WO2015145609A1 - Laser device - Google Patents

Laser device Download PDF

Info

Publication number
WO2015145609A1
WO2015145609A1 PCT/JP2014/058492 JP2014058492W WO2015145609A1 WO 2015145609 A1 WO2015145609 A1 WO 2015145609A1 JP 2014058492 W JP2014058492 W JP 2014058492W WO 2015145609 A1 WO2015145609 A1 WO 2015145609A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
output
units
laser light
emission unit
Prior art date
Application number
PCT/JP2014/058492
Other languages
French (fr)
Japanese (ja)
Inventor
一郎 福士
章之 門谷
隼規 坂本
一馬 渡辺
次郎 齊川
直也 石垣
進吾 宇野
廣木 知之
東條 公資
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2014/058492 priority Critical patent/WO2015145609A1/en
Publication of WO2015145609A1 publication Critical patent/WO2015145609A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0608Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams in the same heat affected zone [HAZ]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses

Definitions

  • Laser devices that branch and output laser light emitted from a laser light source are used. For example, in a machine tool that cuts, welds, etc. by irradiating a workpiece with laser light, a plurality of laser beams emitted from one laser light source are split at a predetermined ratio by a branching optical element such as a branch mirror. Branch to light. And a some laser beam is propagated with an optical fiber, and the some process using a laser beam is performed simultaneously.
  • a laser apparatus that moves a movable stage to which a plurality of branching optical elements having different branching rates are fixed (for example, see Patent Document 1).
  • the branching ratio is changed without changing the connection state of the optical fibers by replacing the branching optical element located on the optical axis of the laser light.
  • the laser beam set to predetermined output energy is output from each branching optical element to the optical fiber.
  • the optical path length from the laser light source to the optical fiber becomes long. For this reason, there has been a problem in reliability such as a decrease in coupling efficiency due to mechanical distortion of the optical element on the optical path caused by an environmental temperature change after the initial setting. Further, the output energy of the laser light is fixed according to the branching rate set in the optical element for branching arranged in advance. That is, the degree of freedom in setting the output energy is low.
  • an object of the present invention is to provide a laser apparatus that has a high degree of freedom in setting output energy after branching and has improved reliability.
  • a laser light source having a plurality of laser units, a plurality of optical fibers that are respectively connected to any of the plurality of laser units and through which laser light emitted from the laser units propagates, and a plurality of A plurality of output units each connected to any one of the optical fibers and receiving laser light propagating through the optical fiber; and a plurality of output ports each outputting at least one of the laser lights that have passed through the output unit;
  • a laser device is provided that includes a moving mechanism that moves the position of the emission unit so that the laser beam emitted from the emission unit is incident on one of the output ports.
  • the laser apparatus 1 propagates the laser light source 100 having the laser units 101 to 103 and the laser light emitted from the laser units 101 to 103, respectively.
  • the laser units 101 to 103 are collectively referred to as the laser unit 10.
  • the optical fibers 201 to 203 are collectively referred to as the optical fiber 20.
  • the emission units 301 to 303 are collectively referred to as the emission unit 30.
  • One end of the optical fiber 20 is connected to the laser unit 10, and the other end is connected to the emission unit 30. That is, the laser light output from the laser unit 101 propagates through the optical fiber 201 and enters the emission unit 301.
  • the laser light output from the laser unit 102 propagates through the optical fiber 202 and enters the emission unit 302.
  • the laser light output from the laser unit 103 propagates through the optical fiber 203 and enters the emission unit 303.
  • the laser apparatus 1 further includes an output port 401 to an output port 404 that output at least one of the laser beams that have passed through the emission unit 30 to the outside.
  • the output port 401 to the output port 404 are collectively referred to as the output port 40.
  • the laser light output from the emission unit 301 to the emission unit 303 propagates through the space and enters one of the output port 401 to the output port 404.
  • the laser device 1 includes a moving mechanism 501 to a moving mechanism 503 for moving the position of the emission unit 30.
  • the moving mechanism 501 to the moving mechanism 503 are collectively referred to as the moving mechanism 50.
  • the moving mechanism 50 moves the position of the emission unit 30 so that the output port 40 is positioned on the optical axis of the laser light L emitted from the emission unit 30.
  • the moving mechanism 501 moves the emission unit 301 and causes the laser beam emitted from the emission unit 301 to enter any of the output port 401 to the output port 404.
  • the moving mechanism 502 moves the emission unit 302 to cause the laser light emitted from the emission unit 302 to enter any one of the output port 401 to the output port 404.
  • the moving mechanism 503 moves the emission unit 303 to cause the laser light emitted from the emission unit 303 to enter any of the output port 401 to the output port 404.
  • the moving mechanism 50 moves the emission unit 30 in a direction perpendicular to the optical axis direction of the laser light L traveling from the emission unit 30 toward the output port 40. Therefore, it is possible to arbitrarily set which of the output port 401 to the output port 403 the laser light emitted from the emission unit 301 to the emission unit 303 is incident on.
  • the laser apparatus 1 shown in FIG. 1 the laser beam emitted from the emission unit 301 is incident on the output port 401, the laser beam emitted from the emission unit 302 is incident on the output port 402, and is emitted from the emission unit 303.
  • the moving mechanism 50 can employ a mechanism such as a linear actuator.
  • the moving mechanisms 501 to 503 are arranged along the optical axis direction of the laser light L emitted from the emitting unit 30 in order to move the plurality of emitting units 30 independently. Has been.
  • Each of the output port 401 to the output port 404 includes an output condensing element 41 and an output terminal 42 on which laser light is incident, as shown in FIG. That is, the output condensing element 41 condenses the laser light on the output terminal 42, and the laser light is output to the outside via the output terminal 42.
  • laser light is output to the outside through an output cable 200 that can be connected to the output terminal 42.
  • an optical element such as a lens can be employed.
  • the output cable 200 is, for example, an optical fiber.
  • the output condensing element 41 and the output cable 200 used for the output port 404 have a larger cross-sectional area of the waveguide than the output condensing element 41 and the output cable 200 used for the output port 401 to the output port 403. This is because a plurality of laser beams respectively emitted from the plurality of emission units 30 are incident on the output port 404. Details of the incidence of the laser beam on the output port 404 will be described later.
  • the laser unit 10 includes a plurality of laser elements 11 and a laser condensing element 12 that condenses the emitted light of the laser element 11 and makes it incident on the optical fiber 20.
  • the laser element 11 is, for example, a semiconductor laser or a solid laser.
  • the laser condensing element 12 is an optical element such as a lens.
  • the laser unit 10 further includes a collimating lens 13 that collimates the light emitted from the laser element 11. One collimating lens 13 is prepared for each laser element 11. In the example shown in FIG. 1, the laser light collimated by the collimating lens 13 enters the laser condensing element 12.
  • each of the laser unit 10, the optical fiber 20, and the emission unit 30 constitutes one optical fiber coupling type multiplexing module.
  • FIG. 1 illustrates the case where the number of optical fiber coupling type multiplexing modules is three, the number of optical fiber coupling type multiplexing modules included in the laser device 1 is not limited to three. .
  • the number of optical fiber coupling type multiplexing modules can be arbitrarily set according to the number of laser outputs required for the laser device 1. Further, the number of output ports 40 can be arbitrarily set.
  • the moving unit 50 arranges the emission units 301 to 303 adjacent to each other.
  • the output port 404 multiplexes the laser beams emitted from the emission units 301 to 303 by the output condensing element 41 having a size capable of simultaneously entering the laser beams emitted from the emission units 301 to 303. .
  • the output port 404 can output laser light with higher output energy than the output ports 401 to 403.
  • the laser light having an output energy three times that of the output port 401 to the output port 403 is output from the output port 404.
  • the laser light emitted from the two emission units 30 may be condensed at the output port 404.
  • the emission units 301 to 303 are arranged adjacent to each other, it is preferable that the emission units 301 to 303 are densely arranged three-dimensionally as shown in FIG.
  • FIG. 4 it is also possible to arrange the emission units 301 to 303 in a line.
  • the size of the output condensing element 41 of the output port 404 can be suppressed by adopting the configuration shown in FIG.
  • the plurality of emission units 30 may be moved in directions perpendicular to the optical axis direction of the laser light on different plane levels.
  • the plurality of emission units 30 are moved on the same plane level.
  • the laser unit 10 and the emission unit 30 are connected by an optical fiber 20. For this reason, even if the emission unit 30 is moved by the moving mechanism 50, a decrease in coupling efficiency caused by mechanical distortion due to an environmental temperature change or the like is suppressed.
  • the output energy of the laser output is fixed according to the branching rate of the branching optical element. For example, when the laser beam is branched into four at a branching ratio of 1/4, when only the output of one laser beam is desired to be used, the output energy is fixed to 1/4 of the original laser beam. Further, since the branching ratio of the branching optical element is fixed, the branching ratio cannot be changed continuously.
  • the laser apparatus 1 shown in FIG. 1 does not obtain a plurality of laser outputs by branching the laser light from the laser light source 100 by the branching optical element, but the laser light from the plurality of laser units 10 independent from each other. Is output. For this reason, output energy can be arbitrarily set for each output port 40. That is, the output ratio of the laser beam output from the output port 40 can be set arbitrarily. Therefore, when the laser device 1 is regarded as a laser device with a branching rate set, an arbitrary branching rate can be easily realized.
  • the laser device of the present invention can be used for a purpose of branching and outputting laser light.

Abstract

 This device is provided with: a laser light source having a plurality of laser units; a plurality of optical fibers connected respectively to the laser units, for propagating laser light that has exited the laser units; a plurality of exit units respectively connected to the optical fibers, for receiving entry of light propagated through the optical fibers; a plurality of output ports for respectively outputting to the outside at least some of beams of laser light having traveled through the exit units; and a moving mechanism for moving the positions of the exit units in such a way that beams of laser light exiting the exit units enter the output ports.

Description

レーザ装置Laser equipment
 本発明は、レーザ光を分岐して出力するレーザ装置に関する。 The present invention relates to a laser device that divides and outputs laser light.
 レーザ光源から出射されたレーザ光を分岐して出力するレーザ装置が利用されている。例えば、レーザ光を被加工物に照射して切断、溶接などを行う工作機械などでは、1つのレーザ光源から出射されたレーザ光を分岐ミラーなどの分岐用光学素子によって所定の比率で複数のレーザ光に分岐する。そして、複数のレーザ光を光ファイバーで伝播させて、レーザ光を用いた複数の加工が同時に行われる。 Laser devices that branch and output laser light emitted from a laser light source are used. For example, in a machine tool that cuts, welds, etc. by irradiating a workpiece with laser light, a plurality of laser beams emitted from one laser light source are split at a predetermined ratio by a branching optical element such as a branch mirror. Branch to light. And a some laser beam is propagated with an optical fiber, and the some process using a laser beam is performed simultaneously.
 このようなレーザ装置では、被加工物を変更したり、照射するレーザ光の出力エネルギーを調整したりすることが必要とされる場合がある。このとき、分岐率の異なる分岐用光学素子に変更するたびに分岐用光学素子と光ファイバーとの接続状態を調整するなどの工程を行うと、工数が非常に増大する。したがって、光ファイバーの接続状態を変更しないでレーザ光の出力エネルギーを変更することが望まれている。 In such a laser apparatus, it may be necessary to change the workpiece or adjust the output energy of the laser beam to be irradiated. At this time, if a process such as adjusting the connection state between the branching optical element and the optical fiber every time the branching optical element is changed to a different branching ratio, the number of man-hours is greatly increased. Therefore, it is desired to change the output energy of the laser light without changing the connection state of the optical fiber.
 このため、例えば、分岐率の異なる複数の分岐用光学素子を固定した可動ステージを移動させるレーザ装置が提案されている(例えば、特許文献1参照。)。このレーザ装置では、レーザ光の光軸上に位置する分岐用光学素子を入れ替えることにより、光ファイバーの接続状態を変更せずに分岐率が変更される。これにより、各分岐用光学素子から所定の出力エネルギーに設定されたレーザ光が光ファイバーに出力される。 For this reason, for example, a laser apparatus has been proposed that moves a movable stage to which a plurality of branching optical elements having different branching rates are fixed (for example, see Patent Document 1). In this laser apparatus, the branching ratio is changed without changing the connection state of the optical fibers by replacing the branching optical element located on the optical axis of the laser light. Thereby, the laser beam set to predetermined output energy is output from each branching optical element to the optical fiber.
特許第2875952号公報Japanese Patent No. 2875952
 しかしながら、上記のレーザ装置では、複数の分岐用光学素子を光路上に配置するために、レーザ光源から光ファイバまでの光路長が長くなる。このため、初期設定後に環境温度変化などによって生じる光路上の光学素子の機械的な歪みによって、結合効率の低下するなどの信頼性上の問題があった。また、予め配置された分岐用光学素子に設定された分岐率に応じてレーザ光の出力エネルギーが固定されてしまう。つまり、出力エネルギーの設定の自由度が低い。 However, in the above laser apparatus, since a plurality of branching optical elements are arranged on the optical path, the optical path length from the laser light source to the optical fiber becomes long. For this reason, there has been a problem in reliability such as a decrease in coupling efficiency due to mechanical distortion of the optical element on the optical path caused by an environmental temperature change after the initial setting. Further, the output energy of the laser light is fixed according to the branching rate set in the optical element for branching arranged in advance. That is, the degree of freedom in setting the output energy is low.
 上記問題点に鑑み、本発明は、分岐後の出力エネルギーの設定の自由度が高く、且つ信頼性が向上されたレーザ装置を提供することを目的とする。 In view of the above problems, an object of the present invention is to provide a laser apparatus that has a high degree of freedom in setting output energy after branching and has improved reliability.
 本発明の一態様によれば、複数のレーザユニットを有するレーザ光源と、複数のレーザユニットのいずれかにそれぞれ接続され、レーザユニットから出射されたレーザ光が伝播する複数の光ファイバと、複数の光ファイバのいずれかにそれぞれ接続され、光ファイバを伝播したレーザ光が入射される複数の出射ユニットと、出射ユニットを経由したレーザ光の少なくともいずれかをそれぞれ外部に出力する複数の出力ポートと、出射ユニットから出射されたレーザ光を出力ポートのいずれかに入射させるように、出射ユニットの位置を移動させる移動機構とを備えるレーザ装置が提供される。 According to one aspect of the present invention, a laser light source having a plurality of laser units, a plurality of optical fibers that are respectively connected to any of the plurality of laser units and through which laser light emitted from the laser units propagates, and a plurality of A plurality of output units each connected to any one of the optical fibers and receiving laser light propagating through the optical fiber; and a plurality of output ports each outputting at least one of the laser lights that have passed through the output unit; A laser device is provided that includes a moving mechanism that moves the position of the emission unit so that the laser beam emitted from the emission unit is incident on one of the output ports.
 本発明によれば、分岐後の出力エネルギーの設定の自由度が高く、且つ信頼性が向上されたレーザ装置を提供できる。 According to the present invention, it is possible to provide a laser apparatus having a high degree of freedom in setting the output energy after branching and having improved reliability.
本発明の実施形態に係るレーザ装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the laser apparatus which concerns on embodiment of this invention. 本発明の実施形態に係るレーザ装置の使用例を説明するための模式図である。It is a schematic diagram for demonstrating the usage example of the laser apparatus which concerns on embodiment of this invention. 本発明の実施形態に係るレーザ装置における出射ユニットの配置例を示す模式図である。It is a schematic diagram which shows the example of arrangement | positioning of the emission unit in the laser apparatus which concerns on embodiment of this invention. 本発明の実施形態に係るレーザ装置における出射ユニットの他の配置例を示す模式図である。It is a schematic diagram which shows the other example of arrangement | positioning of the emission unit in the laser apparatus which concerns on embodiment of this invention.
 図面を参照して、本発明の実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであることに留意すべきである。又、以下に示す実施形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の実施形態は、構成部品の構造、配置などを下記のものに特定するものでない。この発明の実施形態は、請求の範囲において、種々の変更を加えることができる。 Embodiments of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic. Further, the embodiment described below exemplifies an apparatus and a method for embodying the technical idea of the present invention, and the embodiment of the present invention has the following structure and arrangement of components. It is not something specific. The embodiment of the present invention can be variously modified within the scope of the claims.
 本発明の実施形態に係るレーザ装置1は、図1に示すように、レーザユニット101~レーザユニット103を有するレーザ光源100と、レーザユニット101~レーザユニット103から出射されたレーザ光がそれぞれ伝播する光ファイバ201~光ファイバ203と、光ファイバ201~光ファイバ203を伝播したレーザ光がそれぞれ入射される出射ユニット301~出射ユニット303とを備える。以下において、レーザユニット101~レーザユニット103を総称してレーザユニット10という。また、光ファイバ201~光ファイバ203を総称して光ファイバ20という。更に、出射ユニット301~出射ユニット303を総称して出射ユニット30という。 As shown in FIG. 1, the laser apparatus 1 according to the embodiment of the present invention propagates the laser light source 100 having the laser units 101 to 103 and the laser light emitted from the laser units 101 to 103, respectively. The optical fiber 201 to the optical fiber 203, and the emission unit 301 to the emission unit 303 into which the laser beams propagated through the optical fiber 201 to the optical fiber 203 are incident, respectively. Hereinafter, the laser units 101 to 103 are collectively referred to as the laser unit 10. The optical fibers 201 to 203 are collectively referred to as the optical fiber 20. Furthermore, the emission units 301 to 303 are collectively referred to as the emission unit 30.
 光ファイバ20の一方の端部はレーザユニット10に接続され、他方の端部は出射ユニット30に接続されている。つまり、レーザユニット101から出力されたレーザ光は、光ファイバ201を伝播して出射ユニット301に入射される。レーザユニット102から出力されたレーザ光は、光ファイバ202を伝播して出射ユニット302に入射される。レーザユニット103から出力されたレーザ光は、光ファイバ203を伝播して出射ユニット303に入射される。 One end of the optical fiber 20 is connected to the laser unit 10, and the other end is connected to the emission unit 30. That is, the laser light output from the laser unit 101 propagates through the optical fiber 201 and enters the emission unit 301. The laser light output from the laser unit 102 propagates through the optical fiber 202 and enters the emission unit 302. The laser light output from the laser unit 103 propagates through the optical fiber 203 and enters the emission unit 303.
 図1に示したように、出射ユニット30は、レーザユニット10から出力されたレーザ光が出力される光ファイバ20の出力端31と、出力端31から出力されたレーザ光をコリメートするコリメートレンズ32を有する。 As shown in FIG. 1, the emission unit 30 includes an output end 31 of the optical fiber 20 to which the laser light output from the laser unit 10 is output, and a collimator lens 32 that collimates the laser light output from the output end 31. Have
 レーザ装置1は、出射ユニット30を経由したレーザ光の少なくともいずれかをそれぞれ外部に出力する出力ポート401~出力ポート404を更に備える。以下において、出力ポート401~出力ポート404を総称して出力ポート40という。出射ユニット301~出射ユニット303から出力されたレーザ光は、空間を伝播して出力ポート401~出力ポート404のいずれかに入射される。 The laser apparatus 1 further includes an output port 401 to an output port 404 that output at least one of the laser beams that have passed through the emission unit 30 to the outside. Hereinafter, the output port 401 to the output port 404 are collectively referred to as the output port 40. The laser light output from the emission unit 301 to the emission unit 303 propagates through the space and enters one of the output port 401 to the output port 404.
 このために、レーザ装置1は、出射ユニット30の位置を移動させる移動機構501~移動機構503を備える。以下において、移動機構501~移動機構503を総称して移動機構50という。移動機構50は、出射ユニット30から出射されるレーザ光Lの光軸上に出力ポート40が位置するように、出射ユニット30の位置を移動させる。 For this purpose, the laser device 1 includes a moving mechanism 501 to a moving mechanism 503 for moving the position of the emission unit 30. Hereinafter, the moving mechanism 501 to the moving mechanism 503 are collectively referred to as the moving mechanism 50. The moving mechanism 50 moves the position of the emission unit 30 so that the output port 40 is positioned on the optical axis of the laser light L emitted from the emission unit 30.
 具体的には、移動機構501が、出射ユニット301を移動させて、出射ユニット301から出射されたレーザ光を出力ポート401~出力ポート404のいずれかに入射させる。移動機構502が、出射ユニット302を移動させて、出射ユニット302から出射されたレーザ光を出力ポート401~出力ポート404のいずれかに入射させる。移動機構503が、出射ユニット303を移動させて、出射ユニット303から出射されたレーザ光を出力ポート401~出力ポート404のいずれかに入射させる。 Specifically, the moving mechanism 501 moves the emission unit 301 and causes the laser beam emitted from the emission unit 301 to enter any of the output port 401 to the output port 404. The moving mechanism 502 moves the emission unit 302 to cause the laser light emitted from the emission unit 302 to enter any one of the output port 401 to the output port 404. The moving mechanism 503 moves the emission unit 303 to cause the laser light emitted from the emission unit 303 to enter any of the output port 401 to the output port 404.
 図1に上下方向を指す矢印で示したように、移動機構50は、出射ユニット30から出力ポート40に向けて進行するレーザ光Lの光軸方向と垂直な方向に出射ユニット30を移動させる。このため、出射ユニット301~出射ユニット303から出射されるレーザ光を出力ポート401~出力ポート403のいずれに入射させるかは、任意に設定可能である。図1に示したレーザ装置1では、出射ユニット301から出射されたレーザ光が出力ポート401に入射され、出射ユニット302から出射されたレーザ光が出力ポート402に入射され、出射ユニット303から出射されたレーザ光が出力ポート403に入射される場合を例示している。なお、移動機構50にはリニアアクチュエータなどの機構を採用可能である。図1に示したレーザ装置1では、複数の出射ユニット30を独立して移動させるために、出射ユニット30から出射されるレーザ光Lの光軸方向に沿って移動機構501~移動機構503が配列されている。 1, the moving mechanism 50 moves the emission unit 30 in a direction perpendicular to the optical axis direction of the laser light L traveling from the emission unit 30 toward the output port 40. Therefore, it is possible to arbitrarily set which of the output port 401 to the output port 403 the laser light emitted from the emission unit 301 to the emission unit 303 is incident on. In the laser apparatus 1 shown in FIG. 1, the laser beam emitted from the emission unit 301 is incident on the output port 401, the laser beam emitted from the emission unit 302 is incident on the output port 402, and is emitted from the emission unit 303. A case where the laser beam is incident on the output port 403 is illustrated. The moving mechanism 50 can employ a mechanism such as a linear actuator. In the laser apparatus 1 shown in FIG. 1, the moving mechanisms 501 to 503 are arranged along the optical axis direction of the laser light L emitted from the emitting unit 30 in order to move the plurality of emitting units 30 independently. Has been.
 出力ポート401~出力ポート404のそれぞれは、図1に示すように、レーザ光の入射される出力集光素子41と出力端子42を備える。即ち、出力集光素子41がレーザ光を出力端子42に集光し、レーザ光は出力端子42を介して外部に出力される。例えば、出力端子42に接続可能な出力ケーブル200を介してレーザ光が外部に出力される。出力集光素子41には、レンズなどの光学素子を採用可能である。出力ケーブル200は、例えば光ファイバなどである。なお、出力ポート404に使用する出力集光素子41及び出力ケーブル200は、出力ポート401~出力ポート403に使用する出力集光素子41及び出力ケーブル200よりも導波部の断面積が大きい。これは、複数の出射ユニット30からそれぞれ出射された複数のレーザ光を出力ポート404に入射させるためである。出力ポート404へのレーザ光の入射の詳細は後述する。 Each of the output port 401 to the output port 404 includes an output condensing element 41 and an output terminal 42 on which laser light is incident, as shown in FIG. That is, the output condensing element 41 condenses the laser light on the output terminal 42, and the laser light is output to the outside via the output terminal 42. For example, laser light is output to the outside through an output cable 200 that can be connected to the output terminal 42. As the output condensing element 41, an optical element such as a lens can be employed. The output cable 200 is, for example, an optical fiber. The output condensing element 41 and the output cable 200 used for the output port 404 have a larger cross-sectional area of the waveguide than the output condensing element 41 and the output cable 200 used for the output port 401 to the output port 403. This is because a plurality of laser beams respectively emitted from the plurality of emission units 30 are incident on the output port 404. Details of the incidence of the laser beam on the output port 404 will be described later.
 レーザユニット10は、複数のレーザ素子11と、レーザ素子11の出射光を集光して光ファイバ20に入射させるレーザ集光素子12とを備える。レーザ素子11は、例えば半導体レーザや固体レーザなどである。レーザ集光素子12は、例えばレンズなどの光学素子である。また、レーザユニット10は、レーザ素子11の出射光をコリメートするコリメートレンズ13を更に備える。コリメートレンズ13は、レーザ素子11のそれぞれについて1つずつ用意される。図1に示した例では、コリメートレンズ13によってコリメートされたレーザ光がレーザ集光素子12に入射される。 The laser unit 10 includes a plurality of laser elements 11 and a laser condensing element 12 that condenses the emitted light of the laser element 11 and makes it incident on the optical fiber 20. The laser element 11 is, for example, a semiconductor laser or a solid laser. The laser condensing element 12 is an optical element such as a lens. The laser unit 10 further includes a collimating lens 13 that collimates the light emitted from the laser element 11. One collimating lens 13 is prepared for each laser element 11. In the example shown in FIG. 1, the laser light collimated by the collimating lens 13 enters the laser condensing element 12.
 上記のように、それぞれ1つのレーザユニット10、光ファイバ20及び出射ユニット30によって1つの光ファイバ結合型合波モジュールが構成されている。図1では、光ファイバ結合型合波モジュールの個数が3個である場合を例示しているが、レーザ装置1に含まれる光ファイバ結合型合波モジュールの個数は3個に限られるものではない。レーザ装置1に要求されるレーザ出力数などに応じて、光ファイバ結合型合波モジュールの個数を任意に設定することができる。また、出力ポート40の個数も任意に設定可能である。 As described above, each of the laser unit 10, the optical fiber 20, and the emission unit 30 constitutes one optical fiber coupling type multiplexing module. Although FIG. 1 illustrates the case where the number of optical fiber coupling type multiplexing modules is three, the number of optical fiber coupling type multiplexing modules included in the laser device 1 is not limited to three. . The number of optical fiber coupling type multiplexing modules can be arbitrarily set according to the number of laser outputs required for the laser device 1. Further, the number of output ports 40 can be arbitrarily set.
 ここで、出力ポート404へのレーザ光の入射について説明する。図2に示すように、移動機構50によって、出射ユニット301~出射ユニット303を隣接して配置する。この状態における出射ユニット301~出射ユニット303から出射されるレーザ光を同時に入射できるサイズの出力集光素子41によって、出力ポート404は出射ユニット301~出射ユニット303から出射されるレーザ光を合波する。その結果、出力ポート404からは、出力ポート401~出力ポート403よりも出力エネルギーの高いレーザ光を出力することができる。 Here, the incidence of laser light on the output port 404 will be described. As shown in FIG. 2, the moving unit 50 arranges the emission units 301 to 303 adjacent to each other. In this state, the output port 404 multiplexes the laser beams emitted from the emission units 301 to 303 by the output condensing element 41 having a size capable of simultaneously entering the laser beams emitted from the emission units 301 to 303. . As a result, the output port 404 can output laser light with higher output energy than the output ports 401 to 403.
 例えば、レーザユニット101~レーザユニット103から出射されるレーザ光の出力エネルギーが同一である場合、出力ポート404からは出力ポート401~出力ポート403の3倍の出力エネルギーのレーザ光が出力される。なお、2つの出射ユニット30から出射されるレーザ光を出力ポート404で集光してもよい。 For example, when the output energy of the laser light emitted from the laser unit 101 to the laser unit 103 is the same, the laser light having an output energy three times that of the output port 401 to the output port 403 is output from the output port 404. Note that the laser light emitted from the two emission units 30 may be condensed at the output port 404.
 ところで、出射ユニット301~出射ユニット303を隣接して配置する場合に、図3に示すように出射ユニット301~出射ユニット303を3次元的に密集させることが好ましい。一方、図4に示すように、一列に出射ユニット301~出射ユニット303を配列させることも可能である。しかし、図4の構成と比較して、図3に示した構成を採用することによって出力ポート404の出力集光素子41のサイズを抑制できる。このためには、例えば、図3に破線の矢印で示したように、複数の出射ユニット30を互いに異なる平面レベル上でレーザ光の光軸方向と垂直な方向に移動させればよい。一方、図4に示した構成の場合には、複数の出射ユニット30を同一の平面レベル上で移動させる。 By the way, when the emission units 301 to 303 are arranged adjacent to each other, it is preferable that the emission units 301 to 303 are densely arranged three-dimensionally as shown in FIG. On the other hand, as shown in FIG. 4, it is also possible to arrange the emission units 301 to 303 in a line. However, the size of the output condensing element 41 of the output port 404 can be suppressed by adopting the configuration shown in FIG. For this purpose, for example, as indicated by broken arrows in FIG. 3, the plurality of emission units 30 may be moved in directions perpendicular to the optical axis direction of the laser light on different plane levels. On the other hand, in the case of the configuration shown in FIG. 4, the plurality of emission units 30 are moved on the same plane level.
 図1に示したレーザ装置1では、レーザユニット10と出射ユニット30とが光ファイバ20によって連結されている。このため、移動機構50によって出射ユニット30を移動させても、環境温度変化などによる機械的な歪みによって生じる結合効率の低下が抑制される。 In the laser apparatus 1 shown in FIG. 1, the laser unit 10 and the emission unit 30 are connected by an optical fiber 20. For this reason, even if the emission unit 30 is moved by the moving mechanism 50, a decrease in coupling efficiency caused by mechanical distortion due to an environmental temperature change or the like is suppressed.
 また、レーザユニット10ごとにレーザ素子11の個数を設定したり、レーザ素子11の出力を可変したりすることなどによって、光ファイバ結合型合波モジュールごとに異なる出力エネルギーを独立して設定することができる。 Further, by setting the number of laser elements 11 for each laser unit 10 or changing the output of the laser elements 11, different output energies are set independently for each optical fiber coupling type multiplexing module. Can do.
 これに対し、分岐用光学素子を用いて分岐されたレーザ光を出力するレーザ装置では、レーザ出力の出力エネルギーが分岐用光学素子の分岐率に応じて固定されてしまう。例えば1/4の分岐率でレーザ光を4つに分岐する場合は、1つのレーザ光の出力のみを使用したい場合に、出力エネルギーが元のレーザ光の1/4に固定されてしまう。また、分岐用光学素子の分岐率に固定されるため、分岐率を連続的に変化させることができない。 On the other hand, in a laser device that outputs a laser beam branched using a branching optical element, the output energy of the laser output is fixed according to the branching rate of the branching optical element. For example, when the laser beam is branched into four at a branching ratio of 1/4, when only the output of one laser beam is desired to be used, the output energy is fixed to 1/4 of the original laser beam. Further, since the branching ratio of the branching optical element is fixed, the branching ratio cannot be changed continuously.
 一方、図1に示したレーザ装置1は、レーザ光源100からのレーザ光を分岐用光学素子によって分岐して複数のレーザ出力を得るのではなく、互いに独立した複数のレーザユニット10からのレーザ光を出力する。このため、出力ポート40ごとに出力エネルギーを任意に設定できる。つまり、出力ポート40から出力されるレーザ光の出力比を任意に設定できる。したがって、レーザ装置1を分岐率が設定されたレーザ装置とみなした場合には、任意の分岐率を容易に実現できることになる。 On the other hand, the laser apparatus 1 shown in FIG. 1 does not obtain a plurality of laser outputs by branching the laser light from the laser light source 100 by the branching optical element, but the laser light from the plurality of laser units 10 independent from each other. Is output. For this reason, output energy can be arbitrarily set for each output port 40. That is, the output ratio of the laser beam output from the output port 40 can be set arbitrarily. Therefore, when the laser device 1 is regarded as a laser device with a branching rate set, an arbitrary branching rate can be easily realized.
 更に、レーザ装置1では、移動機構50によって出射ユニット30の位置を制御し、光ファイバ結合型合波モジュールの出力光を合波できる。このため、レーザ装置1の輝度を最適に設定することができる。 Furthermore, in the laser apparatus 1, the position of the emission unit 30 is controlled by the moving mechanism 50, and the output light of the optical fiber coupling type multiplexing module can be multiplexed. For this reason, the brightness | luminance of the laser apparatus 1 can be set optimally.
 以上に説明したように、本発明の実施形態に係るレーザ装置1によれば、出力エネルギーの設定の自由度が高く、且つ信頼性が向上されたレーザ装置を提供できる。 As described above, according to the laser apparatus 1 according to the embodiment of the present invention, it is possible to provide a laser apparatus with a high degree of freedom in setting output energy and improved reliability.
 上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。即ち、本発明はここでは記載していない様々な実施形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な請求の範囲に係る発明特定事項によってのみ定められるものである。 As described above, the present invention has been described according to the embodiment. However, it should not be understood that the description and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art. That is, it goes without saying that the present invention includes various embodiments not described herein. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.
 本発明のレーザ装置は、レーザ光を分岐して出力する用途に利用可能である。 The laser device of the present invention can be used for a purpose of branching and outputting laser light.

Claims (7)

  1.  複数のレーザユニットを有するレーザ光源と、
     前記複数のレーザユニットのいずれかにそれぞれ接続され、前記レーザユニットから出射されたレーザ光が伝播する複数の光ファイバと、
     前記複数の光ファイバのいずれかにそれぞれ接続され、前記光ファイバを伝播した前記レーザ光が入射される複数の出射ユニットと、
     前記出射ユニットを経由した前記レーザ光の少なくともいずれかをそれぞれ外部に出力する複数の出力ポートと、
     前記出射ユニットから出射された前記レーザ光を前記出力ポートのいずれかに入射させるように、前記出射ユニットの位置を移動させる移動機構と
     を備えることを特徴とするレーザ装置。
    A laser light source having a plurality of laser units;
    A plurality of optical fibers which are respectively connected to any of the plurality of laser units and through which laser light emitted from the laser units propagates;
    A plurality of emission units that are respectively connected to any of the plurality of optical fibers and into which the laser light propagated through the optical fibers is incident;
    A plurality of output ports for outputting at least one of the laser beams via the emission unit to the outside, and
    And a moving mechanism for moving the position of the emission unit so that the laser beam emitted from the emission unit is incident on one of the output ports.
  2.  前記複数の出力ポートのうちの1つに前記出射ユニットからそれぞれ出射された複数の前記レーザ光が入射されるように、前記移動機構が前記出射ユニットの位置を移動させることを特徴とする請求項1に記載のレーザ装置。 The moving mechanism moves the position of the emission unit so that the plurality of laser beams respectively emitted from the emission unit are incident on one of the plurality of output ports. 2. The laser device according to 1.
  3.  前記移動機構が、前記複数の出射ユニットを前記レーザ光の光軸方向と垂直な方向に移動させることを特徴とする請求項1に記載のレーザ装置。 The laser device according to claim 1, wherein the moving mechanism moves the plurality of emission units in a direction perpendicular to an optical axis direction of the laser light.
  4.  前記移動機構が、前記複数の出射ユニットを互いに異なる平面レベル上で移動させることを特徴とする請求項3に記載のレーザ装置。 4. The laser apparatus according to claim 3, wherein the moving mechanism moves the plurality of emission units on different plane levels.
  5.  前記出力ポートが、
     前記レーザ光の入射される出力集光素子と、
     出力端子と
     を備え、前記出力集光素子が前記出射ユニットから出射された前記レーザ光を前記出力端子に集光し、前記出力端子を介して前記レーザ光を外部に出力することを特徴とする請求項1に記載のレーザ装置。
    The output port is
    An output condensing element on which the laser light is incident;
    An output terminal, wherein the output condensing element condenses the laser light emitted from the emission unit on the output terminal, and outputs the laser light to the outside via the output terminal. The laser device according to claim 1.
  6.  前記レーザユニットが、
     複数のレーザ素子と、
     前記レーザ素子の出射光を集光して前記光ファイバに入射させるレーザ集光素子と
     を備えることを特徴とする請求項1に記載のレーザ装置。
    The laser unit is
    A plurality of laser elements;
    The laser apparatus according to claim 1, further comprising: a laser condensing element that condenses the light emitted from the laser element and causes the light to enter the optical fiber.
  7.  前記レーザユニットが、前記レーザ素子の前記出射光をコリメートするコリメートレンズを更に備えることを特徴とする請求項6に記載のレーザ装置。 The laser device according to claim 6, wherein the laser unit further includes a collimating lens that collimates the emitted light of the laser element.
PCT/JP2014/058492 2014-03-26 2014-03-26 Laser device WO2015145609A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/058492 WO2015145609A1 (en) 2014-03-26 2014-03-26 Laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/058492 WO2015145609A1 (en) 2014-03-26 2014-03-26 Laser device

Publications (1)

Publication Number Publication Date
WO2015145609A1 true WO2015145609A1 (en) 2015-10-01

Family

ID=54194207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058492 WO2015145609A1 (en) 2014-03-26 2014-03-26 Laser device

Country Status (1)

Country Link
WO (1) WO2015145609A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08150485A (en) * 1994-11-28 1996-06-11 Komatsu Ltd Laser marking device
JPH09192860A (en) * 1996-01-19 1997-07-29 Komatsu Ltd Light intensity control method and light distribution device
JP2875952B2 (en) * 1994-08-19 1999-03-31 ミヤチテクノス株式会社 Laser beam splitter
JP2004105970A (en) * 2002-09-13 2004-04-08 Mitsubishi Heavy Ind Ltd Synchronous control method for laser oscillator and laser machining system
JP2013139039A (en) * 2011-12-28 2013-07-18 Muratani Kikai Seisakusho:Kk Laser beam machining apparatus and laser beam machining method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2875952B2 (en) * 1994-08-19 1999-03-31 ミヤチテクノス株式会社 Laser beam splitter
JPH08150485A (en) * 1994-11-28 1996-06-11 Komatsu Ltd Laser marking device
JPH09192860A (en) * 1996-01-19 1997-07-29 Komatsu Ltd Light intensity control method and light distribution device
JP2004105970A (en) * 2002-09-13 2004-04-08 Mitsubishi Heavy Ind Ltd Synchronous control method for laser oscillator and laser machining system
JP2013139039A (en) * 2011-12-28 2013-07-18 Muratani Kikai Seisakusho:Kk Laser beam machining apparatus and laser beam machining method

Similar Documents

Publication Publication Date Title
WO2009025261A1 (en) Multibeam scanning device
EP3018776B1 (en) Laser device
US10048445B2 (en) Multicast exchange optical switch
JP6943370B2 (en) High-speed multi-core batch optical switch system
BR102012032078A2 (en) Optical Arrangement, Optical Processing Device, and Method for Processing an Optical Signal
Yang et al. Crosstalk reduction in holographic wavelength selective switches based on phase-only LCOS devices
JPWO2015008403A1 (en) Optical path control device
JP2009271206A (en) Laser beam-shaping optical system and laser beam supply device using the same
US9164352B2 (en) System and method for synchronizing light pulses at a selected location
RU2018128461A (en) LASER SOURCE, IN PARTICULAR, FOR INDUSTRIAL PROCESSES
WO2015145609A1 (en) Laser device
CN107462987B (en) Light path control system and optical module
US11047713B2 (en) Laser scanning method and apparatus
JP2018081255A (en) Collimator support body, housing of optical device, optical device, optical transceiver, and collimator attachment method
JP7069677B2 (en) Light emitting device
CN103424868A (en) Laser coupling unit, laser coupling module and laser light source module
JP2011112686A5 (en)
JP2017003791A (en) Multiplexing laser beam source
JP5071870B2 (en) Optical path switching type optical signal transmitting / receiving apparatus and optical signal optical path switching method
JP2011112686A (en) Light source unit, light source device and microscope system
JP6461192B2 (en) Optical inspection system and method
IL197171A0 (en) Apparatus for splitting a light beam
KR101948890B1 (en) Optical signal processing apparatus using planar lightwave circuit with waveguide-array structure
AU2017227069B2 (en) Co-aligning laterally displaced radiation beams
KR101940775B1 (en) Multi-wavelength transmission device using the cylindrical lens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14887332

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14887332

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP