WO2015145654A1 - Gas insulated busbar - Google Patents

Gas insulated busbar Download PDF

Info

Publication number
WO2015145654A1
WO2015145654A1 PCT/JP2014/058834 JP2014058834W WO2015145654A1 WO 2015145654 A1 WO2015145654 A1 WO 2015145654A1 JP 2014058834 W JP2014058834 W JP 2014058834W WO 2015145654 A1 WO2015145654 A1 WO 2015145654A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
gas
bellows
insulated bus
hollow portion
Prior art date
Application number
PCT/JP2014/058834
Other languages
French (fr)
Japanese (ja)
Inventor
将広 藤岡
祐貴 兵頭
真人 川東
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2014/058834 priority Critical patent/WO2015145654A1/en
Publication of WO2015145654A1 publication Critical patent/WO2015145654A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B13/00Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle
    • H02B13/02Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle with metal casing
    • H02B13/035Gas-insulated switchgear
    • H02B13/055Features relating to the gas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G5/00Installations of bus-bars
    • H02G5/06Totally-enclosed installations, e.g. in metal casings
    • H02G5/066Devices for maintaining distance between conductor and enclosure
    • H02G5/068Devices for maintaining distance between conductor and enclosure being part of the junction between two enclosures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G5/00Installations of bus-bars
    • H02G5/002Joints between bus-bars for compensating thermal expansion

Definitions

  • the present invention relates to a gas insulated bus.
  • Patent Document 1 discloses a gas insulated bus. According to the gas-insulated bus, flanges are provided at both ends of the bellows filled with the insulating gas. And the adsorbent which adsorb
  • the adsorbent is embedded in the flange provided at the end of the bellows.
  • it is necessary to provide a flange on the bellows. Therefore, the bellows becomes longer by the amount of the flange, and the bellows size increases.
  • the process for providing a flange in a bellows is required, and a manufacturing cost increases.
  • One object of the present invention is to provide a technique capable of reducing the size of a bellows in a gas insulated bus provided with a bellows.
  • the gas insulated bus includes a bellows, a current-carrying conductor, and an adsorbent.
  • the bellows is disposed along the axial direction of the bus bar.
  • the current-carrying conductor is disposed along the axial direction in the insulating gas space surrounded by the bellows, and has a hollow portion that is open to the insulating gas space.
  • the adsorbent is installed in the hollow portion of the conducting conductor.
  • the size of the bellows can be reduced in the gas insulated bus provided with the bellows.
  • FIG. 1 is an axial sectional view showing an example of the structure of a gas-insulated bus according to an embodiment of the present invention.
  • FIG. 2 is a sectional view taken along line AA in FIG.
  • FIG. 3 is an axial cross-sectional view showing an example of the structure of the gas-insulated bus according to the first comparative example.
  • FIG. 4 is a conceptual diagram showing a gas-insulated bus according to Comparative Example 2.
  • FIG. 1 is an axial cross-sectional view showing a structural example of a gas insulated bus 1 according to an embodiment of the present invention.
  • FIG. 2 is a sectional view taken along line AA in FIG. In FIG. 1 and FIG. 2, the central axis of the gas insulated bus 1 is indicated by the symbol “C”.
  • the X direction is an axial direction (the direction of the central axis C)
  • the Z direction is a vertical direction
  • the Y direction is a direction orthogonal to the X direction and the Z direction.
  • 1 and 2 show a three-phase collective gas-insulated bus 1.
  • the gas insulated bus 1 is provided with a cylindrical tank 2 filled with an insulating gas.
  • a part of the tank 2 is provided with a telescopic bellows 3.
  • insulating spacers 4a and 4b are provided at predetermined positions of the tank 2, and the bellows 3 is installed between the insulating spacers 4a and 4b.
  • an adapter 5 may be provided between the end of the bellows 3 and the insulating spacer 4b.
  • the bellows 3 may be a bellows type or a slide type (slide bellows).
  • the tank 2 and the bellows 3 are arranged along the X direction.
  • An insulating gas is sealed in a space surrounded by the tank 2 and the bellows 3. This space is hereinafter referred to as “insulating gas space 6”.
  • a current-carrying conductor 10 for power transmission is arranged in the insulating gas space 6. More specifically, the conducting conductor 10 is disposed along the X direction in parallel with the tank 2 and the bellows 3. In the present embodiment, three-phase conducting conductors 10 are arranged in the insulating gas space 6. Each current-carrying conductor 10 is disposed so as to penetrate through the insulating spacers 4a and 4b, and is supported by the insulating spacers 4a and 4b.
  • each conducting conductor 10 in the insulating gas space 6 surrounded by the bellows 3 includes a fixed conductor 11, a fixed conductor 12, and a detachable conductor 13.
  • the fixed conductor 11 is fixed to the insulating spacer 4a.
  • the fixed conductor 12 is fixed to the insulating spacer 4b.
  • the detachable conductor 13 is disposed so as to connect between the fixed conductor 11 and the fixed conductor 12.
  • the detachable conductor 13 is detachable from the fixed conductors 11 and 12.
  • one end of the detachable conductor 13 is connected to be fitted to the fixed conductor 11, and the other end is fastened to the fixed conductor 12 by a bolt 14.
  • the detachable conductor 13 is hollow. That is, the detachable conductor 13 has a hollow portion 15.
  • the hollow portion 15 is open toward the insulating gas space 6, that is, is connected to the insulating gas space 6. More specifically, an opening 16 is formed in a part of the outer periphery of the detachable conductor 13, and the hollow portion 15 is connected to the insulating gas space 6 through the opening 16.
  • the adsorbent 20 for adsorbing moisture and decomposition gas in the insulating gas is installed in the hollow portion 15 of the detachable conductor 13.
  • the opening 16 is formed to have a size that allows at least the adsorbent 20 to pass therethrough.
  • the adsorbent 20 is installed at a position adjacent to the opening 16 through the opening 16. Further, in order to easily install and replace the adsorbent 20, it is preferable that the opening 16 is formed on the upper surface of the detachable conductor 13.
  • the above-described bolt 14 is also exposed in the hollow portion 15.
  • the operator can attach and remove the bolt 14 through the opening 16.
  • the adsorbent 20 can be installed or replaced, and the bolt 14 can be attached or removed, which is preferable.
  • FIG. 2 shows the arrangement of the detachable conductors 13-1, 13-2, and 13-3 for three phases in the YZ plane orthogonal to the X direction.
  • the detachable conductors 13-1, 13-2, and 13-3 are arranged at the positions of the vertices of the equilateral triangle. That is, the detachable conductors 13-1, 13-2, 13-3 are arranged in a regular triangle shape. Further, the positions of the centers of gravity of the detachable conductors 13-1, 13-2 and 13-3 coincide with the central axis C of the bellows 3.
  • the detachable conductor 13-3 located at the bottom is displaced from the center line in the vertical direction (XZ direction). This is because dust tends to collect at the bottom of the bellows 3, and the detachable conductor 13-3 is separated from the bottom.
  • the detachable conductor 13 had the hollow part 15, it is not restricted to it.
  • the fixed conductor 11 or the fixed conductor 12 may have a hollow portion 15. That is, it is only necessary that the hollow portion 15 is formed in at least a part of the conducting conductor 10.
  • the adsorbent 20 is installed in the hollow portion 15.
  • FIG. 3 is an axial cross-sectional view showing a structural example of the gas-insulated bus 1 ′ according to Comparative Example 1.
  • a flange 30 is provided at the end of the bellows 3 and the adsorbent 20 is accommodated in the flange 30 as in the case of Patent Document 1 described above.
  • the bellows 3 becomes longer by the amount of the flange 30 that houses the adsorbent 20, and the size of the bellows 3 increases. Moreover, the process for providing the flange 30 in the bellows 3 is needed, and a manufacturing cost increases.
  • the flange 30 as shown in FIG. 3 is unnecessary. Accordingly, the length and size of the bellows 3 can be reduced. Moreover, since the process for providing the flange 30 in the bellows 3 becomes unnecessary, manufacturing cost is reduced.
  • FIG. 4 is a conceptual diagram showing a gas-insulated bus according to Comparative Example 2.
  • the structure 40 that houses the adsorbent 20 is attached to the inner peripheral surface of the bellows 3.
  • FIG. 4 shows the arrangement of the three-phase conducting conductors 10-1 (10-1 ′), 10-2 (10-2 ′), 10-3 in the YZ plane orthogonal to the X direction.
  • the current-carrying conductors 10-1, 10-2, 10-3 are arranged in a regular triangle shape as in the case of the present embodiment shown in FIG. That is, the position of the center of gravity of the current-carrying conductors 10-1, 10-2, 10-3 is coincident with the central axis C of the bellows 3.
  • the distance between two adjacent conductors 10-1, 10-2, and 10-3 is D.
  • the structure 40 when the structure 40 is attached to the inner peripheral surface of the bellows 3, it is necessary to separate the current-carrying conductor 10 from the structure 40 in order to ensure insulation. Specifically, as shown in FIG. 4, it is necessary to move the current-carrying conductors 10-1 and 10-2 to positions 10-1 'and 10-2', respectively. In this case, the arrangement of the current-carrying conductors 10-1 ', 10-2', 10-3 is not an equilateral triangle. Further, the positions of the centers of gravity of the conducting conductors 10-1 ′, 10-2 ′, and 10-3 are deviated from the central axis C of the bellows 3. The distance between the adjacent conducting conductors 10-1 '(10-2') and the conducting conductor 10-3 is D 'smaller than D.
  • the distance D ' In order to ensure the same degree of insulation as in the case of the distance D, the diameter of the tank 2 and the bellows 3 in which the current-carrying conductor 10 is accommodated must be increased. This means an increase in size and manufacturing costs.
  • the present embodiment it is not necessary to attach the structure 40 on the inner peripheral surface of the bellows 3 in order to install the adsorbent 20. Therefore, an equilateral triangular arrangement such as the current-carrying conductors 10-1, 10-2, and 10-3 in FIG. 4 is possible. As described above, the equilateral triangular arrangement is optimal from the viewpoint of ensuring insulation between the current-carrying conductors 10 and contributes to the reduction of the diameter of the tank 2 and the bellows 3. That is, according to the present embodiment, it is possible to reduce the size and manufacturing cost of the gas insulating bus 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Installation Of Bus-Bars (AREA)

Abstract

 In the present invention, a gas insulated busbar is provided with a bellows, a current-carrying conductor, and an adsorbent. The bellows is disposed in the axial direction of the busbar. The current-carrying conductor is axially disposed in an insulating gas space enclosed by the bellows, and has a hollow portion open to the insulating gas space. The adsorbent is installed in the hollow portion of the current-carrying conductor.

Description

ガス絶縁母線Gas insulated bus
 本発明は、ガス絶縁母線に関する。 The present invention relates to a gas insulated bus.
 特許文献1は、ガス絶縁母線を開示している。そのガス絶縁母線によれば、絶縁ガスが封入されたベローズの両端にフランジが設けられる。そして、ベローズ両端の少なくとも一方のフランジ内に、絶縁ガス中の水分を吸着する吸着剤が埋め込まれている。 Patent Document 1 discloses a gas insulated bus. According to the gas-insulated bus, flanges are provided at both ends of the bellows filled with the insulating gas. And the adsorbent which adsorb | sucks the water | moisture content in insulating gas is embedded in the at least one flange of both ends of bellows.
特開2000-312423号公報JP 2000-31423 A
 特許文献1に記載の技術によれば、ベローズの端部に設けられたフランジ内に吸着剤が埋め込まれる。逆に言えば、吸着剤を設置するために、ベローズにフランジを設ける必要がある。従って、フランジの分だけベローズが長くなり、ベローズサイズが増大してしまう。また、ベローズにフランジを設けるための加工が必要となり、製造コストが増大する。 According to the technique described in Patent Document 1, the adsorbent is embedded in the flange provided at the end of the bellows. Conversely, in order to install the adsorbent, it is necessary to provide a flange on the bellows. Therefore, the bellows becomes longer by the amount of the flange, and the bellows size increases. Moreover, the process for providing a flange in a bellows is required, and a manufacturing cost increases.
 本発明の1つの目的は、ベローズを備えるガス絶縁母線において、ベローズのサイズを縮小することができる技術を提供することにある。 One object of the present invention is to provide a technique capable of reducing the size of a bellows in a gas insulated bus provided with a bellows.
 本発明の1つの観点において、ガス絶縁母線は、ベローズと、通電導体と、吸着剤とを備える。ベローズは、母線の軸方向に沿って配置される。通電導体は、ベローズで囲まれた絶縁ガス空間内で軸方向に沿って配置され、且つ、絶縁ガス空間に開放された中空部を有する。吸着剤は、通電導体の中空部に設置される。 In one aspect of the present invention, the gas insulated bus includes a bellows, a current-carrying conductor, and an adsorbent. The bellows is disposed along the axial direction of the bus bar. The current-carrying conductor is disposed along the axial direction in the insulating gas space surrounded by the bellows, and has a hollow portion that is open to the insulating gas space. The adsorbent is installed in the hollow portion of the conducting conductor.
 本発明によれば、ベローズを備えるガス絶縁母線において、ベローズのサイズを縮小することが可能となる。 According to the present invention, the size of the bellows can be reduced in the gas insulated bus provided with the bellows.
図1は、本発明の実施の形態に係るガス絶縁母線の構造例を示す軸方向断面図である。FIG. 1 is an axial sectional view showing an example of the structure of a gas-insulated bus according to an embodiment of the present invention. 図2は、図1における線A-Aに沿った断面図である。FIG. 2 is a sectional view taken along line AA in FIG. 図3は、比較例1に係るガス絶縁母線の構造例を示す軸方向断面図である。FIG. 3 is an axial cross-sectional view showing an example of the structure of the gas-insulated bus according to the first comparative example. 図4は、比較例2に係るガス絶縁母線を示す概念図である。FIG. 4 is a conceptual diagram showing a gas-insulated bus according to Comparative Example 2.
 添付図面を参照して、本発明の実施の形態に係るガス絶縁母線を説明する。 The gas insulated bus according to the embodiment of the present invention will be described with reference to the attached drawings.
実施の形態.
 図1は、本発明の実施の形態に係るガス絶縁母線1の構造例を示す軸方向断面図である。図2は、図1における線A-Aに沿った断面図である。図1及び図2において、ガス絶縁母線1の中心軸は符号“C”で示されている。X方向は、軸方向(中心軸Cの方向)であり、Z方向は鉛直方向であり、Y方向はX方向とZ方向と直交する方向である。また、図1及び図2では、三相一括型のガス絶縁母線1が示されている。
Embodiment.
FIG. 1 is an axial cross-sectional view showing a structural example of a gas insulated bus 1 according to an embodiment of the present invention. FIG. 2 is a sectional view taken along line AA in FIG. In FIG. 1 and FIG. 2, the central axis of the gas insulated bus 1 is indicated by the symbol “C”. The X direction is an axial direction (the direction of the central axis C), the Z direction is a vertical direction, and the Y direction is a direction orthogonal to the X direction and the Z direction. 1 and 2 show a three-phase collective gas-insulated bus 1.
 ガス絶縁母線1は、絶縁ガスが封入された円筒状のタンク2を備えている。そのタンク2の一部に、伸縮自在なベローズ3が設けられている。より詳細には、タンク2の所定の位置に、絶縁スペーサ4a,4bが設けられており、それら絶縁スペーサ4a,4bの間にベローズ3が設置されている。図1に示されるように、ベローズ3の端部と絶縁スペーサ4bとの間に、アダプタ5が設けられていてもよい。ベローズ3は、蛇腹式であってもよいし、スライド式(スライドベローズ)であってもよい。 The gas insulated bus 1 is provided with a cylindrical tank 2 filled with an insulating gas. A part of the tank 2 is provided with a telescopic bellows 3. More specifically, insulating spacers 4a and 4b are provided at predetermined positions of the tank 2, and the bellows 3 is installed between the insulating spacers 4a and 4b. As shown in FIG. 1, an adapter 5 may be provided between the end of the bellows 3 and the insulating spacer 4b. The bellows 3 may be a bellows type or a slide type (slide bellows).
 タンク2及びベローズ3は、X方向に沿って配置されている。それらタンク2及びベローズ3で囲まれた空間には絶縁ガスが封入されている。この空間は、以下「絶縁ガス空間6」と呼ばれる。 The tank 2 and the bellows 3 are arranged along the X direction. An insulating gas is sealed in a space surrounded by the tank 2 and the bellows 3. This space is hereinafter referred to as “insulating gas space 6”.
 その絶縁ガス空間6内に、送電用の通電導体10が配置されている。より詳細には、通電導体10は、タンク2及びベローズ3と平行にX方向に沿って配置されている。本実施の形態では、三相分の通電導体10が絶縁ガス空間6内に配置されている。尚、各通電導体10は、絶縁スペーサ4a,4bを貫通するように配置されており、且つ、絶縁スペーサ4a,4bによって支持されている。 In the insulating gas space 6, a current-carrying conductor 10 for power transmission is arranged. More specifically, the conducting conductor 10 is disposed along the X direction in parallel with the tank 2 and the bellows 3. In the present embodiment, three-phase conducting conductors 10 are arranged in the insulating gas space 6. Each current-carrying conductor 10 is disposed so as to penetrate through the insulating spacers 4a and 4b, and is supported by the insulating spacers 4a and 4b.
 図1に示される例では、ベローズ3で囲まれた絶縁ガス空間6内の各通電導体10は、固定導体11、固定導体12、及び着脱導体13を備えている。固定導体11は、絶縁スペーサ4aに固定されている。固定導体12は、絶縁スペーサ4bに固定されている。着脱導体13は、それら固定導体11と固定導体12との間をつなぐように配置されている。但し、着脱導体13は、固定導体11,12から着脱可能である。例えば、着脱導体13の一端は、固定導体11と嵌合するように接続され、その他端は、ボルト14によって固定導体12に留められる。 In the example shown in FIG. 1, each conducting conductor 10 in the insulating gas space 6 surrounded by the bellows 3 includes a fixed conductor 11, a fixed conductor 12, and a detachable conductor 13. The fixed conductor 11 is fixed to the insulating spacer 4a. The fixed conductor 12 is fixed to the insulating spacer 4b. The detachable conductor 13 is disposed so as to connect between the fixed conductor 11 and the fixed conductor 12. However, the detachable conductor 13 is detachable from the fixed conductors 11 and 12. For example, one end of the detachable conductor 13 is connected to be fitted to the fixed conductor 11, and the other end is fastened to the fixed conductor 12 by a bolt 14.
 また、着脱導体13の少なくとも一部は中空である。すなわち、着脱導体13は、中空部15を有している。この中空部15は、絶縁ガス空間6に向けて開放されている、つまり、絶縁ガス空間6とつながっている。より詳細には、着脱導体13の外周の一部に開口部16が形成され、その開口部16を通して中空部15は絶縁ガス空間6につながっている。 Further, at least a part of the detachable conductor 13 is hollow. That is, the detachable conductor 13 has a hollow portion 15. The hollow portion 15 is open toward the insulating gas space 6, that is, is connected to the insulating gas space 6. More specifically, an opening 16 is formed in a part of the outer periphery of the detachable conductor 13, and the hollow portion 15 is connected to the insulating gas space 6 through the opening 16.
 本実施の形態によれば、絶縁ガス中の水分や分解ガスを吸着するための吸着剤20が、着脱導体13の中空部15に設置される。吸着剤20の設置や取り換えには、上述の開口部16を利用すると便利である。従って、開口部16は、少なくとも吸着剤20が通る程度の大きさに形成されると好適である。この場合、吸着剤20は、開口部16を通して、開口部16に隣接する位置に設置される。また、吸着剤20の設置や取り換えを容易に行うために、開口部16は、着脱導体13の上面に形成されていると好適である。 According to the present embodiment, the adsorbent 20 for adsorbing moisture and decomposition gas in the insulating gas is installed in the hollow portion 15 of the detachable conductor 13. For the installation or replacement of the adsorbent 20, it is convenient to use the opening 16 described above. Therefore, it is preferable that the opening 16 is formed to have a size that allows at least the adsorbent 20 to pass therethrough. In this case, the adsorbent 20 is installed at a position adjacent to the opening 16 through the opening 16. Further, in order to easily install and replace the adsorbent 20, it is preferable that the opening 16 is formed on the upper surface of the detachable conductor 13.
 尚、図1に示される例では、上述のボルト14も、中空部15に露出している。この場合、作業者は、開口部16を通して、ボルト14の取り付けや取り外しを行うことができる。共通の開口部16を利用して、吸着剤20の設置や取り換え、ボルト14の取り付けや取り外しが可能となり、好適である。 In the example shown in FIG. 1, the above-described bolt 14 is also exposed in the hollow portion 15. In this case, the operator can attach and remove the bolt 14 through the opening 16. Using the common opening 16, the adsorbent 20 can be installed or replaced, and the bolt 14 can be attached or removed, which is preferable.
 図2には、X方向と直交するYZ面内における、三相分の着脱導体13-1,13-2,13-3の配置が示されている。図2に示されるように、着脱導体13-1,13-2,13-3は、正三角形のそれぞれの頂点の位置に配置されている。つまり、着脱導体13-1,13-2,13-3は、正三角形状に配置されている。また、着脱導体13-1,13-2,13-3の重心の位置は、ベローズ3の中心軸Cと一致している。 FIG. 2 shows the arrangement of the detachable conductors 13-1, 13-2, and 13-3 for three phases in the YZ plane orthogonal to the X direction. As shown in FIG. 2, the detachable conductors 13-1, 13-2, and 13-3 are arranged at the positions of the vertices of the equilateral triangle. That is, the detachable conductors 13-1, 13-2, 13-3 are arranged in a regular triangle shape. Further, the positions of the centers of gravity of the detachable conductors 13-1, 13-2 and 13-3 coincide with the central axis C of the bellows 3.
 また、図2において、最も下に位置している着脱導体13-3は、天地方向(XZ方向)の中心線からずれている。これは、ベローズ3の底部にはゴミがたまりやすく、着脱導体13-3をその底部から離すためである。 Further, in FIG. 2, the detachable conductor 13-3 located at the bottom is displaced from the center line in the vertical direction (XZ direction). This is because dust tends to collect at the bottom of the bellows 3, and the detachable conductor 13-3 is separated from the bottom.
 尚、図1及び図2で示された例では、着脱導体13が中空部15を有していたが、それに限られない。固定導体11あるいは固定導体12が中空部15を有していてもよい。すなわち、通電導体10の少なくとも一部に中空部15が形成されていればよい。吸着剤20は、その中空部15に設置される。 In addition, in the example shown by FIG.1 and FIG.2, although the detachable conductor 13 had the hollow part 15, it is not restricted to it. The fixed conductor 11 or the fixed conductor 12 may have a hollow portion 15. That is, it is only necessary that the hollow portion 15 is formed in at least a part of the conducting conductor 10. The adsorbent 20 is installed in the hollow portion 15.
 <比較例1>
 図3は、比較例1に係るガス絶縁母線1’の構造例を示す軸方向断面図である。比較例1では、上述の特許文献1の場合と同様に、ベローズ3の端部にフランジ30が設けられ、そのフランジ30内に吸着剤20が収納されている。
<Comparative Example 1>
FIG. 3 is an axial cross-sectional view showing a structural example of the gas-insulated bus 1 ′ according to Comparative Example 1. In Comparative Example 1, a flange 30 is provided at the end of the bellows 3 and the adsorbent 20 is accommodated in the flange 30 as in the case of Patent Document 1 described above.
 しかしながら、吸着剤20を収納するフランジ30の分だけベローズ3が長くなり、ベローズ3のサイズが増大してしまう。また、ベローズ3にフランジ30を設けるための加工が必要となり、製造コストが増大する。 However, the bellows 3 becomes longer by the amount of the flange 30 that houses the adsorbent 20, and the size of the bellows 3 increases. Moreover, the process for providing the flange 30 in the bellows 3 is needed, and a manufacturing cost increases.
 一方、本実施の形態によれば、図3で示されるようなフランジ30は不要である。従って、ベローズ3の長さ及びサイズを縮小することが可能である。また、ベローズ3にフランジ30を設けるための加工が不要となるため、製造コストが低減される。 On the other hand, according to the present embodiment, the flange 30 as shown in FIG. 3 is unnecessary. Accordingly, the length and size of the bellows 3 can be reduced. Moreover, since the process for providing the flange 30 in the bellows 3 becomes unnecessary, manufacturing cost is reduced.
 <比較例2>
 図4は、比較例2に係るガス絶縁母線を示す概念図である。比較例2では、吸着剤20を収納する構造物40が、ベローズ3の内周面上に取り付けられている。
<Comparative example 2>
FIG. 4 is a conceptual diagram showing a gas-insulated bus according to Comparative Example 2. In Comparative Example 2, the structure 40 that houses the adsorbent 20 is attached to the inner peripheral surface of the bellows 3.
 また、図4には、X方向と直交するYZ面内における、三相分の通電導体10-1(10-1’),10-2(10-2’),10-3の配置が示されている。通電導体10-1,10-2,10-3は、図2で示された本実施の形態の場合と同様に、正三角形状に配置されている。つまり、通電導体10-1,10-2,10-3の重心の位置は、ベローズ3の中心軸Cと一致している。また、通電導体10-1,10-2,10-3のうち隣り合う2つの間の距離はDである。 FIG. 4 shows the arrangement of the three-phase conducting conductors 10-1 (10-1 ′), 10-2 (10-2 ′), 10-3 in the YZ plane orthogonal to the X direction. Has been. The current-carrying conductors 10-1, 10-2, 10-3 are arranged in a regular triangle shape as in the case of the present embodiment shown in FIG. That is, the position of the center of gravity of the current-carrying conductors 10-1, 10-2, 10-3 is coincident with the central axis C of the bellows 3. The distance between two adjacent conductors 10-1, 10-2, and 10-3 is D.
 しかしながら、ベローズ3の内周面上に構造物40が取り付けられると、絶縁を確保するために、通電導体10をその構造物40から離す必要がある。具体的には、図4に示されるように、通電導体10-1,10-2を、それぞれ、10-1’,10-2’の位置に移動させる必要がある。この場合、通電導体10-1’,10-2’,10-3の配置は、正三角形状とはならない。また、通電導体10-1’,10-2’,10-3の重心の位置は、ベローズ3の中心軸Cからずれる。そして、隣り合う通電導体10-1’(10-2’)と通電導体10-3との間の距離は、上記Dより小さいD’となる。 However, when the structure 40 is attached to the inner peripheral surface of the bellows 3, it is necessary to separate the current-carrying conductor 10 from the structure 40 in order to ensure insulation. Specifically, as shown in FIG. 4, it is necessary to move the current-carrying conductors 10-1 and 10-2 to positions 10-1 'and 10-2', respectively. In this case, the arrangement of the current-carrying conductors 10-1 ', 10-2', 10-3 is not an equilateral triangle. Further, the positions of the centers of gravity of the conducting conductors 10-1 ′, 10-2 ′, and 10-3 are deviated from the central axis C of the bellows 3. The distance between the adjacent conducting conductors 10-1 '(10-2') and the conducting conductor 10-3 is D 'smaller than D.
 ここで、通電導体10間の絶縁を確保するためには、距離D’としてある程度のレベルが要求される。距離Dの場合と同程度の絶縁を確保するためには、結局、通電導体10を収納しているタンク2やベローズ3の径を大きくするしかない。これは、サイズ及び製造コストの増大を意味する。 Here, in order to ensure insulation between the current-carrying conductors 10, a certain level is required as the distance D '. In order to ensure the same degree of insulation as in the case of the distance D, the diameter of the tank 2 and the bellows 3 in which the current-carrying conductor 10 is accommodated must be increased. This means an increase in size and manufacturing costs.
 一方、本実施の形態によれば、吸着剤20を設置するために、ベローズ3の内周面上に構造物40を取り付ける必要がない。従って、図4の通電導体10-1,10-2,10-3のような正三角形状の配置が可能となる。上述の通り、正三角形状の配置は、通電導体10間の絶縁を確保する観点から最適であり、タンク2やベローズ3の径の縮小に寄与する。すなわち、本実施の形態によれば、ガス絶縁母線1のサイズ及び製造コストを低減することが可能となる。 On the other hand, according to the present embodiment, it is not necessary to attach the structure 40 on the inner peripheral surface of the bellows 3 in order to install the adsorbent 20. Therefore, an equilateral triangular arrangement such as the current-carrying conductors 10-1, 10-2, and 10-3 in FIG. 4 is possible. As described above, the equilateral triangular arrangement is optimal from the viewpoint of ensuring insulation between the current-carrying conductors 10 and contributes to the reduction of the diameter of the tank 2 and the bellows 3. That is, according to the present embodiment, it is possible to reduce the size and manufacturing cost of the gas insulating bus 1.
 以上、本発明の実施の形態が添付の図面を参照することにより説明された。但し、本発明は、上述の実施の形態に限定されず、要旨を逸脱しない範囲で当業者により適宜変更され得る。 The embodiments of the present invention have been described above with reference to the accompanying drawings. However, the present invention is not limited to the above-described embodiments, and can be appropriately changed by those skilled in the art without departing from the scope of the invention.
 1,1’ ガス絶縁母線、2 タンク、3 ベローズ、4a,4b 絶縁スペーサ、5 アダプタ、6 絶縁ガス空間、10,10-1,10-2,10-3 通電導体、11 固定導体、12 固定導体、13,13-1,13-2,13-3 着脱導体、14 ボルト、15 中空部、16 開口部、20 吸着剤、30 フランジ、40 構造物。 1, 1 'gas insulated bus, 2, tank, 3, bellows, 4a, 4b insulating spacer, 5 adapter, 6 insulating gas space, 10, 10-1, 10-2, 10-3 energizing conductor, 11 fixed conductor, 12 fixed Conductor, 13, 13-1, 13-2, 13-3 detachable conductor, 14 bolt, 15 hollow part, 16 opening part, 20 adsorbent, 30 flange, 40 structure.

Claims (8)

  1.  母線の軸方向に沿って配置されたベローズと、
     前記ベローズで囲まれた絶縁ガス空間内で前記軸方向に沿って配置され、且つ、前記絶縁ガス空間に開放された中空部を有する通電導体と、
     前記通電導体の前記中空部に設置された吸着剤と
     を備える
     ガス絶縁母線。
    Bellows arranged along the axial direction of the busbar;
    An energizing conductor that is disposed along the axial direction in the insulating gas space surrounded by the bellows and has a hollow portion that is open to the insulating gas space;
    A gas-insulated bus comprising: an adsorbent installed in the hollow portion of the conductive conductor.
  2.  前記中空部は、前記通電導体に形成された開口部を通して前記絶縁ガス空間につながっており、
     前記開口部は、少なくとも前記吸着剤が通る大きさに形成されている
     請求項1に記載のガス絶縁母線。
    The hollow portion is connected to the insulating gas space through an opening formed in the conductive conductor,
    The gas-insulated bus according to claim 1, wherein the opening is formed to have at least a size through which the adsorbent passes.
  3.  前記開口部は、前記通電導体の上面に形成されている
     請求項2に記載のガス絶縁母線。
    The gas-insulated bus according to claim 2, wherein the opening is formed on an upper surface of the conductive conductor.
  4.  前記通電導体は、
     絶縁スペーサに固定された固定導体と、
     前記固定導体から着脱可能な着脱導体と
     を備え、
     前記着脱導体が前記中空部を有する
     請求項1から3のいずれか一項に記載のガス絶縁母線。
    The conducting conductor is
    A fixed conductor fixed to an insulating spacer;
    A detachable conductor detachable from the fixed conductor,
    The gas insulated bus according to any one of claims 1 to 3, wherein the detachable conductor has the hollow portion.
  5.  前記着脱導体は、ボルトによって前記固定導体に留められ、
     前記ボルトは、前記中空部に露出している
     請求項4に記載のガス絶縁母線。
    The detachable conductor is fastened to the fixed conductor by a bolt,
    The gas-insulated bus according to claim 4, wherein the bolt is exposed in the hollow portion.
  6.  前記ガス絶縁母線は三相一括型であり、
     前記絶縁ガス空間内に、前記通電導体が三相分配置されている
     請求項1から5のいずれか一項に記載のガス絶縁母線。
    The gas insulated bus is a three-phase collective type,
    The gas insulated bus according to any one of claims 1 to 5, wherein the current-carrying conductors are arranged for three phases in the insulating gas space.
  7.  前記軸方向と直交する面内において、前記三相の通電導体は、正三角形のそれぞれの頂点の位置に配置されている
     請求項6に記載のガス絶縁母線。
    The gas-insulated bus according to claim 6, wherein the three-phase conducting conductor is disposed at each vertex of an equilateral triangle in a plane orthogonal to the axial direction.
  8.  前記軸方向と直交する面内において、前記三相の通電導体の重心の位置は、前記ベローズの軸中心と一致している
     請求項6又は7に記載のガス絶縁母線。
    The gas insulated bus according to claim 6 or 7, wherein the position of the center of gravity of the three-phase conducting conductor coincides with the axial center of the bellows in a plane orthogonal to the axial direction.
PCT/JP2014/058834 2014-03-27 2014-03-27 Gas insulated busbar WO2015145654A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/058834 WO2015145654A1 (en) 2014-03-27 2014-03-27 Gas insulated busbar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/058834 WO2015145654A1 (en) 2014-03-27 2014-03-27 Gas insulated busbar

Publications (1)

Publication Number Publication Date
WO2015145654A1 true WO2015145654A1 (en) 2015-10-01

Family

ID=54194247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058834 WO2015145654A1 (en) 2014-03-27 2014-03-27 Gas insulated busbar

Country Status (1)

Country Link
WO (1) WO2015145654A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018137900A3 (en) * 2017-01-27 2018-10-04 Siemens Aktiengesellschaft Fluid-insulated encapsulated current rail with fluid filter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4321464Y1 (en) * 1965-07-30 1968-09-10
JPS61273118A (en) * 1985-05-29 1986-12-03 株式会社日立製作所 Gas insulation spacer
JPH02133138U (en) * 1989-04-07 1990-11-05
JP2000312423A (en) * 1999-04-26 2000-11-07 Toshiba Corp Gas insulated bus
JP2002027622A (en) * 2000-07-04 2002-01-25 Toshiba Corp Three-phase bus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4321464Y1 (en) * 1965-07-30 1968-09-10
JPS61273118A (en) * 1985-05-29 1986-12-03 株式会社日立製作所 Gas insulation spacer
JPH02133138U (en) * 1989-04-07 1990-11-05
JP2000312423A (en) * 1999-04-26 2000-11-07 Toshiba Corp Gas insulated bus
JP2002027622A (en) * 2000-07-04 2002-01-25 Toshiba Corp Three-phase bus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018137900A3 (en) * 2017-01-27 2018-10-04 Siemens Aktiengesellschaft Fluid-insulated encapsulated current rail with fluid filter

Similar Documents

Publication Publication Date Title
CN104347323B (en) Gas circuit breaker
EP2728686B1 (en) Structure of three-phase integrated bus in gas insulated switchgear
JP5646057B2 (en) Tank type vacuum circuit breaker
CA2961976C (en) Busbar system
US8913370B2 (en) Switchgear spout design
WO2014112135A1 (en) Gas-insulated switch gear
WO2019010890A1 (en) Gis device and three-phase-in-one-box busbar cylinder thereof
CN104769795A (en) Actuating device for an electric switchgear
WO2015145654A1 (en) Gas insulated busbar
JP5452780B1 (en) Gas insulated switchgear
KR20130137467A (en) Structure for fixing support of gas insulated bus
JP6621299B2 (en) Switchgear
CN204578046U (en) A kind of high-voltage cable of electric power locomotive engine rigidity terminal
CN106920721B (en) It is a kind of for installing the insulating support of electrical component
JP5591721B2 (en) Gas insulated switchgear
JP5980103B2 (en) Gas insulated switchgear
CN103701044B (en) Fixing assembly type switch cubicle
JP2007312507A (en) Switchgear
JP6878136B2 (en) Gas insulated switchgear
JP2020021872A (en) Mold type static induction device
JPWO2013153623A1 (en) Power switchgear
JP6415791B1 (en) Gas insulated switchgear
JP5427587B2 (en) Gas insulated busbar transport equipment
CN105514854B (en) Integrated bus bar canister and the GIS device using the integrated bus bar canister
KR20150144414A (en) Insulating spacer and gas insulated switchgear having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14887486

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14887486

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP