検知センサ111)からの距離を100mとし、音速が1300m/s、つまり流体漏洩振動の到達時刻差が30.8msとなるように、設定した。 In the cross-correlation function shown in FIG. 11, the distance between the first vibration detection unit 110A (vibration detection sensor 111) and the second vibration detection unit 110B (vibration detection sensor 111) is 100 m. Further, the noise of the first vibration detection unit 110A (vibration detection sensor 111) and the second vibration detection unit 110B (vibration detection sensor 111) is represented by a normal random number of variance 1. Further, the distance from the vibration detection unit 110A (vibration detection sensor 111) at the fluid leakage position is set to 100 m, the sound speed is set to 1300 m / s, that is, the arrival time difference of the fluid leakage vibration is set to 30.8 ms.
 図11に示されるように、最大値P1が、本来最大値が現れるべき到達時刻差30.8msに明瞭に現れている。最大値P1が明瞭に表示されている点は、図9と比較すると明らかである。すなわち、図11では、図9に示す定常的な場合の相互相関関数と比べて、最大値P1を持つ山と隣の山の値は大きなレベル差があるため、雑音の影響を受けにくい。 As shown in FIG. 11, the maximum value P1 clearly appears at an arrival time difference of 30.8 ms at which the maximum value should appear. The point that the maximum value P1 is clearly displayed is clear when compared with FIG. That is, in FIG. 11, compared to the steady-state cross-correlation function shown in FIG. 9, there is a large level difference between the value of the peak having the maximum value P1 and the adjacent peak, so that it is less susceptible to noise.
 したがって、第1の振動検知部110Aが振動を検知するまでの到達時間TAと、第2の振動検知部110Bが振動を検知するまでの到達時間TBとの間の到達時間差ΔTを、図11に示すように、正確に検出することができる。すなわち、振動変化部120が動作した状態で、第1および第2の振動検知部110A、110Bにより取得された振動データ(第1および第2の非定常振動データ)を用いれば、漏洩位置特定算出部134は、到達時間差ΔTを正確に算出することができる。 Therefore, the arrival time difference ΔT between the arrival time TA until the first vibration detection unit 110A detects vibration and the arrival time TB until the second vibration detection unit 110B detects vibration is shown in FIG. As shown, it can be detected accurately. That is, when the vibration data (first and second unsteady vibration data) acquired by the first and second vibration detection units 110A and 110B is used in a state where the vibration changing unit 120 is operated, the leak position specifying calculation is performed. The unit 134 can accurately calculate the arrival time difference ΔT.
 続いて、振動変化部120が、流動振動に関する特性(流動振動特性)を変化させることにより、配管900または配管900内を流れる流体910を伝搬する振動を変化させた場合の別例について、説明する。 Subsequently, another example in which the vibration changing unit 120 changes the vibration propagating in the pipe 900 or the fluid 910 flowing in the pipe 900 by changing the characteristic (flow vibration characteristic) related to the flow vibration will be described. .
 図12は、配管内900を流れる流体910の流動振動が非定常的(振幅が変動)な場合における流体910の流動振動の一例を示す。図13は、配管内900を流れる流体910の流動振動が非定常的(振幅が変動)な場合における相互相関関数の一例である。 FIG. 12 shows an example of the flow vibration of the fluid 910 when the flow vibration of the fluid 910 flowing in the pipe 900 is unsteady (amplitude varies). FIG. 13 is an example of a cross-correlation function when the flow vibration of the fluid 910 flowing in the pipe 900 is non-stationary (amplitude varies).
 図12の例では、振動変化部120により変化された流体910の漏洩振動は、周波数が125Hzのままで、振幅が変化する波とした。 In the example of FIG. 12, the leakage vibration of the fluid 910 changed by the vibration changing unit 120 is a wave whose amplitude changes while the frequency remains 125 Hz.
 図13に示す相互相関関数では、第1の振動検知部110A(振動検知センサ111)と第2の振動検知部110B(振動検知センサ111)の間の距離を100mとした。また、第1の振動検知部110A(振動検知センサ111)と第2の振動検知部110B(振動検知センサ111)の雑音を分散1の正規乱数で表した。また、流体漏洩位置の振動検知部110A(振動検知センサ111)からの距離を30mとし、音速が1300m/s、つまり流体漏洩振動の到達時刻差が30.8msとなるように、設定した。 In the cross-correlation function shown in FIG. 13, the distance between the first vibration detection unit 110A (vibration detection sensor 111) and the second vibration detection unit 110B (vibration detection sensor 111) is 100 m. Further, the noise of the first vibration detection unit 110A (vibration detection sensor 111) and the second vibration detection unit 110B (vibration detection sensor 111) is represented by a normal random number of variance 1. In addition, the distance from the vibration detection unit 110A (vibration detection sensor 111) at the fluid leakage position was set to 30 m, the sound velocity was set to 1300 m / s, that is, the arrival time difference of the fluid leakage vibration was set to 30.8 ms.
 図13に示されるように、最大値P2が、本来最大値が現れるべき到達時刻差30.8msに明瞭に現れている。最大値P2が明瞭に表示されている点は、図9と比較すると明らかである。すなわち、図13では、図9に示す定常的な場合の相互相関関数と比べて、最大値P2を持つ山と隣の山の値は大きなレベル差があるため、雑音の影響を受けにくい。 As shown in FIG. 13, the maximum value P2 clearly appears at an arrival time difference of 30.8 ms where the maximum value should appear. The point that the maximum value P2 is clearly displayed is clear when compared with FIG. That is, in FIG. 13, compared to the steady-state cross-correlation function shown in FIG. 9, the value of the peak having the maximum value P <b> 2 and the value of the adjacent peak have a large level difference.
 したがって、第1の振動検知部110Aが振動を検知するまでの到達時間TAと、第2の振動検知部110Bが振動を検知するまでの到達時間TBとの間の到達時間差ΔTを、図13に示すように、正確に検出することができる。すなわち、振動変化部120が動作した状態で、第1および第2の振動検知部110A、110Bにより取得された振動データ(第1および第2の非定常振動データ)を用いれば、漏洩位置特定算出部134は、到達時間差ΔTを正確に算出することができる。 Therefore, the arrival time difference ΔT between the arrival time TA until the first vibration detection unit 110A detects vibration and the arrival time TB until the second vibration detection unit 110B detects vibration is shown in FIG. As shown, it can be detected accurately. That is, when the vibration data (first and second unsteady vibration data) acquired by the first and second vibration detection units 110A and 110B is used in a state where the vibration changing unit 120 is operated, the leak position specifying calculation is performed. The unit 134 can accurately calculate the arrival time difference ΔT.
 さらに、振動変化部120が、流動振動に関する特性(流動振動特性)を変化させることにより、配管900または配管900内を流れる流体910を伝搬する振動を変化させた場合の第2の別例について、説明する。 Furthermore, regarding the second alternative example in which the vibration changing unit 120 changes the vibration propagating through the pipe 900 or the fluid 910 flowing in the pipe 900 by changing the characteristics (flow vibration characteristics) related to the flow vibration, explain.
 図14は、配管内900を流れる流体910の流動振動が非定常的(周波数および振幅が変動)な場合における流体910の流動振動の一例を示す。図15は、配管内900を流れる流体910の流動振動が非定常的(周波数および振幅が変動)な場合における相互相関関数の一例である。 FIG. 14 shows an example of the flow vibration of the fluid 910 when the flow vibration of the fluid 910 flowing in the pipe 900 is unsteady (frequency and amplitude fluctuate). FIG. 15 is an example of a cross-correlation function when the flow vibration of the fluid 910 flowing in the pipe 900 is nonstationary (frequency and amplitude fluctuate).
 図14の例では、振動変化部120により変化された流体910の漏洩振動は、振幅が変動し、さらに周波数も50Hzから200Hzに変化するチャープ波とした。 In the example of FIG. 14, the leakage vibration of the fluid 910 changed by the vibration changing unit 120 is a chirp wave whose amplitude varies and the frequency also changes from 50 Hz to 200 Hz.
 図15に示す相互相関関数では、第1の振動検知部110A(振動検知センサ111)と第2の振動検知部110B(振動検知センサ111)の間の距離を100mとした。また、第1の振動検知部110A(振動検知センサ111)と第2の振動検知部110B(振動検知センサ111)の雑音を分散1の正規乱数で表した。また、流体漏洩位置の振動検知部110A(振動検知センサ111)からの距離を30mとし、音速が1300m/s、つまり流体漏洩振動の到達時刻差が30.8msとなるように、設定した。 15, the distance between the first vibration detection unit 110A (vibration detection sensor 111) and the second vibration detection unit 110B (vibration detection sensor 111) is 100 m. Further, the noise of the first vibration detection unit 110A (vibration detection sensor 111) and the second vibration detection unit 110B (vibration detection sensor 111) is represented by a normal random number of variance 1. In addition, the distance from the vibration detection unit 110A (vibration detection sensor 111) at the fluid leakage position was set to 30 m, the sound velocity was set to 1300 m / s, that is, the arrival time difference of the fluid leakage vibration was set to 30.8 ms.
 図15に示されるように、最大値P3が、本来最大値が現れるべき到達時刻差30.8msに明瞭に現れている。最大値P3が明瞭に表示されている点は、図9と比較すると明らかである。すなわち、図15では、図9に示す定常的な場合の相互相関関数と比べて、最大値P3を持つ山と隣の山の値は大きなレベル差があるため、雑音の影響を受けにくい。 As shown in FIG. 15, the maximum value P3 clearly appears at an arrival time difference of 30.8 ms where the maximum value should appear. The point that the maximum value P3 is clearly displayed is clear when compared with FIG. That is, in FIG. 15, compared to the steady-state cross-correlation function shown in FIG. 9, the value of the peak having the maximum value P <b> 3 and the value of the adjacent peak have a large level difference, and thus are less susceptible to noise.
 したがって、第1の振動検知部110Aが振動を検知するまでの到達時間TAと、第2の振動検知部110Bが振動を検知するまでの到達時間TBとの間の到達時間差ΔTを、図15に示すように、正確に検出することができる。すなわち、振動変化部120が動作した状態で、第1および第2の振動検知部110A、110Bにより取得された振動データ(第1および第2の非定常振動データ)を用いれば、漏洩位置特定算出部134は、到達時間差ΔTを正確に算出することができる。 Therefore, the arrival time difference ΔT between the arrival time TA until the first vibration detection unit 110A detects vibration and the arrival time TB until the second vibration detection unit 110B detects vibration is shown in FIG. As shown, it can be detected accurately. That is, when the vibration data (first and second unsteady vibration data) acquired by the first and second vibration detection units 110A and 110B is used in a state where the vibration changing unit 120 is operated, the leak position specifying calculation is performed. The unit 134 can accurately calculate the arrival time difference ΔT.
 以上、漏洩位置特定算出部134により、到達時間差ΔTを算出する方法について、図8~図15を用いて、詳しく説明した。 The method for calculating the arrival time difference ΔT by the leakage position specifying calculation unit 134 has been described in detail with reference to FIGS.
 図5に戻って、次に、漏洩位置特定算出部134が、欠陥位置を特定する(S7)。すなわち、漏洩位置特定算出部134は、第1および第2の振動検知部により検知された前記変化中の振動(第1および第2の非定常振動データ)に基づいて、配管900から流体910が漏洩している位置である流体漏洩位置(欠陥位置)を算出する。 Returning to FIG. 5, next, the leakage position specifying calculation unit 134 specifies the defect position (S7). In other words, the leakage position specifying calculation unit 134 causes the fluid 910 to flow from the pipe 900 based on the vibration (first and second unsteady vibration data) detected by the first and second vibration detection units. The fluid leakage position (defect position), which is the leaking position, is calculated.
 より具体的には、S6の処理で算出した到達時間差ΔTと、予め設定された音速とから、流体漏洩位置(欠陥位置)を算出する。 More specifically, the fluid leakage position (defect position) is calculated from the arrival time difference ΔT calculated in the process of S6 and the preset sound speed.
 以上、本発明の第1の実施の形態における欠陥分析装置100の動作について、説明した。 The operation of the defect analysis apparatus 100 according to the first embodiment of the present invention has been described above.
 以上のように、本発明の第1の実施の形態における欠陥分析装置100は、振動変化部120(振動変化手段)と、第1および第2の振動検知部110A、110B(一対の振動検知手段、一対の振動検知部)と、漏洩位置特定演算部(漏洩位置特定演算手段)134とを備えている。振動変化部120は、配管900内を流れる流体910の流動により生じる振動である流動振動に関する特性を変化させることにより、配管900または配管900内を流れる流体910を伝搬する振動を変化させる。第1および第2の振動検知部110A、110Bは、振動変化部120により変化されている間に配管900または配管900内を流れる流体910を伝搬する振動である変化中の振動を検知する。漏洩位置特定演算部134は、第1および第2の振動検知部110A、110Bにより検知された変化中の振動に基づいて、配管900から流体910が漏洩している位置である流体漏洩位置を算出する。 As described above, the defect analysis apparatus 100 according to the first embodiment of the present invention includes the vibration changing unit 120 (vibration changing unit) and the first and second vibration detecting units 110A and 110B (a pair of vibration detecting units). , A pair of vibration detection units) and a leakage position specifying calculation unit (leakage position specifying calculation means) 134. The vibration changing unit 120 changes the vibration propagating in the pipe 900 or the fluid 910 flowing in the pipe 900 by changing the characteristics related to the flow vibration that is the vibration generated by the flow of the fluid 910 flowing in the pipe 900. The first and second vibration detection units 110 </ b> A and 110 </ b> B detect vibrations that are changing, which are vibrations that propagate through the pipe 900 or the fluid 910 that flows in the pipe 900 while being changed by the vibration change unit 120. The leakage position specifying calculation unit 134 calculates a fluid leakage position, which is a position where the fluid 910 is leaking from the pipe 900, based on the changing vibration detected by the first and second vibration detection units 110A and 110B. To do.
 このように、振動変化部120により、配管900内を流れる流体910の流動により生じる振動である流動振動に関する特性(例えば、周波数、振幅、周波数および振幅)を変化させることにより、配管900または配管900内を流れる流体910を伝搬する振動を変化させる。これにより、配管900または配管900内を流れる流体910を伝搬する振動である変化中の振動は、チャープ波等の自己相関関数の最大値が明瞭な信号に変化される。そして、このように、変化中の振動を、自己相関関数の最大値が明瞭となった信号として、第1および第2の振動検知部110A、110Bで検知する。なお、変化中の振動とは、振動変化部120により変化されている間に配管900または配管900内を流れる流体910を伝搬する振動である。ここで、配管内900を流れる流体910の流動振動が定常的な場合と非定常的な場合の第1および第2の振動検知部110A、110Bの振動データの相互相関関数を比較すると、流体流動が非定常的な場合の相互相関関数は最大値が明瞭となる。これにより、第1の振動検知部110Aが振動を検知するまでの到達時間TAと、第2の振動検知部110Bが振動を検知するまでの到達時間TBとの間の到達時間差ΔTが、後述の漏洩位置特定演算部134により、正確に検出される。そして、到達時間差ΔTと、予め設定された音速を用いて、流体漏洩位置(漏洩孔920)をより正確に算出できる。 As described above, the vibration changing unit 120 changes the characteristics (for example, frequency, amplitude, frequency, and amplitude) related to the flow vibration, which is vibration generated by the flow of the fluid 910 flowing in the pipe 900, thereby the pipe 900 or the pipe 900. The vibration propagating through the fluid 910 flowing inside is changed. As a result, the vibration that is changing, which is the vibration that propagates through the pipe 900 or the fluid 910 that flows in the pipe 900, is changed to a signal with a clear autocorrelation function such as a chirp wave. In this manner, the first and second vibration detection units 110A and 110B detect the vibration that is changing as a signal with a clear maximum value of the autocorrelation function. The vibration under change is vibration that propagates through the pipe 900 or the fluid 910 that flows in the pipe 900 while being changed by the vibration changing unit 120. Here, when the cross-correlation functions of the vibration data of the first and second vibration detectors 110A and 110B in the case where the flow vibration of the fluid 910 flowing in the pipe 900 is steady and non-steady are compared, the fluid flow The maximum value of the cross-correlation function when is non-stationary is clear. Thereby, the arrival time difference ΔT between the arrival time TA until the first vibration detection unit 110A detects the vibration and the arrival time TB until the second vibration detection unit 110B detects the vibration is described later. The leak position specifying calculation unit 134 detects it accurately. Then, the fluid leakage position (leakage hole 920) can be calculated more accurately by using the arrival time difference ΔT and a preset sound velocity.
 従って、本発明の第1の実施形態における欠陥分析装置100によれば、最大値が明瞭な相互相関関数を利用することができ、第1および第2の振動検知部110A、110Bへの漏洩振動の到達時刻差を精度よく決定することができる。この結果、本発明によって、高精度に流体漏洩位置(漏洩孔920)を特定することができる。 Therefore, according to the defect analysis apparatus 100 in the first embodiment of the present invention, a cross-correlation function with a clear maximum value can be used, and leakage vibration to the first and second vibration detection units 110A and 110B. Can be accurately determined. As a result, according to the present invention, the fluid leakage position (leakage hole 920) can be specified with high accuracy.
 また、本発明の第1の実施の形態における欠陥分析装置100において、振動変化部120(振動変化手段)は、流動振動に関する特性として、流動の周波数を変化させることにより、配管900または配管910内を流れる流体910を伝搬する振動を変化させる。このように、流動振動に関する特性として、流動の周波数を変化させることにより、配管900または配管910内を流れる流体910を伝搬する振動を簡単に変化させることができる。 Further, in the defect analysis apparatus 100 according to the first embodiment of the present invention, the vibration changing unit 120 (vibration changing means) changes the flow frequency as a characteristic relating to the flow vibration, so that the inside of the pipe 900 or the pipe 910 is changed. The vibration propagating through the fluid 910 flowing through the fluid is changed. As described above, as a characteristic relating to the flow vibration, the vibration propagating through the fluid 910 flowing in the pipe 900 or the pipe 910 can be easily changed by changing the flow frequency.
 本発明の第1の実施の形態における欠陥分析装置100において、振動変化部120(振動変化手段)は、流動振動に関する特性として、流動の振幅を変化させることにより、配管900または配管910内を流れる流体910を伝搬する振動を変化させる。このように、流動振動に関する特性として、流動の振幅を変化させることにより、配管900または配管910内を流れる流体910を伝搬する振動を簡単に変化させることができる。 In the defect analysis apparatus 100 according to the first embodiment of the present invention, the vibration changing unit 120 (vibration changing means) flows in the pipe 900 or the pipe 910 by changing the amplitude of the flow as a characteristic relating to the flow vibration. The vibration propagating through the fluid 910 is changed. As described above, as a characteristic related to the flow vibration, the vibration propagating through the fluid 910 flowing in the pipe 900 or the pipe 910 can be easily changed by changing the amplitude of the flow.
 本発明の第1の実施の形態における欠陥分析装置100において、振動変化部120(振動変化手段)は、流動振動に関する特性として、流動の周波数および振幅を変化させることにより、配管900または配管910内を流れる流体910を伝搬する振動を変化させる。このように、流動振動に関する特性として、流動の振幅および周波数を変化させることにより、配管900または配管910内を流れる流体910を伝搬する振動を簡単に変化させることができる。 In the defect analysis apparatus 100 according to the first embodiment of the present invention, the vibration changing unit 120 (vibration changing means) changes the frequency and amplitude of the flow as characteristics relating to the flow vibration, so that the inside of the pipe 900 or the pipe 910 The vibration propagating through the fluid 910 flowing through the fluid is changed. As described above, the vibration propagating in the fluid 910 flowing in the pipe 900 or the pipe 910 can be easily changed by changing the amplitude and frequency of the flow as the characteristics related to the flow vibration.
 本発明の第1の実施の形態における欠陥分析装置100において、漏洩位置特定演算部134(漏洩位置特定演算手段)は、第1および第2の振動検知部110A、110B(一対の振動検出手段、一対の振動検出部)により検出された変化中の振動の測定値を相関処理する。これにより、漏洩位置特定演算部134は、変化中の振動が第1および第2の振動検知部110A、110Bの各々と漏洩位置(漏洩孔920)の間を伝搬する時間差を算出し、この算出された時間差を用いて、漏洩位置を算出する。このように、第1および第2の振動検知部110A、110B(一対の振動検出部)により検出された変化中の振動の測定値を相関処理することにより、流体流動が非定常的な場合の相互相関関数は最大値が明瞭となる。これにより、第1の振動検知部110Aが振動を検知するまでの到達時間TAと、第2の振動検知部110Bが振動を検知するまでの到達時間TBとの間の到達時間差ΔTが、後述の漏洩位置特定演算部134により、正確に検出される。 In the defect analysis apparatus 100 according to the first embodiment of the present invention, the leakage position specification calculation unit 134 (leakage position specification calculation unit) includes first and second vibration detection units 110A and 110B (a pair of vibration detection units, The measurement value of the vibration in change detected by the pair of vibration detection units) is subjected to correlation processing. Thereby, the leakage position specifying calculation unit 134 calculates a time difference in which the vibration under change propagates between each of the first and second vibration detection units 110A and 110B and the leakage position (leakage hole 920). The leak position is calculated using the calculated time difference. Thus, by correlating the measured vibration values detected by the first and second vibration detection units 110A and 110B (a pair of vibration detection units), the fluid flow is unsteady. The maximum value of the cross correlation function becomes clear. Thereby, the arrival time difference ΔT between the arrival time TA until the first vibration detection unit 110A detects the vibration and the arrival time TB until the second vibration detection unit 110B detects the vibration is described later. The leak position specifying calculation unit 134 detects it accurately.
 本発明の第1の実施の形態における欠陥分析装置100において、振動変化部120(振動変化手段)は、配管900内を流れる流体910の圧力を変化させる圧力制御部(圧力制御手段)、または配管900内を流れる流体910の温度を変化させる温度制御部(温度制御手段)を有する。このように、配管900内を流れる流体910の圧力または温度に変化を加えることで、配管900内を流れる流体910の流動により生じる振動である流動振動に関する特性(例えば、周波数、振幅、周波数および振幅)を容易に変化させることができる。 In the defect analysis apparatus 100 according to the first embodiment of the present invention, the vibration changing unit 120 (vibration changing unit) is a pressure control unit (pressure control unit) that changes the pressure of the fluid 910 flowing in the pipe 900, or a pipe. A temperature control unit (temperature control means) that changes the temperature of the fluid 910 flowing through the inside 900 is provided. As described above, by changing the pressure or temperature of the fluid 910 flowing in the pipe 900, characteristics (for example, frequency, amplitude, frequency, and amplitude) related to flow vibration, which is vibration generated by the flow of the fluid 910 flowing in the pipe 900, are obtained. ) Can be easily changed.
 本発明の第1の実施の形態における欠陥分析装置100において、振動変化部120(振動変化手段)は、第1および第2の振動検知部110A、110B(一対の振動検知手段、一対の振動検知部)の配管900への取り付け位置よりも、上流側に設けられている。これにより、配管900内を流れる流体910の流動により生じる振動である流動振動に関する特性(流動振動特性)をより効率よく変化させることができる。 In the defect analysis apparatus 100 according to the first embodiment of the present invention, the vibration changing unit 120 (vibration changing unit) includes first and second vibration detecting units 110A and 110B (a pair of vibration detecting units and a pair of vibration detecting units). Part) is provided on the upstream side of the attachment position to the pipe 900. Thereby, the characteristic (flow vibration characteristic) regarding the flow vibration which is the vibration generated by the flow of the fluid 910 flowing in the pipe 900 can be changed more efficiently.
 本発明の第1の実施の形態における欠陥分析装置100において、振動変化部120(振動変化手段)は、第1および第2の振動検知部110A、110B(一対の振動検知手段、一対の振動検知部)と、漏洩位置特定演算部134に対して、独立して動作してもよい。これにより、振動変化部120は、第1および第2の振動検知部110A、110Bや、漏洩位置特定演算部134の影響を受けることなく、動作できる。 In the defect analysis apparatus 100 according to the first embodiment of the present invention, the vibration changing unit 120 (vibration changing unit) includes first and second vibration detecting units 110A and 110B (a pair of vibration detecting units and a pair of vibration detecting units). Section) and the leakage position specifying calculation section 134 may be operated independently. Accordingly, the vibration changing unit 120 can operate without being affected by the first and second vibration detecting units 110A and 110B and the leakage position specifying calculating unit 134.
 本発明の第1の実施の形態における欠陥分析装置100において、振動変化部120(振動変化手段)は、配管900内を流れる流体910の流量が所定の閾値以下である時間内に、動作する。これにより、流体910の使用量を低減できる。すなわち、流体910が水で、配管900が水道管であった場合、本来の流体運用の頻度の少ない所定時間に、欠陥分析装置100による分析を実施すれば、本来の流体運用への影響を低減することができる。すなわち、例えば、深夜時間帯のように水の使用量が少ない時間帯であれば、欠陥分析装置100による分析を実施しても、水の利用者設備の蛇口まで水を輸送すること(本来の流体運用)への影響が少なくすることができる。 In the defect analysis apparatus 100 according to the first embodiment of the present invention, the vibration changing unit 120 (vibration changing means) operates within a time when the flow rate of the fluid 910 flowing through the pipe 900 is equal to or less than a predetermined threshold. Thereby, the usage-amount of the fluid 910 can be reduced. That is, when the fluid 910 is water and the pipe 900 is a water pipe, if the analysis by the defect analysis apparatus 100 is performed at a predetermined time when the frequency of the original fluid operation is low, the influence on the original fluid operation is reduced. can do. That is, for example, when the amount of water used is small, such as at midnight, even if the analysis by the defect analyzer 100 is performed, the water is transported to the faucet of the water user equipment (original (Fluid operation) can be reduced.
 また、本発明の第1の実施の形態における制御部131(制御装置)は、配管900内を流れる流体910の流動により生じる振動である流動振動に関する特性を変化させることにより、振動変化指示信号を出力する。振動変化指示信号は、配管900または配管910内を流れる流体を伝搬する振動を変化させる信号である。また、制御部131(制御装置)は、振動変化指示信号に基づいて変化されている間に配管900または配管900内を流れる流体910を伝搬する振動である変化中の振動を検知した際の振動検知信号の入力を受ける。また、制御部131(制御装置)は、振動検知信号に含まれる変化中の振動に基づいて、配管900から流体910が漏洩している位置である流体漏洩位置を算出させる流体漏洩位置算出指示信号を出力する。これにより、前述した欠陥分析装置100の主要な機能を動作させる信号処理を制御部131(制御装置)に集約することができる。 Further, the control unit 131 (control device) according to the first embodiment of the present invention changes the characteristic relating to the flow vibration, which is the vibration generated by the flow of the fluid 910 flowing through the pipe 900, thereby generating a vibration change instruction signal. Output. The vibration change instruction signal is a signal that changes the vibration propagating through the fluid flowing in the pipe 900 or the pipe 910. Further, the control unit 131 (control device) detects vibrations that are changing, which are vibrations that propagate through the pipe 900 or the fluid 910 that flows through the pipe 900 while being changed based on the vibration change instruction signal. Receives detection signal input. Further, the control unit 131 (control device) calculates a fluid leakage position calculation instruction signal for calculating a fluid leakage position that is a position where the fluid 910 is leaking from the pipe 900 based on the vibration under change included in the vibration detection signal. Is output. Thereby, the signal processing for operating the main functions of the defect analysis apparatus 100 described above can be integrated into the control unit 131 (control apparatus).
 また、本発明の第1の実施の形態における欠陥分析方法は、振動変化工程と、振動検知工程と、漏洩位置特定工程とを含んでいる。振動変化工程では、配管900内を流れる流体910の流動により生じる振動である流動振動に関する特性を変化させることにより、配管900または配管900内を流れる流体910を伝搬する振動を変化させる。振動検知工程では、変化中の振動を検知する。変化中の振動とは、振動変化工程により変化されている間に配管900または配管900内を流れる流体910を伝搬する振動である。漏洩位置特定工程では、振動検知工程により検知された変化中の振動に基づいて、配管900から流体910が漏洩している位置である流体漏洩位置を算出する。この方法によっても、前述した欠陥分析装置100と同様の効果を奏する。また、本発明の第1の実施の形態における記憶媒体は、前述の欠陥分析方法で示したステップをコンピュータに行わせるプログラムを記憶する。この記憶媒体によっても、前述した欠陥分析装置100と同様の効果を奏する。 Further, the defect analysis method in the first embodiment of the present invention includes a vibration changing process, a vibration detecting process, and a leak position specifying process. In the vibration changing process, the vibration propagating in the pipe 900 or the fluid 910 flowing in the pipe 900 is changed by changing the characteristics relating to the flow vibration that is the vibration generated by the flow of the fluid 910 flowing in the pipe 900. In the vibration detection step, vibration during change is detected. The vibration being changed is vibration that propagates through the pipe 900 or the fluid 910 flowing in the pipe 900 while being changed by the vibration changing process. In the leakage position specifying step, a fluid leakage position, which is a position where the fluid 910 is leaking from the pipe 900, is calculated based on the changing vibration detected by the vibration detection step. This method also provides the same effect as the defect analysis apparatus 100 described above. The storage medium according to the first embodiment of the present invention stores a program that causes a computer to perform the steps indicated in the defect analysis method described above. This storage medium also has the same effect as the defect analysis apparatus 100 described above.
 <第2の実施の形態>
 本発明の第2の実施の形態における欠陥分析方法について説明する。なお、この欠陥分析方法では、第1の実施の形態における欠陥分析装置100を用いる。
<Second Embodiment>
A defect analysis method according to the second embodiment of the present invention will be described. In this defect analysis method, the defect analysis apparatus 100 according to the first embodiment is used.
 図16は、本発明の第2の実施の形態における欠陥分析装置の動作フローを示す図である。 FIG. 16 is a diagram showing an operation flow of the defect analysis apparatus according to the second embodiment of the present invention.
 ここで、図5と図16を対比する。図5では、振動を変化させる処理(S4)は、第1及び第2の振動データ計測の処理(S1)の後に行われていた。これに対して、図16では、振動を変化させる処理(S4)は、第1及び第2の振動データ計測の処理(S1)の前に行われる。この点で、両者は互いに相違する。 Here, FIG. 5 and FIG. 16 are compared. In FIG. 5, the vibration changing process (S4) is performed after the first and second vibration data measurement processes (S1). On the other hand, in FIG. 16, the process (S4) for changing the vibration is performed before the first and second vibration data measurement processes (S1). In this respect, they are different from each other.
 以下に、本発明の第2の実施の形態における欠陥分析装置の動作について、説明する。なお、図3の説明と重複する点は、省略するなど簡潔な説明とする。 Hereinafter, the operation of the defect analysis apparatus according to the second embodiment of the present invention will be described. It should be noted that points that overlap with the description of FIG.
 図16に示されるように、まず、振動変化部120が振動を変化させる(S4)。すなわち、振動変化部120は、配管900内を流れる流体910の流動により生じる振動である流動振動に関する特性(流動振動特性)を変化させることにより、配管900または配管900内を流れる流体910を伝搬する振動を変化させる。 As shown in FIG. 16, first, the vibration changing unit 120 changes the vibration (S4). That is, the vibration changing unit 120 propagates the pipe 900 or the fluid 910 flowing in the pipe 900 by changing the characteristic (flow vibration characteristics) related to the flow vibration that is vibration generated by the flow of the fluid 910 flowing in the pipe 900. Change the vibration.
 次に、第1および第2の振動検知部110A、110Bが、第1および第2の振動データを計測する(S1)。より具体的には、第1および第2の振動検知部110A、110B内の各振動検知センサ111が配管900または配管900内を流れる流体910を伝搬する振動を、第1および第2の振動データとして、検知する。そして、振動検知側送信部112が、第1および第2の振動検知部110A、110Bの各振動検知センサ111から、第1および第2の振動データを受け取り、これらを処理部130へ送信する。つぎに、処理部130の処理部側受信部136が、第1および第2の振動データを受信する。 Next, the first and second vibration detection units 110A and 110B measure the first and second vibration data (S1). More specifically, the vibration that each vibration detection sensor 111 in the first and second vibration detection units 110A and 110B propagates in the pipe 900 or the fluid 910 flowing in the pipe 900 is represented by the first and second vibration data. Detect as. Then, the vibration detection side transmission unit 112 receives the first and second vibration data from the vibration detection sensors 111 of the first and second vibration detection units 110 </ b> A and 110 </ b> B and transmits them to the processing unit 130. Next, the processing unit side receiving unit 136 of the processing unit 130 receives the first and second vibration data.
 次に、漏洩判定部135が欠陥有無判定処理を行う(S2)。具体的には、漏洩判定部135が、配管900に漏洩があるか否かを判断する。すなわち、漏洩判定部135は、前述の通り、第1および第2の振動データの少なくとも一方に基づいて、配管900に漏洩孔920が形成されているか否か(配管900に欠陥があるか否か)を判定する。なお、漏洩判定部135は、第1および第2の振動データの双方に基づいて、配管900に漏洩孔920が形成されているか否かを判定してもよい。 Next, the leakage determination unit 135 performs a defect presence / absence determination process (S2). Specifically, the leak determination unit 135 determines whether there is a leak in the pipe 900. That is, as described above, the leak determination unit 135 determines whether or not the leak hole 920 is formed in the pipe 900 based on at least one of the first and second vibration data (whether or not the pipe 900 is defective). ). Leakage determination unit 135 may determine whether or not leakage hole 920 is formed in pipe 900 based on both the first and second vibration data.
 漏洩判定部135が、配管に欠陥がないと判定した場合(S3、NO)、S4以降の処理を再び繰り返す。なお、S2、S3の処理は、本発明の構成要件に含まなくてもよい。この場合、S2、S3の処理を省略することができる。すなわち、S1の処理が終了した後、S4の処理を行う。 When the leakage determination unit 135 determines that the piping is not defective (S3, NO), the processes after S4 are repeated again. Note that the processing of S2 and S3 may not be included in the configuration requirements of the present invention. In this case, the processes of S2 and S3 can be omitted. That is, after the process of S1 is completed, the process of S4 is performed.
 一方、漏洩判定部135が、配管に欠陥があると判定した場合(S3、YES)、漏洩位置特定算出部134が、相関演算により、到達時刻差ΔTを算出する(S6)。 On the other hand, when the leakage determination unit 135 determines that the piping is defective (S3, YES), the leakage position specification calculation unit 134 calculates the arrival time difference ΔT by correlation calculation (S6).
 次に、漏洩位置特定算出部134が、欠陥位置を特定する(S7)。すなわち、漏洩位置特定算出部134は、第1および第2の振動検知部により検知された前記変化中の振動(第1および第2の非定常振動データ)に基づいて、配管900から流体910が漏洩している位置である流体漏洩位置(欠陥位置)を算出する。より具体的には、S6の処理で算出した到達時間差ΔTと、予め設定された音速とから、流体漏洩位置(欠陥位置)を算出する。 Next, the leakage position specification calculation unit 134 specifies the defect position (S7). In other words, the leakage position specifying calculation unit 134 causes the fluid 910 to flow from the pipe 900 based on the vibration (first and second unsteady vibration data) detected by the first and second vibration detection units. The fluid leakage position (defect position), which is the leaking position, is calculated. More specifically, the fluid leakage position (defect position) is calculated from the arrival time difference ΔT calculated in the process of S6 and the preset sound speed.
 以上、本発明の第2の実施の形態における欠陥分析装置の動作について、説明した。本実施の形態における欠陥分析方法の作用効果は、第1の実施の形態で説明した内容を同様である。本実施形態では流体振動変化工程を流体漏洩が有りと判定された後に実施することで、本来の運用目的に最適化された圧力から逸脱した圧力となる時間帯を低減することができ、また振動変化部の不必要な駆動を低減することができる。 The operation of the defect analysis apparatus according to the second embodiment of the present invention has been described above. The effects of the defect analysis method in the present embodiment are the same as those described in the first embodiment. In this embodiment, by performing the fluid vibration changing process after it is determined that there is a fluid leak, the time zone in which the pressure deviates from the pressure optimized for the original operation purpose can be reduced, and the vibration can be reduced. Unnecessary driving of the changing portion can be reduced.
 なお、本発明の各実施形態の装置は、任意のコンピュータのCPU(Central Processing Unit)、メモリ、メモリにロードされたプログラム、そのプログラムを格納するハードディスク等の記憶ユニット、ネットワーク接続用インタフェイスを中心にハードウェアとソフトウェアの任意の組合せによって実現される。ここで、プログラムは、あらかじめ装置を出荷する段階からメモリ内に格納されているプログラムのほか、CD(Compact Disc)等の記憶媒体やインターネット上のサーバ等からダウンロードされたプログラムも含む。そして、その実現方法、装置にはいろいろな変形例があることは、当業者には理解されるところである。 The apparatus of each embodiment of the present invention is centered on an arbitrary computer CPU (Central Processing Unit), a memory, a program loaded in the memory, a storage unit such as a hard disk for storing the program, and a network connection interface. It is realized by any combination of hardware and software. Here, the program includes a program downloaded from a storage medium such as a CD (Compact Disc) or a server on the Internet, in addition to a program stored in the memory from the stage of shipping the device in advance. It will be understood by those skilled in the art that there are various modifications to the implementation method and apparatus.
 また、本発明の各実施形態の説明において利用するブロック図は、ハードウェア単位の構成ではなく、機能単位のブロックを示している。これらの図においては、各装置は1つの機器により実現されるよう記載されているが、その実現手段はこれに限定されない。すなわち、物理的に分かれた構成であっても、論理的に分かれた構成であっても構わない。 In addition, the block diagram used in the description of each embodiment of the present invention shows a functional unit block, not a hardware unit configuration. In these drawings, each device is described as being realized by one device, but the means for realizing it is not limited to this. That is, it may be a physically separated configuration or a logically separated configuration.
 前記の実施の形態の一部または全部は、以下の付記のようにも記載されうるが、以下に限定されない。
(付記1)
 配管内を流れる流体の流動により生じる振動である流動振動に関する特性を変化させることにより、前記配管または前記流体を伝搬する振動を変化させる振動変化手段と、
 前記振動変化手段により変化されている間に前記配管または前記配管内を流れる前記流体を伝搬する振動である変化中の振動を検知する一対の振動検知手段と、
 前記一対の振動検知手段により検知された前記変化中の振動に基づいて、前記配管から前記流体が漏洩している位置である流体漏洩位置を算出する漏洩位置特定演算手段とを備えた欠陥分析装置。
(付記2)
 前記流動振動に関する特性が、前記流動の周波数である付記1に記載の欠陥分析装置。
(付記3)
 前記流動振動に関する特性が、前記流動の振幅である付記1に記載の欠陥分析装置。
(付記4)
 前記流動振動に関する特性が、前記流動の周波数および振幅である付記1に記載の欠陥分析装置。
(付記5)
 前記漏洩位置特定演算手段は、
 前記一対の振動検出手段により検出された前記変化中の振動の測定値を相関処理することにより、前記変化中の振動が前記一対の振動検出手段の各々と前記漏洩位置の間を伝搬する時間差を算出し、この算出された時間差を用いて、前記漏洩位置を算出する付記1~4のいずれか1項に記載の欠陥分析装置。
(付記6)
 前記振動変化手段は、前記流体の圧力を変化させる圧力制御手段、または前記配管内を流れる前記流体の温度を変化させる温度制御手段を有する付記1~5のいずれか1項に記載の欠陥分析装置。
(付記7)
 前記振動変化手段は、前記一対の振動検知手段の前記配管への取り付け位置よりも、上流側に設けられている付記1~6のいずれか1項に記載の欠陥分析装置。
(付記8)
 前記振動変化手段は、前記振動検知手段および前記漏洩位置特定演算手段に対して、独立して動作する付記1~7のいずれかに記載の欠陥分析装置。
(付記9)
 前記振動変化手段は、前記配管内を流れる流体の流量が所定の閾値以下である時間内に、動作する付記1~8のいずれかに記載の欠陥分析装置。
(付記10)
 配管内を流れる流体の流動により生じる振動である流動振動に関する特性を変化させることにより、前記配管または前記流体を伝搬する振動を変化させる振動変化指示信号を出力し、
 前記振動変化指示信号に基づいて変化されている間に前記配管または前記配管内を流れる流体を伝搬する振動である変化中の振動を検知した際の振動検知信号の入力を受け、
 前記振動検知信号に含まれる前記変化中の振動に基づいて、前記配管から前記流体が漏洩している位置である流体漏洩位置を算出させる流体漏洩位置算出指示信号を出力する制御装置。
(付記11)
 配管内を流れる流体の流動により生じる振動である流動振動に関する特性を変化させることにより、前記配管または前記流体を伝搬する振動を変化させ、
 前記配管または前記流体を伝搬する振動が変化している間に前記配管または前記配管内を流れる流体を伝搬する振動である変化中の振動を検知し、
 前記変化中の振動の検知結果に基づいて、前記配管から前記流体が漏洩している位置である流体漏洩位置を算出する欠陥分析方法。
(付記12)
 配管内を流れる流体の流動により生じる振動である流動振動に関する特性を変化させることにより、前記配管または前記流体を伝搬する振動を変化させ、
 前記配管または前記流体を伝搬する振動が変化している間に前記配管または前記配管内を流れる流体を伝搬する振動である変化中の振動を検知し、
 前記変化中の振動の検知結果に基づいて、前記配管から前記流体が漏洩している位置である流体漏洩位置を算出する処理をコンピュータに行わせるプログラムを記憶する記憶媒体。
(付記13)
 配管内を流れる流体の流動により生じる振動である流動振動に関する特性を変化させることにより、前記配管または前記流体を伝搬する振動を変化させる振動変化工程と、
 前記振動変化工程により変化されている間に前記配管または前記配管内を流れる流体を伝搬する振動である変化中の振動を検知する振動検知工程と、
 前記振動検知工程により検知された前記変化中の振動に基づいて、前記配管から前記流体が漏洩している位置である流体漏洩位置を算出する漏洩位置特定工程とを含む欠陥分析方法。
(付記14)
 配管内を流れる流体の流動により生じる振動である流動振動に関する特性を変化させることにより、前記配管または前記流体を伝搬する振動を変化させる振動変化工程と、
 前記振動変化工程により変化されている間に前記配管または前記配管内を流れる流体を伝搬する振動である変化中の振動を検知する振動検知工程と、
 前記振動検知工程により検知された前記変化中の振動に基づいて、前記配管から前記流体が漏洩している位置である流体漏洩位置を算出する漏洩位置特定工程とを含む処理をコンピュータに行わせる情報処理プログラム。
A part or all of the above embodiments can be described as in the following supplementary notes, but is not limited thereto.
(Appendix 1)
Vibration changing means for changing vibrations propagating through the pipe or the fluid by changing characteristics relating to flow vibration, which is vibration generated by the flow of fluid flowing in the pipe;
A pair of vibration detecting means for detecting vibrations in change which are vibrations propagating through the pipe or the fluid flowing in the pipe while being changed by the vibration changing means;
A defect analysis apparatus comprising: a leakage position specifying calculation means for calculating a fluid leakage position, which is a position where the fluid is leaking from the pipe, based on the vibration under change detected by the pair of vibration detection means. .
(Appendix 2)
The defect analysis apparatus according to appendix 1, wherein the characteristic relating to the flow vibration is the flow frequency.
(Appendix 3)
The defect analysis apparatus according to appendix 1, wherein the characteristic relating to the flow vibration is the amplitude of the flow.
(Appendix 4)
The defect analysis apparatus according to appendix 1, wherein the characteristic relating to the flow vibration is the frequency and amplitude of the flow.
(Appendix 5)
The leakage position specifying calculation means includes:
By correlating the measurement values of the vibration under change detected by the pair of vibration detection means, a time difference in which the vibration under change propagates between each of the pair of vibration detection means and the leakage position is obtained. 5. The defect analysis apparatus according to any one of appendices 1 to 4, wherein the defect analysis apparatus calculates the leakage position using the calculated time difference.
(Appendix 6)
The defect analysis apparatus according to any one of appendices 1 to 5, wherein the vibration changing unit includes a pressure control unit that changes the pressure of the fluid, or a temperature control unit that changes the temperature of the fluid flowing in the pipe. .
(Appendix 7)
The defect analysis apparatus according to any one of appendices 1 to 6, wherein the vibration changing unit is provided upstream of a position where the pair of vibration detection units are attached to the pipe.
(Appendix 8)
The defect analysis apparatus according to any one of appendices 1 to 7, wherein the vibration changing unit operates independently with respect to the vibration detection unit and the leakage position specifying calculation unit.
(Appendix 9)
9. The defect analysis apparatus according to any one of appendices 1 to 8, wherein the vibration changing unit operates within a time in which a flow rate of the fluid flowing in the pipe is equal to or less than a predetermined threshold value.
(Appendix 10)
By changing a characteristic related to flow vibration, which is vibration generated by the flow of fluid flowing in the pipe, a vibration change instruction signal for changing vibration propagating through the pipe or the fluid is output,
Receiving a vibration detection signal when detecting vibration in change that is vibration propagating the fluid flowing in the pipe or the pipe while being changed based on the vibration change instruction signal;
A control device that outputs a fluid leakage position calculation instruction signal for calculating a fluid leakage position, which is a position where the fluid is leaking from the pipe, based on the vibration under change included in the vibration detection signal.
(Appendix 11)
By changing the characteristics related to flow vibration, which is vibration generated by the flow of fluid flowing in the pipe, the vibration propagating through the pipe or the fluid is changed,
Detecting a vibration in change that is a vibration propagating a fluid flowing in the pipe or the pipe while the vibration propagating the pipe or the fluid is changing,
A defect analysis method for calculating a fluid leakage position, which is a position where the fluid is leaking from the pipe, based on a detection result of vibration during the change.
(Appendix 12)
By changing the characteristics related to flow vibration, which is vibration generated by the flow of fluid flowing in the pipe, the vibration propagating through the pipe or the fluid is changed,
Detecting a vibration in change that is a vibration propagating a fluid flowing in the pipe or the pipe while the vibration propagating the pipe or the fluid is changing,
A storage medium for storing a program for causing a computer to perform a process of calculating a fluid leakage position, which is a position where the fluid is leaking from the pipe, based on the detection result of the vibration under change.
(Appendix 13)
A vibration changing step of changing vibrations propagating through the pipe or the fluid by changing characteristics relating to flow vibration, which is vibration generated by the flow of the fluid flowing through the pipe;
A vibration detecting step of detecting vibration in change which is vibration propagating through the pipe or the fluid flowing in the pipe while being changed by the vibration changing step;
A defect analysis method including a leakage position specifying step of calculating a fluid leakage position, which is a position where the fluid is leaking from the pipe, based on the vibration under change detected by the vibration detection step.
(Appendix 14)
A vibration changing step of changing vibrations propagating through the pipe or the fluid by changing characteristics relating to flow vibration, which is vibration generated by the flow of the fluid flowing through the pipe;
A vibration detecting step of detecting vibration in change which is vibration propagating through the pipe or the fluid flowing in the pipe while being changed by the vibration changing step;
Information that causes a computer to perform processing including a leakage position specifying step of calculating a fluid leakage position, which is a position where the fluid is leaking from the pipe, based on the vibration under change detected by the vibration detection step. Processing program.
 以上、上述した実施形態を模範的な例として本発明を説明した。しかしながら、本発明は、上述した実施形態には限定されない。即ち、本発明は、本発明のスコープ内において、当業者が理解し得る様々な態様を適用することができる。 The present invention has been described above using the above-described embodiment as an exemplary example. However, the present invention is not limited to the above-described embodiment. That is, the present invention can apply various modes that can be understood by those skilled in the art within the scope of the present invention.
 この出願は、20114年3月26日に出願された日本出願特願2014-062925を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2014-062925 filed on March 26, 2014, the entire disclosure of which is incorporated herein.
 100  欠陥分析装置
 110A  第1の振動検知部
 110B  第2の振動検知部
 111  振動検知センサ
 112  振動検知側送信部
 120  振動変化部
 121  振動変化手段
 122  制御信号受信部
 130  処理部
 131  制御部
 132  処理部側送信部
 133  制御信号記憶部
 134  漏洩位置特定演算部
 135  漏洩判定部
 136  処理部側受信部
DESCRIPTION OF SYMBOLS 100 Defect analyzer 110A 1st vibration detection part 110B 2nd vibration detection part 111 Vibration detection sensor 112 Vibration detection side transmission part 120 Vibration change part 121 Vibration change means 122 Control signal receiving part 130 Processing part 131 Control part 132 Processing part Side transmission unit 133 control signal storage unit 134 leakage position specifying calculation unit 135 leakage determination unit 136 processing unit side reception unit

Claims (10)

  1.  配管内を流れる流体の流動により生じる振動である流動振動に関する特性を変化させることにより、前記配管または前記流体を伝搬する振動を変化させる振動変化手段と、
     前記振動変化手段により変化されている間に前記配管または前記配管内を流れる前記流体を伝搬する振動である変化中の振動を検知する一対の振動検知手段と、
     前記一対の振動検知手段により検知された前記変化中の振動に基づいて、前記配管から前記流体が漏洩している位置である流体漏洩位置を算出する漏洩位置特定演算手段とを備えた欠陥分析装置。
    Vibration changing means for changing vibrations propagating through the pipe or the fluid by changing characteristics relating to flow vibration, which is vibration generated by the flow of fluid flowing in the pipe;
    A pair of vibration detecting means for detecting vibrations in change which are vibrations propagating through the pipe or the fluid flowing in the pipe while being changed by the vibration changing means;
    A defect analysis apparatus comprising: a leakage position specifying calculation means for calculating a fluid leakage position, which is a position where the fluid is leaking from the pipe, based on the vibration under change detected by the pair of vibration detection means. .
  2.  前記流動振動に関する特性が、前記流動の周波数である請求項1に記載の欠陥分析装置。 2. The defect analysis apparatus according to claim 1, wherein the characteristic relating to the flow vibration is the flow frequency.
  3.  前記流動振動に関する特性が、前記流動の振幅である請求項1に記載の欠陥分析装置。 2. The defect analysis apparatus according to claim 1, wherein the characteristic relating to the flow vibration is an amplitude of the flow.
  4.  前記流動振動に関する特性が、前記流動の周波数および振幅である請求項1に記載の欠陥分析装置。 2. The defect analysis apparatus according to claim 1, wherein the characteristic relating to the flow vibration is a frequency and an amplitude of the flow.
  5.  前記漏洩位置特定演算手段は、
     前記一対の振動検出手段により検出された前記変化中の振動の測定値を相関処理することにより、前記変化中の振動が前記一対の振動検出手段の各々と前記漏洩位置の間を伝搬する時間差を算出し、この算出された時間差を用いて、前記漏洩位置を算出する請求項1~4のいずれか1項に記載の欠陥分析装置。
    The leakage position specifying calculation means includes:
    By correlating the measurement values of the vibration under change detected by the pair of vibration detection means, a time difference in which the vibration under change propagates between each of the pair of vibration detection means and the leakage position is obtained. The defect analysis apparatus according to any one of claims 1 to 4, wherein the defect position is calculated and the leakage position is calculated using the calculated time difference.
  6.  前記振動変化手段は、前記流体の圧力を変化させる圧力制御手段、または前記配管内を流れる前記流体の温度を変化させる温度制御手段を有する請求項1~5のいずれか1項に記載の欠陥分析装置。 The defect analysis according to any one of claims 1 to 5, wherein the vibration changing means includes a pressure control means for changing the pressure of the fluid, or a temperature control means for changing the temperature of the fluid flowing in the pipe. apparatus.
  7.  前記振動変化手段は、前記一対の振動検知手段の前記配管への取り付け位置よりも、上流側に設けられている請求項1~6のいずれか1項に記載の欠陥分析装置。 The defect analysis apparatus according to any one of claims 1 to 6, wherein the vibration changing means is provided upstream of a position where the pair of vibration detection means are attached to the pipe.
  8.  配管内を流れる流体の流動により生じる振動である流動振動に関する特性を変化させることにより、前記配管または前記流体を伝搬する振動を変化させる振動変化指示信号を出力し、
     前記振動変化指示信号に基づいて変化されている間に前記配管または前記配管内を流れる流体を伝搬する振動である変化中の振動を検知した際の振動検知信号の入力を受け、
     前記振動検知信号に含まれる前記変化中の振動に基づいて、前記配管から前記流体が漏洩している位置である流体漏洩位置を算出させる流体漏洩位置算出指示信号を出力する制御装置。
    By changing a characteristic related to flow vibration, which is vibration generated by the flow of fluid flowing in the pipe, a vibration change instruction signal for changing vibration propagating through the pipe or the fluid is output,
    Receiving a vibration detection signal when detecting vibration in change that is vibration propagating the fluid flowing in the pipe or the pipe while being changed based on the vibration change instruction signal;
    A control device that outputs a fluid leakage position calculation instruction signal for calculating a fluid leakage position, which is a position where the fluid is leaking from the pipe, based on the vibration under change included in the vibration detection signal.
  9.  配管内を流れる流体の流動により生じる振動である流動振動に関する特性を変化させることにより、前記配管または前記流体を伝搬する振動を変化させ、
     前記配管または前記流体を伝搬する振動が変化している間に前記配管または前記配管内を流れる流体を伝搬する振動である変化中の振動を検知し、
     前記変化中の振動の検知結果に基づいて、前記配管から前記流体が漏洩している位置である流体漏洩位置を算出する欠陥分析方法。
    By changing the characteristics related to flow vibration, which is vibration generated by the flow of fluid flowing in the pipe, the vibration propagating through the pipe or the fluid is changed,
    Detecting a vibration in change that is a vibration propagating a fluid flowing in the pipe or the pipe while the vibration propagating the pipe or the fluid is changing,
    A defect analysis method for calculating a fluid leakage position, which is a position where the fluid is leaking from the pipe, based on a detection result of vibration during the change.
  10.  配管内を流れる流体の流動により生じる振動である流動振動に関する特性を変化させることにより、前記配管または前記流体を伝搬する振動を変化させ、
     前記配管または前記流体を伝搬する振動が変化している間に前記配管または前記配管内を流れる流体を伝搬する振動である変化中の振動を検知し、
     前記変化中の振動の検知結果に基づいて、前記配管から前記流体が漏洩している位置である流体漏洩位置を算出する処理をコンピュータに行わせるプログラムを記憶する記憶媒体。
    By changing the characteristics related to flow vibration, which is vibration generated by the flow of fluid flowing in the pipe, the vibration propagating through the pipe or the fluid is changed,
    Detecting a vibration in change that is a vibration propagating a fluid flowing in the pipe or the pipe while the vibration propagating the pipe or the fluid is changing,
    A storage medium for storing a program for causing a computer to perform a process of calculating a fluid leakage position, which is a position where the fluid is leaking from the pipe, based on the detection result of the vibration under change.
PCT/JP2015/001584 2014-03-26 2015-03-20 Flaw analysis device, flaw analysis method, and storage medium WO2015146109A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016510013A JPWO2015146109A1 (en) 2014-03-26 2015-03-20 Defect analysis apparatus, defect analysis method, and defect analysis program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-062925 2014-03-26
JP2014062925 2014-03-26

Publications (1)

Publication Number Publication Date
WO2015146109A1 true WO2015146109A1 (en) 2015-10-01

Family

ID=54194659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001584 WO2015146109A1 (en) 2014-03-26 2015-03-20 Flaw analysis device, flaw analysis method, and storage medium

Country Status (2)

Country Link
JP (1) JPWO2015146109A1 (en)
WO (1) WO2015146109A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019031371A1 (en) * 2017-08-07 2019-02-14 日本電気株式会社 State analysis device, state analysis method, and recording medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10185744A (en) * 1996-12-20 1998-07-14 Tokyo Gas Co Ltd Judgment method for external noise in specification method for leak position in pipe
JPH10281921A (en) * 1997-04-07 1998-10-23 Hitachi Ltd Method and device for monitoring leakage of gas piping
JP4306409B2 (en) * 2003-10-31 2009-08-05 Jfeスチール株式会社 Piping leakage position detection method and apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10185744A (en) * 1996-12-20 1998-07-14 Tokyo Gas Co Ltd Judgment method for external noise in specification method for leak position in pipe
JPH10281921A (en) * 1997-04-07 1998-10-23 Hitachi Ltd Method and device for monitoring leakage of gas piping
JP4306409B2 (en) * 2003-10-31 2009-08-05 Jfeスチール株式会社 Piping leakage position detection method and apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019031371A1 (en) * 2017-08-07 2019-02-14 日本電気株式会社 State analysis device, state analysis method, and recording medium
JPWO2019031371A1 (en) * 2017-08-07 2020-07-30 日本電気株式会社 State analysis device, state analysis method and program
US11560698B2 (en) 2017-08-07 2023-01-24 Nec Corporation State analysis device, state analysis method, and recording medium

Also Published As

Publication number Publication date
JPWO2015146109A1 (en) 2017-04-13

Similar Documents

Publication Publication Date Title
US9835592B2 (en) Determination of tuberculation in a fluid distribution system
EA028593B1 (en) Method and apparatus for monitoring a fluid carrying conduit
WO2015141129A1 (en) Speed-of-sound calculation device, speed-of-sound calculation method, and speed-of-sound calculation program
US10458878B2 (en) Position determination device, leak detection system, position determination method, and computer-readable recording medium
WO2015072130A1 (en) Leakage determination system and leakage determination method
WO2009110213A1 (en) Flow volume measuring apparatus
Nikolaidis et al. Smart sensor system for leakage detection in pipes carrying oil products in noisy environment: The ESTHISIS Project
KR102038689B1 (en) Apparatus for sensing leakage of pipe using distance-difference frequency analysis and method thereof
JP6519477B2 (en) Leakage position calculation device, leakage position calculation method, computer readable recording medium, vibration calculation device, and arithmetic device
WO2015146109A1 (en) Flaw analysis device, flaw analysis method, and storage medium
JPWO2016152143A1 (en) Defect analysis apparatus, defect analysis system, defect analysis method, and computer-readable recording medium
WO2009110214A1 (en) Flow measuring device
WO2016017168A1 (en) Diagnostic device, diagnostic system, diagnostic method, and computer-readable recording medium
JP6316131B2 (en) How to identify the location of abnormal sound
FI3903018T3 (en) Method for detecting leaks in a gas network under pressure or under vacuum and gas network
JP2016095265A (en) Leakage detection method and leakage detection device
JP6408929B2 (en) Analysis data creation method, water leakage position detection device, and water leakage position identification method
WO2015145972A1 (en) Flaw analysis device, flaw analysis method, and storage medium
JP6428073B2 (en) Analysis device, analysis system, analysis method, and program
JP2014219342A (en) Leakage detection method and device of buried duct
JP6349861B2 (en) Leak detection device, leak detection system, leak detection method and program
WO2015194138A1 (en) Position specification device, position specification system, position specification method, and computer-readable recording medium
KR101993058B1 (en) Detecting apparatus and method for oil leak
US11448565B2 (en) Measurement time determination device, measurement time determination method, and computer-readable recording medium
WO2016185726A1 (en) State assessment device, state assessment method, and program recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15768599

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016510013

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15768599

Country of ref document: EP

Kind code of ref document: A1