WO2015143642A1 - Photoelectric composite cable - Google Patents

Photoelectric composite cable Download PDF

Info

Publication number
WO2015143642A1
WO2015143642A1 PCT/CN2014/074116 CN2014074116W WO2015143642A1 WO 2015143642 A1 WO2015143642 A1 WO 2015143642A1 CN 2014074116 W CN2014074116 W CN 2014074116W WO 2015143642 A1 WO2015143642 A1 WO 2015143642A1
Authority
WO
WIPO (PCT)
Prior art keywords
cable
composite cable
fiber
optical
optical fiber
Prior art date
Application number
PCT/CN2014/074116
Other languages
French (fr)
Chinese (zh)
Inventor
邵起明
Original Assignee
奇点新源国际技术开发(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奇点新源国际技术开发(北京)有限公司 filed Critical 奇点新源国际技术开发(北京)有限公司
Priority to CN201480050951.8A priority Critical patent/CN105830174B/en
Priority to PCT/CN2014/074116 priority patent/WO2015143642A1/en
Publication of WO2015143642A1 publication Critical patent/WO2015143642A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4415Cables for special applications
    • G02B6/4416Heterogeneous cables

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Communication Cables (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

A photoelectric composite cable, comprising a live wire cable (13), an earth wire cable (11), an optical cable (12), and an embedded module (19), the optical cable (12) comprising a single-core tight-buffered optical cable (121) and a single-core tight-buffered optical cable sheath (123) covering said single-core tight-buffered optical cable (121), the single-core tight-buffered optical cable (121) having at least one external connecting optical fibre (110) used for external connection, said external connecting optical fibre (110), after being truncated at any position of the photoelectric composite cable, forming a front end tail fibre and a rear end tail fibre, the front end tail fibre being used for forming an optical fibre connector connecting to the embedded module (19); and an at least two-layer sealing plastic sheath covering the cable bundle formed of the live wire cable (13), the earth wire cable (11) and the optical cable (12), and the embedded module (19), the embedded module being in electrical communication with the live wire cable (13) and the earth wire cable (11). The present photoelectric composite cable resolves the problem in the prior art of the poor adaptability of network cabling systems to construction sites, and can shorten the on-site installation and adjustment time of the entire network cabling system.

Description

光电复合缆 技术领域 本发明涉及通信技术领域, 更为具体地说, 涉及一种光电复合缆。 背景技术 随着数据通信技术和信息技术的高速发展,网络对综合布线系统性能的要求 越来越高。 光电复合缆是一种在光缆中增加绝缘导体以集光纤和输电线于一体的 线缆。 光电复合缆能够同时解决设备用电和设备信号传输问题, 即保留光缆特性 的同时还能够满足电缆的相关要求。 因此, 光电复合缆越来越多地应用于网络布 线系统中。 目前, 光电复合缆只是作为一种单一的传输连接器件使用, 即用于传输光信 号和电。 上述光电复合缆的线缆终端需要增加发射设备、 接收设备等外接设备以 实现光信号或电的传输、 交互等功能。 通常, 与光电复合缆连接的外接设备 (例如发射设备、 接收设备等) 需要一 定的布放空间。 由于外接设备与光电复合缆的线缆终端连接, 所以外接设备的布 置位置会受线缆终端位置的限制。 一旦外接设备布置好之后, 对外接设备位置的 调整就会不容易。 特别是在室内空间局促的环境, 对外接设备位置的调整更是不 易。 很显然, 上述形式的网络布线系统缺乏足够的柔性 (即对施工现场的适应性 较差), 无法应对预先设计的布线方案与施工现场有出入的情况。 而且, 光电复 合缆与外接设备现场连接时需要调试, 这导致网络布线系统的调试时间增加。 发明内容 本发明的目的是提供一种光电复合缆,以解决背景技术中网络布线系统对施 工现场适应性较差的问题, 而且还解决网络布线系统现场调试时间较长的问题。 为了解决上述技术问题, 本发明提供如下技术方案: 光电复合缆, 包括: 火线线缆、 地线线缆、 光缆和内嵌模块, 所述光缆包括单芯紧套光纤和包覆 于所述单芯紧套上的单芯紧套光纤外皮, 所述单芯紧套光纤至少有一根为用于外 接的外接光纤,所述外接光纤在所述光电复合缆的任意位置被截断后形成前端尾纤 和后端尾纤, 所述前端尾纤用于形成与所述内嵌模块连接的光纤接头; 以及 包覆于所述火线线缆、地线线缆和光缆形成的线缆束和内嵌模块上的至少两 层封塑护套, 所述内嵌模块与所述火线线缆和地线线缆电连接。 优选的, 上述光电复合缆中, 所述前端尾纤作为所述光纤接头与所述内嵌模 块相连, 形成光通路。 优选的, 上述光电复合缆中, 所述光电复合缆还包括与所述前端尾纤相连, 且将所述前端尾纤分为主路光纤和支路光纤的光分路器, 所述支路光纤作为所述 光纤接头与所述内嵌模块相连,所述主路光纤与所述后端尾纤相连,形成光通路。 优选的, 上述光电复合缆中, 所述内嵌模块内具有光分路器, 所述后端尾纤 与所述内嵌模块的输出端相连, 所述前端尾纤通过所述光分路器分成与所述内嵌 模块内除所述光分路器之外其它模块相连的光纤接头。 优选的, 上述光电复合缆中, 所述内嵌模块具有与所述火线线缆对接的火线对 接电线和与所述地线线缆对接的地线对接电线, 所述火线线缆与所述火线对接电线, 和, 所述地线线缆与所述地线对接电线均通过对接装置相连。 优选的, 上述光电复合缆中, 自外向内的方向上, 位于第二层的所述封塑护 套的外表面设置有用于增大接续封塑结合力的纹理。 优选的, 上述光电复合缆中, 所述光电复合缆还包括设置在最内层封塑护套 中心的加强筋, 所述火线线缆、 地线线缆和光缆层绞或均匀分布于所述加强筋的 周边, 所述加强筋包括加强内芯和包覆于所述加强内芯外的绝缘护套。 优选的, 上述光电复合缆中, 所述光电复合缆还包括多条加强绳, 多条所述 加强绳离散分布于所述线缆束的空隙处。 优选的, 上述光电复合缆中, 所述光电复合缆的剥离端面为阶梯面。 优选的, 上述光电复合缆中, 所述光电复合缆还包括缠绕在所述线缆束上的 绕包带及填充在所述绕包带与所述线缆束之间的缆膏填充物; 或者, 所述光电复合缆还包括缠绕在所述线缆束上的阻水带。 本发明提供的光电复合缆具有内嵌模块,内嵌模块分别与火线线缆和地线线 缆连接形成电通路, 同时内嵌模块与外接光纤相连形成光通路以实现内嵌模块的 正常工作。 这种外接设备内嵌的方式无需考虑外接设备的布置位置和空间, 如需 调整, 可以直接通过调整光电复合缆的走向、 长度、 布局等方式实现, 调整灵活, 而且调整较容易。 因此, 本发明提供的光电复合缆能够使得网络布线系统对施工 现场具有更强的适应性。 而且, 内嵌模块在嵌入光电复合缆之前已经做好调试, 因此, 本发明提供的光电复合缆还能够缩短网络布线系统现场安装调试的时间。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the field of communication technologies, and more particularly to an optoelectric composite cable. BACKGROUND With the rapid development of data communication technologies and information technologies, networks have increasingly higher requirements for the performance of integrated wiring systems. The photoelectric composite cable is a cable in which an insulated conductor is added to the optical cable to integrate the optical fiber and the power transmission line. The photoelectric composite cable can simultaneously solve the problem of equipment power and equipment signal transmission, that is, retaining the characteristics of the optical cable while meeting the relevant requirements of the cable. Therefore, opto-electric composite cables are increasingly being used in network cabling systems. At present, the opto-electric composite cable is only used as a single transmission connection device, that is, for transmitting optical signals and electricity. The cable terminal of the above-mentioned photoelectric composite cable needs to add an external device such as a transmitting device and a receiving device to realize functions such as transmission or interaction of optical signals or electricity. In general, external devices (such as transmitting devices, receiving devices, etc.) connected to the opto-electric composite cable require a certain amount of space. Since the external device is connected to the cable terminal of the opto-electric composite cable, the arrangement position of the external device is limited by the position of the cable terminal. Once the external device is placed, the adjustment of the location of the external device will not be easy. Especially in the environment where the indoor space is cramped, the adjustment of the location of the external equipment is not easy. Obviously, the above-mentioned network cabling system lacks sufficient flexibility (ie, poor adaptability to the construction site), and it is impossible to cope with the situation where the pre-designed wiring scheme is different from the construction site. Moreover, the opto-electric composite cable needs to be debugged when it is connected to the external device in the field, which leads to an increase in the debugging time of the network cabling system. SUMMARY OF THE INVENTION An object of the present invention is to provide an optoelectric composite cable to solve the problem that the network cabling system has poor adaptability to the construction site in the background art, and also solves the problem that the network cabling system has a long on-site debugging time. In order to solve the above technical problem, the present invention provides the following technical solutions: The photoelectric composite cable includes: a live wire cable, a ground cable, an optical cable, and an embedded module, the optical cable comprising a single-core tight-fitting optical fiber and a single-core tight-fitting optical fiber sheath coated on the single-core tight sleeve, the single-core tight-fitting optical fiber At least one external optical fiber for external connection, the external optical fiber is cut at any position of the photoelectric composite cable to form a front end pigtail and a rear end pigtail, and the front end pigtail is used for forming and embedding a fiber optic connector connected to the module; and at least two layers of the plastic sheath sheathed on the cable bundle formed by the live wire cable, the ground cable and the optical cable, and the embedded module, the embedded module and the live wire The cable and the ground cable are electrically connected. Preferably, in the above photoelectric composite cable, the front end pigtail is connected to the embedded module as the optical fiber connector to form an optical path. Preferably, in the above photoelectric composite cable, the photoelectric composite cable further includes an optical splitter connected to the front end pigtail and dividing the front end pigtail into a main road optical fiber and a branch optical fiber, the branch circuit An optical fiber is connected to the embedded module as the optical fiber connector, and the main fiber is connected to the rear pigtail to form an optical path. Preferably, in the above-mentioned photoelectric composite cable, the embedded module has an optical splitter, the rear pigtail is connected to an output end of the embedded module, and the front pigtail passes through the optical splitter. Divided into fiber optic connectors connected to modules other than the optical splitter in the embedded module. Preferably, in the above photoelectric composite cable, the embedded module has a live wire butt wire that is butted against the live wire, and a ground wire that is butted to the ground cable, the live wire and the live wire The docking wire, and the ground wire and the ground wire are connected by a docking device. Preferably, in the above-mentioned photoelectric composite cable, the outer surface of the sealing sheath located in the second layer is provided with a texture for increasing the bonding force of the continuous sealing in the direction from the outside to the inside. Preferably, in the above photoelectric composite cable, the photoelectric composite cable further includes a reinforcing rib disposed at a center of the innermost sealing sheath, and the live wire, the ground cable and the optical cable layer are evenly distributed or uniformly distributed in the The periphery of the rib, the reinforcing rib includes a reinforcing inner core and an insulating sheath wrapped around the reinforcing inner core. Preferably, in the above photoelectric composite cable, the photoelectric composite cable further includes a plurality of reinforcing cords, and the plurality of reinforcing cords are discretely distributed in the gap of the cable bundle. Preferably, in the above photoelectric composite cable, the peeling end surface of the photoelectric composite cable is a stepped surface. Preferably, in the above photoelectric composite cable, the photoelectric composite cable further includes a wire wrapped around the cable bundle. Winding a tape and a cable filling filled between the wrapping tape and the cable bundle; or the photoelectric composite cable further includes a water blocking tape wound around the cable bundle. The photoelectric composite cable provided by the invention has an embedded module, and the embedded module is respectively connected with the live wire and the ground cable to form an electrical path, and the embedded module is connected with the external optical fiber to form an optical path to realize the normal operation of the embedded module. The method of embedding the external device does not need to consider the arrangement position and space of the external device. If adjustment is needed, it can be directly adjusted by adjusting the direction, length, layout, etc. of the photoelectric composite cable, and the adjustment is flexible, and the adjustment is relatively easy. Therefore, the photoelectric composite cable provided by the invention can make the network wiring system have stronger adaptability to the construction site. Moreover, the embedded module has been debugged before embedding the opto-electric composite cable. Therefore, the opto-electric composite cable provided by the invention can also shorten the time for on-site installation and debugging of the network cabling system.
同时, 本发明提供的光电复合缆采用单芯紧套光纤, 操作人员较容易对此种 类型的光纤进行截断、 对接、 分路等操作, 而且操作时不受其它临近光纤或电线 的影响,也不会对其它光纤的传输造成影响,进而能够方便对单根光纤进行处理。 而且, 本发明中的光电复合缆采用至少两层封塑护套对线缆束和内嵌模块进行防 护, 首先多层封塑护套的防护性能更好; 其次多层封塑护套使得在光电复合缆的 生产或两段光电复合缆连接时能够剥离成阶梯面, 然后再进行封塑处理, 阶梯面 能够提高接续封塑的结合面积, 进而提高结合的稳定性, 最终避免目前通常使用 跳线盒连接线缆带来的体积较大问题, 能进一步方便布线。 而且多层封塑护套能 够使得光电复合缆较好地保持线缆形态。  At the same time, the photoelectric composite cable provided by the invention adopts a single-core tight-set optical fiber, and the operator is relatively easy to perform operations such as cutting, docking, splitting, etc., and is not affected by other adjacent optical fibers or wires during operation. It does not affect the transmission of other fibers, which makes it easy to process a single fiber. Moreover, the optoelectronic composite cable of the present invention protects the cable bundle and the embedded module by using at least two layers of the sealed sheath, and firstly, the multi-layer sealing sheath has better protection performance; When the production of photoelectric composite cable or two-stage photoelectric composite cable is connected, it can be peeled off into a step surface, and then sealed, and the step surface can improve the bonding area of the continuous sealing, thereby improving the stability of the combination, and finally avoiding the current common use of jumping. The large volume problem caused by the cable connection cable can further facilitate wiring. Moreover, the multi-layered plastic sheath enables the opto-electric composite cable to better maintain the cable form.
本发明提供的光电复合缆中由于预先将内嵌模块设置在光电复合缆内部,采 用这种线缆可以简化现场工作, 使得现场的施工简单。 内嵌模块为功能模块, 可 以根据现场所需提前预设或选择, 例如可以为集传输、 广播、 感应、 采集、 处理 等性能于一体的功能模块。 这可以使得本发明提供的光电复合缆成为一种集多功 能于一体的一体化智能线缆, 解决了目前的光电复合缆仅作为一种单一传输连接 器件造成的功能性不足问题。 本发明提供的光电复合缆使得线缆与内嵌模块集成为一体式结构,一体式结 构方便设备管理, 同时降低外接存在的损坏风险, 能够提高网络布线系统的可靠 性和可操作性。 而且该种集成结构使得线缆与设备模块的连接更加紧凑, 能够减 少连接用线和现场连接操作, 进而降低目前外接方式存在的材料成本较高和施工 成本较高的问题。 进一步地,本发明提供的光电复合缆的第二层封塑护套的外表面上具有特定 的纹理结构, 能够实现可靠接续。 进一步地, 本发明提供的光电复合缆增加了阻水部, 使得光电复合缆具有较 好的防水性能。 进一步地, 本发明提供的光电复合缆增加了加强筋或加强绳, 能够提高整个 光电复合缆的抗拉性能, 并且加强绳也能够填充由于光缆数量较少而形成于光电 复合缆内部的空隙, 最终提高光电复合缆的力学性能, 避免应力集中。 附图说明 为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需 要使用的附图作简单地介绍, 显而易见地, 对于本领域普通技术人员而言, 在不 付出创造性劳动的前提下, 还可以根据这些附图获得其它的附图。 图 1是本发明实施例一提供的光电复合缆的结构示意图; 图 2 是本发明实施例一提供的光电复合缆采用集束直通应用模式的结构示 意图; 图 3 是本发明实施例一提供的光电复合缆采用分布分路应用模式的结构示 意图; 图 4 是本发明实施例一提供的光电复合缆采用分路模块级联应用模式的结 构示意图; 图 5 是本发明实施例一提供的光电复合缆电通路接续的部分内部结构示意 图; 图 6是本发明实施例二提供的光电复合缆的结构示意图; 图 7 是本发明实施例二提供的光电复合缆采用集束直通应用模式的结构示 意图; 图 8 是本发明实施例二提供的光电复合缆采用分布分路应用模式的结构示 意图; 图 9 是本发明实施例二提供的光电复合缆采用分路模块级联应用模式的结 构示意图; 图 10是本发明实施例二提供的光电复合缆电通路接续的结构示意图; 图 11是本发明实施例三提供的光电复合缆的结构示意图; 图 12是本发明实施例三提供的光电复合缆采用集束直通应用模式的结构示 意图; 图 13是本发明实施例三提供的光电复合缆采用分布分路应用模式的结构示 意图; 图 14是本发明实施例三提供的光电复合缆采用分路模块级联应用模式的结 构示意图; 图 15是本发明实施例三提供的光电复合缆电通路接续的结构示意图。 具体实施方式 本发明实施例提供了一种光电复合缆,解决了背景技术中网络布线系统对施 工现场适应性较差的问题, 而且能够缩短整个网络布线系统的现场安装调试时 间。 In the photoelectric composite cable provided by the invention, since the embedded module is disposed inside the photoelectric composite cable in advance, the use of the cable can simplify the field work and make the construction on site simple. The embedded module is a function module, which can be preset or selected according to the needs of the site. For example, it can be a function module integrating transmission, broadcasting, sensing, acquisition, processing and the like. This can make the optoelectronic composite cable provided by the invention become an integrated intelligent cable integrating multi-functionality, and solves the problem of the lack of functionality of the current opto-electric composite cable only as a single transmission connection device. The photoelectric composite cable provided by the invention integrates the cable and the embedded module into an integrated structure, and the integrated structure facilitates equipment management, and at the same time reduces the risk of damage existing in the external connection, and can improve the reliability and operability of the network wiring system. Moreover, the integrated structure makes the connection between the cable and the device module more compact, can reduce the connection line and the field connection operation, thereby reducing the problem of high material cost and high construction cost in the current external connection mode. Further, the second layer of the photoelectric composite cable provided by the present invention has a specific texture on the outer surface of the second layer of the plastic sheath, so that reliable connection can be achieved. Further, the photoelectric composite cable provided by the invention increases the water blocking portion, so that the photoelectric composite cable has better waterproof performance. Further, the photoelectric composite cable provided by the invention adds a reinforcing rib or a reinforcing rope, can improve the tensile performance of the entire photoelectric composite cable, and the reinforcing rope can also fill the gap formed in the interior of the photoelectric composite cable due to the small number of optical cables. Finally, improve the mechanical properties of the opto-electric composite cable and avoid stress concentration. BRIEF DESCRIPTION OF THE DRAWINGS In order to more clearly illustrate the technical solutions in the embodiments of the present invention, the drawings used in the description of the embodiments will be briefly described below, and it will be apparent to those skilled in the art that Other drawings can also be obtained from these drawings on the premise of creative labor. 1 is a schematic structural view of a photoelectric composite cable according to a first embodiment of the present invention; FIG. 2 is a schematic structural view of a photoelectric composite cable according to a first embodiment of the present invention, which is provided in a bundle through-through application mode; FIG. 4 is a schematic structural diagram of a split-module application mode of a split-module module according to Embodiment 1 of the present invention; FIG. 5 is a schematic diagram of a photoelectric composite cable provided by Embodiment 1 of the present invention; FIG. 6 is a schematic structural view of a photoelectric composite cable according to Embodiment 2 of the present invention; FIG. 7 is a schematic structural view of a photoelectric composite cable according to Embodiment 2 of the present invention, which adopts a bundle through-through application mode; It is a schematic structural diagram of the photoelectric composite cable provided by the second embodiment of the present invention adopting a distributed branching application mode; 9 is a schematic structural diagram of a cascading application mode of a splitting module according to a second embodiment of the present invention; FIG. 10 is a schematic structural view of an electrical circuit of a photoelectric composite cable according to a second embodiment of the present invention; FIG. 12 is a schematic structural view of a photoelectric composite cable according to Embodiment 3 of the present invention, which is provided in a cluster through-through application mode; FIG. 13 is a distribution diagram of a photoelectric composite cable according to Embodiment 3 of the present invention. FIG. 14 is a schematic structural diagram of a cascading application mode of a splitting module according to Embodiment 3 of the present invention; FIG. 15 is a schematic diagram of a galvanic composite cable galvanic connection structure provided by Embodiment 3 of the present invention; schematic diagram. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention provide an optoelectric composite cable, which solves the problem that the network cabling system has poor adaptability to the construction site in the background art, and can shorten the on-site installation and debugging time of the entire network cabling system.
为了使本技术领域的人员更好地理解本发明实施例中的技术方案,并使本发 明实施例的上述目的、 特征和优点能够更加明显易懂, 下面结合附图对本发明实 施例中的技术方案作进一步详细的说明。  The above-mentioned objects, features and advantages of the embodiments of the present invention will become more apparent and understood. The program is explained in further detail.
实施例一  Embodiment 1
请参考附图 1, 图 1示出了本发明实施例一提供的光电复合缆的结构。  Referring to Figure 1, Figure 1 shows the structure of an optoelectric composite cable according to a first embodiment of the present invention.
本发明实施例一提供的光电复合缆包括火线线缆 13、地线线缆 11、光缆 12、 内嵌模块 (图中未示出) 和至少两层封塑护套。 优选的, 封塑护套为两层, 分别 为内层封塑护套 15和外层封塑护套 14 (如图 1所示)。 内层封塑护套 15包覆于 火线线缆 13、地线线缆 11和光缆 12形成的线缆束和内嵌模块上, 外层封塑护套 14包覆于内层封塑护套 15上。外层封塑护套 14和内层封塑护套 15可拆卸相连, 即两者可以剥离。  The optoelectronic composite cable provided in the first embodiment of the present invention comprises a live wire cable 13, a ground cable 11, a fiber optic cable 12, an embedded module (not shown) and at least two layers of plastic sheath. Preferably, the sealing sheath is two layers, respectively an inner layer sealing sheath 15 and an outer sealing sheath 14 (shown in Figure 1). The inner layer sealing sheath 15 is covered on the cable bundle and the embedded module formed by the live wire 13 , the ground cable 11 and the optical cable 12 , and the outer sealing sheath 14 is covered on the inner sealing sheath 15 on. The outer sealing sheath 14 and the inner sealing sheath 15 are detachably connected, i.e., the two can be peeled off.
为了提高防护性能,本实施例一提供的光电复合缆可以设置更多层的封塑护 套, 并不限于图 1所示的两层。 当封塑护套的数量多于两层时, 相邻的两层封塑 护套中, 距光电复合缆的中心较远的一层封塑护套包覆在距光电复合缆的中心较 近的一层封塑护套上, 且两者可拆卸相连, 以实现光电复合缆接续封塑时对封塑 护套的剥离。 通常情况下, 封塑护套可以采用 PVC ( Polyvinyl chloride, 聚氯 乙烯)材料、 LSZH C Low Smoke Zero Halogen,低烟无卤)材料或 PE ( polyethylene, 聚乙烯) 材料制成。 In order to improve the protective performance, the photoelectric composite cable provided in the first embodiment can be provided with more layers of sealing plastic protection. The sleeve is not limited to the two layers shown in Fig. 1. When the number of the sealing sheath is more than two, in the adjacent two-layer sealing sheath, a layer of plastic sheath farther from the center of the photoelectric composite cable is coated near the center of the photoelectric composite cable. The first layer of the plastic sheath is attached, and the two are detachably connected to realize the peeling of the sealing sheath when the photoelectric composite cable is continuously sealed. Typically, the encapsulated jacket can be made of PVC (Polyvinyl chloride, Polyvinyl Chloride), LSZH C Low Smoke Zero Halogen, or PE (polyethylene).
在制作本实施例一提供的光电复合缆的过程中可以剥离光电复合缆的封塑 护套, 然后将内嵌模块内接于光电复合缆中。 为了提高接续封塑的可靠性, 在剥 离时, 相邻的两层封塑护套中, 距光电复合缆中心较远的一层可以比距光电复合 缆中心较近的一层多剥离一段。 该种剥离方式能够使得光电复合缆的剥离端面为 阶梯面, 进而增大接续封塑的结合面积, 最终提高接续封塑的可靠性。 同样道理, 两段光电复合缆连接的过程同样可以采用上述剥离方式以提高两段光电复合缆 接续封塑的可靠性。 当然, 上述只是更为优选的方式, 在接续封塑的过程中, 也 可以将光电复合缆剥离成平面状剥离端面。  In the process of fabricating the photoelectric composite cable provided in the first embodiment, the sealing sheath of the photoelectric composite cable can be peeled off, and then the embedded module is internally connected to the photoelectric composite cable. In order to improve the reliability of the continuous sealing, in the peeling off, in the adjacent two-layer sealing sheath, the layer farther from the center of the photoelectric composite cable can be peeled off more than one layer closer to the center of the photoelectric composite cable. The stripping method can make the peeling end surface of the photoelectric composite cable be a step surface, thereby increasing the joint area of the continuous sealing and finally improving the reliability of the continuous sealing. By the same token, the process of connecting the two-stage photoelectric composite cable can also adopt the above-mentioned stripping method to improve the reliability of the two-stage photoelectric composite cable. Of course, the above is only a more preferable mode, and the photoelectric composite cable can also be peeled off into a planar peeling end face during the subsequent sealing process.
为了进一步提高光电复合缆接续封塑的可靠性,本实施例一提供的光电复合 缆中, 在自外向内的方向上, 位于第二层的封塑护套的外表面设置有用于增大接 续封塑结合力的纹理, 例如螺纹纹理、 网格纹理等。 当然, 上述位于第二层的封 塑护套还可以设置其它形状的纹理以增大接续封塑的结合力, 本实施例一不对纹 理的形状作限制。 更为优选的, 本实施例一提供的光电复合缆中, 在自外向内的 方向上, 在位于第二层的封塑护套的外表面设置纹理的前提下, 除最外层的封塑 护套之外的其它封塑护套的外表面也可以设置纹理, 以进一步增大光电复合缆接 续封塑的结合力。  In order to further improve the reliability of the splicing and sealing of the electro-optical composite cable, in the optoelectric composite cable provided in the first embodiment, in the direction from the outside to the inside, the outer surface of the sealing sheath located on the second layer is provided for increasing the connection. The texture of the seal bond, such as thread texture, mesh texture, etc. Of course, the above-mentioned sealing sheath on the second layer can also be provided with other shapes of texture to increase the bonding force of the continuous sealing. The first embodiment does not limit the shape of the texture. More preferably, in the photoelectric composite cable provided in the first embodiment, in the direction from the outside to the inside, on the premise that the outer surface of the sealing sheath located on the second layer is textured, except for the outermost sealing The outer surface of the other sealed sheath other than the sheath may also be textured to further increase the bonding force of the electro-optic composite cable.
本实施例一提供的光电复合缆中, 内嵌模块与火线线缆 13 和地线线缆 11 电连接, 进而实现电缆与内嵌模块对接形成电通路。 火线线缆 13和地线线缆 11 的结构可以相同, 均可以包括铜芯电线 131和绝缘护套 132, 绝缘护套 132的材 料可以为 PVC材料、 LSZH材料或 PE材料。本实施例一中的火线线缆 13和地线线 缆 11上均可以设置电缆识别标识, 以避免错接。例如火线线缆 13和地线线缆 11 可以用不同的颜色区分,火线线缆 13具有红色外皮,地线线缆 11具有黑色外皮。 上述火线线缆 13和地线线缆 11还可以采用文字符号等其它标识以示区分。 当光 缆 12为多根时, 每根光缆 12上均可以设置防止错接的光缆识别标识, 例如颜色 标识、 文字标识 (例如编号) 等。 本实施例一中, 光缆 12包括单芯紧套光纤 121和包覆于单芯紧套光纤 121 上的单芯紧套光纤外皮 123, 还可以包括填充于单芯紧套光纤 121和单芯紧套光 纤外皮 123之间的抗拉增强层 122。 根据行业内部标准, 通常情况单芯紧套光纤 外皮 123的厚度为 2mm。 紧套光纤是光纤的一种类型, 是对涂覆光纤进行保护后 形成的一种常用的光纤种类。 本实施例一中的紧套光纤为单芯紧套光纤 121。 上 述抗拉增强层 122用于增强光电复合缆的抗拉性能, 抗拉增强层 122可以为芳纶 纱形成的芳纶纱层或玻璃纱形成的玻璃纱层。 当然, 抗拉增强层 122还可以由其 它种类的材料制成, 本实施例一不对抗拉增强层 122的材质作限制。 In the photoelectric composite cable provided in the first embodiment, the embedded module is electrically connected to the live wire 13 and the ground cable 11 to realize the electrical connection between the cable and the embedded module. The structure of the live wire 13 and the ground cable 11 may be the same, and may include a copper core wire 131 and an insulating sheath 132. The material of the insulating sheath 132 may be PVC material, LSZH material or PE material. The cable identification mark can be set on both the live wire 13 and the ground cable 11 in the first embodiment to avoid misconnection. For example, the live wire 13 and the ground cable 11 can be distinguished by different colors, the live wire 13 has a red outer skin, and the ground cable 11 has a black outer skin. The FireWire cable 13 and the ground cable 11 may also be distinguished by other identifiers such as text symbols. When the number of the optical cables 12 is multiple, each of the optical cables 12 may be provided with a cable identification mark for preventing misconnection, such as a color identification, a character identification (such as a number), and the like. In the first embodiment, the optical cable 12 includes a single-core tight-fitting optical fiber 121 and a single-core tight-fitting optical fiber sheath 123 coated on the single-core tight-fitting optical fiber 121, and may further include a single-core tight-fitting optical fiber 121 and a single-core tight A tensile reinforcement layer 122 is disposed between the fiber sheaths 123. According to industry internal standards, the thickness of the single-core tight-fitting optical fiber sheath 123 is usually 2 mm. A tight-fitting fiber is a type of fiber that is a common type of fiber that is formed by protecting a coated fiber. The tight-fitting optical fiber in the first embodiment is a single-core tight-fitting optical fiber 121. The tensile reinforcement layer 122 is used to enhance the tensile properties of the optoelectric composite cable, and the tensile reinforcement layer 122 may be an aramid yarn layer formed of aramid yarn or a glass yarn layer formed of glass yarn. Of course, the tensile reinforcement layer 122 can also be made of other kinds of materials. The first embodiment does not limit the material of the tensile reinforcement layer 122.
本实施例一中, 单芯紧套光纤 121中至少有一根作为用于外接的外接光纤。 在制作本实施例一提供的光电复合缆时, 外接光纤在任意位置被截断后形成前端 尾纤和后端尾纤。 其中, 前端尾纤是与光信号源连接的一段光纤。 后端尾纤是用 于将光信号传出的一段光纤。 本实施例一中, 前端尾纤用于形成与内嵌模块连接 的光纤接头。 具体的, 前端尾纤形成光纤接头的方式有多种, 下面结合图 2-5所 示的几种形成方式进行示例性地说明。  In the first embodiment, at least one of the single-core tight-fitting optical fibers 121 serves as an external optical fiber for external connection. When the optoelectric composite cable provided in the first embodiment is fabricated, the external optical fiber is cut at any position to form a front end pigtail and a rear end pigtail. The front end pigtail is a length of fiber connected to the optical signal source. The rear pigtail is a length of fiber used to transmit optical signals. In the first embodiment, the front end pigtail is used to form a fiber joint connected to the embedded module. Specifically, there are various ways for the front end pigtail to form the fiber joint, which will be exemplarily described below in conjunction with several formation modes shown in Figs. 2-5.
请参考附图 2, 图 2示出了本发明实施例一提供的光电复合缆采用集束直通 应用模式的结构。 所述集束直通应用模式通常较适用于单芯紧套光纤 121数量较 多的光电复合缆, 该种模式就是一根外接光纤 110截断后形成前端尾纤和后端尾 纤, 其中, 前端尾纤作为光纤接头与内嵌模块 19 对接, 后端尾纤不作处理。 通 常, 前端尾纤可以利用相应的工具热熔或冷接操作连接光纤连接法兰 18 后通过 光纤连接法兰 18与内嵌模块 19对接, 或者前端尾纤直接与内嵌模块 19预留的 光纤尾纤进行热熔或冷接操作实现连接。 前端尾纤与内嵌模块 19 连接形成光信 号通路。 此种模式也可以在光电复合缆的其它位置对不同的单芯紧套光纤 121分 别进行同样的操作。  Referring to FIG. 2, FIG. 2 shows a structure of a photoelectric composite cable according to Embodiment 1 of the present invention, which adopts a bundle through-through application mode. The bundle through-through application mode is generally more suitable for a plurality of opto-electric composite cables of a single-core tight-set optical fiber 121. The mode is that an external optical fiber 110 is cut to form a front-end pigtail and a rear-end pigtail, wherein the front-end pigtail As the fiber connector is docked with the embedded module 19, the rear pigtail is not processed. Generally, the front end pigtail can be connected to the fiber optic connection flange 18 by a corresponding tool hot melt or cold connection operation, and then connected to the inline module 19 through the fiber connection flange 18, or the front end pigtail directly and the fiber reserved by the inline module 19. The pigtail is hot melted or cold-joined to achieve the connection. The front pigtail is connected to the embedded module 19 to form an optical signal path. This mode can also perform the same operation on different single-core tight-fitting fibers 121 at other locations of the opto-electric composite cable.
请参考附图 3, 图 3示出了本发明实施例一提供的光电复合缆采用分布分路 应用模式的结构。 所谓的分布分路应用模式通常较适用于单芯紧套光纤 121数量 较少的光电复合缆 (如单芯紧套光纤 121为一根时, 这种情况下最好采用分路分 布应用模式)。 该种模式中的外接光纤 111 被截断后形成前端尾纤和后端尾纤。 其中前端尾纤是与光信号源连接的一段光纤, 后端尾纤是用于将光信号传出的一 段光纤。  Referring to FIG. 3, FIG. 3 shows a structure of a photoelectric composite cable according to Embodiment 1 of the present invention, which adopts a distributed branching application mode. The so-called distributed shunt application mode is generally more suitable for a single-core tight-set optical fiber 121 with a smaller number of opto-electric composite cables (for example, when the single-core tight-fitting optical fiber 121 is one, in this case, it is preferable to adopt a shunt distribution application mode) . The external fiber 111 in this mode is cut to form a front pigtail and a rear pigtail. The front end pigtail is a length of fiber connected to the optical signal source, and the rear end pigtail is a segment of the optical fiber used to transmit the optical signal.
分布分路应用模式下,本实施例一提供的光电复合缆还可以包括与前端尾纤 相连, 且将前端尾纤分为主路光纤 1122和支路光纤 1121的光分路器 112, 支路 光纤 1121作为光纤接头与内嵌模块 19相连形成光信号通路, 主路光纤 1122与 后端尾纤相连保证光通路继续向后传输。 支路光纤 1121与内嵌模块 19可以通过 热熔或冷接操作连接光纤连接法兰后相连, 支路光纤 1 121也可以预留光纤尾纤, 然后通过预留的光纤尾纤与内嵌模块 19 预留的光纤尾纤进行热熔或冷接操作实 现连接。此种模式下,也可以在光电复合缆的其它位置再次对同一根外接光纤 1 11 进行同样的操作。 此种情况下, 外接光纤 11 1可外接内嵌模块 19 的次数与内嵌 模块 19的光模块接收灵敏度和对接损耗相关。 In the distributed shunt application mode, the opto-electric composite cable provided in the first embodiment may further include an optical splitter 112 connected to the front end pigtail and dividing the front end pigtail into the main fiber 1122 and the branch optical fiber 1121. The optical fiber 1121 is connected as an optical fiber connector to the embedded module 19 to form an optical signal path, and the main fiber 1122 is connected to the rear pigtail to ensure that the optical path continues to be transmitted backward. The branch fiber 1121 and the embedded module 19 can be connected by connecting the fiber connection flange by hot melt or cold connection operation, and the branch fiber 1 121 can also reserve the fiber pigtail, and then pass the reserved fiber pigtail and the embedded module. 19 The reserved fiber pigtails are hot-melt or cold-wired for connection. In this mode, the same operation of the same external optical fiber 1 11 can be performed again at other locations of the optoelectric composite cable. In this case, the number of times the external optical fiber 11 1 can be externally connected to the embedded module 19 is related to the optical module receiving sensitivity and the docking loss of the embedded module 19.
请参考附图 4, 图 4示出了本发明实施例一提供的光电复合缆采用分路模块 级联应用模式的结构。 采用分路模块级联应用模式时, 本实施例一提供的光电复 合缆的内嵌模块 19内具有光分路器 (图中未示出)。 优选的, 光分路器为 PLC光 分路器。 外接光纤 113被截断后形成前端尾纤和后端尾纤, 其中, 前端尾纤是与 光信号源连接的一段光纤, 后端尾纤是用于将光信号传出的一段光纤。 分路模块 级联应用模式下, 后端尾纤与内嵌模块 19 的输出端相连, 前端尾纤通过内嵌模 块内的光分路器分成与内嵌模块 19内除光分路器之外其它模块相连的光纤接头。 后端尾纤与内嵌模块 19的输出端相连以使得光信号传向下一级。  Referring to FIG. 4, FIG. 4 shows a structure of a cascading application mode of a split-module module for a photoelectric composite cable according to Embodiment 1 of the present invention. When the shunt module cascade application mode is adopted, the in-line module 19 of the opto-electric composite cable provided in the first embodiment has an optical splitter (not shown). Preferably, the optical splitter is a PLC optical splitter. The external fiber 113 is cut to form a front pigtail and a rear pigtail. The front pigtail is a length of fiber connected to the optical signal source, and the rear pigtail is a length of fiber used to transmit optical signals. In the cascaded application mode, the rear pigtail is connected to the output of the embedded module 19, and the front pigtail is divided into the optical splitter in the embedded module 19 by the optical splitter in the embedded module. Fiber connectors with other modules connected. The rear pigtail is connected to the output of the embedded module 19 to pass the optical signal to the next stage.
其中, 前端尾纤可以通过热熔或冷接操作连接光纤连接法兰 18, 然后通过 光纤连接法兰 18与内嵌模块 19的输入端相连, 或者前端尾纤预留光纤尾纤, 前 端尾纤通过光纤尾纤与内嵌模块 19预留的光纤尾纤进行热熔或冷操作实现连接。 同样, 后端尾纤可以通过热熔或冷接操作连接光纤连接法兰 114, 然后通过光纤 连接法兰 114与内嵌模块 19的输出端相连, 或者后端尾纤预留光纤尾纤, 前端 尾纤通过光纤尾纤与内嵌模块 19预留的光纤尾纤进行热熔或冷操作实现连接。  Wherein, the front end pigtail can be connected to the fiber connecting flange 18 by hot melt or cold connection operation, and then connected to the input end of the embedded module 19 through the fiber connecting flange 18, or the fiber tail fiber is reserved for the front end pigtail, the front end pigtail The fiber pigtail is connected to the fiber pigtail reserved by the embedded module 19 for hot melt or cold operation. Similarly, the rear pigtail can be connected to the fiber connection flange 114 by a hot melt or cold junction operation, and then connected to the output end of the embedded module 19 through the fiber connection flange 114, or the fiber pigtail is reserved for the rear pigtail, the front end The pigtail fiber is connected to the fiber pigtail fiber reserved by the embedded module 19 by hot melt or cold operation.
请参考附图 5, 图 5示出了本发明实施例一提供的光电复合缆电通路接续的 结构。 图 5所示的光电复合缆中, 内嵌模块 19具有与火线线缆 13对接的火线对 接电线 117和与地线线缆 1 1对接的地线对接电线 118, 火线线缆 13与火线对接 电线 117通过对接装置 115 (例如快速电插头) 相连, 地线对接电线 118与地线 线缆 1 1也可以通过对接装置 116相连。 当然, 本实施例一提供的光电复合缆中, 电缆还可以直接与内嵌模块 19的接线端相连以形成电源通路。  Referring to FIG. 5, FIG. 5 shows a structure of an electrical circuit connection of an optoelectric composite cable according to Embodiment 1 of the present invention. In the opto-electric composite cable shown in FIG. 5, the in-line module 19 has a live wire butt line 117 that interfaces with the live wire 13 and a ground wire 118 that interfaces with the ground wire 1 1 . The live wire 13 and the live wire are connected to the wire. 117 is connected by a docking device 115 (for example, a quick electrical plug), and the ground wire butt wire 118 and the ground cable 1 1 can also be connected by the docking device 116. Of course, in the optoelectric composite cable provided in the first embodiment, the cable can also be directly connected to the terminal of the embedded module 19 to form a power path.
在生产本实施例一公开的光电复合缆的过程中,通常采用对封塑外护套剥离 再嵌入的方式将内嵌模块 19 嵌入到光电复合缆的内部, 未用于外接光纤的单芯 紧套光纤 121可以从内嵌模块 19 的周边穿过。 优选的, 光电复合缆嵌入内嵌模 块 19部位的外部尺寸不超过其它未嵌入内嵌模块 19部位的外部尺寸(即外部轮 廓的最大尺寸)。 在多层封塑护套的基础之上, 将剥离成的阶梯状端面利用注塑、 灌封、 粘接套管或加装防护外壳等工艺进行修复与保护, 重新形成统一外径的光 电复合缆。 为了保证线缆的整体外观以及各个部分结合的稳定性, 在形成统一外 径线缆后再把光电复合缆整体进行封塑形成新的最外层封塑护套。 在单芯紧套光 纤 121数量较多的情况下, 还可以将其它的单芯紧套光纤 121作为外接光纤, 可 以分别在光电复合缆的不同部位嵌入内嵌模块 19。 In the process of producing the photoelectric composite cable disclosed in the first embodiment, the embedded module 19 is usually embedded in the interior of the photoelectric composite cable by means of peeling and re-embedding the plastic outer sheath, and the single core is not used for the external optical fiber. The sleeve of optical fibers 121 can pass through the periphery of the inline module 19. Preferably, the external size of the opto-electric composite cable embedded in the in-line module 19 does not exceed the outer dimensions of other portions not embedded in the in-line module 19 (ie, the outer wheel) The largest size of the profile). On the basis of the multi-layered plastic sheath, the stepped end surface which is peeled off is repaired and protected by injection molding, potting, bonding sleeve or protective casing, and the photoelectric composite cable with uniform outer diameter is reformed. . In order to ensure the overall appearance of the cable and the stability of the combination of the various parts, after forming the uniform outer diameter cable, the photoelectric composite cable is integrally sealed to form a new outermost sealing sheath. In the case where the number of the single-core tight-fitting optical fibers 121 is large, the other single-core tight-fitting optical fibers 121 may be used as the external optical fibers, and the embedded modules 19 may be embedded in different portions of the photoelectric composite cable.
本实施例一提供的光电复合缆的另一种具体实施方式中,光电复合缆还可以 包括阻水部。 请再次参考附图 1, 阻水部可以包括缠绕在线缆束上的绕包带 16 和填充于绕包带 16和线缆束之间的缆膏填充物 17,绕包带 16起到固定火线线缆 13、 地线线缆 11和光缆 12的作用。 绕包带 16可以采用无纺布、 玻璃纤维布等 强度较高的缠料制作。 绕包带 16缠绕完成之前在绕包带 16和线缆束之间填充缆 膏填充物 17, 能够起到较好的防水作用。 阻水部还可以采用既具有包覆固定线缆 束功能, 又可以提供防水功能的阻水带代替绕包带 16和缆膏填充物 17, 上述阻 水带的材料可以为含有自膨胀吸水树脂的有机纤维。 本具体实施方式提供的光电 复合缆在嵌入内嵌模块 19 的过程中, 可去除嵌入位置的阻水带或者去除嵌入位 置的绕包带 16及存在的缆膏填充物 17。  In another specific embodiment of the optoelectric composite cable provided in the first embodiment, the optoelectric composite cable may further include a water blocking portion. Referring again to FIG. 1, the water blocking portion may include a wrapping tape 16 wound around the cable bundle and a cable filling filler 17 filled between the wrapping tape 16 and the cable bundle, and the wrapping tape 16 is fixed. The function of the live wire 13, the ground cable 11 and the cable 12. The wrapping tape 16 can be made of a woven material having a high strength such as a nonwoven fabric or a glass fiber cloth. Filling the tape 16 between the wrapping tape 16 and the cable bundle before wrapping the wrapping tape 16 can provide a better waterproofing effect. The water blocking portion may further comprise a water blocking tape having a function of covering and fixing the cable bundle and providing a waterproof function instead of the wrapping tape 16 and the cable filling filler 17, and the material of the water blocking tape may be a self-expanding water absorbing resin. Organic fiber. In the process of embedding the inline module 19, the opto-electric composite cable provided by the embodiment can remove the water blocking tape in the embedding position or the wrapping tape 16 and the existing cable filling filler 17 in the embedding position.
本发明实施例一提供的光电复合缆具有内嵌模块 19, 内嵌模块 19分别与火 线线缆 13和地线线缆 11连接形成电通路, 同时内嵌模块 19与外接光纤相连形 成光通路实现内嵌模块 19 的正常工作。 这种外接设备内嵌的方式无需考虑外接 设备的布置位置和空间, 如需调整, 可以直接通过调整光电复合缆的走向、长度、 布局等方式实现, 调整灵活, 而且调整较容易。 因此, 本实施例一提供的光电复 合缆能够使得网络布线系统对施工现场具有更强的适应性。 而且, 内嵌模块 19 在嵌入光电复合缆之前已经做好调试, 因此, 本实施例一提供的光电复合缆还能 够缩短网络布线系统现场安装调试的时间。  The photoelectric composite cable provided by the first embodiment of the present invention has an embedded module 19, and the embedded module 19 is respectively connected with the live wire 13 and the ground cable 11 to form an electrical path, and the embedded module 19 is connected with the external optical fiber to form an optical path. The built-in module 19 works normally. The method of embedding the external device does not need to consider the arrangement position and space of the external device. If adjustment is needed, it can be directly adjusted by adjusting the orientation, length and layout of the opto-electric composite cable, and the adjustment is flexible, and the adjustment is relatively easy. Therefore, the opto-electric composite cable provided in the first embodiment can make the network cabling system more adaptable to the construction site. Moreover, the embedded module 19 has been debugged before being embedded in the opto-electric composite cable. Therefore, the opto-electric composite cable provided in the first embodiment can shorten the time for installation and debugging of the network cabling system.
同时, 本实施例一提供的光电复合缆采用单芯紧套光纤 121, 操作人员较容 易对此种类型的光纤进行截断、 对接、 分路等操作, 而且操作时不受其它临近光 纤或电线的影响, 也不会对其它光纤的传输造成影响, 进而能够方便对单根光纤 进行处理。 而且, 本实施例一中的光电复合缆采用至少两层封塑护套对线缆束和 内嵌模块 19 进行防护, 首先多层封塑护套的防护性能更好; 其次多层封塑护套 使得在光电复合缆的生产或两段光电复合缆连接时能够剥离成阶梯面, 然后进行 封塑处理, 阶梯面能够提高接续封塑的结合面积, 进而提高结合的稳定性, 最终 避免目前通常使用跳线盒连接线缆带来的体积较大的问题, 能进一步方便布线。 而且多层封塑护套能够使得光电复合缆较好地保持线缆形态。 At the same time, the photoelectric composite cable provided in the first embodiment adopts a single-core tight-set optical fiber 121, and the operator can easily perform operations such as cutting, docking, splitting, etc. for the optical fibers of the same type, and is operated without other adjacent optical fibers or wires. The impact does not affect the transmission of other fibers, which in turn facilitates the processing of a single fiber. Moreover, the opto-electric composite cable of the first embodiment protects the cable bundle and the in-line module 19 by using at least two layers of the plastic sheath, and firstly, the multi-layer sealing sheath has better protection performance; The sleeve can be peeled into a step surface when the photoelectric composite cable is produced or the two-stage photoelectric composite cable is connected, and then the sealing treatment is performed, and the step surface can improve the bonding area of the continuous sealing, thereby improving the stability of the joint, and finally It avoids the large volume problem caused by the current use of jumper box connection cables, which can further facilitate wiring. Moreover, the multi-layered plastic sheath enables the optoelectronic composite cable to better maintain the cable form.
本实施例一提供的光电复合缆中由于预先将内嵌模块 19设置在光电复合缆 内部, 采用这种线缆可以简化现场工作, 使得现场的施工简单。 内嵌模块 19 为 功能模块, 可以根据现场所需提前预设或选择, 例如可以为集传输、广播、 感应、 采集、 处理等功能于一体的功能模块。 这可以使得本实施例一提供的光电复合缆 成为一种集多功能于一体的一体化智能线缆, 解决了目前的光电复合缆仅作为一 种单一传输连接器件存在的功能性不足问题。  In the photoelectric composite cable provided in the first embodiment, since the embedded module 19 is disposed inside the photoelectric composite cable in advance, the use of the cable can simplify the field work and make the construction on site simple. The embedded module 19 is a function module, which can be preset or selected according to the needs of the site. For example, it can be a function module integrating functions of transmission, broadcasting, sensing, acquisition, processing, and the like. This can make the opto-electric composite cable provided in the first embodiment become an integrated intelligent cable integrating multi-functionality, and solves the problem of the lack of functionality of the current opto-electric composite cable as a single transmission connection device.
本实施例一提供的光电复合缆使得线缆与内嵌模块集成为一体式结构,一体 式结构方便设备管理, 同时降低外接存在的损坏风险, 能够提高网络布线系统的 可靠性和可操作性。 而且该种集成结构使得线缆与设备模块的连接更加紧凑, 能 够减少连接用线和现场连接操作, 进而降低目前外接方式存在的材料成本较高和 施工成本较高的问题。  The photoelectric composite cable provided in the first embodiment integrates the cable and the embedded module into an integrated structure, and the integrated structure facilitates equipment management, and at the same time reduces the risk of damage existing in the external connection, and can improve the reliability and operability of the network wiring system. Moreover, the integrated structure makes the connection between the cable and the equipment module more compact, can reduce the connection line and the field connection operation, and further reduces the problems of high material cost and high construction cost in the current external connection mode.
进一步地,本实施例提供的光电复合缆的第二层封塑护套的外表面上具有特 定的纹理结构, 能够进一步提高线缆接续的可靠性。  Further, the outer layer of the second layer of the plastic-clad sheath provided by the embodiment has a specific texture structure, which can further improve the reliability of the cable connection.
进一步地, 本实施例提供的光电复合缆增加了阻水部, 使得光电复合缆具有 较好的防水性能。  Further, the opto-electric composite cable provided in this embodiment has a water blocking portion, so that the photoelectric composite cable has better waterproof performance.
实施例二  Embodiment 2
通常, 在现场的布线过程中, 操作人员在移动光电复合缆时会对其施加较大 的拉拽力, 而拉拽力会通过封塑护套施加于内部的线缆上, 这无疑会增大光电复 合缆内部线缆的受力, 进而损坏线缆。 为了解决此问题, 请参考附图 6, 图 6示 出了本发明实施例二提供的光电复合缆的结构。  Usually, during the wiring process in the field, the operator will apply a large pulling force when moving the opto-electric composite cable, and the pulling force will be applied to the inner cable through the sealing sheath, which will undoubtedly increase. The force of the internal cable of the large photoelectric composite cable damages the cable. In order to solve this problem, please refer to FIG. 6, FIG. 6 shows the structure of the photoelectric composite cable provided by the second embodiment of the present invention.
本发明实施例二提供的光电复合缆包括火线线缆 23、地线线缆 28、光缆 22、 内嵌模块 (图中未示出)、 加强筋 21和至少两层封塑护套。 优选的, 封塑护套为 两层, 分别为内层封塑护套 25和外层封塑护套 24 (如图 6所示)。 内层封塑护套 25包覆于火线线缆 23、 地线线缆 28和光缆 22形成的线缆束和内嵌模块上, 外 层封塑护套 24包覆于内层封塑护套 25上, 且两者可拆卸相连, 即外层封塑护套 24和内层封塑护套 25可以相互剥离。  The optoelectronic composite cable provided by the second embodiment of the present invention comprises a live wire cable 23, a ground cable 28, a fiber optic cable 22, an embedded module (not shown), a rib 21 and at least two layers of plastic sheath. Preferably, the sealing sheath is two layers, respectively an inner layer sealing sheath 25 and an outer sealing sheath 24 (shown in Figure 6). The inner layer sealing sheath 25 is covered on the cable bundle and the embedded module formed by the live wire 23, the ground cable 28 and the optical cable 22, and the outer sealing sheath 24 is wrapped around the inner sealing sheath. 25, and the two are detachably connected, that is, the outer sealing sheath 24 and the inner sealing sheath 25 can be peeled off from each other.
为了提高防护性能,本实施例二提供的光电复合缆可以设置更多层的封塑护 套, 并不限于图 6所示的两层。 当封塑护套的数量多于两层时, 相邻的两层封塑 护套中, 距光电复合缆的中心较远的一层封塑护套包覆在距光电复合缆的中心较 近的一层封塑护套上, 且两者可拆卸相连, 以实现光电复合缆接续封塑时对封塑 护套的剥离。 通常情况下, 封塑护套可以采用 PVC材料、 LSZH材料或 PE材料制 成。 In order to improve the protective performance, the photoelectric composite cable provided in the second embodiment can be provided with more layers of the sealing sheath, and is not limited to the two layers shown in FIG. 6. When the number of the sealing sheath is more than two layers, in the adjacent two-layer sealing sheath, a layer of plastic sheath which is farther from the center of the photoelectric composite cable is coated at the center of the photoelectric composite cable. The first layer of the plastic sheath is detachably connected to realize the peeling of the sealing sheath when the photoelectric composite cable is continuously sealed. Typically, the sealed jacket can be made of PVC material, LSZH material or PE material.
在制作本实施例二提供的光电复合缆的过程中可以剥离光电复合缆的封塑 护套, 然后将内嵌模块内接于光电复合缆中。 为了提高接续封塑的可靠性, 在剥 离时, 相邻的两层封塑护套中, 距光电复合缆中心较远的一层可以比距光电复合 缆中心较近的一层多剥离一段。 该种剥离方式能够使得光电复合缆的剥离端面为 阶梯面, 进而增大接续封塑的结合面积, 最终提高接续封塑的可靠性。 同样道理, 两段光电复合缆连接的过程同样可以采用上述剥离方式以提高两段光电复合缆 接续封塑的可靠性。 当然, 上述只是更为优选的方式, 在接续封塑的过程中, 也 可以将光电复合缆剥离成平面状剥离端面。  In the process of fabricating the photoelectric composite cable provided in the second embodiment, the sealing sheath of the photoelectric composite cable can be peeled off, and then the embedded module is internally connected to the photoelectric composite cable. In order to improve the reliability of the continuous sealing, in the peeling off, in the adjacent two-layer sealing sheath, the layer farther from the center of the photoelectric composite cable can be peeled off more than one layer closer to the center of the photoelectric composite cable. The stripping method can make the peeling end surface of the photoelectric composite cable be a step surface, thereby increasing the joint area of the continuous sealing and finally improving the reliability of the continuous sealing. By the same token, the process of connecting the two-stage photoelectric composite cable can also adopt the above-mentioned stripping method to improve the reliability of the two-stage photoelectric composite cable. Of course, the above is only a more preferable mode, and the photoelectric composite cable can also be peeled off into a planar peeling end face during the subsequent sealing process.
为了进一步提高光电复合缆接续封塑的可靠性,本实施例二提供的光电复合 缆中, 在自外向内的方向上, 位于第二层的封塑护套的外表面设置有用于增大接 续封塑结合力的纹理, 例如螺纹纹理、 网格纹理等。 纹理能够进一步提高光电复 合缆剥离部分接续封塑的可靠性。 当然, 上述纹理的设置同样有利于两段对接的 光电复合缆的接续封塑。 当然, 上述第二层的封塑护套还可以设置其它形状的纹 理以增大接续封塑时的结合力, 本实施例不对纹理的形状作限制。 更为优选的方 案中, 本实施例提供的光电复合缆中, 在自外向内的方向上, 在位于第二层的封 塑护套的外表面设置纹理的前提下, 除最外层的封塑护套之外的其它封塑护套也 可以设置纹理, 以进一步增大光电复合缆接续封塑的结合力。  In order to further improve the reliability of the splicing and sealing of the optoelectronic composite cable, in the optoelectric composite cable provided in the second embodiment, in the direction from the outside to the inside, the outer surface of the sealing sheath located on the second layer is provided for increasing the connection. The texture of the seal bond, such as thread texture, mesh texture, etc. The texture can further improve the reliability of the continuous sealing of the peeling portion of the photoelectric composite cable. Of course, the above-mentioned texture setting is also advantageous for the continuous sealing of the two-stage butted opto-electric composite cable. Of course, the sealing sheath of the second layer may also be provided with other shapes of texture to increase the bonding force during the subsequent sealing. This embodiment does not limit the shape of the texture. In a more preferred solution, in the photoelectric composite cable provided by the embodiment, in the direction from the outside to the inside, on the premise that the outer surface of the sealing sheath located on the second layer is textured, except for the outermost layer Other sealing sheaths other than the plastic sheath may also be textured to further increase the bonding force of the photovoltaic composite cable.
本实施例二提供的光电复合缆中, 内嵌模块与火线线缆 23 和地线线缆 28 电连接, 进而实现电缆与内嵌模块对接形成电源通路。 火线线缆 23 和地线线缆 28的结构可以相同, 均可以包括铜芯电线 231和绝缘护套 232, 绝缘护套 232的 材料可以为 PVC材料、 LSZH材料或 PE材料。本实施例二中的火线线缆 23和地线 线缆 28均可以设置有电缆识别标识, 以避免错接。 例如火线线缆 23和地线线缆 28可以用不同的颜色区分, 火线线缆 23具有红色外皮, 地线线缆 28具有黑色外 皮。 上述火线线缆 23和地线线缆 28还可以采用文字符号等其它标识以示区分。 当光缆 22为多根时, 每根光缆 22上均可以设置防止错接的光缆识别标识, 例如 颜色标识、 文字标识 (例如编号) 等。  In the opto-electric composite cable provided in the second embodiment, the embedded module is electrically connected to the live cable 23 and the ground cable 28, and the cable is interconnected with the embedded module to form a power path. The firewire cable 23 and the ground cable 28 may have the same structure, and may include a copper core wire 231 and an insulating sheath 232. The material of the insulating sheath 232 may be PVC material, LSZH material or PE material. Both the live wire 23 and the ground cable 28 in the second embodiment may be provided with a cable identification mark to avoid misconnection. For example, the live wire 23 and the ground cable 28 can be distinguished by different colors, the live wire 23 has a red outer skin, and the ground cable 28 has a black outer skin. The FireWire cable 23 and the ground cable 28 may also be distinguished by other symbols such as text symbols. When the number of the optical cables 22 is multiple, each of the optical cables 22 may be provided with a cable identification mark for preventing misconnection, such as a color identification, a character identification (such as a number), and the like.
本实施例二中, 光缆 22包括单芯紧套光纤 221和包覆于单芯紧套光纤 221 上的单芯紧套光纤外皮 223, 还可以包括填充于单芯紧套光纤 221和单芯紧套光 纤外皮 223之间的抗拉增强层 222。 根据行业内部标准, 通常情况单芯紧套光纤 外皮 223的厚度为 2mm。 紧套光纤是光纤的一种类型, 是对涂覆光纤进行保护后 形成的一种常用的光纤种类。 本实施例二中的紧套光纤为单芯紧套光纤 221。 抗 拉增强层 222用于提高光电复合缆的抗拉性能。 抗拉增强层 222可以为芳纶纱形 成的芳纶纱层或玻璃纱形成的玻璃纱层。 当然, 抗拉增强层 222还可以由其它种 类的材料制作, 本实施例二不对抗拉增强层 222的材质作限制。 In the second embodiment, the optical cable 22 includes a single-core tight-fitting optical fiber 221 and a single-core tight-fitting optical fiber sheath 223 coated on the single-core tight-fitting optical fiber 221, and may further include a single-core tight-fitting optical fiber 221 and a single-core tight Light Tensile reinforcement layer 222 between the outer skins 223. According to industry internal standards, the thickness of the single-core tight-fitting optical fiber sheath 223 is usually 2 mm. A tight-fitting fiber is a type of fiber that is a common type of fiber that is formed by protecting a coated fiber. The tight-fitting optical fiber in the second embodiment is a single-core tight-fitting optical fiber 221 . The tensile reinforcement layer 222 is used to improve the tensile properties of the optoelectric composite cable. The tensile reinforcing layer 222 may be a layer of aramid yarn formed of aramid yarn or a glass yarn layer formed of glass yarn. Of course, the tensile reinforcement layer 222 can also be made of other kinds of materials. The second embodiment does not limit the material of the tensile reinforcement layer 222.
加强筋 21位于最内层封塑护套的中心, 火线线缆 23、 地线线缆 28和光缆 22可以层绞或均匀分布于加强筋 21的周边, 以保证线缆分布的均匀性, 降低接 线应力。 本实施例二中的加强筋 21 可以包括加强内芯 2011 和包覆于加强内芯 2011外的绝缘护套 2012, 加强内芯 2011 主要起到抗拉的作用, 绝缘护套 2012 用于阻电。 本实施例二中的加强内芯 2011 可以为单芯或多芯钢丝, 保证能够抗 拉力的同时, 使得整个光电复合缆具有较好的柔韧性。 当然, 加强筋 21 也可以 为非金属材质制作的加强筋。  The reinforcing rib 21 is located at the center of the innermost sealing sheath, and the live wire 23, the ground cable 28 and the optical cable 22 can be layered or evenly distributed around the periphery of the reinforcing rib 21 to ensure uniformity of cable distribution and reduce Wiring stress. The reinforcing rib 21 in the second embodiment may include a reinforcing inner core 2011 and an insulating sheath 2012 wrapped around the reinforcing inner core 2011. The reinforcing inner core 2011 mainly serves as a tensile force, and the insulating sheath 2012 is used for blocking electricity. . The reinforced inner core 2011 in the second embodiment can be a single-core or multi-core steel wire, and can ensure the tensile strength while making the entire photoelectric composite cable have better flexibility. Of course, the rib 21 can also be a rib made of a non-metallic material.
本实施例二中, 单芯紧套光纤 221中至少有一根作为用于外接的外接光纤。 在制作本实施例二提供的光电复合缆时, 外接光纤在任意位置被截断后形成前端 尾纤和后端尾纤。 其中, 前端尾纤是与光信号源连接的一段光纤。 后端尾纤是用 于将光信号传出的一段光纤。 前端尾纤用于形成与内嵌模块连接的光纤接头。 具 体的, 前端尾纤形成与内嵌模块连接的光纤接头的方式有很多种, 下面结合图 7-10所示的几种形成方式进行示例性地说明。  In the second embodiment, at least one of the single-core tight-fitting optical fibers 221 serves as an external optical fiber for external connection. When the optoelectric composite cable provided in the second embodiment is fabricated, the external optical fiber is cut at any position to form a front end pigtail and a rear end pigtail. The front end pigtail is a length of fiber connected to the optical signal source. The rear pigtail is a length of fiber used to transmit optical signals. The front pigtail is used to form a fiber optic connector that is connected to the inline module. Specifically, there are many ways in which the front end pigtail forms a fiber optic connector that is coupled to the inline module, and is exemplarily described below in connection with the manner of formation shown in Figures 7-10.
请参考附图 7, 图 7示出了本发明实施例二提供的光电复合缆采用集束直通 应用模式的结构。 所述集束直通应用模式通常较适用于单芯紧套光纤 221数量较 多的光电复合缆, 该种模式就是一根外接光纤 211截断后形成前端尾纤和后端尾 纤。 其中, 前端尾纤作为光纤接头与内嵌模块 210对接, 后端尾纤不作处理。 通 常, 前端尾纤可以利用相应的工具热熔或冷接操作连接光纤连接法兰 29 后通过 光纤连接法兰 29与内嵌模块 210对接, 或者前端尾纤直接与内嵌模块 210预留 的光纤尾纤进行热熔或冷接操作实现连接。 前端尾纤与内嵌模块 210形成光信号 通路。 此种模式也可以在光电复合缆的其它位置对不同的单芯紧套光纤 221分别 进行同样的操作。  Referring to FIG. 7, FIG. 7 shows a structure of a photoelectric composite cable according to Embodiment 2 of the present invention, which adopts a bundle through-through application mode. The bundle through-through application mode is generally more suitable for a plurality of opto-electric composite cables of a single-core tight-set optical fiber 221. In this mode, an external optical fiber 211 is cut to form a front end pigtail and a rear end pigtail. The front end pigtail is connected to the embedded module 210 as a fiber connector, and the rear pigtail is not processed. Generally, the front end pigtail can be connected to the fiber optic connection flange 29 by a corresponding tool hot melt or cold connection operation, and then connected to the embedded module 210 through the fiber connection flange 29, or the front end pigtail directly and the fiber reserved in the embedded module 210. The pigtail is hot melted or cold-joined to achieve the connection. The front pigtail and the embedded module 210 form an optical signal path. This mode can also perform the same operation on different single-core tight-fitting fibers 221 at other locations of the opto-electric composite cable.
请参考附图 8, 图 8示出了本发明实施例二提供的光电复合缆采用分布分路 应用模式的结构。 所谓的分布分路应用模式通常较适用于单芯紧套光纤 221数量 较少的光电复合缆 (如单芯紧套光纤 221为一根时, 这种情况下最好采用分路分 布应用模式)。 该种模式中的外接光纤 212 被截断后形成前端尾纤和后端尾纤。 其中前端尾纤是与光信号源连接的一段光纤, 后端尾纤是用于将光信号传出的一 段光纤。 Referring to FIG. 8, FIG. 8 shows a structure of a photoelectric composite cable according to Embodiment 2 of the present invention, which adopts a distributed branching application mode. The so-called distributed shunt application mode is generally more suitable for a single-core tight-set optical fiber 221 with a smaller number of opto-electric composite cables (for example, when the single-core tight-fitting optical fiber 221 is one), in this case, it is preferable to use a splitting sub-segment. Cloth application mode). The external fiber 212 in this mode is truncated to form a front pigtail and a rear pigtail. The front end pigtail is a length of fiber connected to the optical signal source, and the rear end pigtail is a length of fiber used to transmit the optical signal.
分路分布应用模式下,本实施例二提供的光电复合缆还可以包括与前端尾纤 相连, 且将前端尾纤分为主路光纤 2132和支路光纤 2131的光分路器 213, 支路 光纤 2131作为光纤接头与内嵌模块 210相连形成光信号通路。 主路光纤 2132与 后端尾纤相连保证光通路继续向后传输。 支路光纤 2131 与内嵌模块 210可以通 过热熔或冷接操作连接光纤连接法兰后相连, 支路光纤 2131 也可以预留光纤尾 纤, 然后通过预留的光纤尾纤与内嵌模块 210预留的光纤尾纤进行热熔或冷接操 作实现连接。 此种模式下, 也可以在光电复合缆的其它位置再次对同一根外接光 纤 211进行同样的操作。 此种情况下, 外接光纤 212可外接内嵌模块 210的次数 与内嵌模块 210的光模块接收灵敏度和对接损耗相关。  In the split distribution application mode, the opto-electric composite cable provided in the second embodiment may further include an optical splitter 213 connected to the front end pigtail and dividing the front end pigtail into the main fiber 2132 and the branch fiber 2131. The optical fiber 2131 is connected as an optical fiber connector to the embedded module 210 to form an optical signal path. The main fiber 2132 is connected to the rear pigtail to ensure that the optical path continues to be transmitted backward. The branch fiber 2131 and the embedded module 210 can be connected to the fiber connecting flange by hot melt or cold connection operation, and the branch fiber 2131 can also reserve the fiber pigtail, and then pass the reserved fiber pigtail and the embedded module 210. The reserved fiber pigtails are connected by hot melt or cold connection. In this mode, the same operation can be performed on the same external optical fiber 211 again at other positions of the optoelectric composite cable. In this case, the number of times the external optical fiber 212 can be externally connected to the embedded module 210 is related to the optical module receiving sensitivity and the docking loss of the embedded module 210.
请参考附图 9, 图 9示出了本发明实施例二提供的光电复合缆采用分路模块 级联应用模式的结构。 采用分路模块级联应用模式时, 本实施例二提供的光电复 合缆的内嵌模块 210 内具有光分路器 (图中未示出)。 优选的, 光分路器为 PLC 光分路器。 外接光纤 214被截断后形成前端尾纤和后端尾纤, 其中, 前端尾纤是 与光信号源连接的一段光纤, 后端尾纤是用于将光信号穿出的一段光纤。 分路模 块级联应用模式下, 后端尾纤与内嵌模块 210的输出端相连, 前端尾纤通过内嵌 模块 210内的光分路器分成与内嵌模块 210内除光分路器之外其他模块相连的光 纤接头。 后端尾纤与内嵌模块 210的输出端相连以使得光信号传向下一级。  Please refer to FIG. 9, FIG. 9 is a diagram showing the structure of the multiplexed application mode of the splitting module of the photoelectric composite cable provided by the second embodiment of the present invention. When the shunt module cascade application mode is adopted, the in-line module 210 of the opto-electric composite cable provided in the second embodiment has an optical splitter (not shown). Preferably, the optical splitter is a PLC optical splitter. The external fiber 214 is cut to form a front end pigtail and a rear end pigtail. The front end pigtail is a length of fiber connected to the optical signal source, and the rear end pigtail is a length of fiber used to pass the optical signal out. In the cascading application mode, the rear end pigtail is connected to the output end of the embedded module 210, and the front end pigtail is divided into the optical splitter in the embedded module 210 by the optical splitter in the embedded module 210. Fiber connectors connected to other modules. The rear pigtail is connected to the output of the embedded module 210 to pass the optical signal to the next stage.
其中, 前端尾纤可以通过热熔或冷接操作连接光纤连接法兰 29, 然后通过 光纤连接法兰 29与内嵌模块 210输入端相连, 或者前端尾纤预留光纤尾纤, 前 端尾纤通过光纤尾纤与内嵌模块 210 预留的光纤尾纤进行热熔或冷操作实现连 接。 同样, 后端尾纤可以通过热熔或冷接操作连接光纤连接法兰 215, 然后通过 光纤连接法兰 215与内嵌模块 210的输出端相连, 或者前端尾纤预留光纤尾纤, 前端尾纤通过光纤尾纤与内嵌模块 210预留的光纤尾纤进行热熔或冷操作实现连 接。  The front end pigtail may be connected to the fiber connecting flange 29 through a hot melt or cold joint operation, and then connected to the input end of the embedded module 210 through the fiber connecting flange 29, or the fiber tail fiber is reserved at the front end pigtail, and the front end pigtail passes through The fiber pigtail is connected to the fiber pigtail reserved by the embedded module 210 for hot melt or cold operation. Similarly, the rear pigtail can be connected to the fiber connection flange 215 by hot melt or cold connection, and then connected to the output end of the embedded module 210 through the fiber connection flange 215, or the fiber pigtail is reserved for the front end pigtail, front end The fiber is connected to the fiber pigtail reserved by the embedded module 210 by hot-melt or cold operation through the fiber pigtail.
请参考附图 10, 图 10示出了本发明实施例二提供的光电复合缆电通路接续 的结构。 图 10所示的光电复合缆中, 内嵌模块 210具有与火线线缆 23对接的火 线对接电线 218和与地线线缆 28对接的地线对接电线 219, 火线线缆 23与火线 对接电线 218通过对接装置 216 (例如快速电插头) 相连, 地线对接电线 219与 地线线缆 28也通过对接装置 217相连。 当然, 本实施例二提供的光电复合缆中, 电缆还可以直接与内嵌模块 210的接线端相连。 Referring to FIG. 10, FIG. 10 shows a structure of an electrical path of a photoelectric composite cable provided by Embodiment 2 of the present invention. In the optoelectric composite cable shown in FIG. 10, the in-line module 210 has a live wire butt wire 218 that interfaces with the live wire 23 and a ground wire 219 that interfaces with the ground cable 28, and the live wire 23 and the live wire 218 Connected by docking device 216 (such as a quick electrical plug), ground wire butt wire 219 and The ground cable 28 is also connected by a docking device 217. Of course, in the optoelectric composite cable provided in the second embodiment, the cable can also be directly connected to the terminal of the embedded module 210.
在生产本实施例二公开的光电复合缆的过程中,通常采用对封塑外护套剥离 再嵌入的方式将内嵌模块 29 嵌入到光电复合缆的内部, 加强筋和未用于外接光 纤的单芯紧套光纤 221可以从内嵌模块 210的周边穿过, 必要时可切断并去除光 电复合缆嵌入部分的加强筋 21 以增加内嵌模块 210的安置空间。 优选的, 光电 复合缆嵌入内嵌模块 210部位的外部尺寸不超过其它未嵌入内嵌模块 210部位的 外部尺寸 (即外部轮廓的最大尺寸)。 在多层封塑护套的基础之上, 将剥离成的 阶梯状端面利用注塑、 灌封、 粘接套管或加装防护外壳等工艺进行修复与保护, 重新形成统一外径的光电复合缆。 为了保证线缆的整体外观以及各个部分结合的 稳定性, 在形成统一外径线缆后再把光电复合缆整体进行封塑形成新的最外层封 塑护套。 在单芯紧套光纤 221数量较多的情况下, 还可以将其它的单芯紧套光纤 221作为外接光纤, 可以分别在光电复合缆的不同部位嵌入内嵌模块 210。  In the process of producing the photoelectric composite cable disclosed in the second embodiment, the embedded module 29 is usually embedded in the interior of the photoelectric composite cable by means of peeling and re-embedding the outer sheath, and the reinforcing ribs are not used for the external optical fiber. The single-core tight-fitting optical fiber 221 can pass through the periphery of the in-line module 210, and if necessary, the reinforcing rib 21 of the embedded portion of the opto-electric composite cable can be cut and removed to increase the installation space of the in-line module 210. Preferably, the outer size of the opto-electric composite cable embedded in the in-line module 210 does not exceed the outer dimensions of the other portions of the in-line module 210 (ie, the largest dimension of the outer contour). On the basis of the multi-layered plastic sheath, the stepped end surface which is peeled off is repaired and protected by injection molding, potting, bonding sleeve or protective casing, and the photoelectric composite cable with uniform outer diameter is reformed. . In order to ensure the overall appearance of the cable and the stability of the combination of the various parts, the photoelectric composite cable is integrally sealed to form a new outermost sealing sheath after forming a uniform outer diameter cable. In the case where the number of single-core tight-fitting optical fibers 221 is large, other single-core tight-fitting optical fibers 221 may be used as external optical fibers, and the embedded modules 210 may be embedded in different portions of the optical composite cable.
本实施例二提供的光电复合缆的另一种具体实施方式中,光电复合缆还可以 包括阻水部。 请再次参考附图 6, 阻水部可以包括缠绕在线缆束上的绕包带 26 和填充于绕包带 26和线缆束之间的缆膏填充物 27,绕包带 26起到固定火线线缆 23、 地线线缆 28和光缆 22的作用。 绕包带 26可以采用无纺布、 玻璃纤维布等 强度较高的缠料制作。 绕包带 26缠绕完成之前在绕包带 26和线缆束之间填充缆 膏填充物 27, 能够起到较好的防水作用。 阻水部还可以采用既具有包覆固定线缆 束功能, 又可以提供防水功能的阻水带代替绕包带 26和缆膏填充物 27, 上述阻 水带的材料可以为含有自膨胀吸水树脂的有机纤维。 本具体实施方式提供的光电 复合缆在嵌入内嵌模块 210的过程中, 可去除嵌入位置的阻水带或者去除嵌入位 置的绕包带 26及存在的缆膏填充物 27。  In another specific embodiment of the optoelectric composite cable provided in the second embodiment, the optoelectric composite cable may further include a water blocking portion. Referring again to FIG. 6, the water blocking portion may include a wrapping tape 26 wound around the cable bundle and a cable filling filler 27 filled between the wrapping tape 26 and the cable bundle, and secured around the wrapping tape 26. The function of the live wire 23, the ground cable 28, and the cable 22. The wrapping tape 26 can be made of a woven material having a high strength such as a nonwoven fabric or a glass fiber cloth. The cable filling 27 is filled between the wrapping tape 26 and the cable bundle before winding the wrapping tape 26 to complete the waterproofing effect. The water blocking portion may further comprise a water blocking tape having a function of covering and fixing the cable bundle and providing a waterproof function instead of the wrapping tape 26 and the cable filling filler 27. The material of the water blocking tape may be a self-expanding water absorbing resin. Organic fiber. In the process of embedding the in-line module 210, the opto-electric composite cable provided by the embodiment can remove the water blocking tape in the embedded position or the wrapping tape 26 and the existing cable filling filler 27 in the embedded position.
本发明实施例二提供的光电复合缆具有内嵌模块 210, 内嵌模块 210分别与 火线线缆 23和地线线缆 28连接形成电通路, 同时内嵌模块 210与外接光纤相连 形成光通路实现内嵌模块 210的正常工作。 这种外接设备内嵌的方式无需考虑外 接设备的布置位置和空间, 如需调整, 可以直接通过调整光电复合缆的走向、 长 度、 布局等方式实现, 调整灵活, 而且调整较容易。 因此, 本实施例二提供的光 电复合缆能够使得网络布线系统对施工现场具有更强的适应性。 而且, 内嵌模块 210在嵌入光电复合缆之前已经做好调试, 能够减少网络布线系统现场安装调试 的时间。 同时, 本实施例二提供的光电复合缆采用单芯紧套光纤 221, 操作人员较容 易对此种类型的光纤进行截断、 对接、 分路等操作, 而且操作时不受其它临近光 纤或电线的影响, 也不会对其它光纤的传输造成影响, 进而能够方便对单根光纤 进行处理。 而且, 本实施例一中的光电复合缆采用至少两层封塑护套对线缆束和 内嵌模块 210进行防护, 首先多层封塑护套的防护性能更好; 其次多层封塑护套 使得在光电复合缆的生产或两段光电复合缆连接时能够剥离成阶梯面, 然后进行 封塑处理, 阶梯面能够提高接续封塑的结合面积, 进而提高结合的稳定性, 最终 避免目前通常使用跳线盒连接线缆带来的体积较大的问题, 能进一步方便布线。 而且多层封塑护套能够使得光电复合缆较好地保持线缆形态。 The optoelectronic composite cable provided by the second embodiment of the present invention has an embedded module 210, and the embedded module 210 is respectively connected with the live wire 23 and the ground cable 28 to form an electrical path, and the embedded module 210 is connected with the external optical fiber to form an optical path. The normal operation of the embedded module 210. The method of embedding the external device does not need to consider the arrangement position and space of the external device. If adjustment is needed, it can be directly adjusted by adjusting the direction, length, layout, etc. of the photoelectric composite cable, and the adjustment is flexible, and the adjustment is relatively easy. Therefore, the optoelectric composite cable provided in the second embodiment can make the network cabling system more adaptable to the construction site. Moreover, the embedded module 210 has been debugged before embedding the opto-electric composite cable, which can reduce the time for installation and debugging of the network cabling system. At the same time, the photoelectric composite cable provided in the second embodiment adopts a single-core tight-set optical fiber 221, and the operator can easily perform operations such as cutting, docking, splitting, etc. for the optical fibers of the same type, and is operated without other adjacent optical fibers or wires. The impact does not affect the transmission of other fibers, which in turn facilitates the processing of a single fiber. Moreover, the opto-electric composite cable of the first embodiment protects the cable bundle and the embedded module 210 by using at least two layers of plastic sheath. First, the multi-layer sealing sheath has better protection performance; The sleeve can be peeled into a step surface when the photoelectric composite cable is produced or the two-stage photoelectric composite cable is connected, and then the sealing treatment is performed, and the step surface can improve the bonding area of the continuous sealing, thereby improving the stability of the joint, and finally avoiding the current The large volume problem caused by using a jumper box to connect cables can further facilitate wiring. Moreover, the multi-layered plastic sheath enables the optoelectronic composite cable to better maintain the cable form.
本实施例二提供的光电复合缆中由于预先将内嵌模块 210 设置在光电复合 缆内部, 采用这种线缆可以简化现场工作, 使得现场的施工简单。 内嵌模块 210 为功能模块, 可以根据现场所需提前预设或选择, 例如可以为集传输、 广播、 感 应、 采集、 处理等功能于一体的功能模块。 这可以使得本实施例二提供的光电复 合缆成为一种集多功能于一体的一体化智能线缆, 解决了目前的光电复合缆仅作 为一种单一传输连接器件造成的功能性不足的问题。  In the photoelectric composite cable provided in the second embodiment, since the embedded module 210 is disposed inside the photoelectric composite cable in advance, the use of the cable can simplify the field work and make the construction on site simple. The embedded module 210 is a function module, which can be preset or selected according to the needs of the site, for example, a function module integrating functions of transmission, broadcasting, sensing, acquisition, processing, and the like. This can make the opto-electric composite cable provided in the second embodiment become an integrated intelligent cable integrating multiple functions, and solves the problem that the current photoelectric composite cable only serves as a single transmission connection device.
本实施例二提供的光电复合缆使得线缆与内嵌模块集成为一体式结构,一体 式结构方便设备管理, 同时降低外接存在的损坏风险, 能够提高网络布线系统的 可靠性和可操作性。 而且该种集成结构使得线缆与设备模块的连接更加紧凑, 能 够减少连接用线和现场连接操作, 进而降低目前外接方式存在的材料成本较高和 施工成本较高的问题。  The optoelectronic composite cable provided in the second embodiment integrates the cable and the embedded module into an integrated structure, and the integrated structure facilitates equipment management, and at the same time reduces the risk of damage existing in the external connection, and can improve the reliability and operability of the network wiring system. Moreover, the integrated structure makes the connection between the cable and the equipment module more compact, can reduce the connection line and the field connection operation, and further reduces the problems of high material cost and high construction cost in the current external connection mode.
进一步地,本实施例提供的光电复合缆的第二层封塑护套的外表面上具有特 定的纹理结构, 能够进一步提高线缆接续的可靠性。  Further, the outer layer of the second layer of the plastic-clad sheath provided by the embodiment has a specific texture structure, which can further improve the reliability of the cable connection.
进一步地, 本实施例提供的光电复合缆增加了阻水部, 使得光电复合缆具有 较好的防水性能。  Further, the opto-electric composite cable provided in this embodiment has a water blocking portion, so that the photoelectric composite cable has better waterproof performance.
在具有上述有益效果的基础之上,本实施例二提供的光电复合缆增加了加强 筋 21, 能够提高整个光电复合缆的抗拉性能。  On the basis of the above-mentioned beneficial effects, the opto-electric composite cable provided in the second embodiment has the reinforcing rib 21 added, which can improve the tensile performance of the entire photoelectric composite cable.
实施例三  Embodiment 3
当光缆的数量较少 (例如一根)时, 布置于光电复合缆中心的加强筋不足以 填补光电复合缆内的空隙, 这会影响光电复合缆的力学性能, 很容易导致应力集 中。 为了解决此问题, 请参考附图 11, 图 1 1为本发明实施例三提供的光电复合 缆的结构示意图。 本实施例三提供的光电复合缆包括火线线缆 33、 地线线缆 38、 光缆 32、 内 嵌模块、 至少两层封塑护套和位于最内层封塑护套内的多条加强绳 31。 优选的, 如图 1 1所示的封塑护套为两层, 分别为内层封塑护套 35和外层封塑护套 34。其 中, 内层封塑护套 35包覆于内嵌模块 (图中未示出) 和火线线缆 33、 地线线缆 38、 光缆 32形成的线缆束上, 外层封塑护套 34包覆于内层封塑护套 35上, 外 层封塑护套 34和内层封塑护套 35可拆卸相连, 即两者可以剥离。 When the number of optical cables is small (for example, one), the reinforcing ribs disposed at the center of the optoelectric composite cable are insufficient to fill the gaps in the optoelectric composite cable, which affects the mechanical properties of the optoelectric composite cable and easily causes stress concentration. In order to solve this problem, please refer to FIG. 11. FIG. 11 is a schematic structural diagram of an optoelectric composite cable according to Embodiment 3 of the present invention. The photoelectric composite cable provided in the third embodiment includes a live wire 33, a ground cable 38, a fiber optic cable 32, an embedded module, at least two layers of plastic sheaths, and a plurality of reinforcing ropes located in the innermost layer of the plastic sheath. 31. Preferably, the sealing sheath shown in FIG. 11 is two layers, which are an inner layer sealing sheath 35 and an outer layer sealing sheath 34, respectively. Wherein, the inner layer sealing sheath 35 is wrapped on the cable bundle formed by the embedded module (not shown) and the live wire 33, the ground cable 38, and the optical cable 32, and the outer sealing sheath 34 Covered on the inner layer sealing sheath 35, the outer layer sealing sheath 34 and the inner layer sealing sheath 35 are detachably connected, that is, the two can be peeled off.
为了提高防护性能,本实施例三提供的光电复合缆可以设置更多层的封塑护 套, 并不限于图 1 1 所示的两层。 当封塑护套的数量多于两层时, 相邻的两层封 塑护套中, 距光电复合缆的中心较远的一层封塑护套包覆在距光电复合缆的中心 较近的一层封塑护套上, 且两者可拆卸相连, 以实现光电复合缆接续封塑时对封 塑护套的剥离。 通常情况下, 封塑护套可以采用 PVC材料、 LSZH材料或 PE材料 制成。  In order to improve the protective performance, the photoelectric composite cable provided in the third embodiment can be provided with more layers of the plastic protective sheath, and is not limited to the two layers shown in FIG. When the number of the sealing sheath is more than two, in the adjacent two-layer sealing sheath, a layer of plastic sheath farther from the center of the photoelectric composite cable is coated near the center of the photoelectric composite cable. The first layer of the plastic sheath is attached, and the two are detachably connected to realize the peeling of the sealing sheath when the photoelectric composite cable is continuously sealed. Typically, the molded jacket can be made of PVC, LSZH or PE.
在制作本实施例三提供的光电复合缆的过程中可以剥离光电复合缆的封塑 护套, 然后将内嵌模块内接于光电复合缆中。 为了提高接续封塑的可靠性, 在剥 离时, 相邻的两层封塑护套中, 距光电复合缆中心较远的一层可以比距光电复合 缆中心较近的一层多剥离一段。 该种剥离方式能够使得光电复合缆的剥离端面为 阶梯面, 进而增大连续封塑的结合面积, 最终能提高接续封塑的可靠性。 同样道 理, 两段光电复合缆连接的过程同样可以采用上述剥离方式以提高两段光电复合 缆接续封塑的可靠性。 当然, 上述只是更为优选的方式, 在接续封塑的过程中, 也可以将光电复合缆剥离成平面状剥离端面。  In the process of fabricating the photoelectric composite cable provided in the third embodiment, the sealing sheath of the photoelectric composite cable can be peeled off, and then the embedded module is internally connected to the photoelectric composite cable. In order to improve the reliability of the continuous sealing, in the peeling off, in the adjacent two-layer sealing sheath, the layer farther from the center of the photoelectric composite cable can be peeled off more than one layer closer to the center of the photoelectric composite cable. The stripping method can make the peeling end surface of the photoelectric composite cable be a step surface, thereby increasing the bonding area of the continuous sealing, and finally improving the reliability of the continuous sealing. By the same token, the process of connecting the two sections of the optoelectronic composite cable can also adopt the above-mentioned stripping method to improve the reliability of the two-stage optoelectronic composite cable. Of course, the above is only a more preferable manner, and in the process of continuous sealing, the photoelectric composite cable can also be peeled off into a planar peeling end surface.
为了进一步提高光电复合缆接续封塑的可靠性,本实施例三提供的光电复合 缆中, 在自外向内的方向上, 位于第二层的封塑护套的外表面设置有用于增大接 续封塑结合力的纹理, 例如螺纹纹理、 网格纹理等。 当然, 上述位于第二层的封 塑护套还可以设置其它形状的纹理以增大接续封塑的结合力, 本实施例三不对纹 理的形状作限制。 更为优选的方案中, 本实施例三提供的光电复合缆中, 在自外 向内的方向上, 在位于第二层的封塑护套的外表面设置纹理的前提下, 除最外层 的封塑护套之外的其它封塑护套的外表面也可以设置纹理, 以进一步增大光电复 合缆接续封塑的结合力。  In order to further improve the reliability of the splicing and sealing of the optoelectronic composite cable, in the optoelectronic composite cable provided in the third embodiment, in the direction from the outside to the inside, the outer surface of the sealing sheath located on the second layer is provided for increasing the connection. The texture of the seal bond, such as thread texture, mesh texture, etc. Of course, the above-mentioned sealing sheath on the second layer can also be provided with other shapes of texture to increase the bonding force of the continuous sealing. The third embodiment does not limit the shape of the texture. In a more preferred solution, in the photoelectric composite cable provided in the third embodiment, in the direction from the outside to the inside, on the premise that the outer surface of the sealing sheath on the second layer is textured, except for the outermost layer The outer surface of the other sealed sheath other than the sealed sheath may also be textured to further increase the bonding force of the electro-optic composite cable.
本实施例三提供的光电复合缆中, 内嵌模块与火线线缆 33 和地线线缆 38 电连接, 进而实现电缆与内嵌模块对接形成电通路。 火线线缆 33和地线线缆 38 的结构可以相同, 均可以包括铜芯电线 331和绝缘护套 332, 绝缘护套 332的材 料可以为 PVC材料、 LSZH材料或 PE材料。本实施例三中的火线线缆 33和地线线 缆 38均可以设置有电缆识别标识, 以避免错接。 火线线缆 33和地线线缆 38可 以用不同的颜色区分, 例如火线线缆 33具有红色外皮, 地线线缆 38具有黑色外 皮。 上述火线线缆 33和地线线缆 38还可以采用文字符号等其它标识以示区分。 同时,当光缆 32为多根时,每根光缆 32上均可以设置防止错接的光缆识别标识, 例如颜色标识、 文字标识 (例如编号) 等。 In the opto-electric composite cable provided in the third embodiment, the embedded module is electrically connected to the live cable 33 and the ground cable 38, and the cable is interconnected with the embedded module to form an electrical path. The structure of the live wire 33 and the ground cable 38 may be the same, and may include a copper core wire 331 and an insulating sheath 332, and the material of the insulating sheath 332 The material can be PVC material, LSZH material or PE material. Both the live wire 33 and the ground cable 38 in the third embodiment may be provided with a cable identification mark to avoid misconnection. The live wire 33 and the ground cable 38 can be distinguished by different colors, for example, the live wire 33 has a red outer skin and the ground cable 38 has a black outer skin. The FireWire cable 33 and the ground cable 38 may also be distinguished by other symbols such as text symbols. Meanwhile, when the number of the optical cables 32 is multiple, each of the optical cables 32 may be provided with a cable identification mark for preventing misconnection, such as a color identification, a character identification (such as a number), and the like.
本实施例三中, 光缆 32包括单芯紧套光纤 321和包覆于单芯紧套光纤 321 上的单芯紧套光纤外皮 323, 还可以包括填充于单芯紧套光纤 321和单芯紧套光 纤外皮 323之间的抗拉增强层 322, 根据行业内部标准, 通常情况单芯紧套光纤 外皮 323的厚度为 2mm。 紧套光纤是光纤的一种类型, 是对涂覆光纤进行保护后 形成的一种常用的光纤种类, 本实施例三中的紧套光纤为单芯紧套光纤 321。 上 述抗拉增强层 322用于增强光电复合缆的抗拉性能, 抗拉增强层 322可以为芳纶 纱形成的芳纶纱层或玻璃纱形成的玻璃纱层。 当然, 抗拉增强层 322还可以由其 它种类的材料制成, 本实施例三不对抗拉增强层 322的材质作限制。  In the third embodiment, the optical cable 32 includes a single-core tight-fitting optical fiber 321 and a single-core tight-fitting optical fiber sheath 323 coated on the single-core tight-fitting optical fiber 321 , and may further include a single-core tight-fitting optical fiber 321 and a single-core tight The tensile reinforcing layer 322 between the outer sheaths 323 of the optical fiber, according to industry internal standards, generally has a thickness of 2 mm for the single-core tight-fitting optical fiber sheath 323. The tight-fitting optical fiber is a type of optical fiber, and is a commonly used optical fiber type formed by protecting the coated optical fiber. The tight-fitting optical fiber in the third embodiment is a single-core tight-fitting optical fiber 321 . The tensile reinforcement layer 322 is used to enhance the tensile properties of the optoelectric composite cable, and the tensile reinforcement layer 322 may be an aramid yarn layer formed of aramid yarn or a glass yarn layer formed of glass yarn. Of course, the tensile reinforcing layer 322 can also be made of other kinds of materials, and the third embodiment does not limit the material of the tensile reinforcing layer 322.
多条加强绳 31位于最内层封塑护套内,加强绳 31可以离散分布在火线线缆 A plurality of reinforcing cords 31 are located in the innermost sealing sheath, and the reinforcing cords 31 can be discretely distributed on the live wires.
33、 地线线缆 38和光缆 32形成的线缆束的空隙处, 增强光电复合缆的抗拉性能 的同时, 能够较好地填充由于光缆 32 较少而形成于光电复合缆内的空隙, 避免 光电复合缆内部空隙较多带来的力学性能差, 应力集中的问题。 本实施例三中的 加强绳 31可以采用聚酯带、 锡箔带、 芳纶丝、 玻璃纤维丝等材料制成。 33. The gap between the ground cable 38 and the cable 32 forms a gap between the cable bundles, and enhances the tensile performance of the optical composite cable, and can better fill the gap formed in the photoelectric composite cable due to less cable 32. Avoid the problem of poor mechanical properties and stress concentration caused by the large internal voids in the opto-electric composite cable. The reinforcing cord 31 of the third embodiment can be made of a material such as a polyester tape, a tin foil tape, aramid yarn, or a glass fiber yarn.
本实施例三中, 单芯紧套光纤 321中至少有一根用于外接的外接光纤。在制 作本实施例三提供的光电复合缆时, 外接光纤在任意位置被截断后形成前端尾纤 和后端尾纤。 其中, 前端尾纤是与光信号源连接的一段光纤。 后端尾纤是用于将 光信号传出的一段光纤。 本实施例三中, 前端尾纤用于形成与内嵌模块连接的光 纤接头。 具体的, 前端尾纤形成光纤接头的方式有多种, 下面结合图 12-15所示 的几种形成方式进行示例性地说明。  In the third embodiment, at least one of the single-core tight-fitting optical fibers 321 is used for an external external optical fiber. When the optoelectric composite cable provided in the third embodiment is fabricated, the external optical fiber is cut at any position to form a front end pigtail and a rear end pigtail. The front end pigtail is a length of fiber connected to the optical signal source. The rear pigtail is a length of fiber used to transmit optical signals. In the third embodiment, the front end pigtail is used to form a fiber joint connected to the embedded module. Specifically, there are various ways for the front end pigtail to form the fiber joint, which will be exemplarily described below in combination with several formation modes shown in Figs. 12-15.
请参考附图 12, 图 12示出了本发明实施例三提供的光电复合缆采用集束直 通应用模式的结构。 所述集束直通应用模式通常较适用于单芯紧套光纤 321数量 较多的光电复合缆, 该种模式就是一根外接光纤 39 截断后形成前端尾纤和后端 尾纤。 其中, 前端尾纤作为光纤接头与内嵌模块 310对接, 后端尾纤不作处理。 通常, 前端尾纤可以利用相应的工具热熔或冷接操作连接光纤连接法兰 31 1后通 过光纤连接法兰 31 1与内嵌模块 310的对接, 或者前端尾纤直接与内嵌模块 310 预留的光纤尾纤进行热熔或冷接操作实现连接。 前端尾纤与内嵌模块 310形成光 信号通路。 此种模式也可以在光电复合缆的其它位置对不同的单芯紧套光纤 321 分别进行同样的操作。 Referring to FIG. 12, FIG. 12 shows a structure of a photoelectric composite cable according to Embodiment 3 of the present invention, which adopts a bundle through-through application mode. The bundle through-through application mode is generally more suitable for an opto-electric composite cable having a larger number of single-core tight-set optical fibers 321 . In this mode, an external optical fiber 39 is cut to form a front-end pigtail and a rear-end pigtail. The front end pigtail is connected to the embedded module 310 as a fiber connector, and the rear end fiber is not processed. Generally, the front end pigtail can be connected to the fiber optic connection flange 31 1 by a corresponding tool hot melt or cold connection operation, and then connected to the inlay module 310 through the fiber connection flange 31 1 , or the front end pigtail directly and the embedded module 310 The reserved fiber pigtails are connected by hot melt or cold connection. The front pigtail and the embedded module 310 form an optical signal path. This mode can also perform the same operation on different single-core tight-fitting fibers 321 at other positions of the opto-electric composite cable.
请参考附图 13, 图 13示出了本发明实施例三提供的光电复合缆采用分布分 路应用模式的结构。 所谓的分布分路应用模式通常较适用于单芯紧套光纤 321数 量较少的光电复合缆 (如单芯紧套光纤 321为一根时, 这种情况下最好采用分路 分布应用模式)。 该种模式中的外接光纤 312被截断后形成前端尾纤和后端尾纤。 其中前端尾纤是与光信号源连接的一段光纤, 后端尾纤是用于将光信号传出的一 段光纤。  Please refer to FIG. 13, FIG. 13 is a diagram showing the structure of the photoelectric composite cable provided by the third embodiment of the present invention in a distributed branch application mode. The so-called distributed shunt application mode is generally more suitable for a single-core tight-set optical fiber 321 with a smaller number of opto-electric composite cables (for example, when the single-core tight-fitting optical fiber 321 is one, in this case, it is better to use the shunt distribution application mode) . The external fiber 312 in this mode is truncated to form a front pigtail and a rear pigtail. The front end pigtail is a length of fiber connected to the optical signal source, and the rear end pigtail is a segment of the optical fiber used to transmit the optical signal.
分路分布应用模式下,本实施例三提供的光电复合缆还可以包括与前端尾纤 相连, 且将前端尾纤分为主路光纤 3132和支路光纤 3131的光分路器 313, 支路 光纤 3131作为光纤接头与内嵌模块 310相连形成光信号通路。 主路光纤 3132与 后端尾纤相连保证光通路继续向后传输。 支路光纤 3131 与内嵌模块 310可以通 过热熔或冷接操作连接光纤连接法兰后相连, 支路光纤 3131 也可以预留光纤尾 纤, 然后通过预留的光纤尾纤与内嵌模块 310预留的光纤尾纤进行热熔或冷接操 作实现连接。 此种模式下, 也可以在光电复合缆的其它位置再次对同一根外接光 纤 312进行同样的操作。 此种情况下, 外接光纤 312可外接内嵌模块 310的次数 与内嵌模块 310的光模块接收灵敏度和对接损耗相关  In the split distribution application mode, the opto-electric composite cable provided in the third embodiment may further include an optical splitter 313 connected to the front end pigtail and dividing the front end pigtail into the main fiber 3132 and the branch optical fiber 3131. The optical fiber 3131 is connected as an optical fiber connector to the embedded module 310 to form an optical signal path. The main fiber 3132 is connected to the rear pigtail to ensure that the optical path continues to be transmitted backward. The branch fiber 3131 and the embedded module 310 can be connected to the fiber connecting flange by hot melt or cold connection operation, and the branch fiber 3131 can also reserve the fiber pigtail, and then pass the reserved fiber pigtail and the embedded module 310. The reserved fiber pigtails are connected by hot melt or cold connection. In this mode, the same operation of the same external optical fiber 312 can be performed again at other locations of the optoelectric composite cable. In this case, the number of times the external fiber 312 can be externally connected to the embedded module 310 is related to the receiving sensitivity and the docking loss of the optical module of the embedded module 310.
请参考附图 14, 图 14示出了本发明实施例三提供的光电复合缆采用分路模 块级联应用模式的结构。 分路模块级联应用模式下, 本实施例三提供的光电复合 缆的内嵌模块 310 内具有光分路器 (图中未示出)。 优选的, 光分路器为 PLC光 分路器。 外接光纤 314被截断后形成前端尾纤和后端尾纤, 其中, 前端尾纤是与 光信号源连接的一段光纤, 后端尾纤是用于将光信号穿出的一段光纤。 分路模块 级联应用模式下, 后端尾纤与内嵌模块 310的输出端相连, 前端尾纤通过内嵌模 块内的光分路器分成与内嵌模块 310 内除光分路器之外其它模块相连的光纤接 头。 后端尾纤与内嵌模块 310的输出端相连以使得光信号传向下一级。  Referring to Figure 14, Figure 14 is a diagram showing the structure of a split-module cascade application mode of an opto-electric composite cable according to a third embodiment of the present invention. In the split module cascading application mode, the in-line module 310 of the opto-electric composite cable provided in the third embodiment has an optical splitter (not shown). Preferably, the optical splitter is a PLC optical splitter. The external fiber 314 is cut to form a front end pigtail and a rear end pigtail. The front end pigtail is a length of fiber connected to the optical signal source, and the rear end pigtail is a length of fiber used to pass the optical signal out. In the cascading application mode of the splitting module, the rear end pigtail is connected to the output end of the embedded module 310, and the front end pigtail is divided into the optical splitter in the embedded module 310 by the optical splitter in the embedded module 310. Fiber connectors with other modules connected. The rear pigtail is connected to the output of the embedded module 310 to pass the optical signal to the next stage.
其中, 前端尾纤可以通过热熔或冷接操作连接光纤连接法兰 311, 然后通过 光纤连接法兰 311与内嵌模块 310输入端相连, 或者前端尾纤预留光纤尾纤, 前 端尾纤通过光纤尾纤与内嵌模块 310预留的光纤尾纤进行热熔或冷接操作实现连 接。 同样, 后端尾纤可以通过热熔或冷接操作连接光纤连接法兰 315, 然后通过 光纤连接法兰 315与内嵌模块 310的输出端相连, 或者前端尾纤预留光纤尾纤, 前端尾纤通过光纤尾纤与内嵌模块 310预留的光纤尾纤进行热熔或冷操作实现连 接。 The front end pigtail may be connected to the fiber connection flange 311 by a hot melt or cold connection operation, and then connected to the input end of the embedded module 310 through the fiber connection flange 311, or the fiber tail fiber is reserved at the front end pigtail, and the front end pigtail passes through The fiber pigtail fiber is connected to the fiber pigtail fiber reserved by the embedded module 310 for hot melt or cold junction operation. Similarly, the rear pigtail can be connected to the fiber connection flange 315 by a hot melt or cold connection operation, and then connected to the output end of the embedded module 310 through the fiber connection flange 315, or the fiber pigtail is reserved for the front end pigtail. The front end pigtail is connected to the fiber pigtail reserved by the embedded module 310 by hot-melt or cold operation.
请参考附图 15, 图 15示出了本发明实施例三提供的光电复合缆电通路接续 的结构。 图 15所示的光电复合缆中, 内嵌模块 310具有与火线线缆 33对接的火 线对接电线 318和与地线线缆 38对接的地线对接电线 319, 火线线缆 33与火线 对接电线 318通过对接装置 316 (例如快速电插头) 相连, 地线对接电线 319与 地线线缆 38也通过对接装置 317相连。 当然, 本实施例三提供的光电复合缆中, 电缆还可以直接与内嵌模块 310的接线端相连。  Referring to Figure 15, Figure 15 is a diagram showing the structure of an electrical circuit connection of an opto-electric composite cable according to a third embodiment of the present invention. In the optoelectric composite cable shown in FIG. 15, the in-line module 310 has a live wire butt wire 318 that interfaces with the live wire 33 and a ground wire 319 that interfaces with the ground cable 38. The live wire 33 and the live wire 318 The ground wire butt wire 319 and the ground wire 38 are also connected by a docking device 317 by a docking device 316 (e.g., a quick electrical plug). Of course, in the optoelectric composite cable provided in the third embodiment, the cable can also be directly connected to the terminal of the embedded module 310.
在生产本实施例三公开的光电复合缆的过程中,通常采用对封塑外护套剥离 再嵌入的方式将内嵌模块 310嵌入到光电复合缆的内部, 加强绳 31和未用于外 接光纤的单芯紧套光纤 321可以从内嵌模块 310的周边穿过, 必要时可切断并去 除光电复合缆嵌入部分的加强绳 31 以增加内嵌模块 310的安置空间。 优选的, 光电复合缆嵌入内嵌模块 310部位的外部尺寸不超过其它未嵌入内嵌模块 310部 位的外部尺寸 (即外部轮廓的最大尺寸)。 在多层封塑护套的基础之上, 将剥离 成的阶梯状端面利用注塑、 灌封、 粘接套管或加装防护外壳等工艺进行修复与保 护, 重新形成统一外径的光电复合缆。 为了保证线缆的整体外观以及各个部分结 合的稳定性, 在形成统一外径线缆后再把光电复合缆整体进行封塑形成新的最外 层封塑护套。 在单芯紧套光纤 321数量较多的情况下, 还可以将其它的单芯紧套 光纤 321作为外接光纤, 可以分别在光电复合缆的不同部位嵌入内嵌模块 310。  In the process of producing the photoelectric composite cable disclosed in the third embodiment, the embedded module 310 is usually embedded in the interior of the photoelectric composite cable by means of peeling and re-embedding the outer sheath, and the reinforcing cord 31 and the external optical fiber are not used. The single-core tight-fitting optical fiber 321 can pass through the periphery of the embedded module 310, and if necessary, the reinforcing cord 31 of the embedded portion of the optoelectric composite cable can be cut and removed to increase the installation space of the embedded module 310. Preferably, the outer dimensions of the opto-electric composite cable embedded in the in-line module 310 do not exceed the outer dimensions of the other portions of the in-line module 310 (i.e., the largest dimension of the outer contour). On the basis of the multi-layered plastic sheath, the stepped end surface which is peeled off is repaired and protected by injection molding, potting, bonding sleeve or protective casing, and the photoelectric composite cable with uniform outer diameter is reformed. . In order to ensure the overall appearance of the cable and the stability of the joints of the various parts, after forming the uniform outer diameter cable, the photoelectric composite cable is integrally sealed to form a new outermost sealing sheath. In the case where the number of single-core tight-fitting optical fibers 321 is large, other single-core tight-fitting optical fibers 321 may be used as external optical fibers, and the embedded modules 310 may be embedded in different portions of the optical composite cable.
本实施例三提供的光电复合缆的另一种具体实施方式中,光电复合缆还可以 包括阻水部。 请再次参考附图 1 1, 阻水部可以包括缠绕在线缆束上的绕包带 36 和填充于绕包带 36和线缆束之间的缆膏填充物 37,绕包带 36起到固定火线线缆 33、 地线线缆 38和光缆 32的作用。 绕包带 36可以采用无纺布、 玻璃纤维布等 强度较高的缠料制作。 绕包带 36缠绕完成之前在绕包带 36和线缆束之间填充缆 膏填充物 37, 能够起到较好的防水作用。 阻水部还可以采用既具有包覆固定线缆 束功能, 又可以提供防水功能的阻水带代替绕包带 36和缆膏填充物 37, 上述阻 水带的材料可以为含有自膨胀吸水树脂的有机纤维。 本具体实施方式提供的光电 复合缆在嵌入内嵌模块 310的过程中, 可去除嵌入位置的阻水带或者去除嵌入位 置的绕包带 36及存在的缆膏填充物 37。  In another specific embodiment of the optoelectric composite cable provided in the third embodiment, the optoelectric composite cable may further include a water blocking portion. Referring again to FIG. 1, the water blocking portion may include a wrapping tape 36 wound around the cable bundle and a cable filling filler 37 filled between the wrapping tape 36 and the cable bundle, which is wound around the wrapping tape 36. The function of the live wire cable 33, the ground wire 38, and the cable 32 is fixed. The wrapping tape 36 can be made of a woven material having a high strength such as a nonwoven fabric or a glass fiber cloth. The cable filler 37 is filled between the wrapping tape 36 and the cable bundle before the winding of the wrapping tape 36 is completed, which can provide better waterproofing. The water blocking portion may further comprise a water blocking tape having a function of covering and fixing the cable bundle and providing a waterproof function instead of the wrapping tape 36 and the cable filling material 37. The material of the water blocking tape may be a self-expanding water absorbing resin. Organic fiber. In the process of embedding the in-line module 310, the opto-electric composite cable provided in this embodiment can remove the water blocking tape in the embedded position or the wrapping tape 36 and the existing cable filling filler 37 in the embedded position.
本发明实施例三提供的光电复合缆具有内嵌模块 310, 内嵌模块 310分别与 火线线缆 33和地线线缆 38连接形成电通路, 同时内嵌模块 310与外接光纤相连 形成光通路实现内嵌模块 310的正常工作。 这种外接设备内嵌的方式无需考虑外 接设备的布置位置和空间, 如需调整, 可以直接通过调整光电复合缆的走向、 长 度、 布局等方式实现, 调整灵活, 而且调整较容易。 因此, 本实施例三提供的光 电复合缆能够使得网络布线系统对施工现场具有更强的适应性。 而且, 内嵌模块 310在嵌入光电复合缆之前已经做好调试, 能够减少网络布线系统现场安装调试 的时间。 The optoelectronic composite cable provided by the third embodiment of the present invention has an embedded module 310, and the embedded module 310 is respectively connected with the live cable 33 and the ground cable 38 to form an electrical path, and the embedded module 310 is connected to the external optical fiber. Forming the light path enables normal operation of the inline module 310. The method of embedding the external device does not need to consider the arrangement position and space of the external device. If adjustment is needed, it can be directly adjusted by adjusting the direction, length, layout, etc. of the photoelectric composite cable, and the adjustment is flexible, and the adjustment is relatively easy. Therefore, the optoelectric composite cable provided in the third embodiment can make the network cabling system more adaptable to the construction site. Moreover, the embedded module 310 has been debugged before being embedded in the opto-electric composite cable, which can reduce the time for installation and debugging of the network cabling system.
同时, 本实施例三提供的光电复合缆采用单芯紧套光纤 321, 操作人员较容 易对此种类型的光纤进行截断、 对接、 分路等操作, 而且操作时不受其它临近光 纤或电线的影响, 也不会对其它光纤的传输造成影响, 进而能够方便对单根光纤 进行处理。 而且, 本实施例一中的光电复合缆采用至少两层封塑护套对线缆束和 内嵌模块 310进行防护, 首先多层封塑护套的防护性能更好; 其次多层封塑护套 使得在光电复合缆的生产或两段光电复合缆连接时能够剥离成阶梯面, 然后进行 封塑处理, 阶梯面能够提高接续封塑的结合面积, 进而提高结合的稳定性, 最终 避免目前通常使用跳线盒连接线缆带来的体积较大的问题, 能进一步方便布线。 而且多层封塑护套能够使得光电复合缆较好地保持线缆形态。  At the same time, the photoelectric composite cable provided in the third embodiment adopts a single-core tight-set optical fiber 321 , and the operator can easily perform operations such as cutting, docking, and splitting on the optical fibers of the other types, and is not operated by other adjacent optical fibers or wires. The impact does not affect the transmission of other fibers, which in turn facilitates the processing of a single fiber. Moreover, the opto-electric composite cable of the first embodiment protects the cable bundle and the embedded module 310 by using at least two layers of the plastic sheath, and firstly, the multi-layer sealing sheath has better protection performance; The sleeve can be peeled into a step surface when the photoelectric composite cable is produced or the two-stage photoelectric composite cable is connected, and then the sealing treatment is performed, and the step surface can improve the bonding area of the continuous sealing, thereby improving the stability of the joint, and finally avoiding the current The large volume problem caused by using a jumper box to connect cables can further facilitate wiring. Moreover, the multi-layered plastic sheath enables the optoelectronic composite cable to better maintain the cable form.
本实施例三提供的光电复合缆中由于预先将内嵌模块 310 设置在光电复合 缆内部, 采用这种线缆可以简化现场工作, 使得现场的施工简单。 内嵌模块 310 为功能模块, 可以根据现场所需提前预设或选择, 例如可以为集传输、 广播、 感 应、 采集、 处理等功能于一体的功能模块。 这可以使得本实施例三提供的光电复 合缆成为一种集多功能于一体的一体化智能线缆, 解决了目前的光电复合缆仅作 为一种单一传输连接器件存在的功能性不足问题。  In the photoelectric composite cable provided in the third embodiment, since the embedded module 310 is disposed inside the photoelectric composite cable in advance, the use of the cable can simplify the field work and make the construction on site simple. The embedded module 310 is a function module, which can be preset or selected according to the needs of the site. For example, it can be a function module integrating functions of transmission, broadcasting, sensing, acquisition, processing, and the like. This can make the opto-electric composite cable provided in the third embodiment become an integrated intelligent cable integrating multiple functions, and solves the problem of the lack of functionality of the current opto-electric composite cable as a single transmission connection device.
本实施例三提供的光电复合缆使得线缆与内嵌模块集成为一体式结构,一体 式结构方便设备管理, 同时降低外接存在的损坏风险, 能够提高网络布线系统的 可靠性和可操作性。 而且该种集成结构使得线缆与设备模块的连接更加紧凑, 能 够减少连接用线和现场连接操作, 进而降低目前外接方式存在的材料成本较高和 施工成本较高的问题。  The photoelectric composite cable provided in the third embodiment integrates the cable and the embedded module into an integrated structure, and the integrated structure facilitates equipment management, and at the same time reduces the risk of damage existing in the external connection, and can improve the reliability and operability of the network wiring system. Moreover, the integrated structure makes the connection between the cable and the equipment module more compact, can reduce the connection line and the field connection operation, and further reduces the problems of high material cost and high construction cost in the current external connection mode.
进一步地,本实施例提供的光电复合缆的第二层封塑护套的外表面上具有特 定的纹理结构, 能够进一步提高线缆接续的可靠性。  Further, the outer layer of the second layer of the plastic-clad sheath provided by the embodiment has a specific texture structure, which can further improve the reliability of the cable connection.
进一步地, 本实施例提供的光电复合缆增加了阻水部, 使得光电复合缆具有 较好的防水性能。  Further, the opto-electric composite cable provided in this embodiment has a water blocking portion, so that the photoelectric composite cable has better waterproof performance.
并且在达到上述有益效果的基础之上,本实施例提供的光电复合缆增加了多 条加强绳 31, 能够提高整个光电复合缆的抗拉性能, 同时也能够填充由于光缆数 量较少而形成于光电复合缆内部的空隙, 最终提高光电复合缆的力学性能, 避免 应力集中。 And on the basis of achieving the above beneficial effects, the photoelectric composite cable provided by the embodiment increases The reinforcing cord 31 can improve the tensile performance of the entire photoelectric composite cable, and can also fill the gap formed in the interior of the photoelectric composite cable due to the small number of optical cables, thereby finally improving the mechanical properties of the optical composite cable and avoiding stress concentration.
需要说明的是, 本发明实施例一-实施例三中, 单芯紧套光纤可以根据环境 设置其尺寸, 通常采用直径为 0. 9mm的单芯紧套光纤。  It should be noted that, in the first embodiment to the third embodiment, the single-core tight-fitting optical fiber can be set according to the environment, and a single-core tight-set optical fiber having a diameter of 0.9 mm is usually used.
上述实施例一 -实施例三提供的光电复合缆中, 至少两层的封塑护套中, 每 一层封塑护套的硬度可以不同, 保证整个光电复合缆具有一定柔韧性的基础上, 最大程度地增强光电复合缆保持线缆形态的能力。  In the photoelectric composite cable provided in the first embodiment to the third embodiment, in at least two layers of the plastic sheath, the hardness of each layer of the plastic sheath may be different, and the entire photoelectric composite cable has a certain flexibility. Maximize the ability of the opto-electric composite cable to maintain cable form.
上述实施例一 -实施例三只是本发明公布的一些具体实施例, 各个实施例之 间不同的部分之间只要不矛盾, 都可以任意组合形成新的实施例, 而这些实施例 均在本发明实施例公开的范畴内。  The first embodiment-the third embodiment is only a specific embodiment of the present invention. The different embodiments may be combined in any way to form a new embodiment, and the embodiments are all in the present invention. Within the scope of the examples disclosed.
以上所述的本发明实施方式, 并不构成对本发明保护范围的限定。任何在本 发明的精神和原则之内所作的修改、 等同替换和改进等, 均应包含在本发明的保 护范围之内。  The embodiments of the present invention described above are not intended to limit the scope of the present invention. Any modifications, equivalent substitutions and improvements made within the spirit and scope of the invention are intended to be included within the scope of the invention.
-4 -4

Claims

权 利 要 求 Rights request
1、 光电复合缆, 其特征在于, 包括: 1. Optoelectronic composite cable, which is characterized by:
火线线缆、 地线线缆、 光缆和内嵌模块, 所述光缆包括单芯紧套光纤和包覆 于所述单芯紧套光纤上的单芯紧套光纤外皮,所述单芯紧套光纤至少有一根为用 于外接的外接光纤,所述外接光纤在所述光电复合缆的任意位置被截断后形成前 端尾纤和后端尾纤, 所述前端尾纤用于形成与所述内嵌模块连接的光纤接头; 以 及 Live wire cables, ground wire cables, optical cables and embedded modules. The optical cables include a single-core tight-buffered optical fiber and a single-core tight-buffered optical fiber sheath covering the single-core tight-buffered optical fiber. The single-core tight-buffered optical fiber is At least one of the optical fibers is an external optical fiber for external connection. The external optical fiber is cut off at any position of the optoelectronic composite cable to form a front-end pigtail and a back-end pigtail. The front-end pigtail is used to form a connection with the inner cable. Fiber optic connectors for embedded module connections; and
包覆于所述火线线缆、地线线缆和光缆形成的线缆束和内嵌模块上的至少两 层封塑护套, 所述内嵌模块与所述火线线缆和地线线缆电连接。 At least two layers of plastic sheath covering the cable bundle formed by the live wire cable, the ground wire cable and the optical cable and the embedded module, the embedded module and the live wire cable and the ground wire cable Electrical connection.
2、 根据权利要求 1所述的光电复合缆, 其特征在于, 所述前端尾纤作为所 述光纤接头与所述内嵌模块相连, 形成光通路。 2. The optoelectronic composite cable according to claim 1, characterized in that the front-end pigtail serves as the optical fiber connector and is connected to the embedded module to form an optical path.
3、 根据权利要求 1所述的光电复合缆, 其特征在于, 所述光电复合缆还包 括与所述前端尾纤相连, 且将所述前端尾纤分为主路光纤和支路光纤的光分路 器, 所述支路光纤作为所述光纤接头与所述内嵌模块相连, 所述主路光纤与所述 后端尾纤相连, 形成光通路。 3. The optoelectronic composite cable according to claim 1, characterized in that, the optoelectronic composite cable further includes an optical fiber connected to the front-end pigtail, and the front-end pigtail is divided into a main optical fiber and a branch optical fiber. Splitter, the branch optical fiber is connected to the embedded module as the optical fiber connector, and the main optical fiber is connected to the back-end pigtail to form an optical path.
4、 根据权利要求 1所述的光电复合缆, 其特征在于, 所述内嵌模块内具有 光分路器, 所述后端尾纤与所述内嵌模块的输出端相连, 所述前端尾纤通过 所述光分路器分成与所述内嵌模块内除所述光分路器之外其它模块相连的 光纤接头。 4. The optoelectronic composite cable according to claim 1, characterized in that: there is an optical splitter in the embedded module, the rear end fiber pigtail is connected to the output end of the embedded module, and the front end tail fiber The optical fiber is divided into optical fiber connectors connected to other modules in the embedded module except the optical splitter through the optical splitter.
5、 根据权利要求 1所述的光电复合缆, 其特征在于, 所述内嵌模块具有与 所述火线线缆对接的火线对接电线和与所述地线线缆对接的地线对接电线,所述 火线线缆与所述火线对接电线, 和, 所述地线线缆与所述地线对接电线均通过对 接装置相连。 5. The optoelectronic composite cable according to claim 1, wherein the embedded module has a live wire butt wire connected to the live wire cable and a ground wire butt wire connected to the ground wire cable, so The live wire cable and the live wire butt wire, and the ground wire cable and the ground wire butt wire are all connected through a butt connection device.
6、 根据权利要求 1-5中任意一项所述的光电复合缆, 其特征在于, 自外向 内的方向上,位于第二层的所述封塑护套的外表面设置有用于增大接续封塑结合 力的纹理。 6. The optoelectronic composite cable according to any one of claims 1 to 5, characterized in that, in the direction from outside to inside, the outer surface of the plastic sheath located on the second layer is provided with a The texture of the sealing bond.
7、 根据权利要求 1-5中任意一项所述的光电复合缆, 其特征在于, 所述光 电复合缆还包括设置在最内层封塑护套中心的加强筋, 所述火线线缆、地线线缆 和光缆层绞或均匀分布于所述加强筋的周边,所述加强筋包括加强内芯和包覆于 所述加强内芯外的绝缘护套。 7. The optoelectronic composite cable according to any one of claims 1 to 5, characterized in that, the optoelectronic composite cable further includes a reinforcing rib arranged at the center of the innermost plastic sheath, and the live wire cable, Ground cables and optical cables are twisted or evenly distributed around the reinforcing rib. The reinforcing rib includes a reinforcing inner core and an insulating sheath covering the reinforcing inner core.
8、 根据权利要求 1-5中任意一项所述的光电复合缆, 其特征在于, 所述光 电复合缆还包括多条加强绳, 多条所述加强绳离散分布于所述线缆束的空隙处。 8. The optoelectronic composite cable according to any one of claims 1 to 5, characterized in that the optoelectronic composite cable further includes a plurality of reinforcing ropes, and the plurality of reinforcing ropes are discretely distributed on the cable bundle. The gap.
9、 根据权利要求 1-5中任意一项所述的光电复合缆, 其特征在于, 所述光 电复合缆的剥离端面为阶梯面。 9. The optoelectronic composite cable according to any one of claims 1 to 5, characterized in that the stripped end surface of the optoelectronic composite cable is a stepped surface.
10、 根据权利要求 1-5中任意一项所述的光电复合缆, 其特征在于, 所述光 电复合缆还包括缠绕在所述线缆束上的绕包带及填充在所述绕包带与所述线缆 束之间的缆膏填充物; 10. The optoelectronic composite cable according to any one of claims 1 to 5, characterized in that, the optoelectronic composite cable further includes a wrapping tape wrapped around the cable bundle and a wrapping tape filled in the wrapping tape. Cable paste filler between the cable bundle and the cable bundle;
或者, 所述光电复合缆还包括缠绕在所述线缆束上的阻水带。 Alternatively, the optoelectronic composite cable further includes a water-blocking tape wrapped around the cable bundle.
PCT/CN2014/074116 2014-03-26 2014-03-26 Photoelectric composite cable WO2015143642A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480050951.8A CN105830174B (en) 2014-03-26 2014-03-26 Photoelectric composite cable
PCT/CN2014/074116 WO2015143642A1 (en) 2014-03-26 2014-03-26 Photoelectric composite cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/074116 WO2015143642A1 (en) 2014-03-26 2014-03-26 Photoelectric composite cable

Publications (1)

Publication Number Publication Date
WO2015143642A1 true WO2015143642A1 (en) 2015-10-01

Family

ID=54193885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/074116 WO2015143642A1 (en) 2014-03-26 2014-03-26 Photoelectric composite cable

Country Status (2)

Country Link
CN (1) CN105830174B (en)
WO (1) WO2015143642A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111679389A (en) * 2020-07-13 2020-09-18 长飞光纤光缆股份有限公司 Optical cable for 5G small base station and manufacturing method thereof
EP4060391A1 (en) * 2021-03-19 2022-09-21 Nexans Optical repair joint for three phase cable

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111785412B (en) * 2020-07-08 2022-07-15 江苏电子信息职业学院 Photoelectric hybrid cable for 5G communication

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060072880A1 (en) * 2004-10-06 2006-04-06 Tsung-Ming Cheng Opto-electro cable and related apparatus
CN201917691U (en) * 2010-12-14 2011-08-03 上海欧忆智能网络有限公司 Joint structure of optical cable
CN102810837A (en) * 2012-03-16 2012-12-05 远东电缆有限公司 Intermediate splicing closure and splicing method for optical fiber composite power cable
CN203150310U (en) * 2013-03-26 2013-08-21 湖北凯乐科技股份有限公司 A photoelectric integrated cable used for indoor introduction
CN103325464A (en) * 2013-05-31 2013-09-25 成都亨通光通信有限公司 Remote radio photoelectric composite cable for base station
CN203787114U (en) * 2014-03-26 2014-08-20 奇点新源国际技术开发(北京)有限公司 Photoelectric composite cable

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060072880A1 (en) * 2004-10-06 2006-04-06 Tsung-Ming Cheng Opto-electro cable and related apparatus
CN201917691U (en) * 2010-12-14 2011-08-03 上海欧忆智能网络有限公司 Joint structure of optical cable
CN102810837A (en) * 2012-03-16 2012-12-05 远东电缆有限公司 Intermediate splicing closure and splicing method for optical fiber composite power cable
CN203150310U (en) * 2013-03-26 2013-08-21 湖北凯乐科技股份有限公司 A photoelectric integrated cable used for indoor introduction
CN103325464A (en) * 2013-05-31 2013-09-25 成都亨通光通信有限公司 Remote radio photoelectric composite cable for base station
CN203787114U (en) * 2014-03-26 2014-08-20 奇点新源国际技术开发(北京)有限公司 Photoelectric composite cable

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111679389A (en) * 2020-07-13 2020-09-18 长飞光纤光缆股份有限公司 Optical cable for 5G small base station and manufacturing method thereof
EP4060391A1 (en) * 2021-03-19 2022-09-21 Nexans Optical repair joint for three phase cable

Also Published As

Publication number Publication date
CN105830174B (en) 2017-04-19
CN105830174A (en) 2016-08-03

Similar Documents

Publication Publication Date Title
JP2000040425A (en) Network access composite cable
JP2009537964A (en) Fiber optic cable and fiber optic cable assembly for wireless access
US10247899B2 (en) Device for distributing hybrid trunk cable
CN102254625A (en) Production method and equipment of bunched optical cable
WO2015143642A1 (en) Photoelectric composite cable
CN202094591U (en) Photoelectric integral optical fiber composite low-voltage power cable connector box
CN202997488U (en) Cold shrink type central joint for optical fiber composite medium-voltage cable
CN104867585A (en) Photoelectric composite cable
CN207895911U (en) A kind of 5G photoelectric composite cable for wiring
CN203787114U (en) Photoelectric composite cable
KR100451255B1 (en) FTTC composite cable for data transmission and power source supply
CN215954909U (en) Photoelectric composite cable for pipeline dredging robot
CN203503370U (en) Photoelectric composite cable
CN210272700U (en) Intelligent cable joint splicing structure
CN208271638U (en) A kind of photoelectric compound cable that anti-shovel is cut
WO2015192296A1 (en) Optical-electrical composite cable system
CN202434263U (en) Multipurpose composite optical cable
CN203787115U (en) Photoelectric composite cable
CN108400446B (en) Photoelectric composite cable
KR102604855B1 (en) Optical And Power Composite Cable And Optical And Power Composite Jumper Cord
CN218729936U (en) Visual intelligent cable
CN217426441U (en) Novel photoelectric hybrid cable structure
CN217061479U (en) Composite digital cable
CN203787184U (en) Photoelectric composite cable
CN217215300U (en) Aviation plug assembly for photoelectric composite cable and photoelectric composite cable

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14887520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/02/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14887520

Country of ref document: EP

Kind code of ref document: A1