WO2015144016A1 - 无线通信控制方法和装置 - Google Patents

无线通信控制方法和装置 Download PDF

Info

Publication number
WO2015144016A1
WO2015144016A1 PCT/CN2015/074701 CN2015074701W WO2015144016A1 WO 2015144016 A1 WO2015144016 A1 WO 2015144016A1 CN 2015074701 W CN2015074701 W CN 2015074701W WO 2015144016 A1 WO2015144016 A1 WO 2015144016A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
terminal
request frame
probe request
wireless network
Prior art date
Application number
PCT/CN2015/074701
Other languages
English (en)
French (fr)
Inventor
阮卫
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2016559293A priority Critical patent/JP6209774B2/ja
Priority to EP15769069.4A priority patent/EP3116279B1/en
Publication of WO2015144016A1 publication Critical patent/WO2015144016A1/zh
Priority to US15/274,800 priority patent/US10129832B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0251Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity
    • H04W52/0258Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity controlling an operation mode according to history or models of usage information, e.g. activity schedule or time of day
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/16Threshold monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0245Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal according to signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/143Downlink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/245TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/246TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where the output power of a terminal is based on a path parameter calculated in said terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/343TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading taking into account loading or congestion level
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/50TPC being performed in particular situations at the moment of starting communication in a multiple access environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communications technologies, and more particularly to a wireless communication control method and apparatus.
  • the working frequency band is mainly divided into 2.4 GHz (English: gigahertz, symbol: GHz) and 5 GHz, and each frequency band is divided into several channels.
  • the terminal may send a probe request (English: Probe Request) frame in each working frequency band supported by the terminal, and the wireless network device responds to a Probe Request frame of a working frequency band after receiving the Probe Request frame.
  • a probe response (English: Probe Response) frame is sent to the terminal in the working frequency band.
  • the terminal can perform wireless communication with the wireless network device through the working frequency band.
  • the Probe Request frame of the working frequency band in response to the wireless network device is determined according to the load condition of the wireless network device in the working frequency band in the prior art.
  • the number of non-overlapping channels in different working frequency bands is different, and the non-overlapping channels refer to channels that do not overlap with other channels.
  • the interference on the same channel is more serious.
  • the present application provides a wireless communication control method and apparatus that reduces interference on the same channel in a working frequency band with fewer non-overlapping channels.
  • a wireless communication control method including:
  • the wireless network device receives the first probe request frame sent by the terminal in the first frequency band, and receives the second probe request frame sent by the terminal in the second frequency band, where the number of non-overlapping channels in the first frequency band is smaller than the first a number of non-overlapping channels of the second frequency band; the first transmit power of the wireless network device in the first frequency band is smaller than the second transmit power in the second frequency band;
  • the wireless network device preferentially responds to the first probe request frame with the first transmit power, where the signal transmission strength of the terminal is greater than a preset strength;
  • the wireless network device preferentially responds to the second probe request frame with the second transmit power.
  • the wireless network device preferentially responds to the first transmit power in a case that a signal transmission strength of the terminal is greater than the preset strength
  • the first probe request frame includes:
  • the wireless network device uses the first transmission The power responds to the first probe request frame.
  • a second possible implementation manner of the first aspect is further provided, where a signal transmission strength of the terminal is less than the pre- In the case of the strength, the wireless network device preferentially responding to the second probe request frame with the second transmit power includes:
  • the wireless network device uses the second transmission The power is responsive to the second probe request frame.
  • any one of the first possible implementation of the first aspect and the second possible implementation of the first aspect in a third possible implementation of the first aspect, the method also includes:
  • the load of the wireless network device in the first frequency band is greater than or equal to a first preset threshold
  • the load of the second frequency band is less than a second preset threshold
  • accessing the first frequency band from the wireless network device In the terminal the selection signal has the lowest transmission intensity, and the terminal supporting the second frequency band is offline;
  • the load of the wireless network device in the second frequency band is greater than or equal to a second preset threshold
  • the load of the first frequency band is less than the first preset threshold
  • accessing the second frequency band from the wireless network device In the terminal the selection signal has the highest transmission intensity, and the terminal supporting the first frequency band is offline;
  • the method further includes:
  • the terminal When the terminal is a terminal that is offline in the first frequency band, responding to the second probe request frame;
  • the terminal When the terminal is a terminal that is offline in the second frequency band, responding to the first probe request frame.
  • the wireless network device is One-band reception end After the first probe request frame sent by the terminal, when the second probe request frame sent by the terminal in the second frequency band is not received within a preset time, the method further includes:
  • a wireless communication control apparatus including:
  • a first receiving module configured to receive, by the first frequency band, a first probe request frame sent by the terminal
  • a second receiving module configured to receive, in a second frequency band, a second probe request frame sent by the terminal, where a number of non-overlapping channels in the first frequency band is smaller than a number of non-overlapping channels in the second frequency band;
  • a first response module configured to preferentially respond to the first probe request frame with the first transmit power in a case where a signal transmission strength of the terminal is greater than a preset strength
  • a second response module configured to When the signal transmission strength of the terminal is less than the preset strength, the second detection request frame is preferentially responded to by the second transmission power, wherein the first transmission power is smaller than the second transmission power.
  • the first response module is specifically configured to: when a signal emission strength of the terminal is greater than the preset strength, and a load in the first frequency band is less than a first In the case of a preset threshold, the first probe request frame is responsive to the first transmit power.
  • a second possible implementation manner of the second aspect is further provided, where the second response module is specifically used in the terminal
  • the signal transmission intensity is less than the preset strength, and in a case where the load of the second frequency band is less than the second preset threshold, the second detection request frame is responded to by the second transmission power.
  • the second response module is specifically configured to: when the signal transmission strength of the terminal is less than the preset strength, and if the load of the second frequency band is less than a second preset threshold, use the second transmit power Responding to the second probe request frame.
  • the apparatus in conjunction with the second aspect, the first possible implementation of the second aspect, and the second possible implementation of the second aspect, in a third possible implementation of the second aspect, the apparatus also includes:
  • a first offline module configured to: when the load in the first frequency band is greater than or equal to a first preset threshold, when the load in the second frequency band is less than a second preset threshold, accessing the first frequency band In the terminal, the selection signal has the lowest transmission intensity, and the terminal supporting the second frequency band is offline;
  • the load in the second frequency band is greater than or equal to a second preset threshold, and when the load in the first frequency band is less than the first preset threshold, from the access to the second frequency band In the terminal, the selection signal has the highest transmission intensity, and the terminal supporting the first frequency band is offline;
  • a third response module configured to: when the first receiving module receives the first probe request frame of the terminal, and the second receiving module receives the second probe request frame of the terminal, if the terminal is in the first Responding to the second probe request frame when a frequency band is offline;
  • a fourth response module configured to: when the first receiving module receives the first probe request frame of the terminal, and the second receiving module receives the second probe request frame of the terminal, if the terminal is in the first When the second frequency band is offline, the first response request frame is responded to.
  • the device further includes:
  • a fifth response module configured to: after the first receiving module receives the first probe request frame sent by the terminal in the first frequency band, when the second receiving module does not receive the terminal in the preset time And transmitting, in the second probe request frame of the frequency band, the first probe request frame, where the third transmit power is responsive to the third transmit power, if the signal transmit strength of the terminal is less than the preset strength Greater than the first transmit power.
  • the present application provides a wireless communication control method and apparatus, where a wireless network device receives a first probe request frame sent by a terminal in a first frequency band, and receives a second probe request frame sent by the terminal in a second frequency band.
  • the number of non-overlapping channels in the first frequency band is smaller than the number of non-overlapping channels in the second frequency band, and the first transmit power of the wireless network device in the first frequency band is smaller than the second transmit power in the second frequency band, so that the wireless network device
  • the coverage in the first frequency band is smaller than the coverage in the second frequency band; when the signal transmission strength of the terminal is less than the preset strength, that is, when the distance from the wireless network device is far, the second detection request frame is preferentially responded to when the signal of the terminal is When the emission intensity is greater than the preset strength, that is, closer to the wireless network device, the first probe request frame is preferentially responded.
  • the distance between wireless network devices using the same channel in the first frequency band is small, and the low transmission power of the wireless network device in the first frequency band helps to reduce the wireless network device on the same frequency channel.
  • the interference between the two, and the coverage of the second frequency band is large enough to ensure that the user normally uses the wireless local area network.
  • FIG. 1 is a flowchart of an embodiment of a wireless communication control method according to an embodiment of the present application
  • FIG. 2 is a flowchart of still another embodiment of a wireless communication control method according to an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of an embodiment of a wireless communication control apparatus according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of still another embodiment of a wireless communication control apparatus according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of an embodiment of a wireless network device according to an embodiment of the present disclosure.
  • the wireless network device receives the first probe request frame sent by the terminal in the first frequency band, and the second probe request frame sent by the terminal in the second frequency band, where the number of non-overlapping channels in the first frequency band is smaller than the second The number of non-overlapping channels in the frequency band, and the first transmit power of the wireless network device in the first frequency band is smaller than the second transmit power in the second frequency band; when the signal transmission strength of the terminal is less than the preset strength, that is, the distance from the wireless network device In the long-term, the second probe request frame is preferentially responded. When the signal transmission strength of the terminal is greater than the preset strength, that is, closer to the wireless network device, the first probe request frame is preferentially responded.
  • the distance between the wireless network devices using the same channel in the first frequency band is small, and the transmission power of the wireless network device in the first frequency band is low, which helps to reduce the wireless network device on the same channel.
  • Interference between the same channels, and a sufficiently large coverage of the second frequency band ensures that the user can use the wireless local area network normally.
  • FIG. 1 is a flowchart of an embodiment of a method for controlling a wireless communication according to an embodiment of the present application. The method may include the following steps:
  • the wireless network device receives the first probe request frame sent by the terminal in the first frequency band, and receives the second probe request frame sent by the terminal in the second frequency band.
  • the number of non-overlapping channels in the first frequency band is smaller than the number of non-overlapping channels in the second frequency band.
  • the terminal can support multiple frequency bands, and the first frequency band and the second frequency band can be any two of the multiple frequency bands.
  • the wireless network device is configured with at least a radio frequency module (English: radio frequency module, RF module) supporting the first frequency band and a radio frequency module supporting the second frequency band. Thereby, signals from the first frequency band and the second frequency band can be received separately.
  • a radio frequency module (English: radio frequency module, RF module) supporting the first frequency band
  • a radio frequency module supporting the second frequency band.
  • the wireless network device may refer to a wireless access node (English: access point, abbreviation: AP) in the wireless local area network system.
  • AP wireless access node
  • the working frequency bands are mainly divided into 2.4 GHz and 5 GHz.
  • the first frequency band may refer to a 2.4 GHz working frequency band
  • the second frequency band may refer to a 5 GHz working frequency band.
  • the number of non-overlaps is generally a dozen or twenty, which is much larger than that in the 2.4 GHz band.
  • the number of non-overlapping channels is generally a dozen or twenty, which is much larger than that in the 2.4 GHz band.
  • the probe request frame is the signaling sent when the terminal actively scans.
  • the first probe request frame is a probe request frame sent by the terminal in the first frequency band
  • the second probe request frame is a probe request frame sent by the terminal in the second frequency band.
  • the radio frequency module supporting the first frequency band and the radio frequency module supporting the second frequency band of the wireless network device can respectively receive the first probe request frame and the second probe request frame.
  • the wireless network device In a case that a signal transmission strength of the terminal is greater than a preset strength, the wireless network device preferentially responds to the first probe request frame with the first transmit power.
  • the wireless network device preferentially responds to the second probe request frame with the second transmit power.
  • the first transmit power of the wireless network device in the first frequency band is smaller than the second transmit power in the second frequency band, such that the coverage of the wireless network device in the first frequency band is smaller than the coverage in the second frequency band.
  • the coverage of the wireless network device in the first frequency band refers to the area where the signal strength of the wireless network device in the first frequency band is greater than a certain threshold; the coverage of the wireless network device in the second frequency band refers to the signal strength of the wireless network device in the second frequency band.
  • the wireless network device may preferentially respond to the first probe request frame with the first transmit power, or preferentially respond with the second transmit power.
  • the second probe request frame is described.
  • the preferentially responding to the first probe request frame includes directly responding to the first probe request frame, or responding to the first probe request frame under certain conditions.
  • the preferentially responding to the second probe request frame includes directly responding to the second probe request frame or responding to the second probe request frame under certain conditions.
  • the responding to the first probe request frame includes sending a probe response frame to the terminal in the first frequency band
  • responding to the second probe request frame includes sending a probe response frame to the terminal in the second frequency band
  • the signal transmission strength of the terminal may specifically refer to the signal strength of the first probe request frame or the signal strength of the second probe request frame, and the signal strength of the first probe request frame and the signal strength of the second second probe request frame respectively Set the intensity to be different.
  • the signal transmission strength of the terminal may be determined according to the RSSI (received signal strength indicator) of the first probe request frame or the second probe request frame.
  • the non-overlapping channel data of the first frequency band is smaller than the number of non-overlapping channels of the second frequency band, and the distance between the wireless network devices using the same channel in the first frequency band is smaller, and the interference on the same channel of the first frequency band is more serious.
  • the first frequency band is the 2.4 GHz working frequency band
  • the second frequency band is the 5 GHz working frequency band.
  • the number of non-overlapping channels in the 2.4 GHz working frequency band is less than the number of non-overlapping channels in the 5 GHz working frequency band.
  • the distance between wireless network devices using the same channel is 1.732 times the distance between adjacent wireless network devices.
  • the 5GHz operating frequency band in the United States, at least 2.65 times, and a well-planned network can be larger. Therefore, in the 2.4 GHz operating band, the interference on the same channel is more serious.
  • the first transmission power of the wireless network device in the first frequency band is low, which helps to reduce interference between wireless network devices on the same channel.
  • the terminal signal transmission intensity is less than the preset strength, that is, when the distance from the wireless network device is far, the second detection request frame is preferentially responded, and the signal emission intensity of the terminal is greater than the preset strength, that is, when the distance is closer to the wireless network device, the priority is prioritized.
  • the wireless network device Since the second transmit power of the second frequency band is greater than the first transmit power, the wireless network device has a larger coverage in the second frequency band, so that the farther terminal can access the second frequency band of the wireless network device, thereby ensuring that the user is normal.
  • Use a wireless LAN is
  • the wireless network device may pre-configure the first transmit power in the first frequency band and the second transmit power in the second frequency band, so that the coverage in the first frequency band is smaller than the coverage in the second frequency band.
  • the second transmit power differs from the first transmit power by about 6 decibels (English: decibel, abbreviated: dB), at this time, in the first frequency band
  • the coverage is approximately half of the coverage of the second frequency band and is within the coverage of the second frequency band.
  • the interference on the same channel in the first frequency band can be further reduced.
  • the terminal that is close to the wireless network device and the terminal that is closer to the wireless network device may be determined, and the wireless network device preferentially responds to the first detection response frame, and the distance The terminal that is far away from the wireless network device, the wireless network device preferentially responds to the second probe response frame.
  • the signal delay of the terminal when the signal delay of the received terminal is greater than a preset value, it may be determined that the terminal is far away from the wireless network device, and therefore responds to the first probe response frame preferentially; When the signal delay of the received terminal is less than the preset value, it may be determined that the terminal is closer to the wireless network device and preferentially responds to the second probe response frame.
  • the wireless network device preferentially responds to the first probe request frame by using the first transmit power.
  • one possible implementation manner of preferentially responding to the first probe request frame with the first transmit power is:
  • the signal transmission strength of the terminal is greater than the preset strength, and the wireless network device responds to the first probe request frame with the first transmit power when the load of the first frequency band is less than the first preset threshold.
  • the load of the wireless network device in the first frequency band is not exceeded, so as to ensure communication quality and reduce interference on the same channel in the first frequency band.
  • the wireless network device preferentially responds to the second detection by using the second transmit power.
  • the request frame can include:
  • the wireless network device responds to the second transmit power by using the second transmit power when the load of the first frequency band is greater than a first preset threshold. Two probe request frames.
  • one possible implementation manner of preferentially responding to the second probe request with the second transmit power is:
  • the signal transmission strength of the terminal is less than the preset strength, and the wireless network device directly responds to the second probe request frame with the second transmit power when the load of the second frequency band is less than the second preset threshold.
  • the load of the wireless network device in the second frequency band is not exceeded, so as to ensure the communication quality, and the coverage in the second frequency band is large, thereby ensuring that the user can normally use the wireless local area network.
  • the load of the wireless network device in the first frequency band is greater than the first preset threshold, and when the load in the second frequency band is less than the second preset threshold, the second probe request frame may be preferentially responded to Ensure that users use WLAN normally.
  • the load of the wireless network device in the first frequency band is less than the first preset threshold, and when the negative of the second frequency band is greater than the second preset threshold, the first probe request frame may be preferentially responded to ensure that the user normally uses the wireless local area network.
  • the present application further provides a wireless communication control method.
  • the method may include the following steps:
  • the wireless network device receives the first probe request frame sent by the terminal in the first frequency band, and receives the second probe request frame sent by the terminal in the second frequency band.
  • Step 201 is similar to step 101, and details are not described herein again.
  • the wireless network device In a case that a signal transmission strength of the terminal is greater than the preset strength, the wireless network device preferentially responds to the first probe request frame with a first transmit power.
  • the step 202 may be: when the signal transmission strength of the terminal is greater than the preset strength, and the wireless network device is less than the first preset threshold in the first frequency band, The first transmit power is responsive to the first probe request frame.
  • the step 203 may be: when the signal transmission strength of the terminal is less than the preset strength, and the wireless network device uses the second transmission power when the load of the second frequency band is less than the second preset threshold. Directly respond to the second probe request frame.
  • Step 204 When the load of the wireless network device in the first frequency band is greater than a first preset threshold, and when the load of the second frequency band is less than a second preset threshold, first accessing the wireless network device In the terminal of the frequency band, the selection signal has the lowest transmission intensity, and the terminal supporting the second frequency band is offline;
  • the terminal that goes offline in the first frequency band can access the wireless network device in the second frequency band because it can support the second frequency band.
  • the terminal prioritized selection signal in the first frequency band has the lowest transmission intensity, that is, the terminal farther from the wireless network device.
  • the terminal that is offline in the second frequency band can access the wireless network device in the first frequency band because the first frequency band can be supported.
  • the terminal prioritized selection signal in the second frequency band has the highest transmission intensity, that is, the terminal closer to the wireless network device.
  • the wireless network device can mark the terminal of the offline line, for example, the media access control (English: media access control, abbreviation: MAC) address of the offline terminal, when the offline terminal transmits the detection in the first frequency band and the second frequency band respectively.
  • the media access control English: media access control, abbreviation: MAC
  • it may determine whether the terminal that is offline in the first frequency band or the second frequency band according to the saved MAC address, so as to directly respond to the probe request frame sent by the offline terminal in the second frequency band or the first frequency band.
  • the first frequency band When the load of the wireless network device in the first frequency band is equal to the first preset threshold, when the load of the second frequency band is less than the second preset threshold; the first frequency band may be accessed from the wireless network device In the terminal, the selection signal has the lowest transmission intensity, and the terminal supporting the second frequency band is offline.
  • the first frequency band may be accessed from the wireless network device In the terminal, the selection signal has the lowest transmission intensity, and the terminal supporting the second frequency band is offline.
  • the method may further include:
  • the first transmit power of the wireless network device in the first frequency band is low, which helps to reduce interference between wireless network devices on the same channel.
  • the terminal signal transmission intensity is less than the preset strength, that is, when the distance from the wireless network device is far, the second detection request frame is preferentially responded, and the signal emission intensity of the terminal is greater than the preset strength, that is, when the distance is closer to the wireless network device, the priority is prioritized.
  • the wireless network device Since the second transmit power of the second frequency band is greater than the first transmit power, the wireless network device has a larger coverage in the second frequency band, so the farther terminal can access the second frequency band of the wireless network device, thereby ensuring normal use of the user.
  • Wireless LAN Wireless LAN.
  • the wireless network device monitors the load conditions in the first frequency band and the second frequency band.
  • the terminal that supports the other frequency bands is selected to go offline, and the wireless network device receives the downlink terminal.
  • the request frame is detected, it can be recorded according to the offline line. Directly responding to the probe request frame sent by the offline terminal in other frequency bands, thereby ensuring that the user normally uses the wireless local area network without affecting the wireless communication, and reduces the interference on the same channel.
  • the terminal may only receive one working frequency band, and the wireless network device may receive the probe request frame of the terminal only in one working frequency band.
  • the wireless network device can respond to the first probe request frame sent by the terminal in the first frequency band with the third transmit power, that is, according to the third transmission. Power sends a probe response frame to the terminal.
  • the third transmit power is greater than the first transmit power.
  • the data transmission power is also greater than the first transmission power.
  • the wireless network device determines whether the terminal supports only one working frequency band and can be judged by the signal receiving interval time.
  • the wireless network device after receiving the first probe request frame sent by the terminal in the first frequency band, the wireless network device does not receive the second probe request sent by the terminal in the second frequency band within a preset time.
  • the method may further include:
  • the probe response frame is sent to the terminal according to the third transmit power in the first frequency band.
  • FIG. 3 is a schematic structural diagram of an embodiment of a wireless communication control apparatus according to an embodiment of the present disclosure, where the apparatus may include:
  • the first receiving module 301 is configured to receive, in the first frequency band, a first probe request frame sent by the terminal.
  • the second receiving module 302 is configured to receive, in the second frequency band, a second probe request frame sent by the terminal.
  • the terminal can support multiple frequency bands, and the first frequency band and the second frequency band can be any two of the multiple frequency bands.
  • the wireless communication control apparatus provided by the embodiment of the present application may be integrated into a wireless network device, and the wireless network device may refer to an AP in a wireless local area network system.
  • the first receiving module can receive the signal from the first frequency band by using the radio frequency module configured by the wireless network device to support the first frequency band, and the second receiving module receives the second frequency band by using the radio frequency module configured by the wireless network device to support the second frequency band. signal of.
  • the number of non-overlapping channels in the first frequency band is smaller than the number of non-overlapping channels in the second frequency band.
  • the working frequency band is mainly divided into 2.4 GHz and 5 GHz.
  • the first frequency band supported by the first receiving module may be the 2.4 GHz working frequency band
  • the second frequency band supported by the second receiving module may be the 5 GHz working frequency band.
  • the first response module 303 is configured to preferentially respond to the first probe request frame with the first transmit power if the signal transmit strength of the terminal is greater than a preset strength.
  • the second response module 304 is configured to preferentially respond to the second probe request frame with the second transmit power if the signal transmit strength of the terminal is less than the preset strength.
  • the first transmit power is less than the second transmit power.
  • Preferentially responding to the first probe request frame includes directly responding to the first probe request frame or responding to the first probe request frame under certain conditions.
  • the preferentially responding to the second probe request frame includes directly responding to the second probe request frame or responding to the second probe request frame under certain conditions.
  • the responding to the first probe request frame includes sending a probe response frame to the terminal in the first frequency band
  • responding to the second probe request frame includes sending a probe response frame to the terminal in the second frequency band
  • the signal transmission strength of the terminal may specifically refer to the signal strength of the first probe request frame or the signal strength of the second probe request frame, and the signal strength of the first probe request frame and the signal strength of the second second probe request frame respectively Set the intensity to be different.
  • the number of non-overlapping channels in the first frequency band is smaller than the number of non-overlapping channels in the second frequency band, the distance between the wireless network devices using the same channel in the first frequency band is smaller, and the interference on the same channel in the first frequency band is more serious.
  • the first frequency band as the 2.4 GHz working frequency band
  • the second frequency band as the 5 GHz working frequency band
  • the number of non-overlapping channels in the 2.4 GHz working frequency band is less than the number of non-overlapping channels in the 5 GHz working frequency band
  • the number of non-overlapping channels in the 2.4 GHz working frequency band is less than Number of non-overlapping channels in the 5 GHz operating band.
  • the distance between wireless network devices using the same channel is 1.732 times the distance between wireless network devices using adjacent channels.
  • the 5GHz operating frequency band it can reach at least 2.65 times in the United States. Therefore, in the 2.4 GHz operating band, the interference on the same channel is more serious.
  • the first transmit power in the first frequency band is low, it helps to reduce interference between wireless network devices on the same channel.
  • the terminal signal transmission intensity is less than the preset strength, that is, when the distance from the wireless network device is far,
  • the second probe request frame is preferentially responded to, and the signal transmission strength of the terminal is greater than the preset strength, that is, when the signal is closer to the wireless network device, the first probe request frame is preferentially responded. Since the second transmit power of the second frequency band is greater than the first transmit power, the wireless network device has a larger coverage in the second frequency band, so that the farther terminal can access the second frequency band, thereby ensuring that the user normally uses the wireless local area network.
  • the first transmit power in the first frequency band and the second transmit power in the second frequency band may be pre-configured such that the coverage of the wireless network device in the first frequency band is smaller than the coverage of the second frequency band.
  • the second transmit power is different from the first transmit power by about 6 dB.
  • the coverage in the first frequency band is approximately in the second frequency band.
  • the terminal that is close to the wireless network device and the terminal that is closer to the wireless network device may be determined, and the wireless network device preferentially responds to the first detection response frame, and the distance The terminal that is far away from the wireless network device, the wireless network device preferentially responds to the second probe response frame.
  • the signal delay of the terminal when the signal delay of the received terminal is greater than a preset value, it may be determined that the terminal is far away from the wireless network device, and therefore responds to the first probe response frame preferentially; When the signal delay of the received terminal is less than the preset value, it may be determined that the terminal is closer to the wireless network device and preferentially responds to the second probe response frame.
  • the first response module may be specifically used for the signal at the terminal.
  • the first response module may be specifically used for the signal at the terminal.
  • the emission strength is greater than the preset strength, and in a case that the load of the first frequency band is less than the first preset threshold, the first detection request frame is responded to by the first transmission power.
  • the load of the wireless network device in the first frequency band is not exceeded, so as to ensure communication quality and reduce interference on the same channel in the first frequency band.
  • the second response module may be specifically configured to: when the signal transmission strength of the terminal is less than the preset strength, and if the load of the second frequency band is less than a second preset threshold, use the second transmission The power is responsive to the second probe request frame.
  • the load of the wireless network device in the second frequency band is not exceeded, so as to ensure the communication quality, and the coverage of the wireless network device in the second frequency band is large, thereby ensuring that the user can normally use the wireless local area network.
  • the second probe request frame may be preferentially responded to ensure that the user is normal.
  • Use a wireless LAN Use a wireless LAN.
  • the load in the first frequency band is smaller than the first preset threshold, and when the negative of the second frequency band is greater than the second preset threshold, the first probe request frame may be preferentially responded to ensure that the user normally uses the wireless local area network.
  • the present application further provides a further embodiment of the wireless communication control apparatus.
  • the device may include:
  • the first receiving module 401 is configured to receive, in the first frequency band, a first probe request frame sent by the terminal.
  • the second receiving module 402 is configured to receive, in the second frequency band, a second probe request frame sent by the terminal.
  • the first response module 403 is configured to preferentially respond to the first probe request frame with the first transmit power if the signal transmit strength of the terminal is greater than a preset strength.
  • the first response module may be specifically configured to: when the signal transmission strength of the terminal is greater than the preset strength, and if the load of the first frequency band is less than a first preset threshold, the first transmission is performed. The power responds to the first probe request frame.
  • the second response module 404 is configured to preferentially respond to the second probe request frame with the second transmit power if the signal transmit strength of the terminal is less than the preset strength.
  • the second response module may be specifically configured to: when the signal transmission strength of the terminal is less than the preset strength, and if the load of the second frequency band is less than a second preset threshold, the second transmission The power is responsive to the second probe request frame.
  • the first transmit power is less than the second transmit power.
  • the first offline module 405 is configured to: when the load in the first frequency band is greater than or equal to a first preset threshold, and when the load in the second frequency band is less than a second preset threshold, accessing the first In the terminal of the frequency band, the selection signal has the lowest transmission intensity, and the terminal supporting the second frequency band is offline.
  • the second offline module 406 is configured to: when the load in the second frequency band is greater than or equal to a second preset threshold, when the load in the first frequency band is less than the first preset threshold, accessing the second frequency band In the terminal, the selection signal has the highest transmission intensity, and the terminal supporting the first frequency band is offline.
  • a third response module 407 configured to: when the first receiving module receives the first probe request frame of the terminal, and the second receiving module receives the second probe request frame of the terminal, if the terminal is When the first frequency band is offline, the second response request frame is responded to.
  • the fourth response module 408 is configured to: when the first receiving module receives the first probe request frame of the terminal, and the second receiving module receives the second probe request frame of the terminal, if the terminal is When the second frequency band is off the terminal, the first probe request frame is responded to.
  • the first transmit power is low, which helps to reduce interference between wireless network devices on the same channel.
  • the terminal signal transmission intensity is less than the preset strength, that is, when the distance from the wireless network device is far, the second detection request frame is preferentially responded, and the signal emission intensity of the terminal is greater than the preset strength, that is, when the distance is closer to the wireless network device, the priority is prioritized.
  • Responding to the first probe request frame Since the second transmit power of the second frequency band is greater than the first transmit power, the wireless network device has a larger coverage in the second frequency band, so the farther terminal can access the second frequency band, thereby ensuring that the user normally uses the wireless local area network.
  • the load condition in the first frequency band and the second frequency band can be monitored.
  • the terminal supporting the other frequency band is selected to go offline.
  • the terminal supporting the other frequency band is selected to go offline.
  • the offline record directly responding to the probe request frame sent by the offline terminal in other frequency bands, thereby ensuring that the user normally uses the wireless local area network without affecting the communication quality, and reducing the interference on the same channel.
  • the terminal may only support one working frequency band. Therefore, the terminal may only receive the probe request frame of the terminal in one working frequency band. In particular, if the terminal only supports the first frequency band, if the signal emission strength of the terminal is less than the preset strength, When the wireless network device is far away from the wireless network device, in order to ensure that the wireless local area network can be used normally, the device may respond to the first probe request frame sent by the terminal in the first frequency band with the third transmit power, that is, send the terminal according to the third transmit power. Probe response frame. The third transmit power is greater than the first transmit power.
  • the data transmission power is also greater than the first transmission power.
  • Determining whether the terminal supports only one working frequency band can be judged by the signal receiving interval time.
  • the wireless communication control apparatus may further include:
  • a fifth response module configured to: after the first receiving module receives the first probe request frame sent by the terminal in the first frequency band, when the second receiving module does not receive the terminal in the preset time Second detection of band transmission When the frame is requested, in a case that the signal transmission strength of the terminal is less than the preset strength, the first probe request frame is responsive to the third transmit power, wherein the third transmit power is greater than the first transmit power.
  • the wireless communication control device described in the foregoing embodiment may be integrated into a wireless network device in an actual application, and the wireless network device may be an AP in the WLAN system.
  • the wireless network device supports at least a first frequency band and a second frequency band, and at least a radio frequency module supporting the first frequency band and a radio frequency module supporting the second frequency band are disposed. Thereby, signals from the first frequency band and the second frequency band can be received separately.
  • the embodiment of the present application further provides a wireless network device, where the wireless network device includes at least a first radio frequency module 501, a second radio frequency module 502, a memory 503, and a processor 504, and a first radio frequency module 501.
  • the second radio frequency module 502 and the memory 503 are respectively connected to the processor 504.
  • the memory 503 stores a set of program instructions, which may be volatile memory (English: volatile memory), such as random access memory (English: random-access memory, abbreviation: RAM); or non-volatile memory (English) :non-volatile memory), such as flash memory (English: flash memory), hard disk (English: hard disk drive, abbreviation: HDD) or solid state drive (English: solid-state drive, abbreviation: SSD); or the above types A combination of memories.
  • volatile memory such as random access memory (English: random-access memory, abbreviation: RAM); or non-volatile memory (English) :non-volatile memory), such as flash memory (English: flash memory), hard disk (English: hard disk drive, abbreviation: HDD) or solid state drive (English: solid-state drive, abbreviation: SSD); or the above types A combination of memories.
  • the processor 504 is configured to invoke a program instruction stored in the memory 503, and perform the following operations:
  • the number of non-overlapping channels is smaller than the number of non-overlapping channels in the second frequency band, and the first transmit power of the wireless network device in the first frequency band is smaller than the second transmit power in the second frequency band;
  • the wireless network device preferentially responds to the first probe request frame with the first transmit power, where the signal transmission strength of the terminal is greater than a preset strength;
  • the wireless network device preferentially responds to the second probe request frame with the second transmit power.
  • the processor may be a central processing unit (English: central processing unit, abbreviation: CPU), or a combination of a CPU and a hardware chip.
  • the above hardware chip may be an application-specific integrated circuit (ASIC: ASIC), a programmable logic device (English: Programmable logic device, abbreviation: PLD) or a combination thereof.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the above PLD can be a complex programmable logic device (English: complex programmable logic device, abbreviation: CPLD), field-programmable gate array (English: field-programmable gate array, abbreviation: FPGA), general array logic (English: generic array Logic, abbreviation: GAL) or any combination thereof.
  • the present application can be implemented by means of software plus necessary general hardware. Based on such understanding, the technical solution of the present application may be embodied in the form of a software product in essence or in the form of a software product, which may be stored in a storage medium, which is non-transitory (English: non-transitory) medium, which can be random access memory, read only memory, flash memory, hard disk, solid state hard disk, magnetic tape (English: magnetic tape), floppy disk (English: floppy disk), optical disc (English: optical Disc) and any combination thereof.
  • the storage medium includes instructions for causing a processor to perform the methods described in various embodiments of the present application or in certain portions of the embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种无线通信控制方法和装置,所述方法包括:无线网络设备在第一频段接收终端发送的第一探测请求帧,以及在第二频段接收所述终端发送的第二探测请求帧;其中,所述第一频段的非重叠信道数目小于所述第二频段的非重叠信道数目;所述无线网络设备在所述第一频段的第一发射功率,小于在所述第二频段的第二发射功率;在所述终端的信号发射强度大于预设强度的情况下,所述无线网络设备以所述第一发射功率优先响应所述第一探测请求帧;在所述终端的信号发射强度小于所述预设强度的情况下,所述无线网络设备以所述第二发射功率优先响应所述第二探测请求帧,本申请实施例降低了非重叠信道较少的工作频段在相同信道间的干扰。

Description

无线通信控制方法和装置
本申请要求于2014年3月26日提交中国专利局、申请号为201410118089.1、发明名称为“无线通信控制方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,更具体的说是涉及一种无线通信控制方法和装置。
背景技术
现有的无线局域网中,工作频段主要分为2.4吉赫兹(英文:gigahertz,符号:GHz)以及5GHz,每个频段又划分为若干信道。终端与无线网络设备进行无线通信时,终端可以在其支持的每个工作频段发送探测请求(英文:Probe Request)帧,无线网络设备接收到Probe Request帧后,响应一个工作频段的Probe Request帧,在该工作频段向终端发送探测响应(英文:Probe Response)帧,终端接收到Probe Response帧后,即可以通过该工作频段与无线网络设备进行无线通信。
无线网络设备响应哪一个工作频段的Probe Request帧,现有技术中是根据无线网络设备在该工作频段的负荷情况确定。
但是,不同工作频段中的非重叠信道的数目不同,非重叠信道是指与其他信道互不重叠的信道。在对于非重叠信道较少的工作频段,终端与无线网络设备进行无线通信时,在相同信道上的干扰就比较严重。
发明内容
本申请提供了一种无线通信控制方法和装置,降低了非重叠信道较少的工作频段中在相同信道上的干扰。
为实现上述目的,本申请提供如下技术方案:
第一方面,提供了一种无线通信控制方法,包括:
无线网络设备在第一频段接收终端发送的第一探测请求帧,以及在第二频段接收所述终端发送的第二探测请求帧;其中,所述第一频段的非重叠信道数目小于所述第二频段的非重叠信道数目;所述无线网络设备在所述第一频段的第一发射功率,小于在所述第二频段的第二发射功率;
在所述终端的信号发射强度大于预设强度的情况下,所述无线网络设备以所述第一发射功率优先响应所述第一探测请求帧;
在所述终端的信号发射强度小于所述预设强度的情况下,所述无线网络设备以所述第二发射功率优先响应所述第二探测请求帧。
在所述第一方面的第一种可能实现方式中,所述在所述终端的信号发射强度大于所述预设强度的情况下,所述无线网络设备以所述第一发射功率优先响应所述第一探测请求帧包括:
在所述终端的信号发射强度大于所述预设强度,且所述无线网络设备在所述第一频段的负荷小于第一预设门限的情况下,所述无线网络设备以所述第一发射功率响应所述第一探测请求帧。
结合所述第一方面或所述第一方面的第一种可能实现方式,还提供了所述第一方面的第二种可能实现方式,所述在所述终端的信号发射强度小于所述预设强度的情况下,所述无线网络设备以所述第二发射功率优先响应所述第二探测请求帧包括:
在所述终端的信号发射强度小于所述预设强度,且所述无线网络设备在所述第二频段的负荷小于第二预设门限的情况下,所述无线网络设备以所述第二发射功率响应所述第二探测请求帧。
结合第一方面,第一方面的第一种可能实现方式和第一方面的第二种可能实现方式中的任意一项,在所述第一方面的第三种可能实现方式中,所述方法还包括:
当所述无线网络设备在所述第一频段的负荷大于等于第一预设门限,在所述第二频段的负荷小于第二预设门限时,从接入到所述无线网络设备第一频段的终端中,选择信号发射强度最小,且支持所述第二频段的终端下线;
当所述无线网络设备在所述第二频段的负荷大于等于第二预设门限,在所述第一频段的负荷小于第一预设门限时,从接入到所述无线网络设备第二频段的终端中,选择信号发射强度最大,且支持所述第一频段的终端下线;
则所述无线网络设备在第一频段接收终端发送的第一探测请求帧,以及在第二频段接收所述终端发送的第二探测请求帧之后,所述方法还包括:
当所述终端是在第一频段被下线的终端时,响应所述第二探测请求帧;
当所述终端是在第二频段被下线的终端时,响应所述第一探测请求帧。
结合第一方面和第一方面的第一种可能实现方式至第三种可能实现方式中的任意一项,在所述第一方面的第四种可能实现方式中,所述无线网络设备在第一频段接收终 端发送的第一探测请求帧后,当在预设时间内未接收到所述终端在第二频段发送的第二探测请求帧时,所述方法还包括:
在所述终端的信号发射强度小于所述预设强度的情况下,以第三发射功率响应所述第一探测请求帧,其中,所述第三发射功率大于所述第一发射功率。
第二方面,提供了一种无线通信控制装置,包括:
第一接收模块,用于在第一频段接收终端发送的第一探测请求帧;
第二接收模块,用于在第二频段接收所述终端发送的第二探测请求帧;其中,所述第一频段的非重叠信道数目小于所述第二频段的非重叠信道数目;
第一响应模块,用于在所述终端的信号发射强度大于预设强度的情况下,以所述第一发射功率优先响应所述第一探测请求帧;第二响应模块,用于在所述终端的信号发射强度小于所述预设强度的情况下,以所述第二发射功率优先响应所述第二探测请求帧,其中,所述第一发射功率小于所述第二发射功率。
在所述第二方面的第一种可能实现方式中,所述第一响应模块具体用于在所述终端的信号发射强度大于所述预设强度,且在所述第一频段的负荷小于第一预设门限的情况下,以所述第一发射功率响应所述第一探测请求帧。
结合所述第二方面或所述第二方面的第一种可能实现方式,还提供了所述第二方面的第二种可能实现方式,所述第二响应模块具体用于在所述终端的信号发射强度小于所述预设强度,且在所述第二频段的负荷小于第二预设门限的情况下,以所述第二发射功率响应所述第二探测请求帧。
所述第二响应模块具体用于在所述终端的信号发射强度小于所述预设强度,且在所述第二频段的负荷小于第二预设门限的情况下,以所述第二发射功率响应所述第二探测请求帧。
结合第二方面、第二方面的第一种可能实现方式和第二方面的第二种可能实现方式中的任意一项,在所述第二方的第三种可能实现方式中,所述装置还包括:
第一下线模块,用于当在所述第一频段的负荷大于等于第一预设门限,在所述第二频段的负荷小于第二预设门限时,从接入到所述第一频段的终端中,选择信号发射强度最小,且支持所述第二频段的终端下线;
第二下线模块,用于在所述第二频段的负荷大于等于第二预设门限,在所述第一频段的负荷小于第一预设门限时,从接入到所述第二频段的终端中,选择信号发射强度最大,且支持所述第一频段的终端下线;
第三响应模块,用于当所述第一接收模块接收到终端的第一探测请求帧以及所述第二接收模块接收到所述终端的第二探测请求帧时,若所述终端是在第一频段被下线的终端时,响应所述第二探测请求帧;
第四响应模块,用于当所述第一接收模块接收到终端的第一探测请求帧以及所述第二接收模块接收到所述终端的第二探测请求帧时,若所述终端是在第二频段被下线的终端时,响应所述第一探测请求帧。
结合第二方面和第二方面的第一种可能实现方式至第三种可能实现方式中的任意一项,在所述第二方面的第四种可能实现方式中,所述装置还包括:
第五响应模块,用于当所述第一接收模块在第一频段接收终端发送的第一探测请求帧后,当在预设时间内所述第二接收模块未接收到所述终端在第二频段发送的第二探测请求帧时,在所述终端的信号发射强度小于所述预设强度的情况下,以第三发射功率响应所述第一探测请求帧,其中,所述第三发射功率大于所述第一发射功率。
综上,本申请提供了一种无线通信控制方法和装置,无线网络设备在第一频段接收终端发送的第一探测请求帧,以及在第二频段接收所述终端发送的第二探测请求帧,其中,该第一频段的非重叠信道数目小于该第二频段的非重叠信道数目,且无线网络设备在第一频段的第一发射功率小于在第二频段的第二发射功率,使得无线网络设备在第一频段的覆盖范围小于在第二频段的覆盖范围;当终端的信号发射强度小于预设强度时,也即距离无线网络设备较远时,优先响应第二探测请求帧,当终端的信号发射强度大于预设强度时,也即距离无线网络设备较近时,则优先响应第一探测请求帧。由于第一频段的非重叠信道数目较少,使用第一频段中相同信道的无线网络设备间的距离小,无线网络设备在第一频段的发射功率低有助于降低在相同信道上无线网络设备间的干扰,并且足够大的在第二频段的覆盖范围保证了用户正常使用无线局域网。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本申请实施例提供的一种无线通信控制方法一个实施例的流程图;
图2为本申请实施例提供的一种无线通信控制方法又一个实施例的流程图;
图3为本申请实施例提供的一种无线通信控制装置一个实施例的结构示意图;
图4为本申请实施例提供的一种无线通信控制装置又一个实施例的结构示意图;
图5为本申请实施例提供的一种无线网络设备一个实施例的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例包括:
无线网络设备分别在第一频段接收终端发送的第一探测请求帧,以及在第二频段接收所述终端发送的第二探测请求帧,其中,该第一频段的非重叠信道数目小于该第二频段的非重叠信道数目,且无线网络设备在第一频段的第一发射功率小于在第二频段的第二发射功率;当终端的信号发射强度小于预设强度时,也即距离无线网络设备较远时,优先响应第二探测请求帧,当终端的信号发射强度大于预设强度时,也即距离无线网络设备较近时,则优先响应第一探测请求帧。由于第一频段的非重叠信道数目较少,使用第一频段中相同信道的无线网络设备间的距离小,无线网络设备在第一频段的发射功率低,有助于降低相同信道上无线网络设备在相同信道间的干扰,并且足够大的第二频段的覆盖范围保证了用户能够正常使用无线局域网。
下面结合附图,详细描述本申请技术方案。
图1为本申请实施例提供的一种无线通信控制方法一个实施例的流程图,该方法可以包括以下几个步骤:
101:无线网络设备在第一频段接收终端发送的第一探测请求帧,以及在第二频段接收所述终端发送的第二探测请求帧。
其中,所述第一频段的非重叠信道数目小于所述第二频段的非重叠信道数目。
终端可以支持多个频段,该第一频段和第二频段可以是多个频段中的任意两个频段。
本申请实施例中,该无线网络设备至少配置有支持第一频段的射频模块(英文:radio frequency module,缩写:RF module)和支持第二频段的射频模块。从而能够分别接收来自第一频段和第二频段的信号。
其中,该无线网络设备可以是指无线局域网系统中的无线访问节点(英文:access point,缩写:AP)。
在无线局域网(英文:wireless local area networks,缩写:WLAN)中,工作频段主要分为2.4GH和5GHz。本申请实施例中,该第一频段可以是指2.4GHz工作频段,该第二频段可以是指5GHz工作频段。
在WLAN中的2.4GHz频段中,非重叠信道数目有3个,在5GHz频段中,按照不同国家的法律规定,非重叠数目一般为十几个或二十几个,远大于2.4GHz频段中的非重叠信道数目。
探测请求帧为终端主动扫描时发送的信令。第一探测请求帧为终端在第一频段发送的探测请求帧,第二探测请求帧为该终端在第二频段发送的探测请求帧。无线网络设备的支持第一频段的射频模块和支持第二频段的射频模块分别可以接收第一探测请求帧以及第二探测请求帧。
102:在所述终端的信号发射强度大于预设强度的情况下,所述无线网络设备以所述第一发射功率优先响应所述第一探测请求帧。
103:在所述终端的信号发射强度小于所述预设强度的情况下,所述无线网络设备以所述第二发射功率优先响应所述第二探测请求帧。
无线网络设备在第一频段的第一发射功率小于在第二频段的第二发射功率,使得无线网络设备在第一频段的覆盖范围小于在第二频段的覆盖范围。
无线网络设备在第一频段的覆盖范围是指无线网络设备在第一频段的信号强度大于一定阈值的区域;无线网络设备在第二频段的覆盖范围是指无线网络设备在第二频段的信号强度大于一定阈值的区域。
在所述终端的信号发射强度等于预设强度的情况下,所述无线网络设备可以以所述第一发射功率优先响应所述第一探测请求帧,或者以所述第二发射功率优先响应所述第二探测请求帧。
其中,优先响应所述第一探测请求帧包括直接响应所述第一探测请求帧,或者在一定条件下响应所述第一探测请求帧。
优先响应所述第二探测请求帧包括直接响应所述第二探测请求帧,或者在一定条件下响应所述第二探测请求帧。
其中,响应所述第一探测请求帧包括在所述第一频段向所述终端发送探测响应帧,响应所述第二探测请求帧包括在所述第二频段向所述终端发送探测响应帧。
终端的信号发射强度具体可以是指第一探测请求帧的信号强度或者第二探测请求帧的信号强度,第一探测请求帧的信号强度以及第二第二探测请求帧的信号强度各自对应的预设强度不同。
终端的信号发射强度可以根据第一探测请求帧或第二探测请求帧的RSSI(英文:received signal strength indicator,缩写:接收信号强度指示器)确定。
第一频段的非重叠信道数据小于第二频段的非重叠信道数目,使用第一频段中相同信道的无线网络设备间的距离较小,第一频段相同信道上的干扰较为严重。以第一频段为2.4GHz工作频段,第二频段为5GHz工作频段为例,2.4GHz工作频段的非重叠信道数目小于5GHz工作频段的非重叠信道数目。在2.4GHz工作频段中,使用相同信道的无线网络设备间的距离,为相邻无线网络设备间距离的1.732倍。而5GHz工作频段中,在美国,至少可以达到2.65倍,规划良好的网络还可以更大。因此在2.4GHz工作频段中,相同信道上的干扰较为严重。
而本实施例中,无线网络设备在第一频段的第一发射功率低,有助于降低相同信道上无线网络设备间的干扰。且终端信号发射强度小于预设强度,也即距离无线网络设备较远时,优先响应第二探测请求帧,终端的信号发射强度大于预设强度,也即距离无线网络设备较近时,则优先响应第一探测请求帧。由于第二频段的第二发射功率大于第一发射功率,使得无线网络设备在第二频段的覆盖范围较大,因此使得较远的终端能够接入无线网络设备的第二频段,保证了用户正常使用无线局域网。
其中,无线网络设备可以预先配置在第一频段的第一发射功率以及第二频段的第二发射功率,使得在第一频段的覆盖范围小于第二频段的覆盖范围。在一种可能实现方式中,在无障碍物的情况下,所述第二发射功率与所述第一发射功率相差大约6分贝(英文:decibel,缩写:dB),此时,在第一频段的覆盖范围大概为在第二频段的覆盖范围的一半,且位于第二频段的覆盖范围内,在该可能实现方式中,可以使得第一频段相同信道上的干扰进一步降低。
本申请实施例中,根据终端信号发射强度与预设强度的比较结果,可以确定终端距离无线网络设备的远近,距离无线网络设备较近的终端,无线网络设备优先响应第一探测响应帧,距离无线网络设备较远的终端,无线网络设备优先响应第二探测响应帧。
作为另一种可能实现方式,还可以根据终端的信号时延确定,当接收到终端的信号时延大于预设值,可以确定终端距离无线网络设备较远,因此优先响应第一探测响应帧;当接收到终端的信号时延小于预设值,可以确定终端距离无线网络设备较近,优先响应第二探测响应帧。
其中,图1所示实施例中,步骤102中在所述终端的信号发射强度大于预设强度的情况下,所述无线网络设备以所述第一发射功率优先响应所述第一探测请求帧可以包括:
在所述终端的信号发射强度大于所述预设强度,且所述无线网络设备在所述第一频段的负荷小于第一预设门限的情况下,以所述第一发射功率响应所述第一探测请求帧。
也即以所述第一发射功率优先响应所述第一探测请求帧的一种可能实现方式为:
在终端的信号发射强度大于所述预设强度,且所述无线网络设备在所述第一频段的负荷小于第一预设门限时,以所述第一发射功率响应第一探测请求帧。
从而既可以使得无线网络设备在第一频段的负荷不超限,以保证通信质量,同时降低了第一频段相同信道上的干扰。
另外,图1所示实施例中,步骤103中在所述终端的信号发射强度小于所述预设强度的情况下,所述无线网络设备以所述第二发射功率优先响应所述第二探测请求帧可以包括:
在所述终端的信号发射强度小于所述预设强度,且所述无线网络设备在所述第一频段的负荷大于第一预设门限的情况下,以所述第二发射功率响应所述第二探测请求帧。
也即以所述第二发射功率优先响应所述第二探测请求的一种可能实现方式为:
在终端的信号发射强度小于所述预设强度,且所述无线网络设备在所述第二频段的负荷小于第二预设门限时,以所述第二发射功率直接响应第二探测请求帧。
从而既可以使得无线网络设备在第二频段的负荷不超限,以保证通信质量,同时在第二频段的覆盖范围较大,保证了用户能够正常使用无线局域网。
在上述可能实现方式中,无线网络设备在所述第一频段的负荷大于第一预设门限,而在第二频段的负荷小于第二预设门限时,可以优先响应第二探测请求帧,以保证用户正常使用无线局域网。
无线网络设备在所述第一频段的负荷小于第一预设门限,而在第二频段的负大于第二预设门限时,可以优先响应第一探测请求帧,以保证用户正常使用无线局域网。
当无线网络设备在第一频段的负荷大于第一预设门限,或者在第二频段的负荷大于第二预设门限时,为了提高通信质量,本申请还提供了一种无线通信控制方法的又一个实施例,如图2所示,所述方法可以包括以下几个步骤:
201:无线网络设备在第一频段接收终端发送的第一探测请求帧,以及在第二频段接收所述终端发送的第二探测请求帧。
步骤201与步骤101相似,在此不再赘述。
202:在所述终端的信号发射强度大于所述预设强度的情况下,所述无线网络设备以第一发射功率优先响应所述第一探测请求帧。
具体的,该步骤202可以是在所述终端的信号发射强度大于所述预设强度,且所述无线网络设备在所述第一频段的负荷小于第一预设门限的情况下,以所述第一发射功率响应所述第一探测请求帧。
203:在所述终端的信号发射强度小于所述预设强度的情况下,以所述第二发射功率优先响应所述第二探测请求帧。
具体的,该步骤203可以是在终端的信号发射强度小于所述预设强度,且所述无线网络设备在所述第二频段的负荷小于第二预设门限时,以所述第二发射功率直接响应第二探测请求帧。
204:当所述无线网络设备在所述第一频段的负荷大于第一预设门限,在所述第二频段的负荷小于第二预设门限时,从接入到所述无线网络设备第一频段的终端中,选择信号发射强度最小,且支持所述第二频段的终端下线;
在第一频段下线的终端,由于可以支持第二频段,因此可以在第二频段接入到无线网络设备。在第一频段下线的终端优先选择信号发射强度最小,也即距离无线网络设备较远的终端。
205:当所述无线网络设备在所述第二频段的负荷大于第二预设门限,在所述第一频段的负荷小于第一预设门限时,从接入到所述无线网络设备第二频段的终端中,选择信号发射强度最大,且支持所述第一频段的终端下线。
在第二频段下线的终端,由于可以支持第一频段,因此可以在第一频段接入到无线网络设备。在第二频段下线的终端优先选择信号发射强度最大,也即距离无线网络设备较近的终端。
无线网络设备可以对下线的终端进行标记,例如保存下线终端的介质访问控制(英文:media access control,缩写:MAC)地址,当该下线终端分别在第一频段以及第二频段发送探测请求帧时,可以根据保存的MAC地址,确定是否在第一频段或第二频段下线的终端,以可以直接响应下线终端在第二频段或第一频段发送的探测请求帧。
当所述无线网络设备在所述第一频段的负荷等于第一预设门限,在所述第二频段的负荷小于第二预设门限时;可以从接入到所述无线网络设备第一频段的终端中,选择信号发射强度最小,且支持所述第二频段的终端下线。
当所述无线网络设备在所述第一频段的负荷小于第一预设门限,在所述第二频段的负荷等于第二预设门限时;可以从接入到所述无线网络设备第一频段的终端中,选择信号发射强度最小,且支持所述第二频段的终端下线。
因此,本实施例中,步骤201中无线网络设备在第一频段接收终端发送的第一探测请求帧,以及在第二频段接收所述终端发送的第二探测请求帧后,所述方法还可以包括:
206:当所述终端是在第一频段被下线的终端时,响应所述第二探测请求帧,在所述第二频段按照所述第二发射功率向所述下线终端发送探测响应帧。
207:当所述终端是在第二频段被下线的终端时,响应所述第一探测请求帧,在所述第一频段按照所述第一发射功率向所述下线终端发送探测响应帧。
在本实施例中,无线网络设备在第一频段的第一发射功率低,有助于降低相同信道上无线网络设备间的干扰。且终端信号发射强度小于预设强度,也即距离无线网络设备较远时,优先响应第二探测请求帧,终端的信号发射强度大于预设强度,也即距离无线网络设备较近时,则优先响应第一探测请求帧。由于第二频段的第二发射功率大于第一发射功率,使得无线网络设备在第二频段的覆盖范围较大,因此较远的终端能够接入无线网络设备的第二频段,保证了用户正常使用无线局域网。同时无线网络设备会监测第一频段以及第二频段上的负荷情况,当任一频段上的负荷超限时,则会选择支持其他频段的终端下线,无线网络设备在接收到被下线终端的探测请求帧时,可以根据下线记录, 直接响应该被下线终端在其他频段发送的探测请求帧进,从而使得在保证了用户正常使用无线局域网,且不影响无线通信的同时,降低了相同信道上干扰。
其中,由于终端可能只支持一个工作频段,无线网络设备可能只在一个工作频段接收到终端的探测请求帧,特别是,终端只支持第一频段时,若终端的信号发射强度小于预设强度,也即距离无线网络设备较远时,为了保证能够正常使用无线局域网,此时,无线网络设备可以以第三发射功率响应终端在第一频段发送的第一探测请求帧,也即按照第三发射功率向终端发送探测响应帧。其中该第三发射功率大于第一发射功率。
且终端接入无线网络设备进行通信时,数据发射功率也要大于该第一发射功率。
无线网络设备确定终端是否只支持一个工作频段可以通过信号接收间隔时间来判断。
因此,作为又一个实施例,所述无线网络设备在第一频段接收终端发送的第一探测请求帧后,当在预设时间内未接收到所述终端在第二频段发送的第二探测请求帧时,所述方法还可以包括:
当判断出所述终端的信号发射强度小于所述预设强度时,在所述第一频段按照所述第三发射功率向所述终端发送探测响应帧。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
图3为本申请实施例提供的一种无线通信控制装置一个实施例的结构示意图,该装置可以包括:
第一接收模块301,用于在第一频段接收终端发送的第一探测请求帧。
第二接收模块302,用于在第二频段接收所述终端发送的第二探测请求帧。
终端可以支持多个频段,该第一频段和第二频段可以是多个频段中的任意两个频段。
本申请实施例提供的无线通信控制装置可以集成到无线网络设备中,该该无线网络设备可以是指无线局域网系统中的AP。
该第一接收模块可以通过无线网络设备配置的支持第一频段的射频模块接收来自第一频段的信号,该第二接收模块通过无线网络设备配置的支持第二频段的射频模块接收来自第二频段的信号。
其中,所述第一频段的非重叠信道数目小于所述第二频段的非重叠信道数目。
在WLAN中,工作频段主要分为2.4GHz和5GHz。本申请实施例中,第一接收模块支持的第一频段可以是指2.4GHz工作频段,第二接收模块支持的第二频段可以是指5GHz工作频段。
第一响应模块303,用于在所述终端的信号发射强度大于预设强度的情况下,以所述第一发射功率优先响应所述第一探测请求帧。
第二响应模块304,用于在所述终端的信号发射强度小于所述预设强度的情况下,以所述第二发射功率优先响应所述第二探测请求帧。
其中,所述第一发射功率小于所述第二发射功率。
优先响应所述第一探测请求帧包括直接响应所述第一探测请求帧,或者在一定条件下响应所述第一探测请求帧。
优先响应所述第二探测请求帧包括直接响应所述第二探测请求帧,或者在一定条件下响应所述第二探测请求帧。
其中,响应所述第一探测请求帧包括在所述第一频段向所述终端发送探测响应帧,响应所述第二探测请求帧包括在所述第二频段向所述终端发送探测响应帧。
终端的信号发射强度具体可以是指第一探测请求帧的信号强度或者第二探测请求帧的信号强度,第一探测请求帧的信号强度以及第二第二探测请求帧的信号强度各自对应的预设强度不同。
由于第一频段的非重叠信道数目小于第二频段的非重叠信道数目,使用第一频段中相同信道的无线网络设备间的距离较小,第一频段相同信道上的干扰较为严重。以第一频段为2.4GHz工作频段,第二频段为5GHz工作频段为例,2.4GHz工作频段的非重叠信道数目小于5GHz工作频段的非重叠信道数目,2.4GHz工作频段中的非重叠信道数目小于5GHz工作频段中的非重叠信道数目。在2.4GHz工作频段中,使用相同信道的无线网络设备间的距离,为使用相邻信道的无线网络设备间距离的1.732倍。而5GHz工作频段中,在美国,至少可以达到2.65倍。因此在2.4GHz工作频段中,相同信道上的干扰较为严重。
而本实施例中,由于在第一频段的第一发射功率低,有助于降低相同信道上无线网络设备间的干扰。且终端信号发射强度小于预设强度,也即距离无线网络设备较远时, 优先响应第二探测请求帧,终端的信号发射强度大于预设强度,也即距离无线网络设备较近时,则优先响应第一探测请求帧。由于第二频段的第二发射功率大于第一发射功率,使得无线网络设备在第二频段的覆盖范围较大,因此使得较远的终端能够接入第二频段,保证了用户正常使用无线局域网。
其中,在第一频段的第一发射功率以及在第二频段的第二发射功率可以预先配置,使得无线网络设备在第一频段的覆盖范围小于第二频段的覆盖范围。在一种可能实现方式中,在无障碍物的情况下,所述第二发射功率与所述第一发射功率相差大约6dB,此时,在第一频段的覆盖范围大概为在第二频段的覆盖范围的一半,且位于在第二频段的覆盖范围内,在该可能实现方式中,可以使得第一频段相同信道上的干扰进一步降低。
本申请实施例中,根据终端信号发射强度与预设强度的比较结果,可以确定终端距离无线网络设备的远近,距离无线网络设备较近的终端,无线网络设备优先响应第一探测响应帧,距离无线网络设备较远的终端,无线网络设备优先响应第二探测响应帧。
作为另一种可能实现方式,还可以根据终端的信号时延确定,当接收到终端的信号时延大于预设值,可以确定终端距离无线网络设备较远,因此优先响应第一探测响应帧;当接收到终端的信号时延小于预设值,可以确定终端距离无线网络设备较近,优先响应第二探测响应帧。
其中,以所述第一发射功率优先响应所述第一探测请求帧可以有多种可能实现方式,在一种可能实现方式中:所述第一响应模块可以具体用于在所述终端的信号发射强度大于所述预设强度,且在所述第一频段的负荷小于第一预设门限的情况下,以所述第一发射功率响应所述第一探测请求帧。
而既可以使得无线网络设备在第一频段的负荷不超限,以保证通信质量,同时降低了第一频段相同信道上的干扰。
以所述第二发射功率优先响应所述第二探测请求帧可以有多种可能实现方式,在一种可能实现方式中:
所述第二响应模块可以具体用于在所述终端的信号发射强度小于所述预设强度,且在所述第二频段的负荷小于第二预设门限的情况下,以所述第二发射功率响应所述第二探测请求帧。
从而既可以使得无线网络设备在第二频段的负荷不超限,以保证通信质量,同时无线网络设备在第二频段的覆盖范围较大,保证了用户能够正常使用无线局域网。
在上述可能实现方式中,在所述第一频段的负荷大于第一预设门限,而在第二频段的负荷小于第二预设门限时,可以优先响应第二探测请求帧,以保证用户正常使用无线局域网。
在所述第一频段的负荷小于第一预设门限,而在第二频段的负大于第二预设门限时,可以优先响应第一探测请求帧,以保证用户正常使用无线局域网。
当在第一频段的负荷大于第一预设门限,或者在第二频段的负荷大于第二预设门限时,为了提高通信质量,本申请还提供了一种无线通信控制装置的又一个实施例,如图4所示,所述装置可以包括:
第一接收模块401,用于在第一频段接收终端发送的第一探测请求帧。
第二接收模块402,用于在第二频段接收所述终端发送的第二探测请求帧。
第一响应模块403,用于在所述终端的信号发射强度大于预设强度的情况下,以所述第一发射功率优先响应所述第一探测请求帧。
其中,第一响应模块可以具体用于在所述终端的信号发射强度大于所述预设强度,且在所述第一频段的负荷小于第一预设门限的情况下,以所述第一发射功率响应所述第一探测请求帧。
第二响应模块404,用于在所述终端的信号发射强度小于所述预设强度的情况下,以所述第二发射功率优先响应所述第二探测请求帧。
其中,第二响应模块可以具体用于在所述终端的信号发射强度小于所述预设强度,且在所述第二频段的负荷小于第二预设门限的情况下,以所述第二发射功率响应所述第二探测请求帧。
其中,所述第一发射功率小于所述第二发射功率。
第一下线模块405,用于当在所述第一频段的负荷大于等于第一预设门限,在所述第二频段的负荷小于第二预设门限时,从接入到所述第一频段的终端中,选择信号发射强度最小,且支持所述第二频段的终端下线。
第二下线模块406,用于在所述第二频段的负荷大于等于第二预设门限,在所述第一频段的负荷小于第一预设门限时,从接入到所述第二频段的终端中,选择信号发射强度最大,且支持所述第一频段的终端下线。
第三响应模块407,用于当所述第一接收模块接收到终端的第一探测请求帧以及所述第二接收模块接收到所述终端的第二探测请求帧时,若所述终端是在第一频段被下线的终端时,响应所述第二探测请求帧。
第四响应模块408,用于当所述第一接收模块接收到终端的第一探测请求帧以及所述第二接收模块接收到所述终端的第二探测请求帧时,若所述终端是在第二频段被下线的终端时,响应所述第一探测请求帧。
在本实施例中,第一发射功率低,有助于降低相同信道上无线网络设备间的干扰。且终端信号发射强度小于预设强度,也即距离无线网络设备较远时,优先响应第二探测请求帧,终端的信号发射强度大于预设强度,也即距离无线网络设备较近时,则优先响应第一探测请求帧。由于第二频段的第二发射功率大于第一发射功率,使得无线网络设备在第二频段的覆盖范围较大,因此较远的终端能够接入第二频段,保证了用户正常使用无线局域网。同时可以监测第一频段以及第二频段上的负荷情况,当任一频段上的负荷超限时,则会选择支持其他频段的终端下线,当接收到被下线终端的探测请求帧时,可以根据下线记录,直接响应该被下线终端在其他频段发送的探测请求帧进,从而使得在保证了用户正常使用无线局域网,且不影响通信质量的同时,降低了相同信道上干扰。
其中,由于终端可能只支持一个工作频段,因此可能只在一个工作频段接收到终端的探测请求帧,特别是,终端只支持第一频段时,若终端的信号发射强度小于预设强度,也即距离无线网络设备较远时,为了保证能够正常使用无线局域网,此时,装置可以以第三发射功率响应终端在第一频段发送的第一探测请求帧,也即按照第三发射功率向终端发送探测响应帧。其中该第三发射功率大于第一发射功率。
且终端接入无线网络设备进行通信时,数据发射功率也要大于该第一发射功率。
确定终端是否只支持一个工作频段可以通过信号接收间隔时间来判断。
因此,作为又一个实施例,所述无线通信控制装置还可以包括:
第五响应模块,用于当所述第一接收模块在第一频段接收终端发送的第一探测请求帧后,当在预设时间内所述第二接收模块未接收到所述终端在第二频段发送的第二探测 请求帧时,在所述终端的信号发射强度小于所述预设强度的情况下,以第三发射功率响应所述第一探测请求帧,其中,所述第三发射功率大于所述第一发射功率。
上述实施例所述的无线通信控制装置,在实际应用中,可以集成到无线网络设备中,无线网络设备可以为WLAN系统中的AP。该无线网络设备至少支持第一频段和第二频段,其至少设置有支持第一频段的射频模块和支持第二频段的射频模块。从而能够分别接收来自第一频段和第二频段的信号。
通过部署本申请实施例无线通信控制装置的无线网络设备,可以降低无线网络设备在第一频段的相同信道上的干扰。
通过以上描述可知,本领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件平台的方式来实现。因此,参见图5,本申请实施例还提供了一种无线网络设备,该无线网络设备至少包括第一射频模块501、第二射频模块502、存储器503和处理器504,第一射频模块501、第二射频模块502以及存储器503分别与处理器504连接。
该存储器503存储一组程序指令,该存储器可以是易失性存储器(英文:volatile memory),例如随机存取存储器(英文:random-access memory,缩写:RAM);或者非易失性存储器(英文:non-volatile memory),例如快闪存储器(英文:flash memory),硬盘(英文:hard disk drive,缩写:HDD)或固态硬盘(英文:solid-state drive,缩写:SSD);或者上述种类的存储器的组合。
该处理器504,用于调用该存储器503存储的程序指令,执行如下操作:
通过第一射频模块501在第一频段接收终端发送的第一探测请求帧,以及通过第二射频模块502在第二频段接收所述终端发送的第二探测请求帧;其中,所述第一频段的非重叠信道数目小于所述第二频段的非重叠信道数目,所述无线网络设备在所述第一频段的第一发射功率,小于在所述第二频段的第二发射功率;
在所述终端的信号发射强度大于预设强度的情况下,所述无线网络设备以所述第一发射功率优先响应所述第一探测请求帧;
在所述终端的信号发射强度小于所述预设强度的情况下,所述无线网络设备以所述第二发射功率优先响应所述第二探测请求帧。
其中,该处理器可能是一个中央处理器(英文:central processing unit,缩写:CPU),或者是CPU和硬件芯片的组合。上述硬件芯片可以是专用集成电路(英文:application-specific integrated circuit,缩写:ASIC),可编程逻辑器件(英文: programmable logic device,缩写:PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(英文:complex programmable logic device,缩写:CPLD),现场可编程逻辑门阵列(英文:field-programmable gate array,缩写:FPGA),通用阵列逻辑(英文:generic array logic,缩写:GAL)或其任意组合。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
为了描述的方便,描述以上装置时以功能分为各种单元分别描述。当然,在实施本申请时可以把各单元的功能在同一个或多个软件和/或硬件中实现。
通过以上的实施方式的描述可知,本领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件的方式来实现。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在存储介质中,所述存储介质是非短暂性(英文:non-transitory)介质,可以是随机存取存储器,只读存储器,快闪存储器,硬盘,固态硬盘,磁带(英文:magnetic tape),软盘(英文:floppy disk),光盘(英文:optical disc)及其任意组合。所述存储介质包括若干指令用以使得处理器执行本申请各个实施例或者实施例的某些部分所述的方法。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与权利要求相一致的范围。

Claims (10)

  1. 一种无线通信控制方法,其特征在于,包括:
    无线网络设备在第一频段接收终端发送的第一探测请求帧,以及在第二频段接收所述终端发送的第二探测请求帧;其中,所述第一频段的非重叠信道数目小于所述第二频段的非重叠信道数目;所述无线网络设备在所述第一频段的第一发射功率,小于在所述第二频段的第二发射功率;
    在所述终端的信号发射强度大于预设强度的情况下,所述无线网络设备以所述第一发射功率优先响应所述第一探测请求帧;
    在所述终端的信号发射强度小于所述预设强度的情况下,所述无线网络设备以所述第二发射功率优先响应所述第二探测请求帧。
  2. 根据权利要求1所述的方法,其特征在于,所述在所述终端的信号发射强度大于所述预设强度的情况下,所述无线网络设备以所述第一发射功率优先响应所述第一探测请求帧包括:
    在所述终端的信号发射强度大于所述预设强度,且所述无线网络设备在所述第一频段的负荷小于第一预设门限的情况下,所述无线网络设备以所述第一发射功率响应所述第一探测请求帧。
  3. 根据权利要求1或2所述的方法,其特征在于,所述在所述终端的信号发射强度小于所述预设强度的情况下,所述无线网络设备以所述第二发射功率优先响应所述第二探测请求帧包括:
    在所述终端的信号发射强度小于所述预设强度,且所述无线网络设备在所述第二频段的负荷小于第二预设门限的情况下,所述无线网络设备以所述第二发射功率响应所述第二探测请求帧。
  4. 根据权利要求1至3中任意一项所述的方法,其特征在于,所述方法还包括:
    当所述无线网络设备在所述第一频段的负荷大于等于第一预设门限,在所述第二频段的负荷小于第二预设门限时,从接入到所述无线网络设备第一频段的终端中,选择信号发射强度最小,且支持所述第二频段的终端下线;
    当所述无线网络设备在所述第二频段的负荷大于等于第二预设门限,在所述第一频段的负荷小于第一预设门限时,从接入到所述无线网络设备第二频段的终端中,选择信号发射强度最大,且支持所述第一频段的终端下线;
    则所述无线网络设备在第一频段接收终端发送的第一探测请求帧,以及在第二频段接收所述终端发送的第二探测请求帧之后,所述方法还包括:
    当所述终端是在第一频段被下线的终端时,响应所述第二探测请求帧;
    当所述终端是在第二频段被下线的终端时,响应所述第一探测请求帧。
  5. 根据权利要求1至4中任意一项所述的方法,其特征在于,所述无线网络设备在第一频段接收终端发送的第一探测请求帧后,当在预设时间内未接收到所述终端在第二频段发送的第二探测请求帧时,所述方法还包括:
    在所述终端的信号发射强度小于所述预设强度的情况下,以第三发射功率响应所述第一探测请求帧,其中,所述第三发射功率大于所述第一发射功率。
  6. 一种无线通信控制装置,其特征在于,包括:
    第一接收模块,用于在第一频段接收终端发送的第一探测请求帧;
    第二接收模块,用于在第二频段接收所述终端发送的第二探测请求帧;其中,所述第一频段的非重叠信道数目小于所述第二频段的非重叠信道数目;
    第一响应模块,用于在所述终端的信号发射强度大于预设强度的情况下,以所述第一发射功率优先响应所述第一探测请求帧;第二响应模块,用于在所述终端的信号发射强度小于所述预设强度的情况下,以所述第二发射功率优先响应所述第二探测请求帧,其中,所述第一发射功率小于所述第二发射功率。
  7. 根据权利要求6所述的装置,其特征在于,所述第一响应模块具体用于在所述终端的信号发射强度大于所述预设强度,且在所述第一频段的负荷小于第一预设门限的情况下,以所述第一发射功率响应所述第一探测请求帧。
  8. 根据权利要求6或7所述的装置,其特征在于,所述第二响应模块具体用于在所述终端的信号发射强度小于所述预设强度,且在所述第二频段的负荷小于第二预设门限的情况下,以所述第二发射功率响应所述第二探测请求帧。
  9. 根据权利要求6至8中任意一项所述的装置,其特征在于,所述装置还包括:
    第一下线模块,用于当在所述第一频段的负荷大于等于第一预设门限,在所述第二频段的负荷小于第二预设门限时,从接入到所述第一频段的终端中,选择信号发射强度最小,且支持所述第二频段的终端下线;
    第二下线模块,用于在所述第二频段的负荷大于等于第二预设门限,在所述第一频段的负荷小于第一预设门限时,从接入到所述第二频段的终端中,选择信号发射强度最大,且支持所述第一频段的终端下线;
    第三响应模块,用于当所述第一接收模块接收到终端的第一探测请求帧以及所述第二接收模块接收到所述终端的第二探测请求帧时,若所述终端是在第一频段被下线的终端时,响应所述第二探测请求帧;
    第四响应模块,用于当所述第一接收模块接收到终端的第一探测请求帧以及所述第二接收模块接收到所述终端的第二探测请求帧时,若所述终端是在第二频段被下线的终端时,响应所述第一探测请求帧。
  10. 根据权利要求6至9中任意一项所述的装置,其特征在于,所述装置还包括:
    第五响应模块,用于当所述第一接收模块在第一频段接收终端发送的第一探测请求帧后,当在预设时间内所述第二接收模块未接收到所述终端在第二频段发送的第二探测请求帧时,在所述终端的信号发射强度小于所述预设强度的情况下,以第三发射功率响应所述第一探测请求帧,其中,所述第三发射功率大于所述第一发射功率。
PCT/CN2015/074701 2014-03-26 2015-03-20 无线通信控制方法和装置 WO2015144016A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016559293A JP6209774B2 (ja) 2014-03-26 2015-03-20 無線通信制御方法および装置
EP15769069.4A EP3116279B1 (en) 2014-03-26 2015-03-20 Wireless communication control method and apparatus
US15/274,800 US10129832B2 (en) 2014-03-26 2016-09-23 Wireless communication control method and wireless network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410118089.1 2014-03-26
CN201410118089.1A CN104955053B (zh) 2014-03-26 2014-03-26 无线通信控制方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/274,800 Continuation US10129832B2 (en) 2014-03-26 2016-09-23 Wireless communication control method and wireless network device

Publications (1)

Publication Number Publication Date
WO2015144016A1 true WO2015144016A1 (zh) 2015-10-01

Family

ID=54169326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/074701 WO2015144016A1 (zh) 2014-03-26 2015-03-20 无线通信控制方法和装置

Country Status (5)

Country Link
US (1) US10129832B2 (zh)
EP (1) EP3116279B1 (zh)
JP (1) JP6209774B2 (zh)
CN (1) CN104955053B (zh)
WO (1) WO2015144016A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3185425A1 (en) * 2015-12-24 2017-06-28 Huawei Technologies Co., Ltd. Wireless access point with two radio frequency modules of same frequency band and signal interference reduction method
US20190260661A1 (en) * 2018-02-20 2019-08-22 Netgear, Inc. Battery efficient wireless network connection and registration for a low-power device
CN113452568A (zh) * 2020-03-25 2021-09-28 上汽通用汽车有限公司 车辆通信方法、通信系统、车辆以及存储介质

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10582419B2 (en) * 2014-07-22 2020-03-03 Time Warner Cable Enterprises Llc Wireless spectrum usage and load-balancing
US10021529B2 (en) * 2015-04-21 2018-07-10 Hewlett Packard Enterprise Development Lp Calibration of wireless network's signal strength map database for indoor locating techniques
CN106102131A (zh) * 2016-06-08 2016-11-09 上海斐讯数据通信技术有限公司 一种无线信道均衡方法及系统
CN106102039B (zh) * 2016-07-29 2020-03-17 宇龙计算机通信科技(深圳)有限公司 一种提高移动终端通信质量的方法及系统
US10499282B1 (en) 2018-09-28 2019-12-03 Cypress Semiconductor Corporation Efficient method to load-balance wireless networks with multi-band interface controllers
CN109560884B (zh) * 2018-12-14 2022-04-22 上海连尚网络科技有限公司 用于路由设备的消除干扰信号的方法及设备
CN110337141B (zh) * 2019-06-17 2022-06-07 Oppo广东移动通信有限公司 一种通信控制方法、终端、基站以及计算机存储介质
CN113099594A (zh) * 2020-08-05 2021-07-09 薛亮 结合边缘计算网关的物联网设备管理方法及大数据云平台
CN113260034B (zh) * 2021-06-22 2021-10-08 展讯通信(上海)有限公司 上行信道发送功率分配方法及装置、终端和存储介质
CN113543295B (zh) * 2021-06-28 2023-11-07 山东省计算中心(国家超级计算济南中心) 基于声波通讯的数据传输方法及系统
CN114338974A (zh) * 2021-12-02 2022-04-12 深圳市领航卫士安全技术有限公司 多通道的活动路径确定方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1663213A (zh) * 2002-06-27 2005-08-31 北方电讯网络有限公司 双模式共享ofdm方法/发射机、接收机和系统
CN101175322A (zh) * 2007-11-16 2008-05-07 华为技术有限公司 一种小区选择的方法
CN101690343A (zh) * 2007-07-10 2010-03-31 高通股份有限公司 基于位置信息来选择通信频段的方法和装置
WO2013168467A1 (ja) * 2012-05-10 2013-11-14 ソニー株式会社 通信制御装置、通信制御方法及び端末装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1371197A (zh) * 2001-02-20 2002-09-25 智捷科技股份有限公司 无线局域网络信号检测装置
US7564906B2 (en) 2004-02-17 2009-07-21 Nokia Siemens Networks Oy OFDM transceiver structure with time-domain scrambling
US8699418B2 (en) * 2008-04-08 2014-04-15 Aruba Networks, Inc. Band steering for multi-band wireless clients
CN102131235A (zh) * 2010-01-15 2011-07-20 西门子公司 一种无线通信系统中的负载平衡方法
JP2011188122A (ja) * 2010-03-05 2011-09-22 Toshiba Tec Corp 無線lan通信制御装置、無線lanアクセスポイント、および通信端末
CN101835098B (zh) * 2010-03-26 2012-09-05 清华大学 一种面向密集用户区域的无线网络重构式通信方法
JP5023181B2 (ja) 2010-04-27 2012-09-12 株式会社バッファロー 無線通信装置、無線通信装置の制御方法
US8687512B2 (en) * 2011-04-29 2014-04-01 Aruba Networks, Inc. Signal strength aware band steering
US8655278B2 (en) * 2011-06-20 2014-02-18 Hewlett-Packard Development Company, L.P. Band steering
CN102256337B (zh) * 2011-07-08 2015-04-15 杭州华三通信技术有限公司 一种无线局域网中报文的处理方法和设备
US8918102B2 (en) * 2011-07-29 2014-12-23 At&T Intellectual Property I, L.P. Method and system for selecting from a set of candidate frequency bands associated with a wireless access point
JP6261390B2 (ja) 2014-03-06 2018-01-17 シャープ株式会社 携帯端末および携帯端末の制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1663213A (zh) * 2002-06-27 2005-08-31 北方电讯网络有限公司 双模式共享ofdm方法/发射机、接收机和系统
CN101690343A (zh) * 2007-07-10 2010-03-31 高通股份有限公司 基于位置信息来选择通信频段的方法和装置
CN101175322A (zh) * 2007-11-16 2008-05-07 华为技术有限公司 一种小区选择的方法
WO2013168467A1 (ja) * 2012-05-10 2013-11-14 ソニー株式会社 通信制御装置、通信制御方法及び端末装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3185425A1 (en) * 2015-12-24 2017-06-28 Huawei Technologies Co., Ltd. Wireless access point with two radio frequency modules of same frequency band and signal interference reduction method
CN106922013A (zh) * 2015-12-24 2017-07-04 华为技术有限公司 同频段双射频模块的无线接入点和降低信号干扰的方法
US10609721B2 (en) 2015-12-24 2020-03-31 Huawei Technologies Co., Ltd. Wireless access point with two radio frequency modules of same frequency band and signal interference reduction method
CN106922013B (zh) * 2015-12-24 2020-04-21 华为技术有限公司 同频段双射频模块的无线接入点和降低信号干扰的方法
US20190260661A1 (en) * 2018-02-20 2019-08-22 Netgear, Inc. Battery efficient wireless network connection and registration for a low-power device
US11558626B2 (en) * 2018-02-20 2023-01-17 Netgear, Inc. Battery efficient wireless network connection and registration for a low-power device
CN113452568A (zh) * 2020-03-25 2021-09-28 上汽通用汽车有限公司 车辆通信方法、通信系统、车辆以及存储介质
CN113452568B (zh) * 2020-03-25 2023-05-26 上汽通用汽车有限公司 车辆通信方法、通信系统、车辆以及存储介质

Also Published As

Publication number Publication date
CN104955053A (zh) 2015-09-30
JP2017516352A (ja) 2017-06-15
EP3116279A1 (en) 2017-01-11
EP3116279A4 (en) 2017-03-29
CN104955053B (zh) 2019-03-05
US10129832B2 (en) 2018-11-13
US20170013560A1 (en) 2017-01-12
EP3116279B1 (en) 2020-02-05
JP6209774B2 (ja) 2017-10-11

Similar Documents

Publication Publication Date Title
WO2015144016A1 (zh) 无线通信控制方法和装置
US11696109B2 (en) Interference reduction using signal quality
US11665627B2 (en) Access network discovery and selection
US10237834B2 (en) Systems and methods for wireless link balancing in wireless networks
US9549337B2 (en) Dynamic backoff in Wi-Fi calling
US9900913B2 (en) Method and device for adjusting channel frequency domain offset of physical random access channel
TWI635718B (zh) 在網路服務集中操作的設備、相關方法以及計算機可讀介質
CA2901095C (en) Mitigating interference with wireless communications
WO2020164323A1 (zh) 传输探测参考信号的方法、装置和系统
EP3360270B1 (en) System and method for energy detection with adaptive-threshold duty cycling for unlicensed band operations
CN110446252B (zh) 用于定向lbt的能量阈值确定方法、定向lbt方法及装置、存储介质、终端、基站
EP3242530B1 (en) Data transmission method, apparatus and device
WO2022110217A1 (zh) 一种通信方法、通信装置及网络设备
CN108353449B (zh) 无线通信系统中的等待时间增强
US10701731B2 (en) Determining whether to transmit data on a candidate radio channel
JP2015070409A (ja) 無線通信システム、遠隔基地局及び無線通信方法
JPWO2019064604A1 (ja) 基地局及びユーザ装置
US10314083B2 (en) Systems and methods for traffic offloading in multi-radio-access-technology networks
JP6101221B2 (ja) 複数基地局無線通信システム、制御方法
US20230141814A1 (en) Apparatus and method for multi-link-based wireless communication
JP6892133B2 (ja) 通信端末、無線通信制御方法及び無線通信制御プログラム
US20210119893A1 (en) Inter-protocol interference reduction for hidden nodes
CN114727421A (zh) 上行信号传输方法及装置、存储介质、终端、基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15769069

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016559293

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015769069

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015769069

Country of ref document: EP