WO2015141681A1 - Multilevel power converter and method for controlling multilevel power converter - Google Patents

Multilevel power converter and method for controlling multilevel power converter Download PDF

Info

Publication number
WO2015141681A1
WO2015141681A1 PCT/JP2015/057911 JP2015057911W WO2015141681A1 WO 2015141681 A1 WO2015141681 A1 WO 2015141681A1 JP 2015057911 W JP2015057911 W JP 2015057911W WO 2015141681 A1 WO2015141681 A1 WO 2015141681A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
arm
power converter
capacitor
transformer
Prior art date
Application number
PCT/JP2015/057911
Other languages
French (fr)
Japanese (ja)
Inventor
泰文 赤木
誠 萩原
Original Assignee
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学 filed Critical 国立大学法人東京工業大学
Priority to JP2016508741A priority Critical patent/JP6462664B2/en
Publication of WO2015141681A1 publication Critical patent/WO2015141681A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load

Definitions

  • the present invention relates to a single-phase power converter and a three-phase power converter that convert direct current and alternating current bidirectionally, and a multi-phase power converter that includes a three-phase two-phase power converter that bidirectionally converts three-phase alternating current and two-phase alternating current.
  • the present invention relates to a level power converter and a control method for a multi-level power converter.
  • FIG. 20 is a diagram illustrating a general configuration of the battery power storage device.
  • the battery power storage device 1000 includes a battery 100 such as a NAS battery (registered trademark) or a lithium ion battery, a grid converter 200 that converts a DC voltage of the battery 100 into an AC voltage, a grid converter 200, and a power system 400. And an interconnecting transformer 300 that interconnects.
  • the DC voltage of the battery 100 is relatively low with respect to the effective voltage value of the power system 400, so that a high step-up ratio is required for the interconnection converter 200.
  • MMC modular multilevel converter
  • the modular multi-level converter is characterized in that the arm is composed of a module in which a plurality of bidirectional chopper cells or full-bridge converter cells are connected in series. Excluding problems such as insulation, it is possible to increase the AC output voltage and suppress voltage and current ripple without increasing the breakdown voltage of the semiconductor switch by increasing the number of series cells. It is also expected as a large capacity power converter.
  • the modular multi-level converter is easy to mount, rich in redundancy, and can be reduced in size and weight, so that it can be applied to a power converter for grid interconnection, a motor drive device for an induction motor, and the like.
  • a cascading modular multilevel converter (Modular Multilevel Cascade Converter: MMCC) has been proposed (for example, see Patent Document 1 and Non-Patent Documents 1 to 4).
  • the transformer for the converter if the high step-up ratio of the interconnection converter that converts the DC voltage of the battery power storage device into the AC voltage is realized by the transformer for the converter, the size and weight of the device are increased. That is, even if a modular multi-level converter that is easy to mount and suitable for high-capacity and high-voltage applications is used, the transformer for the converter can be removed, but it is connected from the viewpoint of voltage matching and electrical insulation. There is a problem that the transformer cannot be removed.
  • the inventors of the present invention have a modular multi-level single-phase power converter and a three-phase power converter, which are simple in structure, small in size, low in cost, and high in efficiency, which convert DC and AC bidirectionally.
  • a three-phase two-phase power converter has been devised that converts a phase alternating current and a two-phase alternating current in both directions, has a simple structure, is small, is inexpensive, and is highly efficient (see Patent Document 2).
  • the modular multilevel single-phase power converter, the three-phase power converter, and the three-phase two-phase power converter are collectively referred to as a multilevel power converter.
  • the multi-level power converter described in Patent Document 2 uses a modular push-pull converter (MPC) with a circuit configuration in which each arm of a push-pull inverter is modularized using cells. Is done.
  • the modular push-pull converter is hereinafter referred to as MPC.
  • Patent Document 2 discloses average value control, arm balance control, circulating current control, and individual balance control as control for making the DC capacitor voltage used in each cell constant. The following four controls are disclosed.
  • JP 2011-182517 A International Application PCT / JP2012 / 079668
  • Makoto Sugawara and Yasufumi Akagi “PWM Control Method and Operational Verification of Modular Multilevel Converter (MMC)”, IEEJ Transactions D, Vol. 128, No. 7, pp 957-965, July 2008 Kazutoshi Nishimura, Makoto Sugawara, Yasufumi Akagi, “Application to High Voltage Motor Drive System Using Modular Multilevel PWM Inverter -Experimental Verification Using 400V, 15kW Mini Model-”, IEEJ Semiconductor Power Conversion Study Group, SPC -09-24, pp19-24, January 2009 Yasufumi Akagi and Makoto Sugawara, “Classification and Name of Modular Multilevel Cascade Converter (MMCC)”, IEEJ National Convention, no.
  • MMC Modular Multilevel Converter
  • an object of the present invention is to independently control the average DC voltage value of each arm, thereby eliminating arm balance control that keeps the DC capacitor voltage in each cell constant, and the DC voltage between the arms. It is necessary to eliminate the high-speed communication of the information, and to eliminate the restrictions on the MPC design.
  • An arm coupling portion having a first terminal to which one end of the first arm is connected, a second terminal to which one end of the second arm is connected, and a third terminal to which one end of the DC power supply is connected
  • a transformer having an AC input / output terminal on the primary side and an intermediate terminal on the secondary side winding, and two terminal terminals of the secondary side winding are connected to the first arm of the first arm coupling portion.
  • the terminal of the second arm to which the second terminal of the arm coupling portion is not connected are connected to each other, and the intermediate terminal is connected to the terminal of the arm coupling portion of the DC power source.
  • a transformer to which the terminal on the side to which the terminal of 3 is not connected is connected; Based on the voltage value of the DC capacitor in the first arm and the voltage value of the DC capacitor in the second arm, the circulating current command value of the first arm and the circulating current command value of the second arm are created.
  • Command value creation means for AC in consideration of the current flowing through the first and second arms and the winding ratio of the transformer and the AC current applied to the AC input / output terminal with respect to the circulating current command values of the first and second arms.
  • a multi-level power converter comprising control means for controlling the circulating currents flowing through the first and second arms, respectively, to add or subtract, respectively.
  • a second arm A first terminal to which a DC power source is connected between one end of the first arm, a second terminal to which another DC power source is connected between one end of the second arm, An arm coupling portion having a terminal and a third terminal connected to the second terminal;
  • a transformer having an AC input / output terminal on the primary side and a three-terminal coupling reactor on the secondary winding, and the DC power supply of the first arm is connected to the two terminal terminals of the secondary winding
  • the intermediate terminal located on the winding between the two terminals of the three-terminal coupling reactor is connected to the terminal on the side that is not connected to the terminal on the side of the second arm that is not connected to the other DC power source.
  • a transformer to which three terminals are connected; Based on the voltage value of the DC capacitor in the first arm and the voltage value of the DC capacitor in the second arm, the circulating current command value of the first arm and the circulating current command value of the second arm are created.
  • Command value creation means for AC in consideration of the current flowing through the first and second arms and the winding ratio of the transformer and the AC current applied to the AC input / output terminal with respect to the circulating current command values of the first and second arms.
  • a multi-level power converter comprising control means for controlling the circulating currents flowing through the first and second arms, respectively, to add or subtract, respectively.
  • a second arm A first capacitor connected to a terminal on the side of the first arm to which the DC power supply is connected; A second capacitor connected to a terminal of the second arm on the side to which the DC power supply is connected; A first terminal to which a terminal on the side of the first capacitor not connected to the first arm is connected, and a second terminal to which a terminal on the side of the front capacitor not connected to the second arm is connected And an arm coupling portion having a first terminal and a third terminal connected to the second terminal, A transformer having an AC input / output terminal on the primary side and a three-terminal coupling reactor on the secondary side winding, the first capacitor of the first arm being connected to the two terminal terminals of the secondary side winding Is connected to the terminal on the side where the second capacitor is not connected, and the intermediate terminal located on the winding between the two terminals of the three-terminal coupling reactor is connected to the second terminal of the second arm.
  • a transformer to which three terminals are connected; Based on the voltage value of the DC capacitor in the first arm and the voltage value of the DC capacitor in the second arm, the circulating current command value of the first arm and the circulating current command value of the second arm are created.
  • Command value creation means for AC in consideration of the current flowing through the first and second arms and the winding ratio of the transformer and the AC current applied to the AC input / output terminal with respect to the circulating current command values of the first and second arms.
  • a multi-level power converter comprising control means for controlling the circulating currents flowing through the first and second arms, respectively, to add or subtract, respectively.
  • control method for a multilevel power converter characterized in that control is performed so that the circulating currents flowing through the first and second arms are added or added.
  • FIG. 6 is a circuit diagram showing a chopper cell which is a unit cell in the single-phase power converter according to the first to fifth embodiments.
  • FIG. 6 is a circuit diagram showing a bridge cell which is a unit cell in a single-phase power converter according to first to fifth embodiments.
  • It is a circuit diagram which shows the single phase power converter by a 2nd Example.
  • It is a circuit diagram which shows the circuit structure of the arm in the single phase power converter by a 3rd Example.
  • FIG. 1 shows a first embodiment of a multilevel power converter according to the present invention, and shows a circuit diagram of a single-phase power converter 1.
  • FIG. 2A is a circuit diagram showing a chopper cell CC which is a unit cell in the single-phase power converter in the first embodiment and the following embodiments.
  • FIG. 2B is a circuit diagram showing a bridge cell BC that is a unit cell that can be used in the single-phase power converter 1 of the first embodiment and the following embodiments.
  • the single-phase power converter 1 includes unit cells 11-1 to 11-M (where M is a natural number), a first arm 12-P and a second arm 12-N, A coupling unit 13 and a transformer 14 are provided.
  • the unit cells 11-1 to 11-M include two semiconductor switches SW connected in series, a DC capacitor C connected in parallel to the two semiconductor switches SW, and a DC capacitor C according to the switching operation of the semiconductor switch SW. It has input / output terminals T1 and T2 for discharging or charging the DC capacitor C.
  • the unit cells 11-1 to 11-M may be either the chopper cell CC shown in FIG. 2A or the bridge cell BC shown in FIG. 2B.
  • the chopper cell CC shown in FIG. 2A includes two semiconductor switches SW connected in series, a DC capacitor C connected in parallel to the two semiconductor switches SW, and a discharge or DC from the DC capacitor C according to the switching operation of the semiconductor switch SW.
  • This is a bidirectional chopper cell having input / output terminals T1 and T2 for current charged in the capacitor C.
  • the two terminals of one of the two semiconductor switches SW are the input / output terminals T1 and T2 of the chopper cell CC.
  • the bridge cell BC shown in FIG. 2B is configured by connecting two sets of two semiconductor switches SW connected in series in parallel and connecting a DC capacitor C in parallel thereto.
  • the series connection point of each set of two semiconductor switches SW connected in series is defined as input / output terminals T1 and T2 for discharging current from the DC capacitor C or charging the DC capacitor C.
  • the chopper cell CC and the bridge cell BC are also called unit cells.
  • each semiconductor switch SW includes a semiconductor switching element S that passes a current in one direction when turned on, and a feedback diode D connected in antiparallel to the semiconductor switching element S.
  • a voltage output from one unit cell appears between the input / output terminals T1 and T2 of the unit cell.
  • the first arm 12-P and the second arm 12-N have the same number of unit cells or a plurality of unit cells cascaded to each other via the input / output terminals T1 and T2.
  • the unit cells arranged in the first arm 12-P and the second arm 12-N are denoted by reference numerals 11-1 to 11-M (where M is a natural number. The same applies to the above.
  • the arm coupling unit 13 includes a first terminal a to which the lower terminal 1ab of the first arm 12-P is connected and a second terminal b to which the lower terminal 2ab of the second arm 12-N is connected. And a third terminal c positioned between the first terminal a and the second terminal b.
  • the negative terminal of the DC power source V dc is connected to the third terminal c.
  • the arm coupling portion 13 includes a first terminal a, a second terminal b, and between the first terminal a and the second terminal b, as shown in FIG. It consists of a three-terminal coupling reactor L having a third terminal c which is an intermediate tap located on the winding.
  • the polarity of the three-terminal coupling reactor L is represented by a black circle (•).
  • the polarity of the winding between the first terminal a and the third terminal c and the polarity of the winding between the third terminal c and the second terminal b are opposite to each other (in the example shown in FIG. To face the direction you want to).
  • the transformer 14 has AC input / output terminals T1-1 and T1-2 on the primary side, and centered on the secondary winding between the two terminal terminals T2-1 and T2-2 on the secondary side. It has an intermediate terminal T2-3 which is a tap. Between the AC input and output terminal of the primary T1-1 and T1-2 of the transformer 14, an AC output voltage v ac single-phase power converter 1 appears.
  • the number of turns of the primary winding of the transformer 14 and N 1, the number of turns of the secondary winding and N 2. Therefore, on the secondary side, the number of turns of the winding between the end terminal T2-1 and the intermediate terminal T2-3 and the number of turns of the winding between the intermediate terminal T2-3 and the end terminal T2-2 are both the N 2/2.
  • the polarities of the primary side winding and the secondary side winding of the transformer 14 are represented by black circles (•).
  • the polarity of the winding between the end terminal T2-1 and the intermediate terminal T2-3 and the polarity of the winding between the intermediate terminal T2-3 and the end terminal T2-2 are: The same direction (aligned to the left in the illustrated example).
  • the polarity direction of the primary winding does not necessarily have to be the same as the polarity direction of the secondary winding.
  • the terminal T2-1 of the secondary winding of the transformer 14 is the terminal on the side of the first arm 12-P to which the first terminal a of the arm coupling portion 13 is not connected, that is, the first arm 12
  • the upper terminal 1at of ⁇ P is connected, and the second terminal b of the arm coupling portion 13 of the second arm 12-N is not connected to the terminal T2-2 of the secondary winding of the transformer 14 Side terminal, that is, the upper terminal 2at of the second arm 12-N is connected.
  • the intermediate terminal T2-3 of the transformer 14 the DC power source V dc, the terminal of the third side of the terminal c is not connected, that is the positive terminal of the DC power source V dc is connected to the arm coupling portion 13 .
  • the modulation degree is m (0 ⁇ m ⁇ 1) and the angular frequency is ⁇
  • the total output voltage v P of the first arm 12- P and the total output voltage v N of the second arm 12- N are They are represented by Formula 3 and Formula 4, respectively.
  • Equation 5 the circulating current i Z is defined as shown in Equation 5.
  • Equations 6 and 7 Since the three-terminal coupling reactor in the arm coupling unit 13 has an inductance of L only for the circulating current i Z , the voltage equations shown in Equations 6 and 7 are established.
  • Equation 8 and Equation 9 are obtained from Equation 3, Equation 4, Equation 6, and Equation 7.
  • Equation 10 is obtained from the relationship of the magnetomotive force of the transformer.
  • the circulating current i ZP flowing through the first arm 12-P and the circulating current i ZN flowing through the second arm 12-N are defined separately.
  • the circulating current i ZP is given by the following equations A and B.
  • the second term on the right side of Formula A and Formula B corresponds to the AC component included in circulating current i ZP and circulating current i ZN . Therefore, the circulating current i ZP and the circulating current i ZN are ideally only a direct current component.
  • the DC voltage average values v aveCP and v aveCN of the first arm 12-P and the second arm 12-N are independently controlled by using the circulating current i ZP and the circulating current i ZN. Can do.
  • FIG. 3 shows a second embodiment of the multilevel power converter according to the present invention, and shows a circuit diagram of the single-phase power converter 1.
  • the arm coupling portion 13 in the first embodiment described with reference to FIGS. 1, 2A and 2B is not a three-terminal coupling reactor L but a normal one.
  • the reactor is constituted by uncoupled reactors L1 and L2.
  • the arm coupling portion 13 includes two reactors L1 and L2 connected in series with each other.
  • the first terminal a which is one terminal of the reactor L1, and the reactor It has the 2nd terminal b which is one terminal of L2, and the 3rd terminal c which is a series connection point of the two reactors L1 and L2 connected in series.
  • Reactors L1 and L2 may be substituted with the leakage inductance of transformer 14.
  • FIGS. 4A to 4C show a third embodiment of the multilevel power converter of the present invention, and are circuit diagrams showing the circuit configuration of the arm in the single-phase power converter 1.
  • FIG. The single-phase power converter 1 according to the third embodiment is obtained by changing the positions of the reactors L1 and L2 constituting the arm coupling portion 13 in the second embodiment described with reference to FIG. 4A to 4C show only the first or second arm including the reactor L and the unit cells 11-1 to 11-M among the reactors L1 and L2 constituting the arm in the single-phase power converter 1. Yes.
  • each of the first arm and the second arm is connected to an arbitrary position between the unit cells 11-1 to 11-M cascade-connected to each other.
  • the first terminal a, the second terminal b, and the third terminal c of the arm coupling portion 13 shown in FIG. 3 are changed so as to be connected to each other.
  • Other circuit components are the same as those in the second embodiment.
  • the reactor L may be replaced with the leakage inductance of the transformer 14.
  • FIG. 5 shows a fourth embodiment of the multi-level power converter of the present invention, and shows a circuit diagram of the single-phase power converter 1.
  • the single-phase power converter 1 according to the fourth embodiment is obtained by changing the arm coupling portion 13 and the transformer 14 in the first embodiment described with reference to FIGS. 1, 2A, and 2B.
  • each of the unit cells 11-1 to 11-M can use either the chopper cell CC shown in FIG. 2A or the bridge cell BC shown in FIG. 2B, and includes two semiconductor switches SW connected in series.
  • a DC capacitor C connected in parallel to the two semiconductor switches SW, and input / output terminals T1 and T2 for discharging current from the DC capacitor C or charging to the DC capacitor in accordance with the switching operation of the semiconductor switch SW.
  • the first arm 12-P and the second arm 12-N include a plurality of units connected in cascade through one unit cell 11-1 or input / output terminals T1 and T2. The same number of unit cells 11-1 to 11-M is provided.
  • the arm coupling unit 13 includes a first terminal a to which the other end of the DC power source V dc whose one end is connected to the lower terminal 1ab of the first arm 12-P and the second arm 12-N A third terminal connected to the second terminal b connected to the other end of another DC power source V dc whose one end is connected to the lower terminal 2ab, and the first terminal a and the second terminal b. Terminal c.
  • the transformer 14 ′ in the fourth embodiment is located at the intermediate terminal of the transformer 14 in the single-phase power converter 1 according to the first embodiment described with reference to FIG. 1. Further, a three-terminal coupling reactor 15 is provided. That is, the three-terminal coupling reactor 15 is provided on the secondary winding of the transformer 14 ′. Between transformer 14 AC input and output terminals of the primary 'T1-1 and T1-2, AC output voltage v ac single-phase power converter 1 appears.
  • the number of turns of the primary side winding of the transformer 14 ′ is N 1
  • the number of turns of the secondary side winding is N 2 . Therefore, on the secondary side, the number of windings between the terminal terminal terminal T2-1 and the three-terminal coupling reactor 15 and the number of windings between the three-terminal coupling reactor 15 and the terminal T2-2 are: both the N 2/2.
  • the terminal T2-1 of the secondary winding of the transformer 14 ' is connected to the terminal of the first arm 12-P on which the DC power source Vdc is not connected, that is, the upper terminal of the first arm 12-P. 1at is connected.
  • the terminal T2-2 of the secondary winding of the transformer 14 ′ is a terminal on the side of the second arm 12-N to which no further DC power source V dc is connected, that is, the second arm 12. -N upper terminal 2at is connected.
  • the third terminal c of the arm coupling portion 13 is connected to the intermediate terminal T2-3 located on the winding between the both terminals of the three-terminal coupling reactor 15.
  • the polarity of the primary side winding and the secondary side winding of the transformer 14 ′ is represented by black circles (•).
  • the polarity of the winding between the end terminal T2-1 and the intermediate terminal T2-3 and the polarity of the winding between the intermediate terminal T2-3 and the end terminal T2-2 are: The directions are opposite (facing each other in the illustrated example).
  • the polarity direction of the primary winding does not necessarily have to be the same as the polarity direction of the secondary winding.
  • the polarities of the two windings between the two end terminals of the three-terminal coupling reactor 15 and the intermediate terminal T2-3 are the same direction (in the illustrated example, the left direction). To match).
  • the direction of the polarity of the three-terminal coupling reactor 15 can be aligned on the right side in the illustrated example.
  • FIG. 6 is a circuit diagram of a single-phase power converter 1, showing a fifth embodiment of the multilevel power converter of the present invention.
  • the single-phase power converter 1 according to the fifth embodiment changes the connection relationship between the arm coupling portion 13 and the DC power source v dc in the fourth embodiment described with reference to FIG. Accordingly, a new capacitor is provided.
  • the unit cells 11-1 to 11-M, the first arm 12-P, and the second arm 12-N are the same as those in the first embodiment described with reference to FIGS. 1, 2A, and 2B. . That is, the unit cells 11-1 to 11-M can use either the chopper cell CC shown in FIG. 2A or the bridge cell shown in FIG. 2B as in the first embodiment.
  • a DC capacitor C connected in parallel to the two semiconductor switches SW, and input / output terminals T1 and T2 for discharging current from the DC capacitor C or charging to the DC capacitor C according to the switching operation of the semiconductor switch SW.
  • the first arm 12-P and the second arm 12-N include a plurality of units connected in cascade through one unit cell 11-1 or input / output terminals T1 and T2. The same number of unit cells 11-1 to 11-M is provided.
  • the DC power source V dc is connected between the lower terminal 1ab of the first arm 12-P and the lower terminal 2ab of the second arm 12-N.
  • the first capacitor C dc1 has one end connected to the lower terminal 1ab of the first arm 12-P and the other end connected to the first terminal a.
  • the second capacitor C dc2 has one end connected to the lower terminal 2ab of the second arm 12-N and the other end connected to the second terminal b.
  • a first capacitor C dc1 and the second capacitor C dc2 connected in series, a first capacitor C dc1 and a second capacitor C dc2, which is the series connection is connected in parallel to the DC power source V dc.
  • the polarity directions of the first capacitor C dc1 and the second capacitor C dc2 are matched with the polarity direction of the DC power source V dc .
  • the arm coupling unit 13 includes a first terminal a connected to the first capacitor C dc1 , a second terminal b connected to the second capacitor C dc2 , and an intermediate terminal T2 of the three-terminal coupling reactor 15. And a third terminal c connected to -3.
  • the transformer 14 'in the fifth embodiment has an intermediate terminal of the transformer 14 in the single-phase power converter 1 according to the first embodiment described with reference to FIG.
  • a three-terminal coupling reactor 15 is provided at the same position. That is, the three-terminal coupling reactor 15 is provided on the secondary winding of the transformer 14 ′.
  • the number of turns of the primary side winding of the transformer 14 ′ is N 1
  • the number of turns of the secondary side winding is N 2 . Therefore, on the secondary side, the number of windings between the terminal T2-1 and the three-terminal coupling reactor 15 and the number of windings between the three-terminal coupling reactor 15 and the terminal T2-2 are: both the N 2/2.
  • the upper terminal 1at of the first arm 12-P is connected to the terminal T2-1 of the secondary winding of the transformer 14 ′, and the terminal T2-2 of the secondary winding of the transformer 14 ′. Is connected to the upper terminal 2at of the second arm 12-N. Further, the third terminal c of the arm coupling portion 13 is connected to the intermediate terminal T2-3 located on the winding between the two end terminals T2-1 and T2-2 of the three-terminal coupling reactor 15.
  • the polarities of the primary side winding and the secondary side winding of the transformer 14 ′ are represented by black circles (•).
  • the polarity of the winding between the end terminal T2-1 and the intermediate terminal T2-3 and the polarity of the winding between the intermediate terminal T2-3 and the end terminal T2-2 are: The directions are opposite (in the illustrated example, they face each other).
  • the polarity direction of the primary winding is not necessarily the same as the polarity direction of the secondary winding.
  • the two windings between the two terminals T2-1 and T2-2 and the intermediate terminal T2-3 of the three-terminal coupling reactor 15 have the same polarity (not shown) In the example, it is aligned to the left).
  • the direction of the polarity of the three-terminal coupling reactor can be aligned on the right side in the illustrated example.
  • a three-phase power converter can be configured using the single-phase power converter 1 according to the first to fifth embodiments described above for three phases.
  • a three-phase two-phase power converter can be configured by using two phases of the single-phase power converter 1 according to the first to fifth embodiments.
  • a three-phase power converter will be described as a sixth embodiment and a seventh embodiment.
  • a three-phase two-phase power converter will be described later as an eighth embodiment.
  • FIG. 7 shows a sixth embodiment of the multilevel power converter according to the present invention, and is a circuit diagram showing a three-phase power converter 2.
  • 8A and 8B are circuit diagrams showing transformers in the three-phase power converter 2 shown in FIG.
  • the case where the three-phase power converter 2 is configured using the single-phase power converter 1 according to the first embodiment will be described as an example.
  • the single-phase power according to the second to fifth embodiments will be described. Even when the power converter 1 is used, the same configuration can be adopted.
  • the case where the three-phase power converter 2 is configured using the single-phase power converter 1 according to the fifth embodiment will be described as a seventh embodiment described later.
  • three single-phase power converters 1 are used for u-phase, v-phase, and w-phase, and these single-phase power converters 1u, 1v, and Indicated by 1w. And the three phase power converter 2 is formed using these single phase power converters 1u, 1v, and 1w.
  • the single-phase power converters 1v and 1w have the same circuit configuration as that of the single-phase power converter 1u, and therefore a detailed description of the circuit configuration is omitted.
  • the u-phase single-phase power converter 1u will be mainly described, the same applies to the v-phase and w-phase single-phase power converters 1v and 1w.
  • the number of unit cells is 4 per arm as an example, 8 per 1 phase, and thus 24 in the three-phase power converter 2. However, this value is only an example, It is not limited to this.
  • each phase in the three-phase transformer 24 having a star connection on the secondary side and an open star connection on the secondary side is configured.
  • the turns ratio N 1 : N 2 of the primary winding and the secondary winding is 1: 1.
  • FIG. 8A shows the star connection on the primary side of the three-phase transformer 24, and
  • FIG. 8B shows the open star connection on the secondary side of the three-phase transformer 24.
  • the number of terminals of the secondary side winding that is an open star connection is originally nine, but in the sixth embodiment, each phase of u, v, and w is shown in FIG.
  • the third terminal c which is an intermediate terminal in the three-terminal coupling reactor L of the arm coupling portion 13, as one common terminal, the number of necessary terminals can be reduced to seven.
  • the negative terminal of the DC power source V dc is connected to the third terminal c of the arm coupling portion 13, and the intermediate terminal of the transformer 14.
  • T2-3 is connected to the positive terminal of the DC power source Vdc .
  • the DC power supply V dc connected to the single-phase power converter 1 in FIG. 1 as described above is replaced with each phase of u, v, and w as shown in FIG. Common.
  • FIGS. 9A to 9C, FIG. 10 and FIG. 9A to 9C are control block diagrams for DC capacitor control of the three-phase power converter 2 according to the sixth embodiment.
  • FIG. 10 is a block diagram showing a DC capacitor control device 50 of the three-phase power converter 2 according to the sixth embodiment.
  • the three-phase power converter 2 according to the sixth embodiment includes the single-phase power converter 1 according to the first embodiment for three phases.
  • the u-phase single-phase power converter 1u that is, the single-phase power converter 1 according to the first embodiment
  • the present invention can also be applied to the v-phase and w-phase single-phase power converters 1v and 1w, and the three-phase power converter 2 in the single-phase power converter 1 according to the second to fifth embodiments. It is the same even if it comprises.
  • the DC capacitor control of the three-phase power converter 2 described below can be applied as it is as the single DC capacitor control of the single-phase power converter 1 according to the first to fifth embodiments. .
  • the DC capacitor control of the three-phase power converter 2 is roughly divided into the following three controls.
  • the three controls are called average value control, circulating current control, and individual balance control.
  • these three controls will be described individually.
  • Average value control is control in which the value obtained by averaging the voltage average value of all DC capacitors in each arm follows the DC voltage command value.
  • the circulating current control is control that causes the circulating current flowing through the first arm and the circulating current flowing through the second arm to follow the circulating current command value created in the average value control.
  • the individual balance control is a control in which the voltage value of each DC capacitor in the arm follows the value obtained by averaging the voltage values of all DC capacitors in the same arm, and is executed for each arm. Control.
  • the above three controls are executed by a DC capacitor control device 50 of the three-phase power converter 2 as shown in FIG.
  • the DC capacitor control device 50 includes a command value creating means 51 and a control means 52.
  • the command value creating means 51 circulates the first arm 12-P based on the voltage value of the DC capacitor in the first arm 12-P and the voltage value of the DC capacitor in the second arm 12-N.
  • a current command value i ZP * and a circulating current command value i ZN * of the second arm 12 -N are created.
  • the control means 52 controls the circulating currents i ZP and i ZN flowing through the first and second arms to follow the circulating current command values i ZP * and i ZN * of the first and second arms, respectively. To do.
  • the circulating currents i ZP and i ZN of the first and second arms are converted into the current ratios i P and i N flowing through the first and second arms by the turns ratio N 1 / N 2 of the transformer 14 and AC input. This is obtained by adding or subtracting an AC component (N 1 / N 2 ) ⁇ (I ac ) in consideration of the AC current i ac applied to the output terminals T1-1 and T1-2.
  • control means 52 has a switching command means 63 for switching the semiconductor switch in response to the control to be followed.
  • switching command means 63 for switching the semiconductor switch in response to the control to be followed.
  • Each of these means is realized using an arithmetic processing device such as a DSP or FPGA.
  • each of the three controls shown in FIGS. 9A to 9C will be described with reference to FIG.
  • the command value is described with a symbol *, but in the present specification, it is described as a circulating current command value i ZP * , whereas in the drawing, the circulating current command value is i * ZP .
  • the positions of the symbols * are different.
  • i ZP * and i * ZP are assumed to be the same. The same applies to other codes.
  • FIG. 9A is a block diagram showing average value control in which a value obtained by averaging the voltage average value of all the DC capacitors in each arm follows the DC voltage command value.
  • the average value control shown in FIG. 9A is performed by the command value creating means 51 in the DC capacitor control device 50 shown in FIG.
  • the command value creating means 51 creates a circulating current command value i ZP * for the first arm 12-P and a circulating current command value i ZN * for the second arm 12-N.
  • the values V aveCP and V aveCN obtained by averaging the voltage values of all DC capacitors in the first arm 12-P and the second arm 12-N follow a predetermined DC voltage command value V C * .
  • a feedback loop is configured.
  • the command value creating means 51 shown in FIG. 10 obtains a value v aveCP obtained by averaging the voltage values of all the DC capacitors in the first arm 12-P shown in FIG. for controlling so as to follow the command value V C *, to generate a first circulating current command value i ZP of arm 12-P *.
  • the command value creating means 51 has a value v aveCN obtained by averaging the voltage values of all the DC capacitors in the second arm 12-N, following a predetermined DC voltage command value V C * .
  • the circulating current command value i ZN * for the second arm 12-N is generated to control the second arm 12-N.
  • FIG. 9B shows that the circulating current i ZP flowing through the first arm and the circulating current i ZN flowing through the second arm follow the circulating current command values i ZP * and i ZN * created in the average value control.
  • It is a block diagram which shows circulating current control made to do. The circulating current control is executed for each arm.
  • the individual balance control for the first arm 12-P is mainly described, but the circulating current control for the second arm 12-N is described. It is written in parentheses "()".
  • the circulating current i ZP flowing through the first arm and the circulating current i ZN flowing through the second arm are the current i P flowing through the first and second arms, as shown in Equations 13 and 14 and FIG. 9B. and i N, and the turns ratio N 1 / N 2 of the transformer 14, AC output terminals T1-1, AC component in consideration of the alternating current i ac applied to T1-2 (N 1 / N 2 ) ⁇ (i ac ) added or subtracted.
  • the control means 52 constitutes a feedback loop for causing the circulating current i ZP flowing through the first arm and the circulating current i ZN flowing through the second arm to follow the circulating current command values i ZP * and i ZN *.
  • the voltage command values v AP * and v AN * are generated.
  • FIG. 9C is a block diagram showing individual balance control in which the voltage value of each DC capacitor in the arm follows the value obtained by averaging the voltage values of all DC capacitors in the same arm. .
  • the individual balance control is executed for each arm, and in FIG. 9C, the individual balance control for the first arm 12-P is mainly described, but the individual balance control for the second arm 12-N is described. It is written in parentheses "()".
  • the control means 52 adds the voltage value v CPj of each DC capacitor in the first arm 12-P to the value v aveCP obtained by averaging the voltage values of all DC capacitors in the first arm 12-P. , And the voltage v aveCN obtained by averaging the voltage values of all the DC capacitors in the second arm 12-N to the voltage of each DC capacitor in the second arm 12-N. Control is performed to follow each value v CNj .
  • a voltage command value for this purpose is created for each unit cell 11-j in each arm 12-P and 12-N.
  • v BPj * and the second arm 12-N Is represented by v BNj * .
  • j is 1 to M, where M is the number of unit cells in the arm.
  • the voltage control value for controlling the DC capacitor in the unit cell 11-j in each of the arms 12-P and 12-N is created by the above three controls, and this is equivalent to one phase of the three-phase power converter 2 (ie, The final output voltage command for each unit cell 11-j in each arm 12-P and 12-N is combined with the voltage command value v ac * for the AC voltage to be output by the single-phase power converter 1). Values are created as in Equation 15 and Equation 16.
  • the DC voltage V dc is used as a feedforward term in order to stabilize the control.
  • the switching operation of the semiconductor switch SW in each unit cell 11-j in the three-phase power converter 2 is controlled using the output voltage command values v Pj * and v Nj * shown in the above formulas 15 and 16.
  • the control means 52 has the switching command means 63 for switching the semiconductor switch SW.
  • the output voltage command values v Pj * and v Nj * generated for the arms 12-P and 12-N are normalized by the voltages V CPj and V CNj of the DC capacitors, respectively, and then a triangular wave with a carrier frequency f c
  • the PWM signal is compared with the carrier signal (maximum value: 1, minimum value: 0), and a PWM switching signal is generated.
  • the generated switching signal (described as a switching command value in FIG. 10) is used by the switching command means 63 for switching control of the semiconductor switch SW (see FIGS. 2A and 2B) in the corresponding unit cell 11-j. .
  • the three-phase power converter 2 uses eight unit cells per phase (four in each arm), a PWM waveform having a phase voltage of 9 levels and a line voltage of 17 levels is obtained. Become.
  • the generation of the switching signal is realized by using an arithmetic processing device such as a DSP or FPGA.
  • the three-phase voltage converter 2 has 24 chopper cells.
  • the MPC on the AC side was connected to a three-phase AC of 200V through the AC reactor Ls, and the DC side was connected to a DC power source having a DC voltage Vdc of 140V.
  • FIG. 11 is a block diagram showing instantaneous active power control and instantaneous reactive power control in the experiment of the three-phase power converter 2 according to the sixth embodiment.
  • the instantaneous active power command value is represented by p * and the instantaneous reactive power command value is represented by q * .
  • the phase voltage command values v u * , v v * and v w * of each phase of the three-phase power converter 2 in the sixth embodiment are the non-interfering currents of the power source currents i u , i v and i w of each phase. Determined by control.
  • the three-phase power converter 2 includes a DC capacitor voltage control means 71 and an output voltage command value creation means 72 for each unit cell.
  • the DC capacitor voltage control means 71 includes a DC voltage command value V C * , voltage values v u CP1 , v u CP2 ⁇ v w CNM of each DC capacitor of each arm of three phases, arm current i of each arm of each phase u P , i u N ,..., i w N and AC currents i ac u , i ac v , i ac w of each phase are input, and voltage command values v u AP * , v u AN * to v w of each phase are input.
  • BN * and voltage command values v u BPj * to v w BPj * of each DC capacitor of each phase are output.
  • the voltage command values v u Pj * , v u Nj * , .about.v w Nj * of the chopper cells of each arm of each phase are output from the output voltage command value creating means 72 of each unit cell.
  • FIG. 12 shows experimental waveforms using the three-phase power converter 2 according to the sixth embodiment.
  • the MPC operates as an inverter, the instantaneous active power command value p * is ⁇ 5 kW, and the instantaneous reactive power command.
  • the value q * is 0 kVA.
  • the voltages on the secondary side of the transformer 14 are v 2 u , v 2 v and v 2 w are 9-step PWM waveforms. total harmonic distortion THD of i u was reduced to 1.9%.
  • the arm currents i u P and i u N include both a DC component and a 50 Hz AC component, and the DC component is 6.3 A.
  • the 50 Hz component is negligible compared to the DC component.
  • the DC capacitor voltages v u CP1 and v u CN1 both contain a DC component and an AC component, and the DC component is regulated to 75V by voltage control.
  • the DC component I dc of the DC power supply current is 39 A, which is 6 times higher than the current I u Z.
  • FIG. 13 shows an experimental waveform using the three-phase power converter 2 according to the sixth embodiment.
  • the MPC operates as a rectifier, the instantaneous active power command value p * is 5 kW, and the instantaneous reactive power command value.
  • q * is 0 kVA.
  • the experiment waveform shown in FIG. 13 the experiment waveform shown in FIG. 13, the amplitude v u 2, v v 2 and v w 2 shown in FIG. 13, the amplitude v u 2 shown in FIG. 12, v v 2 and It is smaller than v w 2 . This is due to the influence of the resistance value of the power circuit.
  • the amplitude thereof decreases during the rectification operation, but in the case of reverse conversion, the amplitude increases in the opposite manner. This is because the polarities of the currents i u ZP and i dc change to negative due to the rectification operation.
  • the amplitudes of the currents i u ZP and i dc shown in FIG. 13 are smaller than those shown in FIG. 12 due to the power loss of the converter.
  • the other waveforms shown in FIG. 13 are the same as the waveforms shown in FIG.
  • FIG. 14 shows experimental waveforms using the three-phase power converter 2 according to the sixth embodiment.
  • V dc is 140 V
  • the instantaneous active power command value p * is ⁇ 5 kW
  • the instantaneous reactive power command value q * is It is a waveform during the start-up operation at 0 kVA.
  • vC * increases from 70V to 75V at a slope change rate of 5V / 0.1 s.
  • the instantaneous reactive power command value q * is 0 kW
  • the instantaneous active power command value p * is 0 kW to -5 kW at a slope change rate of -5 kW / 0.1 s. is decreasing.
  • the amplitudes of the supply current and arm current increase without overcurrent flowing.
  • the average value of the DC voltages v u CP1 and v u CN1 is regulated by the command voltage value 75V without a steady error.
  • the DC component contained in the current i u ZPN is suppressed to zero even during the transient state.
  • FIG. 15 shows an experimental waveform using the three-phase power converter 2 according to the sixth embodiment, and is a waveform when the instantaneous active power command value p * changes stepwise from ⁇ 4 kW to ⁇ 5 kW. .
  • the DC link current idc shows a primary response to a change in the instantaneous active power command value p *, in which the time constant estimated from the experimental waveform is as short as 1.5 ms. Even in a state where the instantaneous active power command value p * changes stepwise, no direct current is generated in i u ZPN .
  • the modular push-pull PWM converter (MPC) of the present invention can be applied to a battery power storage system.
  • the present invention proposes a new control method for MPC and can achieve 6 degrees of freedom in the circulating current for 3-phase MPC.
  • the average voltage in the first arm and the second arm can be regulated independently without interference, and a simple and reliable system can be provided.
  • Experimental results obtained from a practical three-phase 200 V, 5 kW system show that the importance and efficiency of the converter is guaranteed.
  • FIG. 16 is a circuit diagram showing a three-phase power converter according to the seventh embodiment.
  • a three-phase power converter is configured by using the single-phase power converter according to the fifth embodiment described with reference to FIG.
  • single-phase power converters provided in the u-phase, v-phase, and w-phase, respectively are denoted by reference numerals 1u, 1v, and 1w, and three-phase power configured by these single-phase power converters 1u, 1v, and 1w.
  • the converter is denoted by reference numeral 2.
  • the single-phase power converters 1v and 1w have the same circuit configuration as that of the single-phase power converter 1u, and therefore a detailed description of the circuit configuration is omitted.
  • the number of unit cells is 4 per arm as an example, 8 per phase, and thus 24 in the three-phase power converter 2.
  • this numerical value is merely an example, It is not limited to this.
  • the transformer 14 ′ in the fifth embodiment has an intermediate terminal of the transformer 14 in the single-phase power converter 1 according to the first embodiment described with reference to FIG. 1.
  • a three-terminal coupling reactor 15 is provided at the position. That is, the three-terminal coupling reactor 15 is provided on the secondary winding of the transformer 14 '.
  • each phase in the three-phase transformer 24 is configured by using this transformer 14 '.
  • the DC power source V dc in the fifth embodiment is between the lower terminal 1ab of the first arm 12-P and the lower terminal 2ab of the second arm 12-N. Connected to.
  • the DC power supply V dc connected as described above to the single-phase power converter 1 in FIG. 6 is common to the phases u, v, and w as shown in FIG.
  • the voltage value is twice that of the fifth embodiment shown in FIG.
  • the intermediate terminal (center tap) of the three-terminal coupling reactor 15 with Y the voltage dividing capacitor that existed in the fifth embodiment shown in FIG. 6 can be removed.
  • a three-phase two-phase power converter is configured by providing two phases of the single-phase power converter 1 according to the first to fifth embodiments.
  • a Scott transformer is used to provide two-phase single-phase power converters 1 according to the first to fifth embodiments and connect them to the system side.
  • FIG. 17 is a circuit diagram showing a Scott transformer used in the present invention.
  • the Scott transformer 25 is composed of two single-phase transformers, an M seat transformer Tm and a T seat transformer Tt.
  • N 1 be the number of turns of the primary winding of the M-seat transformer Tm
  • N 2 be the number of turns of the secondary winding.
  • the intermediate terminal (center tap) of the primary side winding of the M seat transformer Tm is connected to the primary side winding of the T seat transformer Tt.
  • the number of turns of the primary winding of the T-seat transformer Tt is ⁇ 3N 1/2 .
  • 18A and 18B are instantaneous voltage vector diagrams of the Scott transformer shown in FIG. As shown in FIG.
  • FIG. 19 is a circuit diagram showing a three-phase two-phase power converter according to the eighth embodiment.
  • a case where a three-phase two-phase power converter is configured using the single-phase power converter according to the first embodiment will be described as an example.
  • the same configuration can be achieved using a single-phase power converter according to the example.
  • single-phase power converters provided in the ⁇ -phase and ⁇ -phase are denoted by reference numerals 1 ⁇ and 1 ⁇ , respectively, and a three-phase two-phase power converter configured by the single-phase power converters 1 ⁇ and 1 ⁇ is denoted by the reference numerals This is represented by 3.
  • the circuit configuration of the single-phase power converter 1 ⁇ is the same as that of the single-phase power converter 1 ⁇ , and therefore a specific description of the circuit configuration is omitted.
  • the ⁇ phase will be mainly described, but the same applies to the ⁇ phase.
  • the number of unit cells is set to 4 per arm as an example, 8 per 1 phase, and thus 16 in the three-phase power converter 2.
  • this value is only an example.
  • the present invention is not limited to this.
  • the Scott transformer 25 is used by using the transformers 14 in the single-phase power converters 1 ⁇ and 1 ⁇ provided in the ⁇ -phase and ⁇ -phase. Each phase in is constituted.
  • the turn ratio N 1 : N 2 between the primary winding and the secondary winding is ⁇ 3: 1.
  • the Scott transformer 25 described with reference to FIG. 17 has an intermediate on the secondary side winding of the M seat transformer Tm. A terminal (center tap) ⁇ 1 is provided.
  • an intermediate terminal (center tap) is placed on the secondary winding of the T-seat transformer Tt of the Scott transformer 25 described with reference to FIG. ) ⁇ 1 is provided.
  • the negative terminal of the DC power source V dc is connected to the third terminal c of the arm coupling portion 13, and the intermediate terminal of the transformer 14.
  • the positive terminal of the DC power source V dc is connected to T2-3.
  • the ⁇ phase and the ⁇ phase are common.
  • both terminals ⁇ 0 and ⁇ 1 of the secondary side winding of the M seat transformer Tm of the Scott transformer 25 are connected to the first arm 12-P. And the upper terminal of 12-N are connected.
  • a three-terminal coupling reactor that is an arm coupling portion 13 is connected to the lower terminals of the first arms 12-P and 12-N.
  • the negative terminal of the DC power source Vdc is connected to the intermediate terminal of the three-terminal coupling reactor.
  • the secondary side ⁇ phase of the three-phase to two-phase power converter 3 has the same configuration as the ⁇ phase.
  • the arm balance is compared with the conventional control method by independently controlling the DC voltage average value of each arm. Since the control could be eliminated, high-speed communication of DC voltage information between the arms became unnecessary, and restrictions on the MPC design could be eliminated.

Abstract

A multilevel power converter (1) provided with a transformer (14) having AC input/output terminals (T1-1, 2) on a primary side and an intermediate terminal (T2-3) on a secondary-side coil, a first and a second arm (12-P, N) being connected to both ends (T2-1, 2) on the secondary side and being provided with a plurality of cascade-connected unit cells (11-1, ...M) having a semiconductor switch, a DC capacitor (C), and an input/output terminal for a charge/discharge current, and a DC power supply (Vdc) being connected to the intermediate terminal (T2-3), the free end of the DC power supply (Vdc) and the first and second arms (12-P, N) being connected at an arm joint part (13); wherein circulation currents (iZP, iZN) flowing through the first arm (12-P) and the second arm (12-N) are separately defined, and the average DC voltage value in each arm is independently controlled, whereby the need for arm balance control is obviated.

Description

マルチレベル電力変換器及びマルチレベル電力変換器の制御方法Multilevel power converter and control method of multilevel power converter
 本発明は、直流と交流とを双方向に変換する単相電力変換器及び三相電力変換器並びに三相交流と二相交流とを双方向に変換する三相二相電力変換器を含むマルチレベル電力変換器及びマルチレベル電力変換器の制御方法に関する。 The present invention relates to a single-phase power converter and a three-phase power converter that convert direct current and alternating current bidirectionally, and a multi-phase power converter that includes a three-phase two-phase power converter that bidirectionally converts three-phase alternating current and two-phase alternating current. The present invention relates to a level power converter and a control method for a multi-level power converter.
 風力発電や太陽光発電の導入機会の増大に伴い、電池電力貯蔵装置の重要性が増している。図20は、電池電力貯蔵装置の一般的な構成を示す図である。電池電力貯蔵装置1000は、NAS電池(登録商標)やリチウムイオン電池などのバッテリ100と、バッテリ100の直流電圧を交流電圧に変換する連系変換器200と、連系変換器200と電力系統400とを連系する連系変圧器300と、を備える。電池電力貯蔵装置1000においては、バッテリ100の直流電圧は、電力系統400の電圧実効値に対して相対的に低いため、連系変換器200には高い昇圧比が求められる。このため、従来より、数Mワット級の連系変換器において変換器用変圧器を使用することで高圧化及び大容量化を実現してきた。しかしながら、このような変換器用変圧器の使用は、装置の大型化及び高重量化をもたらす要因となる。 The importance of battery power storage devices is increasing with increasing opportunities for introducing wind power and solar power. FIG. 20 is a diagram illustrating a general configuration of the battery power storage device. The battery power storage device 1000 includes a battery 100 such as a NAS battery (registered trademark) or a lithium ion battery, a grid converter 200 that converts a DC voltage of the battery 100 into an AC voltage, a grid converter 200, and a power system 400. And an interconnecting transformer 300 that interconnects. In the battery power storage device 1000, the DC voltage of the battery 100 is relatively low with respect to the effective voltage value of the power system 400, so that a high step-up ratio is required for the interconnection converter 200. For this reason, conventionally, high voltage and large capacity have been realized by using a transformer for a converter in an interconnection converter of several megawatts. However, the use of such a transformer for a converter is a factor that leads to an increase in size and weight of the device.
 このような問題を解決するために、実装が容易で大容量・高圧用途に適した次世代トランスレス電力変換器として、モジュラー・マルチレベル変換器(Modular Multilevel Converter:MMC)が提案されている。 In order to solve such problems, a modular multilevel converter (MMC) has been proposed as a next-generation transformerless power converter that is easy to mount and suitable for large capacity and high voltage applications.
 モジュラー・マルチレベル変換器は、複数の双方向チョッパセルもしくはフルブリッジ変換器セルを直列接続したモジュールでアームを構成する点に特徴がある。絶縁等の問題を除けば、直列セル数を増やすことにより、半導体スイッチを高耐圧化することなく、交流出力電圧の増大を図るとともに電圧及び電流のリプルを抑制することが可能であり、高電圧かつ大容量の電力変換器として期待されている。モジュラー・マルチレベル変換器は、実装が容易で、冗長性に富み、装置の小型軽量化を実現できることから、系統連系用電力変換器や、誘導電動機のためのモータドライブ装置などに適用できる。 The modular multi-level converter is characterized in that the arm is composed of a module in which a plurality of bidirectional chopper cells or full-bridge converter cells are connected in series. Excluding problems such as insulation, it is possible to increase the AC output voltage and suppress voltage and current ripple without increasing the breakdown voltage of the semiconductor switch by increasing the number of series cells. It is also expected as a large capacity power converter. The modular multi-level converter is easy to mount, rich in redundancy, and can be reduced in size and weight, so that it can be applied to a power converter for grid interconnection, a motor drive device for an induction motor, and the like.
 モジュラー・マルチレベル変換器として、例えばカスケード型のモジュラー・マルチレベル変換器(Modular Multilevel Cascade Converter:MMCC)が提案されている(例えば、特許文献1及び非特許文献1~4参照。)。 As a modular multilevel converter, for example, a cascading modular multilevel converter (Modular Multilevel Cascade Converter: MMCC) has been proposed (for example, see Patent Document 1 and Non-Patent Documents 1 to 4).
 しかし、電池電力貯蔵装置の直流電圧を交流電圧に変換する連系変換器の高昇圧比を変換器用変圧器で実現すると、装置の大型化及び高重量化をもたらす。即ち、実装が容易で大容量・高圧用途に適したモジュラー・マルチレベル変換器を用いた場合であっても、変換器用変圧器は除去できるが、電圧整合性及び電気絶縁性の観点から連系変圧器を除去できないという問題がある。 However, if the high step-up ratio of the interconnection converter that converts the DC voltage of the battery power storage device into the AC voltage is realized by the transformer for the converter, the size and weight of the device are increased. That is, even if a modular multi-level converter that is easy to mount and suitable for high-capacity and high-voltage applications is used, the transformer for the converter can be removed, but it is connected from the viewpoint of voltage matching and electrical insulation. There is a problem that the transformer cannot be removed.
 また、今後は風力発電や太陽光発電が産業界のみならず一般家庭にも普及していくことが考えられ、電池電力貯蔵装置のより一層の小型化、低価格化及び高効率化がさらに要求される。更に、特許文献1及び非特許文献1~4に記載されたカスケード型のモジュラー・マルチレベル変換器(MMCC)よりもさらに小型、低価格で高効率の電力変換器が求められる。 In the future, wind power generation and solar power generation are expected to spread not only to the industrial world but also to general households, and further demands for further downsizing, lowering price and higher efficiency of battery power storage devices are required. Is done. Further, there is a need for a power converter that is smaller, lower in price, and more efficient than the cascade-type modular multilevel converter (MMCC) described in Patent Document 1 and Non-Patent Documents 1 to 4.
 そこで、本発明者らは、直流と交流とを双方向に変換する、構造容易、小型、低価格で高効率のモジュラー・マルチレベルの単相電力変換器及び三相電力変換器、ならびに、三相交流と二相交流とを双方向に変換する、構造容易、小型、低価格で高効率の三相二相電力変換器を案出した(特許文献2参照)。なお、以後、モジュラー・マルチレベルの単相電力変換器及び三相電力変換器、並びに三相二相電力変換器を総称して、マルチレベル電力変換器と記す。 Therefore, the inventors of the present invention have a modular multi-level single-phase power converter and a three-phase power converter, which are simple in structure, small in size, low in cost, and high in efficiency, which convert DC and AC bidirectionally. A three-phase two-phase power converter has been devised that converts a phase alternating current and a two-phase alternating current in both directions, has a simple structure, is small, is inexpensive, and is highly efficient (see Patent Document 2). Hereinafter, the modular multilevel single-phase power converter, the three-phase power converter, and the three-phase two-phase power converter are collectively referred to as a multilevel power converter.
 特許文献2に記載のマルチレベル電力変換器では、プッシュプル・インバータの各アームをセルを使用してモジュール化した回路構成のモジュラー・プッシュプル・変換器(MPC:Modular Push-pull Converter)が使用される。モジュラー・プッシュプル・変換器は以後、MPCと記す。 The multi-level power converter described in Patent Document 2 uses a modular push-pull converter (MPC) with a circuit configuration in which each arm of a push-pull inverter is modularized using cells. Is done. The modular push-pull converter is hereinafter referred to as MPC.
 そして、MPCの正常動作を実現するために、各セルに使用している直流コンデンサ電圧を一定にする制御として、特許文献2には、平均値制御、アームバランス制御、循環電流制御及び個別バランス制御の4つの制御が開示されている。 In order to realize normal operation of MPC, Patent Document 2 discloses average value control, arm balance control, circulating current control, and individual balance control as control for making the DC capacitor voltage used in each cell constant. The following four controls are disclosed.
特開2011-182517号公報JP 2011-182517 A 国際出願PCT/JP2012/079668号公報International Application PCT / JP2012 / 079668
 しかし、特許文献2に開示の、各セルにある直流コンデンサ電圧を一定にするアームバランス制御では、アーム間で直流電圧の情報を高速で通信しており、アーム間で高速な通信を行う都合上、各アームを近接設置する必要があり、設計上の制約があった。 However, in the arm balance control disclosed in Patent Document 2 in which the DC capacitor voltage in each cell is constant, DC voltage information is communicated between the arms at a high speed, and the high speed communication is performed between the arms. Each arm must be installed close to each other, and there were design restrictions.
 従って本発明の目的は、上記問題に鑑み、各アームの直流電圧平均値を独立に制御することにより、各セルにある直流コンデンサ電圧を一定にするアームバランス制御を無くし、アーム間での直流電圧の情報の高速通信を不要として、MPCの設計上の制約を無くすことである。 Therefore, in view of the above problems, an object of the present invention is to independently control the average DC voltage value of each arm, thereby eliminating arm balance control that keeps the DC capacitor voltage in each cell constant, and the DC voltage between the arms. It is necessary to eliminate the high-speed communication of the information, and to eliminate the restrictions on the MPC design.
 上記目的を実現する本発明の第1の形態によれば、
 直列接続された2つの半導体スイッチと、2つの半導体スイッチに並列接続された直流コンデンサと、半導体スイッチのスイッチング動作に応じて直流コンデンサから放電若しくは直流コンデンサへ充電される電流の入出力端子とを有する単位セルと、
 1つの単位セル、又は入出力端子を介して互いにカスケード接続された複数の単位セルからなる第1及び第2のアームであって、第1及び第2のアームは同数の単位セルを有する第1及び第2のアームと、
 第1のアームの一端が接続される第1の端子と、第2のアームの一端が接続される第2の端子と、直流電源の一端が接続される第3の端子とを有するアーム結合部と、
 1次側に交流入出力端子、2次側巻線上に中間端子を有する変圧器であって、2次側巻線の2つの末端端子には、第1のアームの、アーム結合部の第1の端子が接続されない側の端子と、第2のアームの、アーム結合部の第2の端子が接続されない側の端子とがそれぞれ接続され、中間端子には、直流電源の、アーム結合部の第3の端子が接続されない側の端子が接続される変圧器と、
 第1のアーム内の直流コンデンサの電圧値と第2のアーム内の直流コンデンサの電圧値とに基づいて、第1のアームの循環電流指令値と第2のアームの循環電流指令値とを作成する指令値作成手段と、
 第1と第2のアームの循環電流指令値に対して、第1と第2のアームを流れる電流に、変圧器の巻線比と交流入出力端子に印加される交流電流とを考慮した交流分を加えた、若しくは引いた、第1と第2のアームをそれぞれ流れる循環電流が追従するよう制御する制御手段とを備えることを特徴とするマルチレベル電力変換器が提供される。
According to the first aspect of the present invention for realizing the above object,
Two semiconductor switches connected in series, a DC capacitor connected in parallel to the two semiconductor switches, and an input / output terminal for current discharged from the DC capacitor or charged to the DC capacitor in accordance with the switching operation of the semiconductor switch A unit cell;
1st and 2nd arm which consists of one unit cell or a plurality of unit cells cascade-connected to each other via input / output terminals, wherein the first and second arms have the same number of unit cells. And a second arm;
An arm coupling portion having a first terminal to which one end of the first arm is connected, a second terminal to which one end of the second arm is connected, and a third terminal to which one end of the DC power supply is connected When,
A transformer having an AC input / output terminal on the primary side and an intermediate terminal on the secondary side winding, and two terminal terminals of the secondary side winding are connected to the first arm of the first arm coupling portion. And the terminal of the second arm to which the second terminal of the arm coupling portion is not connected are connected to each other, and the intermediate terminal is connected to the terminal of the arm coupling portion of the DC power source. A transformer to which the terminal on the side to which the terminal of 3 is not connected is connected;
Based on the voltage value of the DC capacitor in the first arm and the voltage value of the DC capacitor in the second arm, the circulating current command value of the first arm and the circulating current command value of the second arm are created. Command value creation means for
AC in consideration of the current flowing through the first and second arms and the winding ratio of the transformer and the AC current applied to the AC input / output terminal with respect to the circulating current command values of the first and second arms. There is provided a multi-level power converter comprising control means for controlling the circulating currents flowing through the first and second arms, respectively, to add or subtract, respectively.
 上記目的を実現する本発明の第2の形態によれば、
 直列接続された2つの半導体スイッチと、2つの半導体スイッチに並列接続された直流コンデンサと、半導体スイッチのスイッチング動作に応じて直流コンデンサから放電若しくは直流コンデンサへ充電される電流の入出力端子とを有する単位セルと、
 1つの単位セル、又は入出力端子を介して互いにカスケード接続された複数の単位セルからなる第1及び第2のアームであって、第1及び第2のアームは同数の単位セルを有する第1及び第2のアームと、
 第1のアームの一端との間で直流電源が接続される第1の端子と、第2のアームの一端との間でさらに別の直流電源が接続される第2の端子と、第1の端子及び第2の端子に接続される第3の端子とを有するアーム結合部と、
 1次側に交流入出力端子、2次側巻線上に3端子結合リアクトルを有する変圧器であって、2次側巻線の2つの末端端子には、第1のアームの、直流電源が接続されない側の端子と、第2のアームの、上記さらに別の直流電源が接続されない側の端子とがそれぞれ接続され、3端子結合リアクトルの両端端子間の巻線上に位置する中間端子には、第3の端子が接続される変圧器と、
 第1のアーム内の直流コンデンサの電圧値と第2のアーム内の直流コンデンサの電圧値とに基づいて、第1のアームの循環電流指令値と第2のアームの循環電流指令値とを作成する指令値作成手段と、
 第1と第2のアームの循環電流指令値に対して、第1と第2のアームを流れる電流に、変圧器の巻線比と交流入出力端子に印加される交流電流とを考慮した交流分を加えた、若しくは引いた、第1と第2のアームをそれぞれ流れる循環電流が追従するよう制御する制御手段とを備えることを特徴とするマルチレベル電力変換器が提供される。
According to the second aspect of the present invention for realizing the above object,
Two semiconductor switches connected in series, a DC capacitor connected in parallel to the two semiconductor switches, and an input / output terminal for current discharged from the DC capacitor or charged to the DC capacitor in accordance with the switching operation of the semiconductor switch A unit cell;
1st and 2nd arm which consists of one unit cell or a plurality of unit cells cascade-connected to each other via input / output terminals, wherein the first and second arms have the same number of unit cells. And a second arm;
A first terminal to which a DC power source is connected between one end of the first arm, a second terminal to which another DC power source is connected between one end of the second arm, An arm coupling portion having a terminal and a third terminal connected to the second terminal;
A transformer having an AC input / output terminal on the primary side and a three-terminal coupling reactor on the secondary winding, and the DC power supply of the first arm is connected to the two terminal terminals of the secondary winding The intermediate terminal located on the winding between the two terminals of the three-terminal coupling reactor is connected to the terminal on the side that is not connected to the terminal on the side of the second arm that is not connected to the other DC power source. A transformer to which three terminals are connected;
Based on the voltage value of the DC capacitor in the first arm and the voltage value of the DC capacitor in the second arm, the circulating current command value of the first arm and the circulating current command value of the second arm are created. Command value creation means for
AC in consideration of the current flowing through the first and second arms and the winding ratio of the transformer and the AC current applied to the AC input / output terminal with respect to the circulating current command values of the first and second arms. There is provided a multi-level power converter comprising control means for controlling the circulating currents flowing through the first and second arms, respectively, to add or subtract, respectively.
 上記目的を実現する本発明の第3の形態によれば、
 直列接続された2つの半導体スイッチと、2つの半導体スイッチに並列接続された直流コンデンサと、半導体スイッチのスイッチング動作に応じて直流コンデンサから放電若しくは直流コンデンサへ充電される電流の入出力端子とを有する単位セルと、
 1つの単位セル、又は入出力端子を介して互いにカスケード接続された複数の単位セルからなる第1及び第2のアームであって、第1及び第2のアームは同数の単位セルを有する第1及び第2のアームと、
 第1のアームの、直流電源が接続される側の端子に接続される第1のコンデンサと、
 第2のアームの、直流電源が接続される側の端子に接続される第2のコンデンサと、
 第1のコンデンサの、第1のアームが接続されない側の端子が接続される第1の端子と、前2のコンデンサの、第2のアームが接続されない側の端子が接続される第2の端子と、第1の端子及び第2の端子に接続される第3の端子とを有するアーム結合部と、
 1次側に交流入出力端子、2次側巻線上に3端子結合リアクトルを有する変圧器であって、2次側巻線の2つの末端端子には、第1のアームの、第1のコンデンサが接続されない側の端子と、第2のアームの、第2のコンデンサが接続されない側の端子とがそれぞれ接続され、3端子結合リアクトルの両端端子間の巻線上に位置する中間端子には、第3の端子が接続される変圧器と、
 第1のアーム内の直流コンデンサの電圧値と第2のアーム内の直流コンデンサの電圧値とに基づいて、第1のアームの循環電流指令値と第2のアームの循環電流指令値とを作成する指令値作成手段と、
 第1と第2のアームの循環電流指令値に対して、第1と第2のアームを流れる電流に、変圧器の巻線比と交流入出力端子に印加される交流電流とを考慮した交流分を加えた、若しくは引いた、第1と第2のアームをそれぞれ流れる循環電流が追従するよう制御する制御手段とを備えることを特徴とするマルチレベル電力変換器が提供される。
According to the third aspect of the present invention for realizing the above object,
Two semiconductor switches connected in series, a DC capacitor connected in parallel to the two semiconductor switches, and an input / output terminal for current discharged from the DC capacitor or charged to the DC capacitor in accordance with the switching operation of the semiconductor switch A unit cell;
1st and 2nd arm which consists of one unit cell or a plurality of unit cells cascade-connected to each other via input / output terminals, wherein the first and second arms have the same number of unit cells. And a second arm;
A first capacitor connected to a terminal on the side of the first arm to which the DC power supply is connected;
A second capacitor connected to a terminal of the second arm on the side to which the DC power supply is connected;
A first terminal to which a terminal on the side of the first capacitor not connected to the first arm is connected, and a second terminal to which a terminal on the side of the front capacitor not connected to the second arm is connected And an arm coupling portion having a first terminal and a third terminal connected to the second terminal,
A transformer having an AC input / output terminal on the primary side and a three-terminal coupling reactor on the secondary side winding, the first capacitor of the first arm being connected to the two terminal terminals of the secondary side winding Is connected to the terminal on the side where the second capacitor is not connected, and the intermediate terminal located on the winding between the two terminals of the three-terminal coupling reactor is connected to the second terminal of the second arm. A transformer to which three terminals are connected;
Based on the voltage value of the DC capacitor in the first arm and the voltage value of the DC capacitor in the second arm, the circulating current command value of the first arm and the circulating current command value of the second arm are created. Command value creation means for
AC in consideration of the current flowing through the first and second arms and the winding ratio of the transformer and the AC current applied to the AC input / output terminal with respect to the circulating current command values of the first and second arms. There is provided a multi-level power converter comprising control means for controlling the circulating currents flowing through the first and second arms, respectively, to add or subtract, respectively.
 上記目的を実現する本発明の第4の形態は、上記第1から第3の形態のマルチレベル電力変換器を制御する方法であって、
 上記第1から第3の形態の何れかの形態のマルチレベル電力変換器において、
 変圧器の1次側と2次側の巻線比をN1/N2、変圧器の交流入力端子に入力される電流をiacとした時に、第1のアームの循環電流と第2のアーム循環電流を、
 iZP=iP+(N1/N2)×iac
 iZN=iN-(N1/N2)×iac
 で定義し、
 第1のアーム内の直流コンデンサの電圧値と第2のアーム内の直流コンデンサの電圧値とに基づいて、第1のアームの循環電流指令値と第2のアームの循環電流指令値とを作成し、
 第1と第2のアームの循環電流指令値に対して、第1と第2のアームを流れる電流に、変圧器の巻線比と交流入出力端子に印加される交流電流とを考慮した交流分を加えた、若しくは加えた、第1と第2のアームをそれぞれ流れる循環電流が追従するよう制御することを特徴とするマルチレベル電力変換器の制御方法が提供される。
A fourth aspect of the present invention that achieves the above object is a method for controlling the multilevel power converters according to the first to third aspects, comprising:
In the multilevel power converter according to any one of the first to third aspects,
When the winding ratio of the primary side and the secondary side of the transformer is N 1 / N 2 and the current input to the AC input terminal of the transformer is i ac , the circulating current of the first arm and the second current Arm circulating current
i ZP = i P + (N 1 / N 2 ) × i ac
i ZN = i N- (N 1 / N 2 ) × i ac
Defined in
Based on the voltage value of the DC capacitor in the first arm and the voltage value of the DC capacitor in the second arm, the circulating current command value of the first arm and the circulating current command value of the second arm are created. And
AC in consideration of the current flowing through the first and second arms and the winding ratio of the transformer and the AC current applied to the AC input / output terminal with respect to the circulating current command values of the first and second arms. Provided is a control method for a multilevel power converter, characterized in that control is performed so that the circulating currents flowing through the first and second arms are added or added.
 本発明によれば、各アームの直流電圧平均値を独立に制御することにより、各セルにある直流コンデンサ電圧を一定にするアームバランス制御を無くし、アーム間での直流電圧の情報の高速通信を不要として、MPCの設計上の制約を無くすことができる。 According to the present invention, by independently controlling the DC voltage average value of each arm, arm balance control for making the DC capacitor voltage in each cell constant is eliminated, and high-speed communication of DC voltage information between arms is eliminated. Unnecessary restrictions on MPC design can be eliminated.
第1の実施例による単相電力変換器を示す回路図である。It is a circuit diagram which shows the single phase power converter by a 1st Example. 第1~第5の実施例による単相電力変換器内の単位セルであるチョッパセルを示す回路図である。FIG. 6 is a circuit diagram showing a chopper cell which is a unit cell in the single-phase power converter according to the first to fifth embodiments. 第1~第5の実施例による単相電力変換器内の単位セルであるブリッジセルを示す回路図である。FIG. 6 is a circuit diagram showing a bridge cell which is a unit cell in a single-phase power converter according to first to fifth embodiments. 第2の実施例による単相電力変換器を示す回路図である。It is a circuit diagram which shows the single phase power converter by a 2nd Example. 第3の実施例による単相電力変換器におけるアームの回路構成を示す回路図である。It is a circuit diagram which shows the circuit structure of the arm in the single phase power converter by a 3rd Example. 第3の実施例による単相電力変換器におけるアームの回路構成を示す回路図である。It is a circuit diagram which shows the circuit structure of the arm in the single phase power converter by a 3rd Example. 第3の実施例による単相電力変換器におけるアームの回路構成を示す回路図である。It is a circuit diagram which shows the circuit structure of the arm in the single phase power converter by a 3rd Example. 第4の実施例による単相電力変換器を示す回路図である。It is a circuit diagram which shows the single phase power converter by a 4th Example. 第5の実施例による単相電力変換器を示す回路図である。It is a circuit diagram which shows the single phase power converter by a 5th Example. 第6の実施例による三相電力変換器を示す回路図である。It is a circuit diagram which shows the three-phase power converter by a 6th Example. 図7に示す三相電力変換器における変圧器を示す回路図である。It is a circuit diagram which shows the transformer in the three-phase power converter shown in FIG. 図7に示す三相電力変換器における変圧器を示す回路図である。It is a circuit diagram which shows the transformer in the three-phase power converter shown in FIG. 第6の実施例による三相電力変換器の直流コンデンサ制御についての制御ブロック図(その1)である。It is the control block diagram (the 1) about the direct-current capacitor control of the three-phase power converter by a 6th example. 第6の実施例による三相電力変換器の直流コンデンサ制御についての制御ブロック図(その2)である。It is a control block diagram (the 2) about the direct-current capacitor control of the three phase power converter by a 6th example. 第6の実施例による三相電力変換器の直流コンデンサ制御についての制御ブロック図(その3)である。It is a control block diagram (the 3) about direct-current capacitor control of the three phase power converter by a 6th example. 第6の実施例による三相電力変換器の直流コンデンサ制御装置を示すブロック図である。It is a block diagram which shows the direct-current capacitor | condenser control apparatus of the three-phase power converter by a 6th Example. 第6の実施例による三相電力変換器の実験における瞬時有効電力制御及び瞬時無効電力制御を示すブロック図である。It is a block diagram which shows the instantaneous active power control and the instantaneous reactive power control in the experiment of the three-phase power converter by a 6th Example. 第6の実施例による三相電力変換器を、インバータ動作させたときの定常特性についての実験波形を示す図である。It is a figure which shows the experimental waveform about the steady-state characteristic when carrying out the inverter operation | movement of the three-phase power converter by a 6th Example. 第6の実施例による三相電力変換器を、整流器動作させたときの定常特性についての実験波形を示す図である。It is a figure which shows the experimental waveform about the steady-state characteristic when carrying out the rectifier operation | movement of the three-phase power converter by a 6th Example. 第6の実施例による三相電力変換器を、所定動作条件で動作させた時のスタートアップ動作中の実験波形を示す図である。It is a figure which shows the experimental waveform in start-up operation | movement when operating the three-phase power converter by a 6th Example on predetermined operating conditions. 第6の実施例による三相電力変換器を、瞬時有効電力指令値を-4kWから-5kWにステップ状に変化させた時の実験波形を示す図である。It is a figure which shows an experimental waveform when the instantaneous active power command value is changed in steps from -4 kW to -5 kW in the three-phase power converter according to the sixth embodiment. 第7の実施例による三相電力変換器を示す回路図である。It is a circuit diagram which shows the three-phase power converter by a 7th Example. 本発明で使用するスコット変圧器を示す回路図である。It is a circuit diagram which shows the Scott transformer used by this invention. 図17に示すスコット変圧器の瞬時電圧ベクトル図(その1)である。It is the instantaneous voltage vector figure (the 1) of the Scott transformer shown in FIG. 図17に示すスコット変圧器の瞬時電圧ベクトル図(その2)である。It is the instantaneous voltage vector figure (the 2) of the Scott transformer shown in FIG. 第8の実施例による三相二相電力変換器を示す回路図である。It is a circuit diagram which shows the three-phase two-phase power converter by an 8th Example. 電池電力貯蔵装置の一般的な構成を示す図である。It is a figure which shows the general structure of a battery power storage apparatus.
 図1は、本発明のマルチレベル電力変換器の第1の実施例を示すものであり、単相電力変換器1の回路図を示している。以降、異なる図面において同じ参照符号が付されたものは同じ機能を有する構成要素であることを意味するものとする。図2Aは、第1の実施例並びに以後の実施例における単相電力変換器内の単位セルであるチョッパセルCCを示す回路図である。図2Bは、第1の実施例並びに以後の実施例の単相電力変換器1において使用することができる単位セルであるブリッジセルBCを示す回路図である。 FIG. 1 shows a first embodiment of a multilevel power converter according to the present invention, and shows a circuit diagram of a single-phase power converter 1. Hereinafter, components having the same reference numerals in different drawings mean components having the same functions. FIG. 2A is a circuit diagram showing a chopper cell CC which is a unit cell in the single-phase power converter in the first embodiment and the following embodiments. FIG. 2B is a circuit diagram showing a bridge cell BC that is a unit cell that can be used in the single-phase power converter 1 of the first embodiment and the following embodiments.
 第1の実施例による単相電力変換器1は、単位セル11-1~11-M(ただし、Mは自然数)と、第1のアーム12-P及び第2のアーム12-Nと、アーム結合部13と、変圧器14とを備える。単位セル11-1~11-Mは、直列接続された2つの半導体スイッチSWと、2つの半導体スイッチSWに並列接続された直流コンデンサCと、半導体スイッチSWのスイッチング動作に応じて直流コンデンサCから放電若しくは直流コンデンサCへ充電される電流の入出力端子T1,T2とを有する。 The single-phase power converter 1 according to the first embodiment includes unit cells 11-1 to 11-M (where M is a natural number), a first arm 12-P and a second arm 12-N, A coupling unit 13 and a transformer 14 are provided. The unit cells 11-1 to 11-M include two semiconductor switches SW connected in series, a DC capacitor C connected in parallel to the two semiconductor switches SW, and a DC capacitor C according to the switching operation of the semiconductor switch SW. It has input / output terminals T1 and T2 for discharging or charging the DC capacitor C.
 なお、これ以降、単位セル11-1~11-M内にある直流コンデンサCについては、理解を容易にするために、当該単位セル11-1~11-Mの外側に記載している。単位セル11-1~11-Mは、図2Aに示すチョッパセルCCもしくは図2Bに示すブリッジセルBCのいずれでもよい。 In the following, the DC capacitors C in the unit cells 11-1 to 11-M are described outside the unit cells 11-1 to 11-M for easy understanding. The unit cells 11-1 to 11-M may be either the chopper cell CC shown in FIG. 2A or the bridge cell BC shown in FIG. 2B.
 図2Aに示すチョッパセルCCは、直列接続された2つの半導体スイッチSWと、2つの半導体スイッチSWに並列接続された直流コンデンサCと、半導体スイッチSWのスイッチング動作に応じて直流コンデンサCから放電若しくは直流コンデンサCへ充電される電流の入出力端子T1及びT2とを有する双方向のチョッパセルである。2つの半導体スイッチSWのうちの一方の半導体スイッチの両端端子を、チョッパセルCCの入出力端子T1及びT2とする。 The chopper cell CC shown in FIG. 2A includes two semiconductor switches SW connected in series, a DC capacitor C connected in parallel to the two semiconductor switches SW, and a discharge or DC from the DC capacitor C according to the switching operation of the semiconductor switch SW. This is a bidirectional chopper cell having input / output terminals T1 and T2 for current charged in the capacitor C. The two terminals of one of the two semiconductor switches SW are the input / output terminals T1 and T2 of the chopper cell CC.
 図2Bに示すブリッジセルBCは、直列接続された2つの半導体スイッチSWを2組並列接続し、これに直流コンデンサCを並列接続して構成されるものである。直列接続された2つの半導体スイッチSWの各組の、直列接続点を、直流コンデンサCから放電若しくは直流コンデンサCへ充電される電流の入出力端子T1及びT2とする。チョッパセルCCとブリッジセルBCは、単位セルとも呼ばれる。 The bridge cell BC shown in FIG. 2B is configured by connecting two sets of two semiconductor switches SW connected in series in parallel and connecting a DC capacitor C in parallel thereto. The series connection point of each set of two semiconductor switches SW connected in series is defined as input / output terminals T1 and T2 for discharging current from the DC capacitor C or charging the DC capacitor C. The chopper cell CC and the bridge cell BC are also called unit cells.
 図2A及び図2Bに示すいずれの単位セルにおいては、各半導体スイッチSWは、オン時に一方向に電流を通す半導体スイッチング素子Sと、この半導体スイッチング素子Sに逆並列に接続された帰還ダイオードDとを有する。単位セルの入出力端子T1及びT2間に、1つの単位セルが出力する電圧が現れる。 In any of the unit cells shown in FIGS. 2A and 2B, each semiconductor switch SW includes a semiconductor switching element S that passes a current in one direction when turned on, and a feedback diode D connected in antiparallel to the semiconductor switching element S. Have A voltage output from one unit cell appears between the input / output terminals T1 and T2 of the unit cell.
 図1に示すように、第1のアーム12-P及び第2のアーム12-Nは、1つの単位セル、又は入出力端子T1及びT2を介して互いにカスケード接続された複数の単位セルを同数有するようにする。図1並びに以後の実施例では、第1のアーム12-P及び第2のアーム12-Nに配置される単位セルに、符号11-1~11-M(ただし、Mは自然数であり、以後も同様である)を付して説明する。 As shown in FIG. 1, the first arm 12-P and the second arm 12-N have the same number of unit cells or a plurality of unit cells cascaded to each other via the input / output terminals T1 and T2. To have. In FIG. 1 and the following embodiments, the unit cells arranged in the first arm 12-P and the second arm 12-N are denoted by reference numerals 11-1 to 11-M (where M is a natural number. The same applies to the above.
 アーム結合部13は、第1のアーム12-Pの下側端子1abが接続される第1の端子aと、第2のアーム12-Nの下側端子2abが接続される第2の端子bと、第1の端子aと第2の端子bとの間に位置する第3の端子cとを有する。第3の端子cには直流電源Vdcの負極側端子が接続される。 The arm coupling unit 13 includes a first terminal a to which the lower terminal 1ab of the first arm 12-P is connected and a second terminal b to which the lower terminal 2ab of the second arm 12-N is connected. And a third terminal c positioned between the first terminal a and the second terminal b. The negative terminal of the DC power source V dc is connected to the third terminal c.
 上記アーム結合部13は、第1の実施例では、図1に示すように、第1の端子aと、第2の端子bと、第1の端子aと第2の端子bとの間の巻線上に位置する中間タップである第3の端子cとを有する3端子結合リアクトルLからなる。図1においては3端子結合リアクトルLの極性を黒丸(・)で表わしている。第1の端子aと第3の端子cとの間の巻線の極性と、第3の端子cと第2の端子bとの間の巻線の極性とが逆向き(図示の例では相反する向きに向いている)となるようにする。 In the first embodiment, the arm coupling portion 13 includes a first terminal a, a second terminal b, and between the first terminal a and the second terminal b, as shown in FIG. It consists of a three-terminal coupling reactor L having a third terminal c which is an intermediate tap located on the winding. In FIG. 1, the polarity of the three-terminal coupling reactor L is represented by a black circle (•). The polarity of the winding between the first terminal a and the third terminal c and the polarity of the winding between the third terminal c and the second terminal b are opposite to each other (in the example shown in FIG. To face the direction you want to).
 変圧器14は、1次側に交流入出力端子T1-1及びT1-2を有し、2次側には2つの末端端子T2-1及びT2-2の間の2次側巻線上にセンタータップである中間端子T2-3を有する。変圧器14の1次側の交流入出力端子T1-1及びT1-2間に、単相電力変換器1の交流出力電圧vacが現れる。ここで、変圧器14の1次側巻線の巻き数をN1とし、2次側巻線の巻き数をN2とする。したがって、2次側においては、末端端子T2-1と中間端子T2-3との間の巻線の巻き数及び中間端子T2-3と末端端子T2-2との間の巻線の巻き数は、共にN2/2となる。 The transformer 14 has AC input / output terminals T1-1 and T1-2 on the primary side, and centered on the secondary winding between the two terminal terminals T2-1 and T2-2 on the secondary side. It has an intermediate terminal T2-3 which is a tap. Between the AC input and output terminal of the primary T1-1 and T1-2 of the transformer 14, an AC output voltage v ac single-phase power converter 1 appears. Here, the number of turns of the primary winding of the transformer 14 and N 1, the number of turns of the secondary winding and N 2. Therefore, on the secondary side, the number of turns of the winding between the end terminal T2-1 and the intermediate terminal T2-3 and the number of turns of the winding between the intermediate terminal T2-3 and the end terminal T2-2 are both the N 2/2.
 また、図1においては変圧器14の1次側巻線及び2次側巻線の極性を黒丸(・)で表わしている。2次側巻線においては、末端端子T2-1と中間端子T2-3との間の巻線の極性と、中間端子T2-3と末端端子T2-2との間の巻線の極性とが同じ向き(図示の例では左向に揃っている)となるようにする。一方、1次側巻線の極性の向きについては、2次側巻線の極性の向きと必ずしも同じとならなくてもよい。 In FIG. 1, the polarities of the primary side winding and the secondary side winding of the transformer 14 are represented by black circles (•). In the secondary winding, the polarity of the winding between the end terminal T2-1 and the intermediate terminal T2-3 and the polarity of the winding between the intermediate terminal T2-3 and the end terminal T2-2 are: The same direction (aligned to the left in the illustrated example). On the other hand, the polarity direction of the primary winding does not necessarily have to be the same as the polarity direction of the secondary winding.
 変圧器14の2次側巻線の末端端子T2-1には、第1のアーム12-Pの、アーム結合部13の第1の端子aが接続されない側の端子、即ち第1のアーム12-Pの上側端子1atが接続され、変圧器14の2次側巻線の末端端子T2-2には、第2のアーム12-Nの、アーム結合部13の第2の端子bが接続されない側の端子,即ち第2のアーム12-Nの上側端子2atが接続される。また、変圧器14の中間端子T2-3には、直流電源Vdcの、アーム結合部13の第3の端子cが接続されない側の端子,即ち直流電源Vdcの正極側端子が接続される。 The terminal T2-1 of the secondary winding of the transformer 14 is the terminal on the side of the first arm 12-P to which the first terminal a of the arm coupling portion 13 is not connected, that is, the first arm 12 The upper terminal 1at of −P is connected, and the second terminal b of the arm coupling portion 13 of the second arm 12-N is not connected to the terminal T2-2 of the secondary winding of the transformer 14 Side terminal, that is, the upper terminal 2at of the second arm 12-N is connected. Further, the intermediate terminal T2-3 of the transformer 14, the DC power source V dc, the terminal of the third side of the terminal c is not connected, that is the positive terminal of the DC power source V dc is connected to the arm coupling portion 13 .
 第1の実施例による単相電力変換器1の動作を、数式を用いて解析すると次の通りである。 The operation of the single-phase power converter 1 according to the first embodiment is analyzed using mathematical formulas as follows.
 変圧器14の1次側の交流入出力端子T1-1及びT1-2間に、単相電力変換器1の交流電圧vacが現れる。交流電流をiacとする。また、第1のアーム12-Pに流れるアーム電流をiPとし、第2のアーム12-Nに流れるアーム電流をiNとする。第1のアーム12-P内の各単位セル11-j(ただし、j=1~M)の入出力端子(図2A及び図2BのT1及びT2)間に表れる電圧をvPjとし、第2のアーム12-N内の各単位セル11-j(ただし、j=1~M)の入出力端子(図2A及び図2BのT1及びT2)間に表れる電圧をvNjとしたとき、第1のアーム12-Pの出力電圧総和vP及び第2のアーム12-Nの出力電圧総和vNはそれぞれ式1及び式2で表わされる。 Between transformer 14 AC input and output terminals of the primary side T1-1 and T1-2, AC voltage v ac single-phase power converter 1 appears. Let ac be the ac current. Further, the arm current flowing through the first arm 12-P is i P, and the arm current flowing through the second arm 12-N is i N. A voltage appearing between input / output terminals (T1 and T2 in FIGS. 2A and 2B) of each unit cell 11-j (where j = 1 to M) in the first arm 12-P is represented by v Pj , When the voltage appearing between the input / output terminals (T1 and T2 in FIGS. 2A and 2B) of each unit cell 11-j (where j = 1 to M) in the arm 12-N is 1N the output voltage sum v N of the output voltages of the arm 12-P total v P and the second arm 12-N is represented by the respective formulas 1 and 2.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 一方、変調度をm(0≦m≦1)、角周波数をωとしたとき、第1のアーム12-Pの出力電圧総和vP及び第2のアーム12-Nの出力電圧総和vNはそれぞれ式3及び式4で表わされる。 On the other hand, when the modulation degree is m (0 ≦ m ≦ 1) and the angular frequency is ω, the total output voltage v P of the first arm 12- P and the total output voltage v N of the second arm 12- N are They are represented by Formula 3 and Formula 4, respectively.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ここで、循環電流iZを式5のように定義する。 Here, the circulating current i Z is defined as shown in Equation 5.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 アーム結合部13における3端子結合リアクトルは循環電流iZに対してのみLのインダクタンスを有するので、式6及び式7に示す電圧方程式が成り立つ。 Since the three-terminal coupling reactor in the arm coupling unit 13 has an inductance of L only for the circulating current i Z , the voltage equations shown in Equations 6 and 7 are established.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 式3、式4、式6及び式7より式8及び式9が得られる。 Equation 8 and Equation 9 are obtained from Equation 3, Equation 4, Equation 6, and Equation 7.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 式9からわかるように、循環電流iZは直流量となる。すなわち、第1のアーム12-Pに流れるアーム電流iP及び第2のアーム12-Nに流れるアーム電流iNはともに直流分を含むということである。変圧器14においては直流電流による磁束は互いに打ち消し合うため、直流磁束は発生しない。なお、上述の式9の導出には、vP+vN=2Vdcの関係を用いている。しかしながら実際は、高調波電圧やデッドタイムなどの影響によりvP+vN≠2Vdcとなるので、循環電流iZに交流分が重畳する。 As can be seen from Equation 9, the circulating current i Z is a direct current amount. That is, the arm current i N flowing through the arm current i P and the second arm 12-N through the first arm 12-P is that both contain a DC component. In the transformer 14, the magnetic flux due to the direct current cancels each other, so no direct-current magnetic flux is generated. Note that the relationship of v P + v N = 2V dc is used in the derivation of the above-described Expression 9. However, in actuality, v P + v N ≠ 2V dc due to the influence of the harmonic voltage, dead time, and the like, so that the AC component is superimposed on the circulating current i Z.
 一方、第1のアーム12-Pに流れるアーム電流iP及び第2のアーム12-Nに流れるアーム電流iNに含まれる交流分をそれぞれ(iPac及び(iNacとすると、変圧器の起磁力の関係から式10が得られる。 On the other hand, when the first arm 12-P arm flowing in the current i P and the second arm 12-N to flow through the AC component contained in the arm current i N, respectively (i P) ac and (i N) ac, Equation 10 is obtained from the relationship of the magnetomotive force of the transformer.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 式10において、(iPac=-(iNacの関係が成立すると仮定すると式11及び式12が得られる。 Assuming that the relationship of (i P ) ac = − (i N ) ac holds in Equation 10, Equations 11 and 12 are obtained.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 本発明では、第1のアーム12-Pに流れる循環電流iZP及び第2のアーム12-Nに流れる循環電流iZNを別々に定義する。すると、図1において循環電流iZPは、以下の式Aと式Bのように与えられる。
  iZP=iP+(iPac=iP+(N1/N2)iac  …(A)
  iZN=iN-(iNac=iN-(N1/N2)iac  …(B)
In the present invention, the circulating current i ZP flowing through the first arm 12-P and the circulating current i ZN flowing through the second arm 12-N are defined separately. Then, in FIG. 1, the circulating current i ZP is given by the following equations A and B.
i ZP = i P + (i P ) ac = i P + (N 1 / N 2 ) i ac (A)
i ZN = i N- (i N ) ac = i N- (N 1 / N 2 ) i ac (B)
 式Aと式Bの右辺第2項は循環電流iZPと循環電流iZNに含まれる交流分に相当する。従って循環電流iZPと循環電流iZNは理想的には直流分のみになる。本発明では、循環電流iZPと循環電流iZNを使用することにより、第1のアーム12-Pと第2のアーム12-Nの直流電圧平均値vaveCP,vaveCNを独立に制御することができる。 The second term on the right side of Formula A and Formula B corresponds to the AC component included in circulating current i ZP and circulating current i ZN . Therefore, the circulating current i ZP and the circulating current i ZN are ideally only a direct current component. In the present invention, the DC voltage average values v aveCP and v aveCN of the first arm 12-P and the second arm 12-N are independently controlled by using the circulating current i ZP and the circulating current i ZN. Can do.
 図3は、本発明のマルチレベル電力変換器の第2の実施例を示すものであり、単相電力変換器1の回路図を示している。第2の実施例による単相電力変換器1は、図1、図2A及び図2Bを参照して説明した第1の実施例におけるアーム結合部13を、3端子結合リアクトルLではなく、通常のリアクトル、即ち非結合リアクトルL1,L2で構成したものである。なお、これ以外の回路構成要素については、図1に示す単位セル11-1~11-M、第1のアーム12-P、第2のアーム12-N及び変圧器14、ならびに図2A及び図2Bに示す単位セルと同様であるので、同一の回路構成要素には同一符号を付して当該回路構成要素についての詳細な説明は省略する。 FIG. 3 shows a second embodiment of the multilevel power converter according to the present invention, and shows a circuit diagram of the single-phase power converter 1. In the single-phase power converter 1 according to the second embodiment, the arm coupling portion 13 in the first embodiment described with reference to FIGS. 1, 2A and 2B is not a three-terminal coupling reactor L but a normal one. The reactor is constituted by uncoupled reactors L1 and L2. For other circuit components, the unit cells 11-1 to 11-M, the first arm 12-P, the second arm 12-N and the transformer 14 shown in FIG. 1, as well as FIG. 2A and FIG. Since it is the same as that of the unit cell shown in 2B, the same reference numerals are given to the same circuit components, and detailed description thereof will be omitted.
 第2の実施例では、図3に示すように、アーム結合部13は、互いに直列接続された2つのリアクトルL1及びL2からなり、リアクトルL1の一方の端子である第1の端子aと、リアクトルL2の一方の端子である第2の端子bと、直列接続された2つのリアクトルL1及びL2の直列接続点である第3の端子cとを有する。なお、リアクトルL1,L2は、変圧器14の漏れインダクタンスで代用してもよい。 In the second embodiment, as shown in FIG. 3, the arm coupling portion 13 includes two reactors L1 and L2 connected in series with each other. The first terminal a which is one terminal of the reactor L1, and the reactor It has the 2nd terminal b which is one terminal of L2, and the 3rd terminal c which is a series connection point of the two reactors L1 and L2 connected in series. Reactors L1 and L2 may be substituted with the leakage inductance of transformer 14.
 図4A~図4Cは、本発明のマルチレベル電力変換器の第3の実施例を示すものであり、単相電力変換器1におけるアームの回路構成を示す回路図である。第3の実施例による単相電力変換器1は、図3を参照して説明した第2の実施例におけるアーム結合部13を構成するリアクトルL1、L2の位置を変更したものである。図4A~図4Cでは、単相電力変換器1におけるアームを構成するリアクトルL1,L2の内のリアクトルL及び単位セル11-1~11-Mを含む第1もしくは第2のアームのみを表している。第3の実施例では、図4A~図4Cに示すように、第1のアーム及び第2のアームそれぞれにおいて、互いにカスケード接続された単位セル11-1~11-M間の任意の位置に接続されるリアクトルLを備えるので、図3に示したアーム結合部13の第1の端子aと、第2の端子bと、第3の端子cとは互いに接続されるように変更する。これ以外の回路構成要素については、第2の実施例と同様である。なお、リアクトルLは変圧器14の漏れインダクタンスで代用してもよい。 4A to 4C show a third embodiment of the multilevel power converter of the present invention, and are circuit diagrams showing the circuit configuration of the arm in the single-phase power converter 1. FIG. The single-phase power converter 1 according to the third embodiment is obtained by changing the positions of the reactors L1 and L2 constituting the arm coupling portion 13 in the second embodiment described with reference to FIG. 4A to 4C show only the first or second arm including the reactor L and the unit cells 11-1 to 11-M among the reactors L1 and L2 constituting the arm in the single-phase power converter 1. Yes. In the third embodiment, as shown in FIGS. 4A to 4C, each of the first arm and the second arm is connected to an arbitrary position between the unit cells 11-1 to 11-M cascade-connected to each other. Therefore, the first terminal a, the second terminal b, and the third terminal c of the arm coupling portion 13 shown in FIG. 3 are changed so as to be connected to each other. Other circuit components are the same as those in the second embodiment. The reactor L may be replaced with the leakage inductance of the transformer 14.
 図5は、本発明のマルチレベル電力変換器の第4の実施例を示すものであり、単相電力変換器1の回路図を示している。第4の実施例による単相電力変換器1は、図1、図2A及び図2Bを参照して説明した第1の実施例におけるアーム結合部13及び変圧器14を変更したものである。 FIG. 5 shows a fourth embodiment of the multi-level power converter of the present invention, and shows a circuit diagram of the single-phase power converter 1. The single-phase power converter 1 according to the fourth embodiment is obtained by changing the arm coupling portion 13 and the transformer 14 in the first embodiment described with reference to FIGS. 1, 2A, and 2B.
 単位セル11-1~11-M、並びに第1のアーム12-P及び第2のアーム12-Nは、図1、図2A及び図2Bを参照して説明した第1の実施例と同様であるので詳細な説明については省略する。単位セル11-1~11-Mは、第1の実施例と同様、図2Aに示すチョッパセルCC、若しくは図2Bに示すブリッジセルBCの何れも使用でき、直列接続された2つの半導体スイッチSWと、2つの半導体スイッチSWに並列接続された直流コンデンサCと、半導体スイッチSWのスイッチング動作に応じて直流コンデンサCから放電若しくは直流コンデンサへ充電される電流の入出力端子T1,T2とを有する。第1のアーム12-P及び第2のアーム12-Nは、第1の実施例と同様、1つの単位セル11-1、又は入出力端子T1及びT2を介して互いにカスケード接続された複数の単位セル11-1~11-Mを同数有するようにする。 The unit cells 11-1 to 11-M, the first arm 12-P, and the second arm 12-N are the same as those in the first embodiment described with reference to FIGS. 1, 2A, and 2B. Since there is, detailed description is omitted. As in the first embodiment, each of the unit cells 11-1 to 11-M can use either the chopper cell CC shown in FIG. 2A or the bridge cell BC shown in FIG. 2B, and includes two semiconductor switches SW connected in series. A DC capacitor C connected in parallel to the two semiconductor switches SW, and input / output terminals T1 and T2 for discharging current from the DC capacitor C or charging to the DC capacitor in accordance with the switching operation of the semiconductor switch SW. As in the first embodiment, the first arm 12-P and the second arm 12-N include a plurality of units connected in cascade through one unit cell 11-1 or input / output terminals T1 and T2. The same number of unit cells 11-1 to 11-M is provided.
 アーム結合部13は、第1のアーム12-Pの下側端子1abに一端が接続される直流電源Vdcの他端が接続される第1の端子aと、第2のアーム12-Nの下側端子2abに一端が接続される更に別の直流電源Vdcの他端が接続される第2の端子bと、第1の端子aと第2の端子bとに接続される第3の端子cとを有する。 The arm coupling unit 13 includes a first terminal a to which the other end of the DC power source V dc whose one end is connected to the lower terminal 1ab of the first arm 12-P and the second arm 12-N A third terminal connected to the second terminal b connected to the other end of another DC power source V dc whose one end is connected to the lower terminal 2ab, and the first terminal a and the second terminal b. Terminal c.
 図5に示すように、第4の実施例における変圧器14’は、図1を参照して説明した第1の実施例による単相電力変換器1における変圧器14の中間端子があった位置に、3端子結合リアクトル15を設けたものである。即ち、変圧器14’の2次側巻線上に3端子結合リアクトル15を有する。変圧器14’の1次側の交流入出力端子T1-1及びT1-2間に、単相電力変換器1の交流出力電圧vacが現れる。ここで、変圧器14’の1次側巻線の巻き数をN1とし、2次側巻線の巻き数をN2とする。したがって、2次側においては、末端端子T2-1と3端子結合リアクトル15との間の巻線の巻き数及び3端子結合リアクトル15と末端端子T2-2との間の巻線の巻き数は共にN2/2となる。 As shown in FIG. 5, the transformer 14 ′ in the fourth embodiment is located at the intermediate terminal of the transformer 14 in the single-phase power converter 1 according to the first embodiment described with reference to FIG. 1. Further, a three-terminal coupling reactor 15 is provided. That is, the three-terminal coupling reactor 15 is provided on the secondary winding of the transformer 14 ′. Between transformer 14 AC input and output terminals of the primary 'T1-1 and T1-2, AC output voltage v ac single-phase power converter 1 appears. Here, the number of turns of the primary side winding of the transformer 14 ′ is N 1, and the number of turns of the secondary side winding is N 2 . Therefore, on the secondary side, the number of windings between the terminal terminal T2-1 and the three-terminal coupling reactor 15 and the number of windings between the three-terminal coupling reactor 15 and the terminal T2-2 are: both the N 2/2.
 変圧器14’の2次側巻線の末端端子T2-1には、第1のアーム12-Pの、直流電源Vdcが接続されない側の端子、即ち第1のアーム12-Pの上側端子1atが接続される。また、変圧器14’の2次側巻線の末端端子T2-2には、第2のアーム12-Nの、更に別の直流電源Vdcが接続されない側の端子,即ち第2のアーム12-Nの上側端子2atが接続される。そして、3端子結合リアクトル15の両端端子間の巻線上に位置する中間端子T2-3には、アーム結合部13の第3の端子cが接続される。 The terminal T2-1 of the secondary winding of the transformer 14 'is connected to the terminal of the first arm 12-P on which the DC power source Vdc is not connected, that is, the upper terminal of the first arm 12-P. 1at is connected. Further, the terminal T2-2 of the secondary winding of the transformer 14 ′ is a terminal on the side of the second arm 12-N to which no further DC power source V dc is connected, that is, the second arm 12. -N upper terminal 2at is connected. The third terminal c of the arm coupling portion 13 is connected to the intermediate terminal T2-3 located on the winding between the both terminals of the three-terminal coupling reactor 15.
 また、図5においては変圧器14’の1次側巻線及び2次側巻線の極性を黒丸(・)で表している。2次側巻線においては、末端端子T2-1と中間端子T2-3との間の巻線の極性と、中間端子T2-3と末端端子T2-2との間の巻線の極性とが逆向き(図示の例では互いに向き合う)となるようにする。一方、1次側巻線の極性の向きについては、2次側巻線の極性の向きと必ずしも同じとならなくてもよい。また、3端子結合リアクトル15の極性の向きについては、3端子結合リアクトル15の両端端子と中間端子T2-3との間の2つの巻線の極性の向きが同じ向き(図示の例では左向に揃っている)となるようにする。3端子結合リアクトル15の極性の向きは、図示の例で右側に揃わせることもできる。 In FIG. 5, the polarity of the primary side winding and the secondary side winding of the transformer 14 ′ is represented by black circles (•). In the secondary winding, the polarity of the winding between the end terminal T2-1 and the intermediate terminal T2-3 and the polarity of the winding between the intermediate terminal T2-3 and the end terminal T2-2 are: The directions are opposite (facing each other in the illustrated example). On the other hand, the polarity direction of the primary winding does not necessarily have to be the same as the polarity direction of the secondary winding. Further, regarding the polarity direction of the three-terminal coupling reactor 15, the polarities of the two windings between the two end terminals of the three-terminal coupling reactor 15 and the intermediate terminal T2-3 are the same direction (in the illustrated example, the left direction). To match). The direction of the polarity of the three-terminal coupling reactor 15 can be aligned on the right side in the illustrated example.
 図6は、本発明のマルチレベル電力変換器の第5の実施例を示すものであり、単相電力変換器1の回路図である。第5の実施例による単相電力変換器1は、図5を参照して説明した第4の実施例におけるアーム結合部13及びこれと直流電源vdcとの接続関係を変更し、この変更に伴い新たにコンデンサを設けたものである。 FIG. 6 is a circuit diagram of a single-phase power converter 1, showing a fifth embodiment of the multilevel power converter of the present invention. The single-phase power converter 1 according to the fifth embodiment changes the connection relationship between the arm coupling portion 13 and the DC power source v dc in the fourth embodiment described with reference to FIG. Accordingly, a new capacitor is provided.
 単位セル11-1~11-Mならびに第1のアーム12-P及び第2のアーム12-Nは、図1、図2A及び図2Bを参照して説明した第1の実施例と同様である。即ち、単位セル11-1~11-Mは、第1の実施例と同様、図2Aに示すチョッパセルCC若しくは図2Bに示すブリッジセルの何れも使用でき、直列接続された2つの半導体スイッチSWと、2つの半導体スイッチSWに並列接続された直流コンデンサCと、半導体スイッチSWのスイッチング動作に応じて直流コンデンサCから放電若しくは直流コンデンサCへ充電される電流の入出力端子T1,T2とを有する。第1のアーム12-P及び第2のアーム12-Nは、第1の実施例と同様、1つの単位セル11-1、又は入出力端子T1及びT2を介して互いにカスケード接続された複数の単位セル11-1~11-Mを同数有するようにする。直流電源Vdcは、第1のアーム12-Pの下側端子1abと第2のアーム12-Nの下側端子2abとの間に接続される。 The unit cells 11-1 to 11-M, the first arm 12-P, and the second arm 12-N are the same as those in the first embodiment described with reference to FIGS. 1, 2A, and 2B. . That is, the unit cells 11-1 to 11-M can use either the chopper cell CC shown in FIG. 2A or the bridge cell shown in FIG. 2B as in the first embodiment. A DC capacitor C connected in parallel to the two semiconductor switches SW, and input / output terminals T1 and T2 for discharging current from the DC capacitor C or charging to the DC capacitor C according to the switching operation of the semiconductor switch SW. As in the first embodiment, the first arm 12-P and the second arm 12-N include a plurality of units connected in cascade through one unit cell 11-1 or input / output terminals T1 and T2. The same number of unit cells 11-1 to 11-M is provided. The DC power source V dc is connected between the lower terminal 1ab of the first arm 12-P and the lower terminal 2ab of the second arm 12-N.
 第1のコンデンサCdc1は、第1のアーム12-Pの下側端子1abに一端が接続され、他端が第1の端子aに接続される。第2のコンデンサCdc2は、第2のアーム12-Nの下側端子2abに一端が接続され、他端が第2の端子bに接続される。第1のコンデンサCdc1と第2のコンデンサCdc2とは互いに直列接続され、この直列接続された第1のコンデンサCdc1及び第2のコンデンサCdc2は、直流電源Vdcに並列接続される。このとき、第1のコンデンサCdc1及び第2のコンデンサCdc2の極性の向きは、直流電源Vdcの極性の向きに合わせる。 The first capacitor C dc1 has one end connected to the lower terminal 1ab of the first arm 12-P and the other end connected to the first terminal a. The second capacitor C dc2 has one end connected to the lower terminal 2ab of the second arm 12-N and the other end connected to the second terminal b. A first capacitor C dc1 and the second capacitor C dc2 connected in series, a first capacitor C dc1 and a second capacitor C dc2, which is the series connection is connected in parallel to the DC power source V dc. At this time, the polarity directions of the first capacitor C dc1 and the second capacitor C dc2 are matched with the polarity direction of the DC power source V dc .
 アーム結合部13には、第1のコンデンサCdc1に接続される第1の端子aと、第2のコンデンサCdc2に接続される第2の端子b、及び3端子結合リアクトル15の中間端子T2-3に接続される第3の端子cとを有する。 The arm coupling unit 13 includes a first terminal a connected to the first capacitor C dc1 , a second terminal b connected to the second capacitor C dc2 , and an intermediate terminal T2 of the three-terminal coupling reactor 15. And a third terminal c connected to -3.
 第5の実施例における変圧器14’は、第4の実施例の場合同様、図1を参照して説明した第1の実施例による単相電力変換器1における変圧器14の中間端子があった位置に、3端子結合リアクトル15を設けたものである。すなわち、変圧器14’の2次側巻線上に3端子結合リアクトル15を有する。変圧器14’の1次側の交流入出力端子T1-1及びT1-2間に、単相電力変換器1の交流出力電圧vacが現れる。ここで、変圧器14’の1次側巻線の巻き数をN1とし、2次側巻線の巻き数をN2とする。従って、2次側においては、末端端子T2-1と3端子結合リアクトル15との間の巻線の巻き数及び3端子結合リアクトル15と末端端子T2-2との間の巻線の巻き数は共にN2/2となる。 As in the case of the fourth embodiment, the transformer 14 'in the fifth embodiment has an intermediate terminal of the transformer 14 in the single-phase power converter 1 according to the first embodiment described with reference to FIG. A three-terminal coupling reactor 15 is provided at the same position. That is, the three-terminal coupling reactor 15 is provided on the secondary winding of the transformer 14 ′. Between transformer 14 AC input and output terminals of the primary 'T1-1 and T1-2, AC output voltage v ac single-phase power converter 1 appears. Here, the number of turns of the primary side winding of the transformer 14 ′ is N 1, and the number of turns of the secondary side winding is N 2 . Therefore, on the secondary side, the number of windings between the terminal T2-1 and the three-terminal coupling reactor 15 and the number of windings between the three-terminal coupling reactor 15 and the terminal T2-2 are: both the N 2/2.
 変圧器14’の2次側巻線の末端端子T2-1には、第1のアーム12-Pの上側端子1atが接続され、変圧器14’の2次側巻線の末端端子T2-2には、第2のアーム12-Nの上側端子2atが接続される。また、3端子結合リアクトル15の両端端子T2-1とT2-2の間の巻線上に位置する中間端子T2-3には、アーム結合部13の第3の端子cが接続される。 The upper terminal 1at of the first arm 12-P is connected to the terminal T2-1 of the secondary winding of the transformer 14 ′, and the terminal T2-2 of the secondary winding of the transformer 14 ′. Is connected to the upper terminal 2at of the second arm 12-N. Further, the third terminal c of the arm coupling portion 13 is connected to the intermediate terminal T2-3 located on the winding between the two end terminals T2-1 and T2-2 of the three-terminal coupling reactor 15.
 また、図6においても変圧器14’の1次側巻線及び2次側巻線の極性を黒丸(・)で表している。2次側巻線においては、末端端子T2-1と中間端子T2-3との間の巻線の極性と、中間端子T2-3と末端端子T2-2との間の巻線の極性とが逆向き(図示の例では互いに向かい合う向きに向いている)となるようにする。一方、1次側巻線の極性の向きについては、2次側巻線の極性の向きと必ずしも同じとしなくてもよい。また、3端子結合リアクトルの極性については、3端子結合リアクトル15の両端端子T2-1、T2-2と中間端子T2-3との間の2つの巻線の極性の向きが同じ向き(図示の例では左向に揃っている)となるようにする。3端子結合リアクトルの極性の向きは、図示の例で右側に揃わせることもできる。 Also in FIG. 6, the polarities of the primary side winding and the secondary side winding of the transformer 14 ′ are represented by black circles (•). In the secondary winding, the polarity of the winding between the end terminal T2-1 and the intermediate terminal T2-3 and the polarity of the winding between the intermediate terminal T2-3 and the end terminal T2-2 are: The directions are opposite (in the illustrated example, they face each other). On the other hand, the polarity direction of the primary winding is not necessarily the same as the polarity direction of the secondary winding. Regarding the polarity of the three-terminal coupling reactor, the two windings between the two terminals T2-1 and T2-2 and the intermediate terminal T2-3 of the three-terminal coupling reactor 15 have the same polarity (not shown) In the example, it is aligned to the left). The direction of the polarity of the three-terminal coupling reactor can be aligned on the right side in the illustrated example.
 以上説明した第1~第5の実施例による単相電力変換器1を3相分用いて三相電力変換器を構成することができる。また、第1~第5の実施例による単相電力変換器1を2相分用いて三相二相電力変換器を構成することができる。次に、三相電力変換器を第6の実施例及び第7の実施例として説明する。なお、三相二相電力変換器については第8の実施例として後述する。 A three-phase power converter can be configured using the single-phase power converter 1 according to the first to fifth embodiments described above for three phases. In addition, a three-phase two-phase power converter can be configured by using two phases of the single-phase power converter 1 according to the first to fifth embodiments. Next, a three-phase power converter will be described as a sixth embodiment and a seventh embodiment. A three-phase two-phase power converter will be described later as an eighth embodiment.
 図7は、本発明のマルチレベル電力変換器の第6の実施例を示すものであり、三相電力変換器2を示す回路図である。図8A及び図8Bは、図7に示す三相電力変換器2における変圧器を示す回路図である。第6の実施例では、一例として第1の実施例による単相電力変換器1を用いて三相電力変換器2を構成する場合について説明するが、第2~第5の実施例による単相電力変換器1を用いても同様に構成することができる。第5の実施例による単相電力変換器1を用いて三相電力変換器2を構成する場合については後述の第7の実施例として説明する。 FIG. 7 shows a sixth embodiment of the multilevel power converter according to the present invention, and is a circuit diagram showing a three-phase power converter 2. 8A and 8B are circuit diagrams showing transformers in the three-phase power converter 2 shown in FIG. In the sixth embodiment, the case where the three-phase power converter 2 is configured using the single-phase power converter 1 according to the first embodiment will be described as an example. The single-phase power according to the second to fifth embodiments will be described. Even when the power converter 1 is used, the same configuration can be adopted. The case where the three-phase power converter 2 is configured using the single-phase power converter 1 according to the fifth embodiment will be described as a seventh embodiment described later.
 図7に示す第6の実施例では、3つの単相電力変換器1をu相用、v相用及びw相用として使用しており、これらそれぞれの単相電力変換器を1u、1v及び1wで示す。そして、これら単相電力変換器1u、1v及び1wを用いて三相電力変換器2を形成している。なお、図7において、単相電力変換器1v及び1wについては、単相電力変換器1uと回路構成が同じであるので、具体的な回路構成の記載は省略する。以下、主としてu相の単相電力変換器1uに関して説明するが、v相及びw相の単相電力変換器1v,1wについても同様に適用できる。また、本実施例では、単位セルの個数を、一例として1アームあたり4個、1相当たり8個、従って三相電力変換器2内に24個としたが、この数値はあくまでも一例であり、これに限定されるものではない。 In the sixth embodiment shown in FIG. 7, three single-phase power converters 1 are used for u-phase, v-phase, and w-phase, and these single- phase power converters 1u, 1v, and Indicated by 1w. And the three phase power converter 2 is formed using these single phase power converters 1u, 1v, and 1w. In FIG. 7, the single-phase power converters 1v and 1w have the same circuit configuration as that of the single-phase power converter 1u, and therefore a detailed description of the circuit configuration is omitted. Hereinafter, although the u-phase single-phase power converter 1u will be mainly described, the same applies to the v-phase and w-phase single-phase power converters 1v and 1w. In this embodiment, the number of unit cells is 4 per arm as an example, 8 per 1 phase, and thus 24 in the three-phase power converter 2. However, this value is only an example, It is not limited to this.
 第6の実施例による三相電力変換器2においては、u相、v相及びw相の各相に設けられる各単相電力変換器1u、1v及び1w内の変圧器14を用いて、1次側にスター結線を有し2次側にオープンスター結線を有する三相変圧器24における各相をそれぞれ構成する。一例として、1次側巻線と2次側巻線の巻き数比N1:N2は1:1とする。図8Aは三相変圧器24の1次側のスター結線を示し、図8Bは三相変圧器24の2次側のオープンスター結線を示す。図8Bに示すようにオープンスター結線である2次側巻線の端子数は本来9個であるが、第6の実施例においては、図7に示すようにu、v及びwの各相のアーム結合部13の3端子結合リアクトルL内の中間端子である第3の端子cを1つの共通端子として構成することで、必要端子数を7個に抑えることができる。 In the three-phase power converter 2 according to the sixth embodiment, using the transformers 14 in the single- phase power converters 1u, 1v, and 1w provided in the u-phase, v-phase, and w-phase, Each phase in the three-phase transformer 24 having a star connection on the secondary side and an open star connection on the secondary side is configured. As an example, the turns ratio N 1 : N 2 of the primary winding and the secondary winding is 1: 1. FIG. 8A shows the star connection on the primary side of the three-phase transformer 24, and FIG. 8B shows the open star connection on the secondary side of the three-phase transformer 24. As shown in FIG. 8B, the number of terminals of the secondary side winding that is an open star connection is originally nine, but in the sixth embodiment, each phase of u, v, and w is shown in FIG. By configuring the third terminal c, which is an intermediate terminal in the three-terminal coupling reactor L of the arm coupling portion 13, as one common terminal, the number of necessary terminals can be reduced to seven.
 図1を参照して説明したように、単相電力変換器1においては、アーム結合部13の第3の端子cには直流電源Vdcの負極側端子が接続され、変圧器14の中間端子T2-3には直流電源Vdcの正極側端子が接続される。これに対して、第6の実施例では、図1において単相電力変換器1に上記のように接続されていた直流電源Vdcを、図7に示すようにu、v及びwの各相で共通とする。 As described with reference to FIG. 1, in the single-phase power converter 1, the negative terminal of the DC power source V dc is connected to the third terminal c of the arm coupling portion 13, and the intermediate terminal of the transformer 14. T2-3 is connected to the positive terminal of the DC power source Vdc . On the other hand, in the sixth embodiment, the DC power supply V dc connected to the single-phase power converter 1 in FIG. 1 as described above is replaced with each phase of u, v, and w as shown in FIG. Common.
 次に、第6の実施例による三相電力変換器2の各単位セル内の直流コンデンサの制御について図9A~図9C、図10及び図11を参照して以下に説明する。図9A~図9Cは、第6の実施例による三相電力変換器2の直流コンデンサ制御についての制御ブロック図である。図10は、第6の実施例による三相電力変換器2の直流コンデンサ制御装置50を示すブロック図である。上述のように、第6の実施例による三相電力変換器2は、第1の実施例による単相電力変換器1を3相分備えて構成したものである。なお、図9A~図9C及び図10に示すブロック図は、三相電力変換器のうちのu相の単相電力変換器1u(即ち、第1の実施例による単相電力変換器1)における直流コンデンサ制御を示すが、v相及びw相の単相電力変換器1v及び1wにも適用可能であり、第2~第5の実施例による単相電力変換器1で三相電力変換器2を構成しても同様である。また、同様の理由で、第1~第5の実施例による単相電力変換器1の単独の直流コンデンサ制御として、以下に説明する三相電力変換器2の直流コンデンサ制御をそのまま適用可能である。 Next, control of a DC capacitor in each unit cell of the three-phase power converter 2 according to the sixth embodiment will be described below with reference to FIGS. 9A to 9C, FIG. 10 and FIG. 9A to 9C are control block diagrams for DC capacitor control of the three-phase power converter 2 according to the sixth embodiment. FIG. 10 is a block diagram showing a DC capacitor control device 50 of the three-phase power converter 2 according to the sixth embodiment. As described above, the three-phase power converter 2 according to the sixth embodiment includes the single-phase power converter 1 according to the first embodiment for three phases. The block diagrams shown in FIGS. 9A to 9C and FIG. 10 are for the u-phase single-phase power converter 1u (that is, the single-phase power converter 1 according to the first embodiment) of the three-phase power converters. Although direct current capacitor control is shown, the present invention can also be applied to the v-phase and w-phase single-phase power converters 1v and 1w, and the three-phase power converter 2 in the single-phase power converter 1 according to the second to fifth embodiments. It is the same even if it comprises. For the same reason, the DC capacitor control of the three-phase power converter 2 described below can be applied as it is as the single DC capacitor control of the single-phase power converter 1 according to the first to fifth embodiments. .
 第6の実施例によれば、図9A~図9Cに示すように、三相電力変換器2の直流コンデンサ制御は大きく分けて次の3つの制御に分かれる。3つの制御は、平均値制御、循環電流制御及び個別バランス制御と呼ばれるものである。以下に、この3つの制御について個々に説明する。 According to the sixth embodiment, as shown in FIGS. 9A to 9C, the DC capacitor control of the three-phase power converter 2 is roughly divided into the following three controls. The three controls are called average value control, circulating current control, and individual balance control. Hereinafter, these three controls will be described individually.
 平均値制御は、直流電圧指令値に、各アーム内の全ての直流コンデンサの電圧平均値を平均して得られた値をそれぞれ追従させる制御である。循環電流制御は、平均値制御において作成される循環電流指令値に、第1のアームを流れる循環電流と第2のアームを流れる循環電流とが追従するようにする制御である。個別バランス制御は、同一アーム内の全ての直流コンデンサの電圧値を平均して得られた値に当該アーム内の各直流コンデンサの電圧値をそれぞれ追従させる制御であって、各アームごとに実行される制御である。 Average value control is control in which the value obtained by averaging the voltage average value of all DC capacitors in each arm follows the DC voltage command value. The circulating current control is control that causes the circulating current flowing through the first arm and the circulating current flowing through the second arm to follow the circulating current command value created in the average value control. The individual balance control is a control in which the voltage value of each DC capacitor in the arm follows the value obtained by averaging the voltage values of all DC capacitors in the same arm, and is executed for each arm. Control.
 上記3つの制御は、図10に示すような三相電力変換器2の直流コンデンサ制御装置50により実行される。直流コンデンサ制御装置50は、指令値作成手段51と制御手段52とを備える。指令値作成手段51は、第1のアーム12-P内の直流コンデンサの電圧値と第2のアーム12-N内の直流コンデンサの電圧値とに基づいて、第1のアーム12-Pの循環電流指令値iZP *と、第2のアーム12-Nの循環電流指令値iZN *とを作成する。制御手段52は、第1と第2のアームの循環電流指令値iZP *, iZN *に対して、第1と第2のアームをそれぞれ流れる循環電流iZP, iZNが追従するよう制御する。第1と第2のアームの循環電流iZP, iZNは、第1と第2のアームを流れる電流iP,iNに、変圧器14の巻線比N1/N2と、交流入出力端子T1-1、T1-2に印加される交流電流iacとを考慮した交流分(N1/N2)×(iac)を加えたもの、若しくは引いたものである。 The above three controls are executed by a DC capacitor control device 50 of the three-phase power converter 2 as shown in FIG. The DC capacitor control device 50 includes a command value creating means 51 and a control means 52. The command value creating means 51 circulates the first arm 12-P based on the voltage value of the DC capacitor in the first arm 12-P and the voltage value of the DC capacitor in the second arm 12-N. A current command value i ZP * and a circulating current command value i ZN * of the second arm 12 -N are created. The control means 52 controls the circulating currents i ZP and i ZN flowing through the first and second arms to follow the circulating current command values i ZP * and i ZN * of the first and second arms, respectively. To do. The circulating currents i ZP and i ZN of the first and second arms are converted into the current ratios i P and i N flowing through the first and second arms by the turns ratio N 1 / N 2 of the transformer 14 and AC input. This is obtained by adding or subtracting an AC component (N 1 / N 2 ) × (I ac ) in consideration of the AC current i ac applied to the output terminals T1-1 and T1-2.
 また、制御手段52は、上記追従させる制御に対応して半導体スイッチをスイッチング動作させるスイッチング指令手段63を有する。これら各手段は、例えばDSPやFPGAなどの演算処理装置を用いて実現される。 Also, the control means 52 has a switching command means 63 for switching the semiconductor switch in response to the control to be followed. Each of these means is realized using an arithmetic processing device such as a DSP or FPGA.
 以下、図9A~図9Cに示す上記3つの制御それぞれについて、図10と対応させながら説明する。なお、指令値には符号*を付して説明するが、本明細書中では、循環電流指令値iZP *と記載されているのに対して、図面では循環電流指令値がi* ZPのように記載されていて、符号*の位置が異なる。しかし、ここでは、iZP *とi* ZPとは同じものとして説明する。他の符号についても同様である。 Hereinafter, each of the three controls shown in FIGS. 9A to 9C will be described with reference to FIG. The command value is described with a symbol *, but in the present specification, it is described as a circulating current command value i ZP * , whereas in the drawing, the circulating current command value is i * ZP . The positions of the symbols * are different. However, here, i ZP * and i * ZP are assumed to be the same. The same applies to other codes.
 図9Aは、直流電圧指令値に、各アーム内の全ての直流コンデンサの電圧平均値を平均して得られた値をそれぞれ追従させる平均値制御を示すブロック図である。図9Aに示す平均値制御は、図10に示す直流コンデンサ制御装置50における指令値作成手段51によって行われる。指令値作成手段51は、第1のアーム12-P用の循環電流指令値分iZP *と、第2のアーム12-N用の循環電流指令値分iZN *とを作成することで、第1のアーム12-P内及び第2のアーム12-N内の全ての直流コンデンサの電圧値を平均して得られた値VaveCP及びVaveCNを所定の直流電圧指令値VC *に追従させるフィードバックループを構成する。 FIG. 9A is a block diagram showing average value control in which a value obtained by averaging the voltage average value of all the DC capacitors in each arm follows the DC voltage command value. The average value control shown in FIG. 9A is performed by the command value creating means 51 in the DC capacitor control device 50 shown in FIG. The command value creating means 51 creates a circulating current command value i ZP * for the first arm 12-P and a circulating current command value i ZN * for the second arm 12-N. The values V aveCP and V aveCN obtained by averaging the voltage values of all DC capacitors in the first arm 12-P and the second arm 12-N follow a predetermined DC voltage command value V C * . A feedback loop is configured.
 即ち、図10に示す指令値作成手段51は、図9Aに示した第1のアーム12-P内の全ての直流コンデンサの電圧値を平均して得られた値vaveCPが、所定の直流電圧指令値VC *に追従するように制御するための、第1のアーム12-P用の循環電流指令値iZP *を生成する。同様に、指令値作成手段51は、第2のアーム12-N内の全ての直流コンデンサの電圧値を平均して得られた値vaveCNが、所定の直流電圧指令値VC *に追従するよう制御するための、第2のアーム12-N用の循環電流指令値iZN *を生成する。 That is, the command value creating means 51 shown in FIG. 10 obtains a value v aveCP obtained by averaging the voltage values of all the DC capacitors in the first arm 12-P shown in FIG. for controlling so as to follow the command value V C *, to generate a first circulating current command value i ZP of arm 12-P *. Similarly, the command value creating means 51 has a value v aveCN obtained by averaging the voltage values of all the DC capacitors in the second arm 12-N, following a predetermined DC voltage command value V C * . The circulating current command value i ZN * for the second arm 12-N is generated to control the second arm 12-N.
 続いて、図9Bは、平均値制御において作成される循環電流指令値iZP *,iZN *に、第1のアームを流れる循環電流iZPと第2のアームを流れる循環電流iZNが追従するようにする循環電流制御を示すブロック図である。循環電流制御は、各アームごとに実行され、図9Bでは、第1のアーム12-Pについての個別バランス制御を主として表記しているが、第2のアーム12-Nについての循環電流制御についてはカッコ「()」内に表記している。 Subsequently, FIG. 9B shows that the circulating current i ZP flowing through the first arm and the circulating current i ZN flowing through the second arm follow the circulating current command values i ZP * and i ZN * created in the average value control. It is a block diagram which shows circulating current control made to do. The circulating current control is executed for each arm. In FIG. 9B, the individual balance control for the first arm 12-P is mainly described, but the circulating current control for the second arm 12-N is described. It is written in parentheses "()".
 図9Bに示す循環電流制御は、図10に示す直流コンデンサ制御装置50における指令値作成手段51によって作成された、第1のアームを流れる循環電流iZPの循環電流指令値iZP *と、第2のアームを流れる循環電流iZNの循環電流指令値iZN *とに、第1のアームを流れる循環電流iZPと第2のアームを流れる循環電流iZNが追従するよう、制御手段52により制御するものである。 In the circulating current control shown in FIG. 9B, the circulating current command value i ZP * of the circulating current i ZP flowing through the first arm, created by the command value creating means 51 in the DC capacitor control device 50 shown in FIG. to the circulating current command value i ZN * of the circulating current i ZN through the second arm, so that the circulating current i ZP and circulating current i ZN flowing through the second arm through the first arm to follow, the control unit 52 It is something to control.
 なお、第1のアームを流れる循環電流iZPと第2のアームを流れる循環電流iZNは、式13と式14及び図9Bに示すように、第1と第2のアームを流れる電流iP,iNに、変圧器14の巻線比N1/N2と、交流入出力端子T1-1、T1-2に印加される交流電流iacとを考慮した交流分(N1/N2)×(iac)を加えたもの、若しくは引いたものである。そして、制御手段52は、第1のアームを流れる循環電流iZPと第2のアームを流れる循環電流iZNを、循環電流指令値iZP *、iZN *に追従させるフィードバックループを構成するための電圧指令値vAP *、vAN *を作成する。 The circulating current i ZP flowing through the first arm and the circulating current i ZN flowing through the second arm are the current i P flowing through the first and second arms, as shown in Equations 13 and 14 and FIG. 9B. and i N, and the turns ratio N 1 / N 2 of the transformer 14, AC output terminals T1-1, AC component in consideration of the alternating current i ac applied to T1-2 (N 1 / N 2 ) × (i ac ) added or subtracted. Then, the control means 52 constitutes a feedback loop for causing the circulating current i ZP flowing through the first arm and the circulating current i ZN flowing through the second arm to follow the circulating current command values i ZP * and i ZN *. The voltage command values v AP * and v AN * are generated.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 続いて、図9Cは、同一アーム内の全ての直流コンデンサの電圧値を平均して得られた値に当該アーム内の各直流コンデンサの電圧値をそれぞれ追従させる個別バランス制御を示すブロック図である。個別バランス制御は、各アームごとに実行され、図9Cでも、第1のアーム12-Pについての個別バランス制御を主として表記しているが、第2のアーム12-Nについての個別バランス制御についてはカッコ「()」内に表記している。 FIG. 9C is a block diagram showing individual balance control in which the voltage value of each DC capacitor in the arm follows the value obtained by averaging the voltage values of all DC capacitors in the same arm. . The individual balance control is executed for each arm, and in FIG. 9C, the individual balance control for the first arm 12-P is mainly described, but the individual balance control for the second arm 12-N is described. It is written in parentheses "()".
 制御手段52は、第1のアーム12-P内の全ての直流コンデンサの電圧値を平均して得られた値vaveCPに、第1のアーム12-P内の各直流コンデンサの電圧値vCPjをそれぞれ追従させる制御、及び、第2のアーム12-N内の全ての直流コンデンサの電圧値を平均して得られた値vaveCNに、第2のアーム12-N内の各直流コンデンサの電圧値vCNjをそれぞれ追従させる制御を実行する。このための電圧指令値が、各アーム12-P及び12-N内の各単位セル11-jごとに作成され、第1のアーム12-PについてはvBPj *、第2のアーム12-NについてはvBNj *で表す。ここで、Mをアーム内の単位セルの個数としたとき、j=1~Mとする。 The control means 52 adds the voltage value v CPj of each DC capacitor in the first arm 12-P to the value v aveCP obtained by averaging the voltage values of all DC capacitors in the first arm 12-P. , And the voltage v aveCN obtained by averaging the voltage values of all the DC capacitors in the second arm 12-N to the voltage of each DC capacitor in the second arm 12-N. Control is performed to follow each value v CNj . A voltage command value for this purpose is created for each unit cell 11-j in each arm 12-P and 12-N. For the first arm 12-P, v BPj * and the second arm 12-N Is represented by v BNj * . Here, j is 1 to M, where M is the number of unit cells in the arm.
 上記3つの制御により各アーム12-P及び12-N内の単位セル11-j内の直流コンデンサ制御のための電圧指令値が作成され、これと三相電力変換器2の1相分(すなわち単相電力変換器1)が出力すべき交流電圧についての電圧指令値vac *と組み合わせることで、各アーム12-P及び12-N内の単位セル11-jごとの最終的な出力電圧指令値が式15及び式16のように作成される。 The voltage control value for controlling the DC capacitor in the unit cell 11-j in each of the arms 12-P and 12-N is created by the above three controls, and this is equivalent to one phase of the three-phase power converter 2 (ie, The final output voltage command for each unit cell 11-j in each arm 12-P and 12-N is combined with the voltage command value v ac * for the AC voltage to be output by the single-phase power converter 1). Values are created as in Equation 15 and Equation 16.
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 ここで、制御の安定化を図るため直流電圧Vdcを、フィードフォワード項として利用する。 Here, the DC voltage V dc is used as a feedforward term in order to stabilize the control.
 上述の式15及び式16に示される出力電圧指令値vPj *及びvNj *を用いて、三相電力変換器2内の各単位セル11-j内の半導体スイッチSWのスイッチング動作が制御される。上述のように、制御手段52は、半導体スイッチSWをスイッチング動作させるスイッチング指令手段63を有する。各アーム12-P及び12-Nについて生成された出力電圧指令値vPj *及びvNj *は、各直流コンデンサの電圧VCPj及びVCNjでそれぞれ規格化された後、キャリア周波数fcの三角波キャリア信号(最大値:1、最小値:0)と比較され、PWMのスイッチング信号が生成される。生成されたスイッチング信号(図10にはスイッチング指令値と記載)は、スイッチング指令手段63により、対応する単位セル11-j内の半導体スイッチSW(図2A、図2B参照)のスイッチング制御に用いられる。 The switching operation of the semiconductor switch SW in each unit cell 11-j in the three-phase power converter 2 is controlled using the output voltage command values v Pj * and v Nj * shown in the above formulas 15 and 16. The As described above, the control means 52 has the switching command means 63 for switching the semiconductor switch SW. The output voltage command values v Pj * and v Nj * generated for the arms 12-P and 12-N are normalized by the voltages V CPj and V CNj of the DC capacitors, respectively, and then a triangular wave with a carrier frequency f c The PWM signal is compared with the carrier signal (maximum value: 1, minimum value: 0), and a PWM switching signal is generated. The generated switching signal (described as a switching command value in FIG. 10) is used by the switching command means 63 for switching control of the semiconductor switch SW (see FIGS. 2A and 2B) in the corresponding unit cell 11-j. .
 第6の実施例による三相電力変換器2は、1相あたり8個(各アームに4個ずつ)の単位セルを用いると、相電圧が9レベル、線間電圧が17レベルのPWM波形となる。このスイッチング信号の生成は、例えばDSPやFPGAなどの演算処理装置を用いて実現される。 When the three-phase power converter 2 according to the sixth embodiment uses eight unit cells per phase (four in each arm), a PWM waveform having a phase voltage of 9 levels and a line voltage of 17 levels is obtained. Become. The generation of the switching signal is realized by using an arithmetic processing device such as a DSP or FPGA.
 次に、第6の実施例による三相電圧変換器2を用いた実験結果について説明する。実験には以下に示す回路パラメータを用いた。
  定格容量             5kVA
  定格線間電圧実効値VS      200V
  定格電流実効値I         15A
  系統周波数f           50Hz
  変圧器の巻線比N2/N1      1.5
  直流リンク電圧Vdc        140V
  結合インダクタL         4mH
  直流電圧指令値VC *        75V
  直流コンデンサC         3.3mF
  単位静電容量定数H        45ms
  キャリア周波数fc        2kHz
  交流側連係リアクトルLS     2.75mH
Next, experimental results using the three-phase voltage converter 2 according to the sixth embodiment will be described. The circuit parameters shown below were used for the experiment.
Rated capacity 5kVA
Rated line voltage effective value V S 200V
Rated current effective value I 15A
System frequency f 50Hz
Transformer turns ratio N 2 / N 1 1.5
DC link voltage V dc 140V
Coupling inductor L 4mH
DC voltage command value V C * 75V
DC capacitor C 3.3mF
Unit capacitance constant H 45ms
The carrier frequency f c 2kHz
AC side reactor L S 2.75mH
 実験では、各アーム12-Pと12-Nのチョッパセル数Mを4としたので、三相電圧変換器2には24個のチョッパセルがある。交流側のMPCは、交流リアクトルLsを通じて200Vの3相交流に接続し、直流側は直流電圧Vdcが140Vの直流電源に接続した。 In the experiment, since the number M of chopper cells of each arm 12-P and 12-N is 4, the three-phase voltage converter 2 has 24 chopper cells. The MPC on the AC side was connected to a three-phase AC of 200V through the AC reactor Ls, and the DC side was connected to a DC power source having a DC voltage Vdc of 140V.
 図11は、第6の実施例による三相電力変換器2の実験における瞬時有効電力制御及び瞬時無効電力制御を示すブロック図である。各アームのセル数は幾つでも構わない。ここで、瞬時有効電力指令値をp*、瞬時無効電力指令値をq*、で表す。第6の実施例における三相電力変換器2の各相の相電圧指令値vu*、vv*及びvw*は、各相の電源電流iu、iv及びiwの非干渉電流制御により決定される。 FIG. 11 is a block diagram showing instantaneous active power control and instantaneous reactive power control in the experiment of the three-phase power converter 2 according to the sixth embodiment. There can be any number of cells in each arm. Here, the instantaneous active power command value is represented by p * and the instantaneous reactive power command value is represented by q * . The phase voltage command values v u * , v v * and v w * of each phase of the three-phase power converter 2 in the sixth embodiment are the non-interfering currents of the power source currents i u , i v and i w of each phase. Determined by control.
 第6の実施例による三相電力変換器2には、直流コンデンサ電圧制御手段71と各単位セルの出力電圧指令値作成手段72がある。直流コンデンサ電圧制御手段71には直流電圧指令値VC *、3相の各アームの各直流コンデンサの電圧値vu CP1,vu CP2,~vw CNM,各相の各アームのアーム電流iu P,iu N,~iw N及び各相の交流電流iac u,iac v,iac wが入力され、各相の電圧指令値vu AP *,vu AN *~vw BN *と各相の各直流コンデンサの電圧指令値vu BPj *~vw BPj *が出力される。 The three-phase power converter 2 according to the sixth embodiment includes a DC capacitor voltage control means 71 and an output voltage command value creation means 72 for each unit cell. The DC capacitor voltage control means 71 includes a DC voltage command value V C * , voltage values v u CP1 , v u CP2 ˜v w CNM of each DC capacitor of each arm of three phases, arm current i of each arm of each phase u P , i u N ,..., i w N and AC currents i ac u , i ac v , i ac w of each phase are input, and voltage command values v u AP * , v u AN * to v w of each phase are input. BN * and voltage command values v u BPj * to v w BPj * of each DC capacitor of each phase are output.
 直流コンデンサ電圧制御手段71から出力された各相の電圧指令値vu AP *,vu AN *~vw BN *と、各相の各直流コンデンサの電圧指令値vu BPj *~vw BPj *と、直流電源の電圧値Vdc及び各相の相電圧指令値vu*、vv*及びvw*が各単位セルの出力電圧指令値作成手段72に入力される。そして、各単位セルの出力電圧指令値作成手段72からは、各相の各アームのチョッパセルの電圧指令値vu Pj *,vu Nj *,~vw Nj *が出力される。 The voltage command values v u AP * and v u AN * to v w BN * of each phase output from the DC capacitor voltage control means 71 and the voltage command values v u BPj * to v w BPj of each DC capacitor of each phase * And the DC power supply voltage value V dc and the phase voltage command values v u * , v v * and v w * of each phase are input to the output voltage command value creating means 72 of each unit cell. The voltage command values v u Pj * , v u Nj * , .about.v w Nj * of the chopper cells of each arm of each phase are output from the output voltage command value creating means 72 of each unit cell.
 図12は第6の実施例による三相電力変換器2を用いた実験波形を示すものであり、MPCはインバータとして動作しており、瞬時有効電力指令値p*は-5kW,瞬時無効電力指令値q*は0kVAである。変圧器14の2次側の電圧がv2 u、v2 v,v2 wは9ステップのPWM波形である。iuの総合高調波歪THDは1.9%に低減された。アーム電流iu P,iu Nは直流成分と50Hzの交流成分の両方を含み、直流成分は6.3Aである。一方、50Hzの交流成分の振幅は,供給電流の2/3(=N1/N2)であり、循環電流iu ZPは、変圧器14の効果により、直流成分Iu ZP=6.3Aに加えて、50Hzの基本周波数成分を含む。しかしながら、50Hzの成分は直流成分に比べれば無視できる。実質的な観点から見ると、式(iZPN=iZP-iZN)によって規定されるu相の電流iu ZPNは直流成分を含んでいない。直流コンデンサ電圧vu CP1及びvu CN1は共に直流成分と交流成分を含んでおり、電圧制御によって直流成分は75Vに規制される。直流電源電流の直流成分Idcは39Aであり、電流Iu Zの6倍高い値である。 FIG. 12 shows experimental waveforms using the three-phase power converter 2 according to the sixth embodiment. The MPC operates as an inverter, the instantaneous active power command value p * is −5 kW, and the instantaneous reactive power command. The value q * is 0 kVA. The voltages on the secondary side of the transformer 14 are v 2 u , v 2 v and v 2 w are 9-step PWM waveforms. total harmonic distortion THD of i u was reduced to 1.9%. The arm currents i u P and i u N include both a DC component and a 50 Hz AC component, and the DC component is 6.3 A. On the other hand, the amplitude of the AC component at 50 Hz is 2/3 (= N 1 / N 2 ) of the supply current, and the circulating current i u ZP is DC component I u ZP = 6.3 A due to the effect of the transformer 14. In addition to a fundamental frequency component of 50 Hz. However, the 50 Hz component is negligible compared to the DC component. From a substantial viewpoint, the u-phase current i u ZPN defined by the formula (i ZPN = i ZP −i ZN ) does not include a DC component. The DC capacitor voltages v u CP1 and v u CN1 both contain a DC component and an AC component, and the DC component is regulated to 75V by voltage control. The DC component I dc of the DC power supply current is 39 A, which is 6 times higher than the current I u Z.
 図13は第6の実施例による三相電力変換器2を用いた実験波形を示すものであり、MPCは整流器として動作しており、瞬時有効電力指令値p*は5kW,瞬時無効電力指令値q*は0kVAである。図13に示される実験波形を図12の実験波形と比べると、図13に示される振幅vu 2,vv 2及びvw 2は、図12に示される振幅vu 2,vv 2及びvw 2よりも小さい。これは電力回路の抵抗値の影響によるものであり、抵抗値によってこれらの振幅が整流動作の間に低くなるが、逆変換の場合はこの逆で大きくなる。これは、整流動作によって、電流iu ZPとidcの極性が負に変わるからである。図13に示される電流iu ZPとidcの振幅は、変換機の電力損失により、図12に示されるこれらの振幅よりも小さい。図13に示されるその他の波形は図12に示される波形と同じである。 FIG. 13 shows an experimental waveform using the three-phase power converter 2 according to the sixth embodiment. The MPC operates as a rectifier, the instantaneous active power command value p * is 5 kW, and the instantaneous reactive power command value. q * is 0 kVA. Compared with the experimental waveform of FIG. 12 the experiment waveform shown in FIG. 13, the amplitude v u 2, v v 2 and v w 2 shown in FIG. 13, the amplitude v u 2 shown in FIG. 12, v v 2 and It is smaller than v w 2 . This is due to the influence of the resistance value of the power circuit. Depending on the resistance value, the amplitude thereof decreases during the rectification operation, but in the case of reverse conversion, the amplitude increases in the opposite manner. This is because the polarities of the currents i u ZP and i dc change to negative due to the rectification operation. The amplitudes of the currents i u ZP and i dc shown in FIG. 13 are smaller than those shown in FIG. 12 due to the power loss of the converter. The other waveforms shown in FIG. 13 are the same as the waveforms shown in FIG.
 図14は第6の実施例による三相電力変換器2を用いた実験波形を示すものであり、Vdcが140V、瞬時有効電力指令値p*が-5kW、瞬時無効電力指令値q*が0kVAの時のスタートアップ動作中の波形である。時刻t1から時刻t2の期間では、vC*が傾斜変化率5V/0.1sで70Vから75Vに増大している。また、時刻t3から時刻t4の期間では、瞬時無効電力指令値q*が0kVAであるのに対して、瞬時有効電力指令値p*が傾斜変化率-5kW/0.1sで0kWから-5kWに減少している。供給電流とアーム電流の振幅は、過電流が流れることなく増大している。更に、直流電圧vu CP1及びvu CN1の平均値は、定常誤差なく指令電圧値75Vによって規制される。電流iu ZPNに含まれる直流成分は、過渡状態の間でさえもゼロに抑えられる。 FIG. 14 shows experimental waveforms using the three-phase power converter 2 according to the sixth embodiment. V dc is 140 V, the instantaneous active power command value p * is −5 kW, and the instantaneous reactive power command value q * is It is a waveform during the start-up operation at 0 kVA. In the period from time t1 to time t2, vC * increases from 70V to 75V at a slope change rate of 5V / 0.1 s. In the period from time t3 to time t4, the instantaneous reactive power command value q * is 0 kW, whereas the instantaneous active power command value p * is 0 kW to -5 kW at a slope change rate of -5 kW / 0.1 s. is decreasing. The amplitudes of the supply current and arm current increase without overcurrent flowing. Further, the average value of the DC voltages v u CP1 and v u CN1 is regulated by the command voltage value 75V without a steady error. The DC component contained in the current i u ZPN is suppressed to zero even during the transient state.
 図15は第6の実施例による三相電力変換器2を用いた実験波形を示すものであり、瞬時有効電力指令値p*が-4kWから-5kWにステップ状に変化する時の波形である。実験波形によれば、直流リンク電流idcが、瞬時有効電力指令値p*における変化に対する一次応答を示しており、その中で実験波形から推定される時定数は1.5msと同様に短い。瞬時有効電力指令値p*がステップ状に変化する状態でも、iu ZPNにおいては直流電流は発生しない。 FIG. 15 shows an experimental waveform using the three-phase power converter 2 according to the sixth embodiment, and is a waveform when the instantaneous active power command value p * changes stepwise from −4 kW to −5 kW. . According to the experimental waveform, the DC link current idc shows a primary response to a change in the instantaneous active power command value p *, in which the time constant estimated from the experimental waveform is as short as 1.5 ms. Even in a state where the instantaneous active power command value p * changes stepwise, no direct current is generated in i u ZPN .
 本発明のモジュラープッシュプルPWM変換器(MPC)は、電池電力貯蔵システムに適用できる。本発明は、MPC用の新たな制御方法を提案するものであり、3相MPC用の循環電流において6自由度を達成することができる。この結果、第1のアームと第2のアームにおける平均電圧を、干渉なしに独立に規制することができ、シンプルで信頼性のあるシステムを提供できる。3相200V、5kWの実用的なシステムから得られた実験結果によれば、変換器の重要性と効率が保証されることが分かる。 The modular push-pull PWM converter (MPC) of the present invention can be applied to a battery power storage system. The present invention proposes a new control method for MPC and can achieve 6 degrees of freedom in the circulating current for 3-phase MPC. As a result, the average voltage in the first arm and the second arm can be regulated independently without interference, and a simple and reliable system can be provided. Experimental results obtained from a practical three-phase 200 V, 5 kW system show that the importance and efficiency of the converter is guaranteed.
 図16は、第7の実施例による三相電力変換器を示す回路図である。第7の実施例は、図6を参照して説明した第5の実施例による単相電力変換器を用いて三相電力変換器を構成したものである。図16において、u相、v相及びw相にそれぞれ設けられる単相電力変換器を参照符号1u、1v及び1wで示し、これら単相電力変換器1u、1v及び1wで構成される三相電力変換器を参照符号2で表す。なお、図16において、単相電力変換器1v及び1wについては、単相電力変換器1uと回路構成が同じであるので、具体的な回路構成の記載は省略する。以下、主としてu相に関して説明するが、v相及びw相についても同様に適用できる。また、本実施例では、単位セルの個数を、一例として1アームあたり4個、1相当たり8個、したがって三相電力変換器2内に24個としたが、この数値はあくまでも一例であり、これに限定されるものではない。 FIG. 16 is a circuit diagram showing a three-phase power converter according to the seventh embodiment. In the seventh embodiment, a three-phase power converter is configured by using the single-phase power converter according to the fifth embodiment described with reference to FIG. In FIG. 16, single-phase power converters provided in the u-phase, v-phase, and w-phase, respectively, are denoted by reference numerals 1u, 1v, and 1w, and three-phase power configured by these single- phase power converters 1u, 1v, and 1w. The converter is denoted by reference numeral 2. In FIG. 16, the single-phase power converters 1v and 1w have the same circuit configuration as that of the single-phase power converter 1u, and therefore a detailed description of the circuit configuration is omitted. Hereinafter, although mainly the u phase will be described, the same applies to the v phase and the w phase. In this embodiment, the number of unit cells is 4 per arm as an example, 8 per phase, and thus 24 in the three-phase power converter 2. However, this numerical value is merely an example, It is not limited to this.
 図6を参照して説明したように第5の実施例における変圧器14’は、図1を参照して説明した第1の実施例による単相電力変換器1における変圧器14の中間端子があった位置に、3端子結合リアクトル15を設けたものである。すなわち、変圧器14’の2次側巻線上に3端子結合リアクトル15を有する。第7の実施例による三相電力変換器2においては、この変圧器14’を用いて三相変圧器24における各相をそれぞれ構成する。 As described with reference to FIG. 6, the transformer 14 ′ in the fifth embodiment has an intermediate terminal of the transformer 14 in the single-phase power converter 1 according to the first embodiment described with reference to FIG. 1. A three-terminal coupling reactor 15 is provided at the position. That is, the three-terminal coupling reactor 15 is provided on the secondary winding of the transformer 14 '. In the three-phase power converter 2 according to the seventh embodiment, each phase in the three-phase transformer 24 is configured by using this transformer 14 '.
 図6を参照して説明したように第5の実施例における直流電源Vdcは、第1のアーム12-Pの下側端子1abと第2のアーム12-Nの下側端子2abとの間に接続される。第7の実施例では、図6において単相電力変換器1に上記のように接続されていた直流電源Vdcを、図16に示すようにu、v及びwの各相で共通とするが、図6に示す第5の実施例の場合の2倍の電圧値とする。ここで、3端子結合リアクトル15の中間端子(センタータップ)をY接続することで、図6に示す第5の実施例においては存在していた分圧コンデンサを除去することができる。 As described with reference to FIG. 6, the DC power source V dc in the fifth embodiment is between the lower terminal 1ab of the first arm 12-P and the lower terminal 2ab of the second arm 12-N. Connected to. In the seventh embodiment, the DC power supply V dc connected as described above to the single-phase power converter 1 in FIG. 6 is common to the phases u, v, and w as shown in FIG. The voltage value is twice that of the fifth embodiment shown in FIG. Here, by connecting the intermediate terminal (center tap) of the three-terminal coupling reactor 15 with Y, the voltage dividing capacitor that existed in the fifth embodiment shown in FIG. 6 can be removed.
 第8の実施例は、第1~第5の実施例による単相電力変換器1を2相分備えて三相二相電力変換器を構成したものである。第1~第5の実施例による単相電力変換器1を2相分設けて系統側に連系するには、スコット変圧器を用いる。 In the eighth embodiment, a three-phase two-phase power converter is configured by providing two phases of the single-phase power converter 1 according to the first to fifth embodiments. A Scott transformer is used to provide two-phase single-phase power converters 1 according to the first to fifth embodiments and connect them to the system side.
 図17は、本発明で使用するスコット変圧器を示す回路図である。スコット変圧器25は、M座変圧器Tm及びT座変圧器Ttの2台の単相変圧器より構成する。M座変圧器Tmの1次側巻線の巻き数をN1、2次巻線の巻き数をN2とする。このとき、M座変圧器Tmの1次側巻線の中間端子(センタータップ)をT座変圧器Ttの1次側巻線と接続する。なお、T座変圧器Ttの1次側巻線の巻き数は√3N1/2となる。また、図18A及び図18Bは、図17に示すスコット変圧器の瞬時電圧ベクトル図である。図18Aに示すようにスコット変圧器の1次側巻線に三相平衡正弦波電圧vu、vv及びvwを印加すると、2次側巻線には位相差90度の二相正弦波電圧vα及びvβが現れる。 FIG. 17 is a circuit diagram showing a Scott transformer used in the present invention. The Scott transformer 25 is composed of two single-phase transformers, an M seat transformer Tm and a T seat transformer Tt. Let N 1 be the number of turns of the primary winding of the M-seat transformer Tm, and N 2 be the number of turns of the secondary winding. At this time, the intermediate terminal (center tap) of the primary side winding of the M seat transformer Tm is connected to the primary side winding of the T seat transformer Tt. The number of turns of the primary winding of the T-seat transformer Tt is √3N 1/2 . 18A and 18B are instantaneous voltage vector diagrams of the Scott transformer shown in FIG. As shown in FIG. 18A, when three-phase balanced sine wave voltages v u , v v and v w are applied to the primary winding of the Scott transformer, a two-phase sine wave having a phase difference of 90 degrees is applied to the secondary winding. Voltages v α and v β appear.
 図19は、第8の実施例による三相二相電力変換器を示す回路図である。図19に示す第8の実施例では、一例として第1の実施例による単相電力変換器を用いて三相二相電力変換器を構成する場合について説明するが、第2~第5の実施例による単相電力変換器を用いても同様に構成することができる。図19において、α相及びβ相にそれぞれ設けられる単相電力変換器を参照符号1α及び1βで示し、これら単相電力変換器1α及び1βで構成される三相二相電力変換器を参照符号3で表す。なお、図19において、単相電力変換器1βについては、単相電力変換器1βと回路構成が同じであるので、具体的な回路構成の記載は省略する。以下、主としてα相に関して説明するが、β相についても同様に適用できる。また、本実施例では、単位セルの個数を、一例として1アームあたり4個、1相当たり8個、したがって三相電力変換器2内に16個、としたが、この数値はあくまでも一例であり、これに限定されるものではない。 FIG. 19 is a circuit diagram showing a three-phase two-phase power converter according to the eighth embodiment. In the eighth embodiment shown in FIG. 19, a case where a three-phase two-phase power converter is configured using the single-phase power converter according to the first embodiment will be described as an example. The same configuration can be achieved using a single-phase power converter according to the example. In FIG. 19, single-phase power converters provided in the α-phase and β-phase are denoted by reference numerals 1α and 1β, respectively, and a three-phase two-phase power converter configured by the single-phase power converters 1α and 1β is denoted by the reference numerals This is represented by 3. In FIG. 19, the circuit configuration of the single-phase power converter 1β is the same as that of the single-phase power converter 1β, and therefore a specific description of the circuit configuration is omitted. Hereinafter, the α phase will be mainly described, but the same applies to the β phase. In this embodiment, the number of unit cells is set to 4 per arm as an example, 8 per 1 phase, and thus 16 in the three-phase power converter 2. However, this value is only an example. However, the present invention is not limited to this.
 第8の実施例による三相二相電力変換器3においては、α相及びβ相の各相に設けられる各単相電力変換器1α及び1β内の変圧器14を用いて、スコット変圧器25における各相をそれぞれ構成する。一例として、1次側巻線と2次側巻線の巻き数比N1:N2は√3:1とする。第8の実施例による三相二相電力変換器3の2次側α相においては、図17を参照して説明したスコット変圧器25の、M座変圧器Tmの2次側巻線上に中間端子(センタータップ)α1を設ける。また、三相二相電力変換器3の2次側β相においては、図20を参照して説明したスコット変圧器25の、T座変圧器Ttの2次側巻線上に中間端子(センタータップ)β1を設ける。図1を参照して説明したように、単相電力変換器1においては、アーム結合部13の第3の端子cには直流電源Vdcの負極側端子が接続され、変圧器14の中間端子T2-3には直流電源Vdcの正極側端子が接続されるが、第6の実施例では、これら中間端子α1及びβ1を直流電源Vdcの正極側端子に接続することで、図19に示すようにα相及びβ相で共通ものとする。 In the three-phase two-phase power converter 3 according to the eighth embodiment, the Scott transformer 25 is used by using the transformers 14 in the single-phase power converters 1α and 1β provided in the α-phase and β-phase. Each phase in is constituted. As an example, the turn ratio N 1 : N 2 between the primary winding and the secondary winding is √3: 1. In the secondary side α phase of the three-phase two-phase power converter 3 according to the eighth embodiment, the Scott transformer 25 described with reference to FIG. 17 has an intermediate on the secondary side winding of the M seat transformer Tm. A terminal (center tap) α 1 is provided. Further, in the secondary β phase of the three-phase two-phase power converter 3, an intermediate terminal (center tap) is placed on the secondary winding of the T-seat transformer Tt of the Scott transformer 25 described with reference to FIG. ) Β 1 is provided. As described with reference to FIG. 1, in the single-phase power converter 1, the negative terminal of the DC power source V dc is connected to the third terminal c of the arm coupling portion 13, and the intermediate terminal of the transformer 14. The positive terminal of the DC power source V dc is connected to T2-3. In the sixth embodiment, by connecting these intermediate terminals α 1 and β 1 to the positive terminal of the DC power source V dc , As shown in FIG. 19, the α phase and the β phase are common.
 また、三相二相電力変換器3の2次側α相においては、スコット変圧器25のM座変圧器Tmの2次側巻線の両端端子α0及びα1には第1のアーム12-P及び12-Nの上側端子を接続する。第1のアーム12-P及び12-Nの下側端子には、アーム結合部13である3端子結合リアクトルを接続する。3端子結合リアクトルの中間端子には、直流電源Vdcの負極側端子を接続する。三相二相電力変換器3の2次側β相についてもα相と同様の構成とする。 Further, in the secondary side α-phase of the three-phase two-phase power converter 3, both terminals α0 and α1 of the secondary side winding of the M seat transformer Tm of the Scott transformer 25 are connected to the first arm 12-P. And the upper terminal of 12-N are connected. A three-terminal coupling reactor that is an arm coupling portion 13 is connected to the lower terminals of the first arms 12-P and 12-N. The negative terminal of the DC power source Vdc is connected to the intermediate terminal of the three-terminal coupling reactor. The secondary side β phase of the three-phase to two-phase power converter 3 has the same configuration as the α phase.
 以上説明したように、本発明のマルチレベル電力変換器及びマルチレベル電力変換器の制御方法では、各アームの直流電圧平均値を独立に制御することにより、従来の制御法に比べて、アームバランス制御を無くすことができたので、アーム間での直流電圧の情報の高速通信が不要になり、MPCの設計上の制約を無くすことができた。 As described above, in the multilevel power converter and the control method of the multilevel power converter of the present invention, the arm balance is compared with the conventional control method by independently controlling the DC voltage average value of each arm. Since the control could be eliminated, high-speed communication of DC voltage information between the arms became unnecessary, and restrictions on the MPC design could be eliminated.
 1、1u、1v、1w  単相電力変換器(マルチレベル電力変換器)
 2  三相電力変換器(マルチレベル電力変換器)
 3  三相二相電力変換器(マルチレベル電力変換器)
 11-1、…、11-M  単位セル
 12-P  第1のアーム
 12-N  第2のアーム
 13  アーム結合部
 14、14’  変圧器
 15  3端子結合リアクトル
 24  三相変圧器
 25  スコット変圧器
 50  直流コンデンサ制御装置
 51  指令値作成手段
 52  制御手段
 63  スイッチング制御手段
 71  直流コンデンサ電圧制御手段
 72  各単位セルの出力電圧指令値作成手段
 a  第1の端子
 b  第2の端子
 c  第3の端子
 BC  ブリッジセル
 CC  チョッパセル
 D  還流ダイオード
 S  半導体スイッチング素子
 SW  半導体スイッチ
 T1-1、T1-2  交流入出力端子
 T2-1、T2-2  2次側巻線の末端端子
 T2-3  中間端子
 Vdc  直流電源
1, 1u, 1v, 1w Single-phase power converter (multi-level power converter)
2 Three-phase power converter (multi-level power converter)
3 Three-phase two-phase power converter (multi-level power converter)
11-1,..., 11-M unit cell 12-P first arm 12-N second arm 13 arm coupling portion 14, 14 ′ transformer 15 three-terminal coupling reactor 24 three-phase transformer 25 Scott transformer 50 DC capacitor control device 51 Command value creation means 52 Control means 63 Switching control means 71 DC capacitor voltage control means 72 Output voltage command value creation means for each unit cell a first terminal b second terminal c third terminal BC bridge Cell CC Chopper cell D Free-wheeling diode S Semiconductor switching element SW Semiconductor switch T1-1, T1-2 AC input / output terminal T2-1, T2-2 Terminal terminal of secondary winding T2-3 Intermediate terminal V dc DC power supply

Claims (13)

  1.  直列接続された2つの半導体スイッチと、前記2つの半導体スイッチに並列接続された直流コンデンサと、前記半導体スイッチのスイッチング動作に応じて前記直流コンデンサから放電若しくは前記直流コンデンサへ充電される電流の入出力端子とを有する単位セルと、
     1つの前記単位セル、又は前記入出力端子を介して互いにカスケード接続された複数の前記単位セルからなる第1及び第2のアームであって、前記第1及び第2のアームは同数の前記単位セルを有する第1及び第2のアームと、
     前記第1のアームの一端が接続される第1の端子と、前記第2のアームの一端が接続される第2の端子と、直流電源の一端が接続される第3の端子とを有するアーム結合部と、
     1次側に交流入出力端子、2次側巻線上に中間端子を有する変圧器であって、前記2次側巻線の2つの末端端子には、前記第1のアームの、前記第1の端子が接続されない側の端子と、前記第2のアームの、前記第2の端子が接続されない側の端子とがそれぞれ接続され、前記中間端子には、前記直流電源の、前記第3の端子が接続されない側の端子が接続される変圧器と、
     前記第1のアーム内の前記直流コンデンサの電圧値と前記第2のアーム内の前記直流コンデンサの電圧値とに基づいて、前記第1のアームの循環電流指令値と前記第2のアームの循環電流指令値とを作成する指令値作成手段と、
     前記第1と第2のアームの循環電流指令値に対して、前記第1と第2のアームを流れる電流に、前記変圧器の巻線比と前記交流入出力端子に印加される交流電流とを考慮した交流分を加えた、若しくは引いた、前記第1と第2のアームをそれぞれ流れる循環電流が追従するよう制御する制御手段とを備えることを特徴とするマルチレベル電力変換器。
    Two semiconductor switches connected in series, a DC capacitor connected in parallel to the two semiconductor switches, and an input / output of a current discharged from the DC capacitor or charged to the DC capacitor according to the switching operation of the semiconductor switch A unit cell having a terminal;
    The first and second arms comprising one unit cell or a plurality of unit cells cascaded to each other via the input / output terminals, wherein the first and second arms are the same number of the units. First and second arms having cells;
    An arm having a first terminal to which one end of the first arm is connected, a second terminal to which one end of the second arm is connected, and a third terminal to which one end of a DC power supply is connected A coupling part;
    A transformer having an AC input / output terminal on the primary side and an intermediate terminal on the secondary winding, wherein the first terminal of the first arm is connected to two terminal terminals of the secondary winding. A terminal to which the terminal is not connected and a terminal of the second arm to which the second terminal is not connected are respectively connected, and the intermediate terminal is connected to the third terminal of the DC power source. A transformer to which the unconnected terminal is connected;
    Based on the voltage value of the DC capacitor in the first arm and the voltage value of the DC capacitor in the second arm, the circulating current command value of the first arm and the circulation of the second arm Command value creating means for creating a current command value;
    With respect to the circulating current command values of the first and second arms, the current flowing through the first and second arms, the winding ratio of the transformer, and the alternating current applied to the alternating current input / output terminal A multi-level power converter comprising: control means for controlling so that circulating currents flowing through the first and second arms follow, respectively, with or without an AC component taking into account
  2.  前記アーム結合部は、前記第1の端子と、前記第2の端子と、前記第1の端子と前記第2の端子との間の巻線上に位置する中間タップである前記第3の端子とを有する3端子結合リアクトル、からなる請求項1に記載のマルチレベル電力変換器。 The arm coupling portion includes the first terminal, the second terminal, and the third terminal that is an intermediate tap located on a winding between the first terminal and the second terminal. The multi-level power converter according to claim 1, comprising a three-terminal coupled reactor having the following.
  3.  前記アーム結合部は、互いに直列接続された2つのリアクトルであって、前記直列接続された2つのリアクトルの一方の端子である前記第1の端子と、前記直列接続された2つのリアクトルの他方の端子である前記第2の端子と、前記直列接続された2つのリアクトルの直列接続点である前記第3の端子とを有する2つのリアクトルからなる請求項1に記載のマルチレベル電力変換器。 The arm coupling portion includes two reactors connected in series to each other, the first terminal being one terminal of the two reactors connected in series and the other of the two reactors connected in series. The multilevel power converter according to claim 1, comprising two reactors including the second terminal that is a terminal and the third terminal that is a series connection point of the two reactors connected in series.
  4.  前記第1のアーム及び前記第2のアームそれぞれにおいて、互いにカスケード接続された前記単位セル間の任意の位置に接続されるリアクトルを備え、
     前記アーム結合部において、前記第1の端子と、前記第2の端子と、前記第3の端子とは互いに接続される請求項1に記載のマルチレベル電力変換器。
    In each of the first arm and the second arm, a reactor connected to an arbitrary position between the unit cells cascade-connected to each other,
    The multilevel power converter according to claim 1, wherein in the arm coupling portion, the first terminal, the second terminal, and the third terminal are connected to each other.
  5.  直列接続された2つの半導体スイッチと、前記2つの半導体スイッチに並列接続された直流コンデンサと、前記半導体スイッチのスイッチング動作に応じて前記直流コンデンサから放電若しくは前記直流コンデンサへ充電される電流の入出力端子とを有する単位セルと、
     1つの前記単位セル、又は前記入出力端子を介して互いにカスケード接続された複数の前記単位セルからなる第1及び第2のアームであって、前記第1及び第2のアームは同数の前記単位セルを有する第1及び第2のアームと、
     前記第1のアームの一端との間で直流電源が接続される第1の端子と、前記第2のアームの一端との間でさらに別の直流電源が接続される第2の端子と、前記第1の端子及び前記第2の端子に接続される第3の端子とを有するアーム結合部と、
     1次側に交流入出力端子、2次側巻線上に3端子結合リアクトルを有する変圧器であって、前記2次側巻線の2つの末端端子には、前記第1のアームの、前記直流電源が接続されない側の端子と、前記第2のアームの、前記さらに別の直流電源が接続されない側の端子とがそれぞれ接続され、前記3端子結合リアクトルの両端端子間の巻線上に位置する中間端子には、前記第3の端子が接続される変圧器と、
     前記第1のアーム内の前記直流コンデンサの電圧値と前記第2のアーム内の前記直流コンデンサの電圧値とに基づいて、前記第1のアームの循環電流指令値と前記第2のアームの循環電流指令値とを作成する指令値作成手段と、
     前記第1と第2のアームの循環電流指令値に対して、前記第1と第2のアームを流れる電流に、前記変圧器の巻線比と前記交流入出力端子に印加される交流電流とを考慮した交流分を加えた、若しくは引いた、前記第1と第2のアームをそれぞれ流れる循環電流が追従するよう制御する制御手段とを備えることを特徴とするマルチレベル電力変換器。
    Two semiconductor switches connected in series, a DC capacitor connected in parallel to the two semiconductor switches, and an input / output of a current discharged from the DC capacitor or charged to the DC capacitor according to the switching operation of the semiconductor switch A unit cell having a terminal;
    The first and second arms comprising one unit cell or a plurality of unit cells cascaded to each other via the input / output terminals, wherein the first and second arms are the same number of the units. First and second arms having cells;
    A first terminal to which a DC power source is connected between one end of the first arm, a second terminal to which another DC power source is connected between one end of the second arm, An arm coupling portion having a first terminal and a third terminal connected to the second terminal;
    A transformer having an AC input / output terminal on the primary side and a three-terminal coupling reactor on the secondary winding, wherein the DC terminal of the first arm is connected to two terminal terminals of the secondary winding. A terminal that is not connected to a power source and a terminal of the second arm that is not connected to the further DC power source are connected to each other, and is located on the winding between the terminals of the three-terminal coupling reactor. A terminal having a transformer connected to the third terminal;
    Based on the voltage value of the DC capacitor in the first arm and the voltage value of the DC capacitor in the second arm, the circulating current command value of the first arm and the circulation of the second arm Command value creating means for creating a current command value;
    With respect to the circulating current command values of the first and second arms, the current flowing through the first and second arms, the winding ratio of the transformer, and the alternating current applied to the alternating current input / output terminal A multi-level power converter comprising: control means for controlling so that circulating currents flowing through the first and second arms follow, respectively, with or without an AC component taking into account
  6.  直列接続された2つの半導体スイッチと、前記2つの半導体スイッチに並列接続された直流コンデンサと、前記半導体スイッチのスイッチング動作に応じて前記直流コンデンサから放電若しくは前記直流コンデンサへ充電される電流の入出力端子とを有する単位セルと、
     1つの前記単位セル、又は前記入出力端子を介して互いにカスケード接続された複数の前記単位セルからなる第1及び第2のアームであって、前記第1及び第2のアームは同数の前記単位セルを有し、前記第1のアームの一端と前記第2のアームとの間に直流電源が接続される第1及び第2のアームと、
     前記第1のアームの、前記直流電源が接続される側の端子に接続される第1のコンデンサと、
     前記第2のアームの、前記直流電源が接続される側の端子に接続される第2のコンデンサと、
     前記第1のコンデンサの、前記第1のアームが接続されない側の端子が接続される第1の端子と、前記第2のコンデンサの、前記第2のアームが接続されない側の端子が接続される第2の端子と、前記第1の端子及び前記第2の端子に接続される第3の端子とを有するアーム結合部と、
     1次側に交流入出力端子、2次側巻線上に3端子結合リアクトルを有する変圧器であって、前記2次側巻線の2つの末端端子には、前記第1のアームの、前記第1のコンデンサが接続されない側の端子と、前記第2のアームの、前記第2のコンデンサが接続されない側の端子と、がそれぞれ接続され、前記3端子結合リアクトルの両端端子間の巻線上に位置する中間端子には、前記第3の端子が接続される変圧器と、
     前記第1のアーム内の前記直流コンデンサの電圧値と前記第2のアーム内の前記直流コンデンサの電圧値とに基づいて、前記第1のアームの循環電流指令値と前記第2のアームの循環電流指令値とを作成する指令値作成手段と、
     前記第1と第2のアームの循環電流指令値に対して、前記第1と第2のアームを流れる電流に、前記変圧器の巻線比と前記交流入出力端子に印加される交流電流とを考慮した交流分を加えた、若しくは引いた、前記第1と第2のアームをそれぞれ流れる循環電流が追従するよう制御する制御手段とを備えることを特徴とするマルチレベル電力変換器。
    Two semiconductor switches connected in series, a DC capacitor connected in parallel to the two semiconductor switches, and an input / output of a current discharged from the DC capacitor or charged to the DC capacitor according to the switching operation of the semiconductor switch A unit cell having a terminal;
    The first and second arms comprising one unit cell or a plurality of unit cells cascaded to each other via the input / output terminals, wherein the first and second arms are the same number of the units. A first arm and a second arm having a cell and connected to a DC power source between one end of the first arm and the second arm;
    A first capacitor connected to a terminal of the first arm to which the DC power supply is connected;
    A second capacitor connected to a terminal of the second arm to which the DC power supply is connected;
    A first terminal to which a terminal of the first capacitor to which the first arm is not connected is connected, and a terminal of the second capacitor to which the second arm is not connected are connected. An arm coupling portion having a second terminal and a third terminal connected to the first terminal and the second terminal;
    A transformer having an AC input / output terminal on the primary side and a three-terminal coupling reactor on the secondary winding, the two end terminals of the secondary winding having the first arm of the first arm 1 is connected to the terminal on the side where the capacitor is not connected, and the terminal on the side where the second capacitor is not connected to the second arm, and is positioned on the winding between the terminals of the three-terminal coupling reactor. The intermediate terminal to be connected to the transformer to which the third terminal is connected;
    Based on the voltage value of the DC capacitor in the first arm and the voltage value of the DC capacitor in the second arm, the circulating current command value of the first arm and the circulation of the second arm Command value creating means for creating a current command value;
    With respect to the circulating current command values of the first and second arms, the current flowing through the first and second arms, the winding ratio of the transformer, and the alternating current applied to the alternating current input / output terminal A multi-level power converter comprising: control means for controlling so that circulating currents flowing through the first and second arms follow, respectively, with or without an AC component taking into account
  7.  前記指令値生成手段は、前記第1のアーム内及び前記第2のアーム内の全ての前記直流コンデンサの電圧値を平均して得られた値が,所定の直流電圧指令値に追従するよう制御するための前記第1と第2のアーム毎に循環電流指令値を生成する請求項1,5,6の何れか1項に記載のマルチレベル電力変換器。 The command value generation means controls so that a value obtained by averaging the voltage values of all the DC capacitors in the first arm and the second arm follows a predetermined DC voltage command value. The multilevel power converter according to any one of claims 1, 5, and 6, wherein a circulating current command value is generated for each of the first and second arms.
  8.  前記制御手段は、前記第1のアーム内の全ての前記直流コンデンサの電圧値を平均して得られた値に、前記第1のアーム内の各前記直流コンデンサの電圧値をそれぞれ追従させる制御、及び、前記第2のアーム内の全ての前記直流コンデンサの電圧値を平均して得られた値に、前記第2のアーム内の各前記直流コンデンサの電圧値をそれぞれ追従させる制御を更に実行する請求項7に記載のマルチレベル電力変換器。 The control means controls the voltage values of the DC capacitors in the first arm to follow the values obtained by averaging the voltage values of all the DC capacitors in the first arm, Further, control is further performed for causing the voltage values of the DC capacitors in the second arm to follow the values obtained by averaging the voltage values of all the DC capacitors in the second arm. The multi-level power converter according to claim 7.
  9.  前記制御手段は、前記追従させる制御に対応して前記半導体スイッチをスイッチング動作させるスイッチング指令手段を有する請求項8に記載のマルチレベル電力変換器。 The multi-level power converter according to claim 8, wherein the control means includes switching command means for switching the semiconductor switch in response to the follow-up control.
  10.  各前記半導体スイッチは、
     オン時に一方向に電流を通す半導体スイッチング素子と、
     該半導体スイッチング素子に逆並列に接続された帰還ダイオードと、
    を有する請求項1~9の何れか1項に記載のマルチレベル電力変換器。
    Each of the semiconductor switches is
    A semiconductor switching element that allows current to flow in one direction when on,
    A feedback diode connected in antiparallel to the semiconductor switching element;
    The multilevel power converter according to any one of claims 1 to 9, wherein
  11.  請求項1~10の何れか1項に記載のマルチレベル電力変換器を3相分備える三相マルチレベル電力変換器であって、
     各前記マルチレベル電力変換器内の前記変圧器は、1次側にスター結線を有し2次側にオープンスター結線を有する三相変圧器における各相をそれぞれ構成し、
     各前記マルチレベル電力変換器には共通の前記直流電源が接続される、
    ことを特徴とする三相マルチレベル電力変換器。
    A three-phase multilevel power converter comprising three phases of the multilevel power converter according to any one of claims 1 to 10,
    The transformer in each multi-level power converter constitutes each phase in a three-phase transformer having a star connection on the primary side and an open star connection on the secondary side,
    The multi-level power converter is connected to the common DC power source,
    A three-phase multi-level power converter characterized by that.
  12.  請求項1~10の何れか1項に記載のマルチレベル電力変換器を2相分備える三相二相マルチレベル電力変換器であって、
     各前記マルチレベル電力変換器内の前記変圧器の2次側巻線は、スコット変圧器の2次側における各相の巻線をそれぞれ構成し、
     各前記マルチレベル電力変換器には共通の前記直流電源が接続される、
    ことを特徴とする三相二相マルチレベル電力変換器。
    A three-phase two-phase multilevel power converter comprising two phases of the multilevel power converter according to any one of claims 1 to 10,
    The secondary winding of the transformer in each multilevel power converter constitutes a winding of each phase on the secondary side of the Scott transformer,
    The multi-level power converter is connected to the common DC power source,
    A three-phase two-phase multilevel power converter characterized by that.
  13.  請求項1,5,6の何れか1項に記載のマルチレベル電力変換器において、
     前記変圧器の1次側と2次側の巻線比をN1/N2、変圧器の交流入力端子に入力される電流をiacとした時に、第1のアームの循環電流と第2のアームの循環電流を、
    ZP=iP+(N1/N2)×iac
    ZN=iN-(N1/N2)×iac
    で定義し、
     前記第1のアーム内の前記直流コンデンサの電圧値と前記第2のアーム内の前記直流コンデンサの電圧値とに基づいて、前記第1のアームの循環電流指令値と前記第2のアームの循環電流指令値とを作成し、
     前記第1と第2のアームの循環電流指令値に対して、前記第1と第2のアームを流れる電流に、前記変圧器の巻線比と前記交流入出力端子に印加される交流電流とを考慮した交流分を加えた、若しくは引いた、前記第1と第2のアームをそれぞれ流れる循環電流が追従するよう制御することを特徴とするマルチレベル電力変換器の制御方法。
    The multilevel power converter according to any one of claims 1, 5 and 6,
    When the winding ratio of the primary side and the secondary side of the transformer is N 1 / N 2 and the current input to the AC input terminal of the transformer is i ac , the circulating current of the first arm and the second The circulating current of the arm
    i ZP = i P + (N 1 / N 2 ) × i ac
    i ZN = i N- (N 1 / N 2 ) × i ac
    Defined in
    Based on the voltage value of the DC capacitor in the first arm and the voltage value of the DC capacitor in the second arm, the circulating current command value of the first arm and the circulation of the second arm Create a current command value and
    With respect to the circulating current command values of the first and second arms, the current flowing through the first and second arms, the winding ratio of the transformer, and the alternating current applied to the alternating current input / output terminal A control method for a multi-level power converter, characterized in that control is performed so that circulating currents flowing through the first and second arms follow, with or without an AC component taking into account
PCT/JP2015/057911 2014-03-19 2015-03-17 Multilevel power converter and method for controlling multilevel power converter WO2015141681A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016508741A JP6462664B2 (en) 2014-03-19 2015-03-17 Multilevel power converter and control method of multilevel power converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014055788 2014-03-19
JP2014-055788 2014-03-19

Publications (1)

Publication Number Publication Date
WO2015141681A1 true WO2015141681A1 (en) 2015-09-24

Family

ID=54144646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057911 WO2015141681A1 (en) 2014-03-19 2015-03-17 Multilevel power converter and method for controlling multilevel power converter

Country Status (2)

Country Link
JP (1) JP6462664B2 (en)
WO (1) WO2015141681A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10826378B2 (en) 2017-05-17 2020-11-03 Mitsubishi Electric Corporation Power conversion apparatus for interconnection with a three-phrase ac power supply

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111817365B (en) * 2020-05-28 2022-11-18 中国电力科学研究院有限公司 Modular multi-loop converter control method suitable for super-large-scale energy storage

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010069401A1 (en) * 2008-12-19 2010-06-24 Areva T&D Uk Ltd Current source element
WO2013077250A1 (en) * 2011-11-25 2013-05-30 国立大学法人東京工業大学 Single-phase power converter, three-phase two-phase power converter, and three-phase power converter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010069401A1 (en) * 2008-12-19 2010-06-24 Areva T&D Uk Ltd Current source element
WO2013077250A1 (en) * 2011-11-25 2013-05-30 国立大学法人東京工業大学 Single-phase power converter, three-phase two-phase power converter, and three-phase power converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10826378B2 (en) 2017-05-17 2020-11-03 Mitsubishi Electric Corporation Power conversion apparatus for interconnection with a three-phrase ac power supply

Also Published As

Publication number Publication date
JPWO2015141681A1 (en) 2017-04-13
JP6462664B2 (en) 2019-01-30

Similar Documents

Publication Publication Date Title
JP6195274B2 (en) Single-phase power converter, three-phase two-phase power converter and three-phase power converter
Li et al. Integration of an active filter and a single-phase AC/DC converter with reduced capacitance requirement and component count
Dekka et al. A space-vector PWM-based voltage-balancing approach with reduced current sensors for modular multilevel converter
JP5836412B2 (en) Power converter
US6236580B1 (en) Modular multi-level adjustable supply with series connected active inputs
US20150229227A1 (en) Multi-phase AC/AC Step-down Converter for Distribution Systems
Wang et al. Topologies and control strategies of cascaded bridgeless multilevel rectifiers
US10243370B2 (en) System and method for integrating energy storage into modular power converter
US20090027934A1 (en) Electric Transformer-Rectifier
Sun et al. Beyond the MMC: Extended modular multilevel converter topologies and applications
JP6415539B2 (en) Power converter
Ge et al. Multilevel converter/inverter topologies and applications
CN104685771A (en) Power conversion device
Abarzadeh et al. A modified static ground power unit based on novel modular active neutral point clamped converter
CN108352777A (en) Middle pressure mixed multi-level converter and the method for pressing mixed multi-level converter in control
US20160380551A1 (en) Converter arrangement having multi-step converters connected in parallel and method for controlling these
Li et al. Generalized dc-dc-ac MMC structure for MVDC and HVDC applications
Ajami et al. Advanced cascade multilevel converter with reduction in number of components
Shahbazi et al. Power electronic converters in microgrid applications
JP6462664B2 (en) Multilevel power converter and control method of multilevel power converter
Lu et al. A new power circuit topology for energy router
Rahman et al. A magnetic linked multiport fractional converter for application to variable speed wind power generating systems
US11038436B2 (en) Inverter system
EP3758213A1 (en) Power conversion device, power-generating system, motor drive system, and power interconnection system
Schön et al. Average loss calculation and efficiency of the new HVDC auto transformer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15765222

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016508741

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15765222

Country of ref document: EP

Kind code of ref document: A1