WO2015145745A1 - Image output display system, image output apparatus, and image display apparatus - Google Patents

Image output display system, image output apparatus, and image display apparatus Download PDF

Info

Publication number
WO2015145745A1
WO2015145745A1 PCT/JP2014/059217 JP2014059217W WO2015145745A1 WO 2015145745 A1 WO2015145745 A1 WO 2015145745A1 JP 2014059217 W JP2014059217 W JP 2014059217W WO 2015145745 A1 WO2015145745 A1 WO 2015145745A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
frame group
decoding
information
decoded
Prior art date
Application number
PCT/JP2014/059217
Other languages
French (fr)
Japanese (ja)
Inventor
浩朗 伊藤
甲 展明
稲田 圭介
谷田部 祐介
健 木佐貫
坂本 哲也
Original Assignee
日立マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立マクセル株式会社 filed Critical 日立マクセル株式会社
Priority to PCT/JP2014/059217 priority Critical patent/WO2015145745A1/en
Publication of WO2015145745A1 publication Critical patent/WO2015145745A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/436Interfacing a local distribution network, e.g. communicating with another STB or one or more peripheral devices inside the home
    • H04N21/4363Adapting the video or multiplex stream to a specific local network, e.g. a IEEE 1394 or Bluetooth® network
    • H04N21/43632Adapting the video or multiplex stream to a specific local network, e.g. a IEEE 1394 or Bluetooth® network involving a wired protocol, e.g. IEEE 1394
    • H04N21/43635HDMI
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/003Details of a display terminal, the details relating to the control arrangement of the display terminal and to the interfaces thereto
    • G09G5/006Details of the interface to the display terminal
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/36Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the display of a graphic pattern, e.g. using an all-points-addressable [APA] memory
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/41Structure of client; Structure of client peripherals
    • H04N21/4104Peripherals receiving signals from specially adapted client devices
    • H04N21/4122Peripherals receiving signals from specially adapted client devices additional display device, e.g. video projector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/01Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level
    • H04N7/0127Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level by changing the field or frame frequency of the incoming video signal, e.g. frame rate converter
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/10Special adaptations of display systems for operation with variable images
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/02Handling of images in compressed format, e.g. JPEG, MPEG
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/08Power processing, i.e. workload management for processors involved in display operations, such as CPUs or GPUs
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2370/00Aspects of data communication
    • G09G2370/12Use of DVI or HDMI protocol in interfaces along the display data pipeline

Definitions

  • the present invention relates to an image output display system, an image output apparatus, and an image display apparatus, and more particularly, an image capable of displaying an image having a higher frame rate on an image display apparatus than a decoded image decoded by the image output apparatus.
  • the present invention relates to an output device, an image display device, and an image output display system.
  • the HDMI (High Definition Multimedia Interface) standard is known as a method for transmitting digital images between a device that outputs video such as a personal computer or a Blu-ray disc recorder and a device that displays video such as a television or PC monitor.
  • HDMI 2.0 the latest version of the HDMI standard (developed in September 2013), the transmission band is expanded to 18 Gbps, which makes it possible to transmit a 4K2K resolution video signal at 60 frames per second.
  • Patent Document 1 separates a playback device 200 that decodes a video signal encoded by a motion vector and a display device 203 that displays the decoded video signal at a high frame rate.
  • a frame rate conversion system that performs frame rate conversion using a motion vector obtained by decoding processing in a playback device in a display device.
  • FIG. 7 shows an example of the operation.
  • the frame rate conversion system disclosed in FIG. 2 to FIG. 3 of Patent Document 1 is also referred to (refer to the reference numeral of Patent Document 1 as well).
  • (A) of FIG. 7 is an encoded image stream of 4K2K resolution @ 120 frames per second.
  • the decoding unit 2 includes reference control information (d) included in the decoded video signal (c) (4K2K resolution @ 60 Hz) and the encoded image stream (b).
  • the encoding unit 3 superimposes the reference control information of (d) on the decoded image of (c) and outputs it to the display device 5.
  • st_Ix (x is a number) is an I picture (intra-screen prediction) encoded image stream
  • st_Px (x is a number) is a P picture (forward inter-screen prediction) encoded image stream.
  • St_Bx (x is a number) represents an encoded image stream of a B picture (bidirectional inter-screen prediction), but details of MPEG standards such as an I picture, a P picture, and a B picture are well known. Detailed description is omitted.
  • the decoding unit 6 stores the decoded video signal (pic_I 0, pic_P 2, pic_P 4...) In the video buffer 7, and stores the motion vector (mv_P 2, mv_P 4...) In the motion vector buffer 8.
  • the interpolation vector generation unit 9 generates interpolation vectors (mv_C1, mv_C3%) From the motion vectors (mv_P2, mv_P4%) (E).
  • the interpolation frame generation unit 10 generates interpolation pictures (pic_P1, pic_P3%) From the picture (real picture) in the video buffer 7 and the interpolation vector (mv_C1, mv_C3...) (F).
  • the selector 11 switches and outputs the video buffer 7 and the interpolated picture generated by the interpolated frame generating unit 10. As a result, a 4K2K resolution @ 120 Hz video signal is displayed on the display device 3.
  • An object of the present invention is to eliminate the need for generating an interpolation vector in a display device, to reduce the load on the display device, and to enable high-frame-rate image display.
  • the image output apparatus is preferably an image output apparatus that decodes an encoded image stream and outputs a decoded image, Separating a first frame group for decoding an image and a second frame group including encoded reference information included in the encoded image stream; Decoding the first frame group and the second frame group, respectively;
  • An image output apparatus comprising: a decoded image frame group obtained by decoding the decoded first frame group; and the encoded reference information obtained by decoding the second frame group is superimposed and output to the outside. Is done.
  • the encoded image stream includes a first frame group capable of decoding an image having a first frame rate, and an image having a frame rate higher than the first frame rate by interpolating the first frame group.
  • a second frame group used for decoding A separation unit that separates a first frame group for decoding an image and a second frame group including encoded reference information; A first decoding unit for decoding the first frame group separated by the separation unit; A second decoding unit for extracting and decoding motion vector information for decoding the second frame group separated by the separation unit; A multiplexing unit that multiplexes the motion vector information decoded by the second decoding unit on the decoded image frame group decoded by the first decoding unit, and outputs output information from the multiplexing unit. Output to the outside.
  • the second decoding unit includes the motion vector information for decoding the second frame group, and the motion vector for decoding the second frame group, included in the encoded image stream.
  • the difference image information used together with the information is decoded,
  • the multiplexing unit multiplexes the motion vector information decoded by the second decoding unit and the difference image information into the decoded image frame group decoded by the first decoding unit.
  • a second decoding unit that decodes an encoded reference image and prediction difference information in the same screen used for decoding the second frame group separated by the separation unit;
  • a multiplexing unit that multiplexes the encoded reference image and the prediction difference information in the same screen decoded by the second decoding unit into the decoded image frame group decoded by the first decoding unit; And output information from the multiplexing unit to the outside.
  • the image display device is preferably an image display device that displays an image using a decoded image signal, A separation unit that separates the decoded image frame group obtained by decoding the first frame group and the encoded reference information obtained by decoding the second frame group, included in the decoded image obtained by decoding; A buffer for temporarily storing images of the first frame group; A picture generation unit that generates a picture of the second frame group using encoded reference information for decoding the second frame group separated by the separation unit; The image display device includes an image output from the buffer and a selector that selects a picture output from the picture generation unit, and displays the output of the selector.
  • the image output display system according to the present invention is preferably configured as a system having the image output device and the image display device.
  • the present invention it is not necessary to generate an interpolation vector in the display device, so the load on the display device can be reduced.
  • a picture can be generated using the encoded reference information included in the encoded image stream, it is possible to generate a more natural and high-definition interpolated frame and display an image at a high frame rate.
  • FIG. 1 It is a block diagram which shows the structural example of the image output display system by one Example. It is a figure which shows the example of a production
  • FIG. 1 is a diagram illustrating a configuration example of an image output display system according to an embodiment.
  • This image output display system is configured by connecting an image output device 10 such as a Blu-ray disc recorder, a personal computer, or a digital tuner and an image display device 20 such as a television or a PC monitor via a video cable 125.
  • the image output device may be called a tuner or an image playback device.
  • the image output device may be called a transmitter, and the image display device may be called a receiver.
  • the image output device 10 and the image table device 20 are used.
  • the image output apparatus 10 includes a receiving unit 101, a separating unit 102, decoding units 103 and 104, and a multiplexing unit 105.
  • the receiving unit 101 receives an encoded image stream encoded by an encoding algorithm such as MPEG transmitted from the outside.
  • the separation unit 102 uses the encoded image stream received by the reception unit 101 as a first stream group 120 used to construct a decoded image having a first frame rate, and a frame rate higher than the first frame rate. Are separated into a second stream group 121 used to construct the decoded image. Then, the first stream group 120 is output to the decoding unit 103, and the second stream group 121 is output to the decoding unit 104.
  • the decoding unit 103 decodes the stream group 120 to generate a decoded image 123 and outputs it to the multiplexing unit 105.
  • the decoding unit 104 extracts information related to the motion prediction mode, the size of the motion vector, and the reference image from the stream group 121 and outputs the information as the encoded reference information 124 to the multiplexing unit 105.
  • the multiplexing unit 105 multiplexes the encoded reference information 124 with the decoded image 123 and outputs the multiplexed information to the image display device 20 via the video cable 125.
  • the image display device 20 includes a separation unit 106, a video buffer unit 107, a picture generation unit 108, and a selector 109.
  • the separation unit 106 receives a signal (multiplexed information of the decoded image 123 and the encoded reference information 124) output from the multiplexing unit 105 of the image output apparatus 10 via the video cable 125, and encodes the signal from the signal.
  • the separated reference information 127 is separated and sent to the picture generation unit 108, and the video signal 126 is sent to the video buffer 107.
  • the picture generation unit 108 extracts information on the motion prediction mode, the size of the motion vector, and the reference image included in the encoded reference information 127.
  • the motion prediction mode includes a motion prediction block size and a prediction direction (forward, reverse, bidirectional, etc.). Using these information and a motion vector, the motion prediction mode is used for the decoded image stored in the video buffer 107. Then, a decoded image of the second frame rate is generated.
  • the selector 109 selects (switches) and outputs the first frame rate decoded image stored in the video buffer 107 and the second frame rate decoded image generated by the picture generation unit 108. As a result, it is possible to output a video having a higher frame rate than the decoded image having the first frame rate on the display screen.
  • (a) is an encoded image stream of 4K2K resolution @ 120 frames per second.
  • the separation unit 102 separates the encoded image stream (a) into the encoded image stream (b) and the encoded image stream (c), and outputs the encoded image stream (b) to the decoding unit 103.
  • the stream (c) is output to the decoding unit 104.
  • the decoding unit 103 decodes the encoded image stream (b) and generates a decoded image (d).
  • the decoded image (d) is 60 frames per second.
  • the decoding unit 104 extracts the motion prediction mode, the size of the motion vector, and the encoded reference information (e) related to the reference image from the encoded image stream (c). In the example of FIG. 2, a motion vector is extracted.
  • the multiplexing unit 105 multiplexes and outputs the decoded image (d) and the encoded reference information (e).
  • FIG. 2 illustrates an example in which the encoded reference information (mv_B1) is multiplexed on the decoded image (pic_P2) and the encoded reference information (mv_B3) is multiplexed on the decoded image (pic_P4) and output.
  • the separation unit 106 receives the signal transmitted from the image output device 10, separates the decoded image (pic_I 0, pic_P 2, pic_P 4) from the received signal and stores it in the video buffer 107. . Also, the encoding reference information (mv_B1, mv_B3) is sent to the picture generation unit 108. The picture generation unit 108 generates a decoded image (pic_B1, pic_B3) based on the encoded reference information (mv_B1, mv_B3) and the decoded image (pic_I0, pic_P2, pic_P4) stored in the video buffer 107 (f).
  • the selector 109 switches between the decoded image (decoded image of the first frame rate) stored in the video buffer 107 and the interpolated picture generated by the picture generation unit and outputs the result (g). Thereby, it is possible to display an image at a frame rate (120 frames per second) higher than the first frame rate (60 frames per second).
  • the transmission form of the video cable 125 connecting the image output device 10 and the image display device 20 may be an analog signal such as a composite signal or a digital signal.
  • the multiplexing unit 105 can superimpose and send the encoded reference information 124 in a region not used for the video signal such as a vertical blanking period.
  • FIG. 3 shows a device configuration example of the HDMI standard.
  • the HDMI system is mainly composed of three devices: an HDMI transmitter (source device), an HDMI receiver (sink device), and a cable connecting these devices.
  • Information such as the configuration and status of the sink device is authenticated using a DDC (Display Data Channel) signal.
  • HDMI is equipped with a CEC (Consumer Electronics Control) line, which enables complex control between devices.
  • Video, audio, and various packet data are transmitted by a method called TMDS (Transition Minimized Differential Signaling).
  • TMDS Transition Minimized Differential Signaling
  • 3 channels of data and 1 channel of clock are provided, and the TMDS clock is used as a reference clock when the TMDS decoder reproduces data.
  • TMDS uses a packet structure to transmit voice and various auxiliary data.
  • FIG. 4 shows an effective area in which image data in one frame period is transmitted in HDMI and a blanking period in which image data is not transmitted.
  • the vertical period 601 includes a vertical blanking period 602 and a vertical effective period 603.
  • the VSYNC signal is a 1-bit signal in which 1 is set between the number of lines defined from the top of the vertical blanking period 602 and 0 is set between the other vertical blanking periods 602 and the vertical effective period 603.
  • An example of the prescribed number of lines is 4 lines.
  • the horizontal period 604 includes a horizontal blanking period 605 and a horizontal effective period 606.
  • the HSYNC signal is a 1-bit signal in which 1 is set between the number of pixels defined from the head of the horizontal blanking period 605 and 0 is set between the other horizontal blanking periods and the horizontal effective period 606.
  • An example of the prescribed number of pixels is 40 pixels.
  • the effective period 607 indicates an area surrounded by a vertical effective period 603 and a horizontal effective period 606, and image data is allocated to this period.
  • the blanking period 608 is an area surrounded by a vertical blanking period 602 and a horizontal blanking period 605. With the above configuration, it is possible to transmit the decoded image of the first frame rate during the effective period 607 and transmit the encoded reference information during the blanking period 608.
  • 4K2K resolution @ 120 frames per second video signal transmission and screen display can be performed in HDMI 2.0 where an uncompressed video signal of 4K2K resolution @ 60 frames per second is the upper limit transmission band.
  • ⁇ Picture generation example 2> an interpolation picture is generated using a motion vector and prediction difference information in encoded reference information. According to this example, since the interpolation picture is generated using not only the motion vector but also the prediction difference information, a higher-definition image display is possible as compared with the generation example 1.
  • the decoding unit 104 extracts the motion prediction mode, the size of the motion vector, and the encoded reference information (e) related to the reference image.
  • e encoded reference information
  • the decoding unit 104 extracts the motion prediction mode, the size of the motion vector, and the encoded reference information (e) related to the reference image.
  • a difference prediction difference information
  • an interpolation picture is generated using not only the motion vector but also the prediction difference information.
  • the decoding unit 104 further extracts prediction difference information from the encoded image stream (c), and outputs the encoded reference information (e) and the prediction difference information (f) to the multiplexing unit 105.
  • the multiplexing unit 105 multiplexes the encoded reference information (e) and the prediction difference information (f) on the decoded image 123 and outputs the multiplexed information.
  • the encoded reference information (mv_B1) and the prediction difference information (diff_B1) are multiplexed on the decoded image (pic_P2)
  • the encoded reference information (mv_B3) and the prediction difference information (diff_B3) are multiplexed on the decoded image (pic_P4).
  • An example of output is shown.
  • the separating unit 106 separates the decoded image (pic_I0, pic_P2, pic_P4) from the signal transmitted from the image output device 10 and stores it in the video buffer 107. Also, the encoding reference information (mv_B1, mv_B3) and the prediction difference information (diff_B1, diff_B3) are sent to the picture generation unit 108.
  • the picture generation unit 108 uses the decoded reference information (mv_B1, mv_B3), the prediction difference information (diff_B1, diff_B3), and the decoded image (pic_I0, pic_P2, pic_P4) stored in the video buffer 107 to generate a decoded image (pic_B1, pic_B3) is generated (FIG. 5 (g)).
  • the selector 109 switches between the decoded image (decoded image of the first frame rate) stored in the video buffer 107 and the decoded image (picture) generated by the picture generation unit 108 and outputs the result ((h) in FIG. 5). .
  • the decoded image decoded image of the first frame rate
  • the decoded image picture generated by the picture generation unit 108
  • the decoding unit 104 extracts encoded reference information related to inter-screen prediction.
  • encoding when encoding is performed using an encoding algorithm such as MPEG, encoding may be performed using intra prediction rather than inter prediction.
  • FIG. 6 shows an example in which an interpolated picture is generated by the image display device 20 using the coding reference information and prediction difference information for intra-screen prediction.
  • FIG. 6E shows the coding reference information for intra-screen prediction extracted by the decoding unit 104 from the coded image stream (c).
  • the coding reference information for intra prediction includes information on the block size, prediction direction, and the like.
  • FIG. 6F shows prediction difference information in intra prediction.
  • the decoding unit 104 extracts the prediction difference information (f) together with the encoded reference information (e) and outputs it to the multiplexing unit 105.
  • the multiplexing unit 105 multiplexes the encoded reference information (e) and the prediction difference information (f) on the decoded image 123 and outputs the multiplexed information.
  • the encoded reference information (Intra_B1) and the prediction difference information (diff_B1) are multiplexed on the decoded image (pic_P2)
  • the encoded reference information (Intra_B3) and the prediction difference information (diff_B3) are multiplexed on the decoded image (pic_P4).
  • An example of output is shown.
  • the separating unit 106 separates the decoded image (pic_I0, pic_P2, pic_P4) from the signal received from the image output device and stores the separated image in the video buffer 107. Also, the encoded reference information (Intra_B1, Intra_B3) and the prediction difference information (diff_B1, diff_B3) are sent to the picture generation unit 108. The picture generation unit 108 generates a decoded image (pic_B1, pic_B3) based on the encoded reference information (Intra_B1, Intra_B3) and the prediction difference information (diff_B1, diff_B3) (FIG. 6 (g)). Therefore, it is not necessary to refer to the decoded image in the video buffer 107.
  • the selector 109 switches and outputs the decoded image (decoded image of the first frame rate) stored in the video buffer 107 and the interpolated picture generated by the picture generation unit 108 (FIG. 6 (h)). Image display at a frame rate (120 frames per second) higher than the first frame rate (60 frames per second) becomes possible.
  • the image display device 20 In the form of transmitting a video signal based on the HDMI standard through the video cable 125, it is possible to transmit control information from the image display device 20 to the image output device 10. Accordingly, for example, when the image display device 20 does not have a display function of 120 frames per second and can display only up to 60 frames per second, the display of the image display device 20 from the image display device 20 to the image output device 10 is performed. The possible frame rate performance is notified in advance, and the image output device 10 uses the separation unit 102 to form a decoded image at the second frame rate when the image display device 20 does not have a display performance of 120 frames per second.
  • the output of the stream group 121 to be used, the operation of the decoding unit 104, and the multiplexing operation of the encoded reference information 124 in the multiplexing unit 105 can be stopped.
  • the control unit for example, a processing device that executes a program included in the image output apparatus outputs the stream group 121, the operation of the decoding unit 104, and the multiplexing unit 105 based on the control information from the image display device 20. This can be realized by controlling so that the multiplexing operation of the encoded reference information 124 is stopped.
  • Image output device 20 Image display device 101: Receiving unit 102: Separating unit 103, 104: Decoding unit 105: Multiplexing unit 106: Separating unit 107: Video buffer unit 108: Picture generating unit 109: Selector unit 120: Stream group used to construct a decoded image at the first frame rate 121: Stream group used to construct a decoded image at the second frame rate 123: Decoded image 124 at the first frame rate, 127: Encoding reference information 125 included in the stream group 121: Video cable 126, 129: Decoded image 128 of the first frame rate 128 Decoded image of the second frame rate

Abstract

The objective of the invention is to eliminate the necessity of generating interpolation vectors in a display apparatus, thereby reducing the load of the display apparatus and enabling a high-frame-rate image display. An image output apparatus for decoding an encoded image stream and outputting decoded images separates a first frame group, which is included in the encoded image stream and which is to be used for decoding the images, from a second frame group also included in the encoded image stream and including encoding reference information, separately decodes the first and second frame groups, superimposes the encoding reference information, which has been obtained by the decoding of the second frame group, on a decoded image frame group obtained by the decoding of the first frame group, and then outputs, to an image display apparatus, the decoded image frame group on which the encoding reference information has been superimposed.

Description

画像出力表示システム及び画像出力装置、画像表示装置Image output display system, image output apparatus, and image display apparatus
 本発明は、画像出力表示システム及び画像出力装置、画像表示装置に係り、特に、画像出力装置で復号した復号画像よりも、よりフレームレートの高い画像を画像表示装置で表示することが可能な画像出力装置、画像表示装置、画像出力表示システムに関する。 The present invention relates to an image output display system, an image output apparatus, and an image display apparatus, and more particularly, an image capable of displaying an image having a higher frame rate on an image display apparatus than a decoded image decoded by the image output apparatus. The present invention relates to an output device, an image display device, and an image output display system.
 パソコンやブルーレイディスクレコーダのような映像を出力する機器と、テレビやPCモニタのような映像を表示する機器間でデジタル画像を伝送する方式として、HDMI(High Definition Multimedia Interface)規格が知られている。HDMI規格の最新版(2013年9月に策定)のHDMI2.0では、伝送帯域が18Gbpsまで拡張され、これにより4K2K解像度の映像信号を60フレーム毎秒で伝送することが可能となっている。 The HDMI (High Definition Multimedia Interface) standard is known as a method for transmitting digital images between a device that outputs video such as a personal computer or a Blu-ray disc recorder and a device that displays video such as a television or PC monitor. . With HDMI 2.0, the latest version of the HDMI standard (developed in September 2013), the transmission band is expanded to 18 Gbps, which makes it possible to transmit a 4K2K resolution video signal at 60 frames per second.
 一方、カメラの高解像度化等に伴い、よりフレームレートの高い4K2K解像度@120フレーム毎秒が放送等に採用される動きが見られる。仮に4K2K解像度@120フレーム毎秒の映像信号が放送等に採用されることになった場合、現在のHDMI2.0では伝送帯域が不足する恐れがある。 On the other hand, with the higher resolution of cameras, there is a movement to adopt 4K2K resolution @ 120 frames per second with higher frame rate for broadcasting. If a video signal of 4K2K resolution @ 120 frames per second is to be adopted for broadcasting or the like, there is a risk that the transmission bandwidth will be insufficient in the current HDMI 2.0.
 この課題を解決する技術として、特許文献1には、動きベクトルにより符号化された映像信号を復号する再生装置200と、復号された映像信号をハイフレームレート化して表示する表示装置203が分離されている場合に、表示装置で、再生装置での復号処理によって得られる動きベクトルを利用してフレームレート変換を行うフレームレート変換システムが開示されている。 As a technique for solving this problem, Patent Document 1 separates a playback device 200 that decodes a video signal encoded by a motion vector and a display device 203 that displays the decoded video signal at a high frame rate. In such a case, there is disclosed a frame rate conversion system that performs frame rate conversion using a motion vector obtained by decoding processing in a playback device in a display device.
特開2007-274679号公報JP 2007-274679 A
 発明者らは、特許文献1に記載のフレームレート変換システムを用いて、4K2K解像度@120フレーム毎秒の映像信号をモニタに表示する動作について考察した。図7はその動作例を示す。併せて、特許文献1の図2ないし図3に開示されたフレームレート変換システムも参照する(特許文献1の符号も同様に参照する)。 The inventors considered the operation of displaying a video signal of 4K2K resolution @ 120 frames per second on a monitor using the frame rate conversion system described in Patent Document 1. FIG. 7 shows an example of the operation. In addition, the frame rate conversion system disclosed in FIG. 2 to FIG. 3 of Patent Document 1 is also referred to (refer to the reference numeral of Patent Document 1 as well).
 図7の(a)は、4K2K解像度@120フレーム毎秒の符号化画像ストリームである。特許文献1に記載のフレームレート変換システムでは、再生装置1でデコードするフレームレートよりも、表示装置5で表示するフレームレートの方が高くなるため、ここでは一例として、(b)のように、(a)から1フレームおきに取り出した符号化画像ストリーム(b)を復号部2に入力するとする。(以下、特許文献1の図3の符号を引用する。)復号部2は、復号映像信号(c)(4K2K解像度@60Hz)および符号化画像ストリーム(b)に含まれる参照制御情報(d)を出力し、エンコード部3は(c)の復号画像に、(d)の参照制御情報を重畳して表示装置5に出力する。なお、(a)においてst_Ix(xは数字)はIピクチャ(画面内予測)の符号化画像ストリームを、st_Px(xは数字)はPピクチャ(順方向の画面間予測)の符号化画像ストリームを、st_Bx(xは数字)はBピクチャ(双方向の画面間予測)の符号化画像ストリームを表しているものであるが、Iピクチャ、Pピクチャ、Bピクチャ等のMPEG規格詳細は周知のため、詳細説明は省略する。 (A) of FIG. 7 is an encoded image stream of 4K2K resolution @ 120 frames per second. In the frame rate conversion system described in Patent Document 1, since the frame rate displayed on the display device 5 is higher than the frame rate decoded by the playback device 1, as an example here, as shown in (b), Assume that an encoded image stream (b) extracted every other frame from (a) is input to the decoding unit 2. (Hereinafter, reference is made to the code in FIG. 3 of Patent Document 1.) The decoding unit 2 includes reference control information (d) included in the decoded video signal (c) (4K2K resolution @ 60 Hz) and the encoded image stream (b). The encoding unit 3 superimposes the reference control information of (d) on the decoded image of (c) and outputs it to the display device 5. In (a), st_Ix (x is a number) is an I picture (intra-screen prediction) encoded image stream, and st_Px (x is a number) is a P picture (forward inter-screen prediction) encoded image stream. , St_Bx (x is a number) represents an encoded image stream of a B picture (bidirectional inter-screen prediction), but details of MPEG standards such as an I picture, a P picture, and a B picture are well known. Detailed description is omitted.
 表示装置5では、デコード部6が復号映像信号(pic_I0、pic_P2、pic_P4・・・)を映像バッファ7に格納するとともに、動きベクトル(mv_P2、mv_P4・・・)を動きベクトルバッファ8に格納する。補間ベクトル生成部9は上記動きベクトル(mv_P2、mv_P4・・・)から補間ベクトル(mv_C1、mv_C3・・・)を生成する(e)。そして、補間フレーム生成部10は映像バッファ7のピクチャ(実ピクチャ)と、補間ベクトル(mv_C1、mv_C3・・・)から補間ピクチャ(pic_P1、pic_P3・・・)を生成する(f)。セレクタ11は、映像バッファ7と補間フレーム生成部10で生成した補間ピクチャとを切り替えて出力する。これにより、4K2K解像度@120Hzの映像信号が、表示装置3に画面表示される。 In the display device 5, the decoding unit 6 stores the decoded video signal (pic_I 0, pic_P 2, pic_P 4...) In the video buffer 7, and stores the motion vector (mv_P 2, mv_P 4...) In the motion vector buffer 8. The interpolation vector generation unit 9 generates interpolation vectors (mv_C1, mv_C3...) From the motion vectors (mv_P2, mv_P4...) (E). Then, the interpolation frame generation unit 10 generates interpolation pictures (pic_P1, pic_P3...) From the picture (real picture) in the video buffer 7 and the interpolation vector (mv_C1, mv_C3...) (F). The selector 11 switches and outputs the video buffer 7 and the interpolated picture generated by the interpolated frame generating unit 10. As a result, a 4K2K resolution @ 120 Hz video signal is displayed on the display device 3.
 ここで、特許文献1に記載のフレームレート変換システムにおいて4K2K解像度@120Hzの映像を画面表示するためには、表示装置内で補間画像を生成するために必要となる補間ベクトルを生成する必要がある。 Here, in order to display a 4K2K resolution @ 120 Hz video on the screen in the frame rate conversion system described in Patent Document 1, it is necessary to generate an interpolation vector necessary for generating an interpolated image in the display device. .
 本発明の目的は、表示装置内で補間ベクトルを生成するのを不要にして、表示装置の負荷を軽減し、ハイフレムレートの画像表示を可能とすることにある。 An object of the present invention is to eliminate the need for generating an interpolation vector in a display device, to reduce the load on the display device, and to enable high-frame-rate image display.
 上記課題を解決するため、本発明に係る画像出力装置は、好ましくは、符号化画像ストリームを復号化して復号画像を出力する画像出力装置であって、
該符号化画像ストリームに含まれる、画像を復号するための第1フレーム群と、符号化参照情報を含む第2フレーム群とを分離し、
該第1フレーム群と該第2フレーム群とをそれぞれ復号化し、
復号化された第1フレーム群を復号化した復号画像フレーム群に、該第2フレーム群を復号化した符号化参照情報を重畳して外部に出力する、ことを特徴とする画像出力装置として構成される。
In order to solve the above problems, the image output apparatus according to the present invention is preferably an image output apparatus that decodes an encoded image stream and outputs a decoded image,
Separating a first frame group for decoding an image and a second frame group including encoded reference information included in the encoded image stream;
Decoding the first frame group and the second frame group, respectively;
An image output apparatus comprising: a decoded image frame group obtained by decoding the decoded first frame group; and the encoded reference information obtained by decoding the second frame group is superimposed and output to the outside. Is done.
 好ましい例において、前記符号化画像ストリームは、第1のフレームレートの画像を復号可能な第1フレーム群と、該第1フレーム群を補間して第1のフレームレートよりも高いフレームレートの画像を復号するために用いる第2フレーム群とを含み、
画像を復号するための第1フレーム群と、符号化参照情報を含む第2フレーム群とを分離する分離部と、
該分離部で分離された該第1フレーム群を復号化する第1の復号部と、
該分離部で分離された該第2フレーム群を復号するための動きベクトル情報を抽出して復号化する第2の復号部と、
該第1の復号部で復号化された復号画像フレーム群に、該第2の復号部で復号化された動きベクトル情報を多重化する多重部と、を有し、該多重部から出力情報を外部に出力する。
In a preferred example, the encoded image stream includes a first frame group capable of decoding an image having a first frame rate, and an image having a frame rate higher than the first frame rate by interpolating the first frame group. A second frame group used for decoding,
A separation unit that separates a first frame group for decoding an image and a second frame group including encoded reference information;
A first decoding unit for decoding the first frame group separated by the separation unit;
A second decoding unit for extracting and decoding motion vector information for decoding the second frame group separated by the separation unit;
A multiplexing unit that multiplexes the motion vector information decoded by the second decoding unit on the decoded image frame group decoded by the first decoding unit, and outputs output information from the multiplexing unit. Output to the outside.
 更に好ましい例によれば、前記第2の復号部は、符号化画像ストリームに含まれる、第2フレーム群を復号するための前記動きベクトル情報と、第2フレーム群を復号するために該動きベクトル情報とともに用いられる差分画像情報とを復号化し、
前記多重部は、該第1の復号部で復号化された復号画像フレーム群に、該第2の復号部で復号化された動きベクトル情報と該差分画像情報を多重化する。
According to a further preferred example, the second decoding unit includes the motion vector information for decoding the second frame group, and the motion vector for decoding the second frame group, included in the encoded image stream. The difference image information used together with the information is decoded,
The multiplexing unit multiplexes the motion vector information decoded by the second decoding unit and the difference image information into the decoded image frame group decoded by the first decoding unit.
 更に好ましい例では、該分離部で分離された該第2フレーム群を復号するために用いる同一画面内の符号化参照画像と予測差分情報を復号化する第2の復号部と、
該第1の復号部で復号化された復号画像フレーム群に、該第2の復号部で復号化された同一画面内の符号化参照画像と予測差分情報を多重化する多重部と、
を有し、該多重部から出力情報を外部に出力する。
In a more preferable example, a second decoding unit that decodes an encoded reference image and prediction difference information in the same screen used for decoding the second frame group separated by the separation unit;
A multiplexing unit that multiplexes the encoded reference image and the prediction difference information in the same screen decoded by the second decoding unit into the decoded image frame group decoded by the first decoding unit;
And output information from the multiplexing unit to the outside.
 本発明に係る画像表示装置は、好ましくは、復号化された画像信号を用いて画像を表示する画像表示装置であって、
復号化された復号画像に含まれる、第1フレーム群を復号化した復号画像フレーム群と、第2フレーム群を復号化した符号化参照情報とに分離する分離部と、
該第1フレーム群による画像を一時格納するバッファと、
該分離部で分離した第2フレーム群を復号するための符号化参照情報を用いて第2フレーム群のピクチャを生成するピクチャ生成部と、
該バッファから出力される画像と、該ピクチャ生成部から出力されるピクチャを選択するセレクタと、を有し、該セレクタの出力を表示する、ことを特徴とする画像表示装置として構成される。
The image display device according to the present invention is preferably an image display device that displays an image using a decoded image signal,
A separation unit that separates the decoded image frame group obtained by decoding the first frame group and the encoded reference information obtained by decoding the second frame group, included in the decoded image obtained by decoding;
A buffer for temporarily storing images of the first frame group;
A picture generation unit that generates a picture of the second frame group using encoded reference information for decoding the second frame group separated by the separation unit;
The image display device includes an image output from the buffer and a selector that selects a picture output from the picture generation unit, and displays the output of the selector.
 また、本発明に係る画像出力表示システムは、好ましくは、上記画像出力装置と、上記画像表示装置を有するシステムとして構成される。 The image output display system according to the present invention is preferably configured as a system having the image output device and the image display device.
 本発明によれば、表示装置内で補間ベクトルを生成することが不要となるので表示装置の負荷が軽減できる。また、符号化画像ストリームに含まれる符号化参照情報を用いてピクチャを生成できるので、より自然で高精細な補間フレームを生成してハイフレムレートの画像表示を行うことができる。 According to the present invention, it is not necessary to generate an interpolation vector in the display device, so the load on the display device can be reduced. In addition, since a picture can be generated using the encoded reference information included in the encoded image stream, it is possible to generate a more natural and high-definition interpolated frame and display an image at a high frame rate.
一実施例による画像出力表示システムの構成例を示すブロック図である。It is a block diagram which shows the structural example of the image output display system by one Example. 一実施例におけるピクチャの生成例(生成例1)を示す図である。It is a figure which shows the example of a production | generation (generation example 1) in one Example. HDMI規格における機器構成例を示す図である。It is a figure which shows the apparatus structural example in HDMI specification. HDMI規格における画像データ伝送の有効領域/無効領域を示す図である。It is a figure which shows the effective area | region / invalid area | region of the image data transmission in HDMI specification. 一実施例におけるピクチャの生成例2を示す図である。It is a figure which shows the production example 2 of the picture in one Example. 一実施例におけるピクチャの生成例3を示す図である。It is a figure which shows the production example 3 of the picture in one Example. 従来のフレームレート変換システムにおけるピクチャ補間の動作例を示す図である。It is a figure which shows the operation example of the picture interpolation in the conventional frame rate conversion system.
 以下、図面を参照して、本発明の一実施例を説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
 図1は、一実施例の画像出力表示システムの構成例を示す図である。この画像出力表示システムは、ブルーレイディスクレコーダやパソコン、デジタルチューナのような画像出力装置10と、テレビやPCモニタのような画像表示装置20が、映像ケーブル125により接続して構成される。なお、画像出力装置は、チューナとか画像再生装置と呼んでもよい。また、画像出力装置を送信機、画像表示装置を受信機、と呼んでもよい。ここでは説明上、画像出力装置10、画像表装置20ということにする。 FIG. 1 is a diagram illustrating a configuration example of an image output display system according to an embodiment. This image output display system is configured by connecting an image output device 10 such as a Blu-ray disc recorder, a personal computer, or a digital tuner and an image display device 20 such as a television or a PC monitor via a video cable 125. The image output device may be called a tuner or an image playback device. The image output device may be called a transmitter, and the image display device may be called a receiver. Here, for the sake of explanation, the image output device 10 and the image table device 20 are used.
 画像出力装置10は、受信部101、分離部102、復号部103、104、多重部105を備える。受信部101は、外部から送信されるMPEG等の符号化アルゴリズムで符号化された符号化画像ストリームを受信する。分離部102は、受信部101で受信された符号化画像ストリームを、第一のフレームレートの復号画像を構成するために用いる第一のストリーム群120と、第一のフレームレートよりも高いフレームレートの復号画像を構成するのに用いる第二のストリーム群121に分離する。そして、第一のストリーム群120を復号部103へ出力し、第二のストリーム群121を復号部104へ出力する。 The image output apparatus 10 includes a receiving unit 101, a separating unit 102, decoding units 103 and 104, and a multiplexing unit 105. The receiving unit 101 receives an encoded image stream encoded by an encoding algorithm such as MPEG transmitted from the outside. The separation unit 102 uses the encoded image stream received by the reception unit 101 as a first stream group 120 used to construct a decoded image having a first frame rate, and a frame rate higher than the first frame rate. Are separated into a second stream group 121 used to construct the decoded image. Then, the first stream group 120 is output to the decoding unit 103, and the second stream group 121 is output to the decoding unit 104.
 復号部103は、ストリーム群120を復号して復号画像123を生成し、それを多重部105に出力する。復号部104は、ストリーム群121の中から動き予測モードや動きベクトルの大きさ、参照画像に関する情報を抽出して、符号化参照情報124として多重部105に出力する。多重部105は、復号画像123に符号化参照情報124を多重して、映像ケーブル125を介して画像表示装置20へ出力する。 The decoding unit 103 decodes the stream group 120 to generate a decoded image 123 and outputs it to the multiplexing unit 105. The decoding unit 104 extracts information related to the motion prediction mode, the size of the motion vector, and the reference image from the stream group 121 and outputs the information as the encoded reference information 124 to the multiplexing unit 105. The multiplexing unit 105 multiplexes the encoded reference information 124 with the decoded image 123 and outputs the multiplexed information to the image display device 20 via the video cable 125.
 画像表示装置20は、分離部106、映像バッファ部107、ピクチャ生成部108、セレクタ109を備える。分離部106は、映像ケーブル125を介して、画像出力装置10の多重部105から出力される信号(復号画像123と符号化参照情報124の多重化情報)を受信し、この信号の中から符号化参照情報127を分離してピクチャ生成部108へ送り、映像信号126を映像バッファ107へ送る。 The image display device 20 includes a separation unit 106, a video buffer unit 107, a picture generation unit 108, and a selector 109. The separation unit 106 receives a signal (multiplexed information of the decoded image 123 and the encoded reference information 124) output from the multiplexing unit 105 of the image output apparatus 10 via the video cable 125, and encodes the signal from the signal. The separated reference information 127 is separated and sent to the picture generation unit 108, and the video signal 126 is sent to the video buffer 107.
 ピクチャ生成部108は、符号化参照情報127に含まれる動き予測モードや動きベクトルの大きさ、参照画像に関する情報を抽出する。動き予測モードには動き予測のブロックサイズや予測方向(順方向、逆方向、双方向など)が含まれており、これらの情報と動きベクトルを用いて、映像バッファ107に格納された復号画像に対する、第二のフレームレートの復号画像を生成する。 The picture generation unit 108 extracts information on the motion prediction mode, the size of the motion vector, and the reference image included in the encoded reference information 127. The motion prediction mode includes a motion prediction block size and a prediction direction (forward, reverse, bidirectional, etc.). Using these information and a motion vector, the motion prediction mode is used for the decoded image stored in the video buffer 107. Then, a decoded image of the second frame rate is generated.
 セレクタ109は、映像バッファ107に格納されている第一のフレームレートの復号画像と、ピクチャ生成部108で生成した第二のフレームレートの復号画像とを選択して(切り替えて)出力する。これにより、表示画面には第一のフレームレートの復号画像よりもフレームレートの高い映像を出力することが可能となる。 The selector 109 selects (switches) and outputs the first frame rate decoded image stored in the video buffer 107 and the second frame rate decoded image generated by the picture generation unit 108. As a result, it is possible to output a video having a higher frame rate than the decoded image having the first frame rate on the display screen.
 〈ピクチャの生成例1〉
 次に、図2を参照して、ピクチャの生成例について詳しく説明する。
図2において、(a)は4K2K解像度@120フレーム毎秒の符号化画像ストリームである。分離部102は、符号化画像ストリーム(a)を符号化画像ストリーム(b)と符号化画像ストリーム(c)に分離し、符号化画像ストリーム(b)を復号部103に出力し、符号化画像ストリーム(c)を復号部104に出力する。
<Picture generation example 1>
Next, an example of generating a picture will be described in detail with reference to FIG.
In FIG. 2, (a) is an encoded image stream of 4K2K resolution @ 120 frames per second. The separation unit 102 separates the encoded image stream (a) into the encoded image stream (b) and the encoded image stream (c), and outputs the encoded image stream (b) to the decoding unit 103. The stream (c) is output to the decoding unit 104.
 復号部103は、符号化画像ストリーム(b)を復号し、復号画像(d)を生成する。復号画像(d)は60フレーム毎秒となる。復号部104は、符号化画像ストリーム(c)から動き予測モードや動きベクトルの大きさ、参照画像に関する符号化参照情報(e)を抽出する。図2の例では動きベクトルが抽出される。 The decoding unit 103 decodes the encoded image stream (b) and generates a decoded image (d). The decoded image (d) is 60 frames per second. The decoding unit 104 extracts the motion prediction mode, the size of the motion vector, and the encoded reference information (e) related to the reference image from the encoded image stream (c). In the example of FIG. 2, a motion vector is extracted.
 多重部105は、復号画像(d)と符号化参照情報(e)を多重して出力する。図2では、復号画像(pic_P2)に符号化参照情報(mv_B1)を多重し、復号画像(pic_P4)に符号化参照情報(mv_B3)を多重して出力する例を示している。 The multiplexing unit 105 multiplexes and outputs the decoded image (d) and the encoded reference information (e). FIG. 2 illustrates an example in which the encoded reference information (mv_B1) is multiplexed on the decoded image (pic_P2) and the encoded reference information (mv_B3) is multiplexed on the decoded image (pic_P4) and output.
 一方、画像表示装置20において、分離部106は画像出力装置10から送信された信号を受信し、その受信信号の中から復号画像(pic_I0、pic_P2、pic_P4)を分離して映像バッファ107に格納する。また、符号化参照情報(mv_B1、mv_B3)をピクチャ生成部108へ送る。ピクチャ生成部108は符号化参照情報(mv_B1、mv_B3)および映像バッファ107に格納された復号画像(pic_I0、pic_P2、pic_P4)を基に、復号画像(pic_B1、pic_B3)を生成する(f)。 On the other hand, in the image display device 20, the separation unit 106 receives the signal transmitted from the image output device 10, separates the decoded image (pic_I 0, pic_P 2, pic_P 4) from the received signal and stores it in the video buffer 107. . Also, the encoding reference information (mv_B1, mv_B3) is sent to the picture generation unit 108. The picture generation unit 108 generates a decoded image (pic_B1, pic_B3) based on the encoded reference information (mv_B1, mv_B3) and the decoded image (pic_I0, pic_P2, pic_P4) stored in the video buffer 107 (f).
 セレクタ109は、映像バッファ107に格納された復号画像(第一のフレームレートの復号画像)と、ピクチャ生成部で生成した補間ピクチャを切り替えて出力する(g)。これにより、第一のフレームレート(60フレーム毎秒)よりも高いフレームレート(120フレーム毎秒)の画像表示が可能となる。 The selector 109 switches between the decoded image (decoded image of the first frame rate) stored in the video buffer 107 and the interpolated picture generated by the picture generation unit and outputs the result (g). Thereby, it is possible to display an image at a frame rate (120 frames per second) higher than the first frame rate (60 frames per second).
 図1の説明に戻って、画像出力装置10と画像表示装置20をつなぐ映像ケーブル125の伝送形態は、コンポジット信号などのアナログ信号であってもよいし、デジタル信号であってもよい。アナログ信号の場合、多重部105は、垂直帰線期間など映像信号に用いられていない領域に符号化参照情報124を重畳して送ることが可能である。また、デジタル映像信号の伝送規格としては先に述べたHDMI規格に沿って符号化参照情報124を重畳して伝送することが可能である。 Returning to the explanation of FIG. 1, the transmission form of the video cable 125 connecting the image output device 10 and the image display device 20 may be an analog signal such as a composite signal or a digital signal. In the case of an analog signal, the multiplexing unit 105 can superimpose and send the encoded reference information 124 in a region not used for the video signal such as a vertical blanking period. In addition, it is possible to superimpose and transmit the encoded reference information 124 according to the HDMI standard described above as a transmission standard for digital video signals.
 図3はHDMI規格の機器構成例を示す。
HDMIのシステムは主に、HDMI送信機(ソース機器)と、HDMI受信機(シンク機器)と、これらの機器を接続するケーブルの3つのデバイスで構成される。シンク機器の構成や状態などの情報はDDC(Display Data Channel)信号を用いて認証される。また、HDMIはCEC(Consumer Electronics Control)ラインを装備しており、これにより機器間の複雑な制御を行うことが可能となっている。ビデオとオーディオおよび各種パケットのデータは、TMDS(Transition Minimized Differential Signaling)と呼ばれる方式で伝送される。この方式では、データを3チャネル、クロックを1チャネル備えており、TMDSクロックは、TMDSデコーダがデータを再生する際のリファレンス・クロックとして使用される。また、TMDSでは音声と各種補助データを伝送するためにパケット構造を使用している。
FIG. 3 shows a device configuration example of the HDMI standard.
The HDMI system is mainly composed of three devices: an HDMI transmitter (source device), an HDMI receiver (sink device), and a cable connecting these devices. Information such as the configuration and status of the sink device is authenticated using a DDC (Display Data Channel) signal. Also, HDMI is equipped with a CEC (Consumer Electronics Control) line, which enables complex control between devices. Video, audio, and various packet data are transmitted by a method called TMDS (Transition Minimized Differential Signaling). In this system, 3 channels of data and 1 channel of clock are provided, and the TMDS clock is used as a reference clock when the TMDS decoder reproduces data. In addition, TMDS uses a packet structure to transmit voice and various auxiliary data.
 図4は、HDMIにおける1フレーム期間の画像データが伝送される有効領域と画像データが伝送されないブランキング期間を示す。
図4において、垂直期間601は、垂直ブランキング期間602と垂直有効期間603から構成される。VSYNC信号は、垂直ブランキング期間602の先頭から規定されたライン数の間を1とし、その他の垂直ブランキング期間602と垂直有効期間603の間は0とした1bitの信号である。規定されたライン数の一例としては、4ラインなどがある。
FIG. 4 shows an effective area in which image data in one frame period is transmitted in HDMI and a blanking period in which image data is not transmitted.
In FIG. 4, the vertical period 601 includes a vertical blanking period 602 and a vertical effective period 603. The VSYNC signal is a 1-bit signal in which 1 is set between the number of lines defined from the top of the vertical blanking period 602 and 0 is set between the other vertical blanking periods 602 and the vertical effective period 603. An example of the prescribed number of lines is 4 lines.
 水平期間604は、水平ブランキング期間605と水平有効期間606から構成される。HSYNC信号は、水平ブランキング期間605の先頭から規定された画素数の間を1とし、その他の水平ブランキング期間と水平有効期間606の間は0とした1bitの信号である。規定された画素数の一例としては、40画素がある。 The horizontal period 604 includes a horizontal blanking period 605 and a horizontal effective period 606. The HSYNC signal is a 1-bit signal in which 1 is set between the number of pixels defined from the head of the horizontal blanking period 605 and 0 is set between the other horizontal blanking periods and the horizontal effective period 606. An example of the prescribed number of pixels is 40 pixels.
 有効期間607は、垂直有効期間603と水平有効期間606の期間に囲まれた領域を示し、この期間に画像データが割り当てられる。また、ブランキング期間608は、垂直ブランキング期間602と水平ブランキング期間605の期間に囲まれた領域である。
上記構成により、有効期間607に第一のフレームレートの復号画像を送信し、ブランキング期間608に符号化参照情報を送信することが可能である。
The effective period 607 indicates an area surrounded by a vertical effective period 603 and a horizontal effective period 606, and image data is allocated to this period. The blanking period 608 is an area surrounded by a vertical blanking period 602 and a horizontal blanking period 605.
With the above configuration, it is possible to transmit the decoded image of the first frame rate during the effective period 607 and transmit the encoded reference information during the blanking period 608.
 本実施例によれば、4K2K解像度@60フレーム毎秒の非圧縮映像信号が上限伝送帯域となるHDMI2.0において、4K2K解像度@120フレーム毎秒の映像信号の伝送、及び画面表示が可能となる。 According to the present embodiment, 4K2K resolution @ 120 frames per second video signal transmission and screen display can be performed in HDMI 2.0 where an uncompressed video signal of 4K2K resolution @ 60 frames per second is the upper limit transmission band.
 〈ピクチャの生成例2〉
この例は、図5に示すように、符号化参照情報の中で動きベクトルと予測差分情報を用いて補間ピクチャを生成するものである。この例によれば、動きベクトルだけでなく予測差分情報も用いて補間ピクチャを生成するので、生成例1に比べてより高精細な画像表示が可能となる。
<Picture generation example 2>
In this example, as shown in FIG. 5, an interpolation picture is generated using a motion vector and prediction difference information in encoded reference information. According to this example, since the interpolation picture is generated using not only the motion vector but also the prediction difference information, a higher-definition image display is possible as compared with the generation example 1.
 上述した図2の例では、復号部104にて、動き予測モードや動きベクトルの大きさ、参照画像に関する符号化参照情報(e)を抽出するとした。一般にMPEG等の符号化アルゴリズムで符号化を行う際には、符号化参照情報とあわせて、符号化対象画像と参照画像との差分(予測差分情報)が符号化されることが多い。そこで、生成例2では、動きベクトルだけではなく予測差分情報も用いて補間ピクチャを生成する。 In the example of FIG. 2 described above, the decoding unit 104 extracts the motion prediction mode, the size of the motion vector, and the encoded reference information (e) related to the reference image. In general, when encoding is performed using an encoding algorithm such as MPEG, a difference (prediction difference information) between an encoding target image and a reference image is often encoded together with encoding reference information. Therefore, in generation example 2, an interpolation picture is generated using not only the motion vector but also the prediction difference information.
 図5において、(a)~(e)までは図2と同様のため説明を省略する。図5(f)において、復号部104が符号化画像ストリーム(c)からさらに予測差分情報を抽出して、符号化参照情報(e)と予測差分情報(f)を多重部105に出力する。多重部105は、復号画像123に符号化参照情報(e)と予測差分情報(f)を多重して出力する。図5では、復号画像(pic_P2)に符号化参照情報(mv_B1)と予測差分情報(diff_B1)を、復号画像(pic_P4)に符号化参照情報(mv_B3)と予測差分情報(diff_B3)を多重して出力する例を示している。 In FIG. 5, (a) to (e) are the same as those in FIG. In FIG. 5 (f), the decoding unit 104 further extracts prediction difference information from the encoded image stream (c), and outputs the encoded reference information (e) and the prediction difference information (f) to the multiplexing unit 105. The multiplexing unit 105 multiplexes the encoded reference information (e) and the prediction difference information (f) on the decoded image 123 and outputs the multiplexed information. In FIG. 5, the encoded reference information (mv_B1) and the prediction difference information (diff_B1) are multiplexed on the decoded image (pic_P2), and the encoded reference information (mv_B3) and the prediction difference information (diff_B3) are multiplexed on the decoded image (pic_P4). An example of output is shown.
 分離部106は、画像出力装置10から送信されて受信した信号の中から復号画像(pic_I0、pic_P2、pic_P4)を分離して、映像バッファ107に格納する。また、符号化参照情報(mv_B1、mv_B3)および予測差分情報(diff_B1、diff_B3)をピクチャ生成部108へ送る。 The separating unit 106 separates the decoded image (pic_I0, pic_P2, pic_P4) from the signal transmitted from the image output device 10 and stores it in the video buffer 107. Also, the encoding reference information (mv_B1, mv_B3) and the prediction difference information (diff_B1, diff_B3) are sent to the picture generation unit 108.
 ピクチャ生成部108は、符号化参照情報(mv_B1、mv_B3)と予測差分情報(diff_B1、diff_B3)および映像バッファ107に格納された復号画像(pic_I0、pic_P2、pic_P4)を基に、復号画像(pic_B1、pic_B3)を生成する(図5(g))。 The picture generation unit 108 uses the decoded reference information (mv_B1, mv_B3), the prediction difference information (diff_B1, diff_B3), and the decoded image (pic_I0, pic_P2, pic_P4) stored in the video buffer 107 to generate a decoded image (pic_B1, pic_B3) is generated (FIG. 5 (g)).
 セレクタ109は、映像バッファ107に格納された復号画像(第一のフレームレートの復号画像)と、ピクチャ生成部108で生成された復号画像(ピクチャ)を切り替えて出力する(図5(h))。以上の動作により、第一のフレームレート(60フレーム毎秒)よりも高いフレームレート(120フレーム毎秒)の画像表示が可能となる。 The selector 109 switches between the decoded image (decoded image of the first frame rate) stored in the video buffer 107 and the decoded image (picture) generated by the picture generation unit 108 and outputs the result ((h) in FIG. 5). . With the above operation, it is possible to display an image at a frame rate (120 frames per second) higher than the first frame rate (60 frames per second).
 〈ピクチャの生成例3〉
生成例1及び2(図2及び図5)では、復号部104にて、画面間予測に関する符号化参照情報を抽出するとした。一般にMPEG等の符号化アルゴリズムで符号化を行う際には、画面間予測ではなく画面内予測を用いて符号化が行われる場合がある。
<Picture generation example 3>
In the generation examples 1 and 2 (FIGS. 2 and 5), the decoding unit 104 extracts encoded reference information related to inter-screen prediction. In general, when encoding is performed using an encoding algorithm such as MPEG, encoding may be performed using intra prediction rather than inter prediction.
 図6は、画面内予測の符号化参照情報および予測差分情報を用いて、画像表示装置20で補間ピクチャを生成する例である。図6において、(a)~(d)までは図2又は図5と同様のため説明を省略する。図6(e)は復号部104が符号化画像ストリーム(c)から抽出した画面内予測の符号化参照情報を示す。画面内予測の符号化参照情報には、ブロックサイズの大きさや予測方向の情報等が含まれる。図6(f)は画面内予測での予測差分情報である。復号部104は、符号化参照情報(e)とともに予測差分情報(f)を抽出して多重部105に出力する。多重部105は、復号画像123に符号化参照情報(e)および予測差分情報(f)を多重して出力する。図6では、復号画像(pic_P2)に符号化参照情報(Intra_B1)と予測差分情報(diff_B1)を、復号画像(pic_P4)に符号化参照情報(Intra_B3)と予測差分情報(diff_B3)を多重して出力する例を示している。 FIG. 6 shows an example in which an interpolated picture is generated by the image display device 20 using the coding reference information and prediction difference information for intra-screen prediction. In FIG. 6, (a) to (d) are the same as FIG. 2 or FIG. FIG. 6E shows the coding reference information for intra-screen prediction extracted by the decoding unit 104 from the coded image stream (c). The coding reference information for intra prediction includes information on the block size, prediction direction, and the like. FIG. 6F shows prediction difference information in intra prediction. The decoding unit 104 extracts the prediction difference information (f) together with the encoded reference information (e) and outputs it to the multiplexing unit 105. The multiplexing unit 105 multiplexes the encoded reference information (e) and the prediction difference information (f) on the decoded image 123 and outputs the multiplexed information. In FIG. 6, the encoded reference information (Intra_B1) and the prediction difference information (diff_B1) are multiplexed on the decoded image (pic_P2), and the encoded reference information (Intra_B3) and the prediction difference information (diff_B3) are multiplexed on the decoded image (pic_P4). An example of output is shown.
 分離部106は、画像出力装置から受信した信号の中から復号画像(pic_I0、pic_P2、pic_P4)を分離して、映像バッファ107に格納する。また、符号化参照情報(Intra_B1、Intra_B3)および予測差分情報(diff_B1、diff_B3)をピクチャ生成部108へ送る。ピクチャ生成部108は、符号化参照情報(Intra_B1、Intra_B3)と予測差分情報(diff_B1、diff_B3)を基に、復号画像(pic_B1、pic_B3)を生成する(図6(g)。なお、画面内予測では映像バッファ107の復号画像を参照する必要はない。 The separating unit 106 separates the decoded image (pic_I0, pic_P2, pic_P4) from the signal received from the image output device and stores the separated image in the video buffer 107. Also, the encoded reference information (Intra_B1, Intra_B3) and the prediction difference information (diff_B1, diff_B3) are sent to the picture generation unit 108. The picture generation unit 108 generates a decoded image (pic_B1, pic_B3) based on the encoded reference information (Intra_B1, Intra_B3) and the prediction difference information (diff_B1, diff_B3) (FIG. 6 (g)). Therefore, it is not necessary to refer to the decoded image in the video buffer 107.
 セレクタ109は、映像バッファ107に格納された復号画像(第一のフレームレートの復号画像)と、ピクチャ生成部108で生成した補間ピクチャを切り替えて出力する(図6(h)。この動作により、第一のフレームレート(60フレーム毎秒)よりも高いフレームレート(120フレーム毎秒)の画像表示が可能となる。 The selector 109 switches and outputs the decoded image (decoded image of the first frame rate) stored in the video buffer 107 and the interpolated picture generated by the picture generation unit 108 (FIG. 6 (h)). Image display at a frame rate (120 frames per second) higher than the first frame rate (60 frames per second) becomes possible.
 HDMI規格に基づく映像信号を、映像ケーブル125を通して伝送する形態においては、画像表示装置20から画像出力装置10に制御情報を伝送することが可能である。これにより、例えば画像表示装置20が120フレーム毎秒の表示機能を有しておらず、60フレーム毎秒までしか表示できない場合には、画像表示装置20から画像出力装置10へ、画像表示装置20の表示可能フレームレート性能をあらかじめ通知し、画像出力装置10は、画像表示装置20が120フレーム毎秒の表示性能を有しない場合には分離部102にて第二のフレームレートの復号画像を構成するのに用いるストリーム群121の出力および、復号部104の動作、多重部105での符号化参照情報124の多重動作を停止することができる。これは、画像出力装置が有する制御部(例えばプログラムを実行する処理装置)が、画像表示装置20からの制御情報に基づいて、ストリーム群121の出力および、復号部104の動作、多重部105での符号化参照情報124の多重動作を停止させるように制御することで実現できる。 In the form of transmitting a video signal based on the HDMI standard through the video cable 125, it is possible to transmit control information from the image display device 20 to the image output device 10. Accordingly, for example, when the image display device 20 does not have a display function of 120 frames per second and can display only up to 60 frames per second, the display of the image display device 20 from the image display device 20 to the image output device 10 is performed. The possible frame rate performance is notified in advance, and the image output device 10 uses the separation unit 102 to form a decoded image at the second frame rate when the image display device 20 does not have a display performance of 120 frames per second. The output of the stream group 121 to be used, the operation of the decoding unit 104, and the multiplexing operation of the encoded reference information 124 in the multiplexing unit 105 can be stopped. This is because the control unit (for example, a processing device that executes a program) included in the image output apparatus outputs the stream group 121, the operation of the decoding unit 104, and the multiplexing unit 105 based on the control information from the image display device 20. This can be realized by controlling so that the multiplexing operation of the encoded reference information 124 is stopped.
 上記制御により、画像出力装置10における処理の負荷を軽減し、消費電力を低下させることが可能となる。また、第二のフレームレートの表示の有無の切り替えを、画像表示装置20の表示性能によって判断するだけでなく、ユーザの設定に応じて切り替えることも可能である。 By the above control, it is possible to reduce the processing load on the image output apparatus 10 and reduce the power consumption. In addition, it is possible not only to determine whether the second frame rate is displayed based on the display performance of the image display device 20, but also to switch according to the setting of the user.
10:画像出力装置  20:画像表示装置
101:受信部   102:分離部   103、104:復号部  105:多重部
106:分離部   107:映像バッファ部  108:ピクチャ生成部
109:セレクタ部 
120:第一のフレームレートの復号画像を構成するために用いるストリーム群
121:第二のフレームレートの復号画像を構成するために用いるストリーム群
123:第一のフレームレートの復号画像
124、127:ストリーム群121に含まれる符号化参照情報
125:映像ケーブル
126、129:第一のフレームレートの復号画像
128      第二のフレームレートの復号画像
10: Image output device 20: Image display device 101: Receiving unit 102: Separating unit 103, 104: Decoding unit 105: Multiplexing unit 106: Separating unit 107: Video buffer unit 108: Picture generating unit 109: Selector unit
120: Stream group used to construct a decoded image at the first frame rate 121: Stream group used to construct a decoded image at the second frame rate 123: Decoded image 124 at the first frame rate, 127: Encoding reference information 125 included in the stream group 121: Video cable 126, 129: Decoded image 128 of the first frame rate 128 Decoded image of the second frame rate

Claims (10)

  1. 符号化画像ストリームを復号化して復号画像を出力する画像出力装置であって、
    該符号化画像ストリームに含まれる、画像を復号するための第1フレーム群と、符号化参照情報を含む第2フレーム群とを分離し、
    該第1フレーム群と該第2フレーム群とをそれぞれ復号化し、
    復号化された第1フレーム群を復号化した復号画像フレーム群に、該第2フレーム群を復号化した符号化参照情報を重畳して外部に出力する、
    ことを特徴とする画像出力装置。
    An image output device that decodes an encoded image stream and outputs a decoded image,
    Separating a first frame group for decoding an image and a second frame group including encoded reference information included in the encoded image stream;
    Decoding the first frame group and the second frame group, respectively;
    The encoded reference information obtained by decoding the second frame group is superimposed on the decoded image frame group obtained by decoding the decoded first frame group and output to the outside.
    An image output apparatus characterized by that.
  2. 前記符号化画像ストリームは、第1のフレームレートの画像を復号可能な第1フレーム群と、該第1フレーム群を補間して第1のフレームレートよりも高いフレームレートの画像を復号するために用いる第2フレーム群とを含み、
    画像を復号するための第1フレーム群と、符号化参照情報を含む第2フレーム群とを分離する分離部と、
    該分離部で分離された該第1フレーム群を復号化する第1の復号部と、
    該分離部で分離された該第2フレーム群を復号するための動きベクトル情報を抽出して復号化する第2の復号部と、
    該第1の復号部で復号化された復号画像フレーム群に、該第2の復号部で復号化された動きベクトル情報を多重化する多重部と、
    を有し、該多重部から出力情報を外部に出力する、
    請求項1記載の画像出力装置。
    The encoded image stream includes a first frame group capable of decoding an image having a first frame rate, and an image having a frame rate higher than the first frame rate by interpolating the first frame group. A second frame group to be used,
    A separation unit that separates a first frame group for decoding an image and a second frame group including encoded reference information;
    A first decoding unit for decoding the first frame group separated by the separation unit;
    A second decoding unit for extracting and decoding motion vector information for decoding the second frame group separated by the separation unit;
    A multiplexing unit that multiplexes the motion vector information decoded by the second decoding unit on the decoded image frame group decoded by the first decoding unit;
    And outputting output information from the multiplexing unit to the outside.
    The image output apparatus according to claim 1.
  3. 前記第2の復号部は、符号化画像ストリームに含まれる、第2フレーム群を復号するための前記動きベクトル情報と、第2フレーム群を復号するために該動きベクトル情報とともに用いられる差分画像情報とを復号化し、
    前記多重部は、該第1の復号部で復号化された復号画像フレーム群に、該第2の復号部で復号化された動きベクトル情報と該差分画像情報を多重化する、
    請求項2記載の画像出力装置。
    The second decoding unit includes the motion vector information for decoding the second frame group included in the encoded image stream, and difference image information used together with the motion vector information for decoding the second frame group. And decrypt
    The multiplexing unit multiplexes the motion vector information decoded by the second decoding unit and the difference image information on the decoded image frame group decoded by the first decoding unit.
    The image output apparatus according to claim 2.
  4. 前記符号化画像ストリームは、第1のフレームレートの画像を復号可能な第1フレーム群と、該第1フレーム群を補間して第1のフレームレートよりも高いフレームレートの画像を復号するために用いる第2フレーム群とを含み、
    画像を復号するための第1フレーム群と、符号化参照情報を含む第2フレーム群とを分離する分離部と、
    該分離部で分離された該第1フレーム群を復号化する第1の復号部と、
    該分離部で分離された該第2フレーム群を復号するために用いる同一画面内の符号化参照画像と予測差分情報を復号化する第2の復号部と、
    該第1の復号部で復号化された復号画像フレーム群に、該第2の復号部で復号化された同一画面内の符号化参照画像と予測差分情報を多重化する多重部と、
    を有し、該多重部から出力情報を外部に出力する、
    請求項1記載の画像出力装置。
    The encoded image stream includes a first frame group capable of decoding an image having a first frame rate, and an image having a frame rate higher than the first frame rate by interpolating the first frame group. A second frame group to be used,
    A separation unit that separates a first frame group for decoding an image and a second frame group including encoded reference information;
    A first decoding unit for decoding the first frame group separated by the separation unit;
    A second decoding unit for decoding the encoded reference image and prediction difference information in the same screen used for decoding the second frame group separated by the separation unit;
    A multiplexing unit that multiplexes the encoded reference image and the prediction difference information in the same screen decoded by the second decoding unit into the decoded image frame group decoded by the first decoding unit;
    And outputting output information from the multiplexing unit to the outside.
    The image output apparatus according to claim 1.
  5. 復号化された画像信号を用いて画像を表示する画像表示装置であって、
    復号化された画像信号に含まれる、第1フレーム群を復号化した復号画像フレーム群と、第2フレーム群を復号化した符号化参照情報とに分離する分離部と、
    該第1フレーム群による画像を一時格納するバッファと、
    該分離部で分離した第2フレーム群を復号するための符号化参照情報を用いて第2フレーム群のピクチャを生成するピクチャ生成部と、
    該バッファから出力される画像と、該ピクチャ生成部から出力されるピクチャを選択するセレクタと、を有し、
    該セレクタの出力を表示する、ことを特徴とする画像表示装置。
    An image display device for displaying an image using a decoded image signal,
    A separation unit that separates into a decoded image frame group obtained by decoding the first frame group, and coded reference information obtained by decoding the second frame group, included in the decoded image signal;
    A buffer for temporarily storing images of the first frame group;
    A picture generation unit that generates a picture of the second frame group using encoded reference information for decoding the second frame group separated by the separation unit;
    An image output from the buffer, and a selector for selecting a picture output from the picture generation unit,
    An image display device that displays an output of the selector.
  6. 前記分離部は、復号化された動きベクトル情報、又は動きベクトル情報と該差分画像情報、又は同一画面内の符号化参照画像と予測差分情報を分離し、
    前記ピクチャ生成部は、該分離部で分離された、動きベクトル情報、又は動きベクトル情報と該差分画像情報、又は同一画面内の符号化参照画像と予測差分情報に基づき、ピクチャを生成する、
    請求項5記載の画像表示装置。
    The separating unit separates decoded motion vector information, or motion vector information and the difference image information, or an encoded reference image and prediction difference information in the same screen,
    The picture generation unit generates a picture based on the motion vector information or the motion vector information and the difference image information or the encoded reference image and the prediction difference information in the same screen separated by the separation unit.
    The image display device according to claim 5.
  7. 画像を出力する画像出力装置と、該画像出力装置から出力された画像を表示する画像表示装置とを有する画像出力表示システムであって、
    該画像出力装置は;
    該符号化画像ストリームに含まれる、画像を復号するための第1フレーム群と、符号化参照情報を含む第2フレーム群とを分離し、
    該第1フレーム群と該第2フレーム群とをそれぞれ復号化し、
    復号化された第1フレーム群を復号化した復号画像フレーム群に、該第2フレーム群を復号化した符号化参照情報を重畳して出力し、
    該画像表示装置は;
    復号化された画像信号に含まれる、第1フレーム群を復号化した復号画像フレーム群と、第2フレーム群を復号化した符号化参照情報とに分離する分離部と、
    該第1フレーム群による画像を一時格納するバッファと、
    該分離部で分離した第2フレーム群を復号するための符号化参照情報を用いて第2フレーム群のピクチャを生成するピクチャ生成部と、
    該バッファから出力される画像と、該ピクチャ生成部から出力されるピクチャを選択するセレクタとを有し、該セレクタの出力を表示する、
    ことを特徴とする画像出力表示システム。
    An image output display system comprising: an image output device that outputs an image; and an image display device that displays an image output from the image output device,
    The image output device includes:
    Separating a first frame group for decoding an image and a second frame group including encoded reference information included in the encoded image stream;
    Decoding the first frame group and the second frame group, respectively;
    Superimpose the encoded reference information obtained by decoding the second frame group on the decoded image frame group obtained by decoding the decoded first frame group;
    The image display device includes:
    A separation unit that separates into a decoded image frame group obtained by decoding the first frame group, and coded reference information obtained by decoding the second frame group, included in the decoded image signal;
    A buffer for temporarily storing images of the first frame group;
    A picture generation unit that generates a picture of the second frame group using encoded reference information for decoding the second frame group separated by the separation unit;
    An image output from the buffer and a selector for selecting a picture output from the picture generation unit, and displaying an output of the selector;
    An image output display system characterized by that.
  8. 前記画像出力表示システムは、HDMI規格によるデジタル画像信号を扱うものであり、
    前記画像出力装置は、第1フレーム群を補間して前記第1のフレームレートよりも高いフレームレートの画像を復号するために用いる第2フレーム群を復号するための動きベクトル情報、又は該動きベクトル情報とともに用いられる差分画像情報、又は該同一画面内の参照画像との差分画像情報を、HDMI規格のブランキング期間中に重畳し、
    前記画像表示装置は、該第1フレーム群を補間して該第1のフレームレートよりも高いフレームレートの画像を復号するために用いる第2フレーム群を復号するための動きベクトル情報、又は該動きベクトル情報とともに用いられる差分画像情報、又は該同一画面内の参照画像との差分画像情報を、HDMI規格のブランキング期間中から分離する、
    請求項7記載の画像出力表示システム。
    The image output display system handles digital image signals according to the HDMI standard,
    The image output apparatus interpolates the first frame group and motion vector information for decoding a second frame group used for decoding an image having a frame rate higher than the first frame rate, or the motion vector The difference image information used together with the information or the difference image information with the reference image in the same screen is superimposed during the HDMI standard blanking period,
    The image display device interpolates the first frame group and motion vector information for decoding a second frame group used for decoding an image having a frame rate higher than the first frame rate, or the motion Separating difference image information used together with vector information or difference image information with a reference image in the same screen from a blanking period of the HDMI standard;
    The image output display system according to claim 7.
  9. 前記画像出力装置は、前記画像表示装置からの制御情報に従って、該第2フレーム群の復号化又はその出力を制御する制御部を有する、
    請求項7記載の画像出力表示システム。
    The image output device includes a control unit that controls decoding of the second frame group or output thereof according to control information from the image display device.
    The image output display system according to claim 7.
  10. 前記符号化画像ストリームは、4K2K解像度@120フレーム毎秒の映像信号である、請求項7乃至9のいずれかの項記載の画像出力表示システム。 The image output display system according to any one of claims 7 to 9, wherein the encoded image stream is a video signal of 4K2K resolution @ 120 frames per second.
PCT/JP2014/059217 2014-03-28 2014-03-28 Image output display system, image output apparatus, and image display apparatus WO2015145745A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/059217 WO2015145745A1 (en) 2014-03-28 2014-03-28 Image output display system, image output apparatus, and image display apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/059217 WO2015145745A1 (en) 2014-03-28 2014-03-28 Image output display system, image output apparatus, and image display apparatus

Publications (1)

Publication Number Publication Date
WO2015145745A1 true WO2015145745A1 (en) 2015-10-01

Family

ID=54194332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059217 WO2015145745A1 (en) 2014-03-28 2014-03-28 Image output display system, image output apparatus, and image display apparatus

Country Status (1)

Country Link
WO (1) WO2015145745A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007274679A (en) * 2006-03-09 2007-10-18 Sony Corp Frame rate conversion system, frame rate conversion method, transmitter, receiver equipment
US20130038789A1 (en) * 2011-08-10 2013-02-14 Mstar Semiconductor, Inc. Frame Rate Conversion Method and Image Processing Apparatus Thereof
JP2014042289A (en) * 2004-08-18 2014-03-06 Qualcomm Incorporated Encoder-assisted adaptive video frame interpolation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014042289A (en) * 2004-08-18 2014-03-06 Qualcomm Incorporated Encoder-assisted adaptive video frame interpolation
JP2007274679A (en) * 2006-03-09 2007-10-18 Sony Corp Frame rate conversion system, frame rate conversion method, transmitter, receiver equipment
US20130038789A1 (en) * 2011-08-10 2013-02-14 Mstar Semiconductor, Inc. Frame Rate Conversion Method and Image Processing Apparatus Thereof

Similar Documents

Publication Publication Date Title
US8204104B2 (en) Frame rate conversion system, method of converting frame rate, transmitter, and receiver
JP4925697B2 (en) Video signal encoding system, video signal encoding method, and signal converter for network transmission
JP4983317B2 (en) Frame rate conversion system, frame rate conversion method, receiver
US8937642B2 (en) Stereo image data transmitting apparatus and stereo image data receiving apparatus
US9860511B2 (en) Transmitting apparatus, transmitting method, and receiving apparatus
US20110141238A1 (en) Stereo image data transmitting apparatus, stereo image data transmitting method, stereo image data receiving data receiving method
JP2007536825A (en) Stereoscopic television signal processing method, transmission system, and viewer expansion apparatus
US8798132B2 (en) Video apparatus to combine graphical user interface (GUI) with frame rate conversion (FRC) video and method of providing a GUI thereof
US20130141534A1 (en) Image processing device and method
US7250983B2 (en) System and method for overlaying images from multiple video sources on a display device
JP7026450B2 (en) Transmitter, transmitter, receiver and receiver
JP7307794B2 (en) IMAGE PROCESSING SYSTEM, IMAGE PROCESSING INTEGRATED CIRCUIT, AND IMAGE PROCESSING METHOD
US20130100247A1 (en) Image data transmission apparatus, control method for image data transmission apparatus, image data transmission method, and image data reception apparatus
EP2312859A2 (en) Method and system for communicating 3D video via a wireless communication link
JP2019004430A (en) Transmitter, transmission method, receiver and reception method
WO2012063675A1 (en) Stereoscopic image data transmission device, stereoscopic image data transmission method, and stereoscopic image data reception device
JP5694412B2 (en) Transmission device, reception device, transmission method, and reception method
WO2015145745A1 (en) Image output display system, image output apparatus, and image display apparatus
JP6262348B2 (en) Video transmission / reception device and video display device
WO2015132957A1 (en) Video device and video processing method
JP2010252215A (en) Mobile terminal, video display device, and video processing system
JP5318992B2 (en) Video transmission program
JP2009118014A (en) Video transmitting method, system and program
WO2016006107A1 (en) Image transmission device, image reception device, and image transmission method
WO2015155893A1 (en) Video output apparatus, video reception apparatus, and video output method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14886782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14886782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP