WO2015141988A1 - Multifunctional wearable electronic device and manufacturing method therefor - Google Patents

Multifunctional wearable electronic device and manufacturing method therefor Download PDF

Info

Publication number
WO2015141988A1
WO2015141988A1 PCT/KR2015/002446 KR2015002446W WO2015141988A1 WO 2015141988 A1 WO2015141988 A1 WO 2015141988A1 KR 2015002446 W KR2015002446 W KR 2015002446W WO 2015141988 A1 WO2015141988 A1 WO 2015141988A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic device
wearable electronic
patterned
layer
memory device
Prior art date
Application number
PCT/KR2015/002446
Other languages
French (fr)
Korean (ko)
Inventor
김대형
현택환
손동희
이종하
Original Assignee
서울대학교 산학협력단
기초과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교 산학협력단, 기초과학연구원 filed Critical 서울대학교 산학협력단
Publication of WO2015141988A1 publication Critical patent/WO2015141988A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/683Means for maintaining contact with the body
    • A61B5/6832Means for maintaining contact with the body using adhesives
    • A61B5/6833Adhesive patches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/251Means for maintaining electrode contact with the body
    • A61B5/257Means for maintaining electrode contact with the body using adhesive means, e.g. adhesive pads or tapes
    • A61B5/259Means for maintaining electrode contact with the body using adhesive means, e.g. adhesive pads or tapes using conductive adhesive means, e.g. gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/291Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0261Strain gauges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0271Thermal or temperature sensors

Definitions

  • the present invention relates to a multifunctional wearable electronic device and a manufacturing method thereof. More specifically, the present invention relates to a wearable electronic device comprising a biocompatible film adhereable to the skin, stretchable and flexible electronic devices attached to the biocompatible film, and a method of manufacturing the same.
  • Wearable electronic devices refer to electronic devices that can always be used in need because they can be worn on the human body. In recent years, wearable electronics are expected to play an important role in the future of human life.
  • an extensible electronic device is manufactured using a very thin thin film and a tortuous electrode. In addition, these devices are placed in a neutral mechanical plane between the polymer layers to protect brittle devices.
  • Electronic systems comprising inorganic and organic nanomaterials in flexible and stretchable structures, due to their increased convenience, are particularly powerful alternatives to bulky health monitoring devices, thereby improving compliance. do.
  • These emerging electronic devices include sensors, light emitting diodes, and associated circuit elements that come in contact with internal organs (eg, heart, brain), skin, or through an artificial skin scaffold.
  • internal organs eg, heart, brain
  • skin e.g., skin, or through an artificial skin scaffold.
  • a major limitation on such flexible and stretchable electronic devices for the wearable biomedical device is that no portable memory module has yet been implemented that can store recorded data in real time during continuous long-term monitoring.
  • Another feature required for emerging wearable devices is the ability to perform advanced treatment in response to diagnostic patterns present in the collected data.
  • Resistive random access memory made from oxide nanomembrane (NM), is a type of high performance nonvolatile memory that is emerging today.
  • RRAM devices constructed on rigid substrates are made of a hard and brittle material, which tends to be mechanically incompatible with soft tissue that is curved and dynamically deformed.
  • organic non-volatile memory enables flexible data-storage fabrication, there are still limitations such as high power consumption, insufficient reliability and lack of fitness.
  • incorporation of drug delivery devices consisting of a robust microfluidic pump or a rigid electronic stimulator can cause serious problems in mechanical integration of the human body with wearable electronics.
  • Conventional wearable devices mostly form electronic devices on rigid substrates and are simply wearable / wearable. These devices can actually wear / wear, but have the disadvantage that they are uncomfortable in daily life due to their bulky weight and relatively heavy weight.
  • US Patent Application Publication No. 20130041235 discloses a wearable device in which thin and light electronic devices are implanted into the skin.
  • the wearable device since the electronic devices are positioned on the sacrificial polymer layer, the wearable device is implanted into the skin through a method of placing the sacrificial polymer layer on the skin and then removing the sacrificial polymer layer.
  • the wearable device since the wearable device is continuously exposed to foreign substances on the skin and also may cause inflammation to the skin in the long term, there are many problems to be used for medical purposes.
  • the present invention implements this type of stretchable, thin and light wearable electronic device on a medical patch or band to enable a medical examination in daily life, and based on this, an integrated system for additional medical treatment in the form of drug delivery. It relates to the concept of and a method of manufacturing the same.
  • It is a primary object of the present invention to provide a multifunctional wearable electronic device comprising a biocompatible film attachable to the skin and a stretchable and flexible electronic device attached to the biocompatible film.
  • Another object of the present invention is to provide a method of manufacturing a multifunctional wearable electronic device, comprising attaching the stretchable and flexible electronic device to a biocompatible film that is adhereable to the skin.
  • Still another object of the present invention is to (i) coating and curing poly (methyl methacrylate) and the first polymer on a silicon substrate in turn; (ii) patterning the first polymer layer; (iii) fabricating an electronic device adjacent to the first patterned polymer layer; (iv) forming a second patterned polymer layer adjacent the electronic device; (v) removing the silicon substrate and the poly (methyl methacrylate) to obtain a device encapsulated with the first polymer and the second polymer; (vi) removing the poly (methyl methacrylate) layer from the device encapsulated with the first polymer and the second polymer and attaching to the elastic substrate; And (vii) attaching the device having the poly (methyl methacrylate) layer removed from the elastic substrate to a biocompatible film attachable to the skin, wherein the first patterned polymer layer and the second patterned It is to provide a method of manufacturing a wearable electronic device, wherein each of the first electrode and the second electrode of the electronic device adjacent to the polymer layer is
  • the basic object of the present invention described above can be achieved by providing a wearable electronic device comprising a biocompatible film attachable to the skin and stretchable and flexible electronic elements attached to the biocompatible film.
  • the biocompatible film may be a polyurethane film coated with a hydrocolloid adhesive.
  • the surface of the biocompatible film (patch) is coated with a hydrocolloid adhesive, drug-filled mesoporous silica nanoparticles or biodegradable polymer nanoparticles may be included. While the drug filled in the mesoporous silica nanoparticles or biodegradable polymer nanoparticles is released, it can be absorbed by the human body through the skin.
  • the electronic device may be a memory device, a heater, a transistor, a temperature sensor, a strain sensor, an EMG sensor, an EEG sensor, or an integrated device including the same, but is not limited thereto.
  • FIG. 1 is a diagram showing a comprehensive health diagnosis / analysis / drug delivery system in the form of a patch and illustrates the use of electronic devices implemented on a patch in the case of a movement disorder.
  • a person wearing the patch-type electronic device exhibits a behavioral disorder, it is measured by a strain guage on the patch, and the measured data are stored in a wearable RRAM, and the stored data is analyzed.
  • Pattern analysis enables a heater for feedback drug treatment (Feedback thermal actuation) and drug delivery through drug-filled mesoporous silica nanoparticles or biodegradable polymeric nanoparticles (Drug delivery).
  • the memory device may be an active memory device such as a DRAM, a flash memory, or a spin-torque-transfer RAM, or a passive memory device such as a resistive RAM, a phase change RAM, or a ferroelectric RAM.
  • active memory device such as a DRAM, a flash memory, or a spin-torque-transfer RAM
  • passive memory device such as a resistive RAM, a phase change RAM, or a ferroelectric RAM.
  • the stretchable and flexible electronic device included in the wearable electronic device of the present invention includes an elastic substrate; A first patterned polymer layer formed adjacent said elastic substrate; An electronic device formed adjacent the patterned polymer layer; And a second patterned polymer layer formed adjacent to the memory device, wherein each of the first electrode and the second electrode of the memory device adjacent to the first patterned polymer layer and the second patterned polymer layer is patterned. It may be ized.
  • flexible and flexible electronic device refers to an electronic device that exhibits a stable structure and operation even in deformation such as stretching, compression, bending, twisting, and the like.
  • the elastic substrate may be polydimethylsiloxane (PDMS), polyurethane, styrene-butadiene-styrene (SBS), epoxy resin or phenolic resin.
  • PDMS polydimethylsiloxane
  • SBS styrene-butadiene-styrene
  • epoxy resin epoxy resin
  • phenolic resin phenolic resin
  • the first patterned polymer layer or the second patterned polymer layer may be selected from polyimide, benzocyclobutene or SU-8.
  • SU-8 refers to an epoxy-based negative photoresist.
  • the first patterned polymer layer, the second patterned polymer layer, and the first patterned electrode and the second patterned electrode may be patterned in serpentine.
  • the electronic device included in the flexible and flexible electronic device of the present invention may be a memory device such as an active memory device or a passive memory device.
  • the active memory device may be a DRAM, a flash memory, a spin-torque-transfer RAM (STT-RAM), or the like
  • the passive memory device may be a resistance RAM. (RRAM)), Phase Change RAM (PCRAM), Ferroelectric RAM (FERAM), and the like.
  • the electronic device included in the stretchable and flexible electronic device of the present invention may be a nonvolatile resistive memory device.
  • the nonvolatile resistive memory device includes: a first patterned electrode; An insulator layer made of a first metal oxide formed adjacent to the first electrode; A metal nanoparticle layer formed adjacent to the first metal oxide insulator layer; An insulator layer made of a second metal oxide formed adjacent to the metal nanoparticle layer; And a second patterned electrode formed adjacent to the second metal oxide layer.
  • the first electrode may be selected from Al, Cu, Ag, Au, Pt, TiN, ITO, TaN, W, Mg, Zn, or Fe.
  • the first metal oxide may be selected from titanium dioxide, tantalum oxide, vanadium oxide, molybdenum oxide, aluminum oxide, cobalt oxide, zinc oxide, magnesium oxide, zirconium oxide, or hafnium oxide.
  • the thickness of the first metal oxide insulator layer may be 5 nm to 200 nm.
  • the metal nanoparticles may be Au, Pt or Ag, the size of the metal nanoparticles may be 2 nm to 100 nm.
  • the metal oxide nanoparticle layer may be formed by a Langmuir-blojet assembly, a layer-by-layer assembly, or a spin coating assembly process of nanoparticles.
  • the number of the metal oxide nanoparticle layers can be from 1 to 10 layers, and can be adjusted to the required power. More preferably, the number of metal oxide nanoparticle layers may be three layers.
  • langmuir-blojet assembly refers to a two-dimensional layer of nanoparticles by dipping a solid substrate into a liquid and then removing and transferring one or more nanoparticle monolayers from the subphase of the liquid onto the solid substrate. It means to form.
  • self-assembly refers to the process by which a disordered system of components forms an organized structure or pattern as a result of certain local interactions between the components.
  • the second metal oxide of the nonvolatile memory device may be selected from titanium dioxide, tantalum oxide, vanadium oxide, molybdenum oxide, aluminum oxide, cobalt oxide, zinc oxide, magnesium oxide, zirconium oxide, or hafnium oxide.
  • the thickness of the second metal oxide insulator layer may be 5 nm to 200 nm.
  • the second patterned electrode may be selected from Al, Cu, Ag, Au, Pt, TiN, ITO, TaN, W, Mg, Zn or Fe.
  • FIG. 2A and 2B show a single crystal silicon nanomembrane (about 80 nm) strain sensor, a temperature sensor, a TiO 2 nanomembrane (about 66 nm) RRAM array, and an electroresistive heater. shows a wearable electronic device including a heater.
  • This versatile array of sensors and memories is transcribed onto an elastic hydrocolloid patch (Derma-Touch, Kwang-Dong Pharmaceutical, Korea).
  • a switching layer of TiO 2 nanomembrane containing gold nanoparticles is formed between the same polyimide layers (about 1.2 ⁇ m) to form a neutral mechanical plane ( Above the upper left side of FIG. 2A).
  • the mesoporous silica nanoparticles filled with the therapeutic drug are transcribed onto the hydrocolloid side of the dermal patch (lower middle in FIG. 2A). Very thin twisty wires and low modulus hydrocolloids together provide good mechanical contact with the skin.
  • the inset of FIG. 2B is an enlargement of a 10 ⁇ 10 RRAM array in a serpentine network, which is integrated with a sensor transmitting an analog output.
  • the drug filled in the mesoporous silica nanoparticles diffuses into the dermis, and the diffusion rate is controlled by the temperature of the hydrocolloid elastomer controlled by the heater.
  • the temperature sensor warns of skin burns by providing temperature feedback on the spot.
  • Another object of the present invention can be achieved by providing a method for manufacturing a wearable electronic device, comprising attaching the stretchable and flexible electronic device to a biocompatible film that is adhereable to the skin.
  • the biocompatible film may be a polyurethane film coated with a hydrocolloid adhesive.
  • hydrocolloid pressure-sensitive adhesive in the biocompatible film may be included, drug-filled mesoporous silica nanoparticles or biodegradable polymer nanoparticles. While the drug filled in the mesoporous silica nanoparticles is released, it can be absorbed by the human body through the skin.
  • the electronic device may be a memory device, a heater, a transistor, a temperature sensor, a strain sensor, an EMG sensor, an EEG sensor, or an integrated device including the same, but is not limited thereto.
  • the memory device may be an active memory device such as a DRAM, a flash memory, or a spin-torque-transfer RAM, or a passive memory device such as a resistive RAM, a phase change RAM, or a ferroelectric RAM.
  • active memory device such as a DRAM, a flash memory, or a spin-torque-transfer RAM
  • passive memory device such as a resistive RAM, a phase change RAM, or a ferroelectric RAM.
  • Still another object of the present invention is to (i) coating and curing poly (methyl methacrylate) and the first polymer on a silicon substrate in turn; (ii) patterning the first polymer layer; (iii) fabricating an electronic device adjacent to the first patterned polymer layer; (iv) forming a second patterned polymer layer adjacent the electronic device; (v) removing the silicon substrate and the poly (methyl methacrylate) to obtain a device encapsulated with the first polymer and the second polymer; (vi) removing the poly (methyl methacrylate) layer from the device encapsulated with the first polymer and the second polymer and attaching to the elastic substrate; And (vii) attaching the device having the poly (methyl methacrylate) layer removed from the elastic substrate to a biocompatible film attachable to the skin, wherein the first patterned polymer layer and the second patterned It can be achieved by providing a method of manufacturing a wearable electronic device, wherein each of the first electrode and the second electrode of the electronic device adjacent to the polymer
  • the elastic substrate may be polydimethylsiloxane, polyurethane, styrene-butadiene-styrene (SBS), epoxy resin or phenol resin.
  • SBS styrene-butadiene-styrene
  • first polymer layer or the second polymer layer may be selected from polyimide, benzocyclobutene (BCB) or SU-8.
  • the electronic device may be selected from a memory device, a heater, a transistor, a temperature sensor, a strain sensor, an EMG sensor, an EEG sensor, or an integrated device including the same.
  • the first patterned polymer layer, the second patterned polymer layer, and the first patterned electrode and the second patterned electrode may be patterned in serpentine.
  • the electronic device may be a memory device such as an active memory device or a passive memory device.
  • the active memory device may be a DRAM, a flash memory, a spin-torque-transfer RAM (STT-RAM), or the like
  • the passive memory device may be a resistance RAM. (RRAM)), Phase Change RAM (PCRAM), Ferroelectric RAM (FERAM), and the like.
  • the electronic device may be a nonvolatile resistive memory device.
  • the nonvolatile resistive memory element may include a first patterned electrode; An insulator layer made of a first metal oxide formed adjacent to the first electrode; A metal nanoparticle layer formed adjacent to the first metal oxide insulator layer; An insulator layer made of a second metal oxide formed adjacent to the metal nanoparticle layer; And a second patterned electrode formed adjacent to the second metal oxide layer.
  • the biocompatible film may be a polyurethane film coated with a hydrocolloid adhesive.
  • hydrocolloid pressure-sensitive adhesive in the biocompatible film may be included, drug-filled mesoporous silica nanoparticles or biodegradable polymer nanoparticles.
  • the present invention by implementing an integrated medical electronic device on a very thin and light skin patch, it is possible to perform a medical examination without inconvenience in daily life.
  • the present invention can implement an integrated system for drugs or additional treatment, it can be effectively applied to the treatment of diseases that require continuous observation in daily life.
  • FIG. 1 illustrates one embodiment of a wearable electronic device of the present invention.
  • FIG. 2 is a wearable memory array including TiO 2 nanomembrane (NM) -Au nanoparticles (NPs) —TiO 2 NM switching layer and an Al electrode in a wearable electronic device manufactured in Embodiment 2 of the present invention.
  • 2a the top left view shows the layer information), a picture of the wearable system corresponding to FIG. 2a (FIG. 2b).
  • 3A is a diagram illustrating Langmuir-Blodge (LB) assembly and stearic acid (SAM) functionalization
  • 3b are photographs (top) for the LB assembly process and planar TEM photographs (bottom) for single layer gold nanoparticles and three layer gold nanoparticles
  • 3C is cross-sectional TEM photographs of fabricated memory cells
  • 3D is an EDS profile showing the thickness of three layer gold nanoparticles in MINIM (Metal-Insulator-Nanoparticle-Insulator-Metal).
  • 4A shows, in Example 3 of the present invention, MIM (Metal-Insulator-Metal), MISIM (Metal-Insulator-Self-Assembly Monolayer (SAM) -Insulator-Metal) and MINIM attached to PDMS and encapsulated with polyimide Showing the IV characteristics of the bipolar resistive switching of the structures; 4B is a diagram illustrating low current resistive switching due to Au nanoparticle-induced traps; 4C is an I-V curve in MIM and MINIM attached to PDMS and encapsulated with polyimide; 4D shows I-V characteristics at compliance currents up to about 100 ⁇ A in MIM and MINIM attached to PDMS and encapsulated with polyimide; 4E is a result of reliability test (durability (left) and retention (right)) of MINIM attached to PDMS and encapsulated with polyimide (resistance measurement at -0.5 V); 4F is the cumulative probability in MIM and MINIM attached to PDMS
  • FIG. 5 is a micrograph (FIG. 5A) in which stretch and soft memory devices are stretched by about 25% in Example 4 of the present invention, each with a different strain value (3% -25%).
  • Skin-compatible memory on the wrist showing the IV characteristics of the stretchable and flexible memory device (FIG. 5B), and the stretch and soft resistance memory arrangement in the bent state (FIG. 5C left) and in the twisted state (FIG. 5C right).
  • FIG. 5A the IV characteristics of the stretchable and flexible memory device
  • FIG. 5C left the stretched state
  • FIG. 5C right Show magnification, show simulation results for strain distribution in stretched RRAM (FIG. 5E), show change in resistance (HRS and LRS) at -0.5 V over 1,000 stretch cycles (about 30%).
  • FIG. 5F waterproof in PBS (left of FIG. 5G) and read It illustrates the flow (Fig. 5g right).
  • FIG. 6A is a schematic diagram illustrating a transfer printing process of drug-filled mesoporous silica nanoparticles, a sensor and a memory device
  • FIG. 6B is a photograph of a structured PDMS stamp used in the transfer printing process.
  • FIG. 7A is a photograph of a silicon nanomembrane sensor (insertion shows the silicon nanomembrane doped with boron)
  • FIG. 7B is the percent change in resistance versus strain plot to calculate the gauge factor
  • FIG. 7C Deformation measurement picture on the wrist in tension and compression state
  • FIG. 7D shows resistance change over time (top), memory in silicon strain gauge caused by hand shake simulated at frequencies of 0.8, 0.4, 0.6 and 1 Hz
  • the MLC operation of the cell (middle) and the data written to the MINIM memory cell (bottom).
  • FIG. 8A is a schematic diagram of controlled transdermal drug delivery from hydrocolloid and mesoporous silica nanoparticles by thermal action
  • FIG. 8B shows measurement of the temperature distribution of the heater on the skin patch using an infrared camera
  • FIG. 8C 3D thermal profile at the interface between the heater on the patch and the patch and human skin
  • FIG. 8D is a high resolution camera photograph (insertion micrograph) of mesoporous silica nanoparticles
  • FIG. 8E is mesoporous TEM picture of silica nanoparticles
  • FIG. 8A is a schematic diagram of controlled transdermal drug delivery from hydrocolloid and mesoporous silica nanoparticles by thermal action
  • FIG. 8B shows measurement of the temperature distribution of the heater on the skin patch using an infrared camera
  • FIG. 8C 3D thermal profile at the interface between the heater on the patch and the patch and human skin
  • FIG. 8D is a high resolution camera photograph (insertion micrograph) of me
  • FIG. 8F shows the surface area calculated from the adsorption and desorption measurements of N2 at 77K (insertivity calculated using the Barrett-Joyner-Halenda (BJH) method, mesoporous silica nanoparticles 8g shows the above surface of the heater (red), the interface between the skin and the patch (orange) and the absence of heating. (Black) shows the maximum temperature as a function of time, the y-axis on the right shows that the diffusion coefficient increases exponentially with increasing temperature (blue in FIG. 8g), and FIG. 8h is the characteristic curve of the temperature sensor, FIG. 8I is a fluorescence photograph of the cross section of porcine skin after diffusion of rhodamine B fluorescent dye at 25 ° C. (top) and 40 ° C. (bottom) for 5 minutes (left) and 60 minutes (right).
  • BJH Barrett-Joyner-Halenda
  • FIG. 9 is a packaging test result for corrosion or degradation due to sweat when the RRAM memory module operates on the skin.
  • the left photo of FIG. 9 shows evaluation of whether memory operation is stable when Phosphate Buffered Saline (PBS) solution is applied to an RRAM array on a PDMS substrate.
  • PBS Phosphate Buffered Saline
  • the data in the right figure of FIG. 9 shows whether the memory programmed at -0.5V is well stored. No data is lost for 60 seconds, demonstrating good RRAM memory array packaging.
  • PMMA Poly (methyl methacrylate) (A11, Microchem, USA; spin coated at about 1 ⁇ m for 30 seconds at 3000 rpm) and polyimide (PI) (polyamic acid, Sigma Aldrich, USA; about 1.2 ⁇ m, 4000 Thin layers of precursor solution of spin coated at rpm for 60 seconds were spin coated onto a Si handle wafer (test grade, 4science, Korea). After the PMMA and PI were cured at 200 ° C. for 2 hours, aluminum used as the first electrode was deposited by thermal evaporation (350 nm thick), patterned by photolithography and wet etching was performed.
  • PI polyimide
  • first TiO 2 nanomembrane (thickness 66 nm) was subjected to RF magnetron sputtering (base pressure 5 ⁇ 10 ⁇ 6 Torr, room temperature, deposition pressure 5 mTorr, 20 sccm, RF Power 150 W) (first metal oxide insulator layer).
  • the gold nanoparticles synthesized in Example 1 were assembled on the first TiO 2 nanomembrane through a Langmuir-Bloze assembly process (FIG. 3A).
  • gold nanoparticles capped with oleylamine were dispersed in chloroform (50 mg / mL). The dispersion was added dropwise onto a water sub-phase of an LB trough (LB trough; IUD 1000, KSV instrument, Finland). After evaporating the solvent, the surface layer was compressed using a mobile barrier (5 mm / min). After the surface pressure reached 30 mN / m, the gold nanoparticle layer was assembled on the substrate by lifting the substrate and soaking at a rate of 1 mm / min.
  • FIG. 3B shows photographs (top) of the LB assembly process and planar TEM photographs (bottom) of one layer of gold nanoparticles and three layers of gold nanoparticles.
  • the number of assembly layers can be controlled by the number of dipping / pulling cycles.
  • the first TiO 2 nanomembrane was coated with a self-assembled monolayer (stearic acid) to confirm the ligand effect on memory performance (FIG. 3A).
  • a metal-insulator-self-assembled monolayer SAM
  • MISIM metal-insulator-metal
  • NP metal-insulator-nanoparticle
  • MINIM metal-insulator-nanoparticle
  • FIG. 3C The thickness of the gold nanoparticle layer of the three layers was confirmed through an energy dispersive X-ray specroscopy profile for the cross section (FIG. 3D).
  • closely-packed monolayer assembly plays an important role in device uniformity as well as accurate thickness control of several monolayers.
  • the TiO 2 nano-membrane of claim 1 was deposited to a second TiO 2 nano-membrane (second non-conductive metal oxide layer) on the gold nanoparticle layer (66 nm thick).
  • An aluminum second electrode was deposited adjacent to the second TiO 2 nanomembrane by thermal deposition.
  • the second electrode layer was patterned by a photolithography method to produce a serpentine-patterned resistance memory.
  • the PI precursor was spin-coated to form the active layer near the neutral mechanical plane, and a reactive ion etching (RIE) process using O 2 and SF 6 was performed.
  • RIE reactive ion etching
  • the entire device on a silicon wafer was immersed in boiling acetone.
  • the acetone removed the PMMA layer to separate the PI encapsulated device from the silicon handle wafer.
  • the memory device was separated using a water-soluble tape (3M, USA), and then transferred onto a printed polydimethyl siloxane (PDMS), and then again a skin patch (Derma-Touch, Kwang Dong Pharmaceutical Co., Ltd., Korea) Moved up. Electrical measurements were performed using a parameter analyzer (B1500A, Agilent, USA).
  • bipolar IV curves were obtained for MIM, MISIM and MINIM structures attached to PDMS and encapsulated with polyimide, prepared according to the method of Example 2 (FIG. 4A).
  • 4A shows the bias order.
  • the initial state is a high-resistance state (HRS), and transitions to a low-resistance state (LRS) by applying a negative voltage (“set”).
  • HRS high-resistance state
  • LRS low-resistance state
  • the structures are then switched to HRS by a positive voltage (“reset”).
  • the I-V properties of MIM and MISIM attached to PDMS and encapsulated with polyimide were nearly identical; Forming one gold nanoparticle layer in the TiO 2 layer reduced the set and reset currents by an order of magnitude compared to the MIM structure.
  • the level of the current was further reduced by an order of three in MIMIN comprising three gold nanoparticle layers.
  • 4B is a diagram showing low current switching due to gold nanoparticle-induced traps.
  • 4C is a log-log I-V curve highlighting the negative voltage region.
  • the conduction mechanism in MINIM attached to PDMS and encapsulated with polyimide is similar to the conduction mechanism of MIM, and the trap-controlled space-charge-limited-current (SCLC) theory follows.
  • 4D shows I-V curves at different compliance currents for MIM (left) and MINIM (right) attached to PDMS and encapsulated with polyimide. At compliance currents of 100 ⁇ A or less, MINIM attached to PDMS and encapsulated with polyimide showed better on / off ratio than MIM and MISIM attached to PDMS and encapsulated with polyimide.
  • Multi-level cell (MLC) operation means that multiple data storage is possible in a single cell with discrete compliance currents that have discrete resistance values (FIG. 4D). Such different resistance values allow multiple information to be stored in a single cell (FIG. 4G).
  • MLCs with current values below -100 ⁇ A were performed in MINIM attached to PDMS and encapsulated with polyimide, and data was preserved in more than 100 read operations.
  • FIGS. 5A and 5B Optical micrographs and stretching characteristics of the stretchable and flexible resistive memory devices manufactured in Example 2 are shown in FIGS. 5A and 5B, respectively.
  • the device When the device was stretched by about 25% (the strain limit of the human epidermis was about 20%), the device showed stable electrochemical operation.
  • the stretchable and flexible resistive memory device was stable even in bending and twisting (FIG. 5C).
  • the wearable electronic device manufactured from the stretchable and flexible resistance memory device was modified in conformity with human skin (FIG. 5D).
  • FIG. 5E shows the results of finite element modeling (FEM) on the strain distribution of the active layer (TiO 2 nanomembrane).
  • FEM finite element modeling
  • FIG. 5g shows a photograph of the memory device in phosphate buffered saline (left) and no significant current change (right), indicating that the encapsulation layer can block perspiration uptake.
  • mesoporous silica (m-silica) nanoparticles were prepared by removing the pore-generating template, CTAB, by reflux in acidic ethanol solution.
  • Rhodamine B As a drug diffusion model, rhodamine B ( ⁇ 95%, Sigma-Aldrich, USA) was charged to mesoporous silica nanoparticles. Rhodamine B solution (0.2 mL, 20 mg / mL in methanol) was adsorbed onto the surface of the mesoporous silica nanoparticles (0.15 g). Rhodamine B packed in the mesoporous silica nanoparticles was dried at room temperature.
  • Negative photoresist (SU8-25, Microchem, USA) was precleaned and spin coated onto silicon wafers treated with O 2 plasma. Photolithography was performed on the spin-coated SU8 to pattern holes 40 ⁇ m deep, 600 ⁇ m wide and 1.46 nm apart. The SU8 mold was then placed on a heated dish on a plate at 150 ° C. to promote adhesion between the mold and the silicon wafer. 10: 1 PDMS (Sylgard 184A: Sylgard 184B, Dow Corning, USA) was poured into the dish. After 24 hours, the cured structured PDMS and micro-dot array were slowly removed from the SU8 mold (FIG. 6B).
  • Drug filled (or dye filled) mesoporous silica nanoparticle solutions were dropped onto the structured PDMS stamp.
  • the stamp was dried for about 20 minutes.
  • the dried dye-filled mesoporous silica nanoparticles were transferred and printed onto the hydrocolloid side of the skin patch as a microdot array (FIG. 6A).
  • Wavy-patterned Cr / Au-based heaters (10 nm / 190 nm, line width 300 ⁇ m, 95.9 ⁇ ) on a 1 mm thick slide glass were supplied at an ambient temperature of 15 ° C. (12 V, 1.5 W).
  • An infrared camera (320 ⁇ 240 pixels, IRE Korea, Korea) was used to capture time-dependent thermo-grams and the maximum temperature of the heater was shown.
  • the fabrication process was started with spin coating PMMA and PI on the silicon wafer. 80 nm by photolithography and RIE (SF 6 plasma, 50 sccm, chamber pressure 50 mTorr) process of silicon-on-insulator (SOI) wafers doped with boron (doping concentration: about 9.7 ⁇ 10 18 / cm 3 ) A silicon nanomembrane of thickness was formed, which was transferred and printed on the PI film. Thermal evaporation was used for the subsequent metallization (Cr / Au, 7 nm / 70 nm thick), after which the metal film was formed as a specific pattern by photolithography and wet chemical etching.
  • RIE SF 6 plasma, 50 sccm, chamber pressure 50 mTorr
  • SOI silicon-on-insulator
  • the top PI layer was covered and all three layers (PI / device / PI) were patterned and etched by O 2 and SF 6 RIE.
  • the entire device was removed from the silicon wafer by removing the PMMA sacrificial layer using acetone.
  • the detached device was transferred to a skin patch.
  • FIG. 7A shows an arrangement of stretchable strain sensors based on silicon nanomembrane (inset), as a typical example of a wearable sensor adjacent to a collocated memory.
  • the strain gauge has an effective guage factor of about 0.5. Due to the very thin serpentine interconnect, the sensors adhered well to the skin even during repeated exposure to tension and compression in the human wrist (FIG. 7C). This specific example mimics a shaking mode that causes hand frequencies of different frequencies, as seen in epilepsy and Parkinson's disease (FIG. 7D).
  • the other tremor frequency serves as the main tracking factor for monitoring and diagnosing these movement disorders. Representative frequencies corresponding to different frequency bands (0.-0.5, 0.5-0.7, 0.7-0.9 and> 0.9 Hz) are based on four different levels (Fig. 7D) based on the MLC operation of the MINIM wearable memory (Fig. 4G). As shown below).
  • a skin-mountable heater was fabricated by thermal evaporation of Cr / Au (10 nm / 190 nm thickness) through a metal mask of a tortuous shape to produce a non-tacky surface (hydrocolloid ( A serpentine shape was formed on the opposite side of the hydrocolloid) After the wiring, the heater was wrapped with PDMS film The same design and fabrication method can be used for the temperature sensor.
  • the sensing and data storage steps can be initiated and stored locally in the cells of the nonvolatile memory.
  • a custom program written in Lab View software National Instruments, USA was used to process and store the recorded data.
  • the tremor recorded by the mounted strain gauge Frequency was analyzed and classified into four different bands (0-0.5, 0.5-0.7, 0.7-0.9, and> 0.9 Hz) by the customized Lab View program.
  • the program determines the appropriate compliance current and bias voltage to determine two specific digit codes ([00], [01], [10], and [11]. , Which are pre-assigned for each band) were written to the mounted wearable memory cell.
  • An application for sensing and data storage is to use the stored information to trigger treatment initiation.
  • One possible mode of use is to feed the recorded data through a control circuit that recognizes the characteristic pattern of the disease and then trigger / control drug release (FIG. 8A).
  • a control circuit that recognizes the characteristic pattern of the disease and then trigger / control drug release.
  • mesoporous silica nanoparticles as the vehicle containing and delivering the drug (FIGS. 8D-8F), and the diffusion promoting / temperature monitoring devices (FIGS. 8B, 8C 8G and 8H) for controlled transdermal drug delivery.
  • An electroresistive heater / temperature sensor was used as () (FIG. 8I).
  • Drug-filled mesoporous silica nanoparticles were transferred-printed onto the tacky side of the patch using a structured polydimethylsiloxane (PDMS) stamp.
  • Mesoporous silica nanoparticles containing nanopores (FIG. 8E) have a very large surface area for drug adsorption (FIG. 8F).
  • 8B shows a thermal gradient photograph (infrared camera measurement) for an electrically resistive heater on the patch surface.
  • 8C shows the corresponding FEM analysis results highlighting the three-dimensional thermal profile for the device on the multilayered human skin, demonstrating that sufficient heat is transferred to the skin and the nanoparticles.
  • the heat generated by the heater breaks the physical bond between the nanoparticles and the drug so that the drug filled in the nanoparticles is percutaneously diffused.
  • the temperature sensor (FIG. 8H) can monitor the maximum temperature ( ⁇ 43 ° C.) that can prevent skin burns.
  • Percutaneous drug delivery can be visualized by fluorescence micrographs of the diffusion of dye (rhodamine B) into pig skin at room temperature (25 ° C., FIG. 8i) and at elevated temperature (40 ° C., FIG. 8i). .
  • the depth at which the dye penetrated the pig skin at room temperature was shallower than the depth of penetration at elevated temperatures, which means that diffusion accelerated by thermal action.
  • Electronic devices should be packaged to prevent malfunctions caused by foreign substances such as sweat emitted from human skin or external water.
  • the electronic devices fabricated by the method of Example 3 are well protected by an encapsulation layer, so that performance is hardly changed by stimulation of external materials such as sweat.
  • FIG. 9 when the 1 M PBS (Phosphate Buffered Saline Solution) solution having a much higher concentration of ions than sweat was dropped on the electronic device, it was observed that the electronic device works well.
  • 1 M PBS Phosphate Buffered Saline Solution

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Preparation (AREA)

Abstract

The present invention relates to a multifunctional wearable electronic device and a manufacturing method therefor. More specifically, the present invention relates to a wearable electronic device comprising: a biocompatible film capable of being adhered to skin; and stretchable and flexible electronic elements attached to the biocompatible film, and a manufacturing method therefor.

Description

다기능성 웨어러블 전자 기기 및 이의 제조 방법Multifunctional wearable electronic device and manufacturing method thereof
본 발명은 다기능성 웨어러블 전자 기기 및 이의 제조 방법에 관한 것이다. 보다 상세하게는, 본 발명은 피부에 접착가능한 생체적합성 필름과, 상기 생체적합성 필름에 부착된 신축성 및 연성 전자소자를 포함하는 웨어러블 전자 기기, 및 이의 제조 방법에 대한 것이다.The present invention relates to a multifunctional wearable electronic device and a manufacturing method thereof. More specifically, the present invention relates to a wearable electronic device comprising a biocompatible film adhereable to the skin, stretchable and flexible electronic devices attached to the biocompatible film, and a method of manufacturing the same.
웨어러블 전자 기기들은 인간의 신체에 착용할 수 있기 때문에, 유사시에 항상 활용할 수 있는 전자 기기들을 일컫는다. 최근에, 웨어러블 전자기기들은 미래의 인간 삶을 영위하는데 중요한 역할을 할 것으로 기대되어 각광받고 있다. 이러한 웨어러블 기기 중에서도 얇고 가벼우면서 피부에 부착될 수 있는 고성능 전자 기기를 구현하기 위하여, 매우 얇은 박막과 구불구불한 모양의 전극을 이용하여 신장가능한(extendable) 전자 소자들을 제작한다. 또한, 이러한 소자들을 고분자 층 사이의 중성 역학층(neutral mechanical plane)에 위치하게 하여, 부서지기 쉬운 소자들을 보호한다.Wearable electronic devices refer to electronic devices that can always be used in need because they can be worn on the human body. In recent years, wearable electronics are expected to play an important role in the future of human life. Among the wearable devices, in order to implement a high-performance electronic device that can be attached to the skin, which is thin and light, an extensible electronic device is manufactured using a very thin thin film and a tortuous electrode. In addition, these devices are placed in a neutral mechanical plane between the polymer layers to protect brittle devices.
중요한 생리학적 파라미터를 연속적으로 측정할 수 있고 데이터 저장 및 약물 전달 기능을 함께 갖춘 웨어러블 센서(wearable sensor)가 장착된 기기들이 개인 건강관리에서 혁신적인 발전을 이룰 것으로 기대된다. 그러나 종래의 모니터링 장치들이 주목할만한 생리학적 데이터만을 포획함에도 불구하고, 기존 장치들의 형태 인자(form factor)로 인하여 피부에 이음매 없이(seamless) 통합되지 못하고, 웨어러빌리티(wearability) 문제 및 신호대잡음 제한 문제가 발생한다.Devices equipped with wearable sensors that can continuously measure important physiological parameters and combine data storage and drug delivery are expected to revolutionize personal healthcare. However, despite the fact that conventional monitoring devices only capture noteworthy physiological data, the form factor of existing devices prevents seamless integration into the skin, limiting wearability problems and signal to noise. A problem arises.
현재까지, 파킨슨씨 병과 같은 질병을 모니터링하는데 사용되는 정성적 생리학적 파라이터는 비디오 감시 및 전달을 통한 조악한 모니터링 싸이클을 통해 추적되어 왔다. 그러나 파킨슨씨 병의 진행과 약물치료에 대한 다른 신경 질환을 이해하기 위해, 기록된 데이터로부터 생리학적 파라미터의 정량적 평가 및 패턴 분석의 필요성이 존재한다. 또한, 1일 기준으로 경구 투여에 대한 순응도(compliance)는, 복용불이행(non-adherence) 및 과량복용의 경우의 부작용의 위험이 있다. 따라서 약물치료의 효능은, 제어 및 서방형 경피 전달을 포함하는 전략적 복용, 및 일일 요법(daily regimen)에 대한 환자의 징후를 지속적으로 모니터링하는 것에 크게 의존한다.To date, qualitative physiological parameters used to monitor diseases such as Parkinson's disease have been tracked through coarse monitoring cycles through video surveillance and delivery. However, to understand the progression of Parkinson's disease and other neurological disorders for drug therapy, there is a need for quantitative evaluation and pattern analysis of physiological parameters from the recorded data. In addition, compliance with oral administration on a daily basis is at risk of side effects in the case of non-adherence and overdose. The efficacy of drug therapy thus relies heavily on strategic dosing, including controlled and sustained release transdermal delivery, and continuous monitoring of the patient's indications for daily regimen.
연성(flexible) 및 신축성(stretchable) 구조에서 무기 및 유기 나노물질을 포함하는 전자 시스템은, 편의성의 향상으로 인하여, 특히 대규모 건강 모니터링 장치(bulky health monitoring devices)에 대한 강력한 대안이고, 이로써 순응도가 개선된다. 이러한 현재 대두되는 전자 장치들은 센서, 발광 다이오우드, 및 내부 기관(예를 들면, 심장, 뇌), 피부와 접하거나 인공 피부 골격(scaffold)를 통해 접하는 관련 회로 소자를 포함한다. 그러나 상기 웨어러블 생물의학 장치를 위한 이러한 연성 및 신축성 전자 장치에 대한 주요한 제약은 연속적인 장기간의 모니터링 과정에서 기록된 데이터를 실시간 저장할 수 있는 휴대용 메모리 모듈이 아직 구현되지 아니하였다는 점이다. 현재 대두되는 웨어러블 기기들에 있어서 요구되는 또 다른 특징은 수집된 데이터에 존재하는 진단 패턴(diagnostic pattern)에 반응하여 진보된 치료를 하는 능력이다.Electronic systems comprising inorganic and organic nanomaterials in flexible and stretchable structures, due to their increased convenience, are particularly powerful alternatives to bulky health monitoring devices, thereby improving compliance. do. These emerging electronic devices include sensors, light emitting diodes, and associated circuit elements that come in contact with internal organs (eg, heart, brain), skin, or through an artificial skin scaffold. However, a major limitation on such flexible and stretchable electronic devices for the wearable biomedical device is that no portable memory module has yet been implemented that can store recorded data in real time during continuous long-term monitoring. Another feature required for emerging wearable devices is the ability to perform advanced treatment in response to diagnostic patterns present in the collected data.
산화물 나노멤브레인(oxide nanomembrane (NM))으로부터 제작되는 저항 램(resistive random access memory (RRAM))은 현재 대두되는 고성능 비휘발성 메모리의 한 종류이다. 종래의 딱딱한 기판 위에 구성된 RRAM 장치는 견고하고 깨지기 쉬운 물질로 이루어져 있어서, 곡선으로 이루어져 있고 동적으로 변형되는 연조직(soft tissue)과 기계적으로 양립할 수 없는 경향을 갖는다. 유기 비휘발성 메모리가 연성 데이터-저장 장치 제작을 가능하게 할지라도, 높은 전력 소비, 불충분한 신뢰성 및 신체적합성 부족과 같은 제한이 여전히 존재한다. 이와 유사하게, 견고한 마이크로유체 펌프 또는 견고한 전자 스티뮬레이터(electronic stimulator)로 구성된 약물 전달 소자들을 통합하면 인체와 웨어러블 전자 기기와의 기계적 통합에 심각한 문제를 야기할 수 있다.Resistive random access memory (RRAM), made from oxide nanomembrane (NM), is a type of high performance nonvolatile memory that is emerging today. Conventional RRAM devices constructed on rigid substrates are made of a hard and brittle material, which tends to be mechanically incompatible with soft tissue that is curved and dynamically deformed. Although organic non-volatile memory enables flexible data-storage fabrication, there are still limitations such as high power consumption, insufficient reliability and lack of fitness. Similarly, incorporation of drug delivery devices consisting of a robust microfluidic pump or a rigid electronic stimulator can cause serious problems in mechanical integration of the human body with wearable electronics.
종래의 웨어러블 기기들은 대부분 딱딱한 기판 위에 전자 기기를 만들고, 이 기기들을 단순히 입거나/착용할 수 있는 형태이다. 이러한 기기들은 실제로 입고/착용할 수는 있으나, 그 부피가 크고 무게가 비교적 무거워서 일상 생활에 불편함을 느낀다는 단점이 있다.Conventional wearable devices mostly form electronic devices on rigid substrates and are simply wearable / wearable. These devices can actually wear / wear, but have the disadvantage that they are uncomfortable in daily life due to their bulky weight and relatively heavy weight.
미합중국 특허출원공개 제20130041235호는 얇고 가벼운 전자 기기들을 피부에 이식한 웨어러블 기기를 개시하고 있다. 그러나 상기 기술에 따르면, 희생 고분자층(sacrificial polymer layer) 위에 전자 기기들이 위치하기 때문에, 피부에 올려놓은 뒤 상기 희생 고분자층을 제거하는 방법을 통해 상기 웨어러블 기기를 피부에 이식하였다. 그러나 이 경우, 상기 웨어러블 기기가 피부 위에서 이물질에 지속적으로 노출되고, 또한 장기적으로 피부에 염증을 일으킬 수 있는 단점이 있기 때문에, 의료용으로 활용되기에는 문제점이 매우 많다.US Patent Application Publication No. 20130041235 discloses a wearable device in which thin and light electronic devices are implanted into the skin. However, according to the above technology, since the electronic devices are positioned on the sacrificial polymer layer, the wearable device is implanted into the skin through a method of placing the sacrificial polymer layer on the skin and then removing the sacrificial polymer layer. However, in this case, since the wearable device is continuously exposed to foreign substances on the skin and also may cause inflammation to the skin in the long term, there are many problems to be used for medical purposes.
본 발명은 이러한 형태의 신장가능하며 얇고 가벼운 웨어러블 전자 기기들을 의료용 패치 내지 밴드 위에 구현하여 일상 생활 내에서 건강 진단을 할 수 있도록 하였으며, 이를 바탕으로 하여 약물 전달 형태의 추가적인 진료를 할 수 있는 통합 시스템의 개념과 이의 제조 방법에 관한 것이다.The present invention implements this type of stretchable, thin and light wearable electronic device on a medical patch or band to enable a medical examination in daily life, and based on this, an integrated system for additional medical treatment in the form of drug delivery. It relates to the concept of and a method of manufacturing the same.
본 발명의 기본적인 목적은 피부에 접착가능한 생체적합성 필름과, 상기 생체적합성 필름에 부착된 신축성 및 연성 전자소자를 포함하는 다기능성 웨어러블 전자 기기를 제공하는 것이다.It is a primary object of the present invention to provide a multifunctional wearable electronic device comprising a biocompatible film attachable to the skin and a stretchable and flexible electronic device attached to the biocompatible film.
본 발명의 다른 목적은 신축성 및 연성 전자소자를 피부에 접착가능한 생체적합성 필름에 부착하는 단계를 포함하는, 다기능성 웨어러블 전자 기기 제조 방법을 제공하는 것이다.Another object of the present invention is to provide a method of manufacturing a multifunctional wearable electronic device, comprising attaching the stretchable and flexible electronic device to a biocompatible film that is adhereable to the skin.
본 발명의 또 다른 목적은 (i) 폴리(메틸 메타크릴레이트)와 제1 고분자를 실리콘 기판에 차례로 코팅하고 경화하는 단계; (ii) 상기 제1 고분자 층을 패턴화하는 단계; (iii) 상기 제1 패턴화된 고분자 층에 인접하여 전자 소자를 제작하는 단계; (iv) 상기 전자 소자에 인접하여 제2 패턴화된 고분자 층을 형성하는 단계; (v) 상기 실리콘 기판 및 상기 폴리(메틸 메타크릴레이트)를 제거하여 상기 제1 고분자와 상기 제2 고분자로 캡슐레이션된 소자를 얻는 단계; (vi) 상기 제1 고분자와 상기 제2 고분자로 캡슐레이션된 소자에서 폴리(메틸 메타크릴레이트)층을 제거하고 탄성 기재에 부착하는 단계; 및 (vii) 상기 탄성 기재로부터 폴리(메틸 메타크릴레이트)층이 제거된 소자를 피부에 부착가능한 생체적합성 필름에 부착하는 단계를 포함하고, 상기 제1 패턴화된 고분자 층 및 제2 패턴화된 고분자 층에 인접한 상기 전자 소자의 제1 전극 및 제2 전극 각각이 패턴화된 것인, 웨어러블 전자 기기 제조 방법을 제공하는 것이다.Still another object of the present invention is to (i) coating and curing poly (methyl methacrylate) and the first polymer on a silicon substrate in turn; (ii) patterning the first polymer layer; (iii) fabricating an electronic device adjacent to the first patterned polymer layer; (iv) forming a second patterned polymer layer adjacent the electronic device; (v) removing the silicon substrate and the poly (methyl methacrylate) to obtain a device encapsulated with the first polymer and the second polymer; (vi) removing the poly (methyl methacrylate) layer from the device encapsulated with the first polymer and the second polymer and attaching to the elastic substrate; And (vii) attaching the device having the poly (methyl methacrylate) layer removed from the elastic substrate to a biocompatible film attachable to the skin, wherein the first patterned polymer layer and the second patterned It is to provide a method of manufacturing a wearable electronic device, wherein each of the first electrode and the second electrode of the electronic device adjacent to the polymer layer is patterned.
전술한 본 발명의 기본적인 목적은 피부에 접착가능한 생체적합성 필름과, 상기 생체적합성 필름에 부착된 신축성 및 연성 전자소자를 포함하는 웨어러블 전자 기기를 제공를 제공함으로써 달성될 수 있다.The basic object of the present invention described above can be achieved by providing a wearable electronic device comprising a biocompatible film attachable to the skin and stretchable and flexible electronic elements attached to the biocompatible film.
본 발명의 웨어러블 전자 기기에 있어서, 상기 생체적합성 필름은 하이드로콜로이드 점착제가 도포된 폴리우레탄 필름일 수 있다.In the wearable electronic device of the present invention, the biocompatible film may be a polyurethane film coated with a hydrocolloid adhesive.
또한, 상기 생체적합성 필름(패치)에서 하이드로콜로이드 점착제가 도포된 면에, 약물충전된 메조기공성 실리카 나노입자 또는 생분해성 고분자 나노입자가 포함될 수 있다. 상기 메조기공성 실리카 나노입자 또는 생분해성 고분자 나노입자에 충전된 약물이 방출되면서, 피부를 통해 인체에 흡수될 수 있다.In addition, the surface of the biocompatible film (patch) is coated with a hydrocolloid adhesive, drug-filled mesoporous silica nanoparticles or biodegradable polymer nanoparticles may be included. While the drug filled in the mesoporous silica nanoparticles or biodegradable polymer nanoparticles is released, it can be absorbed by the human body through the skin.
상기 전자소자는 메모리 소자, 히터, 트랜지스터, 온도 센서, 스트레인 센서, 근전도 센서, 뇌파 센서 또는 이를 포함하는 집적 소자일 수 있지만, 이에 제한되지 아니한다.The electronic device may be a memory device, a heater, a transistor, a temperature sensor, a strain sensor, an EMG sensor, an EEG sensor, or an integrated device including the same, but is not limited thereto.
도 1은 패치 형태의 종합적인 건강진단/분석/약물전달 시스템을 나타내는 도표이고, 행동 장애(movement disorder)의 경우에서, 패치 위에 구현된 전자 기기들을 활용하는 방법을 예시한다. 상기 패치 형태의 전자기기를 착용한 사람에게 행동 장애가 나타나면, 이는 패치 위의 스트레인 게이지(strain guage)에 의해 측정되고, 상기 측정된 데이터들은 메모리(Wearable RRAM)에 저장되게 되며, 상기 저장된 데이터를 분석하여(Pattern analysis) 피드백 약물 치료를 위한 히터를 가동시키고(Feedback thermal actuation), 약물충전된 메조기공성 실리카 나노입자 또는 생분해성 고분자 나노입자를 통해 약물 전달이 이루어지게 된다(Drug delivery).FIG. 1 is a diagram showing a comprehensive health diagnosis / analysis / drug delivery system in the form of a patch and illustrates the use of electronic devices implemented on a patch in the case of a movement disorder. When a person wearing the patch-type electronic device exhibits a behavioral disorder, it is measured by a strain guage on the patch, and the measured data are stored in a wearable RRAM, and the stored data is analyzed. Pattern analysis enables a heater for feedback drug treatment (Feedback thermal actuation) and drug delivery through drug-filled mesoporous silica nanoparticles or biodegradable polymeric nanoparticles (Drug delivery).
상기 메모리 소자는 디램, 플래시 메모리 또는 스핀-토크-전달 램과 같은 능동 메모리 소자이거나, 저항 램, 상변화 램 또는 강유전체 램과 같은 수동 메모리 소자일 수 있다.The memory device may be an active memory device such as a DRAM, a flash memory, or a spin-torque-transfer RAM, or a passive memory device such as a resistive RAM, a phase change RAM, or a ferroelectric RAM.
본 발명의 웨어러블 전자 기기에 포함되는 상기 신축성 및 연성 전자소자는, 탄성 기재; 상기 탄성 기재에 인접하여 형성된 제1 패턴화된 고분자 층; 상기 패턴화된 고분자 층에 인접하여 형성된 전자 소자; 상기 메모리소자에 인접하여 형성된 제2 패턴화된 고분자 층을 포함하고, 상기 제1 패턴화된 고분자 층 및 제2 패턴화된 고분자 층에 인접한 상기 메모리소자의 제1 전극 및 제2 전극 각각이 패턴화된 것일 수 있다.The stretchable and flexible electronic device included in the wearable electronic device of the present invention includes an elastic substrate; A first patterned polymer layer formed adjacent said elastic substrate; An electronic device formed adjacent the patterned polymer layer; And a second patterned polymer layer formed adjacent to the memory device, wherein each of the first electrode and the second electrode of the memory device adjacent to the first patterned polymer layer and the second patterned polymer layer is patterned. It may be ized.
본 명세서에서 "신축성 및 연성 전자소자"란 신장(stretching), 압축(compressing), 굽힘(bending), 비틀림(twisting)등의 변형에도 안정한 구조와 작동을 보이는 전자 소자를 의미한다.As used herein, the term “flexible and flexible electronic device” refers to an electronic device that exhibits a stable structure and operation even in deformation such as stretching, compression, bending, twisting, and the like.
상기 탄성 기재는 폴리디메틸실록산(PDMS), 폴리우레탄, 스티렌-부타디엔-스티렌(SBS), 에폭시 수지 또는 페놀 수지일 수 있다.The elastic substrate may be polydimethylsiloxane (PDMS), polyurethane, styrene-butadiene-styrene (SBS), epoxy resin or phenolic resin.
상기 제1 패턴화된 고분자 층 또는 상기 제2 패턴화된 고분자 층이 폴리이미드, 벤조사이클로부텐 또는 SU-8으로부터 선택될 수 있다. 본 명세서에서 "SU-8"이란 에폭시계 네가티브 포토레지스트(epoxy-based negative photoresist)를 지칭한다.The first patterned polymer layer or the second patterned polymer layer may be selected from polyimide, benzocyclobutene or SU-8. As used herein, "SU-8" refers to an epoxy-based negative photoresist.
상기 제1 패턴화된 고분자 층, 상기 제2 패턴화된 고분자 층 및 상기 제1 패턴화된 전극 및 제2 패턴화된 전극이 구불구불한 형태(serpentine)로 패턴화된 것일 수 있다.The first patterned polymer layer, the second patterned polymer layer, and the first patterned electrode and the second patterned electrode may be patterned in serpentine.
본 발명의 신축성 및 연성 전자소자에 포함되는 상기 전자 소자는 능동 메모리 소자 또는 수동 메모리 소자와 같은 메모리 소자일 수 있다. 상기 능동 메모리 소자는 디램(DRAM), 플래시 메모리(Flash memory), 스핀-토크-전달 램(Spin-torque-transfer RAM (STT-RAM)) 등일 수 있고, 상기 수동 메모리 소자는 저항 램(Resistance RAM (RRAM)), 상변화 램(Phase Change RAM (PCRAM)), 강유전체 램(Ferroelectric RAM (FERAM)) 등일 수 있다.The electronic device included in the flexible and flexible electronic device of the present invention may be a memory device such as an active memory device or a passive memory device. The active memory device may be a DRAM, a flash memory, a spin-torque-transfer RAM (STT-RAM), or the like, and the passive memory device may be a resistance RAM. (RRAM)), Phase Change RAM (PCRAM), Ferroelectric RAM (FERAM), and the like.
특히, 본 발명의 신축성 및 연성 전자소자에 포함되는 상기 전자 소자는 비휘발성 저항 메모리 소자일 수 있다. 상기 비휘발성 저항 메모리 소자는, 제1 패턴화된 전극; 상기 제1 전극에 인접하여 형성된 제1 금속산화물로 이루어진 부도체 층; 상기 제1 금속산화물 부도체 층에 인접하여 형성된 금속 나노입자 층; 상기 금속 나노입자 층에 인접하여 형성된 제2 금속산화물로 이루어진 부도체 층; 및 상기 제2 금속산화물 층에 인접하여 형성된 제2 패턴화된 전극을 포함할 수 있다.In particular, the electronic device included in the stretchable and flexible electronic device of the present invention may be a nonvolatile resistive memory device. The nonvolatile resistive memory device includes: a first patterned electrode; An insulator layer made of a first metal oxide formed adjacent to the first electrode; A metal nanoparticle layer formed adjacent to the first metal oxide insulator layer; An insulator layer made of a second metal oxide formed adjacent to the metal nanoparticle layer; And a second patterned electrode formed adjacent to the second metal oxide layer.
상기 비휘발성 저항 메모리 소자에 있어서, 상기 제1 전극은 Al, Cu, Ag, Au, Pt, TiN, ITO, TaN, W, Mg, Zn 또는 Fe로부터 선택될 수 있다.In the nonvolatile resistive memory device, the first electrode may be selected from Al, Cu, Ag, Au, Pt, TiN, ITO, TaN, W, Mg, Zn, or Fe.
*또한, 상기 제1 금속산화물은 이산화티타늄, 산화탄탈륨, 산화바나듐, 산화몰리브데늄, 산화알루미늄, 산화코발트, 산화아연, 산화마그네슘, 산화지르코늄 또는 산화하프늄으로부터 선택될 수 있다. 상기 제1 금속산화물 부도체 층의 두께는 5 nm 내지 200 nm일 수 있다.In addition, the first metal oxide may be selected from titanium dioxide, tantalum oxide, vanadium oxide, molybdenum oxide, aluminum oxide, cobalt oxide, zinc oxide, magnesium oxide, zirconium oxide, or hafnium oxide. The thickness of the first metal oxide insulator layer may be 5 nm to 200 nm.
또한, 상기 금속 나노입자는 Au, Pt 또는 Ag일 수 있고, 상기 금속 나노입자의 크기는 2 nm 내지 100 nm일 수 있다. 상기 금속산화물 나노입자 층은, 나노입자들의 랭뮤어-블로젯 조립, 레이어-바이-레이어 조립 또는 스핀코팅 조립 공정에 의해 형성될 수 있다. 더욱이, 상기 금속산화물 나노입자 층의 개수는 1층 내지 10층 까지 가능하고, 요구되는 전력에 맞게 조절될 수 있다. 보다 바람직하게는, 상기 금속산화물 나노입자 층의 개수는 3층일 수 있다.In addition, the metal nanoparticles may be Au, Pt or Ag, the size of the metal nanoparticles may be 2 nm to 100 nm. The metal oxide nanoparticle layer may be formed by a Langmuir-blojet assembly, a layer-by-layer assembly, or a spin coating assembly process of nanoparticles. In addition, the number of the metal oxide nanoparticle layers can be from 1 to 10 layers, and can be adjusted to the required power. More preferably, the number of metal oxide nanoparticle layers may be three layers.
본 명세서에서 "랭뮤어-블로젯 조립"이란, 고체 기판을 액체에 담근 후 꺼내어 하나 이상의 나노입자 단층(monolayer)을 상기 액체의 부차상(subphase)로부터 상기 고체 기판 위로 옮겨서 2차원의 나노입자 층을 형성시키는 것을 의미한다.As used herein, "langmuir-blojet assembly" refers to a two-dimensional layer of nanoparticles by dipping a solid substrate into a liquid and then removing and transferring one or more nanoparticle monolayers from the subphase of the liquid onto the solid substrate. It means to form.
본 명세서에서 "자기 조립"이란, 어떤 성분으로 이루어진 무질서계가 상기 성분들 간의 특정한 국소적 상호작용의 결과로서 조직화된 구조 또는 패턴을 형성하는 과정을 의미한다.As used herein, "self-assembly" refers to the process by which a disordered system of components forms an organized structure or pattern as a result of certain local interactions between the components.
상기 비휘발성 저항 메모리 소자의 상기 제2 금속산화물은 이산화티타늄, 산화탄탈륨, 산화바나듐, 산화몰리브데늄, 산화알루미늄, 산화코발트, 산화아연, 산화마그네슘, 산화지르코늄 또는 산화하프늄으로부터 선택될 수 있다. 상기 제2 금속산화물 부도체 층의 두께가 5 nm 내지 200 nm일 수 있다.The second metal oxide of the nonvolatile memory device may be selected from titanium dioxide, tantalum oxide, vanadium oxide, molybdenum oxide, aluminum oxide, cobalt oxide, zinc oxide, magnesium oxide, zirconium oxide, or hafnium oxide. The thickness of the second metal oxide insulator layer may be 5 nm to 200 nm.
또한, 상기 제2 패턴화된 전극은 Al, Cu, Ag, Au, Pt, TiN, ITO, TaN, W, Mg, Zn 또는 Fe로부터 선택될 수 있다.In addition, the second patterned electrode may be selected from Al, Cu, Ag, Au, Pt, TiN, ITO, TaN, W, Mg, Zn or Fe.
본 발명의 하나의 실시 태양에 있어서, 도 2a 및 도 2b는, 단결정 실리콘 나노멤브레인(약 80 nm) 스트레인 센서, 온도 센서, TiO2 나노멤브레인(약 66 nm) RRAM 어레이, 및 전기저항성 히터(electroresistive heater)를 포함하는, 웨어러블 전자 기기를 보여 준다. 이러한 센서 및 메모리의 다기능성 어레이는 탄성 하이드로콜로이드 패치(Derma-Touch, Kwang-Dong Pharmaceutical, Korea) 위로 전사인쇄된다. 굽힘유래 스트레인(bending-induced strain)을 최소화하기 위해, 동일한 폴리이미드 층(약 1.2 μm)들 사이에 금 나노입자를 함유하는 스위칭 TiO2 나노멤브레인 층을 형성시켜 중성역학층(neutral mechanical plane)(도 2a의 상부 좌측) 위에 위치되게 한다. 수십 나노미터 크기의 무기 활성층의 두께 조절에 의해 추가로 굽힘 강도(flexural rigidity) 및 유도된 스트레인(induced strain)을 감소시킨다. 치료약으로 충전된 메조기공성 실리카 나노입자를 상기 피부용 패치의 하이드로콜로이드 면에 전사인쇄한다(도 2a의 하부 중간). 매우 얇은 구불구불한 도선 및 낮은 모듈러스의 하이드로콜로이드가 함께 피부와의 기계적인 접촉을 좋게 한다. 도 2b의 삽입도는 구불구불한 네트워크(serpentine network) 내의 10×10 RRAM 어레이를 확대한 것이고, 이는 아날로그 출력을 전송하는 센서와 통합되어 있다. 메조기공성 실리카 나노입자에 충전된 약물은 진피로 확산되고, 히터에 의해 조절되는 하이드로콜로이드 탄성체의 온도에 의해 확산속도가 제어된다. 온도 센서는 그 자리에서 온도 피드백을 제공함으로써 피부 화상에 대해 경고한다.2A and 2B show a single crystal silicon nanomembrane (about 80 nm) strain sensor, a temperature sensor, a TiO 2 nanomembrane (about 66 nm) RRAM array, and an electroresistive heater. shows a wearable electronic device including a heater. This versatile array of sensors and memories is transcribed onto an elastic hydrocolloid patch (Derma-Touch, Kwang-Dong Pharmaceutical, Korea). To minimize bending-induced strain, a switching layer of TiO 2 nanomembrane containing gold nanoparticles is formed between the same polyimide layers (about 1.2 μm) to form a neutral mechanical plane ( Above the upper left side of FIG. 2A). Further control of the thickness of the inorganic active layer on the order of tens of nanometers further reduces flexural rigidity and induced strain. The mesoporous silica nanoparticles filled with the therapeutic drug are transcribed onto the hydrocolloid side of the dermal patch (lower middle in FIG. 2A). Very thin twisty wires and low modulus hydrocolloids together provide good mechanical contact with the skin. The inset of FIG. 2B is an enlargement of a 10 × 10 RRAM array in a serpentine network, which is integrated with a sensor transmitting an analog output. The drug filled in the mesoporous silica nanoparticles diffuses into the dermis, and the diffusion rate is controlled by the temperature of the hydrocolloid elastomer controlled by the heater. The temperature sensor warns of skin burns by providing temperature feedback on the spot.
본 발명의 다른 목적은 신축성 및 연성 전자소자를 피부에 접착가능한 생체적합성 필름에 부착하는 단계를 포함하는, 웨어러블 전자 기기 제조 방법을 제공함으로써 달성될 수 있다.Another object of the present invention can be achieved by providing a method for manufacturing a wearable electronic device, comprising attaching the stretchable and flexible electronic device to a biocompatible film that is adhereable to the skin.
상기 웨어러블 전자 기기 제조 방법에 있어서, 상기 생체적합성 필름은 하이드로콜로이드 점착제가 도포된 폴리우레탄 필름일 수 있다.In the method of manufacturing the wearable electronic device, the biocompatible film may be a polyurethane film coated with a hydrocolloid adhesive.
또한, 상기 생체적합성 필름에서 하이드로콜로이드 점착제가 도포된 면에, 약물충전된 메조기공성 실리카 나노입자 또는 생분해성 고분자 나노입자가 포함될 수 있다. 상기 메조기공성 실리카 나노입자에 충전된 약물이 방출되면서, 피부를 통해 인체에 흡수될 수 있다.In addition, the hydrocolloid pressure-sensitive adhesive in the biocompatible film may be included, drug-filled mesoporous silica nanoparticles or biodegradable polymer nanoparticles. While the drug filled in the mesoporous silica nanoparticles is released, it can be absorbed by the human body through the skin.
상기 전자소자는 메모리 소자, 히터, 트랜지스터, 온도 센서, 스트레인 센서, 근전도 센서, 뇌파 센서 또는 이를 포함하는 집적 소자일 수 있지만, 이에 제한되지 아니한다.The electronic device may be a memory device, a heater, a transistor, a temperature sensor, a strain sensor, an EMG sensor, an EEG sensor, or an integrated device including the same, but is not limited thereto.
상기 메모리 소자는 디램, 플래시 메모리 또는 스핀-토크-전달 램과 같은 능동 메모리 소자이거나, 저항 램, 상변화 램 또는 강유전체 램과 같은 수동 메모리 소자일 수 있다.The memory device may be an active memory device such as a DRAM, a flash memory, or a spin-torque-transfer RAM, or a passive memory device such as a resistive RAM, a phase change RAM, or a ferroelectric RAM.
본 발명의 또 다른 목적은 (i) 폴리(메틸 메타크릴레이트)와 제1 고분자를 실리콘 기판에 차례로 코팅하고 경화하는 단계; (ii) 상기 제1 고분자 층을 패턴화하는 단계; (iii) 상기 제1 패턴화된 고분자 층에 인접하여 전자 소자를 제작하는 단계; (iv) 상기 전자 소자에 인접하여 제2 패턴화된 고분자 층을 형성하는 단계; (v) 상기 실리콘 기판 및 상기 폴리(메틸 메타크릴레이트)를 제거하여 상기 제1 고분자와 상기 제2 고분자로 캡슐레이션된 소자를 얻는 단계; (vi) 상기 제1 고분자와 상기 제2 고분자로 캡슐레이션된 소자에서 폴리(메틸 메타크릴레이트)층을 제거하고 탄성 기재에 부착하는 단계; 및 (vii) 상기 탄성 기재로부터 폴리(메틸 메타크릴레이트)층이 제거된 소자를 피부에 부착가능한 생체적합성 필름에 부착하는 단계를 포함하고, 상기 제1 패턴화된 고분자 층 및 제2 패턴화된 고분자 층에 인접한 상기 전자 소자의 제1 전극 및 제2 전극 각각이 패턴화된 것인, 웨어러블 전자 기기 제조 방법을 제공함으로써 달성될 수 있다.Still another object of the present invention is to (i) coating and curing poly (methyl methacrylate) and the first polymer on a silicon substrate in turn; (ii) patterning the first polymer layer; (iii) fabricating an electronic device adjacent to the first patterned polymer layer; (iv) forming a second patterned polymer layer adjacent the electronic device; (v) removing the silicon substrate and the poly (methyl methacrylate) to obtain a device encapsulated with the first polymer and the second polymer; (vi) removing the poly (methyl methacrylate) layer from the device encapsulated with the first polymer and the second polymer and attaching to the elastic substrate; And (vii) attaching the device having the poly (methyl methacrylate) layer removed from the elastic substrate to a biocompatible film attachable to the skin, wherein the first patterned polymer layer and the second patterned It can be achieved by providing a method of manufacturing a wearable electronic device, wherein each of the first electrode and the second electrode of the electronic device adjacent to the polymer layer is patterned.
상기 웨어러블 전자 기기 제조 방법에서, 상기 탄성 기재는 폴리디메틸실록산, 폴리우레탄, 스티렌-부타디엔-스티렌(SBS), 에폭시 수지 또는 페놀 수지일 수 있다.In the method for manufacturing the wearable electronic device, the elastic substrate may be polydimethylsiloxane, polyurethane, styrene-butadiene-styrene (SBS), epoxy resin or phenol resin.
또한, 상기 제1 고분자 층 또는 상기 제2 고분자 층은 폴리이미드, 벤조사이클로부텐(benzocyclobutene (BCB)) 또는 SU-8으로부터 선택될 수 있다.In addition, the first polymer layer or the second polymer layer may be selected from polyimide, benzocyclobutene (BCB) or SU-8.
또한, 상기 전자소자는 메모리 소자, 히터, 트랜지스터, 온도 센서, 스트레인 센서, 근전도 센서, 뇌파 센서 또는 이를 포함하는 집적 소자로부터 선택될 수 있다.In addition, the electronic device may be selected from a memory device, a heater, a transistor, a temperature sensor, a strain sensor, an EMG sensor, an EEG sensor, or an integrated device including the same.
상기 제1 패턴화된 고분자 층, 상기 제2 패턴화된 고분자 층 및 상기 제1 패턴화된 전극 및 제2 패턴화된 전극이 구불구불한 형태(serpentine)로 패턴화된 것일 수 있다.The first patterned polymer layer, the second patterned polymer layer, and the first patterned electrode and the second patterned electrode may be patterned in serpentine.
상기 전자 소자는 능동 메모리 소자 또는 수동 메모리 소자와 같은 메모리 소자일 수 있다. 상기 능동 메모리 소자는 디램(DRAM), 플래시 메모리(Flash memory), 스핀-토크-전달 램(Spin-torque-transfer RAM (STT-RAM)) 등일 수 있고, 상기 수동 메모리 소자는 저항 램(Resistance RAM (RRAM)), 상변화 램(Phase Change RAM (PCRAM)), 강유전체 램(Ferroelectric RAM (FERAM)) 등일 수 있다.The electronic device may be a memory device such as an active memory device or a passive memory device. The active memory device may be a DRAM, a flash memory, a spin-torque-transfer RAM (STT-RAM), or the like, and the passive memory device may be a resistance RAM. (RRAM)), Phase Change RAM (PCRAM), Ferroelectric RAM (FERAM), and the like.
특히, 상기 전자 소자는 비휘발성 저항 메모리 소자일 수 있다. 더욱이, 상기 비휘발성 저항 메모리 소자는 제1 패턴화된 전극; 상기 제1 전극에 인접하여 형성된 제1 금속산화물로 이루어진 부도체 층; 상기 제1 금속산화물 부도체 층에 인접하여 형성된 금속 나노입자 층; 상기 금속 나노입자 층에 인접하여 형성된 제2 금속산화물로 이루어진 부도체 층; 및 상기 제2 금속산화물 층에 인접하여 형성된 제2 패턴화된 전극을 포함할 수 있다.In particular, the electronic device may be a nonvolatile resistive memory device. Further, the nonvolatile resistive memory element may include a first patterned electrode; An insulator layer made of a first metal oxide formed adjacent to the first electrode; A metal nanoparticle layer formed adjacent to the first metal oxide insulator layer; An insulator layer made of a second metal oxide formed adjacent to the metal nanoparticle layer; And a second patterned electrode formed adjacent to the second metal oxide layer.
상기 웨어러블 전자 기기 제조 방법에 있어서, 상기 생체적합성 필름은 하이드로콜로이드 점착제가 도포된 폴리우레탄 필름일 수 있다.In the method of manufacturing the wearable electronic device, the biocompatible film may be a polyurethane film coated with a hydrocolloid adhesive.
또한, 상기 생체적합성 필름에서 하이드로콜로이드 점착제가 도포된 면에, 약물충전된 메조기공성 실리카 나노입자 또는 생분해성 고분자 나노입자가 포함될 수 있다.In addition, the hydrocolloid pressure-sensitive adhesive in the biocompatible film may be included, drug-filled mesoporous silica nanoparticles or biodegradable polymer nanoparticles.
본 발명에 따라 매우 얇고 가벼운 피부용 패치 위에 통합적인 의료용 전자 기기를 구현함으로써, 일상 생활에서 불편 없이 건강 진단을 할 수 있다. 또한, 본 발명을 이용하여 약물 또는 추가적인 진료를 할 수 있는 통합 시스템을 구현할 수 있기 때문에, 일상생활에서 지속적인 관찰이 필요한 질병의 치료에 효과적으로 적용할 수 있다.According to the present invention, by implementing an integrated medical electronic device on a very thin and light skin patch, it is possible to perform a medical examination without inconvenience in daily life. In addition, since the present invention can implement an integrated system for drugs or additional treatment, it can be effectively applied to the treatment of diseases that require continuous observation in daily life.
도 1은 본 발명의 웨어러블 전자 기기에 대한 하나의 실시 태양을 보여 준다.1 illustrates one embodiment of a wearable electronic device of the present invention.
도 2는, 본 발명의 실시예 2에서 제조된 웨어러블 전자 기기에 있어서, TiO2 나노멤브레인(NM)-Au 나노입자들(NPs)-TiO2 NM 스위칭 층 및 Al 전극으로 이루어진 웨어러블 메모리 어레이(도 2a, 좌측 상부의 삽입도는 층 정보를 보여줌), 도 2a에 상응하는 웨어러블 시스템에 대한 사진을 보여 준다(도 2b).FIG. 2 is a wearable memory array including TiO 2 nanomembrane (NM) -Au nanoparticles (NPs) —TiO 2 NM switching layer and an Al electrode in a wearable electronic device manufactured in Embodiment 2 of the present invention. 2a, the top left view shows the layer information), a picture of the wearable system corresponding to FIG. 2a (FIG. 2b).
도 3a는 랭뮤어-블로젯(LB) 조립 및 스테아르산(SAM) 기능화를 설명하는 그림이고; 도 3b는 LB 조립 공정에 대한 사진들(상부)과 1층 금 나노입자 및 3층 금 나노입자에 대한 평면 TEM 사진들(하부)이며; 도 3c는 제작된 메모리 셀들에 대한 단면 TEM 사진들이고; 도 3d는 MINIM(금속-부도체-나노입자-부도체-금속)에 있어서 3층 금 나노입자의 두께를 보여주는 EDS 프로파일이다.3A is a diagram illustrating Langmuir-Blodge (LB) assembly and stearic acid (SAM) functionalization; 3b are photographs (top) for the LB assembly process and planar TEM photographs (bottom) for single layer gold nanoparticles and three layer gold nanoparticles; 3C is cross-sectional TEM photographs of fabricated memory cells; 3D is an EDS profile showing the thickness of three layer gold nanoparticles in MINIM (Metal-Insulator-Nanoparticle-Insulator-Metal).
도 4a는, 본 발명의 실시예 3에서, PDMS에 부착되고 폴리이미드로 캡슐레이션된 MIM(금속-부도체-금속), MISIM(금속-부도체-자기 조립 단층(SAM)-부도체-금속) 및 MINIM 구조들의 양극성 저항 스위칭(bipolar resistive switching)의 I-V 특성을 보여 주고; 도 4b는 금 나노입자-유도 트랩(Au NP-induced trap)에 기인한 저전류 저항 스위칭(low current resistive switching)을 설명하는 다이아그램이며; 도 4c는 PDMS에 부착되고 폴리이미드로 캡슐레이션된 MIM 및 MINIM에서의 I-V 곡선이며; 도 4d는 PDMS에 부착되고 폴리이미드로 캡슐레이션된 MIM 및 MINIM에서 약 100 μA 이하의 컴플라이언스 전류에서의 I-V 특성을 나타내고; 도 4e는 PDMS에 부착되고 폴리이미드로 캡슐레이션된 MINIM의 신뢰도 시험(내구성(좌측) 및 보유율(retention)(우측)) 결과(-0.5 V에서 저항값 측정)이며; 도 4f는 PDMS에 부착되고 폴리이미드로 캡슐레이션된 MIM과 MINIM에서의 누적 확률(cumulative probability)이고; 도 4g는 PDMS에 부착되고 폴리이미드로 캡슐레이션된 MIM(좌측)과 MINIM(우측)에서의 MLC(다층 셀) 작동을 보여 준다.4A shows, in Example 3 of the present invention, MIM (Metal-Insulator-Metal), MISIM (Metal-Insulator-Self-Assembly Monolayer (SAM) -Insulator-Metal) and MINIM attached to PDMS and encapsulated with polyimide Showing the IV characteristics of the bipolar resistive switching of the structures; 4B is a diagram illustrating low current resistive switching due to Au nanoparticle-induced traps; 4C is an I-V curve in MIM and MINIM attached to PDMS and encapsulated with polyimide; 4D shows I-V characteristics at compliance currents up to about 100 μA in MIM and MINIM attached to PDMS and encapsulated with polyimide; 4E is a result of reliability test (durability (left) and retention (right)) of MINIM attached to PDMS and encapsulated with polyimide (resistance measurement at -0.5 V); 4F is the cumulative probability in MIM and MINIM attached to PDMS and encapsulated with polyimide; 4G shows MLC (multilayer cell) operation in MIM (left) and MINIM (right) attached to PDMS and encapsulated with polyimide.
도 5는, 본 발명의 실시예 4에서, 신축성 및 연성 메모리 소자가 약 25% 가량 신장된 상태에서의 현미경 사진(도 5a), 각각 다른 변형(strain)값(3% - 25%)으로 신장된 신축성 및 연성 메모리 소자의 I-V 특성(도 5b), 및 굽혀진 상태(도 5c 좌측)와 비틀린 상태(도 5c 우측)에서의 신축성 및 연성 저항 메모리 배열을 보여 주며, 손목 위의 피부-적합성 메모리 장치(도 5d의 좌측에서 첫번째 프레임), 변형이 없는 상태(도 5d의 좌측에서 두번째 프레임), 압축 상태도(5d의 좌측에서 세번째 프레임) 및 인장 상태(도 5d의 좌측에서 마지막 프레임)에서의 확대 사진을 보여 주고, 신장된 RRAM에서의 변형 분포에 대한 시뮬레이션 결과(도 5e)를 보여 주며, 1,000회의 신장 싸이클(약 30%) 동안 -0.5 V에서의 저항(HRS 및 LRS) 변화를 보여 주고(도 5f), PBS 내에서의 방수성(도 5g 좌측) 및 읽기 전류(도 5g 우측)를 보여 준다.FIG. 5 is a micrograph (FIG. 5A) in which stretch and soft memory devices are stretched by about 25% in Example 4 of the present invention, each with a different strain value (3% -25%). Skin-compatible memory on the wrist, showing the IV characteristics of the stretchable and flexible memory device (FIG. 5B), and the stretch and soft resistance memory arrangement in the bent state (FIG. 5C left) and in the twisted state (FIG. 5C right). In the device (first frame from the left in FIG. 5D), without deformation (second frame from the left in FIG. 5D), in the compressed state diagram (the third frame from the left in 5D) and in the tension state (last frame from the left in FIG. 5D). Show magnification, show simulation results for strain distribution in stretched RRAM (FIG. 5E), show change in resistance (HRS and LRS) at -0.5 V over 1,000 stretch cycles (about 30%). (FIG. 5F), waterproof in PBS (left of FIG. 5G) and read It illustrates the flow (Fig. 5g right).
도 6a는 약물충전된 메조기공성 실리카 나노입자, 센서 및 메모리 소자의 전사인쇄(transfer printing) 공정을 나타내는 개략도이고, 도 6b는 상기 전사인쇄 공정에서 사용되는 구조화된 PDMS 스탬프에 대한 사진이다.6A is a schematic diagram illustrating a transfer printing process of drug-filled mesoporous silica nanoparticles, a sensor and a memory device, and FIG. 6B is a photograph of a structured PDMS stamp used in the transfer printing process.
도 7a는 실리콘 나노멤브레인 센서의 사진(삽입도는 붕소로 도핑된 실리콘 나노멤브레인을 보여 준다)이고, 도 7b는 게이지 인자를 계산하기 위한 저항 대 변형 플롯에서의 변화량(%)이며, 도 7c는 인장 및 압축 상태에서 손목 위에서의 변형 측정 사진이고, 도 7d는 0.8, 0.4, 0.6 및 1 Hz의 주파수에서 모사된 손 떨림에 의해 유발된 실리콘 변형 게이지에서의 시간에 따른 저항 변화(상부), 메모리 셀의 MLC 작동(중간) 및 MINIM 메모리 셀에 기록된 데이터(하부)이다.FIG. 7A is a photograph of a silicon nanomembrane sensor (insertion shows the silicon nanomembrane doped with boron), FIG. 7B is the percent change in resistance versus strain plot to calculate the gauge factor, and FIG. 7C Deformation measurement picture on the wrist in tension and compression state, FIG. 7D shows resistance change over time (top), memory in silicon strain gauge caused by hand shake simulated at frequencies of 0.8, 0.4, 0.6 and 1 Hz The MLC operation of the cell (middle) and the data written to the MINIM memory cell (bottom).
도 8a는 열적 작용에 의해 하이드로콜로이드 및 메조기공성 실리카 나노입자로부터 제어된 경피 약물 전달에 대한 개략도이고, 도 8b는 적외선 카메라를 사용하여 피부 패치 상의 히터의 온도 분포 측정을 보여 주며, 도 8c는 상기 패치 상의 히터와 상기 패치와 인간 피부 간의 계면에서의 3차원 열적 프로파일을 보여 주고, 도 8d는 메조기공성 실리카 나노입자의 고해상도 카메라 사진(삽입도는 현미경 사진)이고, 도 8e는 메조기공성 실리카 나노입자의 TEM 사진이며, 도 8f는 77K에서 N2의 흡착 및 탈착 측정으로부터 계산된 표면적을 보여 주고(삽입도는 Barrett-Joyner-Halenda (BJH) 방법을 사용하여 계산한 메조기공성 실리카 나노입자의 기공 부피를 보여줌), 도 8g는 상기 히터 표면 위(적색), 상기 피부와 패치 간의 계면(오렌지색) 및 가열이 없는 경우의 상기 계면(흑색) 상에서 시간의 함수로서의 최대 온도를 보여 주며, 우측의 y축은 온도 증가에 따라 확산계수가 지수적으로 증가하는 것을 보여 주고(도 8g의 청색), 도 8h는 온도 센서의 특성 곡선이며, 도 8i는 25℃(상부) 및 40℃(하부)에서 5분간(좌측) 및 60분간(우측) 로다민 B 형광염료를 확산시킨 후의 돼지 피부의 단면에 대한 형광 사진이다.FIG. 8A is a schematic diagram of controlled transdermal drug delivery from hydrocolloid and mesoporous silica nanoparticles by thermal action, FIG. 8B shows measurement of the temperature distribution of the heater on the skin patch using an infrared camera, FIG. 8C 3D thermal profile at the interface between the heater on the patch and the patch and human skin, FIG. 8D is a high resolution camera photograph (insertion micrograph) of mesoporous silica nanoparticles, and FIG. 8E is mesoporous TEM picture of silica nanoparticles, FIG. 8F shows the surface area calculated from the adsorption and desorption measurements of N2 at 77K (insertivity calculated using the Barrett-Joyner-Halenda (BJH) method, mesoporous silica nanoparticles 8g shows the above surface of the heater (red), the interface between the skin and the patch (orange) and the absence of heating. (Black) shows the maximum temperature as a function of time, the y-axis on the right shows that the diffusion coefficient increases exponentially with increasing temperature (blue in FIG. 8g), and FIG. 8h is the characteristic curve of the temperature sensor, FIG. 8I is a fluorescence photograph of the cross section of porcine skin after diffusion of rhodamine B fluorescent dye at 25 ° C. (top) and 40 ° C. (bottom) for 5 minutes (left) and 60 minutes (right).
도 9는 RRAM 메모리 모듈이 피부 위에서 동작할 때, 땀에 의한 부식이나 성능저하에 대한 패키징 테스트 결과이다. 도 9의 좌측 사진은 PDMS 기판 위에 있는 RRAM 어레이에 PBS(Phosphate Buffered Saline) 용액을 가했을 때 메모리 동작이 안정적으로 되는지 평가하는 내용을 나타낸다. 도 9의 우측 그림의 데이터는 -0.5V로 프로그램된 메모리가 저장이 잘 되는지 여부를 보여준다. 60초 동안 데이터가 손실되지 않으므로 RRAM 메모리 어레이 패키징이 잘 되어 있음을 보여준다.FIG. 9 is a packaging test result for corrosion or degradation due to sweat when the RRAM memory module operates on the skin. The left photo of FIG. 9 shows evaluation of whether memory operation is stable when Phosphate Buffered Saline (PBS) solution is applied to an RRAM array on a PDMS substrate. The data in the right figure of FIG. 9 shows whether the memory programmed at -0.5V is well stored. No data is lost for 60 seconds, demonstrating good RRAM memory array packaging.
이하, 다음의 실시예 또는 도면을 들어 본 발명을 보다 구체적으로 설명하고자 한다. 그러나 다음의 실시예 또는 도면에 대한 설명은 본 발명의 구체적인 실시 태양을 특정하여 설명하고자 하는 것일 뿐이며, 본 발명의 권리 범위를 이들에 기재된 내용으로 한정하거나 제한해석하고자 의도하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples or drawings. However, the following description of the embodiments or drawings is only intended to specifically describe the specific embodiments of the present invention, it is not intended to limit or limit the scope of the present invention to the contents described therein.
실시예 1. 금 나노입자의 합성Example 1 Synthesis of Gold Nanoparticles
0.4 g의 HAuCl4·3H2O(99.9%, Strem, USA), 올레일아민(90%, Acros, USA) 및 30 mL의 1-옥타데센(90%, Sigma Aldrich, USA)을 실온에서 50 mL 유리 바이알 내에서 혼합하였다. 상기 바이알을 오일 배쓰에 두고 90℃까지 가열하였다. 상기 용액을 2시간 동안 가열하였고, 이후 나노입자들이 침전되었으며 에탄올로 2회 세척한 후, 원심분리하였다. 침전된 나노입자를 5 mL의 클로로포름에 재분산시켰다.0.4 g of HAuCl 4 .3H 2 O (99.9%, Strem, USA), oleylamine (90%, Acros, USA) and 30 mL of 1-octadecene (90%, Sigma Aldrich, USA) at room temperature 50 Mix in mL glass vials. The vial was placed in an oil bath and heated to 90 ° C. The solution was heated for 2 hours, after which nanoparticles were precipitated and washed twice with ethanol and then centrifuged. The precipitated nanoparticles were redispersed in 5 mL of chloroform.
실시예 2. 비휘발성 저항 변화 메모리 소자를 포함하는 웨어러블 전자 기기의 제작 Example 2 Fabrication of Wearable Electronic Device Including Nonvolatile Resistance Change Memory Device
폴리(메틸 메타크릴레이트)(PMMA)(A11, Microchem, USA; 약 1 μm, 3000 rpm에서 30초간 스핀코팅됨) 및 폴리이미드(PI)(polyamic acid, Sigma Aldrich, USA; 약 1.2 μm, 4000 rpm에서 60초간 스핀코팅됨)의 전구체 용액의 박층들을 실리콘 핸들 웨이퍼(Si handle wafer)(test grade, 4science, Korea) 상에 스핀코팅하였다. 상기 PMMA와 PI를 200℃에서 2시간 동안 경화시킨 후, 제1 전극으로서 사용되는 알루미늄을 열증착법을 통해 증착시켰고(350 nm 두께), 포토리소그래피에 의해 패턴화시켰으며 습식 에칭을 수행하였다. 이후에, 먼저 제1 TiO2 나노멤브레인(nanomembrane)(두께 66 nm)을 RF 마그네트론 스퍼터링(RF magnetron sputtering)을 하였다(기저 압력 5×10-6 Torr, 실온, 증착 압력 5 mTorr, 20 sccm, RF 전력 150 W)(제1 금속산화물 부도체 층).Poly (methyl methacrylate) (PMMA) (A11, Microchem, USA; spin coated at about 1 μm for 30 seconds at 3000 rpm) and polyimide (PI) (polyamic acid, Sigma Aldrich, USA; about 1.2 μm, 4000 Thin layers of precursor solution of spin coated at rpm for 60 seconds were spin coated onto a Si handle wafer (test grade, 4science, Korea). After the PMMA and PI were cured at 200 ° C. for 2 hours, aluminum used as the first electrode was deposited by thermal evaporation (350 nm thick), patterned by photolithography and wet etching was performed. Thereafter, first TiO 2 nanomembrane (thickness 66 nm) was subjected to RF magnetron sputtering (base pressure 5 × 10 −6 Torr, room temperature, deposition pressure 5 mTorr, 20 sccm, RF Power 150 W) (first metal oxide insulator layer).
다음과 같이, 실시예 1에서 합성한 금 나노입자를 랭뮤어-블로젯 조립 공정(LB assembly process)을 통해 상기 제1 TiO2 나노멤브레인 상에 조립하였다(도 3a). 먼저, 올레일아민으로 캐핑된 금 나노입자를 클로로포름에 분산시켰다(50 mg/mL). 상기 분산액을 LB 수조(LB trough; IUD 1000, KSV instrument, Finland)의 물 하위상(water sub-phase) 위에 적가하였다. 용매를 증발시킨 후, 표면층을 모바일 배리어(mobile barrier)를 사용(5 mm/min)하여 압축하였다. 표면 압력이 30 mN/m이 된 후에, 기판을 들어올리고 1 mm/min의 속도로 담금으로써 상기 금 나노입자 층을 상기 기판 위에 조립하였다.As follows, the gold nanoparticles synthesized in Example 1 were assembled on the first TiO 2 nanomembrane through a Langmuir-Bloze assembly process (FIG. 3A). First, gold nanoparticles capped with oleylamine were dispersed in chloroform (50 mg / mL). The dispersion was added dropwise onto a water sub-phase of an LB trough (LB trough; IUD 1000, KSV instrument, Finland). After evaporating the solvent, the surface layer was compressed using a mobile barrier (5 mm / min). After the surface pressure reached 30 mN / m, the gold nanoparticle layer was assembled on the substrate by lifting the substrate and soaking at a rate of 1 mm / min.
도 3b에는 LB 조립 공정에 대한 사진들(상부)과 1층의 금 나노입자 및 3층의 금 나노입자에 대한 평면 TEM 사진들(하부)이 나타나 있다. 조립 층의 수는 담금/꺼냄 사이클(dipping/pulling cycle)의 수로 조절할 수 있다. 금 나노입자 층 대신에, 자기 조립 단층(self-assembled monolayer; 스테아르산)으로 상기 제1 TiO2 나노멤브레인을 코팅하여 메모리 성능에 대한 리간드 효과를 확인하였다(도 3a). i) 금속-부도체(insulator)-자기 조립 단층(SAM)-부도체-금속(MISIM), ii) 금 나노입자 1층(약 12 nm)을 포함하는 금속-부도체-나노입자(NP)-부도체-금속(MINIM), iii) 조밀한(closely-packed) 금 나노입자 3층(약 26 nm)을 포함하는 MINIM이 도 3c에 나타나 있다. 단면에 대한 에너지 분산형 X-선 분광 프로파일(energy dispersive X-ray specroscopy profile)을 통해 상기 3층의 금 나노입자 층의 두께를 확인하였다(도 3d). 상기 LB 조립법에서 조밀한 단층 조립(closely-packed monolayer assembly)은 여러 개의 단층들의 정확한 두께 조절뿐만 아니라, 소자의 균일성(device uniformity)에 중요한 역할을 한다.3B shows photographs (top) of the LB assembly process and planar TEM photographs (bottom) of one layer of gold nanoparticles and three layers of gold nanoparticles. The number of assembly layers can be controlled by the number of dipping / pulling cycles. Instead of a gold nanoparticle layer, the first TiO 2 nanomembrane was coated with a self-assembled monolayer (stearic acid) to confirm the ligand effect on memory performance (FIG. 3A). i) a metal-insulator-self-assembled monolayer (SAM) -insulator-metal (MISIM), ii) a metal-insulator-nanoparticle (NP) -insulator- comprising a layer of gold nanoparticles (about 12 nm) Metal (MINIM), iii) MINIM comprising three layers of closely-packed gold nanoparticles (about 26 nm) is shown in FIG. 3C. The thickness of the gold nanoparticle layer of the three layers was confirmed through an energy dispersive X-ray specroscopy profile for the cross section (FIG. 3D). In the LB assembly method, closely-packed monolayer assembly plays an important role in device uniformity as well as accurate thickness control of several monolayers.
이후, 상기 제1 TiO2 나노멤브레인의 증착과 동일한 방법을 사용하여, 상기 금 나노입자 층 위에 제2 TiO2 나노멤브레인(제2 금속산화물 부도체 층)을 증착시켰다(66 nm 두께). 알루미늄 제2 전극을 열증착법에 의해 상기 제2 TiO2 나노멤브레인에 인접하여 증착하였다. 상기 제2 전극층을 포토리소그래피 방법에 의해 패턴화하여, 구불구불한 패턴의(serpentine-patterned) 저항 메모리를 제작하였다. 다음에, 상기 PI 전구체를 스핀코팅하여 상기 중성 역학층(neutral mechanical plane) 부근에 상기 활성 층을 형성하였고, O2 및 SF6를 사용하는 반응성 이온 에칭(reactive ion etching (RIE)) 공정(O2 유량 100 sccm, 체임버 압력 100 mTorr, 150 W RF 전력, 5분; SF6 유량 50 sccm, 체임버 압력 55 mTorr, 250 W RF 전력, 4분 30초)을 통해 전체 소자 구조를 형성하였다.Then, using the same method as the deposition of the TiO 2 nano-membrane of claim 1, it was deposited to a second TiO 2 nano-membrane (second non-conductive metal oxide layer) on the gold nanoparticle layer (66 nm thick). An aluminum second electrode was deposited adjacent to the second TiO 2 nanomembrane by thermal deposition. The second electrode layer was patterned by a photolithography method to produce a serpentine-patterned resistance memory. Next, the PI precursor was spin-coated to form the active layer near the neutral mechanical plane, and a reactive ion etching (RIE) process using O 2 and SF 6 was performed. 2 flow rate 100 sccm, chamber pressure 100 mTorr, 150 W RF power, 5 minutes; SF 6 flow rate 50 sccm, chamber pressure 55 mTorr, 250 W RF power, 4 minutes 30 seconds) to form the entire device structure.
상기 메모리 소자 제작 후, 실리콘 웨이퍼 상의 전체 소자를 끓는 아세톤에 담갔다. 상기 아세톤은 PMMA 층을 제거하여 상기 PI로 캡슐레이션된 소자를 상기 실리콘 핸들 웨이퍼로부터 분리하였다. 이후, 상기 메모리 소자를 수용성 테이프(3M, USA)를 사용하여 분리한 후, 인쇄된 PDMS(polydimethyl siloxane) 위로 옮긴 후, 다시 피부용 패치(Derma-Touch, Kwang Dong Pharmaceutical Co., Ltd., Korea) 위로 옮겼다. 파라미터 분석기(parameter analyzer: B1500A, Agilent, USA)를 사용하여 전기적 측정을 수행하였다.After fabrication of the memory device, the entire device on a silicon wafer was immersed in boiling acetone. The acetone removed the PMMA layer to separate the PI encapsulated device from the silicon handle wafer. Thereafter, the memory device was separated using a water-soluble tape (3M, USA), and then transferred onto a printed polydimethyl siloxane (PDMS), and then again a skin patch (Derma-Touch, Kwang Dong Pharmaceutical Co., Ltd., Korea) Moved up. Electrical measurements were performed using a parameter analyzer (B1500A, Agilent, USA).
실시예 3. 비휘발성 저항 변화 메모리 소자의 특성 평가Example 3 Characterization of Nonvolatile Resistance Change Memory Device
전기적 성능을 평가하기 위하여, 실시예 2의 방법에 따라 제조된, PDMS에 부착되고 폴리이미드로 캡슐레이션된 MIM, MISIM 및 MINIM 구조들에 대한 양극성 전류-전압(bipolar I-V) 곡선을 구했다(도 4a). 도 4a의 삽입도는 바이어스 순서를 보여 준다. 초기 상태는 고저항 상태(high-resistance state (HRS))이고, 부전압(negative voltage)("set")을 걸어 주면 저저항 상태(low-resistance state (LRS))로 전이된다. 이후, 정전압(positive voltage)("reset")에 의해 상기 구조들이 HRS로 스위칭된다. PDMS에 부착되고 폴리이미드로 캡슐레이션된 MIM 및 MISIM의 I-V 특성은 거의 동일하였고; TiO2 층 내에 하나의 금 나노입자 층을 형성시키면, 상기 MIM 구조와 비교하여, 상기 셋(set) 및 리셋(reset) 전류를 1 차수(order of magnitude) 만큼 감소시켰다. 상기 전류의 수준은 3 개의 금 나노입자 층을 포함하는 MIMIN에서 3의 차수 만큼 추가로 감소하였다. 이러한 결과는 활성 층(active layer)에서 균일한 금 나노입자의 조립이 소비 전력의 감소에 중요한 역할을 하고, 스테아르산 리간드는 전류 감소에 거의 영향을 미치지 아니한다는 점을 의미한다. 이러한 적은 전력 소비 특성은 메모리 소자의 장기간 사용에 중요한 역할을 한다.To evaluate the electrical performance, bipolar IV curves were obtained for MIM, MISIM and MINIM structures attached to PDMS and encapsulated with polyimide, prepared according to the method of Example 2 (FIG. 4A). ). 4A shows the bias order. The initial state is a high-resistance state (HRS), and transitions to a low-resistance state (LRS) by applying a negative voltage (“set”). The structures are then switched to HRS by a positive voltage ("reset"). The I-V properties of MIM and MISIM attached to PDMS and encapsulated with polyimide were nearly identical; Forming one gold nanoparticle layer in the TiO 2 layer reduced the set and reset currents by an order of magnitude compared to the MIM structure. The level of the current was further reduced by an order of three in MIMIN comprising three gold nanoparticle layers. These results indicate that the assembly of uniform gold nanoparticles in the active layer plays an important role in the reduction of power consumption, and the stearic acid ligand has little effect on the current reduction. These low power consumption characteristics play an important role in long-term use of the memory device.
도 4b는 금 나노입자-유도 트랩에 기인한 저전류 스위칭을 나타내는 다이아그램이다. 도 4c는 부전압 영역을 강조한 로그-로그 I-V 곡선이다. PDMS에 부착되고 폴리이미드로 캡슐레이션된 MINIM에서의 전도 메카니즘은 MIM의 전도 메카니즘과 유사하고, 트랩-제어 공간-전하-제한-전류(trap-controlled space-charge-limited-current (SCLC)) 이론을 따른다. 도 4d는 PDMS에 부착되고 폴리이미드로 캡슐레이션된 MIM(좌측)과 MINIM(우측)에 대하여 다른 컴플라이언스 전류에서의 I-V 곡선을 보여 준다. 100 μA 이하의 컴플라이언스 전류에서, PDMS에 부착되고 폴리이미드로 캡슐레이션된 MINIM은 PDMS에 부착되고 폴리이미드로 캡슐레이션된 MIM 및 MISIM 보다 더 좋은 온/오프 비율을 보였다. PDMS에 부착되고 폴리이미드로 캡슐레이션된 MINIM, MIM 및 MISIM의 신뢰도(내구성(endurance) 및 보유율(retention))이 각각 도 4e에 나타나 있다. 100 사이클에 걸친 연속적인 스위핑(sweeping)에서 내구성이 거의 저하(degradation)되지 아니하였고(도 4e 좌측), 실온에서 1,000초에 이르는 양호한 보유율을 확인하였다(도 4e 우측). 다중 셀(multi-level cell (MLC)) 동작은, 이산적(discrete) 저항값을 갖게 하는 이산적 컴플라이언스 전류를 갖는 단일 셀에 다중 데이터 저장이 가능함을 의미한다(도 4d). 이와 같은 다른 저항값들에 의해 단일 셀에 다중 정보를 저장할 수 있다(도 4g). -100 μA 이하의 전류값을 갖는 MLC를, PDMS에 부착되고 폴리이미드로 캡슐레이션된 MINIM에서 수행하였고, 100번 이상의 읽기 동작에서도 데이터가 보존되었다.4B is a diagram showing low current switching due to gold nanoparticle-induced traps. 4C is a log-log I-V curve highlighting the negative voltage region. The conduction mechanism in MINIM attached to PDMS and encapsulated with polyimide is similar to the conduction mechanism of MIM, and the trap-controlled space-charge-limited-current (SCLC) theory Follow. 4D shows I-V curves at different compliance currents for MIM (left) and MINIM (right) attached to PDMS and encapsulated with polyimide. At compliance currents of 100 μA or less, MINIM attached to PDMS and encapsulated with polyimide showed better on / off ratio than MIM and MISIM attached to PDMS and encapsulated with polyimide. Reliability (endurance and retention) of MINIM, MIM and MISIM attached to PDMS and encapsulated with polyimide are shown in FIG. 4E, respectively. In the continuous sweep over 100 cycles, durability showed little degradation (Figure 4E left), and a good retention rate of 1,000 seconds at room temperature was confirmed (Figure 4E right). Multi-level cell (MLC) operation means that multiple data storage is possible in a single cell with discrete compliance currents that have discrete resistance values (FIG. 4D). Such different resistance values allow multiple information to be stored in a single cell (FIG. 4G). MLCs with current values below -100 μA were performed in MINIM attached to PDMS and encapsulated with polyimide, and data was preserved in more than 100 read operations.
실시예 4. 신축성 및 연성 저항 메모리 소자의 기계적 안정성Example 4 Mechanical Stability of Flexible and Flexible Resistance Memory Devices
실시예 2에서 제조된 신축성 및 연성 저항 메모리 소자에 대한 광학현미경 사진과 신장 과정에서의 특성이 각각 도 5a와 도 5b에 나타나 있다. 상기 소자를 약 25% 가량 신장했을 때(인간의 표피의 변형 한계는 약 20%), 상기 소자는 안정한 전기작 작동을 보였다. 상기 신축성 및 연성 저항 메모리 소자는 굽힘(bending)과 비틀림(twisting)에서도 안정하였다(도 5c). 또한, 실시예 2에서 상기 신축성 및 연성 저항 메모리 소자로부터 제작된 웨어러블 전자 기기는 인간의 피부에 순응하여 변형되었다(도 5d). 도 5e는 활성 층(TiO2 나노멤브레인)의 변형 분포(strain distribution)에 대한 유한 요소 모델링(finite element modelling (FEM)) 결과를 보여 준다. 중성 역학층 위에 나노미터 두께의 멤브레인과 나노입자들을 위치시키고 구불구불한 설계(serpentine design)를 채택함으로써, 유도된 변형(induced strain)은 스위칭 층(switching layer)에서 0.1% 이하로 유지되고 상기 구불구불한 인터커넥트들(serpentine interconnects)에서는 0.05% 이하로 유지되었다. 상기 피부-적응 메모리는 1,000회의 신축 싸이클(약 30% 변형, 도 5f) 이후에도 최소한의 신호 감소를 보였다. 도 5g는 인산염완충 식염수에 담긴 상기 메모리 장치의 사진(좌측)과 현저한 전류 변화 없는 점(우측)을 보여주는데, 이는 캡슐레이션 층이 발한 흡수(perspiration uptake)를 차단할 수 있다는 점을 의미한다.Optical micrographs and stretching characteristics of the stretchable and flexible resistive memory devices manufactured in Example 2 are shown in FIGS. 5A and 5B, respectively. When the device was stretched by about 25% (the strain limit of the human epidermis was about 20%), the device showed stable electrochemical operation. The stretchable and flexible resistive memory device was stable even in bending and twisting (FIG. 5C). In addition, in Example 2, the wearable electronic device manufactured from the stretchable and flexible resistance memory device was modified in conformity with human skin (FIG. 5D). FIG. 5E shows the results of finite element modeling (FEM) on the strain distribution of the active layer (TiO 2 nanomembrane). By placing nanometer-thick membranes and nanoparticles on the neutral dynamic layer and adopting a serpentine design, the induced strain is maintained below 0.1% in the switching layer and the tortuous The serpentine interconnects remained below 0.05%. The skin-adaptive memory showed minimal signal reduction even after 1,000 stretch cycles (about 30% strain, FIG. 5F). Figure 5g shows a photograph of the memory device in phosphate buffered saline (left) and no significant current change (right), indicating that the encapsulation layer can block perspiration uptake.
실시예 5. 메조기공성(mesoporous) 실리카 나노입자의 합성Example 5 Synthesis of Mesoporous Silica Nanoparticles
NaOH(0.35 mL, 2M, 98%, Sigma-Aldrich, USA)를 50 mL의 세틸트리메틸암모늄 브로마이드(CTAB, >99%, Acros, USA) 용액(50 mL의 물에 100 mg 용해시킴)에 첨가하였다. 상기 혼합물을 70℃로 가열하고, 이후에 0.5 mL의 테트라에틸오르쏘실리케이트(TEOS, 98%, Acros, USA)를 첨가하였다. 1분 후에, 0.5 mL의 에틸 아세테이트(99.5%, Samchun, Korea)을 첨가하였고, 이렇게 얻은 혼합물을 70℃에서 30초간 교반한 후, 2시간 동안 숙성시켰다. 이렇게 얻은 침전물을 원심분리에 의해 수집하고 다량의 물과 에탄올로 세척하였다. 마지막으로, 산성 에탄올 용액 내에서 환류에 의해 상기 기공생성 주형(pore-generating template), CTAB를 제거함으로써, 메조기공성 실리카(m-silica) 나노입자를 제조하였다.NaOH (0.35 mL, 2M, 98%, Sigma-Aldrich, USA) was added to 50 mL of cetyltrimethylammonium bromide (CTAB,> 99%, Acros, USA) solution (100 mg dissolved in 50 mL of water). . The mixture was heated to 70 ° C. and then 0.5 mL of tetraethylorthosilicate (TEOS, 98%, Acros, USA) was added. After 1 minute, 0.5 mL of ethyl acetate (99.5%, Samchun, Korea) was added and the resulting mixture was stirred at 70 ° C. for 30 seconds and then aged for 2 hours. The precipitate thus obtained was collected by centrifugation and washed with a large amount of water and ethanol. Finally, mesoporous silica (m-silica) nanoparticles were prepared by removing the pore-generating template, CTAB, by reflux in acidic ethanol solution.
실시예 6. 메조기공성 실리카 나노입자에 로다민 B(Rhodamine B) 형광염료를 충전 Example 6 Rhodamine B Fluorescent Dye Stuffed with Mesoporous Silica Nanoparticles
약물 확산 모델로서, 로다민 B(≥95%, Sigma-Aldrich, USA)를 메조기공성 실리카 나노입자에 충전하였다. 로다민 B 용액(0.2 mL, 메탄올에 20 mg/mL)를 상기 메조기공성 실리카 나노입자(0.15 g)의 표면에 흡착시켰다. 상기 메조기공성 실리카 나노입자에 충전된 로다민 B를 실온에서 건조시켰다.As a drug diffusion model, rhodamine B (≧ 95%, Sigma-Aldrich, USA) was charged to mesoporous silica nanoparticles. Rhodamine B solution (0.2 mL, 20 mg / mL in methanol) was adsorbed onto the surface of the mesoporous silica nanoparticles (0.15 g). Rhodamine B packed in the mesoporous silica nanoparticles was dried at room temperature.
실시예 7. 약물충전된 메조기공성 실리카 나노입자에 전사인쇄하기 위한 구조화된 PDMS 스탬프(structured PDMS stamp)의 제작 Example 7 Fabrication of Structured PDMS Stamp for Transcription Printing on Drug-Filled Mesoporous Silica Nanoparticles
*음성 포토레지스트(negative photoresist)(SU8-25, Microchem, USA)를 미리 청소하고 O2 플라즈마로 처리된 실리콘 웨이퍼 위에 스핀코팅하였다. 상기 스핀코팅된 SU8에 포토리소그래피를 수행하여 40 μm 깊이, 600 μm 폭 및 1.46 nm 간격의 구멍(hole)을 패터닝하였다. 다음에, 상기 SU8 몰드(mold)를 150℃의 플레이트 위에서 가열된 디쉬(dish)에 놓아, 상기 몰드와 상기 실리콘 웨이퍼 간의 부착을 촉지하였다. 10:1 PDMS(Sylgard 184A: Sylgard 184B, Dow Corning, USA)를 상기 디쉬에 부었다. 24시간 후, 양생된 상기 구조화된 PDMS와 마이크로-도트 어레이(micro-dot array)를 상기 SU8 몰드로부터 천천히 떼어내었다(도 6b).Negative photoresist (SU8-25, Microchem, USA) was precleaned and spin coated onto silicon wafers treated with O 2 plasma. Photolithography was performed on the spin-coated SU8 to pattern holes 40 μm deep, 600 μm wide and 1.46 nm apart. The SU8 mold was then placed on a heated dish on a plate at 150 ° C. to promote adhesion between the mold and the silicon wafer. 10: 1 PDMS (Sylgard 184A: Sylgard 184B, Dow Corning, USA) was poured into the dish. After 24 hours, the cured structured PDMS and micro-dot array were slowly removed from the SU8 mold (FIG. 6B).
실시예 8. 약물충전된 메조기공성 실리카 나노입자의 피부 패치 위로의 전사인쇄 Example 8 Transcription Printing Over Skin Patches of Drug-Filled Mesoporous Silica Nanoparticles
약물충전된(또는 염료충전된) 메조기공성 실리카 나노입자 용액을 구조화된 PDMS 스탬프 위로 떨어뜨렸다. 상기 스탬프를 약 20분간 건조하였다. 상기 건조된 염료충전 메조기공성 실리카 나노입자를 마이크로도트 어레이로서 피부 패치의 하이드로콜로이드 면으로 전사인쇄하였다(도 6a).Drug filled (or dye filled) mesoporous silica nanoparticle solutions were dropped onto the structured PDMS stamp. The stamp was dried for about 20 minutes. The dried dye-filled mesoporous silica nanoparticles were transferred and printed onto the hydrocolloid side of the skin patch as a microdot array (FIG. 6A).
실시예 9. 적외선 카메라를 사용한 히터의 온도 분포 측정Example 9 Measurement of Temperature Distribution of Heater Using Infrared Camera
1 mm 두께의 슬라이드 글래스 상의 파도모양 패턴의(wavy-patterned) Cr/Au-기반 히터(10 nm/190 nm, 선폭 300 μm, 95.9 Ω)를, 외기 온도 15℃에서 전력원(12 V, 1.5 W)과 연결하였다. 적외선 카메라(320×240 pixels, IRE Korea, Korea)를 사용하여 시간-의존성 열상(thermo-gram)을 포착하였고, 상기 히터의 최대 온도를 도시하였다.Wavy-patterned Cr / Au-based heaters (10 nm / 190 nm, line width 300 μm, 95.9 Ω) on a 1 mm thick slide glass were supplied at an ambient temperature of 15 ° C. (12 V, 1.5 W). An infrared camera (320 × 240 pixels, IRE Korea, Korea) was used to capture time-dependent thermo-grams and the maximum temperature of the heater was shown.
실시예 10. 피부 패치 상에 단결정 실리카 나노멤브레인 스트레인(strain) 센서의 제작 Example 10 Fabrication of Single Crystal Silica Nanomembrane Strain Sensors on Skin Patches
실리콘 웨이퍼 상에 PMMA 및 PI를 스핀 코팅하면서 제작 공정을 시작하였다. 붕소로 도핑된(도핑 농도: 약 9.7×1018/cm3) SOI(silicon-on-insulator) 웨이퍼의 포토리소그래피 및 RIE(SF6 플라즈마, 50 sccm, 체임버 압력은 50 mTorr) 공정에 의해 80 nm 두께의 실리콘 나노멤브레인을 형성하였고, 이를 상기 PI 필름 위에 전사인쇄하였다. 이어지는 금속화(metallization)(Cr/Au, 7 nm/70 nm 두께)에 열증발법을 사용하였고, 이후, 포토리소그래피 및 습식 화학적 에칭에 의해 특정 패턴으로서 금속 필름을 형성하였다. 다음에, 최상부 PI 층을 가리고 전체 세개 층(PI/소자/PI)을 O2 및 SF6 RIE에 의해 패턴화하고 에칭하였다. PMMA 희생층을 아세톤을 사용하여 제거함으로써 상기 전체 소자를 상기 실리콘 웨이퍼에서 떼어내었다. 떼어 낸 상기 소자를 피부 패치에 전사인쇄하였다.The fabrication process was started with spin coating PMMA and PI on the silicon wafer. 80 nm by photolithography and RIE (SF 6 plasma, 50 sccm, chamber pressure 50 mTorr) process of silicon-on-insulator (SOI) wafers doped with boron (doping concentration: about 9.7 × 10 18 / cm 3 ) A silicon nanomembrane of thickness was formed, which was transferred and printed on the PI film. Thermal evaporation was used for the subsequent metallization (Cr / Au, 7 nm / 70 nm thick), after which the metal film was formed as a specific pattern by photolithography and wet chemical etching. Next, the top PI layer was covered and all three layers (PI / device / PI) were patterned and etched by O 2 and SF 6 RIE. The entire device was removed from the silicon wafer by removing the PMMA sacrificial layer using acetone. The detached device was transferred to a skin patch.
도 7a는, 병치되어 있는 메모리에 인접한 웨어러블 센서의 전형적인 예로서, 실리콘 나노멤브레인(삽입도)에 기반한 신축성 변형 센서들의 배열을 보여 준다. 스트레인 게이지(strain gauge)는 약 0.5의 유효 게이지 인자(effective guage factor)를 갖는다. 매우 얇은 구불구불한 인터커넥트로 인하여, 인간의 손목에서의 장력 및 압축에 반복적으로 노출되는 동안에도 센서들은 피부에 잘 순응하였다(도 7c). 이러한 구체적인 예는, 간질 및 파킨슨씨 병에서 나타나는, 다른 주파수의 손 흔들림(hand shaking)을 일으키는 떨림 모드를 모방하고 있다(도 7d). 상기 다른 떨림 주파수는 이러한 행동 장애(movement disorder)를 모니터링하고 진단하는 주된 추적 인자(tracking factor)로서 기능 한다. 다른 주파수 대역들(0.-0.5, 0.5-0.7, 0.7-0.9 및 >0.9 Hz)에 대응하는 대표적인 주파수들이, MINIM 웨어러블 메모리의 MLC 작동(도 4g)에 기초하여 네 개의 다른 레벨(도 7d의 아래 부분)로서 저장되었다.7A shows an arrangement of stretchable strain sensors based on silicon nanomembrane (inset), as a typical example of a wearable sensor adjacent to a collocated memory. The strain gauge has an effective guage factor of about 0.5. Due to the very thin serpentine interconnect, the sensors adhered well to the skin even during repeated exposure to tension and compression in the human wrist (FIG. 7C). This specific example mimics a shaking mode that causes hand frequencies of different frequencies, as seen in epilepsy and Parkinson's disease (FIG. 7D). The other tremor frequency serves as the main tracking factor for monitoring and diagnosing these movement disorders. Representative frequencies corresponding to different frequency bands (0.-0.5, 0.5-0.7, 0.7-0.9 and> 0.9 Hz) are based on four different levels (Fig. 7D) based on the MLC operation of the MINIM wearable memory (Fig. 4G). As shown below).
실시예 11. 피부 패치 상에서 전기저항성 히터/온도 센서 제작Example 11. Fabrication of Electric Resistance Heater / Temperature Sensor on Skin Patch
구불구불한 형상의 금속 마스크(metal masks를 통한 Cr/Au (10 nm/190 nm 두께)의 열증발법(thermal evaporation)에 의해 피부장착가능한 히터를 제작하여 피부 패치의 비점착성 면(하이드로콜로이드(hydrocolloid)의 반대편) 위에 구불구불한 형상을 형성하였다. 배선작업 후에, 상기 히터를 PDMS 필름으로 감쌌다. 동일한 설계 및 제작 방법을 온도 센서에 사용할 수 있다.A skin-mountable heater was fabricated by thermal evaporation of Cr / Au (10 nm / 190 nm thickness) through a metal mask of a tortuous shape to produce a non-tacky surface (hydrocolloid ( A serpentine shape was formed on the opposite side of the hydrocolloid) After the wiring, the heater was wrapped with PDMS film The same design and fabrication method can be used for the temperature sensor.
실시예 12. 데이터 처리 및 저장 시스템Example 12. Data Processing and Storage System
탑재된 센서를 사용하여 생리학적 스트레인 신호를 포착함으로써, 감지 및 데이터 저장 단계가 시작되고, 비휘발성 메모리의 셀에 국부적으로 저장될 수 있다. 이러한 시스템을 위해, Lab View software(National Instruments, USA)로 작성된 주문제작 프로그램을 사용하여 상기 기록된 데이터를 처리하고 저장하였다. 예를 들면, 운동관련 신경계 질환(motion-related neurological disorders)에서 떨림 모델(tremor model)에 대한 스트레인 감지의 경우에 있어서(도 7d), 상기 탑재된 스트레인 게이지(strain gauge)에 의해 기록된 상기 떨림의 주파수를 분석하고 상기 주문제작된 Lab View 프로그램에 의해 네 개의 다른 밴드들(0-0.5, 0.5-0.7, 0.7-0.9, 및 >0.9 Hz)로 분류하였다. 프로브 스테이션(probe station)을 통한 MLC 작동하에서, 상기 프로그램이 적절한 컴플라이언스 전류 및 바이어스 전압을 결정하여 특정한 두 숫자 코드(two digit code)([00], [01], [10], 및 [11], 이들은 각 밴드에 대해 미리 할당됨)를 상기 탑재된 웨어러블 메모리 셀에 기록하였다.By capturing a physiological strain signal using the onboard sensor, the sensing and data storage steps can be initiated and stored locally in the cells of the nonvolatile memory. For this system, a custom program written in Lab View software (National Instruments, USA) was used to process and store the recorded data. For example, in the case of strain detection for a tremor model in motion-related neurological disorders (FIG. 7D), the tremor recorded by the mounted strain gauge Frequency was analyzed and classified into four different bands (0-0.5, 0.5-0.7, 0.7-0.9, and> 0.9 Hz) by the customized Lab View program. Under MLC operation through a probe station, the program determines the appropriate compliance current and bias voltage to determine two specific digit codes ([00], [01], [10], and [11]. , Which are pre-assigned for each band) were written to the mounted wearable memory cell.
감지 및 데이터 저장에 대한 응용은 저장된 정보를 치료 개시를 촉발하는데 사용하는 것이다. 하나의 가능한 사용 양태는, 질병의 특징적 패턴을 인식하는 제어 회로를 통해 기록된 데이터를 공급하고, 이어서 약물 방출을 촉발/제어하는 것이다(도 8a). 본 발명자들은 약물을 함유하고 전달하는 비이클(도 8d-8f)로서 메조기공성(mesoporous) 실리카 나노입자를 사용하였고, 제어 경피 약물 전달을 위해 확산 촉진/온도 모니터링 소자(도 8b, 8c 8g 및 8h)로서 전기저항성(electroresistive) 히터/온도 센서를 사용하였다(도 8i). 구조화된 폴리디메틸실록산 스탬프(structured polydimethylsiloxane (PDMS) stamp)를 사용하여, 약물로 충전된 메조기공성 실리카 나노입자를 상기 패치의 점착성 면에 전사인쇄(trasfer-printed)하였다. 나노기공(nanopore)을 포함하는 메조기공성 실리카 나노입자(도 8e)는 약물 흡착을 위한 표면적이 매우 크다(도 8f). 도 8b는 상기 패치 표면 위의 전기저항성 히터에 대한 열적 구배 사진(적외선 카메라 측정)을 보여 준다. 도 8c는 다층화된 인간 피부 상의 기기에 대한 3차원 열적 프로파일을 강조하는 대응 FEM 분석 결과를 보여 주는데, 이는 충분한 열이 상기 피부와 상기 나노입자에 전달됨을 입증한다. 상기 히터에서 발생하는 열은 상기 나노입자와 약물간의 물리적 결합을 끊어서 상기 나노입자에 충전된 약물이 경피확산된다. FEM 시뮬레이션 결과, 가열에 의해 확산 속도가 증가함을 확인하였다(도 8g). 상기 온도 센서(도 8h)에 의해 피부 화상을 예방할 수 있는 최대 온도(<43℃)를 모니터링할 수 있다. 실온(25℃, 도 8i 상부) 및 상승된 온도(40℃, 도 8i 하부)에서 염료(로다민 B)가 돼지의 피부로 확산되는 것을 형광현미경 사진에 의해, 경피 약물 전달을 시각화할 수 있다. 실온에서 상기 염료가 상기 돼지 피부로 침투한 깊이가 상승된 온도에서의 침투 깊이보다 더 얕았고, 이는 열적 작용에 의해 확산이 가속화되었다는 점을 의미한다.An application for sensing and data storage is to use the stored information to trigger treatment initiation. One possible mode of use is to feed the recorded data through a control circuit that recognizes the characteristic pattern of the disease and then trigger / control drug release (FIG. 8A). We used mesoporous silica nanoparticles as the vehicle containing and delivering the drug (FIGS. 8D-8F), and the diffusion promoting / temperature monitoring devices (FIGS. 8B, 8C 8G and 8H) for controlled transdermal drug delivery. An electroresistive heater / temperature sensor was used as () (FIG. 8I). Drug-filled mesoporous silica nanoparticles were transferred-printed onto the tacky side of the patch using a structured polydimethylsiloxane (PDMS) stamp. Mesoporous silica nanoparticles containing nanopores (FIG. 8E) have a very large surface area for drug adsorption (FIG. 8F). 8B shows a thermal gradient photograph (infrared camera measurement) for an electrically resistive heater on the patch surface. 8C shows the corresponding FEM analysis results highlighting the three-dimensional thermal profile for the device on the multilayered human skin, demonstrating that sufficient heat is transferred to the skin and the nanoparticles. The heat generated by the heater breaks the physical bond between the nanoparticles and the drug so that the drug filled in the nanoparticles is percutaneously diffused. As a result of the FEM simulation, it was confirmed that the diffusion rate was increased by heating (FIG. 8G). The temperature sensor (FIG. 8H) can monitor the maximum temperature (<43 ° C.) that can prevent skin burns. Percutaneous drug delivery can be visualized by fluorescence micrographs of the diffusion of dye (rhodamine B) into pig skin at room temperature (25 ° C., FIG. 8i) and at elevated temperature (40 ° C., FIG. 8i). . The depth at which the dye penetrated the pig skin at room temperature was shallower than the depth of penetration at elevated temperatures, which means that diffusion accelerated by thermal action.
실시예 13. 패치 위에 설치된 전자 기기들의 패키징 성능 분석Example 13 Analysis of Packaging Performance of Electronic Devices Installed on a Patch
전자 소자들은 패키징(Packaging)을 통해 인체 피부에서 분비되는 땀, 또는 외부의 물과 같은 이물질에 의해 오작동 되는 것을 방지해야 한다. 실시예 3의 방법으로 제작된 전자 소자들은 포장층(encapsulation layer)으로 잘 보호되어 있어, 땀과 같은 외부 물질의 자극에 의해 거의 성능이 변하지 않았다. 도 9에 나타난 바와 같이, 땀보다 이온의 농도가 훨씬 높은 1M의 PBS(Phosphate Buffered Saline Solution) 용액을 전자 소자에 떨어뜨렸을 때, 전자 소자가 이상 없이 잘 작동하는 것을 관찰하였다.Electronic devices should be packaged to prevent malfunctions caused by foreign substances such as sweat emitted from human skin or external water. The electronic devices fabricated by the method of Example 3 are well protected by an encapsulation layer, so that performance is hardly changed by stimulation of external materials such as sweat. As shown in FIG. 9, when the 1 M PBS (Phosphate Buffered Saline Solution) solution having a much higher concentration of ions than sweat was dropped on the electronic device, it was observed that the electronic device works well.

Claims (41)

  1. 피부에 접착가능한 생체적합성 필름과, 상기 생체적합성 필름에 부착된 신축성 및 연성 전자소자를 포함하는 웨어러블 전자 기기.A wearable electronic device comprising a biocompatible film adhesive to the skin and stretchable and flexible electronic devices attached to the biocompatible film.
  2. 제1항에 있어서, 상기 생체적합성 필름은 하이드로콜로이드 점착제가 도포된 폴리우레탄 필름인 것임을 특징으로 하는 웨어러블 전자 기기.The wearable electronic device of claim 1, wherein the biocompatible film is a polyurethane film coated with a hydrocolloid adhesive.
  3. 제1항에 있어서, 상기 생체적합성 필름에서 하이드로콜로이드 점착제가 도포된 면에, 약물충전된 메조기공성 실리카 나노입자 또는 생분해성 고분자 나노입자가 포함되어 있는 것임을 특징으로 하는 웨어러블 전자 기기.The wearable electronic device as claimed in claim 1, wherein drug-filled mesoporous silica nanoparticles or biodegradable polymer nanoparticles are included on a surface to which a hydrocolloid adhesive is applied in the biocompatible film.
  4. 제1항에 있어서, 상기 전자소자는 메모리 소자, 히터, 트랜지스터, 온도 센서, 스트레인 센서, 근전도 센서, 뇌파 센서 및 이를 포함하는 집적 소자로 이루어진 군으로부터 선택되는 적어도 하나인 것임을 특징으로 하는 웨어러블 전자 기기.The wearable electronic device of claim 1, wherein the electronic device is at least one selected from the group consisting of a memory device, a heater, a transistor, a temperature sensor, a strain sensor, an EMG sensor, an EEG sensor, and an integrated device including the same. .
  5. 제4항에 있어서, 상기 메모리 소자는 비휘발성 저항 메모리 소자인 것임을 특징으로 하는 웨어러블 전자 기기.The wearable electronic device of claim 4, wherein the memory device is a nonvolatile memory device.
  6. 제1항에 있어서, 상기 신축성 및 연성 전자소자는,The flexible electronic device of claim 1, wherein the stretchable and flexible electronic device includes:
    탄성 기재;Elastic substrates;
    상기 탄성 기재에 인접하여 형성된 제1 패턴화된 고분자 층;A first patterned polymer layer formed adjacent said elastic substrate;
    상기 패턴화된 고분자 층에 인접하여 형성된 전자 소자;An electronic device formed adjacent the patterned polymer layer;
    상기 메모리소자에 인접하여 형성된 제2 패턴화된 고분자 층을 포함하고,A second patterned polymer layer formed adjacent to the memory device,
    상기 제1 패턴화된 고분자 층 및 제2 패턴화된 고분자 층에 인접한 상기 메모리소자의 제1 전극 및 제2 전극 각각이 패턴화된 것인, 신축성 및 연성 전자 소자인 것임을 특징으로 하는,Wherein the first electrode and the second electrode of the memory device adjacent to the first patterned polymer layer and the second patterned polymer layer are each patterned, a flexible and flexible electronic device.
    웨어러블 전자 기기.Wearable electronic device.
  7. 제6항에 있어서, 상기 탄성 기재는 폴리디메틸실록산, 폴리우레탄, 스티렌-부타디엔-스티렌 고무, 에폭시 수지 및 페놀 수지로 이루어진 군으로부터 선택되는 것임을 특징으로 하는 웨어러블 전자 기기.The wearable electronic device of claim 6, wherein the elastic substrate is selected from the group consisting of polydimethylsiloxane, polyurethane, styrene-butadiene-styrene rubber, epoxy resin, and phenol resin.
  8. 제6항에 있어서, 상기 제1 패턴화된 고분자 층 또는 상기 제2 패턴화된 고분자 층이 폴리이미드, 벤조사이클로부텐 및 SU-8으로 이루어진 군으로부터 선택되는 것임을 특징으로 하는 웨어러블 전자 기기.The wearable electronic device of claim 6, wherein the first patterned polymer layer or the second patterned polymer layer is selected from the group consisting of polyimide, benzocyclobutene and SU-8.
  9. 제6항에 있어서, 상기 제1 패턴화된 고분자 층, 상기 제2 패턴화된 고분자 층 및 상기 제1 패턴화된 전극 및 제2 패턴화된 전극이 구불구불한 형태(serpentine)로 패턴화된 것임을 특징으로 하는 웨어러블 전자 기기.7. The method of claim 6, wherein the first patterned polymer layer, the second patterned polymer layer and the first patterned electrode and the second patterned electrode are patterned in serpentine. Wearable electronic device, characterized in that.
  10. 제6항에 있어서, 상기 전자 소자는 능동 메모리 소자 또는 수동 메모리 소자인 것임을 특징으로 하는 웨어러블 전자 기기.The wearable electronic device of claim 6, wherein the electronic device is an active memory device or a passive memory device.
  11. 제10항에 있어서, 상기 능동 메모리 소자는 디램, 플래시 메모리 및 스핀-토크-전달 램으로 이루어진 군으로부터 선택되는 것임을 특징으로 하는 웨어러블 전자 기기.The wearable electronic device of claim 10, wherein the active memory device is selected from the group consisting of DRAM, flash memory, and spin-torque-transfer RAM.
  12. 제10항에 있어서, 상기 수동 메모리 소자는 저항 램, 상변화 램 및 강유전체 램으로 이루어진 군으로부터 선택되는 것임을 특징으로 하는 웨어러블 전자 기기.The wearable electronic device of claim 10, wherein the passive memory device is selected from the group consisting of a resistive ram, a phase change ram, and a ferroelectric ram.
  13. 제6항에 있어서, 상기 전자 소자는 비휘발성 저항 메모리 소자인 것임을 특징으로 하는 웨어러블 전자 기기.The wearable electronic device of claim 6, wherein the electronic device is a nonvolatile resistive memory device.
  14. 제13항에 있어서, 상기 비휘발성 저항 메모리 소자는,The memory device of claim 13, wherein the nonvolatile memory device includes:
    제1 전극;A first electrode;
    상기 제1 전극에 인접하여 형성된 제1 금속산화물로 이루어진 부도체 층;An insulator layer made of a first metal oxide formed adjacent to the first electrode;
    상기 제1 금속산화물 부도체 층에 인접하여 형성된 금속 나노입자 층;A metal nanoparticle layer formed adjacent to the first metal oxide insulator layer;
    상기 금속 나노입자 층에 인접하여 형성된 제2 금속산화물로 이루어진 부도체 층; 및An insulator layer made of a second metal oxide formed adjacent to the metal nanoparticle layer; And
    상기 제2 금속산화물 층에 인접하여 형성된 제2 전극을 포함하는, 비휘발성 저항 변화 메모리 소자인 것임을 특징으로 하는,And a second electrode formed adjacent to the second metal oxide layer.
    웨어러블 전자 기기.Wearable electronic device.
  15. 제14항에 있어서, 상기 제1 전극이 Al, Cu, Ag, Au, Pt, TiN, ITO, TaN, W, Mg, Zn 및 Fe로 이루어진 군으로부터 선택되는 것임을 특징으로 하는 웨어러블 전자 기기.The wearable electronic device of claim 14, wherein the first electrode is selected from the group consisting of Al, Cu, Ag, Au, Pt, TiN, ITO, TaN, W, Mg, Zn, and Fe.
  16. 제14항에 있어서, 상기 제1 금속산화물이 이산화티타늄, 산화탄탈륨, 산화바나듐, 산화몰리브데늄, 산화알루미늄, 산화코발트, 산화아연, 산화마그네슘, 산화지르코늄 및 산화하프늄으로 이루어진 군으로부터 선택되는 것임을 특징으로 하는 웨어러블 전자 기기.The method of claim 14, wherein the first metal oxide is selected from the group consisting of titanium dioxide, tantalum oxide, vanadium oxide, molybdenum oxide, aluminum oxide, cobalt oxide, zinc oxide, magnesium oxide, zirconium oxide and hafnium oxide. A wearable electronic device characterized by the above-mentioned.
  17. 제14항에 있어서, 상기 제1 금속산화물 부도체 층의 두께가 5 nm 내지 200 nm인 것임을 특징으로 하는 웨어러블 전자 기기.15. The wearable electronic device of claim 14, wherein the thickness of the first metal oxide insulator layer is 5 nm to 200 nm.
  18. 제14항에 있어서, 상기 금속 나노입자는 Au, Pt 및 Ag로 이루어진 군으로부터 선택되는 금속의 나노입자인 것임을 특징으로 하는 웨어러블 전자 기기.15. The wearable electronic device of claim 14, wherein the metal nanoparticles are nanoparticles of a metal selected from the group consisting of Au, Pt, and Ag.
  19. 제14항에 있어서, 상기 금속 나노입자의 크기는 2 nm 내지 100 nm인 것임을 특징으로 하는 웨어러블 전자 기기.The wearable electronic device of claim 14, wherein the metal nanoparticles have a size of 2 nm to 100 nm.
  20. 제14항에 있어서, 상기 금속산화물 나노입자 층이, 나노입자들의 랭뮤어-블로젯 조립, 레이어-바이-레이어 조립 및 스핀코팅 조립으로 이루어진 군으로부터 선택되는 공정에 의해 형성된 것임을 특징으로 하는 웨어러블 전자 기기.15. The wearable electron of claim 14, wherein the metal oxide nanoparticle layer is formed by a process selected from the group consisting of Langmuir-blojet assembly, layer-by-layer assembly, and spin coating assembly of nanoparticles. device.
  21. 제14항에 있어서, 상기 금속산화물 나노입자 층의 개수가 1층 내지 10층인 것임을 특징으로 하는 웨어러블 전자 기기.The wearable electronic device of claim 14, wherein the number of the metal oxide nanoparticle layers is in a range of 1 to 10 layers.
  22. 제14항에 있어서, 상기 제2 금속산화물이 이산화티타늄, 산화탄탈륨, 산화바나듐, 산화몰리브데늄, 산화알루미늄, 산화코발트, 산화아연, 산화마그네슘, 산화지르코늄 및 산화하프늄으로 이루어진 군으로부터 선택되는 것임을 특징으로 하는 웨어러블 전자 기기.15. The method according to claim 14, wherein the second metal oxide is selected from the group consisting of titanium dioxide, tantalum oxide, vanadium oxide, molybdenum oxide, aluminum oxide, cobalt oxide, zinc oxide, magnesium oxide, zirconium oxide and hafnium oxide. A wearable electronic device characterized by the above-mentioned.
  23. 제14항에 있어서, 상기 제2 금속산화물 부도체 층의 두께가 5 nm 내지 200 nm인 것임을 특징으로 하는 웨어러블 전자 기기.The wearable electronic device of claim 14, wherein the second metal oxide insulator layer has a thickness of about 5 nm to about 200 nm.
  24. 제14항에 있어서, 상기 제2 전극이 Al, Cu, Ag, Au, Pt, TiN, ITO, TaN, W, Mg, Zn 및 Fe로 이루어진 군으로부터 선택되는 것임을 특징으로 하는 웨어러블 전자 기기.The wearable electronic device of claim 14, wherein the second electrode is selected from the group consisting of Al, Cu, Ag, Au, Pt, TiN, ITO, TaN, W, Mg, Zn, and Fe.
  25. 신축성 및 연성 전자소자를 피부에 접착가능한 생체적합성 필름에 부착하는 단계를 포함하는,Attaching the stretchable and flexible electronic device to a biocompatible film attachable to the skin,
    웨어러블 전자 기기 제조 방법.Method for manufacturing wearable electronic device.
  26. 제25항에 있어서, 상기 생체적합성 필름은 하이드로콜로이드 점착제가 도포된 폴리우레탄 필름인 것임을 특징으로 하는 웨어러블 전자 기기 제조 방법.27. The method of claim 25, wherein the biocompatible film is a polyurethane film coated with a hydrocolloid adhesive.
  27. 제25항에 있어서, 상기 생체적합성 필름에서 하이드로콜로이드 점착제가 도포된 면에, 약물충전된 메조기공성 실리카 나노입자 또는 생분해성 고분자 나노입자가 포함되어 있는 것임을 특징으로 하는 웨어러블 전자 기기 제조 방법.27. The method of claim 25, wherein the drug-filled mesoporous silica nanoparticles or biodegradable polymer nanoparticles are included on the surface to which the hydrocolloid adhesive is applied in the biocompatible film.
  28. 제25항에 있어서, 상기 전자소자는 메모리 소자, 히터, 트랜지스터, 온도 센서, 스트레인 센서, 근전도 센서, 뇌파 센서 및 이를 포함하는 집적 소자로 이루어진 군으로부터 선택되는 적어도 하나인 것임을 특징으로 하는 웨어러블 전자 기기 제조 방법.The wearable electronic device of claim 25, wherein the electronic device is at least one selected from the group consisting of a memory device, a heater, a transistor, a temperature sensor, a strain sensor, an EMG sensor, an EEG sensor, and an integrated device including the same. Manufacturing method.
  29. 제25항에 있어서, 상기 메모리 소자는 비휘발성 저항 메모리 소자인 것임을 특징으로 하는 웨어러블 전자 기기 제조 방법.27. The method of claim 25, wherein the memory device is a nonvolatile resistive memory device.
  30. 제29항에 있어서, 상기 메모리 소자는 비휘발성 저항 메모리 소자인 것임을 특징으로 하는 웨어러블 전자 기기 제조 방법.30. The method of claim 29, wherein the memory device is a nonvolatile resistive memory device.
  31. (i) 폴리(메틸 메타크릴레이트)와 제1 고분자를 실리콘 기판에 차례로 코팅하고 경화하는 단계;(i) coating and curing the poly (methyl methacrylate) and the first polymer on a silicon substrate in turn;
    (ii) 상기 제1 고분자 층을 패턴화하는 단계;(ii) patterning the first polymer layer;
    (iii) 상기 제1 패턴화된 고분자 층에 인접하여 전자 소자를 제작하는 단계;(iii) fabricating an electronic device adjacent to the first patterned polymer layer;
    (iv) 상기 전자 소자에 인접하여 제2 패턴화된 고분자 층을 형성하는 단계;(iv) forming a second patterned polymer layer adjacent the electronic device;
    (v) 상기 실리콘 기판 및 상기 폴리(메틸 메타크릴레이트)를 제거하여 상기 제1 고분자와 상기 제2 고분자로 캡슐레이션된 소자를 얻는 단계;(v) removing the silicon substrate and the poly (methyl methacrylate) to obtain a device encapsulated with the first polymer and the second polymer;
    (vi) 상기 제1 고분자와 상기 제2 고분자로 캡슐레이션된 소자에서 폴리(메틸 메타크릴레이트)층을 제거하고 탄성 기재에 부착하는 단계; 및(vi) removing the poly (methyl methacrylate) layer from the device encapsulated with the first polymer and the second polymer and attaching to the elastic substrate; And
    (vii) 상기 탄성 기재로부터 폴리(메틸 메타크릴레이트)층이 제거된 소자를 피부에 부착가능한 생체적합성 필름에 부착하는 단계를 포함하고,(vii) attaching the device having the poly (methyl methacrylate) layer removed from the elastic substrate to a biocompatible film attachable to the skin,
    상기 제1 패턴화된 고분자 층 및 제2 패턴화된 고분자 층에 인접한 상기 전자 소자의 제1 전극 및 제2 전극 각각이 패턴화된 것인,Wherein each of the first electrode and the second electrode of the electronic device adjacent to the first patterned polymer layer and the second patterned polymer layer is patterned
    웨어러블 전자 기기 제조 방법.Method for manufacturing wearable electronic device.
  32. 제31항에 있어서, 상기 탄성 기재는 폴리디메틸실록산, 폴리우레탄, 스티렌-부타디엔-스티렌 고무, 에폭시 수지 및 페놀 수지로 이루어진 군으로부터 선택되는 것임을 특징으로 하는 웨어러블 전자 기기 제조 방법.32. The method of claim 31, wherein the elastic substrate is selected from the group consisting of polydimethylsiloxane, polyurethane, styrene-butadiene-styrene rubber, epoxy resin, and phenolic resin.
  33. 제31항에 있어서, 상기 제1 고분자 층 또는 상기 제2 고분자 층이 폴리이미드, 벤조사이클로부텐 및 SU-8으로 이루어진 군으로부터 선택되는 것임을 특징으로 하는 웨어러블 전자 기기 제조 방법.32. The method of claim 31 wherein the first polymer layer or the second polymer layer is selected from the group consisting of polyimide, benzocyclobutene and SU-8.
  34. 제31항에 있어서, 상기 제1 패턴화된 고분자 층, 상기 제2 패턴화된 고분자 층 및 상기 제1 패턴화된 전극 및 제2 패턴화된 전극이 구불구불한 형태(serpentine)로 패턴화된 것임을 특징으로 하는 웨어러블 전자 기기 제조 방법.32. The method of claim 31 wherein the first patterned polymer layer, the second patterned polymer layer and the first patterned electrode and the second patterned electrode are patterned in serpentine. Wearable electronic device manufacturing method characterized in that.
  35. 제31항에 있어서, 상기 전자소자는 메모리 소자, 히터, 트랜지스터, 온도 센서 및 스트레인 센서로 이루어진 군으로부터 선택되는 적어도 하나인 것임을 특징으로 하는 웨어러블 전자 기기 제조 방법.32. The method of claim 31, wherein the electronic device is at least one selected from the group consisting of a memory device, a heater, a transistor, a temperature sensor, and a strain sensor.
  36. 제35항에 있어서, 상기 메모리 소자는 디램, 플래시 메모리 및 스핀-토크-전달 램으로 이루어진 군으로부터 선택되는 능동 메모리 소자인 것임을 특징으로 하는 웨어러블 전자 기기 제조 방법.36. The method of claim 35, wherein the memory device is an active memory device selected from the group consisting of DRAM, flash memory, and spin-torque-transfer RAM.
  37. 제35항에 있어서, 상기 메모리 소자는 저항 램, 상변화 램 및 강유전체 램으로 이루어진 군으로부터 선택되는 수동 메모리 소자인 것임을 특징으로 하는 웨어러블 전자 기기 제조 방법.36. The method of claim 35, wherein the memory device is a passive memory device selected from the group consisting of a resistive ram, a phase change ram, and a ferroelectric ram.
  38. 제31항에 있어서, 상기 전자 소자는 비휘발성 저항 메모리 소자인 것임을 특징으로 하는 웨어러블 전자 기기 제조 방법.32. The method of claim 31, wherein the electronic device is a nonvolatile resistive memory device.
  39. 제38항에 있어서, 상기 비휘발성 저항 메모리 소자는,The memory device of claim 38, wherein the nonvolatile memory device includes:
    제1 패턴화된 전극;A first patterned electrode;
    상기 제1 전극에 인접하여 형성된 제1 금속산화물로 이루어진 부도체 층;An insulator layer made of a first metal oxide formed adjacent to the first electrode;
    상기 제1 금속산화물 부도체 층에 인접하여 형성된 금속 나노입자 층;A metal nanoparticle layer formed adjacent to the first metal oxide insulator layer;
    상기 금속 나노입자 층에 인접하여 형성된 제2 금속산화물로 이루어진 부도체 층; 및An insulator layer made of a second metal oxide formed adjacent to the metal nanoparticle layer; And
    상기 제2 금속산화물 층에 인접하여 형성된 제2 패턴화된 전극을 포함하는 것임을 특징으로 하는 웨어러블 전자 기기 제조 방법.And a second patterned electrode formed adjacent to the second metal oxide layer.
  40. 제31항에 있어서, 상기 생체적합성 필름은 하이드로콜로이드 점착제가 도포된 폴리우레탄 필름인 것임을 특징으로 하는 웨어러블 전자 기기 제조 방법.32. The method of claim 31, wherein the biocompatible film is a polyurethane film coated with a hydrocolloid adhesive.
  41. 제40항에 있어서, 상기 생체적합성 필름에서 하이드로콜로이드 점착제가 도포된 면에, 약물충전된 메조기공성 실리카 나노입자 또는 생분해성 고분자 나노입자가 포함되어 있는 것임을 특징으로 하는 웨어러블 전자 기기 제조 방법.41. The method of claim 40, wherein the drug-filled mesoporous silica nanoparticles or biodegradable polymer nanoparticles are included on the surface to which the hydrocolloid adhesive is applied in the biocompatible film.
PCT/KR2015/002446 2014-03-18 2015-03-13 Multifunctional wearable electronic device and manufacturing method therefor WO2015141988A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140031539A KR101738612B1 (en) 2014-03-18 2014-03-18 Multifunctional Wearable Electronic Device and Method for Manufacturing the Same
KR10-2014-0031539 2014-03-18

Publications (1)

Publication Number Publication Date
WO2015141988A1 true WO2015141988A1 (en) 2015-09-24

Family

ID=54144896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/002446 WO2015141988A1 (en) 2014-03-18 2015-03-13 Multifunctional wearable electronic device and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR101738612B1 (en)
WO (1) WO2015141988A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113678272A (en) * 2018-10-05 2021-11-19 Cj第一制糖株式会社 Memory device comprising biocompatible polymer nanoparticles and method of manufacturing the same
WO2022252037A1 (en) * 2021-05-31 2022-12-08 京东方科技集团股份有限公司 Sensing substrate and preparation method therefor, and electronic device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102102502B1 (en) * 2016-12-07 2020-04-22 서울대학교산학협력단 Biosensor
KR102550593B1 (en) 2018-04-30 2023-07-04 삼성전자주식회사 Electronic device for detecting biometric information
KR102195263B1 (en) * 2019-08-13 2020-12-24 연세대학교 산학협력단 Skin-Attachable Type Electronic Device and Structure of Water-Proof Nonvolatile Memory Device thereof
KR102434799B1 (en) * 2020-04-28 2022-08-24 주식회사 코모스 Steering wheel capable of hands on/off sensing
KR102527152B1 (en) * 2021-02-15 2023-04-28 울산과학기술원 Artificial electronic skin comprising ferroelectric biodegradable polymer layer
KR20240024481A (en) * 2022-08-17 2024-02-26 재단법인대구경북과학기술원 Body-mounted EMG sensors

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101048662B1 (en) * 2010-05-03 2011-07-14 한국과학기술원 A body attaching type sensor and monitoring apparatus thereof
JP2012193971A (en) * 2011-03-15 2012-10-11 Seiko Epson Corp Sensor module, sensor device, manufacturing method of sensor device and electronic apparatus
KR101221980B1 (en) * 2011-11-03 2013-01-15 고려대학교 산학협력단 Soldable and flexible electrode and method for preparing the same
JP2013009980A (en) * 2007-09-21 2013-01-17 Bio-Abc Lab Inc Respiratory rate or heart rate measurement device and measurement system
KR20130141283A (en) * 2012-06-15 2013-12-26 코오롱글로텍주식회사 Band sensor comprising an electro-conductive textile

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013009980A (en) * 2007-09-21 2013-01-17 Bio-Abc Lab Inc Respiratory rate or heart rate measurement device and measurement system
KR101048662B1 (en) * 2010-05-03 2011-07-14 한국과학기술원 A body attaching type sensor and monitoring apparatus thereof
JP2012193971A (en) * 2011-03-15 2012-10-11 Seiko Epson Corp Sensor module, sensor device, manufacturing method of sensor device and electronic apparatus
KR101221980B1 (en) * 2011-11-03 2013-01-15 고려대학교 산학협력단 Soldable and flexible electrode and method for preparing the same
KR20130141283A (en) * 2012-06-15 2013-12-26 코오롱글로텍주식회사 Band sensor comprising an electro-conductive textile

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113678272A (en) * 2018-10-05 2021-11-19 Cj第一制糖株式会社 Memory device comprising biocompatible polymer nanoparticles and method of manufacturing the same
JP2022504347A (en) * 2018-10-05 2022-01-13 シージェイ チェイルジェダン コーポレーション Memory device containing biodegradable polymer nanoparticles and its manufacturing method
JP7239689B2 (en) 2018-10-05 2023-03-14 シージェイ チェイルジェダン コーポレーション MEMORY ELEMENT CONTAINING BIODEGRADABLE POLYMER NANOPARTICLES AND MANUFACTURING METHOD THEREOF
CN113678272B (en) * 2018-10-05 2024-01-02 Cj第一制糖株式会社 Memory device comprising biocompatible polymer nanoparticles and method of manufacturing the same
WO2022252037A1 (en) * 2021-05-31 2022-12-08 京东方科技集团股份有限公司 Sensing substrate and preparation method therefor, and electronic device

Also Published As

Publication number Publication date
KR101738612B1 (en) 2017-06-08
KR20150108580A (en) 2015-09-30

Similar Documents

Publication Publication Date Title
WO2015141988A1 (en) Multifunctional wearable electronic device and manufacturing method therefor
Son et al. Multifunctional wearable devices for diagnosis and therapy of movement disorders
Zhang et al. Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring
Decataldo et al. Stretchable low impedance electrodes for bioelectronic recording from small peripheral nerves
Yetisen et al. Wearables in medicine
US10357201B2 (en) Appendage mountable electronic devices conformable to surfaces
CN108267078B (en) Flexible wearable resistance-type strain sensor and preparation method thereof
Shen Recent advances of flexible sensors for biomedical applications
Kim et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics
Jang et al. Ferromagnetic, folded electrode composite as a soft interface to the skin for long‐term electrophysiological recording
Ledochowitsch et al. A transparent μECoG array for simultaneous recording and optogenetic stimulation
Lee et al. Nanomaterials for bioelectronics and integrated medical systems
Lee et al. Soft electronics enabled ergonomic human-computer interaction for swallowing training
Koo et al. Unconventional device and material approaches for monolithic biointegration of implantable sensors and wearable electronics
Liu et al. Biocompatible Material‐Based Flexible Biosensors: From Materials Design to Wearable/Implantable Devices and Integrated Sensing Systems
WO2016201746A1 (en) Flexible neural microelectrode array provided with hollow protrusion structure, and manufacturing method therefor
CN110327544B (en) Implanted high-density electrode point flexible probe electrode and preparation method thereof
Hannah et al. Conformable, stretchable sensor to record bladder wall stretch
Maiolo et al. The rise of flexible electronics in neuroscience, from materials selection to in vitro and in vivo applications
Jeong et al. All-organic, solution-processed, extremely conformal, mechanically biocompatible, and breathable epidermal electrodes
Ji et al. Skin-integrated, biocompatible, and stretchable silicon microneedle electrode for long-term EMG monitoring in motion scenario
Zhao et al. Electrical failure mechanism in stretchable thin-film conductors
CN107157640A (en) Intelligent sheath
Ji et al. Brainmask: an ultrasoft and moist micro-electrocorticography electrode for accurate positioning and long-lasting recordings
KR20150136442A (en) Interface Between Living Body and Wearable Device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15765249

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15765249

Country of ref document: EP

Kind code of ref document: A1