WO2015141758A1 - Asymmetric hydrolysis of 3-substituted glutarimide - Google Patents

Asymmetric hydrolysis of 3-substituted glutarimide Download PDF

Info

Publication number
WO2015141758A1
WO2015141758A1 PCT/JP2015/058155 JP2015058155W WO2015141758A1 WO 2015141758 A1 WO2015141758 A1 WO 2015141758A1 JP 2015058155 W JP2015058155 W JP 2015058155W WO 2015141758 A1 WO2015141758 A1 WO 2015141758A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
group
formula
amino acid
acid sequence
Prior art date
Application number
PCT/JP2015/058155
Other languages
French (fr)
Japanese (ja)
Inventor
増俊 野尻
雅俊 大貫
伸行 堀之内
慎 日比
順 小川
八十原 良彦
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2015141758A1 publication Critical patent/WO2015141758A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/02Amides, e.g. chloramphenicol or polyamides; Imides or polyimides; Urethanes, i.e. compounds comprising N-C=O structural element or polyurethanes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • C12N9/86Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5) acting on amide bonds in cyclic amides, e.g. penicillinase (3.5.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y305/00Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
    • C12Y305/02Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in cyclic amides (3.5.2)
    • C12Y305/02016Maleimide hydrolase (3.5.2.16)

Definitions

  • the present invention relates to a method for producing an optically active 3-substituted glutaric acid monoamide useful as a pharmaceutical intermediate.
  • the following method is known as a method for producing an optically active 3-substituted glutaric monoamide.
  • a method for obtaining optically active 3-substituted glutaric acid monoamide by optical resolution of racemic 3-substituted glutaric acid monoamide by salt formation crystallization or the like Patent Document 1
  • An optically active 3-substituted glutaric acid monoamide obtained by obtaining an optically active 3-substituted glutaric acid monoester by asymmetric hydrolysis reaction of a 3-substituted glutaric acid diester using esterase or lipase and then amidating it.
  • Non-patent Document 2 An optically active 3-substituted glutaric acid monoamide obtained by obtaining an optically active 3-substituted glutaric acid monoester by asymmetric hydrolysis reaction of a 3-substituted glutaric acid diester using esterase or lipase and then amidating it.
  • the method 1) is an optical resolution method, a yield of 50% or more cannot be expected.
  • the method 2) requires high pressure and low temperature conditions in the amidation of the subsequent step of the asymmetric hydrolysis reaction. .
  • an object of the present invention is to provide a method suitable for industrial use for producing an optically active 3-substituted glutaric acid monoamide useful as a pharmaceutical intermediate.
  • the present inventors obtained a microorganism that asymmetrically hydrolyzes 3-substituted glutarimide.
  • optically active 3-substituted glutaric acid monoamide can be produced from 3-substituted glutarimide under mild reaction conditions, and the present invention has been completed.
  • R may have an optionally substituted alkyl group having 1 to 8 carbon atoms, an optionally substituted alkenyl group having 2 to 8 carbon atoms, or an optionally substituted group.
  • An enzyme source having asymmetric hydrolysis activity is allowed to act on the 3-substituted glutaric imide represented by the following formula (2); (Wherein, * represents an asymmetric carbon atom, R is the same as above), and relates to a process for producing an optically active 3-substituted glutaric acid monoamide compound.
  • an optically active 3-substituted glutaric acid monoamide can be produced by a reaction under mild conditions using a prochiral 3-substituted glutarimide as a raw material and an enzyme source.
  • R is an optionally substituted alkyl group having 1 to 8 carbon atoms, an optionally substituted alkenyl group having 2 to 8 carbon atoms, and a substituent.
  • An aralkyl group is shown.
  • the alkyl group having 1 to 8 carbon atoms may be linear or branched.
  • alkenyl group having 2 to 8 carbon atoms examples include ethenyl group, propenyl group, butenyl group, pentenyl group, hexenyl group, heptenyl group, octenyl group and the like.
  • alkynyl group having 2 to 8 carbon atoms examples include ethynyl group, propynyl group, butynyl group, pentynyl group, hexynyl group, heptynyl group, octynyl group and the like.
  • the aryl group having 4 to 20 carbon atoms may have a hetero atom such as a nitrogen atom, an oxygen atom or a sulfur atom.
  • the number of heteroatoms contained in one aryl group is not particularly limited, but is usually 1 to 2.
  • the heteroatom is particularly preferably a nitrogen atom.
  • Examples of the aryl group having 4 to 20 carbon atoms include phenyl group, naphthyl group, anthranyl group, pyridyl group, pyrimidyl group, indanyl group, and indenyl group.
  • the aralkyl group having 5 to 20 carbon atoms may have a hetero atom such as a nitrogen atom, an oxygen atom or a sulfur atom.
  • the number of heteroatoms contained in one aralkyl group is not particularly limited, but is usually 1 to 2.
  • the heteroatom is particularly preferably a nitrogen atom.
  • Examples of the aralkyl group having 5 to 20 carbon atoms include benzyl group, naphthylmethyl group, anthranylmethyl group, pyridylmethyl group, pyrimidylmethyl group, indanylmethyl group, and indenylmethyl group.
  • the alkyl group, alkenyl group, alkynyl group, aryl group and aralkyl group may have a substituent, and examples of the substituent include a halogen atom, a hydroxyl group, an amino group, and a nitro group.
  • the number is not particularly limited, but is typically 1 to 2, preferably 1.
  • 3-substituted glutarimide represented by the formula (1) include 3-isobutyl glutarimide, 3-propyl glutarimide, 3-phenyl glutarimide, 3- (4-chlorophenyl) glutarimide and the like.
  • the optically active 3-substituted glutaric monoamide that is the product of the present invention has the following formula (2):
  • R is an optionally substituted alkyl group having 1 to 8 carbon atoms, an optionally substituted alkenyl group having 2 to 8 carbon atoms, and a substituent.
  • An aralkyl group is shown.
  • R in the optically active 3-substituted glutaric acid monoamide of the formula (2) as the product is the same as R in the 3-substituted glutarimide of the formula (1) as the starting material. Details of R in formula (2) are as described in detail for R in formula (1).
  • the absolute configuration of the optically active 3-substituted glutaric monoamide represented by the formula (2) may be R or S.
  • Specific examples of the optically active 3-substituted glutaric acid monoamide represented by the formula (2) include 3-isobutyl glutaric acid monoamide, 3-propyl glutaric acid monoamide, 3-phenylglutaric acid monoamide, whose absolute configuration is R, 3 -(4-chlorophenyl) glutaric acid monoamide, 3-isobutylglutaric acid monoamide having the absolute configuration S, 3-propylglutaric acid monoamide, 3-phenylglutaric acid monoamide, 3- (4-chlorophenyl) glutaric acid monoamide, etc. It is done.
  • the optically active 3-substituted glutaric monoamide represented by the formula (2) has an optical purity (% ee) exceeding 0% ee, preferably 5% ee or more, more preferably 10% ee or more. More preferably 20% ee or more, more preferably 30% ee or more, more preferably 40% ee or more, more preferably 50% ee or more, more preferably 60% ee or more, more preferably 65% ee or more, more The optical purity (preferably 70% ee or higher, more preferably 75% ee or higher, more preferably 80% ee or higher, more preferably 85% ee or higher, more preferably 90% ee or higher, more preferably 95% ee or higher.
  • optical purity is as described in Examples.
  • the three-dimensional structure of the optically active 3-substituted glutaric monoamide represented by the formula (2) whose absolute configuration is R is usually represented by the following formula.
  • the steric structure of the optically active 3-substituted glutaric monoamide represented by the formula (2) whose absolute configuration is S is usually represented by the following formula.
  • details of R are as described in detail for R in formula (1)).
  • the “enzyme source” includes an enzyme having an activity for asymmetric hydrolysis of the 3-substituted glutarimide of the formula (1) to the optically active 3-substituted glutaric acid monoamide of the formula (2). If it is, it will not specifically limit, The microorganisms which have the activity which asymmetrically hydrolyzes the said enzyme itself or the 3-substituted glutarimide of the said Formula (1) to the optically active 3-substituted glutaric acid monoamide of the said Formula (2) And the treated product thereof.
  • Microbial cells of microorganisms include, in addition to the cells themselves, a culture solution or cell suspension containing cells. In addition to wild-type strains, microbial cells include mutant strains that have gained advantageous properties, and further, DNA encoding the above-mentioned enzyme having asymmetric hydrolysis activity derived from the microorganism has been introduced. Transformed strains.
  • the “processed product” may be, for example, a crude extract, freeze-dried cells, acetone-dried cells, or a crushed product of these cells, and 3-substituted obtained from the cells. It may be an enzyme having an activity of asymmetric hydrolysis of glutaric imide.
  • the degree of purification of the enzyme obtained from the cells is not particularly limited, and may be a purified enzyme or a partially purified enzyme.
  • the enzyme source is the enzyme itself
  • the enzyme can be prepared by any means such as a cell-free protein synthesis system.
  • the degree of enzyme purification is not particularly limited.
  • an enzyme having an activity to asymmetrically hydrolyze 3-substituted glutarimide of the above formula (1) into an optically active 3-substituted glutaric acid monoamide of the above formula (2) contained in the above enzyme source or a processed product thereof
  • at least one selected from the group consisting of the following polypeptides (I) to (VI) can be preferably used.
  • amino acid substitution is, for example, 1 to 50, preferably 1 to 25, more preferably 1 to 20, more preferably 1 to 15, more preferably 1 to 10, more preferably 1 to 7, more preferably 1 to 5, more preferably 1 to 4, more preferably 1 to 3, and most preferably 1 or 2.
  • the amino acid substitution is preferably a conservative amino acid substitution.
  • Constant amino acid substitution refers to substitution between amino acids having similar physicochemical functions such as charge, side chain, polarity, and aromaticity.
  • Amino acids with similar physicochemical functions include, for example, basic amino acids (arginine, lysine, histidine), acidic amino acids (aspartic acid, glutamic acid), uncharged polar amino acids (asparagine, glutamine, serine, threonine, cysteine, tyrosine), Classified into nonpolar amino acids (glycine, leucine, isoleucine, alanine, valine, proline, phenylalanine, tryptophan, methionine), branched chain amino acids (leucine, valine, isoleucine), aromatic amino acids (phenylalanine, tyrosine, tryptophan, histidine) can do.
  • basic amino acids arginine, lysine, histidine
  • acidic amino acids aspartic acid, glutamic acid
  • uncharged polar amino acids asparagine, glutamine, serine, threonine, cysteine, tyrosine
  • amino acid sequence described in SEQ ID NO: 1 or 6 is preferably 1 in total to at least one of the N-terminal and C-terminal of the amino acid sequence described in SEQ ID NO: 1 or 6. Or addition of multiple amino acids.
  • the identity of the polypeptide of (III) or (VI) to the amino acid sequence shown in SEQ ID NO: 1 or 6 is preferably 80% or more, more preferably 85% or more, more preferably 90% or more, more preferably Is 95% or more, more preferably 97% or more, more preferably 98% or more, and most preferably 99% or more.
  • the identity value of amino acid sequences indicates a value calculated with default settings using software (for example, FASTA, DANASYS, BLAST, Genetyx) that calculates identity between a plurality of amino acid sequences.
  • the amino acid sequence identity value is calculated by calculating the number of matching amino acid residues when aligning a pair of amino acid sequences so that the degree of matching is maximized, and comparing the number of matching amino acid residues. Calculated as a percentage of the total number of amino acid residues in the sequence. Here, when there is a gap, the total number of amino acid residues is the number of amino acid residues obtained by counting one gap as one amino acid residue.
  • the similarity of the polypeptide of (III) or (VI) to the amino acid sequence of SEQ ID NO: 1 or 6 is preferably 75% or more, more preferably 80% or more, more preferably 85% or more, More preferably, it is 90% or more, more preferably 95% or more, more preferably 97% or more, more preferably 98% or more, and most preferably 99% or more.
  • the similarity value of amino acid sequences is calculated by adding the number of amino acid residues that match when aligning a pair of amino acid sequences so that the degree of coincidence is maximized, and the amino acid residues that have similar physicochemical functions. Then, it is calculated as a ratio of the total to the total number of amino acid residues of the compared amino acid sequences.
  • amino acid sequence similarity can be calculated by a computer using the same software as described above with respect to amino acid sequence identity.
  • the method for calculating the total number of amino acid residues is as described above for amino acid identity.
  • the amino acid residues having similar physicochemical functions are as described above.
  • the polypeptide preferably has a specific activity per 1 mg of total protein of 0.1 mU / mg or more, more preferably 1.0 mU / mg or more, more preferably 5.0 mU / mg or more, more preferably 10 mU / mg or more, Most preferably, it is 100 mU / mg or more, and the upper limit is not particularly limited, but for example, it can be added to the reaction system in the form of a protein mixture or purified product of 3000 mU / mg or less, typically 2000 mU / mg or less.
  • the definition of the unit of enzyme activity and the measuring method are as described in Example 3 (1).
  • the optical purity range of the optically active 3-substituted glutaric monoamide of formula (2) obtained by the enzyme activity is as described above.
  • the enzyme source can be used in a state immobilized by known means. Immobilization can be performed by methods well known to those skilled in the art (for example, a crosslinking method, a physical adsorption method, a comprehensive method, etc.).
  • the carrier for immobilizing the enzyme source is not particularly limited and can be appropriately selected and used by those skilled in the art.
  • microorganisms described later in this specification can be obtained from a patent microorganism depositary or other research institution, and can also be separated from the natural world.
  • the microorganism identified by the NBRC number is the National Institute of Technology and Evaluation Biological Resource Center (Chiba, Japan)
  • the microorganism identified by the DSM number is the DSMZ-German microbial cell culture collection, AKU number.
  • the microorganisms identified are available from the Fermentation Physiology and Brewing Science Laboratory (Kyoto, Japan), Department of Applied Life Sciences, graduate School of Agriculture, Kyoto University.
  • the enzyme source having an asymmetric hydrolysis activity in the 3-substituted glutarimide is not particularly limited, and examples thereof include, for example, the genus Achromobacter, the genus Alcaligenes, the genus Burkholderia, the comamonas ( An enzyme source derived from a microorganism selected from the group consisting of the genus Comamonas, Delftia, and Pseudomonas.
  • examples of the enzyme source having the ability to produce 3-substituted glutaric monoamides whose absolute configuration is R include, for example, the genus Achromobacter, the genus Alcaligenes, and Burkholderia. ), An enzyme source derived from a microorganism selected from the group consisting of the genus Comamonas, the Delftia genus, and the Pseudomonas genus.
  • Achromobacter sp Preferably, Achromobacter sp.
  • microorganism having the ability to produce a hydrolase derived from the microorganism may be either a wild strain or a mutant strain.
  • microorganisms derived by genetic techniques such as cell fusion or gene manipulation can also be used.
  • a microorganism that produces the genetically engineered enzyme is, for example, a process described in WO 98/35025 for isolating and / or purifying these enzymes to determine part or all of the amino acid sequence of the enzyme, this amino acid sequence
  • a method comprising a step of obtaining a DNA sequence encoding an enzyme based on the above, a step of obtaining a recombinant microorganism by introducing this DNA into another microorganism, and a step of culturing the recombinant microorganism to obtain the enzyme, etc. Can be obtained.
  • Examples of the recombinant microorganism as described above include a transformed microorganism transformed with a plasmid having a DNA encoding the hydrolase.
  • the host microorganism is preferably Escherichia coli.
  • the culture medium for the microorganism used as the enzyme source is not particularly limited as long as the microorganism can grow.
  • a carbon source carbohydrates such as glucose and sucrose, alcohols such as ethanol and glycerol, fatty acids such as oleic acid and stearic acid and esters thereof, oils such as rapeseed oil and soybean oil, and ammonium sulfate as a nitrogen source , Sodium nitrate, peptone, casamino acid, corn steep liquor, bran, yeast extract, etc.
  • Inorganic salts such as magnesium sulfate, sodium chloride, calcium carbonate, potassium hydrogen phosphate, potassium dihydrogen phosphate and other malt sources, malt
  • malt A normal liquid medium containing an extract, meat extract or the like can be used.
  • an inducer may be added to the medium in order to induce microbial enzyme production.
  • the inducing agent include imide compounds.
  • the imide compound include succinimide, 2-methylsuccinimide, glutarimide, maleimide, phthalimide, 3-isobutylglutarimide, 3-propylglutarimide, 3-phenylglutarimide, 3- (4-chlorophenyl) glutarimide, and the like. Can be mentioned.
  • the amount of these inducers added to the medium is 0.05% to 2.0%, preferably 0.1% to 1.0%.
  • % is% by weight.
  • Cultivation is carried out aerobically. Usually, the cultivation time is about 1 to 5 days, the pH of the medium is 3 to 9, and the cultivation temperature is 10 to 50 ° C.
  • the stereoselective hydrolysis reaction of 3-substituted glutarimide (1) is carried out by adding 3-substituted glutarimide (1) as a raw material and the enzyme source to a suitable solvent, and adjusting the pH. This can be done by stirring.
  • Reaction conditions vary depending on the enzyme, microorganism or processed product, substrate concentration, etc. used. Usually, the substrate concentration is preferably about 0.1 to 99% by weight, more preferably 1 to 60% by weight.
  • the reaction temperature is preferably 10 to 60 ° C, more preferably 20 to 50 ° C.
  • the pH of the reaction is preferably 4-11, more preferably 6-9.
  • the reaction time is preferably 0.5 to 120 hours, more preferably 1 to 120 hours, and particularly preferably 1 to 72 hours.
  • the reaction can be carried out under atmospheric pressure conditions.
  • the substrate can be added in batches, divided or added continuously.
  • the reaction can be carried out batchwise or continuously.
  • the target optically active substance can be obtained only from the racemic starting material in a yield of 50% at the maximum.
  • the optically active 3-substituted glutaric acid monoamide (2) can be obtained in a yield exceeding 50% from the 3-substituted glutaric imide (1) as a starting material. Is very advantageous.
  • Each of the optically active 3-substituted glutaric acid monoamides produced by the reaction can be isolated and purified by a conventional method.
  • a reaction liquid containing an optically active 3-substituted glutaric acid monoamide generated by hydrolysis reaction is extracted with an organic solvent such as ethyl acetate and toluene, and the organic solvent is distilled off under reduced pressure. Then, distillation, recrystallization, Alternatively, it can be isolated and purified by performing a treatment such as chromatography. Further, the filtrate from which the enzyme source has been removed from the reaction solution can be isolated and purified by neutralizing and crystallization using sulfuric acid or the like, and filtering out the precipitated target product.
  • Example 1 Stereoselective hydrolysis of 3- (4-chlorophenyl) glutarimide Each microorganism shown in Table 1 was sterilized in a test tube in 5 ml of medium (trypton 0.5 w / v% in water, yeast extract 0.5 w / v %, Glucose 0.1 w / v%, dipotassium hydrogen phosphate 0.1 w / v%, pH 7.0), and cultured with shaking at 30 ° C. for 65 hours. After completion of the culture, the cells were collected by centrifugation and suspended in 0.2 ml of 100 mM phosphate buffer (pH 7.0).
  • Example 2 Stereoselective hydrolysis of 3-isobutylglutarimide Each microorganism shown in Table 2 was sterilized in a test tube in 5 ml of medium (trypton 0.5 w / v% in water, yeast extract 0.5 w / v%, glucose 0 0.1 w / v%, dipotassium hydrogen phosphate 0.1 w / v%, pH 7.0), and cultured with shaking at 30 ° C. for 22 hours. After completion of the culture, the cells were collected by centrifugation and suspended in 0.2 ml of 100 mM phosphate buffer (pH 7.0).
  • Example 3 Identification and production of imidase (1) Isolation and purification of imidase derived from Burkholderia phytofirmans strain DSM17436 Burkholderia phytofirmans strain DSM17436 was sterilized in vitro in 30 ml of TGY medium (5 g tryptone, 5 g yeast extract, 1 g glucose, deionized water). It was inoculated to 1 L, up to pH 7.0 before sterilization, and cultured with aerobic shaking at 28 ° C. for 22 hours. The whole amount of this culture solution was inoculated into 5 L of TGY medium sterilized in the flask, and cultured under aerobic shaking at 28 ° C. for 30 hours.
  • TGY medium 5 g tryptone, 5 g yeast extract, 1 g glucose, deionized water. It was inoculated to 1 L, up to pH 7.0 before sterilization, and cultured with aerobic shaking at 28 ° C. for 22 hours. The whole amount of this culture solution was inoculated into 5 L of TGY
  • the cells were collected by centrifugation, suspended in 20 mM phosphate buffer (pH 7.5), disrupted by ultrasonic waves, and centrifuged. Ammonium sulfate was added to the obtained supernatant to a saturation concentration of 20%, and ammonium sulfate was further added to the supernatant obtained by centrifugation to a saturation concentration of 40%. The precipitate obtained by centrifuging this was suspended in 20 mM phosphate buffer (pH 7.5), and dialyzed with 20 mM Tris buffer (pH 7.5) using a cellulose tube as a dialysis membrane.
  • the obtained active fraction was concentrated using Amicon Ultra (centrifugal filter unit: manufactured by Merck Millipore), applied to Superdex 200 10/300 GL (manufactured by GE Healthcare), and subjected to gel filtration.
  • Ammonium sulfate was dissolved in the obtained active fraction to a final concentration of 2M, and then applied to RESOURCE PHE (manufactured by GE Healthcare) and subjected to column chromatography, and then with 20 mM Tris-HCl buffer (pH 7.5). Elution was performed with a gradient of 2M to 0M ammonium sulfate.
  • the obtained active fraction was buffer-exchanged with 20 mM Tris-HCl buffer (pH 7.5) using Amicon Ultra, applied to TSK gel DEAE-5PW (manufactured by Tosoh Corporation), and subjected to column chromatography.
  • the buffer was eluted with a gradient from 0M to 1M sodium chloride.
  • the obtained active fraction was buffer-exchanged with 20 mM Tris-HCl buffer (pH 7.5) using Amicon Ultra, and this was applied to MonoQ 5/50 GL (manufactured by GE Healthcare) and subjected to column chromatography.
  • the solution was eluted with a concentration gradient of 0 M to 1 M sodium chloride with the same buffer.
  • the obtained active fraction was subjected to SDS-polyacrylamide electrophoresis, and the N-terminal amino acid sequence of the obtained band was determined with a protein sequencer. This enzyme was named BpIH.
  • ⁇ Method for measuring enzyme activity during enzyme purification 5 ⁇ L of the active fraction was mixed with 55 ⁇ L of 100 mM phosphate buffer (pH 7.0) containing 0.1 w / v% of 3- (4-chlorophenyl) glutarimide, and reacted at 28 ° C. for 60 minutes. After the reaction, the reaction was stopped by diluting it twice with acetonitrile, the solid was removed by centrifugation, and the substrate and product in the reaction solution were analyzed by high performance liquid chromatography.
  • 1 U is defined as the amount of enzyme that produces 1 ⁇ mol of 3- (4-chlorophenyl) glutaric acid monoamide per minute.
  • the enzyme activity was performed in the same procedure not only in this experiment but also in the following experiment.
  • N-terminal amino acid sequence information and total amino acid sequence of BpIH The N-terminal amino acid sequence of imidase BpIH purified in (1) was examined using a protein sequencer (PPSQ-31B: manufactured by Shimadzu Corporation). The N-terminal sequence was determined to be PLDPNYPRDL. When this N-terminal sequence was searched from the genome information of Burkholderia phytofirmans strain DSM17436 using Protein BLAST, it was 100% identical to the protein of GenBank accession No .: ACD16728.1 (SEQ ID NO: 1), and this protein is urate catabolism It was annotated as protein.
  • the DNA obtained by PCR is confirmed by agarose gel electrophoresis, the size of the amplified fragment is confirmed, the target gene band is excised from the agarose gel, and the illustra GFX PCR DNA and Gel Band Purification Kit (manufactured by GE Healthcare) is used. And purified. PQE-60 treated with restriction enzymes HindIII and NcoI, and a DNA fragment encoding the full length of BpIH derived from Burkholderia phytofirmans DSM17436 strain obtained by the above procedure, Gibson Assembly Master Mix (manufactured by New England Biolabs) The recombinant vector pQE60-BpIH01 was constructed by ligating together.
  • E. coli JM109 competent cells were transformed.
  • E. coli JM109 / pQE60-BpIH01 was obtained.
  • the obtained transformant was inoculated into 2 mL of LB medium (1% tryptone, 0.5% yeast extract, 0.5% NaCl, pH 7.0) containing 50 ⁇ g / ml ampicillin and aerobic at 28 ° C. for 7 hours. After shaking culture, IPTG was added to the culture solution to a concentration of 1 mM, and shaking culture was further performed at 28 ° C. for 16 hours.
  • the cells were collected by centrifugation, suspended in 500 ⁇ L of 100 mM phosphate buffer (pH 7.0) containing 0.1 w / v% of 3- (4-chlorophenyl) glutarimide, and the activity was confirmed by resting cell reaction.
  • Faecalis NBRC 13111 Cloning of imidase gene derived from Alcaligenes faecalis subsp. Faecalis NBRC 13111 and production in E. coli From known genomic sequence data of Alcaligenes faecalis subsp. Faecalis NBRC 13111, genes and amino acid sequences highly homologous to the BpIH gene and amino acid sequence (SEQ ID NOs: 5 and 6) could be obtained.
  • the base sequence of SEQ ID NO: 5 has 71% identity to the base sequence of SEQ ID NO: 4, and the amino acid sequence of SEQ ID NO: 6 is It was calculated to have 75% identity to the amino acid sequence of SEQ ID NO: 1.
  • the AfIH gene using a DNA primer (SEQ ID NO: 7) having a sequence on the 5 ′ end side of the AfIH gene and a primer (SEQ ID NO: 8) having a sequence on the 3 ′ end side, the AfIH gene is used as in (3).
  • a gene fragment containing the full length of the gene was obtained, agarose gel electrophoresed, excised, and purified.
  • a recombinant vector pQE60-AfIH01 was constructed in the same manner as in (3).
  • E. coli JM109 / pQE60-AfIH01 was obtained, cultured, and confirmed for activity by resting cell reaction.
  • the cells were collected by centrifugation, suspended in 20 mM phosphate buffer (pH 7.5), disrupted by ultrasonic waves, and centrifuged. The supernatant was dialyzed with 20 mM Tris buffer (pH 7.5) using a cellulose tube as a dialysis membrane. Subsequently, this was applied to MonoQ 10/100 GL (manufactured by GE Healthcare) and subjected to column chromatography, and eluted with a sodium chloride concentration gradient from 0 M to 1 M with the same buffer.
  • the obtained active fraction was concentrated using Amicon Ultra (centrifugal filter unit: manufactured by Merck Millipore), applied to Superdex 200 10/300 GL (manufactured by GE Healthcare), and subjected to gel filtration. Was eluted with 20 mM Tris-HCl buffer (pH 7.5) containing sodium chloride.
  • Amicon Ultra centrifugal filter unit: manufactured by Merck Millipore
  • Superdex 200 10/300 GL manufactured by GE Healthcare
  • gel filtration was eluted with 20 mM Tris-HCl buffer (pH 7.5) containing sodium chloride.
  • BpIH was detected as a single band, confirming the purity of the purified enzyme.
  • Recombinant AfIH was expressed and purified in the same procedure.
  • the purified enzymes BpIH and AfIH obtained in (5) were each used at an enzyme concentration of 1.3 mg / ml, and 28 in 250 ⁇ L of 100 mM phosphate buffer (pH 7.0) containing 0.5 w / v% of 3-isobutylglutarimide.
  • the reaction was carried out at 0 ° C. for 16 hours. After completion of the reaction, solids were removed by centrifugation, and the conversion rate (%) and optical purity (%) were determined by analyzing the substrate and product in the reaction solution by the high performance liquid chromatography described in Example 2. ee) was determined. The results are shown in Table 5.
  • the activity value (U) for each substrate calculated in% when the activity value (U) for 3- (4-chlorophenyl) glutarimide is 100 is shown as “relative activity (%)”.
  • the activity value (U) for each substrate is defined as the activity value (U) of the fixed amount of purified protein used in the reaction when 1 U is defined as the amount of enzyme that produces 1 ⁇ mol of each product per minute. Point to.
  • the method of the present invention can be used for the production of an optically active 3-substituted glutaric acid monoamide useful as a pharmaceutical intermediate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The present invention addresses the problem of providing a method for producing an optically active 3-substituted glutaric acid monoamide, which is useful as a pharmaceutical intermediate, said method being suitable for industrial uses. The present invention provides, as a solution for the above-described problem, a method for producing an optically active 3-substituted glutaric acid monoamide by subjecting an easily available 3-substituted glutarimide to an asymmetric hydrolysis with use of an enzyme source.

Description

3-置換グルタルイミドの不斉加水分解Asymmetric hydrolysis of 3-substituted glutarimide
 本発明は、医薬品中間体として有用な光学活性3-置換グルタル酸モノアミドの製造法に関する。 The present invention relates to a method for producing an optically active 3-substituted glutaric acid monoamide useful as a pharmaceutical intermediate.
 光学活性3-置換グルタル酸モノアミドの製造法として、例えば、以下の方法が知られている。
1)ラセミ体3-置換グルタル酸モノアミドを造塩晶析等で光学分割することによる光学活性3-置換グルタル酸モノアミドを取得する方法(特許文献1)、(非特許文献1)。
2)エステラーゼやリパーゼを用いた3-置換グルタル酸ジエステルの不斉加水分解反応により光学活性3-置換グルタル酸モノエステルを得た後に、これをアミド化することによる光学活性3-置換グルタル酸モノアミドを取得する方法(非特許文献2)。
For example, the following method is known as a method for producing an optically active 3-substituted glutaric monoamide.
1) A method for obtaining optically active 3-substituted glutaric acid monoamide by optical resolution of racemic 3-substituted glutaric acid monoamide by salt formation crystallization or the like (Patent Document 1) (Non-Patent Document 1).
2) An optically active 3-substituted glutaric acid monoamide obtained by obtaining an optically active 3-substituted glutaric acid monoester by asymmetric hydrolysis reaction of a 3-substituted glutaric acid diester using esterase or lipase and then amidating it. (Non-patent Document 2).
 しかし、1)の方法は光学分割法であるため50%以上の収率が望めず、一方、2)の方法では不斉加水分解反応の後工程のアミド化において高圧、低温条件が必要である。 However, since the method 1) is an optical resolution method, a yield of 50% or more cannot be expected. On the other hand, the method 2) requires high pressure and low temperature conditions in the amidation of the subsequent step of the asymmetric hydrolysis reaction. .
 以上、現在知られている光学活性3-置換グルタル酸モノアミドの製造方法は、収率面、反応条件の面で、工業的生産に有利な方法とは言い難い。 As described above, the currently known methods for producing optically active 3-substituted glutaric monoamides are not advantageous methods for industrial production in terms of yield and reaction conditions.
国際公開第97/22578号International Publication No. 97/22578
 上記に鑑み、本発明の目的は、医薬品中間体として有用な光学活性3-置換グルタル酸モノアミドを製造するための、工業的利用に適した方法を提供することにある。 In view of the above, an object of the present invention is to provide a method suitable for industrial use for producing an optically active 3-substituted glutaric acid monoamide useful as a pharmaceutical intermediate.
 本発明者らは、前記課題に基づき鋭意検討を行った結果、3-置換グルタルイミドを立体選択的に不斉加水分解する微生物を取得した。そして該微生物を用いることにより、温和な反応条件において3-置換グルタルイミドから光学活性3-置換グルタル酸モノアミドを生産することを可能にし、本発明を完成させるに至った。 As a result of intensive studies based on the above problems, the present inventors obtained a microorganism that asymmetrically hydrolyzes 3-substituted glutarimide. By using the microorganism, optically active 3-substituted glutaric acid monoamide can be produced from 3-substituted glutarimide under mild reaction conditions, and the present invention has been completed.
 即ち、本発明は下記式(1);
Figure JPOXMLDOC01-appb-C000003
(式中、Rは置換基を有していてもよい炭素数1~8のアルキル基、置換基を有していてもよい炭素数2~8のアルケニル基、置換基を有していてもよい炭素数2~8のアルキニル基、置換基を有していてもよい炭素数4~20のアリール基、または置換基を有していてもよい炭素数5~20のアラルキル基を示す。)で表される3-置換グルタル酸イミドに不斉加水分解活性を有する酵素源を作用させることを特徴とする、下記式(2);
Figure JPOXMLDOC01-appb-C000004
(式中、*は不斉炭素原子を表す。Rは前記に同じ。)で表される光学活性3-置換グルタル酸モノアミド化合物の製造法に関する。
That is, the present invention provides the following formula (1);
Figure JPOXMLDOC01-appb-C000003
(In the formula, R may have an optionally substituted alkyl group having 1 to 8 carbon atoms, an optionally substituted alkenyl group having 2 to 8 carbon atoms, or an optionally substituted group. A preferable alkynyl group having 2 to 8 carbon atoms, an aryl group having 4 to 20 carbon atoms which may have a substituent, or an aralkyl group having 5 to 20 carbon atoms which may have a substituent. An enzyme source having asymmetric hydrolysis activity is allowed to act on the 3-substituted glutaric imide represented by the following formula (2);
Figure JPOXMLDOC01-appb-C000004
(Wherein, * represents an asymmetric carbon atom, R is the same as above), and relates to a process for producing an optically active 3-substituted glutaric acid monoamide compound.
 本明細書は本願の優先権の基礎である日本国特許出願2014-058189号の明細書に記載される内容を包含する。 This specification includes the contents described in the specification of Japanese Patent Application No. 2014-058189 which is the basis of the priority of the present application.
 本発明により、プロキラルな3-置換グルタルイミドを原料として酵素源を用いた温和な条件での反応により光学活性3-置換グルタル酸モノアミドを製造できる。 According to the present invention, an optically active 3-substituted glutaric acid monoamide can be produced by a reaction under mild conditions using a prochiral 3-substituted glutarimide as a raw material and an enzyme source.
 以下、本発明を、実施形態を用いて詳細に説明する。本発明はこれらにより限定されるものではない。 Hereinafter, the present invention will be described in detail using embodiments. The present invention is not limited to these.
 本発明の原料である3-置換グルタルイミドは下記式(1);
Figure JPOXMLDOC01-appb-C000005
で表され、前記式(1)においてRは置換基を有していてもよい炭素数1~8のアルキル基、置換基を有していてもよい炭素数2~8のアルケニル基、置換基を有していてもよい炭素数2~8のアルキニル基、置換基を有していてもよい炭素数4~20のアリール基、又は置換基を有していてもよい炭素数5~20のアラルキル基を示す。
The 3-substituted glutarimide that is the raw material of the present invention is represented by the following formula (1);
Figure JPOXMLDOC01-appb-C000005
In the formula (1), R is an optionally substituted alkyl group having 1 to 8 carbon atoms, an optionally substituted alkenyl group having 2 to 8 carbon atoms, and a substituent. An alkynyl group having 2 to 8 carbon atoms which may have a substituent, an aryl group having 4 to 20 carbon atoms which may have a substituent, or an aryl group having 5 to 20 carbon atoms which may have a substituent. An aralkyl group is shown.
 前記炭素数1~8のアルキル基としては、直鎖状であっても分岐鎖状であっても良く、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、ペンタニル基、ヘキサニル基、ヘプタニル基、オクタニル基等が挙げられる。 The alkyl group having 1 to 8 carbon atoms may be linear or branched. For example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl Group, tert-butyl group, pentanyl group, hexanyl group, heptanyl group, octanyl group and the like.
 前記炭素数2~8のアルケニル基としては、エテニル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基等が挙げられる。 Examples of the alkenyl group having 2 to 8 carbon atoms include ethenyl group, propenyl group, butenyl group, pentenyl group, hexenyl group, heptenyl group, octenyl group and the like.
 前記炭素数2~8のアルキニル基としては、エチニル基、プロピニル基、ブチニル基、ペンチニル基、ヘキシニル基、ヘプチニル基、オクチニル基等が挙げられる。 Examples of the alkynyl group having 2 to 8 carbon atoms include ethynyl group, propynyl group, butynyl group, pentynyl group, hexynyl group, heptynyl group, octynyl group and the like.
 前記炭素数4~20のアリール基は、窒素原子、酸素原子、硫黄原子等のヘテロ原子を有していてよい。一つの前記アリール基に含まれるヘテロ原子の個数は特に限定されないが、通常は1~2個である。ヘテロ原子は特に好ましくは窒素原子である。前記炭素数4~20のアリール基としては、フェニル基、ナフチル基、アントラニル基、ピリジル基、ピリミジル基、インダニル基、インデニル基等が挙げられる。 The aryl group having 4 to 20 carbon atoms may have a hetero atom such as a nitrogen atom, an oxygen atom or a sulfur atom. The number of heteroatoms contained in one aryl group is not particularly limited, but is usually 1 to 2. The heteroatom is particularly preferably a nitrogen atom. Examples of the aryl group having 4 to 20 carbon atoms include phenyl group, naphthyl group, anthranyl group, pyridyl group, pyrimidyl group, indanyl group, and indenyl group.
 前記炭素数5~20のアラルキル基は、窒素原子、酸素原子、硫黄原子等のヘテロ原子を有していてよい。一つの前記アラルキル基に含まれるヘテロ原子の個数は特に限定されないが、通常は1~2個である。ヘテロ原子は特に好ましくは窒素原子である。前記炭素数5~20のアラルキル基としては、ベンジル基、ナフチルメチル基、アントラニルメチル基、ピリジルメチル基、ピリミジルメチル基、インダニルメチル基、インデニルメチル基等が挙げられる。 The aralkyl group having 5 to 20 carbon atoms may have a hetero atom such as a nitrogen atom, an oxygen atom or a sulfur atom. The number of heteroatoms contained in one aralkyl group is not particularly limited, but is usually 1 to 2. The heteroatom is particularly preferably a nitrogen atom. Examples of the aralkyl group having 5 to 20 carbon atoms include benzyl group, naphthylmethyl group, anthranylmethyl group, pyridylmethyl group, pyrimidylmethyl group, indanylmethyl group, and indenylmethyl group.
 上記アルキル基、アルケニル基、アルキニル基、アリール基及びアラルキル基は置換基を有していても良く、置換基としては、ハロゲン原子、水酸基、アミノ基、ニトロ基等が挙げられる。上記基が置換基を有する場合、その数は特に限定されないが、典型的には1~2個、好ましくは1個である。 The alkyl group, alkenyl group, alkynyl group, aryl group and aralkyl group may have a substituent, and examples of the substituent include a halogen atom, a hydroxyl group, an amino group, and a nitro group. When the above group has a substituent, the number is not particularly limited, but is typically 1 to 2, preferably 1.
 式(1)で表される3-置換グルタルイミドの具体例としては3-イソブチルグルタルイミド、3-プロピルグルタルイミド、3-フェニルグルタルイミド、3-(4-クロロフェニル)グルタルイミド等が挙げられる。 Specific examples of the 3-substituted glutarimide represented by the formula (1) include 3-isobutyl glutarimide, 3-propyl glutarimide, 3-phenyl glutarimide, 3- (4-chlorophenyl) glutarimide and the like.
 本発明の生成物である光学活性3-置換グルタル酸モノアミドは下記式(2);
Figure JPOXMLDOC01-appb-C000006
で表され、前記式(2)においてRは置換基を有していてもよい炭素数1~8のアルキル基、置換基を有していてもよい炭素数2~8のアルケニル基、置換基を有していてもよい炭素数2~8のアルキニル基、置換基を有していてもよい炭素数4~20のアリール基、または置換基を有していてもよい炭素数5~20のアラルキル基を示す。
The optically active 3-substituted glutaric monoamide that is the product of the present invention has the following formula (2):
Figure JPOXMLDOC01-appb-C000006
In the formula (2), R is an optionally substituted alkyl group having 1 to 8 carbon atoms, an optionally substituted alkenyl group having 2 to 8 carbon atoms, and a substituent. An alkynyl group having 2 to 8 carbon atoms, an aryl group having 4 to 20 carbon atoms which may have a substituent, or an aryl group having 5 to 20 carbon atoms which may have a substituent An aralkyl group is shown.
 生成物である式(2)の光学活性3-置換グルタル酸モノアミドにおけるRは、出発原料である式(1)の3-置換グルタルイミドにおけるRと同一である。式(2)中のRの詳細は式(1)中のRに関して詳述した通りである。 R in the optically active 3-substituted glutaric acid monoamide of the formula (2) as the product is the same as R in the 3-substituted glutarimide of the formula (1) as the starting material. Details of R in formula (2) are as described in detail for R in formula (1).
 式(2)で表される光学活性3-置換グルタル酸モノアミドの絶対配置はRであってもSであっても良い。式(2)で表される光学活性3-置換グルタル酸モノアミドの具体例としては、絶対配置がRである3-イソブチルグルタル酸モノアミド、3-プロピルグルタル酸モノアミド、3-フェニルグルタル酸モノアミド、3-(4-クロロフェニル)グルタル酸モノアミド、絶対配置がSである3-イソブチルグルタル酸モノアミド、3-プロピルグルタル酸モノアミド、3-フェニルグルタル酸モノアミド、3-(4-クロロフェニル)グルタル酸モノアミド等が挙げられる。本発明において式(2)で表される光学活性3-置換グルタル酸モノアミドは、0%eeを上回る光学純度(%ee)を有し、好ましくは5%ee以上、より好ましくは10%ee以上、より好ましくは20%ee以上、より好ましくは30%ee以上、より好ましくは40%ee以上、より好ましくは50%ee以上、より好ましくは60%ee以上、より好ましくは65%ee以上、より好ましくは70%ee以上、より好ましくは75%ee以上、より好ましくは80%ee以上、より好ましくは85%ee以上、より好ましくは90%ee以上、より好ましくは95%ee以上の光学純度(%ee)を有する。光学純度の定義は実施例に記載の通りである。
 ここで絶対配置がRである式(2)で表される光学活性3-置換グルタル酸モノアミドの立体構造は、通常、次式で表される。
Figure JPOXMLDOC01-appb-C000007
(式中、Rの詳細は式(1)中のRに関して詳述した通りである)。
 ここで絶対配置がSである式(2)で表される光学活性3-置換グルタル酸モノアミドの立体構造は、通常は、次式で表される。
Figure JPOXMLDOC01-appb-C000008
(式中、Rの詳細は式(1)中のRに関して詳述した通りである)。
The absolute configuration of the optically active 3-substituted glutaric monoamide represented by the formula (2) may be R or S. Specific examples of the optically active 3-substituted glutaric acid monoamide represented by the formula (2) include 3-isobutyl glutaric acid monoamide, 3-propyl glutaric acid monoamide, 3-phenylglutaric acid monoamide, whose absolute configuration is R, 3 -(4-chlorophenyl) glutaric acid monoamide, 3-isobutylglutaric acid monoamide having the absolute configuration S, 3-propylglutaric acid monoamide, 3-phenylglutaric acid monoamide, 3- (4-chlorophenyl) glutaric acid monoamide, etc. It is done. In the present invention, the optically active 3-substituted glutaric monoamide represented by the formula (2) has an optical purity (% ee) exceeding 0% ee, preferably 5% ee or more, more preferably 10% ee or more. More preferably 20% ee or more, more preferably 30% ee or more, more preferably 40% ee or more, more preferably 50% ee or more, more preferably 60% ee or more, more preferably 65% ee or more, more The optical purity (preferably 70% ee or higher, more preferably 75% ee or higher, more preferably 80% ee or higher, more preferably 85% ee or higher, more preferably 90% ee or higher, more preferably 95% ee or higher. % Ee). The definition of optical purity is as described in Examples.
Here, the three-dimensional structure of the optically active 3-substituted glutaric monoamide represented by the formula (2) whose absolute configuration is R is usually represented by the following formula.
Figure JPOXMLDOC01-appb-C000007
(In the formula, details of R are as described in detail for R in formula (1)).
Here, the steric structure of the optically active 3-substituted glutaric monoamide represented by the formula (2) whose absolute configuration is S is usually represented by the following formula.
Figure JPOXMLDOC01-appb-C000008
(In the formula, details of R are as described in detail for R in formula (1)).
 本発明において「酵素源」とは、前記式(1)の3-置換グルタルイミドを前記式(2)の光学活性3-置換グルタル酸モノアミドへと不斉加水分解する活性を有する酵素を含むものであれば特に限定されず、前記酵素自体や、前記式(1)の3-置換グルタルイミドを前記式(2)の光学活性3-置換グルタル酸モノアミドへと不斉加水分解する活性を有する微生物の菌体、その処理物等が挙げられる。 In the present invention, the “enzyme source” includes an enzyme having an activity for asymmetric hydrolysis of the 3-substituted glutarimide of the formula (1) to the optically active 3-substituted glutaric acid monoamide of the formula (2). If it is, it will not specifically limit, The microorganisms which have the activity which asymmetrically hydrolyzes the said enzyme itself or the 3-substituted glutarimide of the said Formula (1) to the optically active 3-substituted glutaric acid monoamide of the said Formula (2) And the treated product thereof.
 「微生物の菌体」とは、菌体そのものの他、菌体を含む培養液あるいは菌体懸濁液を含む。なお、菌体には、野生株の他、変異を生じさせて有利な性質を得た変異株も含み、さらには、該微生物由来の上記不斉加水分解活性を有する酵素をコードするDNAが導入された形質転換株も含む。 “Microbial cells of microorganisms” include, in addition to the cells themselves, a culture solution or cell suspension containing cells. In addition to wild-type strains, microbial cells include mutant strains that have gained advantageous properties, and further, DNA encoding the above-mentioned enzyme having asymmetric hydrolysis activity derived from the microorganism has been introduced. Transformed strains.
 「その処理物」とは、例えば、粗抽出液、凍結乾燥菌体、アセトン乾燥菌体、又はそれら菌体の破砕物等であってよく、さらには、前記菌体から取得された3-置換グルタル酸イミドを不斉加水分解する活性を有する酵素であってもよい。前記菌体から取得された酵素の精製の程度は特に限定されず、精製酵素であってもよいし、部分精製酵素であってもよい。 The “processed product” may be, for example, a crude extract, freeze-dried cells, acetone-dried cells, or a crushed product of these cells, and 3-substituted obtained from the cells. It may be an enzyme having an activity of asymmetric hydrolysis of glutaric imide. The degree of purification of the enzyme obtained from the cells is not particularly limited, and may be a purified enzyme or a partially purified enzyme.
 酵素源が酵素自体である場合、該酵素は無細胞タンパク質合成系等の任意の手段で調製することができる。酵素の精製の程度は特に限定されない。 When the enzyme source is the enzyme itself, the enzyme can be prepared by any means such as a cell-free protein synthesis system. The degree of enzyme purification is not particularly limited.
 上記の酵素源又はその処理物に含まれる、前記式(1)の3-置換グルタルイミドを前記式(2)の光学活性3-置換グルタル酸モノアミドへと不斉加水分解する活性を有する酵素としては、例えば、以下の(I)~(VI)のポリペプチドからなる群から選択される少なくとも1つを好適に使用することができる。
(I)配列番号1に記載のアミノ酸配列からなるポリペプチド;
(II)配列番号1に記載のアミノ酸配列において1又は複数のアミノ酸が置換、欠失、挿入又は付加したアミノ酸配列からなり、前記式(1)の3-置換グルタルイミドを前記式(2)の光学活性3-置換グルタル酸モノアミドへと不斉加水分解する酵素活性を有するポリペプチド;
(III)配列番号1に記載のアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなり、前記式(1)の3-置換グルタルイミドを前記式(2)の光学活性3-置換グルタル酸モノアミドへと不斉加水分解する酵素活性を有するポリペプチド;
(IV)配列番号6に記載のアミノ酸配列からなるポリペプチド;
(V)配列番号6に記載のアミノ酸配列において1又は複数のアミノ酸が置換、欠失、挿入又は付加したアミノ酸配列からなり、前記式(1)の3-置換グルタルイミドを前記式(2)の光学活性3-置換グルタル酸モノアミドへと不斉加水分解する酵素活性を有するポリペプチド;
(VI)配列番号6に記載のアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなり、前記式(1)の3-置換グルタルイミドを前記式(2)の光学活性3-置換グルタル酸モノアミドへと不斉加水分解する酵素活性を有するポリペプチド。
As an enzyme having an activity to asymmetrically hydrolyze 3-substituted glutarimide of the above formula (1) into an optically active 3-substituted glutaric acid monoamide of the above formula (2), contained in the above enzyme source or a processed product thereof For example, at least one selected from the group consisting of the following polypeptides (I) to (VI) can be preferably used.
(I) a polypeptide comprising the amino acid sequence set forth in SEQ ID NO: 1;
(II) consisting of an amino acid sequence in which one or a plurality of amino acids are substituted, deleted, inserted or added in the amino acid sequence shown in SEQ ID NO: 1, and the 3-substituted glutarimide of the formula (1) is represented by the formula (2) A polypeptide having an enzymatic activity for asymmetric hydrolysis to optically active 3-substituted glutaric acid monoamide;
(III) An amino acid sequence having 70% or more identity to the amino acid sequence set forth in SEQ ID NO: 1, wherein the 3-substituted glutarimide of the formula (1) is substituted with the optically active 3-substituted group of the formula (2) A polypeptide having an enzymatic activity for asymmetric hydrolysis to glutaric monoamide;
(IV) a polypeptide comprising the amino acid sequence set forth in SEQ ID NO: 6;
(V) consisting of an amino acid sequence in which one or more amino acids are substituted, deleted, inserted or added in the amino acid sequence shown in SEQ ID NO: 6, wherein the 3-substituted glutarimide of the formula (1) is converted to the formula (2) A polypeptide having an enzymatic activity for asymmetric hydrolysis to optically active 3-substituted glutaric acid monoamide;
(VI) consisting of an amino acid sequence having 70% or more identity to the amino acid sequence shown in SEQ ID NO: 6, wherein the 3-substituted glutarimide of the formula (1) is substituted with the optically active 3-substitution of the formula (2) A polypeptide having an enzymatic activity that undergoes asymmetric hydrolysis to glutaric acid monoamide.
 前記(II)又は(V)において、アミノ酸の置換、欠失、挿入又は付加に関する「1又は複数」とは、例えば1~50、好ましくは1~25、より好ましくは1~20、より好ましくは1~15、より好ましくは1~10、より好ましくは1~7、より好ましくは1~5、より好ましくは1~4、より好ましくは1~3、最も好ましくは1もしくは2をいう。アミノ酸の置換は、保存的アミノ酸置換が望ましい。「保存的アミノ酸置換」とは、電荷、側鎖、極性、芳香族性等の物理化学的機能が類似するアミノ酸間の置換をいう。物理化学的機能の類似するアミノ酸は、例えば、塩基性アミノ酸(アルギニン、リジン、ヒスチジン)、酸性アミノ酸(アスパラギン酸、グルタミン酸)、無電荷極性アミノ酸(アスパラギン、グルタミン、セリン、トレオニン、システイン、チロシン)、無極性アミノ酸(グリシン、ロイシン、イソロイシン、アラニン、バリン、プロリン、フェニルアラニン、トリプトファン、メチオニン)、分枝鎖アミノ酸(ロイシン、バリン、イソロイシン)、芳香族アミノ酸(フェニルアラニン、チロシン、トリプトファン、ヒスチジン)等に分類することができる。配列番号1又は6に記載のアミノ酸配列における1又は複数のアミノ酸の付加としては、好ましくは、配列番号1又は6に記載のアミノ酸配列のN末端及びC末端のうち少なくとも一方への、合計で1又は複数のアミノ酸の付加である。 In the above (II) or (V), “one or more” relating to amino acid substitution, deletion, insertion or addition is, for example, 1 to 50, preferably 1 to 25, more preferably 1 to 20, more preferably 1 to 15, more preferably 1 to 10, more preferably 1 to 7, more preferably 1 to 5, more preferably 1 to 4, more preferably 1 to 3, and most preferably 1 or 2. The amino acid substitution is preferably a conservative amino acid substitution. “Conservative amino acid substitution” refers to substitution between amino acids having similar physicochemical functions such as charge, side chain, polarity, and aromaticity. Amino acids with similar physicochemical functions include, for example, basic amino acids (arginine, lysine, histidine), acidic amino acids (aspartic acid, glutamic acid), uncharged polar amino acids (asparagine, glutamine, serine, threonine, cysteine, tyrosine), Classified into nonpolar amino acids (glycine, leucine, isoleucine, alanine, valine, proline, phenylalanine, tryptophan, methionine), branched chain amino acids (leucine, valine, isoleucine), aromatic amino acids (phenylalanine, tyrosine, tryptophan, histidine) can do. The addition of one or more amino acids in the amino acid sequence described in SEQ ID NO: 1 or 6 is preferably 1 in total to at least one of the N-terminal and C-terminal of the amino acid sequence described in SEQ ID NO: 1 or 6. Or addition of multiple amino acids.
 前記(III)又は(VI)のポリペプチドの、配列番号1又は6に記載のアミノ酸配列に対する同一性は、好ましくは80%以上、より好ましくは85%以上、より好ましくは90%以上、より好ましくは95%以上、より好ましくは97%以上、より好ましくは98%以上、最も好ましくは99%以上である。本発明において、アミノ酸配列の同一性の値は、複数のアミノ酸配列間の同一性を演算するソフトウェア(例えば、FASTA、DANASYS、BLAST、Genetyx)を用いてデフォルトの設定で算出した値を示す。アミノ酸配列の同一性の値は、一致度が最大となるように一対のアミノ酸配列をアライメントした際に一致するアミノ酸残基の数を算出し、当該一致するアミノ酸残基の数の、比較したアミノ酸配列の全アミノ酸残基数に対する割合として算出される。ここで、ギャップがある場合、上記の全アミノ酸残基数は、1つのギャップを1つのアミノ酸残基として数えたアミノ酸残基数である。同一性の決定方法の詳細については、例えばAltschul et al, Nuc. Acids. Res. 25, 3389-3402, 1977及びAltschul et al, J. Mol. Biol. 215, 403-410, 1990を参照されたい。 The identity of the polypeptide of (III) or (VI) to the amino acid sequence shown in SEQ ID NO: 1 or 6 is preferably 80% or more, more preferably 85% or more, more preferably 90% or more, more preferably Is 95% or more, more preferably 97% or more, more preferably 98% or more, and most preferably 99% or more. In the present invention, the identity value of amino acid sequences indicates a value calculated with default settings using software (for example, FASTA, DANASYS, BLAST, Genetyx) that calculates identity between a plurality of amino acid sequences. The amino acid sequence identity value is calculated by calculating the number of matching amino acid residues when aligning a pair of amino acid sequences so that the degree of matching is maximized, and comparing the number of matching amino acid residues. Calculated as a percentage of the total number of amino acid residues in the sequence. Here, when there is a gap, the total number of amino acid residues is the number of amino acid residues obtained by counting one gap as one amino acid residue. For details on how to determine identity, see, for example, Altschul et al, Nuc. Acids. Res. 25, 3389-3402, 1977 and Altschul et al, J. MoI. Mol. Biol. 215, 403-410, 1990.
 また、前記(III)又は(VI)のポリペプチドの、配列番号1又は6に記載のアミノ酸配列に対する類似性は、好ましくは75%以上、より好ましくは80%以上、より好ましくは85%以上、より好ましくは90%以上、より好ましくは95%以上、より好ましくは97%以上、より好ましくは98%以上、最も好ましくは99%以上である。アミノ酸配列の類似性の値は、一致度が最大となるように一対のアミノ酸配列をアライメントした際に一致するアミノ酸残基の数と、物理化学的機能が類似するアミノ酸残基との合計を算出し、当該合計の、比較したアミノ酸配列の全アミノ酸残基数に対する割合として算出される。ここでアミノ酸配列類似度については、アミノ酸配列同一性に関して上記したものと同様のソフトウェアを用いてコンピューターにより算出することができる。全アミノ酸残基数の算出方法については、アミノ酸同一性に関して上記した通りである。物理化学的機能が類似するアミノ酸残基については上記の通りである。 The similarity of the polypeptide of (III) or (VI) to the amino acid sequence of SEQ ID NO: 1 or 6 is preferably 75% or more, more preferably 80% or more, more preferably 85% or more, More preferably, it is 90% or more, more preferably 95% or more, more preferably 97% or more, more preferably 98% or more, and most preferably 99% or more. The similarity value of amino acid sequences is calculated by adding the number of amino acid residues that match when aligning a pair of amino acid sequences so that the degree of coincidence is maximized, and the amino acid residues that have similar physicochemical functions. Then, it is calculated as a ratio of the total to the total number of amino acid residues of the compared amino acid sequences. Here, the amino acid sequence similarity can be calculated by a computer using the same software as described above with respect to amino acid sequence identity. The method for calculating the total number of amino acid residues is as described above for amino acid identity. The amino acid residues having similar physicochemical functions are as described above.
 前記(II)、(III)、(V)又は(VI)における前記式(1)の3-置換グルタルイミドを前記式(2)の光学活性3-置換グルタル酸モノアミドへと不斉加水分解する酵素活性は、実施例3の(1)に記載の手順に沿って確認することができる。前記ポリペプチドは、総タンパク質1mgあたりの比活性が好ましくは0.1mU/mg以上、より好ましくは1.0mU/mg以上、より好ましくは5.0mU/mg以上、より好ましくは10mU/mg以上、最も好ましくは100mU/mg以上、上限は特に限定されないが例えば3000mU/mg以下、典型的には2000mU/mg以下のタンパク質混合物又は精製物の形態で反応系に添加することができる。酵素活性の単位の定義及び測定法は実施例3の(1)に記載の通りである。また、該酵素活性により得られる式(2)の光学活性3-置換グルタル酸モノアミドの光学純度の範囲は上記の通りである。 Asymmetric hydrolysis of the 3-substituted glutarimide of the formula (1) in the formula (II), (III), (V) or (VI) to the optically active 3-substituted glutaric acid monoamide of the formula (2) The enzyme activity can be confirmed according to the procedure described in Example 3 (1). The polypeptide preferably has a specific activity per 1 mg of total protein of 0.1 mU / mg or more, more preferably 1.0 mU / mg or more, more preferably 5.0 mU / mg or more, more preferably 10 mU / mg or more, Most preferably, it is 100 mU / mg or more, and the upper limit is not particularly limited, but for example, it can be added to the reaction system in the form of a protein mixture or purified product of 3000 mU / mg or less, typically 2000 mU / mg or less. The definition of the unit of enzyme activity and the measuring method are as described in Example 3 (1). The optical purity range of the optically active 3-substituted glutaric monoamide of formula (2) obtained by the enzyme activity is as described above.
 前記酵素源は公知の手段により固定化された状態で用いることができる。固定化は、当業者に周知の方法(例えば架橋法、物理的吸着法、包括法等)で行うことができる。酵素源を固定化するための担体は特に限定されず、当業者であれば適宜選択し使用することができる。 The enzyme source can be used in a state immobilized by known means. Immobilization can be performed by methods well known to those skilled in the art (for example, a crosslinking method, a physical adsorption method, a comprehensive method, etc.). The carrier for immobilizing the enzyme source is not particularly limited and can be appropriately selected and used by those skilled in the art.
 本明細書で後述する各微生物は、特許微生物寄託機関やその他研究機関から入手可能であり、更には、自然界から分離することもできる。例えば、NBRC番号で特定される微生物は、独立行政法人製品評価技術基盤機構生物遺伝資源部門(日本国、千葉)、DSM番号で特定される微生物は、DSMZ-ドイツ微生物細胞培養コレクション、AKU番号で特定される微生物は、京都大学大学院農学研究科応用生命科学専攻発酵生理及び醸造学研究室(日本国、京都)より入手可能である。 Each microorganism described later in this specification can be obtained from a patent microorganism depositary or other research institution, and can also be separated from the natural world. For example, the microorganism identified by the NBRC number is the National Institute of Technology and Evaluation Biological Resource Center (Chiba, Japan), and the microorganism identified by the DSM number is the DSMZ-German microbial cell culture collection, AKU number. The microorganisms identified are available from the Fermentation Physiology and Brewing Science Laboratory (Kyoto, Japan), Department of Applied Life Sciences, Graduate School of Agriculture, Kyoto University.
 また、3-置換グルタルイミドや酵素生産を誘導するための誘導剤を用いて集積培養することにより、自然界から分離することもできる。 Also, it can be separated from the natural world by enrichment culture using 3-substituted glutarimide or an inducer for inducing enzyme production.
 前記3-置換グルタルイミドに不斉加水分解活性を有する酵素源としては、特に限定されないが、例えば、アクロモバクター(Achromobacter)属、アルカリゲネス(Alcaligenes)属、バークホルデリア(Burkholderia)属、コマモナス(Comamonas)属、デルフチア(Delftia)属、及びシュードモナス(Pseudomonas)属からなる群から選ばれた微生物由来の酵素源が挙げられる。 The enzyme source having an asymmetric hydrolysis activity in the 3-substituted glutarimide is not particularly limited, and examples thereof include, for example, the genus Achromobacter, the genus Alcaligenes, the genus Burkholderia, the comamonas ( An enzyme source derived from a microorganism selected from the group consisting of the genus Comamonas, Delftia, and Pseudomonas.
 前記酵素源のうち、絶対配置がRである3-置換グルタル酸モノアミドを製造する能力を有する酵素源としては、例えば、アクロモバクター(Achromobacter)属、アルカリゲネス(Alcaligenes)属、バークホルデリア(Burkholderia)属、コマモナス(Comamonas)属、デルフチア(Delftia)属、及びシュードモナス(Pseudomonas)属からなる群から選ばれた微生物由来の酵素源が挙げられ、好ましくは、アクロモバクター スピーシーズ(Achromobacter sp.)、アクロモバクター キシロソキシダンス サブスピーシーズ デニトリフィカンス(Achromobacter xylosoxidans subsp. denitrificans)、アルカリゲネス ファエカリス(Alcaligenes faecalis)、バークホルデリア フィトファーマンス(Burkholderia phytofirmans)、コマモナス スピーシーズ(Comamonas sp.)、デルフチア アシドボランス(Delftia acidovorans)、デルフチア スピーシーズ(Delftia sp.)、又はシュードモナス プチダ(Pseudomonas putida)等の微生物由来の酵素源が挙げられる。より好ましくはアクロモバクター スピーシーズ(Achromobacter sp.)A35 AKU110、アクロモバクター キシロソキシダンス サブスピーシーズ デニトリフィカンス(Achromobacter xylosoxidans subsp. denitrificans)NBRC12669、アルカリゲネス ファエカリス(Alcaligenes faecalis)NBRC13111、バークホルデリア フィトファーマンス(Burkholderia phytofirmans)DSM17436、コマモナス スピーシーズ(Comamonas sp.)I3-4、デルフチア アシドボランス(Delftia acidovorans)NBRC14950、デルフチア スピーシーズ(Delftia sp.)J3-2、又はシュードモナス プチダ(Pseudomonas putida)s52 AKU885である。 Among the enzyme sources, examples of the enzyme source having the ability to produce 3-substituted glutaric monoamides whose absolute configuration is R include, for example, the genus Achromobacter, the genus Alcaligenes, and Burkholderia. ), An enzyme source derived from a microorganism selected from the group consisting of the genus Comamonas, the Delftia genus, and the Pseudomonas genus. Preferably, Achromobacter sp. Achromobacter xylosoxidans subspecies denitrificans, Alcaligenes faecalis, Burkholderia phytofirmans, coma Doboransu (Delftia acidovorans), Delftia species (Delftia sp.), Or Pseudomonas putida (Pseudomonas putida) enzyme source derived from microorganisms, and the like. More preferably, Achromobacter sp. A35 AKU 110, Achromobacter xylosoxidans sub sp. (Burkholderia phytofirmans) DSM 17436, Comamonas sp. I3-4, Delftia ovo acidovorans NBRC 14950, Delftia ovo sp.
 また、前記微生物由来の加水分解酵素の産生能を有する微生物としては、野生株又は変異株のいずれでもよい。あるいは細胞融合又は遺伝子操作等の遺伝学的手法により誘導される微生物も用いることができる。遺伝子操作された本酵素を生産する微生物は、例えば、WO98/35025に記載の、これらの酵素を単離及び/又は精製して酵素のアミノ酸配列の一部又は全部を決定する工程、このアミノ酸配列に基づいて酵素をコードするDNA配列を得る工程、このDNAを他の微生物に導入して組換え微生物を得る工程、及びこの組換え微生物を培養して、本酵素を得る工程を含有する方法等により得ることができる。 In addition, the microorganism having the ability to produce a hydrolase derived from the microorganism may be either a wild strain or a mutant strain. Alternatively, microorganisms derived by genetic techniques such as cell fusion or gene manipulation can also be used. A microorganism that produces the genetically engineered enzyme is, for example, a process described in WO 98/35025 for isolating and / or purifying these enzymes to determine part or all of the amino acid sequence of the enzyme, this amino acid sequence A method comprising a step of obtaining a DNA sequence encoding an enzyme based on the above, a step of obtaining a recombinant microorganism by introducing this DNA into another microorganism, and a step of culturing the recombinant microorganism to obtain the enzyme, etc. Can be obtained.
 上記のような組換え微生物としては、前記加水分解酵素をコードするDNAを有するプラスミドで形質転換された形質転換微生物が挙げられる。また、宿主微生物としてはエシェリヒア・コリ(Escherichia coli)が好ましい。 Examples of the recombinant microorganism as described above include a transformed microorganism transformed with a plasmid having a DNA encoding the hydrolase. The host microorganism is preferably Escherichia coli.
 酵素源として用いる微生物の為の培養培地は、その微生物が増殖し得るものである限り特に限定されない。例えば、炭素源として、グルコース、シュークロース等の糖質、エタノール、グリセロール等のアルコール類、オレイン酸、ステアリン酸等の脂肪酸及びそのエステル類、菜種油、大豆油等の油類、窒素源として、硫酸アンモニウム、硝酸ナトリウム、ペプトン、カザミノ酸、コーンスティープリカー、ふすま、酵母エキスなど、無機塩類として、硫酸マグネシウム、塩化ナトリウム、炭酸カルシウム、燐酸1水素カリウム、燐酸2水素カリウムなど、他の栄養源として、麦芽エキス、肉エキス等を含有する通常の液体培地を使用することができる。 The culture medium for the microorganism used as the enzyme source is not particularly limited as long as the microorganism can grow. For example, as a carbon source, carbohydrates such as glucose and sucrose, alcohols such as ethanol and glycerol, fatty acids such as oleic acid and stearic acid and esters thereof, oils such as rapeseed oil and soybean oil, and ammonium sulfate as a nitrogen source , Sodium nitrate, peptone, casamino acid, corn steep liquor, bran, yeast extract, etc. Inorganic salts such as magnesium sulfate, sodium chloride, calcium carbonate, potassium hydrogen phosphate, potassium dihydrogen phosphate and other malt sources, malt A normal liquid medium containing an extract, meat extract or the like can be used.
 また、微生物の酵素生産を誘導するために誘導剤を培地に添加してもよい。誘導剤としては、イミド化合物等が挙げられる。例えば、イミド化合物としては、スクシンイミド、2-メチルスクシンイミド、グルタルイミド、マレイミド、フタルイミド、3-イソブチルグルタルイミド、3-プロピルグルタルイミド、3-フェニルグルタルイミド、3-(4-クロロフェニル)グルタルイミドなどが挙げられる。 In addition, an inducer may be added to the medium in order to induce microbial enzyme production. Examples of the inducing agent include imide compounds. For example, examples of the imide compound include succinimide, 2-methylsuccinimide, glutarimide, maleimide, phthalimide, 3-isobutylglutarimide, 3-propylglutarimide, 3-phenylglutarimide, 3- (4-chlorophenyl) glutarimide, and the like. Can be mentioned.
 これら誘導剤の培地への添加量は0.05%~2.0%、好ましくは0.1%~1.0%である。ここで%は重量%である。培養は好気的に行い、通常、培養時間は1~5日間程度、培地のpHが3~9、培養温度は10~50℃で行うことができる。 The amount of these inducers added to the medium is 0.05% to 2.0%, preferably 0.1% to 1.0%. Here,% is% by weight. Cultivation is carried out aerobically. Usually, the cultivation time is about 1 to 5 days, the pH of the medium is 3 to 9, and the cultivation temperature is 10 to 50 ° C.
 本発明において、3-置換グルタルイミド(1)の立体選択的な加水分解反応は、適当な溶媒中に原料である3-置換グルタルイミド(1)、及び前記酵素源を添加し、pH調整下攪拌することにより行うことができる。 In the present invention, the stereoselective hydrolysis reaction of 3-substituted glutarimide (1) is carried out by adding 3-substituted glutarimide (1) as a raw material and the enzyme source to a suitable solvent, and adjusting the pH. This can be done by stirring.
 反応条件は用いる酵素、微生物又はその処理物、基質濃度等によって異なる。通常、基質濃度は好ましくは約0.1~99重量%、より好ましくは1~60重量%である。反応温度は好ましくは10~60℃、より好ましくは20~50℃である。反応のpHは好ましくは4~11、より好ましくは6~9である。反応時間は好ましくは0.5~120時間、より好ましくは1~120時間、特に好ましくは1~72時間である。反応は大気圧条件下で行うことができる。基質は一括に添加、分割して添加、又は連続的に添加して行うことができる。反応はバッチ方式又は連続方式で行うことができる。 Reaction conditions vary depending on the enzyme, microorganism or processed product, substrate concentration, etc. used. Usually, the substrate concentration is preferably about 0.1 to 99% by weight, more preferably 1 to 60% by weight. The reaction temperature is preferably 10 to 60 ° C, more preferably 20 to 50 ° C. The pH of the reaction is preferably 4-11, more preferably 6-9. The reaction time is preferably 0.5 to 120 hours, more preferably 1 to 120 hours, and particularly preferably 1 to 72 hours. The reaction can be carried out under atmospheric pressure conditions. The substrate can be added in batches, divided or added continuously. The reaction can be carried out batchwise or continuously.
 特許文献1及び非特許文献1で開示されているような光学分割法では、ラセミ体である出発原料から目的とする光学活性体は最大でも50%の収率でしか得ることができない。本発明の方法では、出発原料である3-置換グルタル酸イミド(1)から50%を超える収率で光学活性3-置換グルタル酸モノアミド(2)を得ることが可能であるため、工業的利用において非常に有利である。 In the optical resolution method disclosed in Patent Document 1 and Non-Patent Document 1, the target optically active substance can be obtained only from the racemic starting material in a yield of 50% at the maximum. In the method of the present invention, the optically active 3-substituted glutaric acid monoamide (2) can be obtained in a yield exceeding 50% from the 3-substituted glutaric imide (1) as a starting material. Is very advantageous.
 反応で生じた光学活性3-置換グルタル酸モノアミドは、常法により、それぞれを単離、精製できる。例えば、加水分解反応で生じた光学活性3-置換グルタル酸モノアミドを含む反応液を、酢酸エチル、トルエン等の有機溶媒で抽出し、有機溶媒を減圧下で留去した後、蒸留、再結晶、又は、クロマトグラフィー等の処理を行うことにより、単離、精製できる。また、反応液から酵素源を除去したろ液を、硫酸等を用いて中和晶析し、析出した目的物をろ別することによっても単離、精製できる。 Each of the optically active 3-substituted glutaric acid monoamides produced by the reaction can be isolated and purified by a conventional method. For example, a reaction liquid containing an optically active 3-substituted glutaric acid monoamide generated by hydrolysis reaction is extracted with an organic solvent such as ethyl acetate and toluene, and the organic solvent is distilled off under reduced pressure. Then, distillation, recrystallization, Alternatively, it can be isolated and purified by performing a treatment such as chromatography. Further, the filtrate from which the enzyme source has been removed from the reaction solution can be isolated and purified by neutralizing and crystallization using sulfuric acid or the like, and filtering out the precipitated target product.
 以下に実施例を挙げて、本発明を更に具体的に説明するが、本発明はこれら実施例のみに限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
[実施例1]
 3-(4-クロロフェニル)グルタルイミドの立体選択的加水分解
 表1に示した各微生物を、試験管内で滅菌した5mlの培地(水中にトリプトン0.5w/v%、イーストエキス0.5w/v%、グルコース0.1w/v%、リン酸水素2カリウム0.1w/v%、pH7.0)に植菌して、30℃で65時間、振とう培養した。培養終了後、遠心分離により菌体を集め、0.2mlの100mMリン酸緩衝液(pH7.0)に懸濁した。
[Example 1]
Stereoselective hydrolysis of 3- (4-chlorophenyl) glutarimide Each microorganism shown in Table 1 was sterilized in a test tube in 5 ml of medium (trypton 0.5 w / v% in water, yeast extract 0.5 w / v %, Glucose 0.1 w / v%, dipotassium hydrogen phosphate 0.1 w / v%, pH 7.0), and cultured with shaking at 30 ° C. for 65 hours. After completion of the culture, the cells were collected by centrifugation and suspended in 0.2 ml of 100 mM phosphate buffer (pH 7.0).
 この菌体懸濁液0.2mlと、(参考例1)に記載した方法で合成した基質3-(4-クロロフェニル)グルタルイミド1mgを混合し、大気圧下で30℃にて23時間振とうした。反応終了後、遠心分離にて固形物を除去し、反応液中の基質及び生成物を高速液体クロマトグラフィーにて分析することにより、変換率(%)及び光学純度(%ee)を求めた。
 その結果を表1に示す。
0.2 ml of this bacterial cell suspension and 1 mg of the substrate 3- (4-chlorophenyl) glutarimide synthesized by the method described in Reference Example 1 are mixed and shaken at 30 ° C. for 23 hours under atmospheric pressure. did. After completion of the reaction, the solid matter was removed by centrifugation, and the conversion rate (%) and optical purity (% ee) were determined by analyzing the substrate and product in the reaction solution by high performance liquid chromatography.
The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000009
・変換率(%)=生成物量/(基質量+生成物量)×100
・光学純度(%ee)=(A-B)/(A+B)×100 (A及びBは対応する鏡像異性体量を表し、A>Bである)
Figure JPOXMLDOC01-appb-T000009
Conversion (%) = product amount / (base mass + product amount) × 100
Optical purity (% ee) = (A−B) / (A + B) × 100 (A and B represent the amount of the corresponding enantiomer, and A> B)
<高速液体クロマトグラフィー分析条件>
[変換率の分析]
・カラム:5C18-ARII(4.6mmφ×250mm、ナカライテスク社製)
・溶離液:20mMリン酸水溶液(pH2.5)/アセトニトリル=6/4
・流速:0.5ml/分、カラム温度:30℃、測定波長:210nm
<High-performance liquid chromatography analysis conditions>
[Conversion rate analysis]
Column: 5C18-ARII (4.6 mmφ × 250 mm, manufactured by Nacalai Tesque)
Eluent: 20 mM phosphoric acid aqueous solution (pH 2.5) / acetonitrile = 6/4
Flow rate: 0.5 ml / min, column temperature: 30 ° C., measurement wavelength: 210 nm
[光学純度の分析]
・カラム:SUMICHIRAL OA-7000(4.6mmφ×250mm、住化分析センター社製)
・溶離液:20mMリン酸水溶液(pH2.5)/アセトニトリル=8/2
・流速:0.5ml/分、カラム温度:室温、測定波長:210nm
[Analysis of optical purity]
Column: SUMICHIRAL OA-7000 (4.6 mmφ × 250 mm, manufactured by Sumika Chemical Analysis Co., Ltd.)
Eluent: 20 mM phosphoric acid aqueous solution (pH 2.5) / acetonitrile = 8/2
Flow rate: 0.5 ml / min, column temperature: room temperature, measurement wavelength: 210 nm
[実施例2]
 3-イソブチルグルタルイミドの立体選択的加水分解
 表2に示した各微生物を、試験管内で滅菌した5mlの培地(水中にトリプトン0.5w/v%、イーストエキス0.5w/v%、グルコース0.1w/v%、リン酸水素2カリウム0.1w/v%、pH7.0)に植菌して、30℃で22時間、振とう培養した。培養終了後、遠心分離により菌体を集め、0.2mlの100mMリン酸緩衝液(pH7.0)に懸濁した。
[Example 2]
Stereoselective hydrolysis of 3-isobutylglutarimide Each microorganism shown in Table 2 was sterilized in a test tube in 5 ml of medium (trypton 0.5 w / v% in water, yeast extract 0.5 w / v%, glucose 0 0.1 w / v%, dipotassium hydrogen phosphate 0.1 w / v%, pH 7.0), and cultured with shaking at 30 ° C. for 22 hours. After completion of the culture, the cells were collected by centrifugation and suspended in 0.2 ml of 100 mM phosphate buffer (pH 7.0).
 この菌体懸濁液0.2mlと、(参考例2)に記載した方法で合成した基質3-イソブチルグルタルイミド1mgを混合し、大気圧下で30℃にて24時間振とうした。反応終了後、遠心分離にて固形物を除去し、反応液中の基質及び生成物を高速液体クロマトグラフィーにて分析することにより、変換率(%)を求めた。 0.2 ml of this bacterial cell suspension and 1 mg of the substrate 3-isobutylglutarimide synthesized by the method described in (Reference Example 2) were mixed and shaken at 30 ° C. for 24 hours under atmospheric pressure. After completion of the reaction, the solid matter was removed by centrifugation, and the conversion rate (%) was determined by analyzing the substrate and product in the reaction solution by high performance liquid chromatography.
 さらに、反応液中生成物を、フェナシルブロマイドを用いて誘導化することで取得した誘導体を高速液体クロマトグラフィーにて分析することにより、光学純度(%ee)を求めた。
 その結果を表2に示す。
Furthermore, the optical purity (% ee) was calculated | required by analyzing the derivative | guide_body obtained by derivatizing the product in a reaction liquid using phenacyl bromide by a high performance liquid chromatography.
The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000010
・変換率(%)=生成物量/(基質量+生成物量)×100
・光学純度(%ee)=(A-B)/(A+B)×100 (A及びBは対応する鏡像異性体量を表し、A>Bである)
Figure JPOXMLDOC01-appb-T000010
Conversion (%) = product amount / (base mass + product amount) × 100
Optical purity (% ee) = (A−B) / (A + B) × 100 (A and B represent the amount of the corresponding enantiomer, and A> B)
<高速液体クロマトグラフィー分析条件>
[変換率の分析]
・カラム:5C18-ARII(4.6mmφ×250mm、ナカライテスク社製)
・溶離液:20mMリン酸水溶液(pH2.5)/アセトニトリル=6/4
・流速:0.5ml/分、カラム温度:30℃、測定波長:210nm
<High-performance liquid chromatography analysis conditions>
[Conversion rate analysis]
Column: 5C18-ARII (4.6 mmφ × 250 mm, manufactured by Nacalai Tesque)
Eluent: 20 mM phosphoric acid aqueous solution (pH 2.5) / acetonitrile = 6/4
Flow rate: 0.5 ml / min, column temperature: 30 ° C., measurement wavelength: 210 nm
[光学純度の分析]
・カラム:CHIRALPAK AD-RH(4.6mmφ×150mm、ダイセル化学社製)
・溶離液:20mMリン酸水溶液(pH2.5)/アセトニトリル=1/1
・流速:0.5ml/分、カラム温度:室温、測定波長:210nm
[Analysis of optical purity]
Column: CHIRALPAK AD-RH (4.6 mmφ × 150 mm, manufactured by Daicel Chemical Industries)
Eluent: 20 mM phosphoric acid aqueous solution (pH 2.5) / acetonitrile = 1/1
Flow rate: 0.5 ml / min, column temperature: room temperature, measurement wavelength: 210 nm
(参考例1)3-(4-クロロフェニル)グルタルイミドの合成
 3-(4-クロロフェニル)グルタル酸(24.27g、100mmol)に尿素(15.02g、250mmol)を加え、160℃で1時間攪拌した。反応液を冷却したのち、蒸留水(83ml)を加えて90℃で10分間攪拌、25℃で1時間攪拌し、析出した固体を濾別して減圧下にて乾燥した。この固体にトルエン(35ml)を加えて90℃で10分間攪拌、25℃で60時間攪拌したのち、25%アンモニア水溶液(10ml)を加えて25℃で30分間攪拌した。析出した固体を濾別して減圧下にて乾燥することにより、3-(4-クロロフェニル)グルタルイミドの白色固体(17.87g、79.3mmol)を得た。
標題化合物:
H-NMR(400MHz、CDCl):δ(ppm)2.72(m,2H),2.91(m,2H),3.41(m,1H),7.16(d,2H),7.36(d,2H),7.94(br,1H)
Reference Example 1 Synthesis of 3- (4-chlorophenyl) glutarimide Urea (15.02 g, 250 mmol) was added to 3- (4-chlorophenyl) glutaric acid (24.27 g, 100 mmol) and stirred at 160 ° C. for 1 hour. did. After cooling the reaction solution, distilled water (83 ml) was added, and the mixture was stirred at 90 ° C. for 10 minutes and stirred at 25 ° C. for 1 hour. The precipitated solid was separated by filtration and dried under reduced pressure. Toluene (35 ml) was added to this solid and stirred at 90 ° C. for 10 minutes and then at 25 ° C. for 60 hours, and then 25% aqueous ammonia solution (10 ml) was added and stirred at 25 ° C. for 30 minutes. The precipitated solid was separated by filtration and dried under reduced pressure to obtain a white solid (17.87 g, 79.3 mmol) of 3- (4-chlorophenyl) glutarimide.
Title compound:
1 H-NMR (400 MHz, CDCl 3 ): δ (ppm) 2.72 (m, 2H), 2.91 (m, 2H), 3.41 (m, 1H), 7.16 (d, 2H) , 7.36 (d, 2H), 7.94 (br, 1H)
(参考例2)3-イソブチルグルタルイミドの合成
 3-イソブチルグルタル酸(19.23g、95.0mmol)に尿素(14.26g、238mmol)を加え、160℃で1時間攪拌した。反応液を冷却したのち、蒸留水(79ml)を加えて25℃で1時間攪拌し、析出した固体を濾別して減圧下にて乾燥した。この固体に25%アンモニア水溶液(50ml)を加えて25℃で1時間攪拌し、析出した固体を濾別した。濾別した固体を減圧下にて乾燥することにより、3-イソブチルグルタルイミドの白色固体(10.50g、61.9mmol)を得た。
標題化合物:
H-NMR(400MHz、CDCl):δ(ppm)0.91(d,6H),1.26(m,2H),1.67(m,1H),2.23(m,3H),2.70(m,2H),7.94(br,1H)
Reference Example 2 Synthesis of 3-isobutylglutarimide Urea (14.26 g, 238 mmol) was added to 3-isobutylglutaric acid (19.23 g, 95.0 mmol), and the mixture was stirred at 160 ° C. for 1 hour. After cooling the reaction solution, distilled water (79 ml) was added and stirred at 25 ° C. for 1 hour, and the precipitated solid was separated by filtration and dried under reduced pressure. A 25% aqueous ammonia solution (50 ml) was added to this solid and stirred at 25 ° C. for 1 hour, and the precipitated solid was filtered off. The solid separated by filtration was dried under reduced pressure to obtain a white solid (10.50 g, 61.9 mmol) of 3-isobutylglutarimide.
Title compound:
1 H-NMR (400 MHz, CDCl 3 ): δ (ppm) 0.91 (d, 6H), 1.26 (m, 2H), 1.67 (m, 1H), 2.23 (m, 3H) , 2.70 (m, 2H), 7.94 (br, 1H)
[実施例3]
イミダーゼの特定と生産
(1)Burkholderia phytofirmans DSM17436株由来イミダーゼの単離・精製
 Burkholderia phytofirmans DSM17436株を、試験管内で滅菌した30mlのTGY培地(トリプトン5g、イーストエキス5g、グルコース1g、脱イオン水にて1Lにメスアップ、滅菌前pH7.0)に植菌して、28℃で22時間、好気的に振とう培養した。この培養液全量をフラスコ内で滅菌した5LのTGY培地に植菌して28℃で30時間、好気的に振とう培養した。培養終了後、遠心分離で菌体を集菌して20mMリン酸緩衝液(pH7.5)に菌体を懸濁後、超音波により菌体を破砕し、これを遠心分離した。得られた上清に硫酸アンモニウムを飽和濃度で20%になるように添加し、これを遠心分離することで得られた上清にさらに硫酸アンモニウムを飽和濃度で40%になるように添加した。これを遠心分離することで得られた沈殿を20mMリン酸緩衝液(pH7.5)に懸濁し、セルロースチューブを透析膜として、20mMトリス緩衝液(pH7.5)で透析を行った。次いで、これをHiPrep DEAE FF 16/10(GEヘルスケア社製)にアプライしてカラムクロマトグラフィーを行い、20mMトリス塩酸緩衝液(pH7.5)で0Mから1Mの塩化ナトリウムの濃度勾配をかけて溶出し、活性のある画分を集めた。この活性画分をセルロースチューブを透析膜として、20mM トリス塩酸緩衝液(pH7.5)で透析し、これをMonoQ 10/100 GL(GEヘルスケア社製)にアプライしてカラムクロマトグラフィーを行い、同緩衝液で0Mから1Mの塩化ナトリウム濃度勾配をかけて溶出した。得られた活性画分をアミコンウルトラ(遠心フィルターユニット:メルクミリポア社製)を用いて濃縮し、Superdex 200 10/300 GL(GEヘルスケア社製)にアプライしてゲル濾過を行い、0.2Mの塩化ナトリウムを含む20mMトリス塩酸緩衝液(pH7.5)で溶出した。得られた活性画分に終濃度2Mとなるように硫酸アンモニウムを溶解した後、RESOURCE PHE(GEヘルスケア社製)にアプライしてカラムクロマトグラフィーを行い、20mMトリス塩酸緩衝液(pH7.5)で2Mから0Mの硫酸アンモニウムの濃度勾配をかけて溶出した。得られた活性画分をアミコンウルトラを用いて20mMトリス塩酸緩衝液(pH7.5)にバッファー交換し、これをTSK gel DEAE-5PW(東ソー社製)にアプライしてカラムクロマトグラフィーを行い、同緩衝液で0Mから1Mの塩化ナトリウムの濃度勾配をかけて溶出した。得られた活性画分をアミコンウルトラを用いて20mMトリス塩酸緩衝液(pH7.5)にバッファー交換し、これをMonoQ 5/50 GL(GEヘルスケア社製)にアプライしてカラムクロマトグラフィーを行い、同緩衝液で0Mから1Mの塩化ナトリウムの濃度勾配をかけて溶出した。得られた活性画分をSDS-ポリアクリルアミド電気泳動に供し、得られたバンドのN末端のアミノ酸配列をプロテイン・シークエンサーで決定した。本酵素をBpIHと命名した。
[Example 3]
Identification and production of imidase (1) Isolation and purification of imidase derived from Burkholderia phytofirmans strain DSM17436 Burkholderia phytofirmans strain DSM17436 was sterilized in vitro in 30 ml of TGY medium (5 g tryptone, 5 g yeast extract, 1 g glucose, deionized water). It was inoculated to 1 L, up to pH 7.0 before sterilization, and cultured with aerobic shaking at 28 ° C. for 22 hours. The whole amount of this culture solution was inoculated into 5 L of TGY medium sterilized in the flask, and cultured under aerobic shaking at 28 ° C. for 30 hours. After completion of the culture, the cells were collected by centrifugation, suspended in 20 mM phosphate buffer (pH 7.5), disrupted by ultrasonic waves, and centrifuged. Ammonium sulfate was added to the obtained supernatant to a saturation concentration of 20%, and ammonium sulfate was further added to the supernatant obtained by centrifugation to a saturation concentration of 40%. The precipitate obtained by centrifuging this was suspended in 20 mM phosphate buffer (pH 7.5), and dialyzed with 20 mM Tris buffer (pH 7.5) using a cellulose tube as a dialysis membrane. Next, this was applied to HiPrep DEAE FF 16/10 (manufactured by GE Healthcare) and subjected to column chromatography, and a 0 mM to 1 M sodium chloride concentration gradient was applied with 20 mM Tris-HCl buffer (pH 7.5). Elute and collect active fractions. This active fraction was dialyzed with 20 mM Tris-HCl buffer (pH 7.5) using a cellulose tube as a dialysis membrane, applied to MonoQ 10/100 GL (manufactured by GE Healthcare), and subjected to column chromatography. Elution with a sodium chloride concentration gradient of 0M to 1M was performed with the same buffer. The obtained active fraction was concentrated using Amicon Ultra (centrifugal filter unit: manufactured by Merck Millipore), applied to Superdex 200 10/300 GL (manufactured by GE Healthcare), and subjected to gel filtration. Was eluted with 20 mM Tris-HCl buffer (pH 7.5) containing sodium chloride. Ammonium sulfate was dissolved in the obtained active fraction to a final concentration of 2M, and then applied to RESOURCE PHE (manufactured by GE Healthcare) and subjected to column chromatography, and then with 20 mM Tris-HCl buffer (pH 7.5). Elution was performed with a gradient of 2M to 0M ammonium sulfate. The obtained active fraction was buffer-exchanged with 20 mM Tris-HCl buffer (pH 7.5) using Amicon Ultra, applied to TSK gel DEAE-5PW (manufactured by Tosoh Corporation), and subjected to column chromatography. The buffer was eluted with a gradient from 0M to 1M sodium chloride. The obtained active fraction was buffer-exchanged with 20 mM Tris-HCl buffer (pH 7.5) using Amicon Ultra, and this was applied to MonoQ 5/50 GL (manufactured by GE Healthcare) and subjected to column chromatography. The solution was eluted with a concentration gradient of 0 M to 1 M sodium chloride with the same buffer. The obtained active fraction was subjected to SDS-polyacrylamide electrophoresis, and the N-terminal amino acid sequence of the obtained band was determined with a protein sequencer. This enzyme was named BpIH.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
<酵素精製時における酵素活性測定方法>
 活性画分5μLを3-(4-クロロフェニル)グルタルイミド0.1w/v%を含む100mMリン酸緩衝液(pH7.0)55μLと混合し、28℃、60分反応させた。反応後、これをアセトニトリルで2倍に希釈することで反応を停止し、遠心分離にて固形物を除去し、反応液中の基質及び生成物を高速液体クロマトグラフィーで分析した。
<Method for measuring enzyme activity during enzyme purification>
5 μL of the active fraction was mixed with 55 μL of 100 mM phosphate buffer (pH 7.0) containing 0.1 w / v% of 3- (4-chlorophenyl) glutarimide, and reacted at 28 ° C. for 60 minutes. After the reaction, the reaction was stopped by diluting it twice with acetonitrile, the solid was removed by centrifugation, and the substrate and product in the reaction solution were analyzed by high performance liquid chromatography.
 1Uは1分間に1μmolの3-(4-クロロフェニル)グルタル酸モノアミドを生成する酵素量と定義する。 1 U is defined as the amount of enzyme that produces 1 μmol of 3- (4-chlorophenyl) glutaric acid monoamide per minute.
 各画分の総タンパク質はブラッドフォード法により測定した。
<高速液体クロマトグラフィー分析条件>
カラム:5C18-ARII(4.6mmφ×250mm、ナカライテスク社製)
溶離液:20mMリン酸水溶液(pH2.5)/アセトニトリル=6/4
流速:0.5ml/分、カラム温度:30℃、測定波長:210nm
The total protein of each fraction was measured by the Bradford method.
<High-performance liquid chromatography analysis conditions>
Column: 5C18-ARII (4.6 mmφ × 250 mm, manufactured by Nacalai Tesque)
Eluent: 20 mM phosphoric acid aqueous solution (pH 2.5) / acetonitrile = 6/4
Flow rate: 0.5 ml / min, column temperature: 30 ° C., measurement wavelength: 210 nm
 本実験だけでなく、下記の実験においても、酵素活性は同様の手順で行った。 The enzyme activity was performed in the same procedure not only in this experiment but also in the following experiment.
(2)BpIHのN末端アミノ酸配列情報及び全アミノ酸配列の決定
 (1)で精製したイミダーゼBpIHのN末端アミノ酸配列を、プロテインシークエンサー(PPSQ-31B:島津製作所社製)を用いて調べたところ、N末端配列はPLDPNYPRDLと決定された。
 このN末端配列をProtein BLASTを用いてBurkholderia phytofirmans DSM17436株のゲノム情報から検索したところ、GenBank accession No.: ACD16728.1のタンパク質(配列番号1)と同一性100%であり、このタンパク質はurate catabolism proteinとアノテーションされていた。
(2) Determination of N-terminal amino acid sequence information and total amino acid sequence of BpIH The N-terminal amino acid sequence of imidase BpIH purified in (1) was examined using a protein sequencer (PPSQ-31B: manufactured by Shimadzu Corporation). The N-terminal sequence was determined to be PLDPNYPRDL.
When this N-terminal sequence was searched from the genome information of Burkholderia phytofirmans strain DSM17436 using Protein BLAST, it was 100% identical to the protein of GenBank accession No .: ACD16728.1 (SEQ ID NO: 1), and this protein is urate catabolism It was annotated as protein.
(3)BpIH遺伝子のクローニングと大腸菌でのBpIH生産
 (1)と同様にBurkholderia phytofirmans DSM17436株を培養して得た菌体から、DNeasy Blood & Tissue Kit(キアゲン社製)を用いてゲノムDNAを抽出した。BpIH遺伝子の5’末端側の配列をもつDNAプライマー(配列番号2)と3’末端側の配列を持つプライマー(配列番号3)を用いてBpIHのDNAをPCRにより増幅することでBpIH遺伝子の全長(配列番号4)を含む遺伝子断片を取得した。PCRで得られたDNAはアガロースゲル電気泳動により、増幅断片のサイズを確認し、目的の遺伝子のバンドをアガロースゲルから切り出し、illustra GFX PCR DNA and Gel Band Purification Kit(GEヘルスケア社製)を用いて精製を行った。制限酵素HindIIIおよびNcoIで処理を行ったpQE-60と、上記手順により得た、Burkholderia phytofirmans DSM17436株由来のBpIHの全長をコードするDNA断片を、Gibson Assembly Master Mix(ニュー・イングランド・バイオラボ社製)を用いて繋ぎ合わせることで、組換えベクターpQE60-BpIH01を構築した。
(3) Cloning of BpIH gene and production of BpIH in E. coli Genomic DNA was extracted from cells obtained by culturing Burkholderia phytofirmans DSM17436 strain as in (1) using DNeasy Blood & Tissue Kit (Qiagen) did. The full length of the BpIH gene is obtained by amplifying BpIH DNA by PCR using a DNA primer (SEQ ID NO: 2) having a sequence on the 5 ′ end side of the BpIH gene and a primer (SEQ ID NO: 3) having a sequence on the 3 ′ end side. A gene fragment containing (SEQ ID NO: 4) was obtained. The DNA obtained by PCR is confirmed by agarose gel electrophoresis, the size of the amplified fragment is confirmed, the target gene band is excised from the agarose gel, and the illustra GFX PCR DNA and Gel Band Purification Kit (manufactured by GE Healthcare) is used. And purified. PQE-60 treated with restriction enzymes HindIII and NcoI, and a DNA fragment encoding the full length of BpIH derived from Burkholderia phytofirmans DSM17436 strain obtained by the above procedure, Gibson Assembly Master Mix (manufactured by New England Biolabs) The recombinant vector pQE60-BpIH01 was constructed by ligating together.
 組換えベクターpQE60-BpIH01を用いてE. coli JM109コンピテントセルを形質転換し、E. coli JM109/pQE60-BpIH01を得た。得られた形質転換体を50μg/mlのアンピシリンを含むLB培地(トリプトン1%、イーストエキス0.5%、NaCl0.5%、pH7.0)2mLに接種し、28℃で7時間、好気的に振とう培養した後、IPTGを1mMの濃度になるように培養液に添加し、さらに28℃で16時間振とう培養を行った。遠心分離により菌体を集め、3-(4-クロロフェニル)グルタルイミド0.1w/v%を含む100mMリン酸緩衝液(pH7.0)500μLに懸濁し、休止菌体反応により活性を確認した。 E. coli using recombinant vector pQE60-BpIH01. E. coli JM109 competent cells were transformed. E. coli JM109 / pQE60-BpIH01 was obtained. The obtained transformant was inoculated into 2 mL of LB medium (1% tryptone, 0.5% yeast extract, 0.5% NaCl, pH 7.0) containing 50 μg / ml ampicillin and aerobic at 28 ° C. for 7 hours. After shaking culture, IPTG was added to the culture solution to a concentration of 1 mM, and shaking culture was further performed at 28 ° C. for 16 hours. The cells were collected by centrifugation, suspended in 500 μL of 100 mM phosphate buffer (pH 7.0) containing 0.1 w / v% of 3- (4-chlorophenyl) glutarimide, and the activity was confirmed by resting cell reaction.
(4)Alcaligenes faecalis subsp. faecalis NBRC 13111由来イミダーゼ遺伝子のクローニングと大腸菌での生産
 Alcaligenes faecalis subsp. faecalis NBRC 13111の公知のゲノム配列データから、BpIHの遺伝子及びアミノ酸配列と相同性の高い遺伝子及びアミノ酸配列(配列番号5、6)を得ることができた。Genetyxソフトウェア バージョン12(株式会社ゼネティックス)のデフォルトの設定での配列比較により、配列番号5の塩基配列は配列番号4の塩基配列に対し71%の同一性を有し、配列番号6のアミノ酸配列は配列番号1のアミノ酸配列に対し75%の同一性を有すると算出された。この遺伝子をAfIH遺伝子とし、AfIH遺伝子の5’末端側の配列をもつDNAプライマー(配列番号7)と3’末端側の配列を持つプライマー(配列番号8)を用いて(3)と同様にAfIH遺伝子の全長を含む遺伝子断片を取得、アガロースゲル電気泳動、切り出し、精製を行った。(3)と同様の方法で組換えベクターpQE60-AfIH01を構築し、組換え体E. coli JM109/pQE60-AfIH01を取得、培養、休止菌体反応による活性の確認を行った。
(4) Cloning of imidase gene derived from Alcaligenes faecalis subsp. Faecalis NBRC 13111 and production in E. coli From known genomic sequence data of Alcaligenes faecalis subsp. Faecalis NBRC 13111, genes and amino acid sequences highly homologous to the BpIH gene and amino acid sequence (SEQ ID NOs: 5 and 6) could be obtained. According to the sequence comparison in the default setting of Genetyx software version 12 (Genetics Co., Ltd.), the base sequence of SEQ ID NO: 5 has 71% identity to the base sequence of SEQ ID NO: 4, and the amino acid sequence of SEQ ID NO: 6 is It was calculated to have 75% identity to the amino acid sequence of SEQ ID NO: 1. Using this gene as the AfIH gene, using a DNA primer (SEQ ID NO: 7) having a sequence on the 5 ′ end side of the AfIH gene and a primer (SEQ ID NO: 8) having a sequence on the 3 ′ end side, the AfIH gene is used as in (3). A gene fragment containing the full length of the gene was obtained, agarose gel electrophoresed, excised, and purified. A recombinant vector pQE60-AfIH01 was constructed in the same manner as in (3). E. coli JM109 / pQE60-AfIH01 was obtained, cultured, and confirmed for activity by resting cell reaction.
(5)組換えBpIH及びAfIHの発現及び精製
 E. coli JM109/pQE60-BpIHを、50μg/mlのアンピシリンを含むLB培地(トリプトン1%、イーストエキス0.5%、NaCl0.5%、pH7.0)2mlに植菌して28℃で24時間、好気的に振とう培養した。この培養液全量を50μg/mlのアンピシリンを含むLB培地500mlに植菌して28℃で7時間、好気的に振とう培養した後、IPTGを1mMの濃度になるように培養液に添加し、さらに17時間振とう培養を行った。培養終了後、遠心分離で菌体を集菌して20mMリン酸緩衝液(pH7.5)に菌体を懸濁後、超音波により菌体を破砕し、これを遠心分離した。上清をセルロースチューブを透析膜として、20mMトリス緩衝液(pH7.5)で透析を行った。次いで、これをMonoQ 10/100 GL(GEヘルスケア社製)にアプライしてカラムクロマトグラフィーを行い、同緩衝液で0Mから1Mの塩化ナトリウム濃度勾配をかけて溶出した。得られた活性画分をアミコンウルトラ(遠心フィルターユニット:メルクミリポア社製)を用いて濃縮し、Superdex 200 10/300 GL(GEヘルスケア社製)にアプライしてゲル濾過を行い、0.2Mの塩化ナトリウムを含む20mM トリス塩酸緩衝液(pH7.5)で溶出した。得られた活性画分をSDS-ポリアクリルアミド電気泳動に供したところ、BpIHは単一バンドとして検出され、精製酵素の純粋性が確認できた。
(5) Expression and purification of recombinant BpIH and AfIH E. coli JM109 / pQE60-BpIH was inoculated into 2 ml of LB medium (tryptone 1%, yeast extract 0.5%, NaCl 0.5%, pH 7.0) containing 50 μg / ml ampicillin at 28 ° C. for 24 hours. Cultured with aerobic shaking. The total amount of this culture solution was inoculated into 500 ml of LB medium containing 50 μg / ml ampicillin, and after aerobic shaking culture at 28 ° C. for 7 hours, IPTG was added to the culture solution to a concentration of 1 mM. Further, shaking culture was performed for 17 hours. After completion of the culture, the cells were collected by centrifugation, suspended in 20 mM phosphate buffer (pH 7.5), disrupted by ultrasonic waves, and centrifuged. The supernatant was dialyzed with 20 mM Tris buffer (pH 7.5) using a cellulose tube as a dialysis membrane. Subsequently, this was applied to MonoQ 10/100 GL (manufactured by GE Healthcare) and subjected to column chromatography, and eluted with a sodium chloride concentration gradient from 0 M to 1 M with the same buffer. The obtained active fraction was concentrated using Amicon Ultra (centrifugal filter unit: manufactured by Merck Millipore), applied to Superdex 200 10/300 GL (manufactured by GE Healthcare), and subjected to gel filtration. Was eluted with 20 mM Tris-HCl buffer (pH 7.5) containing sodium chloride. When the obtained active fraction was subjected to SDS-polyacrylamide electrophoresis, BpIH was detected as a single band, confirming the purity of the purified enzyme.
 組換えAfIHの発現及び精製も同様の手順で行った。 Recombinant AfIH was expressed and purified in the same procedure.
(6)組換え精製BpIH或いはAfIHを用いての3-(4-クロロフェニル)グルタルイミド及び3-イソブチルグルタルイミドの加水分解反応評価
 (5)で取得した精製酵素BpIH、AfIHをそれぞれ酵素濃度100μg/ml使用し、3-(4-クロロフェニル)グルタルイミド0.5w/v%を含む100mMリン酸緩衝液(pH7.0)500μL中で28℃、16時間反応させた。反応終了後、遠心分離にて固形物を除去し、反応液中の基質及び生成物を実施例1に記載の高速液体クロマトグラフィーにて分析することにより、変換率(%)及び光学純度(%ee)を求めた。その結果を表4に示す。
(6) Evaluation of hydrolysis reaction of 3- (4-chlorophenyl) glutarimide and 3-isobutylglutarimide using recombinant purified BpIH or AfIH Each of the purified enzymes BpIH and AfIH obtained in (5) at an enzyme concentration of 100 μg / ml, and reacted in 500 μL of 100 mM phosphate buffer (pH 7.0) containing 3- (4-chlorophenyl) glutarimide 0.5 w / v% at 28 ° C. for 16 hours. After completion of the reaction, solids were removed by centrifugation, and the conversion rate (%) and optical purity (%) were determined by analyzing the substrate and product in the reaction solution by the high performance liquid chromatography described in Example 1. ee) was determined. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 (5)で取得した精製酵素BpIH、AfIHをそれぞれ酵素濃度1.3mg/ml使用し、3-イソブチルグルタルイミド0.5w/v%を含む100mMリン酸緩衝液(pH7.0)250μL中で28℃、16時間反応させた。反応終了後、遠心分離にて固形物を除去し、反応液中の基質及び生成物を実施例2に記載の高速液体クロマトグラフィーにて分析することにより、変換率(%)及び光学純度(%ee)を求めた。その結果を表5に示す。 The purified enzymes BpIH and AfIH obtained in (5) were each used at an enzyme concentration of 1.3 mg / ml, and 28 in 250 μL of 100 mM phosphate buffer (pH 7.0) containing 0.5 w / v% of 3-isobutylglutarimide. The reaction was carried out at 0 ° C. for 16 hours. After completion of the reaction, solids were removed by centrifugation, and the conversion rate (%) and optical purity (%) were determined by analyzing the substrate and product in the reaction solution by the high performance liquid chromatography described in Example 2. ee) was determined. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
(7)組換え精製BpIH或いはAfIHを用いての基質特異性及び相対活性評価
 反応は100μLに一定量の酵素((5)で取得した精製BpIH或いはAfIH)と4mMの各種基質[3-(4-クロロフェニル)グルタルイミド、3-イソブチルグルタルイミド、フタルイミド、シス-1,2,3,6-テトラヒドロフタルイミド、アラントイン、2,4-チアゾリジンジオン、ヒダントイン、ジヒドロウラシル、グルタルイミド、スクシンイミド]、100mMリン酸緩衝液(pH7.5)を含む条件で28℃、30分行った。
(7) Substrate specificity and relative activity evaluation using recombinant purified BpIH or AfIH The reaction was performed in 100 μL with a certain amount of enzyme (purified BpIH or AfIH obtained with (5)) and 4 mM of various substrates [3- (4 -Chlorophenyl) glutarimide, 3-isobutylglutarimide, phthalimide, cis-1,2,3,6-tetrahydrophthalimide, allantoin, 2,4-thiazolidinedione, hydantoin, dihydrouracil, glutarimide, succinimide], 100 mM phosphoric acid The reaction was carried out at 28 ° C. for 30 minutes under conditions containing a buffer solution (pH 7.5).
 30分後、直ちに15%過塩素酸10μLを加えて反応を停止、続いて500mM リン酸カリウム緩衝液(KPB)(pH7.0)を90μL加えて中和し、遠心分離で得られた上清を高速液体クロマトグラフィー分析に供して、基質の減少、生成物の増加を分析し、活性値を比較した結果を表6に示す。表6では、3-(4-クロロフェニル)グルタルイミドに対する活性値(U)を100とした場合の各基質に対する活性値(U)を%で算出したものを「相対活性(%)」として示す。ここで各基質に対する活性値(U)は、1Uを1分間に1μmolの各生成物を生成する酵素量と定義したときの、反応に使用した前記一定量の精製タンパク質の活性値(U)を指す。 After 30 minutes, 10 μL of 15% perchloric acid was immediately added to stop the reaction, followed by neutralization with 90 μL of 500 mM potassium phosphate buffer (KPB) (pH 7.0), and the supernatant obtained by centrifugation. Is subjected to high performance liquid chromatography analysis to analyze the decrease in substrate and increase in product, and the results of comparing the activity values are shown in Table 6. In Table 6, the activity value (U) for each substrate calculated in% when the activity value (U) for 3- (4-chlorophenyl) glutarimide is 100 is shown as “relative activity (%)”. Here, the activity value (U) for each substrate is defined as the activity value (U) of the fixed amount of purified protein used in the reaction when 1 U is defined as the amount of enzyme that produces 1 μmol of each product per minute. Point to.
 アラントイン、ヒダントイン、ジヒドロウラシルの分析は、以下の分析条件で行った。
カラム:5C18-ARII(4.6mmφ×250mm、ナカライテスク社製)
溶離液:250mM リン酸二水素カリウム水溶液
流速:1.0ml/分、カラム温度:40℃、測定波長:210nm
Allantoin, hydantoin and dihydrouracil were analyzed under the following analytical conditions.
Column: 5C18-ARII (4.6 mmφ × 250 mm, manufactured by Nacalai Tesque)
Eluent: 250 mM aqueous potassium dihydrogen phosphate flow rate: 1.0 ml / min, column temperature: 40 ° C., measurement wavelength: 210 nm
 その他の基質に関しては、実施例1の高速液体クロマトグラフィー分析条件と同じである。 Other substrates are the same as the high performance liquid chromatography analysis conditions of Example 1.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 本発明の方法は、医薬品中間体として有用な光学活性3-置換グルタル酸モノアミドの製造のために利用することができる。 The method of the present invention can be used for the production of an optically active 3-substituted glutaric acid monoamide useful as a pharmaceutical intermediate.
 本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。 All publications, patents and patent applications cited in this specification shall be incorporated into the present specification as they are.
 配列番号2、3、7、8:プライマー Sequence numbers 2, 3, 7, 8: Primers

Claims (6)

  1.  下記式(1);
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは置換基を有していてもよい炭素数1~8のアルキル基、置換基を有していてもよい炭素数2~8のアルケニル基、置換基を有していてもよい炭素数2~8のアルキニル基、置換基を有していてもよい炭素数4~20のアリール基、又は置換基を有していてもよい炭素数5~20のアラルキル基を示す。)で表される3-置換グルタルイミドに不斉加水分解活性を有する酵素源を作用させることを特徴とする、下記式(2);
    Figure JPOXMLDOC01-appb-C000002
    (式中、*は不斉炭素原子を表す。Rは前記に同じ。)で表される光学活性3-置換グルタル酸モノアミドの製造法。
    Following formula (1);
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R may have an optionally substituted alkyl group having 1 to 8 carbon atoms, an optionally substituted alkenyl group having 2 to 8 carbon atoms, or an optionally substituted group. A preferable alkynyl group having 2 to 8 carbon atoms, an aryl group having 4 to 20 carbon atoms which may have a substituent, or an aralkyl group having 5 to 20 carbon atoms which may have a substituent. An enzyme source having asymmetric hydrolysis activity is allowed to act on a 3-substituted glutarimide represented by the following formula (2);
    Figure JPOXMLDOC01-appb-C000002
    (Wherein, * represents an asymmetric carbon atom, R is the same as above), and a method for producing an optically active 3-substituted glutaric acid monoamide.
  2.  酵素源が、アクロモバクター(Achromobacter)属、アルカリゲネス(Alcaligenes)属、バークホルデリア(Burkholderia)属、コマモナス(Comamonas)属、デルフチア(Delftia)属、及びシュードモナス(Pseudomonas)属からなる群から選択される少なくとも1種の微生物の菌体及び/又はその処理物である請求項1に記載の製造法。 The enzyme source is selected from the group consisting of the genus Achromobacter, the genus Alcaligenes, the genus Burkholderia, the genus Comamonas, the Delftia, and the genus Pseudomonas The production method according to claim 1, which is a microbial cell of at least one microorganism and / or a processed product thereof.
  3.  絶対配置がRである式(2)で表される光学活性3-置換グルタル酸モノアミドを製造する請求項2に記載の製造法。 The production method according to claim 2, wherein the optically active 3-substituted glutaric acid monoamide represented by the formula (2) having an absolute configuration of R is produced.
  4.  酵素源が、アクロモバクター スピーシーズ(Achromobacter sp.)、アクロモバクター キシロソキシダンス サブスピーシーズ デニトリフィカンス(Achromobacter xylosoxidans subsp. denitrificans)、アルカリゲネス ファエカリス(Alcaligenes faecalis)、バークホルデリア フィトファーマンス(Burkholderia phytofirmans)、コマモナス スピーシーズ(Comamonas sp.)、デルフチア アシドボランス(Delftia acidovorans)、デルフチア スピーシーズ(Delftia sp.)、及びシュードモナス プチダ(Pseudomonas putida)からなる群から選択される少なくとも1種の微生物の菌体及び/又はその処理物である請求項3に記載の製造法。 Enzyme sources are Achromobacter sp., Achromobacter xylosoxy dance sub-species Denitificans, Alcaligenes faecalis, Balk hortolia phytophyllia phytophyllia ), At least one microorganism selected from the group consisting of Comamonas sp., Delftia acidovorans, Delftia sp, and Pseudomonas putida. The manufacturing method of Claim 3 which is the processed material.
  5.  Rがイソブチル基、n-プロピル基、イソプロピル基、フェニル基、又は4-クロロフェニル基である、請求項1~4のいずれか1項に記載の製造法。 The production method according to any one of claims 1 to 4, wherein R is an isobutyl group, an n-propyl group, an isopropyl group, a phenyl group, or a 4-chlorophenyl group.
  6.  酵素源が、下記(I)~(VI)のポリペプチド:
    (I)配列番号1に記載のアミノ酸配列からなるポリペプチド;
    (II)配列番号1に記載のアミノ酸配列において1又は複数のアミノ酸が置換、欠失、挿入又は付加したアミノ酸配列からなり、前記式(1)の3-置換グルタルイミドを前記式(2)の光学活性3-置換グルタル酸モノアミドへと不斉加水分解する酵素活性を有するポリペプチド;
    (III)配列番号1に記載のアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなり、前記式(1)の3-置換グルタルイミドを前記式(2)の光学活性3-置換グルタル酸モノアミドへと不斉加水分解する酵素活性を有するポリペプチド;
    (IV)配列番号6に記載のアミノ酸配列からなるポリペプチド;
    (V)配列番号6に記載のアミノ酸配列において1又は複数のアミノ酸が置換、欠失、挿入又は付加したアミノ酸配列からなり、前記式(1)の3-置換グルタルイミドを前記式(2)の光学活性3-置換グルタル酸モノアミドへと不斉加水分解する酵素活性を有するポリペプチド;及び
    (VI)配列番号6に記載のアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列からなり、前記式(1)の3-置換グルタルイミドを前記式(2)の光学活性3-置換グルタル酸モノアミドへと不斉加水分解する酵素活性を有するポリペプチド
    からなる群から選択される少なくとも1つを含有する、請求項1~5のいずれか1項に記載の製造法。
    The enzyme source is a polypeptide of the following (I) to (VI):
    (I) a polypeptide comprising the amino acid sequence set forth in SEQ ID NO: 1;
    (II) consisting of an amino acid sequence in which one or a plurality of amino acids are substituted, deleted, inserted or added in the amino acid sequence shown in SEQ ID NO: 1, and the 3-substituted glutarimide of the formula (1) is represented by the formula (2) A polypeptide having an enzymatic activity for asymmetric hydrolysis to optically active 3-substituted glutaric acid monoamide;
    (III) An amino acid sequence having 70% or more identity to the amino acid sequence set forth in SEQ ID NO: 1, wherein the 3-substituted glutarimide of the formula (1) is substituted with the optically active 3-substituted group of the formula (2) A polypeptide having an enzymatic activity for asymmetric hydrolysis to glutaric monoamide;
    (IV) a polypeptide comprising the amino acid sequence set forth in SEQ ID NO: 6;
    (V) consisting of an amino acid sequence in which one or more amino acids are substituted, deleted, inserted or added in the amino acid sequence shown in SEQ ID NO: 6, wherein the 3-substituted glutarimide of the formula (1) is converted to the formula (2) A polypeptide having an enzymatic activity for asymmetric hydrolysis into an optically active 3-substituted glutaric acid monoamide; and (VI) an amino acid sequence having 70% or more identity to the amino acid sequence of SEQ ID NO: 6, At least one selected from the group consisting of polypeptides having an enzymatic activity for asymmetric hydrolysis of the 3-substituted glutarimide of the formula (1) into the optically active 3-substituted glutaric acid monoamide of the formula (2) The production method according to any one of claims 1 to 5, which is contained.
PCT/JP2015/058155 2014-03-20 2015-03-19 Asymmetric hydrolysis of 3-substituted glutarimide WO2015141758A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-058189 2014-03-20
JP2014058189 2014-03-20

Publications (1)

Publication Number Publication Date
WO2015141758A1 true WO2015141758A1 (en) 2015-09-24

Family

ID=54144720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058155 WO2015141758A1 (en) 2014-03-20 2015-03-19 Asymmetric hydrolysis of 3-substituted glutarimide

Country Status (1)

Country Link
WO (1) WO2015141758A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112368262A (en) * 2018-06-06 2021-02-12 浙江华海药业股份有限公司 Method for preparing pregabalin intermediate (R) -3- (carbamoylmethyl) -5-methylhexanoic acid
CN113502305A (en) * 2021-07-16 2021-10-15 台州学院 Method for synthesizing (R) -isobutyl glutaric acid monoamide by using recombinant imide enzyme

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04234498A (en) * 1990-08-28 1992-08-24 Unilever Nv Bleaching detergent composition
WO2011077463A1 (en) * 2009-12-24 2011-06-30 Msn Laboratories Limited Process for preparing pregabalin and its intermediate
CN102898320A (en) * 2012-10-26 2013-01-30 浙江省天台县奥锐特药业有限公司 Method for preparing (3R)-(-)-3-(2- acetamino)-5-methylhexanol

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04234498A (en) * 1990-08-28 1992-08-24 Unilever Nv Bleaching detergent composition
WO2011077463A1 (en) * 2009-12-24 2011-06-30 Msn Laboratories Limited Process for preparing pregabalin and its intermediate
CN102898320A (en) * 2012-10-26 2013-01-30 浙江省天台县奥锐特药业有限公司 Method for preparing (3R)-(-)-3-(2- acetamino)-5-methylhexanol

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CLAUDIO DE OLIVEIRA, JOURNAL OF BACTERIOLOGY, vol. 194, no. 23, 2012, pages 6675 - 6676 *
K. SUNEEL KUMAR, DER PHARMACIA SINICA, vol. 2, no. 6, 2011, pages 127 - 131 *
LE T. PHUNG, JOURNAL OF BACTERIOLOGY, vol. 194, no. 18, 2012, pages 5153 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112368262A (en) * 2018-06-06 2021-02-12 浙江华海药业股份有限公司 Method for preparing pregabalin intermediate (R) -3- (carbamoylmethyl) -5-methylhexanoic acid
EP3805199A4 (en) * 2018-06-06 2022-01-19 Zhejiang Huahai Pharmaceutical Co., Ltd Method for preparing pregabalin intermediate (r)-3-(carbamoylmethyl)-5-methylhexanoic acid
CN112368262B (en) * 2018-06-06 2022-08-23 浙江华海药业股份有限公司 Method for preparing pregabalin intermediate (R) -3- (carbamoylmethyl) -5-methylhexanoic acid
US11420932B2 (en) 2018-06-06 2022-08-23 Zheijiang Huahai Pharmaceutical Co., Ltd. Method for preparing pregabalin intermediate (R)-3-(carbamoylmethyl)-5-methylhexanoic acid
CN113502305A (en) * 2021-07-16 2021-10-15 台州学院 Method for synthesizing (R) -isobutyl glutaric acid monoamide by using recombinant imide enzyme
CN113502305B (en) * 2021-07-16 2024-01-30 台州学院 Method for synthesizing (R) -isobutyl glutarate monoamide by utilizing recombinant imidinase

Similar Documents

Publication Publication Date Title
CN107532185B (en) Process for producing hydroxy-L-pipecolic acid
JP6048850B2 (en) D-succinylase and method for producing D-amino acid using the same
JP5516664B2 (en) N-acetyl- (R, S) -β-amino acid acylase gene
EP3307880A1 (en) Transaminases
Zhang et al. Characterization of a new nitrilase from Hoeflea phototrophica DFL-43 for a two-step one-pot synthesis of (S)-β-amino acids
WO2011078172A1 (en) Process for production of optically active 3-substituted glutaric acid monoamide
Zhao et al. Kinetic resolution of sulfoxides with high enantioselectivity using a new homologue of methionine sulfoxide reductase B
WO2015141758A1 (en) Asymmetric hydrolysis of 3-substituted glutarimide
CN113462669A (en) Ketone pantoate hydroxymethyltransferase mutant, coding gene and application thereof
US9464306B2 (en) Method for producing L-amino acid
JP5453238B2 (en) Isoform of porcine liver esterase
WO2016076159A1 (en) Method for manufacturing cis-5-hydroxy-l-pipecolic acid
WO2007026860A1 (en) METHOD FOR PRODUCTION OF OPTICALLY ACTIVE α-HYDROXYCARBOXYLIC ACID
JPWO2019189724A1 (en) A novel hydrolase and a method for producing (1S, 2S) -1-alkoxycarbonyl-2-vinylcyclopropanecarboxylic acid using it.
JPWO2016076159A6 (en) Process for producing cis-5-hydroxy-L-pipecolic acid
JP5119783B2 (en) N-acetyl- (R, S) -β-amino acid acylase gene
Engel et al. Novel amidases of two Aminobacter sp. strains: Biotransformation experiments and elucidation of gene sequences
JP5595400B2 (en) Process for producing optically active 3-substituted glutaric monoamide
US20100285540A1 (en) Process for the preparation of (R)-Beta-Arylalanines by coupled Racemase/Aminomutase catalysis
JP6379531B2 (en) Process for producing novel β-amino acid
US9493762B2 (en) Vector, a transformant and a method to produce a polypeptide having activity to selectively hydrolyze a (R)-tropic acid amide in a racemic mixture
JPWO2007097429A1 (en) Novel acylamidase gene and its use
JP2015139426A (en) METHOD FOR PRODUCING NOVEL β-AMINO ACID
JP2012000045A (en) Method of producing l-threo-3-hydroxy aspartic acid, and combination of catalyst composition
JPH1198981A (en) New esterase

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15766004

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15766004

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP