WO2015145056A1 - Dispositif d'inversion de poussée sans grille pour nacelle de turboréacteur d'aéronef - Google Patents

Dispositif d'inversion de poussée sans grille pour nacelle de turboréacteur d'aéronef Download PDF

Info

Publication number
WO2015145056A1
WO2015145056A1 PCT/FR2015/050730 FR2015050730W WO2015145056A1 WO 2015145056 A1 WO2015145056 A1 WO 2015145056A1 FR 2015050730 W FR2015050730 W FR 2015050730W WO 2015145056 A1 WO2015145056 A1 WO 2015145056A1
Authority
WO
WIPO (PCT)
Prior art keywords
flap
thrust
head
nacelle
leakage
Prior art date
Application number
PCT/FR2015/050730
Other languages
English (en)
Inventor
Patrick Gonidec
Olivier Kerbler
Xavier Bouteiller
Original Assignee
Aircelle
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aircelle filed Critical Aircelle
Publication of WO2015145056A1 publication Critical patent/WO2015145056A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/54Nozzles having means for reversing jet thrust
    • F02K1/64Reversing fan flow
    • F02K1/70Reversing fan flow using thrust reverser flaps or doors mounted on the fan housing
    • F02K1/72Reversing fan flow using thrust reverser flaps or doors mounted on the fan housing the aft end of the fan housing being movable to uncover openings in the fan housing for the reversed flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • F05D2260/602Drainage

Definitions

  • Thrust reversing device without grid for nacelle
  • the invention relates to a thrust reverser device without a grid for an aircraft turbojet engine nacelle.
  • the invention also relates to a turbojet engine nacelle equipped with a thrust reverser device according to the invention.
  • a turbojet engine nacelle generally has a substantially tubular structure comprising an air inlet upstream of the turbojet engine, a median section intended to surround a fan of the turbojet engine, a downstream section intended to surround the combustion chamber of the turbojet engine and possibly incorporating fuel injection equipment. thrust reversal, and is generally terminated by an ejection nozzle whose output is located downstream of the turbojet engine.
  • the modern nacelles are intended to house a turbofan engine capable of generating through the blades of the rotating fan a flow of hot air, called primary flow, and a cold air flow, called secondary flow, which circulates outside the turbojet engine through an annular passage, also called vein.
  • the vein is delimited between an internal fairing of the turbojet engine and an outer casing housing the thrust reverser device.
  • the two air flows are ejected from the turbojet engine from the rear of the nacelle.
  • the role of a thrust reverser is, during the landing of an aircraft, to improve the braking capacity thereof by redirecting forwards at least a portion of the air flow ejected by the turbojet engine. .
  • the inverter obstructs at least part of the cold flow vein and directs this flow towards the front of the nacelle, thereby generating a counter-thrust which is added to the braking of the wheels and air brakes of the plane.
  • the means implemented to achieve this reorientation of the cold flow vary according to the type of inverter.
  • the structure of a thrust reverser comprises at least one cap mounted movably between a closed position in which the hood provides aerodynamic continuity of the nacelle, and an open position in which the hood opens a passage in the nacelle for the flow of deflected air.
  • the hood can perform a function of diverting the airflow or simply activating other means of deflection.
  • the reorientation of the air flow is performed by deflection grids, the hood having a simple sliding function to discover the grids to activate , or cover the grids to disable them.
  • the deflection grids are mounted on a front frame serving as a fixed part of the thrust reverser device and attached to a housing of the turbojet fan.
  • This front frame also supports actuating cylinders movable covers.
  • Complementary inversion flaps also called locking flaps or locking doors, activated by the sliding of the movable cowl, generally allow at least partial closure of the vein downstream of the deflection grids in order to force the passage of the flow of air to the grilles.
  • flaps are mounted articulated on the movable cowl between a retracted position corresponding to the closed position of the movable cowl, in which a front face of each flap extends axially vis-à-vis the inner wall of the turbojet, and a thrust reversing position corresponding to the opening position of the movable cowl, in which the front face of each flap is pivoted to oppose at least partially the circulation of the air flow in the circulation duct, in order to divert the flow of air towards the deflection grids discovered by the sliding of the movable hood.
  • a disadvantage of this type of grid inverter is the mass of the grids which increases the general mass of the inverter and consequently the mass of the nacelle.
  • these grids require a space in the movable hood which is a brake to the optimization of the aerodynamic lines of the nacelle, or a space in the blower compartment which is sometimes incompatible with equipment housed in this area.
  • the mass of the inverter is also burdened by the mass of the structure that carries the grids, especially when the grids are movable.
  • the nacelles associated with turbojet engines with a high dilution ratio generally do not require highly efficient inverters because their capture drag provides significant braking that is added to the specific effect of the inverter. In most cases a gross thrust reversal efficiency of twenty percent on the secondary flow is sufficient for a short-haul airliner.
  • This type of thrust reverser device comprises hoods, or doors, pivotally mounted between a closed position in which the hoods provide the aerodynamic continuity of the nacelle, and an open position in which the hoods open a passage in the nacelle for the deflected airflow.
  • the covers in its open position, extend generally radially to oppose at least partially the flow of air in the circulation stream, in order to deflect the flow of air towards the open passage in the basket.
  • the present invention aims in particular to solve these disadvantages and relates for this purpose to a thrust reverser device for an aircraft turbojet engine nacelle, by redirection of a flow of air flowing from upstream to downstream in a vein which is delimited radially between an internal fairing of the turbojet engine and an outer envelope housing the thrust reverser device, the device comprising at least:
  • a cover which is mounted to move in axial translation from front to rear in a direction substantially parallel to a longitudinal axis of the nacelle, between a closed position in which the cover ensures the aerodynamic continuity of the nacelle, and a position of opening in which the hood opens a passage in the nacelle,
  • a thrust reversing flap which extends from a head to a foot and which is delimited by a front face and a rear face, the reversing flap being hingedly mounted on the movable cowl between a corresponding retracted position at the closed position of the movable cowl, in which the front face of the flap extends axially opposite the fairing internal of the nacelle, and a thrust reversal position corresponding to the open position of the movable cowl, in which the front face of the flap is pivoted to partially oppose the flow of air flow in the vein of circulation, characterized in that a front portion of the movable cowl forms a spoiler, the spoiler and the head of the thrust reversal flap delimiting radially between them a leakage passage adapted to allow the flow of an air flow when the flap occupies its reverse thrust position, and in that the movable cowl comprises a deflector which is arranged downstream of the leakage passage and which is designed to deflect the leakage air flow from its longitudinal
  • the invention makes it possible in particular to use the air leaks that pass the flaps to make them at least inoperative and at best counterpropulsive, to promote the braking of the aircraft.
  • the deflector makes it possible to "break" the residual thrust of the leakage air flow by deviating it from its longitudinal trajectory.
  • the deflector is arranged to guide and accelerate the flow of leakage air along the rear face of the flap to generate a negative pressure on the rear face of the flap in favor of a counter-thrust.
  • the leakage air flow exerts a counter-pressure on the rear face of the flap, this counter-thrust directed forward opposes the residual thrust towards the rear of the nacelle.
  • the flap in its reverse thrust position, is substantially inclined head forward, so as to promote the orientation of the air flow to the front of the nacelle, through the passage uncovered by the hood .
  • the rear face of the flap forms a step which is arranged at the foot of the flap and which is designed to limit the pressure of the leakage air flow downstream of the flap in its reverse thrust position.
  • the redan here limits the residual thrust generated by the air leak downstream of the associated door.
  • the device comprises a plurality of thrust reversal flaps which are arranged in the vein and which are angularly offset alternately about their hinge axis to be arranged in pairs in pairs. , when the flaps occupy their thrust reversal position, so that a first shutter is tilted head forward and the adjacent shutter is tilted head back, to promote side leaks between two neighboring shutters.
  • each flap arranged the head forward delimits a first leakage passage between the head of said flap and the movable cover, and each flap arranged behind the head delimits a second leakage passage between the foot of said flap and the internal fairing of the flap. turbojet, to promote the formation of vortices downstream of the shutters.
  • Each flap arranged behind the head has a rear surface forming extrados which is equipped with a means of rectifying the flow of leak air along said associated rear face.
  • the means of rectifying the flow of air favors the formation of vortices downstream of the shutters.
  • the device is equipped with a device for guiding the flow of air through the passage opened by the mobile cowl in its open position, the guiding device comprising:
  • a deflection edge which delimits a convex wall and which is mounted on a rear end of a front frame of the nacelle
  • a vane which delimits a convex leading edge arranged facing the moving cowl, and a concave edge arranged facing the deflection edge to delimit a deflection lane of the flow of air flowing through the passage uncovered by the hood.
  • This feature guides the flow of air flowing through the passageway uncovered by the hood forward and decreases boundary layer separation along the curved wall adjoining the crankcase referred to as the deflection edge which guides the thrust reversal flow in the previously mentioned passage.
  • the vane can be mounted sliding longitudinally on the front frame of the nacelle between a retracted position of rest, corresponding to the closed position of the hood, in which the wall of the deflection edge and the concave edge of the vane are contiguous, and an extended guide position in which the wall of the deflection edge and the concave edge of the vane delimit between them the deflection lane.
  • the blade may be made of elastically deformable material and in that it is arranged to cooperate with the head of the flap when said flap occupies its retracted position.
  • FIG. 1 is a schematic longitudinal sectional view, which illustrates a rear section of a nacelle equipped with the thrust reverser device according to the invention having a flap in the retracted position;
  • FIG. 2 is a schematic longitudinal sectional view, which illustrates the thrust reverser device of Figure 1 having the flap in reverse thrust position;
  • FIG. 3 is a schematic longitudinal sectional view, which illustrates a first alternative embodiment of the thrust reverser device of Figure 1 having two shutters angularly offset in thrust reversal position;
  • FIG. 4 is a diagrammatic rear perspective view of three quarters, which illustrates the flow of a leakage air flow downstream of three flaps in the thrust reversal position according to the first variant embodiment of FIG. 3;
  • FIG. 5 is a schematic rear view, which illustrates the flow of leakage air flow downstream flaps in thrust reversal position according to the first embodiment of Figure 3;
  • FIG. 6 is a schematic rear view, which illustrates a flap according to the first embodiment of Figure 3 equipped with a rectifying means of the leakage air flow;
  • FIG. 7 is a diagrammatic side view, which illustrates the shutter of FIG. 6 equipped with means for rectifying the leakage air flow;
  • FIG. 8 is a schematic longitudinal sectional view, which illustrates a second embodiment of the thrust reverser device according to the invention, comprising a guide device of the main air flow in the retracted position of rest;
  • FIG. 9 is a schematic longitudinal sectional view, which illustrates the air flow guiding device of Figure 8 in the extended guide position;
  • FIG. 10 is a schematic view of detail in longitudinal section, which illustrates an airfoil of the guiding device of FIG. 8.
  • upstream and downstream must be understood in relation to the flow of air flow inside the propulsion unit formed by the nacelle and the turbojet, from the front to the back, that is from left to right according to FIG.
  • FIG. 1 shows a rear section of a nacelle 10 for a turbojet engine which is equipped with a device 12 for thrust reversal by redirection of an air flow 14.
  • the air flow 14 flows from upstream to downstream in an annular duct 16 which is delimited radially between an internal fairing 18 of the turbojet engine formed by a fixed internal structure, and an outer casing 20 housing the thrust reverser device 12.
  • the thrust reverser device 12 comprises a cover 22 which is mounted to move in axial translation back and forth in a direction substantially parallel to a longitudinal axis of the nacelle 10, between a closed position shown in FIG. which the hood 22 ensures aerodynamic continuity of the nacelle 10, and an open position in which the cover 22 opens a passage 24 in the nacelle 10.
  • the thrust reverser device 12 is equipped with a set of thrust reverser flaps 26 arranged in a ring around the internal fairing 18 of the turbojet engine.
  • the thrust reversal flap 26 shown in FIG. 1 extends longitudinally from a head 28, to a foot 30, and the flap 26 is delimited by a front face 32 and a rear face 34.
  • the flap 26 of reversal is mounted articulated on the cover 22 between a retracted position corresponding to the closed position of the movable cowl, represented in FIG. 1, in which the front face 32 of the flap 26 extends axially axially according to a longitudinal axis of the nacelle 10 vis-à-vis the internal fairing 18 of the turbojet engine, and a thrust reversal position corresponding to the open position of the movable cowl 22, shown in Figure 2, in which the flap 26 extends radially generally, the front face 32 of the flap 26 being pivoted to partially oppose the circulation of the air flow 14 in the vein 16 of circulation.
  • a hinge 36 pivotally connects the rear face 34 of the flap 26 to the cover 22.
  • a connecting rod 38 connects the front face 32 of the flap 26 to the inner fairing 18 of the turbojet engine.
  • the front end of the movable hood 22 forms a spoiler 40, the spoiler 40 and the head 28 of the thrust reversal shutter 26 delimiting radially between them a leakage passage 42 adapted to allow the flow of a leakage air flow 44 flap head when the flap 26 is in its reverse thrust position.
  • the spoiler 40 formed by the movable cover 22 is designed in particular to redirect the air flow 14 towards the front of the platform 10 when the cover 22 is in its open position.
  • the movable hood 22 comprises a deflector 46 which is arranged downstream of the leakage passage 42 and which is designed to guide the leakage air flow 44 towards the rear face 34 of the extrados flap 26.
  • the deflector 46 has a front face 48 which extends generally radially facing the spoiler 40 of the movable cover 22 and which is designed so that the tangent to this profile where the flow of leakage air 44 leaves it is substantially parallel to the rear face 34 of the flap 26 which faces it at this location.
  • the deflector 46 may be of substantially convex shape for example.
  • the deflector 46 is arranged such that the leakage passage 42 forms a narrowing adapted to accelerate the leakage air flow 44 along the rear face 34 of the flap 26.
  • the flow of the leakage air flow 44 generates a depression on the rear face 34 of the flap 26, this depression exerting a counter-thrust forward that opposes the thrust to the rear of the nacelle 10.
  • the flap 26, in its thrust reversal position, is substantially inclined the head 28 forward so as to redirect the air flow 14 towards the front of the nacelle 10 through the opening 24 provided for in FIG. this effect, as can be seen in Figure 2.
  • the head 28 of the flap 26 has a leading edge 49 of substantially rounded shape to allow the leakage air flow 44 to bypass the head 28 of the flap 26 in its reverse thrust position and to flow. along its rear face 34.
  • the foot 30 of the shutter 26 and the internal shroud 18 of the turbojet radially delimit between them an additional leakage passage 50 which allows the flow of an air flow. flap foot 52 when flap 26 is in its reverse thrust position.
  • the rear face 34 of the flap 26 delimits a step 54 which is arranged at the foot 30 of the flap 26 and which is designed to limit the pressure of the flap head leakage air flow 44, downstream of the flap 26 in its reverse thrust position.
  • Redan 54 creates a "detachment" of the overhead leakage airflow 44 to cause it to lose its dynamic pressure before leakage airflow 44 reaches the free end of foot 30 of flap 26 forming a trailing edge.
  • the area of the leakage passage 50 at the bottom of the flap 26 is overpressurized, which tends to minimize the pressure of the flap foot leakage air flow 52 and the associated counter thrust.
  • the thrust reverser device 12 comprises a series of additional thrust reverser flaps 58, which are arranged substantially rearwardly in the position of a thrust reverser. reverse thrust, unlike flaps 26 previously described which arranged its head substantially forward.
  • the flaps 58 backward head are interposed each between two flaps 26 head forward, so that the flaps 58 head back and the flaps 26 forward head are offset angularly alternately about their axis of articulation to be arranged two by two in X, to promote lateral leakage between two flaps 26, 58 neighbors.
  • each flap 58 head back and the inner fairing 18 of the turbojet delimits radially between them an additional leakage path 62, to promote the formation of vortices downstream of the flaps 26, 58.
  • each flap 58 head back is generally attached to the spoiler 40 of the cover 22 to limit or eliminate air leakage at the flap head 58.
  • the movable cowl 22 comprises an additional baffle (not shown) designed to guide a leakage air flow parallel to the rear face 66 of each flap 58 head back.
  • the foot 30 of each flap 26 the head forward is generally attached to the inner fairing 18 of the turbojet engine to limit or even eliminate air leakage at the bottom of flap 26.
  • the foot 30 flaps 26 the head forward may be equipped with a sealing means (not shown) as a seal which cooperates with the inner fairing 18 of the turbojet engine.
  • each flap 58 arranged at the back of the head has a rear face 66 forming an extrados which is equipped with four scoops 68 forming a means of rectifying the air flow of the air. leak 44.
  • the scoops 68 are arranged in pairs laterally on each side of the associated flap 58, the scoops 68 forming a channel extending from an inlet opening 70 laterally open to an outlet opening 72 open opposite the head. 64 of the associated section 58.
  • the scoops 68 are designed to guide the leakage air flow 44 from the side leaks, to the head 64 of the associated flaps 58, along the rear face 66 of the flaps 58, to avoid the creation of a point of contact. stopping the flow of air on the rear face 66 of the flaps 58.
  • the thrust reverser device 12 comprises a generally annular deflection edge 74 which is delimited by a convex wall 76 and which is mounted on a rear end of a front frame 80 of the nacelle 10.
  • the device 12 comprises a blade 82 of generally annular shape which is delimited by a convex leading edge 84 arranged facing the movable cover 22, and by a concave edge 86 arranged facing the deflection edge 74.
  • the blading 82 can be fixed mounted. In this case, the dimensions and the position of the vane 82 are adapted to allow the vane 82 to fit in the cover 22 above the flaps 26 in the retracted position. Similarly, the head 28 of each flap 26 comes into contact with the deflection edge 74 to possibly seal the flow when the cap 22 is in its closed position.
  • the vane 82 is mounted to slide axially on the front frame 80 of the nacelle 1 0 between a retracted rest position shown in FIG. 8, corresponding to the closed position of the cover 22, in which the wall 76 of the deflection edge 74 and the concave edge 86 of the vane 82 are contiguous, and an extended guide position shown in Figure 9, wherein the wall 76 of the deflection edge 74 and the concave edge 86 of the vane 82 delimit between them a corridor 88 of deviation.
  • the vane 82 is mounted on an axial actuating rod 90 which comprises a front section 92 connected to the vane 82 and a rear section 94 slidably driven in the front frame 80 of the nacelle 10 by a means actuator (not shown), such as a jack for example.
  • a means actuator such as a jack for example.
  • the deflection lane 88 is adapted to guide the flow of air flowing through the passage 24 exposed by the hood 22 forwards and to reduce the boundary layer detachment.
  • the blade 82 is arranged to cooperate with the head 28 of the flaps 26 when the flaps 26 occupy their reverse thrust position.
  • the vane 82 is made of elastically deformable material, elastomer for example, to match the shape of the head 28 of the flaps 26 to ensure the sealing of the stream 16 flow of the air flow 14 when the hood 22 occupies its closed position.
  • the blade 82 comprises a rigid core 96 connected to the actuating rod 90, an inflatable cavity 98 forming a damper and a hole 100 for swelling the cavity 98 by the air.
  • the blade 82 can be broken circumferentially into several parts to allow each part to have different kinematics.

Abstract

L'invention concerne un dispositif (12) d'inversion de poussée pour nacelle (10) de turboréacteur d'aéronef, comprenant au moins un capot (22) mobile et un volet (26) d'inversion de poussée qui s'étend depuis une tête (28) jusqu'à un pied (30), caractérisé en ce qu'une partie avant du capot (22) mobile forme un becquet (40), le becquet (40) et la tête (28) du volet (26) d'inversion de poussée délimitant radialement entre eux un passage (42) de fuite adapté pour permettre l'écoulement d'un flux d'air de fuite (44) lorsque le volet (26) occupe sa position d'inversion de poussée, et en ce que le capot (22) mobile comporte un déflecteur (46) qui est agencé en aval du passage (42) de fuite et qui est conçu pour guider le flux d'air de fuite (44) le long de la face arrière (34) du volet (26) formant extrados.

Description

Dispositif d'inversion de poussée sans grille pour nacelle de
turboréacteur d'aéronef
L'invention concerne un dispositif d'inversion de poussée sans grille pour une nacelle de turboréacteur d'aéronef.
L'invention concerne également une nacelle pour turboréacteur équipée d'un dispositif d'inversion de poussée selon l'invention.
Une nacelle de turboréacteur présente généralement une structure sensiblement tubulaire comprenant une entrée d'air en amont du turboréacteur, une section médiane destinée à entourer une soufflante du turboréacteur, une section aval destinée à entourer la chambre de combustion du turboréacteur et intégrant éventuellement des moyens d'inversion de poussée, et est généralement terminée par une tuyère d'éjection dont la sortie est située en aval du turboréacteur.
Les nacelles modernes sont destinées à abriter un turboréacteur double flux apte à générer par l'intermédiaire des pâles de la soufflante en rotation un flux d'air chaud, appelé flux primaire, et un flux d'air froid, appelé flux secondaire, qui circule à l'extérieur du turboréacteur à travers un passage annulaire, également appelé veine.
La veine est délimitée entre un carénage interne du turboréacteur et une enveloppe externe abritant le dispositif d'inversion de poussée. Les deux flux d'air sont éjectés du turboréacteur par l'arrière de la nacelle.
Le rôle d'un inverseur de poussée est, lors de l'atterrissage d'un aéronef, d'améliorer la capacité de freinage de celui-ci en redirigeant vers l'avant au moins une partie du flux d'air éjecté par le turboréacteur.
Dans cette phase, l'inverseur obstrue au moins une partie de la veine du flux froid et dirige ce flux vers l'avant de la nacelle, générant de ce fait une contre-poussée qui vient s'ajouter au freinage des roues et aérofreins de l'avion.
Les moyens mis en œuvre pour réaliser cette réorientation du flux froid varient suivant le type d'inverseur.
Cependant, dans tous les cas, la structure d'un inverseur de poussée comprend au moins un capot monté mobile entre une position de fermeture dans laquelle le capot assure la continuité aérodynamique de la nacelle, et une position d'ouverture dans laquelle le capot ouvre un passage dans la nacelle destiné au flux d'air dévié. Le capot peut remplir une fonction de déviation du flux d'air ou simplement d'activation d'autres moyens de déviation.
Dans le cas d'un inverseur à grilles, également appelé à cascade, la réorientation du flux d'air est effectuée par des grilles de déviation, le capot n'ayant qu'une simple fonction de coulissage visant à découvrir les grilles pour les activer, ou recouvrir les grilles pour les désactiver.
De façon connue, les grilles de déviation sont montées sur un cadre avant servant de partie fixe du dispositif d'inversion de poussée et rattaché à un carter de la soufflante du turboréacteur. Ce cadre avant assure également le support de vérins d'actionnement des capots mobiles.
Des volets d'inversion complémentaires, également appelées volets de blocage ou porte de blocage, activés par le coulissement du capot mobile, permettent généralement une fermeture au moins partielle de la veine en aval des grilles de déviation de manière à forcer le passage du flux d'air vers les grilles.
Ces volets sont montés articulés sur le capot mobile entre une position escamotée correspondant à la position de fermeture du capot mobile, dans laquelle une face avant de chaque volet s'étend axialement en vis-à-vis de la paroi interne du turboréacteur, et une position d'inversion de poussée correspondant à la position d'ouverture du capot mobile, dans laquelle la face avant de chaque volet est pivotée pour s'opposer au moins partiellement à la circulation du flux d'air dans la veine de circulation, afin de dévier le flux d'air vers les grilles de déviation découvertes par le coulissement du capot mobile.
Un inconvénient de ce type d'inverseur à grilles est la masse des grilles qui augmente la masse générale de l'inverseur et par conséquent la masse de la nacelle.
Aussi, ces grilles nécessitent un espace dans le capot mobile qui est un frein à l'optimisation des lignes aérodynamiques de la nacelle, ou un espace dans le compartiment de soufflante qui est parfois incompatible avec des équipements logés dans cette zone.
De plus, la masse de l'inverseur est aussi grevée par la masse de la structure qui porte les grilles, notamment lorsque les grilles sont mobiles.
Les nacelles associées aux turboréacteurs dits à grand taux de dilution ne nécessitent pas en général des inverseurs à grande efficacité car leur traînée de captation fournit un freinage important qui s'ajoute à l'effet propre de l'inverseur. Dans la plupart des cas une efficacité d'inversion de poussée brute de vingt pourcent sur le flux secondaire suffit pour un avion de ligne court courrier.
On connaît un type de dispositif d'inversion de poussée sans grille, décrit et représenté dans le document US-A-4, 801 ,1 12, qui présente une efficacité réduite.
Ce type de dispositif d'inversion de poussée comporte des capots, ou portes, montés pivotant entre une position de fermeture dans laquelle les capots assurent la continuité aérodynamique de la nacelle, et une position d'ouverture dans laquelle les capots ouvrent un passage dans la nacelle destiné au flux d'air dévié.
De plus, dans sa position d'ouverture, les capots s'étendent globalement radialement pour s'opposer au moins partiellement à la circulation du flux d'air dans la veine de circulation, afin de dévier le flux d'air vers le passage ouvert dans la nacelle.
Bien que ce type de dispositif d'inversion de poussée soit allégé du poids des grilles, son efficacité est insuffisante, même pour une nacelle à grand taux de dilution.
De plus, l'intégration des capots pivotants dans la nacelle est délicate.
La présente invention vise notamment à résoudre ces inconvénients et se rapporte pour ce faire à un dispositif d'inversion de poussée pour nacelle de turboréacteur d'aéronef, par redirection d'un flux d'air circulant d'amont en aval dans une veine qui est délimitée radialement entre un carénage interne du turboréacteur et une enveloppe externe abritant le dispositif d'inversion de poussée, le dispositif comprenant au moins :
- un capot qui est monté mobile en translation axiale d'avant en arrière selon une direction sensiblement parallèle à un axe longitudinal de la nacelle, entre une position de fermeture dans laquelle le capot assure la continuité aérodynamique de la nacelle, et une position d'ouverture dans laquelle le capot ouvre un passage dans la nacelle,
- un volet d'inversion de poussée qui s'étend depuis une tête jusqu'à un pied et qui est délimité par une face avant et une face arrière, le volet d'inversion étant monté articulé sur le capot mobile entre une position escamotée correspondant à la position de fermeture du capot mobile, dans laquelle la face avant du volet s'étend axialement en vis-à-vis du carénage interne de la nacelle, et une position d'inversion de poussée correspondant à la position d'ouverture du capot mobile, dans laquelle la face avant du volet est pivotée pour s'opposer partiellement à la circulation du flux d'air dans la veine de circulation, caractérisé en ce qu'une partie avant du capot mobile forme un becquet, le becquet et la tête du volet d'inversion de poussée délimitant radialement entre eux un passage de fuite adapté pour permettre l'écoulement d'un flux d'air de fuite lorsque le volet occupe sa position d'inversion de poussée, et en ce que le capot mobile comporte un déflecteur qui est agencé en aval du passage de fuite et qui est conçu pour dévier le flux d'air de fuite de sa trajectoire longitudinale.
L'invention permet notamment d'utiliser les fuites d'air qui passent les volets pour les rendre au moins inopérantes et au mieux contre-propulsives, pour favoriser le freinage de l'aéronef.
Le déflecteur permet de « casser » la poussée résiduelle du flux d'air de fuite en le déviant de sa trajectoire longitudinale.
Selon une autre caractéristique, le déflecteur est agencé de façon à guider et accélérer le flux d'air de fuite le long de la face arrière du volet pour engendrer une dépression sur la face arrière du volet favorable à une contre- poussée.
Ainsi, le flux d'air de fuite exerce une contre poussée sur la face arrière du volet, cette contre-poussée dirigée vers l'avant s'oppose à la poussée résiduelle vers l'arrière de la nacelle.
Aussi, le volet, dans sa position d'inversion de poussée, est sensiblement incliné la tête en avant, de façon à favoriser l'orientation du flux d'air vers l'avant de la nacelle, à travers le passage découvert par le capot.
Selon un mode de réalisation préféré, la face arrière du volet forme un redan qui est agencé au pied du volet et qui est conçu pour limiter la pression du flux d'air de fuite en aval du volet dans sa position d'inversion de poussée.
Le redan permet ici de limiter la poussée résiduelle engendrée par la fuite d'air en aval de la porte associée.
Selon une première variante de réalisation de l'invention, le dispositif comporte une pluralité de volets d'inversion de poussée qui sont disposés dans la veine et qui sont décalés angulairement alternativement autour de leur axe d'articulation pour être agencés deux à deux en X, lorsque les volets occupent leur position d'inversion de poussée, de sorte qu'un premier volet est incliné la tête en avant et le volet voisin est incliné la tête en arrière, pour favoriser les fuites latérales entre deux volets voisins.
De plus, chaque volet agencé la tête en avant délimite un premier passage de fuite entre la tête dudit volet et le capot mobile, et chaque volet agencé la tête en arrière délimite un second passage de fuite entre le pied dudit volet et le carénage interne du turboréacteur, pour favoriser la formation de tourbillons en aval des volets.
Un tel agencement permet d'imprégner au flux d'air de fuite un mouvement tourbillonnaire en aval des volets, pour limiter voire annuler la poussée engendrée par ce flux d'air de fuite.
Chaque volet agencé la tête en arrière présente une face arrière formant extrados qui est équipée d'un moyen de redressement du flux d'air de fuite le long de ladite face arrière associée.
Le moyen de redressement du flux d'air favorise la formation de tourbillons en aval des volets.
Selon une seconde variante de réalisation de l'invention, le dispositif est équipé d'un dispositif de guidage du flux d'air à travers le passage ouvert par le capot mobile dans sa position d'ouverture, le dispositif de guidage comportant :
- un bord de déviation qui délimite une paroi convexe et qui est monté sur une extrémité arrière d'un cadre avant de la nacelle,
- un aubage qui délimite un bord d'attaque convexe agencé en regard du capot mobile, et un bord concave agencé en regard du bord de déviation pour délimiter un couloir de déviation du flux d'air qui s'écoule à travers le passage découvert par le capot.
Cette caractéristique permet de guider le flux d'air qui s'écoule à travers le passage découvert par le capot vers l'avant et de diminuer le décollement de couche limite le long de la paroi courbe attenante au carter moteur appelée bord de déviation qui guide l'écoulement en inversion de poussée dans le passage cité précédemment.
De plus, l'aubage peut être monté coulissant longitudinalement sur le cadre avant de la nacelle entre une position rétractée de repos, correspondant à la position de fermeture du capot, dans laquelle la paroi du bord de déviation et le bord concave de l'aubage sont accolés, et une position déployée de guidage dans laquelle la paroi du bord de déviation et le bord concave de l'aubage délimitent entre eux le couloir de déviation. Enfin, l'aubage peut être réalisé en matériau déformable élastiquement et en ce qu'il est agencé de façon à coopérer avec la tête du volet lorsque ledit volet occupe sa position escamotée.
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui suit pour la compréhension de laquelle on se reportera aux dessins annexés dans lesquels :
- la figure 1 est une vue schématique en section longitudinale, qui illustre une section arrière d'une nacelle équipée du dispositif d'inversion de poussée selon l'invention présentant un volet en position escamotée ;
- la figure 2 est une vue schématique en section longitudinale, qui illustre le dispositif d'inversion de poussée de la figure 1 présentant le volet en position d'inversion de poussée ;
- la figure 3 est une vue schématique en section longitudinale, qui illustre une première variante de réalisation du dispositif d'inversion de poussée de la figure 1 présentant deux volets décalés angulairement, en position d'inversion de poussée ;
- la figure 4 est une vue schématique en perspective de trois quarts arrière, qui illustre l'écoulement d'un flux d'air de fuite en aval de trois volets en position d'inversion de poussée selon la première variante de réalisation de la figure 3 ;
- la figure 5 est une vue schématique de derrière, qui illustre l'écoulement du flux d'air de fuite en aval des volets en position d'inversion de poussée selon la première variante de réalisation de la figure 3 ;
- la figure 6 est une vue schématique de derrière, qui illustre un volet selon la première variante de réalisation de la figure 3 équipé d'un moyen de redressement du flux d'air de fuite ;
- la figure 7 est une vue schématique de côté, qui illustre le volet de la figure 6 équipé d'un moyen de redressement du flux d'air de fuite ;
- la figure 8 est une vue schématique en section longitudinale, qui illustre une seconde variante de réalisation du dispositif d'inversion de poussée selon l'invention, comportant un dispositif de guidage du flux d'air principal en position rétractée de repos ;
- la figure 9 est une vue schématique en section longitudinale, qui illustre le dispositif de guidage du flux d'air de la figure 8 en position déployée de guidage ; - la figure 10 est une vue schématique de détail en section longitudinale, qui illustre un aubage du dispositif de guidage de la figure 8.
Pour clarifier la description et les revendications, on adoptera à titre non limitatif la terminologie longitudinal, vertical et transversal en référence au trièdre L, V, T indiqué aux figures, dont l'axe L est parallèle à l'axe central longitudinal de la nacelle.
A noter que dans la présente demande de brevet, les termes « axial » et « radial » doivent s'entendre en référence à l'axe central longitudinal de la nacelle.
De même, les termes « amont » et «aval » doivent s'entendre par rapport à la circulation du flux d'air à l'intérieur de l'ensemble propulsif formé par la nacelle et le turboréacteur, de l'avant vers l'arrière, c'est-à-dire de la gauche vers la droite selon la figure 1 .
Pour les différentes variantes de réalisation, les mêmes références pourront être utilisées pour des éléments identiques ou assurant la même fonction, par souci de simplification de la description.
On a représenté à la figure 1 une section arrière d'une nacelle 10 pour turboréacteur qui est équipée d'un dispositif 12 d'inversion de poussée par redirection d'un flux d'air 14.
Le flux d'air 14 circule d'amont en aval dans une veine 16 annulaire qui est délimitée radialement entre un carénage 18 interne du turboréacteur formé par une structure interne fixe, et une enveloppe 20 externe abritant le dispositif 12 d'inversion de poussée.
Le dispositif 12 d'inversion de poussée comporte un capot 22 qui est monté mobile en translation axiale d'avant en arrière selon une direction sensiblement parallèle à un axe longitudinal de la nacelle 10, entre une position de fermeture représentée à la figure 1 , dans laquelle le capot 22 assure la continuité aérodynamique de la nacelle 10, et une position d'ouverture dans laquelle le capot 22 ouvre un passage 24 dans la nacelle 10.
De plus, le dispositif 12 d'inversion de poussée est équipé d'un ensemble de volets 26 d'inversion de poussée agencés en anneau autour du carénage 18 interne du turboréacteur.
Seul un des volets 26 est représenté aux figures 1 et 2, et est décrit en détail par la suite, les autres volets 26 étant de géométrie et de cinématique similaires. Le volet 26 d'inversion de poussée représenté à la figure 1 s'étend longitudinalement depuis une tête 28, jusqu'à un pied 30, et le volet 26 est délimité par une face avant 32 et une face arrière 34.
Aussi, le volet 26 d'inversion est monté articulé sur le capot 22 entre une position escamotée correspondant à la position de fermeture du capot mobile, représentée à la figure 1 , dans laquelle la face avant 32 du volet 26 s'étend globalement axialement selon un l'axe longitudinal de la nacelle 10 en vis-à-vis du carénage 18 interne du turboréacteur, et une position d'inversion de poussée correspondant à la position d'ouverture du capot 22 mobile, représentée à la figure 2, dans laquelle le volet 26 s'étend globalement radialement, la face avant 32 du volet 26 étant pivotée pour s'opposer partiellement à la circulation du flux d'air 14 dans la veine 16 de circulation.
A cet effet, une articulation 36 relie en pivotement la face arrière 34 du volet 26 sur le capot 22.
De plus, une biellette 38 relie la face avant 32 du volet 26 sur le carénage 18 interne du turboréacteur.
Comme on peut le voir à la figure 2, l'extrémité avant du capot 22 mobile forme un becquet 40, le becquet 40 et la tête 28 du volet 26 d'inversion de poussée délimitant radialement entre eux un passage 42 de fuite adapté pour permettre l'écoulement d'un flux d'air de fuite 44 de tête de volet lorsque le volet 26 occupe sa position d'inversion de poussée.
Le becquet 40 formé par le capot 22 mobile est conçu notamment pour réorienter le flux d'air 14 vers l'avant de la nacelle 10 lorsque le capot 22 occupe sa position d'ouverture.
De façon complémentaire, le capot 22 mobile comporte un déflecteur 46 qui est agencé en aval du passage 42 de fuite et qui est conçu pour guider le flux d'air de fuite 44 vers la face arrière 34 du volet 26 formant extrados.
Dans ce but, le déflecteur 46 présente une face avant 48 qui s'étend globalement radialement en regard du becquet 40 du capot 22 mobile et qui est dessinée de manière à ce que la tangente à ce profil à l'endroit où le flux d'air de fuite 44 le quitte soit sensiblement parallèle à la face arrière 34 du volet 26 qui lui fait face à cet endroit. À ce titre le déflecteur 46 peut être de forme sensiblement convexe par exemple. Le déflecteur 46 est agencé de sorte que le passage 42 de fuite forme un rétrécissement adapté pour accélérer le flux d'air de fuite 44 le long de la face arrière 34 du volet 26.
Ainsi, l'écoulement du flux d'air de fuite 44 engendre une dépression sur la face arrière 34 du volet 26, cette dépression exerçant une contre-poussée vers l'avant qui s'oppose à la poussée vers l'arrière de la nacelle 10.
De plus, le volet 26, dans sa position d'inversion de poussée, est sensiblement incliné la tête 28 en avant de façon à rediriger le flux d'air 14 vers l'avant de la nacelle 10 à travers l'ouverture 24 prévue à cet effet, comme on peut le voir à la figure 2.
Avantageusement, la tête 28 du volet 26 présente un bord d'attaque 49 de forme sensiblement arrondie pour permettre au flux d'air de fuite 44 de contourner la tête 28 du volet 26 dans sa position d'inversion de poussée et de s'écouler le long de sa face arrière 34.
Selon un autre aspect, comme on peut le voir à la figure 2, le pied 30 du volet 26 et le carénage interne 18 du turboréacteur délimitent radialement entre eux un passage de fuite 50 supplémentaire qui permet l'écoulement d'un flux d'air de fuite 52 de pied de volet lorsque le volet 26 occupe sa position d'inversion de poussée.
Toujours en référence à la figure 2, la face arrière 34 du volet 26 délimite un redan 54 qui est agencé au pied 30 du volet 26 et qui est conçu pour limiter la pression du flux d'air de fuite 44 de tête de volet, en aval du volet 26 dans sa position d'inversion de poussée.
Le redan 54 créé un « décollement » du flux d'air de fuite 44 de tête afin de lui faire perdre sa pression dynamique avant que le flux d'air de fuite 44 atteigne l'extrémité libre du pied 30 du volet 26 formant bord de fuite 56 et le carénage interne 18, pour minimiser les effets du redressement du flux d'air de fuite 44 dans le sens de la poussée résiduelle de la nacelle 10 vers l'arrière.
La zone du passage de fuite 50 en pied de volet 26 s'en trouve surpressurisée ce qui tend à minimiser la pression du flux d'air de fuite 52 de pied de volet et la contre poussé associée.
Le bord de fuite 56 du pied 30 du volet 26 est de préférence relativement épais pour limiter la pression du flux d'air de fuite 52 en pied de volet 26 et par conséquent limiter le débit du flux d'air de fuite 52 en pied de volet. Selon une première variante de réalisation de l'invention représentée aux figures 3 à 7, le dispositif 12 d'inversion de poussée comporte une série de volets 58 supplémentaires d'inversion de poussée, qui sont agencés la tête sensiblement en arrière en position d'inversion de poussée, à l'inverse des volets 26 décrits précédemment qui son agencés la tête sensiblement en avant.
En référence à la figure 4, les volets 58 tête en arrière sont intercalés chacun entre deux volets 26 tête en avant, de sorte que les volets 58 tête en arrière et les volets 26 tête en avant sont décalés angulairement alternativement autour de leur axe d'articulation pour être agencés deux à deux en X, pour favoriser les fuites latérales entre deux volets 26, 58 voisins.
De plus, selon la figure 3, le pied 60 de chaque volet 58 tête en arrière et le carénage interne 18 du turboréacteur délimite radialement entre eux un passage de fuite 62 supplémentaire, pour favoriser la formation de tourbillons en aval des volets 26, 58.
Aussi, la tête 64 de chaque volet 58 tête en arrière est globalement accolé sur le becquet 40 du capot 22 pour limiter, voire supprimer, les fuites d'air en tête de volet 58.
Selon une variante de réalisation de l'invention non représentée, il peut également être choisi de garder une fuite d'air en tête de chaque volet 58 tête en arrière, de la même manière que pour les volets 26 tête en avant.
Dans ce cas, le capot mobile 22 comporte un déflecteur supplémentaire (non représenté) conçu pour guider un flux d'air de fuite parallèlement à la face arrière 66 de chaque volet 58 tête en arrière.
A l'inverse, le pied 30 de chaque volet 26 la tête en avant est globalement accolé sur le carénage interne 18 du turboréacteur pour limiter, voire supprimer, les fuites d'air en pied de volet 26. A cet effet, le pied 30 des volets 26 la tête en avant peut être équipée d'un moyen d'étanchéité (non représenté) comme un joint qui coopère avec le carénage interne 18 du turboréacteur.
Un tel agencement, autorisant un flux d'air de fuite 44 à fort débit, favorise la formation de tourbillons en aval des volets 26, 58.
Comme on peut le voir à la figure 5, qui représente schématiquement les volets 26, 58 vus de derrière, le but de cette disposition est d'obtenir un écoulement fortement toubillonnaire en aval des volets 26, 58 et qui en sortie aura un très faible coefficient de vitesse. Tout en passant un fort débit, les fuites d'air contournant les volets 26, 58 n'engendrent pas de poussée résiduelle significative.
Selon un exemple de réalisation préféré de l'invention, représenté aux figures 6 et 7, chaque volet 58 agencé la tête en arrière présente une face arrière 66 formant extrados qui est équipée de quatre écopes 68 formant moyen de redressement du flux d'air de fuite 44.
Les écopes 68 sont agencées par paire latéralement de chaque côté du volet 58 associé, les écopes 68 formant un canal qui s'étend depuis un orifice d'entrée 70 ouvert latéralement, jusqu'à un orifice de sortie 72 ouvert en regard de la tête 64 du volet 58 associé.
Les écopes 68 sont conçues pour guider le flux d'air de fuite 44 provenant des fuites latérales, vers la tête 64 des volets 58 associés, le long de la face arrière 66 des volets 58, pour éviter la création d'un point d'arrêt du flux d'air sur la face arrière 66 des volets 58.
A titre non limitatif, il est envisageable d'équiper la face arrière 34 des volets 26 tête en avant de moyens similaires de redressement du flux d'air de fuite 44.
Selon une seconde variante de réalisation de l'invention, représentée aux figures 8 à 10, le dispositif 12 d'inversion de poussée comporte un bord de déviation 74 de forme globalement annulaire qui est délimité par une paroi 76 convexe et qui est monté sur une extrémité arrière d'un cadre avant 80 de la nacelle 10.
Aussi, le dispositif 12 comporte un aubage 82 de forme globalement annulaire qui est délimité par un bord d'attaque 84 convexe agencé en regard du capot 22 mobile, et par un bord concave 86 agencé en regard du bord de déviation 74.
L'aubage 82 peut-être monté fixe. Dans ce cas, les dimensions et la position de l'aubage 82 sont adaptées pour permettre à l'aubage 82 de s'insérer dans le capot 22 au-dessus des volets 26 en position rétractée. De même, la tête 28 de chaque volet 26 rentre en contact avec le bord de déviation 74 pour assurer éventuellement l'étanchéité de l'écoulement lorsque le capot 22 occupe sa position de fermeture.
Dans un autre mode de réalisation, l'aubage 82 est monté coulissant axialement sur le cadre avant 80 de la nacelle 1 0 entre une position rétractée de repos représentée à la figure 8, correspondant à la position de fermeture du capot 22, dans laquelle la paroi 76 du bord de déviation 74 et le bord concave 86 de l'aubage 82 sont accolés, et une position déployée de guidage représentée à la figure 9, dans laquelle la paroi 76 du bord de déviation 74 et le bord concave 86 de l'aubage 82 délimitent entre eux un couloir 88 de déviation.
A cet effet, l'aubage 82 est monté sur une tige 90 axiale d'actionnement qui comporte un tronçon avant 92 relié sur l'aubage 82 et un tronçon arrière 94 entraîné en coulissement dans le cadre avant 80 de la nacelle 10 par un moyen d'actionnement (non représenté), comme un vérin par exemple.
Le couloir 88 de déviation est conçu pour guider le flux d'air qui s'écoule à travers le passage 24 découvert par le capot 22 vers l'avant et pour diminuer le décollement de couche limite.
De plus l'aubage 82 est agencé de façon à coopérer avec la tête 28 des volets 26 lorsque les volets 26 occupent leur position d'inversion de poussée.
Avantageusement, l'aubage 82 est réalisé en matériau déformable élastiquement, en élastomère par exemple, pour épouser la forme de la tête 28 des volets 26 afin d'assurer l'étanchéité de la veine 16 de circulation du flux d'air 14 lorsque le capot 22 occupe sa position de fermeture.
Comme on peut le voir plus en détail à la figure 10, l'aubage 82 comporte une âme rigide 96 reliée sur la tige 90 d'actionnement, une cavité 98 gonflable formant amortisseur et un trou 100 de gonflement de la cavité 98 par mise à l'air.
Par ailleurs l'aubage 82 peut être fragmenté circonférentiellement en plusieurs parties pour permettre à chaque partie d'avoir des cinématiques différentes.
La présente description de l'invention est donnée à titre d'exemple non limitatif.

Claims

REVENDICATIONS
1 . Dispositif (12) d'inversion de poussée pour nacelle (10) de turboréacteur d'aéronef, par redirection d'un flux d'air (14) circulant d'amont en aval dans une veine (16) qui est délimitée radialement entre un carénage (18) interne du turboréacteur et une enveloppe (20) externe abritant le dispositif (12) d'inversion de poussée, le dispositif (12) comprenant au moins :
- un capot (22) qui est monté mobile en translation axiale d'avant en arrière selon une direction sensiblement parallèle à un axe longitudinal de la nacelle (10), entre une position de fermeture dans laquelle le capot (22) assure la continuité aérodynamique de la nacelle (10), et une position d'ouverture dans laquelle le capot (22) ouvre un passage (24) dans la nacelle (10),
- un volet (26) d'inversion de poussée qui s'étend depuis une tête (28) jusqu'à un pied (30) et qui est délimité par une face avant (32) et une face arrière (34), le volet (26) d'inversion étant monté articulé sur le capot (22) mobile entre une position escamotée correspondant à la position de fermeture du capot (22) mobile, dans laquelle la face avant (32) du volet (26) s'étend axialement en vis-à-vis du carénage (18) interne de la nacelle (10), et une position d'inversion de poussée correspondant à la position d'ouverture du capot (22) mobile, dans laquelle la face avant (32) du volet (26) est pivotée pour s'opposer partiellement à la circulation du flux d'air (14) dans la veine (16) de circulation, caractérisé en ce qu'une partie avant du capot (22) mobile forme un becquet (40), le becquet (40) et la tête (28) du volet (26) d'inversion de poussée délimitant radialement entre eux un passage (42) de fuite adapté pour permettre l'écoulement d'un flux d'air de fuite (44) lorsque le volet (26) occupe sa position d'inversion de poussée, et en ce que le capot (22) mobile comporte un déflecteur (46) qui est agencé en aval du passage (42) de fuite et qui est conçu pour dévier le flux d'air de fuite (44) de sa trajectoire longitudinale.
2. Dispositif (12) d'inversion de poussée selon la revendication 1 , caractérisé en ce que le déflecteur (46) est agencé de façon à guider et accélérer le flux d'air de fuite (44) le long de la face arrière (34) du volet (26) pour engendrer une dépression sur la face arrière (34) du volet (26) favorable à une contre-poussée.
3. Dispositif (12) d'inversion de poussée selon l'une quelconque des revendications précédentes, caractérisé en ce que le volet (26), dans sa position d'inversion de poussée, est sensiblement incliné la tête (28) en avant.
4. Dispositif (12) d'inversion de poussée selon l'une quelconque des revendications précédentes, caractérisé en ce que la face arrière (34) du volet (26) forme un redan (54) qui est agencé au pied (30) du volet (26) et qui est conçu pour limiter la pression du flux d'air de fuite (44) en aval du volet (26) dans sa position d'inversion de poussée.
5. Dispositif (12) d'inversion de poussée selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte une pluralité de volets (26, 58) d'inversion de poussée qui sont disposés dans la veine (16) et qui sont décalés angulairement alternativement autour de leur axe d'articulation pour être agencés deux à deux en X, lorsque les volets (26, 58) occupent leur position d'inversion de poussée, de sorte qu'un premier volet (26) est incliné la tête en avant et le volet (58) voisin est incliné la tête en arrière, pour favoriser les fuites latérales entre deux volets (26, 58) voisins.
6. Dispositif (12) d'inversion de poussée selon la revendication 5, caractérisé en ce que chaque volet (26) agencé la tête en avant délimite un premier passage de fuite (42) entre la tête (28) dudit volet (26) et le capot (22) mobile, et en ce que chaque volet (58) agencé la tête en arrière délimite un second passage de fuite (62) entre le pied (60) dudit volet (58) et le carénage (18) interne du turboréacteur, pour favoriser la formation de tourbillons en aval des volets (26, 58).
7. Dispositif (12) d'inversion de poussée selon l'une quelconque des revendications 5 ou 6, caractérisé en ce que chaque volet (58) agencé la tête en arrière présente une face arrière (66) formant extrados qui est équipée d'un moyen de redressement (68) du flux d'air de fuite le long de ladite face arrière (66) associée.
8. Dispositif (12) d'inversion de poussée selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il est équipé d'un dispositif de guidage (74, 82) du flux d'air à travers le passage (24) ouvert par le capot (22) mobile dans sa position d'ouverture, le dispositif de guidage comportant :
- un bord de déviation (74) qui délimite une paroi (76) convexe et qui est monté sur une extrémité arrière d'un cadre avant (80) de la nacelle (10), - un aubage (82) qui délimite un bord d'attaque (84) convexe agencé en regard du capot (22) mobile, et un bord concave (86) agencé en regard du bord de déviation (74) pour délimiter un couloir (88) de déviation du flux d'air (14) qui s'écoule à travers le passage (24) découvert par le capot (22).
9. Dispositif (12) d'inversion de poussée selon la revendication 8, caractérisé en ce que l'aubage (82) est monté coulissant longitudinalement sur le cadre avant (80) de la nacelle (10) entre une position rétractée de repos, correspondant à la position de fermeture du capot (22), dans laquelle la paroi (76) du bord de déviation (74) et le bord concave (86) de l'aubage (82) sont accolés, et une position déployée de guidage dans laquelle la paroi (76) du bord de déviation (74) et le bord concave (86) de l'aubage (82) délimitent entre eux le couloir (88) de déviation.
10. Dispositif (12) d'inversion de poussée selon l'une quelconque des revendications 8 ou 9, caractérisé en ce que l'aubage (82) est réalisé en matériau déformable élastiquement et en ce qu'il est agencé de façon à coopérer avec la tête (28) du volet (26) lorsque ledit volet (26) occupe sa position escamotée.
PCT/FR2015/050730 2014-03-24 2015-03-24 Dispositif d'inversion de poussée sans grille pour nacelle de turboréacteur d'aéronef WO2015145056A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR14/52438 2014-03-24
FR1452438A FR3018863A1 (fr) 2014-03-24 2014-03-24 Dispositif d'inversion de poussee sans grille pour nacelle de turboreacteur d'aeronef

Publications (1)

Publication Number Publication Date
WO2015145056A1 true WO2015145056A1 (fr) 2015-10-01

Family

ID=51260986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2015/050730 WO2015145056A1 (fr) 2014-03-24 2015-03-24 Dispositif d'inversion de poussée sans grille pour nacelle de turboréacteur d'aéronef

Country Status (2)

Country Link
FR (1) FR3018863A1 (fr)
WO (1) WO2015145056A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170211510A1 (en) * 2016-01-22 2017-07-27 Honeywell International Inc. Translating cowl thrust reverser that prevents unintended door rotation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3082889A1 (fr) * 2018-06-26 2019-12-27 Airbus Operations Turboreacteur comportant une nacelle equipee de volets inverseurs pourvus de moyens pour generer des tourbillons

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4801112A (en) 1987-02-19 1989-01-31 Societe De Construction Des Avions Hurel-Dubois Aircraft power unit of the type with faired blower equipped with a thrust reverser wth doors
WO1996019656A1 (fr) * 1994-12-22 1996-06-27 United Technologies Corporation Inverseur de poussee compact
EP0806563A1 (fr) * 1996-05-09 1997-11-12 Hispano-Suiza Inverseur de poussée de turboréacteur à portes munies d'aubes deflectrices
FR2960600A1 (fr) * 2010-06-01 2011-12-02 Aircelle Sa Systeme d'actionnement d'un dispositif d'inversion de poussee
FR2978496A1 (fr) * 2011-07-29 2013-02-01 Aircelle Sa Ensemble propulsif d'aeronef comprenant au moins un turboreacteur et une nacelle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4801112A (en) 1987-02-19 1989-01-31 Societe De Construction Des Avions Hurel-Dubois Aircraft power unit of the type with faired blower equipped with a thrust reverser wth doors
WO1996019656A1 (fr) * 1994-12-22 1996-06-27 United Technologies Corporation Inverseur de poussee compact
EP0806563A1 (fr) * 1996-05-09 1997-11-12 Hispano-Suiza Inverseur de poussée de turboréacteur à portes munies d'aubes deflectrices
FR2960600A1 (fr) * 2010-06-01 2011-12-02 Aircelle Sa Systeme d'actionnement d'un dispositif d'inversion de poussee
FR2978496A1 (fr) * 2011-07-29 2013-02-01 Aircelle Sa Ensemble propulsif d'aeronef comprenant au moins un turboreacteur et une nacelle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170211510A1 (en) * 2016-01-22 2017-07-27 Honeywell International Inc. Translating cowl thrust reverser that prevents unintended door rotation
US10451002B2 (en) * 2016-01-22 2019-10-22 Honeywell International Inc. Translating cowl thrust reverser that prevents unintended door rotation

Also Published As

Publication number Publication date
FR3018863A1 (fr) 2015-09-25

Similar Documents

Publication Publication Date Title
EP2635788B1 (fr) DiSPOSITIF D'INVERSION DE POUSSÉE SANS BIELLE DANS LA VEINE
EP3129631B1 (fr) Dispositif d'inversion de poussée à portes pour nacelle de turboréacteur d'aéronef
EP3149318B1 (fr) Nacelle pour turboréacteur d'aéronef comprenant une tuyère secondaire à portes rotatives
EP2556237A1 (fr) Ensemble propulsif pour aéronef muni de moyens d'inversion de poussée
FR2978802A1 (fr) Inverseur a grilles mobiles et tuyere variable par translation
EP2737193B1 (fr) Ensemble propulsif d'aéronef
FR2962492A1 (fr) Dispositif d'inversion de poussee avec jonction aerodynamique de cadre avant
WO2015145056A1 (fr) Dispositif d'inversion de poussée sans grille pour nacelle de turboréacteur d'aéronef
FR3006716A1 (fr) Inverseur de poussee a volet de blocage articule par embiellage trois points
EP3740666A1 (fr) Ensemble arrière d'une nacelle de turboréacteur d'aéronef comprenant un inverseur de poussée à grilles coulissantes
EP2572097A1 (fr) Inverseur de poussée à grilles ou à cascade, pour un turboréacteur d'avion
EP3891374B1 (fr) Inverseur de poussée muni d'un volet d'inversion de poussée allégé
WO2021136902A1 (fr) Inverseur de poussée à portes comprenant au moins un déflecteur escamotable pour obturer une ouverture latérale
WO2009122026A1 (fr) Nacelle de turboréacteur à double flux
FR3031360A1 (fr) Ensemble propulsif pour aeronef
WO2021136900A1 (fr) Inverseur de poussée à portes comprenant un déflecteur pour rediriger un flux d'air vers un empennage
EP4077903A1 (fr) Inverseur de poussée avec système d'actionnement anti-flambage
FR3077100A1 (fr) Dispositif d’inversion de poussee et nacelle pour turboreacteur

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15718521

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15718521

Country of ref document: EP

Kind code of ref document: A1