WO2015143598A1 - 信道估计处理方法和装置 - Google Patents
信道估计处理方法和装置 Download PDFInfo
- Publication number
- WO2015143598A1 WO2015143598A1 PCT/CN2014/073937 CN2014073937W WO2015143598A1 WO 2015143598 A1 WO2015143598 A1 WO 2015143598A1 CN 2014073937 W CN2014073937 W CN 2014073937W WO 2015143598 A1 WO2015143598 A1 WO 2015143598A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- frequency band
- band group
- channel estimation
- crs
- groups
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 24
- 238000003672 processing method Methods 0.000 claims description 14
- 230000011664 signaling Effects 0.000 claims description 2
- 230000005540 biological transmission Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 238000000794 confocal Raman spectroscopy Methods 0.000 description 5
- 238000011500 cytoreductive surgery Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000004891 communication Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000009191 jumping Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/0224—Channel estimation using sounding signals
- H04L25/0228—Channel estimation using sounding signals with direct estimation from sounding signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/0204—Channel estimation of multiple channels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0014—Three-dimensional division
- H04L5/0023—Time-frequency-space
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
- H04L5/005—Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
Definitions
- the present invention relates to communication technologies, and in particular, to a channel estimation processing method and apparatus. Background technique
- a base station needs to transmit a cell-specific reference signal (CRS) terminal, and the terminal can use the CRS to perform channel estimation on the downlink.
- CRS cell-specific reference signal
- the prior art employs a sector offset system.
- a sector offset system the base station needs to transmit a signal to the terminal on the corresponding antenna port of each sector.
- the CRS also needs to transmit using the antenna port that is consistent with the signal to be demodulated.
- two antenna ports may be equally divided into two blocks, that is, R resource blocks (RBs) are divided into two parts in half, and each part includes R/2 RBs. - Part of the RB is assigned to one antenna port and the other part of the RB is assigned to the other antenna port.
- R resource blocks RBs
- the base station can send the CRSs carried on the two parts of the RBs to the terminal respectively on the corresponding antenna ports.
- the terminal receives the CRSs from the two antenna port directions of the base station, and uses the channel interpolation filtering method to receive the CRSs. Channel estimation is performed to obtain a channel estimation result.
- Embodiments of the present invention provide a channel estimation processing method and apparatus.
- An embodiment of the present invention provides a channel estimation processing method, including:
- a cell-specific reference signal CRS transmitted on the at least two antenna ports, where the bandwidth occupied by the CRS is divided into at least two frequency band groups, and one frequency band group corresponds to one antenna port, and each of the frequency band groups includes at least one One frequency band;
- each of the at least two frequency band groups is independently independent Channel estimation.
- the embodiment of the invention provides another channel estimation processing method, including:
- the bandwidth occupied by the cell-specific reference signal CRS is divided into at least two frequency band groups, one frequency band group corresponds to one antenna port, and each frequency band group includes at least one frequency band.
- the embodiment of the invention provides a terminal, including:
- a receiving module configured to receive a cell-specific reference signal CRS sent by the base station on the at least two antenna ports, where the bandwidth occupied by the CRS is divided into at least two frequency band groups, and one frequency band group corresponds to one antenna port, where each The frequency band group includes at least one frequency band;
- a channel estimation module configured to separately perform independent channel estimation in each of the at least two frequency band groups according to the CRS received by the receiving module.
- An embodiment of the present invention provides a base station, including:
- a sending module configured to send a cell-specific reference signal CRS to the terminal on the at least two antenna ports, so that the terminal separately performs independent channel estimation in each of the at least two frequency band groups;
- the bandwidth occupied by the CRS is divided into at least two frequency band groups, one frequency band group corresponds to one antenna port, and each frequency band group includes at least one frequency band.
- An embodiment of the present invention provides a channel estimation processing method and apparatus, which respectively solves the frequency response of a subcarrier in which a CRS is located in the prior art by performing independent channel estimation in each of the at least two frequency band groups according to the CRS.
- the problem that the amplitude and phase of the estimated value hop at the boundary of the band group results in a large estimation error of the non-CRS subcarrier frequency response estimate at the band group boundary when the overall estimation is adopted, and the channel estimation accuracy is improved.
- FIG. 1 is a flowchart of Embodiment 1 of a channel estimation processing method according to the present invention
- FIG. 2 is a schematic structural diagram of a frequency band group according to an embodiment of the present invention.
- Embodiment 3 is a flowchart of Embodiment 3 of a channel estimation processing method according to the present invention.
- Embodiment 1 of a terminal according to the present invention is a schematic structural diagram of Embodiment 1 of a terminal according to the present invention.
- FIG. 5 is a schematic structural diagram of Embodiment 1 of a base station according to the present invention.
- the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention.
- the embodiments are a part of the embodiments of the invention, and not all of the embodiments. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
- Embodiment 1 is a flowchart of Embodiment 1 of a channel estimation processing method according to the present invention. As shown in FIG. 1, the method in this embodiment may include:
- Step 101 Receive a cell-specific reference signal CRS sent by a base station on at least two antenna ports, where a bandwidth occupied by the CRS is divided into at least two frequency band groups, and one frequency band group corresponds to one antenna port, and each of the frequency bands is used.
- the group includes at least one frequency band;
- the bandwidth occupied by the CRS is the transmission bandwidth
- FIG. 2 is a schematic structural diagram of a frequency band group according to an embodiment of the present invention.
- a system with a transmission bandwidth of 100 RB is equally divided into four frequency bands, and four frequency bands are divided into two frequency band groups; wherein, the frequency band 1 includes the first RB ⁇ 25RB, Band 2 includes 26th RB ⁇ 50RB, Band 3 includes 51RB ⁇ 75RB, Band 4 includes 76RB ⁇ 100RB, Band 1 includes Band 1 and Band 2, Band 2 includes Band 3 and Band 4; it can be seen that The frequency bands included in the band group are all complete bands.
- the base station transmits the CRS on the corresponding two frequency band groups of the two antenna ports.
- Step 102 Perform independent channel estimation for each frequency band component in the at least two frequency band groups according to the CRS.
- the band group information may be determined in a pre-agreed manner. For example, the bandwidth occupied by the CRS is divided into three frequency band groups by default, and the system transmission bandwidth is divided into three equal bands to obtain three frequency band groups by default;
- performing independent channel estimation for each of the at least two frequency band groups including: performing independent channel estimation in each frequency band of the frequency band group when the frequency band group includes two or more frequency bands Or, perform joint channel estimation in each frequency band of the band group.
- the terminal performs overall channel estimation within the bandwidth occupied by the CRS, that is, interpolates the channel estimation result of the CRS subcarriers between adjacent frequency band groups to complete the intersection of the frequency band group.
- Channel estimation of CRS subcarriers In the present invention, the terminal performs independent channel estimation in each frequency band group.
- the amplitude and phase of the frequency response estimation value of the subcarrier where the CRS is located are hopped at the band group division.
- a technique for interpolating frequency response estimates of subcarriers in which two or more CRSs are located in each band group of different antenna ports is used to calculate a frequency response estimate of a non-CRS subcarrier at a band group boundary, It will result in a very large estimation bias; by the method of performing independent channel estimation in each frequency band group in the present invention, the amplitude and phase of the frequency response estimation value of the subcarrier in which the CRS is located are prevented from jumping at the boundary of the band group.
- the problem of estimating the deviation of the non-CRS subcarrier frequency response estimation value at the band group boundary when the overall estimation is adopted is adopted, and the channel estimation accuracy is improved.
- the frequency band in the prior art is estimated to be in the frequency band when the amplitude and phase of the frequency response estimation value of the subcarrier where the CRS is located are hopped at the boundary of the frequency band group.
- the problem of large estimation bias of the non-CRS subcarrier frequency response estimate at the group junction improves the channel estimation accuracy.
- the CRS is sent to the terminal on the at least two antenna ports, so that the terminal performs independent channel estimation in each of the at least two frequency band groups, which solves the frequency response of the subcarriers in the prior art due to the CRS.
- the problem that the amplitude and phase of the estimated value hop at the boundary of the band group results in a large estimation error of the non-CRS subcarrier frequency response estimate at the band group boundary when the overall estimation is adopted, and the channel estimation accuracy is improved.
- FIG. 3 is a flowchart of Embodiment 3 of a channel estimation processing method according to the present invention. As shown in FIG. 3, the method in this embodiment may include:
- Step 301 The base station sends the frequency band division information to the terminal, where the frequency band division information indicates that the bandwidth occupied by the cell-specific reference signal CRS is divided into at least two frequency band groups, and each of the frequency band group packets Including at least one frequency band;
- the frequency band group division information may include: a number of frequency band groups, and frequency band information corresponding to each frequency band group;
- the frequency band may include N subbands, N is a positive integer, and the relationship between the subband and the system transmission bandwidth is as shown in Table 1:
- the length of each sub-band is 6 RBs (excluding the last sub-band), and when the bandwidth of 50 RBs occupied by the CRS is divided into two frequency bands, the frequency band is divided.
- the boundary can be located between the 24th and 25th RBs, the first frequency band is composed of 4 complete subbands, the second frequency band is composed of 5 complete subbands, and the length of the last subband is 2 RBs in the LTE system.
- the terminal needs to feed the precoding matrix indicator ( ⁇ ) to the base station; in order to control the feedback overhead, the sub-band is The basic granularity is fed back.
- the terminal obtains the subband ⁇ by the frequency domain response estimation value based on each subcarrier in the subband; the amplitude of the frequency domain response estimate of the subcarrier at the interface of the different antenna port band groups And the phase jumps, causing the amplitude and phase of the subcarrier frequency domain response estimation at the junction of the subbands within the subband to jump, resulting in inaccurate subband ⁇ feedback.
- the data transmission performance of the Physical Downlink Shared Channel (PDSCH) is reduced.
- the frequency band division is performed in units of sub-bands, thereby avoiding the amplitude and phase transition of the sub-band sub-carrier frequency domain response estimation value. Improve the accuracy of sub-band PMI feedback.
- the band group division information may be sent on a broadcast channel (BCH) carried by a physical broadcast channel (PBCH); optionally, when the PBCH channel is used to send the band group division information to the terminal,
- BCH broadcast channel
- PBCH physical broadcast channel
- the frequency band group division divides the RBs occupied by the PBCH into the same frequency band group;
- the band group division will be the PBCH
- the occupied RBs are divided into the same frequency band group, and the frequency band grouping obtained by the terminal is improved when the PBCH channel demodulation is performed by using the frequency response estimation value estimated by the existing channel estimation method before the terminal acquires the frequency band group division information. Information accuracy.
- Step 302 The terminal receives the frequency band division information sent by the base station.
- the specific winter end demodulates the PBCH channel by busy detection, demodulates the carried BCH channel information, and obtains the band group division information carried in the notification signaling on the BCH channel.
- Step 303 The base station sends a CRS to the terminal on the at least two antenna ports according to the band group division information, where one band group corresponds to one antenna port.
- one antenna port may correspond to one set of antennas or one antenna beam, wherein when multiple sets of antennas are precoded, an antenna beam may be formed;
- the frequency band group corresponding to one antenna port may be a continuous band resource or a non-contiguous band resource
- 100 RBs are equally divided into four frequency bands, each frequency band including 25 RBs, where frequency band 1 includes 1-25th RB, and frequency band 2 includes 26th- 50 RBs, Band 3 includes 51-75 RBs, Band 4 includes 76-100 RBs, and when the bandwidth occupied by CRS (ie, 100 RBs) is divided into 2 frequency bands, the one and one wireless port
- the corresponding frequency band group is a continuous frequency band resource
- the frequency band group corresponding to the antenna port 1 includes the frequency band 1 and the frequency band 2
- the frequency band group corresponding to the antenna port 2 includes the frequency band 3 and the frequency band 4
- the frequency band group corresponding to the one wireless port is
- the discontinuous frequency band resource may be: the frequency band group corresponding to the antenna port 1 includes the frequency band 1 and the frequency band 3, and the frequency band group corresponding to the line port 2 includes the frequency band 2 and the frequency band 4.
- step 303 there is no sequential relationship between step 303 and step 302.
- Step 304 The terminal receives a CRS sent by the base station on the at least two antenna ports, and according to the CRS, performs independent channel estimation in each of the at least two frequency band groups; wherein, in at least two frequency bands Each of the frequency band groups within each performs independent channel estimation, including: performing channel interpolation in each of the at least two frequency band groups.
- performing channel interpolation in each frequency band may be: when the non-CRS subcarrier channel estimation is performed by interpolating the subcarriers in which the CRS is located, using channel estimation values of subcarriers in which the CRSs in the same frequency group group are located in the same frequency band group Interpolation estimation of non-CRS subcarriers;
- the CRS is a demodulated PBCH in the system
- a physical downlink control channel (PDCCH, Physical Downlink Control Channel, physical control format indicator channel (PCFICH Physical Control) Format Indicator Channel), the reference signal of the Physical HARQ Indicator Channel (PHICH, Physical Hybrid ARQ Indicator Channel), so the subcarrier frequency domain response estimation value deviation
- PDCCH Physical Downlink Control Channel
- PCFICH Physical Control Physical Control Format Indicator Channel
- PHICH Physical Hybrid ARQ Indicator Channel
- the frequency band division is performed in units of sub-bands to solve the inaccuracy problem of the sub-band PMI feedback in the prior art, and the PDSCH data transmission performance is improved.
- the PBCH is solved by performing independent channel estimation in each frequency band group. , PDCCH, PCFICH, PHICH detection error.
- the user equipment terminal in this embodiment may include: a receiving module 401 and a channel estimating module 402.
- the receiving module 401 is configured to receive a cell-specific reference signal CRS sent by the base station on the at least two antenna ports, where the bandwidth occupied by the CRS is divided into at least two frequency band groups, and one frequency band group corresponds to one antenna port, and each of the frequency band groups corresponds to one antenna port.
- the frequency band group includes at least one frequency band;
- the channel estimation module 402 is configured to perform independent use of the CRS in each of the at least two frequency band groups according to the CRS received by the receiving module 401.
- the terminal in this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 1.
- the implementation principle and technical effects are similar, and details are not described herein again.
- the receiving module 401 is further configured to: receive the frequency band division information sent by the base station, where the bandwidth group division information indicates that the bandwidth occupied by the CRS is divided into at least two. a frequency band group, such that the channel estimation module performs independent channel estimation for each frequency band group in the at least two frequency band groups according to the frequency band group division information.
- the user equipment terminal in this embodiment may be used to implement the technical solution of the terminal in the method embodiment shown in FIG. 3, and the implementation principle and the technical effect are similar, and details are not described herein again.
- FIG. 5 is a schematic structural diagram of Embodiment 1 of a base station according to the present invention.
- the base station in this embodiment may include: a sending module 501.
- the sending module 501 is configured to send a cell-specific reference signal CRS to the terminal on the at least two antenna ports, so that the terminal performs independent channel estimation in each of the at least two frequency band groups.
- the bandwidth occupied by the CRS is divided into at least two frequency band groups, one frequency band group corresponds to one antenna port, and each frequency band group includes at least one frequency band.
- the base station of this embodiment may be used to implement the technical solution of the second embodiment of the channel estimation processing method, and the implementation principle and technical effects thereof are similar, and details are not described herein again.
- the sending module 501 is further configured to: send the frequency band division information to the terminal, where the frequency band division information indicates the bandwidth division of the cell-specific reference signal CRS. And being at least two frequency band groups, such that the terminal divides information according to the frequency band group, and performs independent channel estimation in each of the at least two frequency band groups.
- the base station in this embodiment may be used to implement the technical solution of the base station in the method embodiment shown in FIG. 3, and the implementation principle and technical effects are similar, and details are not described herein again.
- the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
- the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明实施例提供一种信道估计处理方法和装置。一种信道估计处理方法,包括:接收来自基站在至少两个天线端口上发送的小区专用参考信号CRS,其中,所述CRS所占带宽划分为至少两个频带组,一个频带组对应一个天线端口,每个所述频带组包括至少一个频带;根据所述CRS,在所述至少两个频带组的每个频带组分别进行独立的信道估计。本发明实施例可以通过在每个频带组分别进行独立信道估计,提高信道估计准确性。
Description
信道估计处理方法和装 技术领域
本发明涉及通信技术,尤其涉及一种信道估计处理方法和装置。 背景技术
长期演进( LTE , Long Term Evolution )系统中,基站需要发送小区专用 参考信号( CRS , Cell-specific Reference Signal )终端,终端可以利用 CRS对 下行链路进行信道估计。
为了改善基站无线信号覆盖,现有技术采用扇区偏置系统。 在扇区偏置 系统中,基站需要在每个扇区相应的天线端口上向终端发送信号。 为了使信 道估计的结果与需解调的信号相匹配, CRS同样需要采用与待解调的信号相 一致的天线端口进行发送。 以两个天线端口举例来说,频域资源可以对应地 被等分为两块,即 R个资源块( RB , Resource Block )被对半划分成两部分, 每部分包含 R/2个 RB ,—部分 RB被分配给一个天线端口 ,另一部分 RB被 分配给另一个天线端口。 因此,基站可以将两部分 RB上承载的 CRS分别在 对应的天线端口上发送给终端,相应的,终端接收到来自基站两个天线端口 方向的 CRS ,并采用信道插值滤波的方式对接收的 CRS进行信道估计,进而 得到信道估计结果。
但是,现有技术得到的信道估计结果时常出现较大的估计误差,导致后 续信号的接收和解调出现错误。 发明内容
本发明实施例提供一种信道估计处理方法和装置。
本发明实施例提供一种信道估计处理方法,包括:
接收来自基站在至少两个天线端口上发送的小区专用参考信号 CRS ,其 中,所述 CRS所占带宽划分为至少两个频带组,一个频带组对应一个天线端 口 ,每个所述频带组包括至少一个频带;
根据所述 CRS ,在所述至少两个频带组内的每个频带组分别进行独立的
信道估计。
本发明实施例提供又一种信道估计处理方法,包括:
在至少两个天线端口上向终端发送小区专用参考信号 CRS ,以使得所述 终端在至少两个频带组内的每个频带组分别进行独立的信道估计;
其中,所述小区专用参考信号 CRS所占带宽划分为至少两个频带组,一 个频带组对应一个天线端口 ,每个频带组包括至少一个频带。
本发明实施例提供一种终端,包括:
接收模块,用于接收来自基站在至少两个天线端口上发送的小区专用参 考信号 CRS ,其中,所述 CRS所占带宽划分为至少两个频带组,一个频带组 对应一个天线端口 ,每个所述频带组包括至少一个频带;
信道估计模块,用于根据所述接收模块接收的所述 CRS ,在所述至少两 个频带组内的每个频带组分别进行独立的信道估计。
本发明实施例提供一种基站,包括:
发送模块,用于在至少两个天线端口上向终端发送小区专用参考信号 CRS ,以使得所述终端在至少两个频带组内的每个频带组分别进行独立的信 道估计;
其中,所述 CRS所占带宽划分为至少两个频带组,一个频带组对应一个 天线端口 ,每个频带组包括至少一个频带。
本发明实施例提供一种信道估计处理方法和装置,通过根据 CRS ,在 至少两个频带组内的每个频带组分别进行独立的信道估计,解决现有技术中 由于 CRS所在子载波的频率响应估计值幅度和相位在频带组交界处发生跳变 而导致采用整体估计时处于频带组交界处的非 CRS子载波频率响应估计值大 的估计偏差的问题,提高信道估计准确性。
附图说明 图 1为本发明信道估计处理方法实施例一的流程图;
图 2为本发明实施例频带组结构示意图;
图 3为本发明信道估计处理方法实施例三的流程图;
图 4为本发明终端实施例一的结构示意图;
图 5为本发明基站实施例一的结构示意图。
具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚,下面将结合本 发明实施例中的附图,对本发明实施例中的技术方案进行清楚、 完整地描 述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。 基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提 下所获得的所有其他实施例,都属于本发明保护的范围。
图 1为本发明信道估计处理方法实施例一的流程图,如图 1所示,本 实施例的方法可以包括:
步骤 101、 接收来自基站在至少两个天线端口上发送的小区专用参考信 号 CRS ,其中,所述 CRS所占带宽划分为至少两个频带组,一个频带组对应 一个天线端口 ,每个所述频带组包括至少一个频带;
其中, CRS所占带宽为传输带宽;
图 2 为本发明实施例频带组结构示意图,如图 2所示,将传输带宽为 100RB 的系统等分为四个频带,四个频带分属于两个频带组;其中,频带 1 包括第 1RB~25RB ,频带 2包括第 26RB~50RB ,频带 3包括第 51RB~75RB , 频带 4包括第 76RB~100RB ,频带组 1包括频带 1和频带 2 ,频带组 2包括频 带 3和频带 4;可以看出,频带组包括的频带均为完整的频带。
当 CRS所占带宽划分为两个频带组时,则基站分别在两个天线端口的对 应的两个频带组上发送 CRS。
步骤 102、 根据所述 CRS ,在所述至少两个频带组内的每个频带组分 别进行独立的信道估计。
其中,频带组信息可以通过预先约定的方式确定,例如, CRS所占带宽 默认划分为三个频带组,默认通过将系统传输带宽进行三等分以获得三个频 带组;
可选的,在至少两个频带组内的每个频带组分别进行独立的信道估计, 包括:当频带组包括两个或者多个频带时,在频带组的每个频带内进行独立 的信道估计,或者,在频带组的每个频带内进行联合的信道估计。
现有技术中,终端在 CRS所占带宽内进行整体信道估计,即,对相邻频 带组之间的 CRS子载波的信道估计结果进行插值,以完成对频带组交界处非
CRS子载波的信道估计,本发明中,终端在每个频带组分别进行独立的信道 估计。
在扇区偏置系统中,由于不同天线端口发射的 CRS信号到达终端处的幅 度和相位不同,则 CRS所在子载波的频率响应估计值的幅值和相位在频带组 划分处发生跳变,现有技术采用将不同天线端口每个频带组内的两个或者多 个 CRS所在子载波的频率响应估计值进行插值,用以计算出频带组交界处非 CRS子载波的频率响应估计值的方法,会导致非常大的估计偏差;通过本发 明中在每个频带组分别进行独立信道估计的方法,则避免了由于 CRS所在子 载波的频率响应估计值幅度和相位在频带组交界处发生跳变而导致采用整体 估计时处于频带组交界处的非 CRS子载波频率响应估计值大的估计偏差的问 题,提高信道估计准确性。
本实施例,通过在每个频带组分别进行独立信道估计,解决现有技术中 由于 CRS所在子载波的频率响应估计值幅度和相位在频带组交界处发生跳变 而导致采用整体估计时处于频带组交界处的非 CRS子载波频率响应估计值大 的估计偏差的问题,提高信道估计准确性。
信道估计处理方法实施例二
本实施例的方法可以包括:
在至少两个天线端口上向终端发送小区专用参考信号 CRS ,以使得所述 终端在至少两个频带组内的每个频带组分别进行独立的信道估计;其中,所 述 CRS所占带宽划分为至少两个频带组,一个频带组对应一个天线端口 ,每 个频带组包括至少一个频带。
本实施例,在至少两个天线端口上向终端发送 CRS ,以使得终端在至 少两个频带组内的每个频带组分别进行独立信道估计,解决现有技术中由于 CRS所在子载波的频率响应估计值幅度和相位在频带组交界处发生跳变而导 致采用整体估计时处于频带组交界处的非 CRS子载波频率响应估计值大的估 计偏差的问题,提高信道估计准确性。
图 3为本发明信道估计处理方法实施例三的流程图,如图 3所示,本 实施例的方法可以包括:
步骤 301、 基站向终端发送频带组划分信息,所述频带组划分信息表示 小区专用参考信号 CRS所占带宽划分为至少两个频带组,每个所述频带组包
括至少一个频带;
其中,频带组划分信息可以包括:频带组个数,以及各频带组所对应的 频带信息;
可选的,频带可以包含 N个子带, N为正整数,子带与系统传输带宽的 关系如表 1所示:
表 1
例如,当系统传输带宽为 50个 RB时,每个子带的长度是 6个 RB (最 后一个子带除外) ,在将 CRS所占的 50个 RB的带宽划分为 2个频带时, 频带划分的边界可以位于第 24、 25个 RB之间,第一个频带由 4个完整的子 带组成第二个频带由 5个完整的子带组成最后一个子带的长度是 2个 RB 在 LTE系统中,为了利用闭环多入多出( Multiple-Input Multiple-Output , ΜΙΜΟ )提升容量,需要终端将预编码矩阵指示( Precoding Matrix Indicator , ΡΜΙ )反馈给基站;为了控制反馈开销, ΡΜΙ是以子带为基本颗粒度进行反 馈,在一个子带内,终端通过基于该子带内各子载波的频域响应估计值获得 子带 ΡΜ;由于不同天线端口频带组交界处子载波频域响应估计值的幅值和相 位发生跳变,导致子带内频带组交界处的子载波频域响应估计值幅值和相位 发生跳变,造成子带 ΡΜΙ 反馈不准确,降低物理下行共享信道( PDSCH , Physical Downlink Shared Channel )的数据传输性能;本发明中以子带为单位 进行频带划分,从而避免了子带内子载波频域响应估计值的幅值和相位发生 跳变,提高子带 PMI反馈的准确性。 可选的 , 频带组划分信息可以在物理广播信道(Physical Broadcast Channel , PBCH )所承载的广播信道( Broadcast Channel , BCH )上进行发送; 可选的,采用 PBCH信道向终端发送频带组划分信息时,频带组划分将 PBCH所占用的 RB划分在同一频带组内;
由于 CRS是系统中解调 PBCH的参考信号,频带组划分将 PBCH所
占用的 RB划分在同一频带组内 ,可以确保终端获取频带组划分信息之前, 采用现有的信道估计方法所估计出的频率响应估计值进行 PBCH信道解调 时,提高终端所获取的频带组划分信息准确性。
步骤 302、 终端接收基站所发送的频带组划分信息;
具体的 ^冬端对于 PBCH信道通过忙检测进行解调,解调出所承载的 BCH 信道信息,从而获得在 BCH信道上通知信令中所携带的频带组划分信息。
步骤 303、 基站根据所述频带组划分信息,在至少两个天线端口上向终 端发送 CRS ,其中,一个频带组对应一个天线端口。
其中,一个天线端口可以对应一套天线,或者对应一个天线波束,其中, 当多套天线通过预编码则可形成一个天线波束;
可选的,与一个天线端口对应的频带组可以为连续频带资源或者非连续 频带资源;
以系统传输带宽为 100个 RB的 LTE系统为例,将 100个 RB等分为四 个频带,每个频带包括 25个 RB ,其中频带 1包括第 1-25个 RB、 频带 2包 括第 26-50个 RB ,频带 3包括第 51-75个 RB ,频带 4包括第 76-100个 RB , 当 CRS所占带宽(即 100个 RB )被划分为 2个频带组时,所述与一个无线 端口对应的频带组为连续频带资源可以为:天线端口 1对应的频带组包括频 带 1和频带 2、 天线端口 2对应的频带组包括频带 3和频带 4;所述与一个无 线端口对应的频带组为非连续频带资源可以为:天线端口 1对应的频带组包 括频带 1和频带 3、 线端口 2对应的频带组包括频带 2和频带 4。
需要说明的是,步骤 303与步骤 302并没有先后顺序关系。
步骤 304、 终端接收来自基站在至少两个天线端口上发送的 CRS ,根据 所述 CRS ,在至少两个频带组内的每个频带组分别进行独立的信道估计; 其中,在至少两个频带组内的每个频带组分别进行独立的信道估计,包 括:在至少两个频带组内的每个频带组内进行信道插值。
具体的,在每个频带内进行信道插值可以为: CRS所在子载波通过插值 进行非 CRS子载波信道估计时,使用处于同一频带组内的 CRS所在子载波 的信道估计值对同一频带组内的非 CRS子载波进行插值估计;
由于 CRS是系统中解调 PBCH、 物理下行控制信道( PDCCH , Physical Downlink Control Channel \物理控制格式指示信道( PCFICH Physical Control
Format Indicator Channel )、 物理 HARQ指示信道( PHICH , Physical Hybrid ARQ Indicator Channel )的参考信号,所以子载波频域响应估计值偏差会导致 PBCH、 PDCCH、 PCFICH、 PHICH检测错误;本发明中通过在各频带组内进 行独立信道估计的方法,提高信道估计准确性,从而解决 PBCH、 PDCCH、 PCFICH、 PHICH检测错误的问题。
本实施例,通过以子带为单位进行频带划分,解决现有技术中子带 PMI 反馈的不准确的问题,提高 PDSCH 数据传输性能;同时,通过在各频带组 内进行独立信道估计,解决 PBCH、 PDCCH、 PCFICH、 PHICH检测错误的 问题。
图 4为本发明终端实施例一的结构示意图,如图 4所示,本实施例的 用户设备终端可以包括:接收模块 401和信道估计模块 402。 其中 ,接收 模块 401 ,用于接收基站在至少两个天线端口上发送的小区专用参考信号 CRS ,其中,所述 CRS所占带宽划分为至少两个频带组,一个频带组对应一 个天线端口 ,每个所述频带组包括至少一个频带;信道估计模块 402 ,用于 根据接收模块 401接收的所述 CRS ,在所述至少两个频带组内的在各每个频 带组内采用 CRS分别进行独立的信道估计;其中,所述频带组包括至少一个 频带。
本实施例的终端,可以用于执行图 1所示方法实施例的技术方案,其 实现原理和技术效果类似,此处不再赘述。
终端实施例二
在如图 4所示终端实施例一的基础上,进一步地,接收模块 401还用 于:接收来自基站所发送的频带组划分信息,所述频带组划分信息表征 CRS 所占带宽划分为至少两个频带组,以使所述信道估计模块根据所述频带组划 分信息,在所述至少两个频带组内的每个频带组分别进行独立的信道估计。
本实施例的用户设备终端,可以用于执行图 3所示方法实施例终端的 技术方案,其实现原理和技术效果类似,此处不再赘述。
图 5为本发明基站实施例一的结构示意图,如图 5所示,本实施例的 基站可以包括:发送模块 501。 其中 ,发送模块 501 ,用于在至少两个天线 端口上向终端发送小区专用参考信号 CRS ,以使得所述终端在至少两个频带 组内的每个频带组分别进行独立的信道估计;
其中,所述 CRS所占带宽划分为至少两个频带组,一个频带组对应一个 天线端口 ,每个频带组包括至少一个频带。
本实施例的基站,可以用于执行信道估计处理方法实施例二的技术方 案,其实现原理和技术效果类似,此处不再赘述。
基站实施例二
在如图 5所示基站实施例一的基础上,进一步地,发送模块 501还用 于: 向所述终端发送频带组划分信息,所述频带组划分信息表示小区专用参 考信号 CRS所占带宽划分为至少两个频带组,以使得所述终端根据所述频带 组划分信息,在所述至少两个频带组内的每个频带组分别进行独立的信道估 计。
本实施例的基站,可以用于执行图 3所示方法实施例基站的技术方案, 其实现原理和技术效果类似,此处不再赘述。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤 可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读 取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述 的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序代码的介 质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对 其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
Claims
1、 一种信道估计处理方法,其特征在于,包括:
接收来自基站在至少两个天线端口上发送的小区专用参考信号 CRS ,其 中,所述 CRS所占带宽划分为至少两个频带组,一个频带组对应一个天线端 口 ,每个所述频带组包括至少一个频带;
根据所述 CRS ,在所述至少两个频带组内的每个频带组分别进行独立的 信道估计。
2、 根据权利要求 1所述的方法,其特征在于,所述在所述至少两个频带 组内的每个频带组分别进行独立的信道估计,包括:
在所述至少两个频带组内的每个频带组内进行信道插值。
3、 根据权利要求 1或 2所述的方法,其特征在于,在所述接收来自基站 在至少两个天线端口上发送的 CRS之前,还包括:
接收来自所述基站所发送的频带组划分信息,所述频带组划分信息表征 CRS所占带宽划分为至少两个频带组;
所述在所述至少两个频带组内的每个频带组分别进行独立的信道估计, 包括:
根据所述频带组划分信息,在所述至少两个频带组内的每个频带组分别 进行独立的信道估计。
4、 根据权利要求 3所述的方法,其特征在于,所述频带组划分信息承载 在物理广播信道 PBCH上,所述 PBCH所占用的资源块 RB在频带组划分时 被划分在同一频带组内。
5、 根据权利要求 1~4中任一项所述的方法,其特征在于,所述频带包含 N个子带, N为正整数。
6、 一种信道估计处理方法,其特征在于,包括:
在至少两个天线端口上向终端发送小区专用参考信号 CRS ,以使得所述 终端在至少两个频带组内的每个频带组分别进行独立的信道估计;
其中,所述 CRS所占带宽划分为至少两个频带组,一个频带组对应一个 天线端口 ,每个频带组包括至少一个频带。
7、 根据权利要求 6所述的方法,其特征在于,在至少两个天线端口上向 终端发送小区专用参考信号 CRS之前,还包括:
向所述终端发送频带组划分信息,所述频带组划分信息表示小区专用参 考信号 CRS所占带宽划分为至少两个频带组,以使得所述终端根据所述频带 组划分信息,在所述至少两个频带组内的每个频带组分别进行独立的信道估 计。
8、 根据权利要求 7所述的方法,其特征在于,所述频带组划分信息承载 在物理广播信道 PBCH上,所述 PBCH所占用的资源块 RB在频带组划分时 被划分在同一频带组内。
9、 根据权利要求 6~8任一项所述的方法,其特征在于,所述频带包含 N 个子带, Ν为正整数。
10、 一种终端,其特征在于,包括:
接收模块,用于接收来自基站在至少两个天线端口上发送的小区专用参 考信号 CRS ,其中,所述 CRS所占带宽划分为至少两个频带组,一个频带组 对应一个天线端口 ,每个所述频带组包括至少一个频带;
信道估计模块,用于根据所述接收模块接收的所述 CRS ,在所述至少两 个频带组内的每个频带组分别进行独立的信道估计。
11、 根据权利要求 10 所述的终端,其特征在于,所述信道估计模块 还用于:在所述至少两个频带组内的每个频带组内进行信道插值。
12、 根据权利要求 10或 11所述的终端,其特征在于,所述接收模块 还用于:
接收来自基站所发送的频带组划分信息,所述频带组划分信息表征 CRS 所占带宽划分为至少两个频带组,以使所述信道估计模块根据所述频带组划 分信息,在所述至少两个频带组内的每个频带组分别进行独立的信道估计。
13、 根据权利要求 12所述的终端,其特征在于,所述频带组划分信息承 载在物理广播信道 PBCH上,所述 PBCH所占用的资源块 RB在频带组划分 时被划分在同一频带组内。
14、 根据权利要求 10~13中任一项所述的终端,其特征在于,所述频带 包含 N个子带, N为正整数。
15、 一种基站,其特征在于,包括:
发送模块,用于在至少两个天线端口上向终端发送小区专用参考信号 CRS ,以使得所述终端在至少两个频带组内的每个频带组分别进行独立的信
道估计;
其中,所述 CRS所占带宽划分为至少两个频带组,一个频带组对应一个 天线端口 ,每个频带组包括至少一个频带。
16、 根据权利要求 15所述的基站,其特征在于,所述发送模块还用于: 向所述终端发送频带组划分信息,所述频带组划分信息表示小区专用参 考信号 CRS所占带宽划分为至少两个频带组,以使得所述终端根据所述频带 组划分信息,在所述至少两个频带组内的每个频带组分别进行独立的信道估 计。
17、 根据权利要求 16所述的基站,其特征在于,所述频带组划分信息承 载在物理广播信道 PBCH上,所述 PBCH所占用的资源块 RB在频带组划分 时被划分在同一频带组内。
18、 根据权利要求 15~17任一项所述的基站,其特征在于,所述频带包 含 N个子带, N为正整数。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14887540.4A EP3110219B1 (en) | 2014-03-24 | 2014-03-24 | Method and apparatus for channel estimation processing |
CN201480076755.8A CN106063348B (zh) | 2014-03-24 | 2014-03-24 | 信道估计处理方法和装置 |
PCT/CN2014/073937 WO2015143598A1 (zh) | 2014-03-24 | 2014-03-24 | 信道估计处理方法和装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2014/073937 WO2015143598A1 (zh) | 2014-03-24 | 2014-03-24 | 信道估计处理方法和装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015143598A1 true WO2015143598A1 (zh) | 2015-10-01 |
Family
ID=54193842
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/073937 WO2015143598A1 (zh) | 2014-03-24 | 2014-03-24 | 信道估计处理方法和装置 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3110219B1 (zh) |
CN (1) | CN106063348B (zh) |
WO (1) | WO2015143598A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10993212B2 (en) * | 2017-09-22 | 2021-04-27 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Method for indicating number of transmitting ports of UE, UE and network device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1921463A (zh) * | 2005-08-23 | 2007-02-28 | 中兴通讯股份有限公司 | 正交频分复用移动通信系统的信道估计方法和实现装置 |
WO2013044870A1 (en) * | 2011-09-29 | 2013-04-04 | Huawei Technologies Co., Ltd. | Wireless communication control channel systems and methods |
CN103457647A (zh) * | 2012-06-04 | 2013-12-18 | 普天信息技术研究院有限公司 | 一种双流波束赋形方法及装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8340605B2 (en) * | 2008-08-06 | 2012-12-25 | Qualcomm Incorporated | Coordinated transmissions between cells of a base station in a wireless communications system |
US8599708B2 (en) * | 2010-01-14 | 2013-12-03 | Qualcomm Incorporated | Channel feedback based on reference signal |
EP2774310B1 (en) * | 2011-11-04 | 2020-01-01 | Telefonaktiebolaget LM Ericsson (publ) | Network node, user equipment and methods therein |
US8964632B2 (en) * | 2012-02-03 | 2015-02-24 | Telefonaktiebolaget L M Ericsson (Publ) | Methods and arrangements for channel estimation |
-
2014
- 2014-03-24 CN CN201480076755.8A patent/CN106063348B/zh active Active
- 2014-03-24 EP EP14887540.4A patent/EP3110219B1/en active Active
- 2014-03-24 WO PCT/CN2014/073937 patent/WO2015143598A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1921463A (zh) * | 2005-08-23 | 2007-02-28 | 中兴通讯股份有限公司 | 正交频分复用移动通信系统的信道估计方法和实现装置 |
WO2013044870A1 (en) * | 2011-09-29 | 2013-04-04 | Huawei Technologies Co., Ltd. | Wireless communication control channel systems and methods |
CN103457647A (zh) * | 2012-06-04 | 2013-12-18 | 普天信息技术研究院有限公司 | 一种双流波束赋形方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
CN106063348A (zh) | 2016-10-26 |
CN106063348B (zh) | 2019-11-29 |
EP3110219A4 (en) | 2017-03-15 |
EP3110219A1 (en) | 2016-12-28 |
EP3110219B1 (en) | 2020-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110024299B (zh) | 用于波束管理的系统和方法 | |
US11700094B2 (en) | Signal transmission method and apparatus | |
ES2882295T3 (es) | Tamaño de subbanda independiente para el indicador de matriz de precodificación y el indicador de calidad de canal | |
WO2017185983A1 (zh) | 信令发送接收方法及装置、网络侧设备、终端、存储介质 | |
US11258490B2 (en) | Hybrid common/independent FD-basis for type II CSI enhancement | |
CN104769865B (zh) | 用于改进的lte新载波类型的时间和频率同步 | |
US11855728B2 (en) | Reporting of coefficients for channel state information | |
WO2019069296A1 (en) | ORDERING OF CSI IN UCI | |
EP2696618B1 (en) | Terminal apparatus, base station apparatus and communication methods | |
WO2015154283A1 (zh) | 一种报告信道状态信息的方法、用户设备和基站 | |
WO2013145787A1 (en) | Devices for selecting a channel state information report | |
WO2014113971A1 (zh) | 解调参考信号传输方法、用户设备和基站 | |
KR20130108450A (ko) | 채널 품질 표시자 리포팅 | |
WO2018171491A1 (zh) | 无线通信的方法、网络设备和终端设备 | |
CN108702685B (zh) | 传输模式的信息的传输方法、网络设备、终端设备和系统 | |
WO2014166443A1 (zh) | 一种干扰测量方法、系统、相关设备及存储介质 | |
US9825781B2 (en) | Channel spread estimation | |
WO2012062197A1 (zh) | 一种信道质量信息的上报方法及其装置 | |
WO2014019517A1 (zh) | 传输参考信号的方法、用户设备和网络侧设备 | |
WO2012122912A1 (zh) | 一种解调导频物理资源块绑定解调的方法及系统 | |
JP2017537541A (ja) | Pucch上でのエレベーションpmi報告 | |
KR20190095245A (ko) | 신호 전송 방법, 네트워크 장치 및 단말기 장치 | |
WO2014166291A1 (zh) | 一种保证预编码后信道连续性的方法、基站、ue和计算机可读存储介质 | |
WO2019015468A1 (zh) | 数据传输方法、网络设备和终端设备 | |
JP2015156625A (ja) | 基地局、ユーザ装置、干渉低減制御情報通知方法、及び干渉低減方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14887540 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2014887540 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014887540 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |