WO2015141235A1 - Power sensor, power sensor system, and regenerated power detection device - Google Patents

Power sensor, power sensor system, and regenerated power detection device Download PDF

Info

Publication number
WO2015141235A1
WO2015141235A1 PCT/JP2015/001575 JP2015001575W WO2015141235A1 WO 2015141235 A1 WO2015141235 A1 WO 2015141235A1 JP 2015001575 W JP2015001575 W JP 2015001575W WO 2015141235 A1 WO2015141235 A1 WO 2015141235A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
element terminal
power sensor
target device
magnetic
Prior art date
Application number
PCT/JP2015/001575
Other languages
French (fr)
Japanese (ja)
Inventor
浩章 辻本
Original Assignee
公立大学法人大阪市立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人大阪市立大学 filed Critical 公立大学法人大阪市立大学
Priority to JP2016508547A priority Critical patent/JP6210606B2/en
Publication of WO2015141235A1 publication Critical patent/WO2015141235A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/08Arrangements for measuring electric power or power factor by using galvanomagnetic-effect devices, e.g. Hall-effect devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/205Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using magneto-resistance devices, e.g. field plates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a regenerative power detection device that detects generation of regenerative power and outputs a notification signal notifying that regenerative power has been generated in order to effectively use regenerative power generated by an electric motor.
  • An electric motor is widely used as a device that converts electric power into rotational motion. In particular, it is frequently used as a driving device for wheels such as automobiles and trains. When the electric motor is used as a vehicle propulsion device, electric power returns from the electric motor to the driving side when braking the vehicle body. Many methods for effectively using regenerative power when this power regeneration is performed have been proposed.
  • Patent Document 1 discloses a power regeneration system that recovers regenerative power generated by an electric motor during regenerative braking.
  • whether or not the entire system shifts to the regenerative operation is determined based on the operation of the drive operation device such as an accelerator or a brake.
  • Patent Document 2 when processing regenerative power, a capacitor is placed between wires that supply power to an inverter circuit that sends drive current to the motor, and it is determined that the regenerative operation has started when the voltage across the capacitor rises.
  • An apparatus for passing a current through a regenerative resistor in a regenerative circuit is disclosed.
  • the present invention has been conceived in view of the above problems, and directly detects the generation of regenerative power of a motor by detecting whether the power consumption of the motor is positive or negative using a wattmeter using the magnetoresistive effect.
  • a regenerative power detection device is provided.
  • the regenerative power detection device of the present invention is: A power sensor unit provided on the connection between the drive device (inverter) and the electric motor; A controller that is connected to the power sensor unit and that outputs a notification signal notifying that regenerative power has been generated when the power sensor unit indicates that power consumption in the motor has become negative. And
  • the regenerative power detection apparatus according to the present invention can be formed very thin and small because the power sensor unit uses a magnetic film. Therefore, even if it is incorporated in a relatively small drive system, the weight does not increase and the bulk does not increase.
  • the power sensor unit used in the present invention can directly measure power consumption and regenerative power. Therefore, in a system using a battery, it is useful for managing the residual power of the battery.
  • FIG. 1 shows a configuration diagram of a regenerative power detection device 10 according to the present invention.
  • the regenerative power detection device 10 includes a power sensor unit (power sensor system) 12 and a controller 14.
  • the regenerative power detection device 10 is incorporated between the electric motor 22 and the driving device 24 of the electric motor system 20 including the electric motor 22, the driving device 24, and the battery 26.
  • the controller 14 of the regenerative power detection device 10 outputs a notification signal Sa that notifies that regenerative power is generated.
  • This notification signal Sa can be used for various purposes.
  • the case where it uses as a control signal of the switch 28 provided between the drive device 24 and the regenerative electric power detection apparatus 10 is demonstrated.
  • the battery 26 is a power source in the electric motor system 20. Electric power is sent from the battery 26 to the driving device 24 through connection lines L26a and L26b.
  • the drive device 24 is an inverter device. Therefore, the inverter circuit 24a which converts direct current into three-phase alternating current and the drive controller 24b which controls the inverter circuit 24a are included.
  • 3 phase alternating current is supplied from the drive unit 24 to the motor 22.
  • the electric motor 22 is a so-called motor.
  • the switcher 28 is disposed between the driving device 24 and the electric motor 22.
  • the switcher 28 can switch between a path (L24a, L24b, L24c) from the driving device 24 toward the electric motor 22 and a path (L28a, L28b, L28c) toward which the regenerative power from the electric motor 22 is directed toward the battery 26.
  • the specific configuration of the switch 28 is not particularly limited.
  • a rectifier 30 is disposed between the switch 28 and the battery 26.
  • the rectifier 30 rectifies the regenerative power generated by the electric motor 22 into direct current. Further, when the rectified power does not reach a voltage that can charge the battery 26, a device for boosting the voltage may be included.
  • the rectifier 30 to the battery 26 are connected by wirings L30a and L30b.
  • FIG. 2 shows an enlarged view of the power sensor unit 12.
  • power sensors 40 a, 40 b and 40 c are arranged for each of the three connections L 24 a, L 24 b and L 24 c from the driving device 24.
  • Each power sensor includes magnetic elements 42a, 42b, 42c, measuring resistors 43a, 43b, 43c, amplifiers 44a, 44b, 44c, and low-pass filters 45a, 45b, 45c.
  • the power sensor unit 12 has an adder 48 that adds the outputs of the low-pass filters 45a, 45b, and 45c.
  • the magnetic elements 42a, 42b, and 42c are strip-like magnetic films.
  • the measurement resistors 43a, 43b, and 43c are resistors having a large resistance value for allowing a constant current to flow through the magnetic elements 42a, 42b, and 42c.
  • One end of each of the magnetic elements 42a, 42b, and 42c is connected to the connection lines L24a, L24b, and L24c.
  • the other end of the magnetic elements 42a, 42b, 42c and one end of the measuring resistors 43a, 43b, 43c are connected in series.
  • the other ends of the measurement resistors 43a, 43b, and 43c are grounded.
  • both ends of the magnetic elements 42a, 42b, and 42c are connected to amplifiers 44a, 44b, and 44c.
  • the outputs of the amplifiers 44a, 44b, 44c are connected to low-pass filters 45a, 45b, 45c, respectively.
  • the magnetic elements 42a, 42b, 42c are arranged so that the longitudinal direction of the strip shape matches the direction in which the current of the wiring flows. By connecting the magnetic elements 42a, 42b, 42c and the measuring resistors 43a, 43b, 43c in this way, it is possible to measure the power consumption at the load to which each wiring is connected, as will be described later (described in FIG. 4). it can.
  • Each power consumption is an output of the low-pass filters 45a, 45b, 45c.
  • the power consumption is basically expressed as the sum of the power consumption of each phase. Therefore, the output of the adder 48 becomes the power consumption of the electric motor 22.
  • the output of the adder 48 is a signal Sw.
  • the signal Sw is sent to the controller 14 (see FIG. 1).
  • the signal Sw is a result of measuring the power consumed by the electric motor 22 with a positive / negative sign.
  • FIG. 3 shows another configuration of the power sensor unit 12.
  • power is often measured by the two-watt meter method.
  • FIG. 3 shows a configuration when power is measured by the two wattmeter method.
  • Power sensors 40a and 40b are used.
  • the configuration of the power sensors 40a and 40b is the same as that in FIG. However, the other end of the measurement resistor 43a of the power sensor 40a is connected to the connection L24b, and the other end of the measurement resistor 43b of the power sensor 40b is connected to the connection L24c.
  • the power sensor 40c is not used.
  • the power sensor unit 12 may be configured with two power sensors.
  • the operation of the regenerative power detection device 10 will be described.
  • an instruction (not shown) is sent to the drive controller 24 b of the drive device 24.
  • the driving device 24 converts the DC voltage of the battery 26 into three-phase AC for driving the electric motor 22.
  • the switch 28 allows electric power to flow from the driving device 24 to the electric motor 22.
  • the electric motor 22 is driven by receiving a three-phase current from the driving device 24.
  • the power sensor unit 12 measures the power consumed by the electric motor 22 as a positive value. This is notified to the controller 14 by the signal Sw of the adder 48 shown in FIG. While the controller 14 can determine that the electric motor 22 is consuming electric power based on the signal Sw from the electric power sensor unit 12, the notification signal Sa for securing the switch 28 from the driving device 24 to the electric motor 22. Is output.
  • the power sensor unit 12 observes that negative power is consumed by the motor 22.
  • This signal is notified to the controller 14 as the signal Sw of the adder 48 shown in FIGS.
  • the controller 14 determines that the electric motor 22 has consumed negative power
  • the controller 14 transmits a notification signal Sa indicating the fact to the switch 28.
  • the controller 14 outputs the notification signal Sa notifying that the regenerative power has been generated.
  • the switch 28 switches the wiring between the driving device 24 and the electric motor 22 so that the electric motor 22 and the rectifier 30 are connected. That is, it is possible to detect that the electric motor 22 has started to perform power regeneration without using an operation on the driving device 24.
  • the electric motor 22 When the electric motor 22 starts power regeneration, it is connected to the rectifier 30 via the switch 28, so that the regenerative power from the electric motor 22 is rectified by the rectifier 30 and becomes direct current.
  • the rectifier 30 charges the battery 26. If the DC power rectified by the rectifier 30 does not become a voltage that can charge the battery 26, the voltage may be boosted.
  • the power sensor unit 12 observes that the electric motor 22 consumes positive electric power. Therefore, the signal Sw is notified to the controller 14 that the power consumption is positive (the electric motor 22 is consuming power).
  • the controller 14 determines that the electric motor 22 has consumed positive power, the controller 14 transmits a notification signal Sa indicating the fact to the switch 28. The switcher 28 switches so that the drive device 24 and the electric motors 22 are connected.
  • FIG. 4 illustrates the operating principle of the power sensor 40.
  • the power sensor 40 includes a magnetic element 42, a measurement resistor 43, and a detector 27.
  • the detector 27 detects the DC component of the voltage between the element terminal 143 and the element terminal 144.
  • the detector 27 includes an amplifier 44 and a low-pass filter 45.
  • the magnetic element 42 and the measurement resistor 43 that constitute the power sensor 40 are connected in series.
  • the load 92 connected to the power source 91 of the circuit under measurement 90 is connected in parallel.
  • the load 92 is for one phase of the electric motor 22.
  • the connection point of the power sensor 40 is the connection terminals 12a and 12b.
  • the magnetic element 42 is obtained by forming a magnetic film 142 on a substrate and patterning it with a conductor in an oblique direction. It is called a barber pole type. Element terminals 143 and 144 are provided at both ends of the magnetic element 42 and connected to the amplifier 44. That is, the magnetic element 42 has a magnetic film 142 patterned in a diagonal direction with a conductor, an element terminal 143 connected to one end of the conductor, and an element terminal 144 connected to the other end of the conductor. .
  • the amplifier 44 has a first input connected to the element terminal 143 and a second input connected to the element terminal 144, and amplifies the voltage between the element terminal 143 and the element terminal 144.
  • the input of the low-pass filter 45 is connected to the output of the amplifier 44.
  • the magnetic element 42 is disposed adjacent to and parallel to the electric wire 93 a connecting the power source 91 and the load 92.
  • “parallel” means that the in-plane direction of the magnetic element 42 is parallel to a coaxial magnetic field formed around the electric wire 93a.
  • the measurement resistor 43 is sufficiently large with respect to the resistance value R mr of the magnetic element 42.
  • the resistance of the electric wire 93a is sufficiently small.
  • a magnetic film 142 which is disposed close to the electric wire 93a of the current I 1 flows, has an electrical resistivity characteristics, such as (3).
  • I 2 (R m0 + ⁇ I 1 ) I 2 (4)
  • the voltage V mr between the element terminals 143 and 144 of the magnetic element 42 is expressed as in equation (8).
  • the relationship of R m0 ⁇ R 2 was used in the middle of the transformation of the formula (8).
  • the K 1 is a proportionality constant. From the result of the equation (8), between the element terminals 143 and 144 of the magnetic element 42, the voltage proportional to the power I 1 V 1 consumed by the load 92, the operation of the measuring resistor 43 (R 2 ), and the magnetic element 42 are obtained.
  • the electrical resistance R m0 at a point is determined, a uniquely determined sum of bias voltages can be obtained.
  • the final term shows the active power consumed by the load 92 as a direct current component. That is, the DC voltage obtained by passing the output between the element terminals 143 and 144 through the low-pass filter 45 is a voltage proportional to the active power consumed by the load 92.
  • FIG. 5 is a graph schematically showing the relationship between the AC voltage applied for driving and the current flowing through the load.
  • the horizontal axis is the phase (degrees), and the vertical axis is the amplitude (normalized).
  • be the phase difference between the voltage and current.
  • FIG. 6 shows the relationship between the measured output of the power sensor 40 and the phase difference ⁇ in the circuit of FIG.
  • the horizontal axis is the phase difference angle (degrees)
  • the vertical axis is the output value of the power sensor 40.
  • shows a positive value up to 90 degrees
  • the output value of the power sensor 40 becomes negative when ⁇ exceeds 90 degrees. This shows a state where the back electromotive force is generated just at the load 92.
  • the power sensor 40 outputs a negative value when a back electromotive force is generated. Therefore, when the electric motor 22 in FIG. 1 starts power regeneration, it can be detected by the sign of the power sensor 40.
  • an apparatus for detecting regenerative power for driving an electric motor has been described.
  • a power generated by a consumer using a solar panel or the like is returned between the power plant and the consumer to the power plant side.
  • the present invention can be used.
  • the regenerative power detection device according to the present invention can be widely used for driving an electric motor with an inverter.

Abstract

This power sensor has a magnetic element that has a magnetic film, which is patterned in an oblique direction at a conductor, a first element terminal, which is connected to one end of the conductor, and a second element terminal, which is connected to the other end of the conductor, and during measurement, the first element terminal is connected to the subject device that is the subject of power measurement. The power sensor has: a measurement resistor of which one end is connected to the second element terminal of the magnetic element; and a detector that detects the DC component of the voltage between the first element terminal and the second element terminal. The magnetic element is disposed in a manner such that the direction from the first element terminal to the second element terminal during measurement is approximately parallel to the wire connected to the subject device.

Description

電力センサ、電力センサシステム、及び回生電力検出装置Power sensor, power sensor system, and regenerative power detection device
 本発明は電動機が生成する回生電力を有効に利用するため、回生電力の発生を検知し、回生電力が発生したことを通知する通知信号を出力する回生電力検出装置に関するものである。 The present invention relates to a regenerative power detection device that detects generation of regenerative power and outputs a notification signal notifying that regenerative power has been generated in order to effectively use regenerative power generated by an electric motor.
 電動機は電力を回転運動に変換する装置として広く利用されている。特に自動車や電車といった車輪の駆動装置として多用されている。電動機を車体の推進装置として利用する場合、車体を制動する際に電動機から電力が駆動側に戻る。この電力回生が行われる際の回生電力を有効に利用する方法が多く提案されている。 An electric motor is widely used as a device that converts electric power into rotational motion. In particular, it is frequently used as a driving device for wheels such as automobiles and trains. When the electric motor is used as a vehicle propulsion device, electric power returns from the electric motor to the driving side when braking the vehicle body. Many methods for effectively using regenerative power when this power regeneration is performed have been proposed.
 例えば特許文献1では、回生制動時に電動機が発生する回生電力を回収する電力回生システムが開示されている。ここで、システム全体が回生動作に移行するか否かは、アクセルやブレーキといった駆動操作機器の動作に基づいて判断がなされている。 For example, Patent Document 1 discloses a power regeneration system that recovers regenerative power generated by an electric motor during regenerative braking. Here, whether or not the entire system shifts to the regenerative operation is determined based on the operation of the drive operation device such as an accelerator or a brake.
 特許文献2では、回生電力の処理を行う際に、モータに駆動電流を送るインバータ回路へ電力を供給する配線間にコンデンサを配置し、そのコンデンサの両端電圧が上昇したら回生動作が始まったと判断し、回生回路で回生抵抗に電流を流す装置が開示されている。 In Patent Document 2, when processing regenerative power, a capacitor is placed between wires that supply power to an inverter circuit that sends drive current to the motor, and it is determined that the regenerative operation has started when the voltage across the capacitor rises. An apparatus for passing a current through a regenerative resistor in a regenerative circuit is disclosed.
特開2013-207976号公報JP 2013-207976 A 特開2010-110139号公報JP 2010-110139 A
 特許文献1のように操作機器の動作に基づいて回生電力の処理を制御する際には、実際に電動機が回生電力を発生しているか否かを検知しているわけではない。また、特許文献2の場合は、回生電力が直流素子に与える影響を見ているに過ぎない。電動機が実際に回生電力を発生しているか否かを直接検出できれば、より細かな回生電力の回収や利用が可能になる。 When controlling the processing of regenerative power based on the operation of the operating device as in Patent Document 1, it is not necessarily detected whether or not the motor actually generates regenerative power. Moreover, in the case of patent document 2, only the influence which regenerative electric power has on a direct current element is seen. If it is possible to directly detect whether or not the motor actually generates regenerative power, it becomes possible to collect and use the regenerative power more finely.
 本発明は上記の課題に鑑みて想到されたもので、磁気抵抗効果を利用した電力計を用い、電動機の消費電力が正か負かを検知することで、電動機の回生電力の発生を直接検知する回生電力検出装置を提供する。 The present invention has been conceived in view of the above problems, and directly detects the generation of regenerative power of a motor by detecting whether the power consumption of the motor is positive or negative using a wattmeter using the magnetoresistive effect. A regenerative power detection device is provided.
 より具体的に本発明の回生電力検出装置は、
 駆動装置(インバータ)と電動機の結線上に設けられた電力センサユニットと、
 前記電力センサユニットと接続され、前記電力センサユニットが前記電動機での消費電力が負になったことを示したら、回生電力が生成したことを通知する通知信号を出力する制御器を有することを特徴とする。
More specifically, the regenerative power detection device of the present invention is:
A power sensor unit provided on the connection between the drive device (inverter) and the electric motor;
A controller that is connected to the power sensor unit and that outputs a notification signal notifying that regenerative power has been generated when the power sensor unit indicates that power consumption in the motor has become negative. And
 本発明に係る回生電力検出装置は、電力センサユニットが磁性膜を用いるため、非常に薄くまた小型に形成することができる。したがって、比較的小型の駆動システムに組み込んでも重量が増加したり、嵩が高くなるといったことが生じない。 The regenerative power detection apparatus according to the present invention can be formed very thin and small because the power sensor unit uses a magnetic film. Therefore, even if it is incorporated in a relatively small drive system, the weight does not increase and the bulk does not increase.
 また、本発明に用いる電力センサユニットは、消費電力および回生電力を直接測定することができる。したがって、電池を用いたシステムなどでは、電池の残留電力の管理に有用である。 The power sensor unit used in the present invention can directly measure power consumption and regenerative power. Therefore, in a system using a battery, it is useful for managing the residual power of the battery.
本発明に係る回生電力検出装置の構成を示す図である。It is a figure which shows the structure of the regenerative electric power detection apparatus which concerns on this invention. 回生電力検出装置の電力センサユニットの構成例を示す図である。It is a figure which shows the structural example of the electric power sensor unit of a regenerative electric power detection apparatus. 電力センサユニットの他の構成例を示す図である。It is a figure which shows the other structural example of an electric power sensor unit. 電力センサの原理を説明する図である。It is a figure explaining the principle of an electric power sensor. 位相差の説明をする図である。It is a figure explaining phase difference. 位相差と電力センサの出力の関係を示す図である。It is a figure which shows the relationship between a phase difference and the output of a power sensor.
 以下に本発明に係る回生電力検出装置を図面を参照しながら説明を行う。なお、以下の発明は本発明の一実施の形態を説明するものであり、本発明は以下の説明に限定されるものではない。本発明の趣旨を逸脱しない限りにおいて、以下の実施の形態は改変することができる。 Hereinafter, the regenerative power detection apparatus according to the present invention will be described with reference to the drawings. In addition, the following invention demonstrates one Embodiment of this invention, and this invention is not limited to the following description. The following embodiments can be modified without departing from the spirit of the present invention.
 図1に本発明に係る回生電力検出装置10の構成図を示す。回生電力検出装置10は、電力センサユニット(電力センサシステム)12と制御器14を含む。回生電力検出装置10は、電動機22と駆動装置24と電池26で構成される電動機システム20の電動機22と駆動装置24との間に組み込まれる。回生電力検出装置10の制御器14は、回生電力が生じていることを通知する通知信号Saを出力する。この通知信号Saはさまざまな用途として用いることができる。ここでは、駆動装置24と回生電力検出装置10との間に設けた切換器28の制御信号として用いる場合について説明する。 FIG. 1 shows a configuration diagram of a regenerative power detection device 10 according to the present invention. The regenerative power detection device 10 includes a power sensor unit (power sensor system) 12 and a controller 14. The regenerative power detection device 10 is incorporated between the electric motor 22 and the driving device 24 of the electric motor system 20 including the electric motor 22, the driving device 24, and the battery 26. The controller 14 of the regenerative power detection device 10 outputs a notification signal Sa that notifies that regenerative power is generated. This notification signal Sa can be used for various purposes. Here, the case where it uses as a control signal of the switch 28 provided between the drive device 24 and the regenerative electric power detection apparatus 10 is demonstrated.
 電池26は電動機システム20における電力源にあたる。電池26からは駆動装置24に結線L26a、L26bで電力が送られる。駆動装置24はインバータ装置である。したがって、直流を3相交流に変換するインバータ回路24aと、インバータ回路24aを制御する駆動制御器24bを含む。 The battery 26 is a power source in the electric motor system 20. Electric power is sent from the battery 26 to the driving device 24 through connection lines L26a and L26b. The drive device 24 is an inverter device. Therefore, the inverter circuit 24a which converts direct current into three-phase alternating current and the drive controller 24b which controls the inverter circuit 24a are included.
 駆動装置24からは三相交流が電動機22に供給される。ここでは3本の結線L24a、L24b、L24cで表す。電動機22は所謂モータである。切換器28は、駆動装置24と電動機22の間に配置されている。切換器28は、駆動装置24から電動機22に向かうパス(L24a、L24b、L24c)と、電動機22からの回生電力を電池26の方に向かうパス(L28a、L28b、L28c)を切換えることができる。切換器28の具体的な構成は、特に限定されるものではない。 3 phase alternating current is supplied from the drive unit 24 to the motor 22. Here, three connections L24a, L24b, and L24c are used. The electric motor 22 is a so-called motor. The switcher 28 is disposed between the driving device 24 and the electric motor 22. The switcher 28 can switch between a path (L24a, L24b, L24c) from the driving device 24 toward the electric motor 22 and a path (L28a, L28b, L28c) toward which the regenerative power from the electric motor 22 is directed toward the battery 26. The specific configuration of the switch 28 is not particularly limited.
 切換器28と電池26との間には、整流器30が配置される。整流器30は、電動機22が発電した回生電力を直流に整流する。また、整流した電力が電池26を充電できる程度の電圧に達していない場合は、昇圧する装置を含んでいてもよい。整流器30から電池26までは配線L30a、L30bで結線される。  A rectifier 30 is disposed between the switch 28 and the battery 26. The rectifier 30 rectifies the regenerative power generated by the electric motor 22 into direct current. Further, when the rectified power does not reach a voltage that can charge the battery 26, a device for boosting the voltage may be included. The rectifier 30 to the battery 26 are connected by wirings L30a and L30b.
 図2には、電力センサユニット12の部分の拡大図を示す。電力センサユニット12は駆動装置24からの3本の結線L24a、L24b、L24cの各々に対して、電力センサ40a、40b、40cが配置される。それぞれの電力センサは、磁性素子42a、42b、42cと、計測抵抗43a、43b、43cと、アンプ44a、44b、44cと、ローパスフィルタ45a、45b、45cを含む。また、電力センサユニット12は、ローパスフィルタ45a、45b、45cの出力を加算する加算器48を有する。 FIG. 2 shows an enlarged view of the power sensor unit 12. In the power sensor unit 12, power sensors 40 a, 40 b and 40 c are arranged for each of the three connections L 24 a, L 24 b and L 24 c from the driving device 24. Each power sensor includes magnetic elements 42a, 42b, 42c, measuring resistors 43a, 43b, 43c, amplifiers 44a, 44b, 44c, and low- pass filters 45a, 45b, 45c. The power sensor unit 12 has an adder 48 that adds the outputs of the low- pass filters 45a, 45b, and 45c.
 磁性素子42a、42b、42cは、短冊状の磁性膜である。また計測抵抗43a、43b、43cは、磁性素子42a、42b、42cに一定電流を流すための抵抗値の大きな抵抗である。磁性素子42a、42b、42cの一方の端部は、結線L24a、L24b、L24cに接続される。 The magnetic elements 42a, 42b, and 42c are strip-like magnetic films. The measurement resistors 43a, 43b, and 43c are resistors having a large resistance value for allowing a constant current to flow through the magnetic elements 42a, 42b, and 42c. One end of each of the magnetic elements 42a, 42b, and 42c is connected to the connection lines L24a, L24b, and L24c.
 磁性素子42a、42b、42cの他方の端部と計測抵抗43a、43b、43cの一方の端部は直列に接続される。また、計測抵抗43a、43b、43cの他方の端部は接地される。また、磁性素子42a、42b、42cの両端はアンプ44a、44b、44cに接続される。また、アンプ44a、44b、44cの出力は、ローパスフィルタ45a、45b、45cにそれぞれ接続される。 The other end of the magnetic elements 42a, 42b, 42c and one end of the measuring resistors 43a, 43b, 43c are connected in series. The other ends of the measurement resistors 43a, 43b, and 43c are grounded. Further, both ends of the magnetic elements 42a, 42b, and 42c are connected to amplifiers 44a, 44b, and 44c. The outputs of the amplifiers 44a, 44b, 44c are connected to low- pass filters 45a, 45b, 45c, respectively.
 磁性素子42a、42b、42cは、配線の電流が流れる方向に短冊形状の長手方向を合せるように配置する。磁性素子42a、42b、42cと計測抵抗43a、43b、43cをこのように接続することで、後述(図4で説明)するように各配線が接続された負荷での消費電力を計測することができる。 The magnetic elements 42a, 42b, 42c are arranged so that the longitudinal direction of the strip shape matches the direction in which the current of the wiring flows. By connecting the magnetic elements 42a, 42b, 42c and the measuring resistors 43a, 43b, 43c in this way, it is possible to measure the power consumption at the load to which each wiring is connected, as will be described later (described in FIG. 4). it can.
 各消費電力は、ローパスフィルタ45a、45b、45cの出力となる。三相交流の場合基本的に消費電力は各相の消費電力の和として表される。したがって、加算器48の出力は電動機22の消費電力となる。加算器48の出力を信号Swとする。信号Swは、制御器14(図1参照)に送られる。また信号Swは、電動機22で消費した電力を正負の符号付きで測定した結果となる。 Each power consumption is an output of the low- pass filters 45a, 45b, 45c. In the case of three-phase AC, the power consumption is basically expressed as the sum of the power consumption of each phase. Therefore, the output of the adder 48 becomes the power consumption of the electric motor 22. The output of the adder 48 is a signal Sw. The signal Sw is sent to the controller 14 (see FIG. 1). The signal Sw is a result of measuring the power consumed by the electric motor 22 with a positive / negative sign.
 図3には、電力センサユニット12の他の構成を示す。三相交流では、二電力計法で電力が計測されることが多い。図3は二電力計法で電力を計測する場合の構成である。電力センサ40aと40bが用いられる。電力センサ40a、40bの構成は図2の場合と同じである。ただし、電力センサ40aの計測抵抗43aの他端は結線L24bに接続され、電力センサ40bの計測抵抗43bの他端は、結線L24cに接続される。電力センサ40cは使用しない。このように電力センサユニット12は、電力センサを2つで構成することもできる。  FIG. 3 shows another configuration of the power sensor unit 12. In three-phase AC, power is often measured by the two-watt meter method. FIG. 3 shows a configuration when power is measured by the two wattmeter method. Power sensors 40a and 40b are used. The configuration of the power sensors 40a and 40b is the same as that in FIG. However, the other end of the measurement resistor 43a of the power sensor 40a is connected to the connection L24b, and the other end of the measurement resistor 43b of the power sensor 40b is connected to the connection L24c. The power sensor 40c is not used. As described above, the power sensor unit 12 may be configured with two power sensors.
 再び図1を参照して、回生電力検出装置10の動作について説明する。電動機システム20は、図示していない操作者によって駆動装置24の駆動制御器24bに指示が送られる。この指示によって駆動装置24は、電池26の直流電圧を電動機22を駆動するための3相交流に変換する。 Referring to FIG. 1 again, the operation of the regenerative power detection device 10 will be described. In the electric motor system 20, an instruction (not shown) is sent to the drive controller 24 b of the drive device 24. In response to this instruction, the driving device 24 converts the DC voltage of the battery 26 into three-phase AC for driving the electric motor 22.
 切換器28は、駆動装置24から電動機22へ電力を流す。電動機22は、駆動装置24からの3相電流を受けて駆動する。このとき、電力センサユニット12は、電動機22で消費される電力を正の値として計測する。これは図2または図3の加算器48の信号Swで制御器14に通知される。制御器14は、電力センサユニット12からの信号Swで電動機22が電力を消費していると判断できる間は、切換器28を駆動装置24から電動機22へのパスを確保するための通知信号Saを出力する。 The switch 28 allows electric power to flow from the driving device 24 to the electric motor 22. The electric motor 22 is driven by receiving a three-phase current from the driving device 24. At this time, the power sensor unit 12 measures the power consumed by the electric motor 22 as a positive value. This is notified to the controller 14 by the signal Sw of the adder 48 shown in FIG. While the controller 14 can determine that the electric motor 22 is consuming electric power based on the signal Sw from the electric power sensor unit 12, the notification signal Sa for securing the switch 28 from the driving device 24 to the electric motor 22. Is output.
 一方、電動機22に制動がかかる等して電動機22が電力回生を行い始めると、電力センサユニット12は、電動機22で負の電力が消費されているように観測する。この信号は図2、図3で示した加算器48の信号Swとして制御器14に通知される。制御器14は、電動機22が負の電力を消費したと判断した場合は、切換器28にその旨を示す通知信号Saを送信する。換言すれば、制御器14は、信号Swが示す値が負になった場合、回生電力が生成したことを通知する通知信号Saを出力する。切換器28は、駆動装置24と電動機22の間の配線を、電動機22と整流器30が接続されるように切換える。つまり、電動機22が電力回生を行い始めたことを駆動装置24への操作を使用することなく検知することができる。 On the other hand, when the motor 22 starts to regenerate power due to braking or the like, the power sensor unit 12 observes that negative power is consumed by the motor 22. This signal is notified to the controller 14 as the signal Sw of the adder 48 shown in FIGS. When the controller 14 determines that the electric motor 22 has consumed negative power, the controller 14 transmits a notification signal Sa indicating the fact to the switch 28. In other words, when the value indicated by the signal Sw becomes negative, the controller 14 outputs the notification signal Sa notifying that the regenerative power has been generated. The switch 28 switches the wiring between the driving device 24 and the electric motor 22 so that the electric motor 22 and the rectifier 30 are connected. That is, it is possible to detect that the electric motor 22 has started to perform power regeneration without using an operation on the driving device 24.
 電動機22が電力回生を始めたら、切換器28を介して整流器30に接続されるので、電動機22からの回生電力は整流器30で整流され直流となる。そして、整流器30が電池26に充電を行う。なお、整流器30で整流した直流電力が電池26を充電できるほどの電圧にならない場合は、昇圧するようにしてもよい。 When the electric motor 22 starts power regeneration, it is connected to the rectifier 30 via the switch 28, so that the regenerative power from the electric motor 22 is rectified by the rectifier 30 and becomes direct current. The rectifier 30 charges the battery 26. If the DC power rectified by the rectifier 30 does not become a voltage that can charge the battery 26, the voltage may be boosted.
 電動機22が電力回生をやめ、カ行を開始したら、電力センサユニット12は、電動機22が正の電力を消費するように観測する。そこで、信号Swによって、制御器14に消費電力が正(電動機22が電力を消費している)であることを通知する。制御器14は、電動機22が正の電力を消費したと判断した場合は、切換器28にその旨を示す通知信号Saを送信する。切換器28は、駆動装置24と電動機22同士が接続するように切換える。 When the electric motor 22 stops power regeneration and starts powering, the power sensor unit 12 observes that the electric motor 22 consumes positive electric power. Therefore, the signal Sw is notified to the controller 14 that the power consumption is positive (the electric motor 22 is consuming power). When the controller 14 determines that the electric motor 22 has consumed positive power, the controller 14 transmits a notification signal Sa indicating the fact to the switch 28. The switcher 28 switches so that the drive device 24 and the electric motors 22 are connected.
 図4には、電力センサ40の動作原理について説明する。ここでは、説明を簡単にするために、単相の場合について説明する。電力センサ40は、磁性素子42と計測抵抗43と検出器27とを備える。検出器27は、素子端子143と素子端子144との間の電圧の直流成分を検出する。検出器27は一例としてアンプ44とローパスフィルタ45とを有する。電力センサ40を構成する磁性素子42と計測抵抗43を直列にする。そして、被計測回路90の電源91に連結されている負荷92と並列にこれを連結する。負荷92は、電動機22の1相分とする。電力センサ40を連結する点は、接続端子12a、12bである。 FIG. 4 illustrates the operating principle of the power sensor 40. Here, in order to simplify the description, a case of a single phase will be described. The power sensor 40 includes a magnetic element 42, a measurement resistor 43, and a detector 27. The detector 27 detects the DC component of the voltage between the element terminal 143 and the element terminal 144. For example, the detector 27 includes an amplifier 44 and a low-pass filter 45. The magnetic element 42 and the measurement resistor 43 that constitute the power sensor 40 are connected in series. Then, the load 92 connected to the power source 91 of the circuit under measurement 90 is connected in parallel. The load 92 is for one phase of the electric motor 22. The connection point of the power sensor 40 is the connection terminals 12a and 12b.
 磁性素子42は、基板上に磁性膜142を形成し、それに導体で斜め方向にパターンニングを行ったものである。バーバーポール型と呼ばれている。磁性素子42の両端には素子端子143、144が設けられ、アンプ44に接続される。すなわち、磁性素子42は、導体で斜め方向にパターンニングされた磁性膜142と、導体の一端部と接続された素子端子143と、導体の他端部と接続された素子端子144と、を有する。アンプ44は、第1の入力が素子端子143に接続され、第2の入力が素子端子144に接続され、素子端子143と素子端子144との間の電圧を増幅する。またアンプ44の出力には、ローパスフィルタ45の入力が接続される。  The magnetic element 42 is obtained by forming a magnetic film 142 on a substrate and patterning it with a conductor in an oblique direction. It is called a barber pole type. Element terminals 143 and 144 are provided at both ends of the magnetic element 42 and connected to the amplifier 44. That is, the magnetic element 42 has a magnetic film 142 patterned in a diagonal direction with a conductor, an element terminal 143 connected to one end of the conductor, and an element terminal 144 connected to the other end of the conductor. . The amplifier 44 has a first input connected to the element terminal 143 and a second input connected to the element terminal 144, and amplifies the voltage between the element terminal 143 and the element terminal 144. The input of the low-pass filter 45 is connected to the output of the amplifier 44.
 磁性素子42は、電源91と負荷92の間を接続している電線93aに平行に隣接配置させる。ここで平行とは、電線93aの周囲に形成される同軸状の磁界に、磁性素子42の面内方向が平行になることである。また、計測抵抗43は、磁性素子42の抵抗値Rmrに対して十分に大きいとしておく。また、電線93aの抵抗は十分に小さい。  The magnetic element 42 is disposed adjacent to and parallel to the electric wire 93 a connecting the power source 91 and the load 92. Here, “parallel” means that the in-plane direction of the magnetic element 42 is parallel to a coaxial magnetic field formed around the electric wire 93a. In addition, the measurement resistor 43 is sufficiently large with respect to the resistance value R mr of the magnetic element 42. Moreover, the resistance of the electric wire 93a is sufficiently small.
 まず、電源91が直流の場合、電線93a、93bに流れる電流をIとすると、磁性素子42に印加される外部磁界Hは、比例定数をαとして、(1)式のように表される。
H=αI・・・・(1)
First, when the power supply 91 is a direct current, and the current flowing through the electric wire 93a, to 93b and I 1, the external magnetic field H applied to the magnetic element 42, as a proportionality constant alpha, is expressed by the equation (1) .
H = αI 1 (1)
 磁性素子42の電気抵抗の変化ΔRmrは、外部からの印加磁界Hに比例するので、比例定数をβとし、(1)式を考慮すると、(2)式のように表される。
ΔRmr=βH=β(αI)・・・・(2)
Since the change ΔR mr of the electrical resistance of the magnetic element 42 is proportional to the externally applied magnetic field H, the proportionality constant is β, and the equation (1) is considered as expressed by the equation (2).
ΔR mr = βH = β (αI 1 ) (2)
 磁性膜142に外部磁界Hが印加されていない時(動作点)の電気抵抗をRm0とすると、外部磁界Hが印加された時の磁性素子42全体の電気抵抗Rは、(3)式のように表される。
=Rm0+ΔRmr=Rm0+αβI・・・・(3)
Assuming that the electric resistance when the external magnetic field H is not applied to the magnetic film 142 (operating point) is R m0 , the electric resistance R m of the entire magnetic element 42 when the external magnetic field H is applied is expressed by equation (3). It is expressed as
R m = R m0 + ΔR mr = R m0 + αβI 1 (3)
 つまり、電流Iが流れる電線93aに近接配置された磁性膜142は、(3)式のような電気抵抗特性を有する。この磁性素子42の素子端子143、144間に電流Iが流れると、素子端子143、144間の電圧Vmrは(4)式のように表される。
mr=R=(Rm0+ΔR)I=(Rm0+αβI)I・・・・(4)
That is, a magnetic film 142 which is disposed close to the electric wire 93a of the current I 1 flows, has an electrical resistivity characteristics, such as (3). When the current I 2 flows between the element terminals 143 and 144 of the magnetic element 42, the voltage V mr between the element terminals 143 and 144 is expressed by the equation (4).
V mr = R m I 2 = (R m0 + ΔR m ) I 2 = (R m0 + αβI 1 ) I 2 (4)
 次に電源91を直流としているので電圧VinをVとすれば、(5)式のように表される。そして、電線93a、93bの抵抗は十分に小さく、また、磁性素子42の抵抗Rも計測抵抗43(値はR)よりも十分小さいとする。負荷92の抵抗をRとすると、電線93aを流れる電流Iと、磁性素子42を流れる電流Iは、それぞれ(6)式、(7)式のようになる。 Then if V 1 the voltage V in Since the power source 91 is a DC, is expressed as equation (5). Then, the electric wire 93a, the resistance of the 93b is sufficiently small, and the resistance R m also measuring resistor 43 of the magnetic element 42 (the value R 2) is sufficiently smaller than. When the resistance of the load 92 and R 1, the current I 1 flowing through the electric wire 93a, a current I 2 flowing through the magnetic element 42, respectively (6), so that the equation (7).
 そこで、磁性素子42の素子端子143、144間の電圧Vmrは(8)式のように表される。なお(8)式の式変形の途中でRm0<<Rの関係を使った。またKは比例定数である。(8)式の結果より、磁性素子42の素子端子143、144間では、負荷92で消費される電力Iに比例した電圧と、計測抵抗43(R)と磁性素子42の動作点での電気抵抗Rm0が決まると一意に決まるバイアス電圧の和を得ることができる。 Therefore, the voltage V mr between the element terminals 143 and 144 of the magnetic element 42 is expressed as in equation (8). In addition, the relationship of R m0 << R 2 was used in the middle of the transformation of the formula (8). The K 1 is a proportionality constant. From the result of the equation (8), between the element terminals 143 and 144 of the magnetic element 42, the voltage proportional to the power I 1 V 1 consumed by the load 92, the operation of the measuring resistor 43 (R 2 ), and the magnetic element 42 are obtained. When the electrical resistance R m0 at a point is determined, a uniquely determined sum of bias voltages can be obtained.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 このような関係は、電源91が交流であっても成立する。電源91が交流で、負荷92がリアクタンスの場合について次に説明する。(1)式から(4)式の関係は上記の説明通りである。電源91が交流になるので、電圧Vinは、振幅V、角周波数ωとすると、(9)式のように表される。また、被計測回路90で負荷92がリアクタンスなので、負荷92を流れる電流Iは、電源91(電圧Vin)とは位相のズレが生じる。この位相のズレをθとする。一方、磁性素子42は、通常の抵抗なので電源91(電圧Vin)と同位相である。したがって、電流IおよびIは、(10)式、(11)式のように表される。 Such a relationship is established even when the power source 91 is AC. Next, the case where the power source 91 is alternating current and the load 92 is reactance will be described. The relationship between the equations (1) to (4) is as described above. Since the power supply 91 is AC, the voltage V in is expressed as shown in Equation (9) when the amplitude is V 1 and the angular frequency is ω. Further, since the load 92 in the measuring circuit 90 is reactance current I 1 flowing through the load 92, the phase shift occurs between the power supply 91 (voltage V in). Let this phase shift be θ. On the other hand, since the magnetic element 42 is a normal resistor, it is in phase with the power source 91 (voltage V in ). Therefore, the currents I 1 and I 2 are expressed as in the equations (10) and (11).
 そこで、(4)式に(10)式および(11)式を代入すると(12)式のように変形される。 Therefore, if the expressions (10) and (11) are substituted into the expression (4), it is transformed as the expression (12).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 (12)式を見ると、最終項は、負荷92で消費する有効電力が直流成分として表れているのがわかる。すなわち、素子端子143、144間の出力を、ローパスフィルタ45を通過させて得た直流電圧は、負荷92で消費する有効電力に比例した電圧である。 Referring to equation (12), it can be seen that the final term shows the active power consumed by the load 92 as a direct current component. That is, the DC voltage obtained by passing the output between the element terminals 143 and 144 through the low-pass filter 45 is a voltage proportional to the active power consumed by the load 92.
 さて、このように、電力センサ40は、負荷92で消費する有効電力に比例した電圧を出力する。ここで、負荷92で消費する電力は電圧に対して電流が遅れるが、負荷92が発電を行い、逆起電力が発生すると、電圧と電流の位相はさらに大きくなる。図5には、駆動用に印加される交流電圧と、負荷に流れる電流との関係を模式的に示したグラフを示す。 Now, in this way, the power sensor 40 outputs a voltage proportional to the active power consumed by the load 92. Here, although the current consumed by the load 92 is delayed with respect to the voltage, when the load 92 generates power and a back electromotive force is generated, the phase between the voltage and the current is further increased. FIG. 5 is a graph schematically showing the relationship between the AC voltage applied for driving and the current flowing through the load.
 横軸は位相(度)であり、縦軸は、振幅(規格化)である。電圧と電流の位相の差をθとする。図6には、図4の回路において、測定した電力センサ40の出力と、位相差θとの関係を示す。横軸は位相差角(度)であり、縦軸は電力センサ40の出力値である。θが90度までは正の値を示しているが、θが90度を超えると電力センサ40の出力値は負となる。これはちょうど負荷92で逆起電力が生じた状態を示している。 The horizontal axis is the phase (degrees), and the vertical axis is the amplitude (normalized). Let θ be the phase difference between the voltage and current. FIG. 6 shows the relationship between the measured output of the power sensor 40 and the phase difference θ in the circuit of FIG. The horizontal axis is the phase difference angle (degrees), and the vertical axis is the output value of the power sensor 40. Although θ shows a positive value up to 90 degrees, the output value of the power sensor 40 becomes negative when θ exceeds 90 degrees. This shows a state where the back electromotive force is generated just at the load 92.
 このように電力センサ40は、逆起電力が生じると負の値を出力する。そのため、図1の電動機22が電力回生を始めると、電力センサ40の符号によって、それを検知することができる。 Thus, the power sensor 40 outputs a negative value when a back electromotive force is generated. Therefore, when the electric motor 22 in FIG. 1 starts power regeneration, it can be detected by the sign of the power sensor 40.
 なお、本発明では、電動機を駆動する回生電力を検出する装置を説明したが、発電所と消費家の間で消費家が太陽電池パネルなどで発電した電力を発電所側に戻す逆潮流においても、本発明は利用することができる。 In the present invention, an apparatus for detecting regenerative power for driving an electric motor has been described. However, even in a reverse power flow in which a power generated by a consumer using a solar panel or the like is returned between the power plant and the consumer to the power plant side. The present invention can be used.
 本発明に係る回生電力検出装置は、インバータで電動機を駆動する局面に広く利用することができる。 The regenerative power detection device according to the present invention can be widely used for driving an electric motor with an inverter.
10 回生電力検出装置
12 電力センサユニット(電力センサシステム)
14 制御器
20 電動機システム
22 電動機
24 駆動装置
26 電池
27 検出器
28 切換器
24a インバータ回路
24b 駆動制御器
30 整流器
40 電力センサ
40a、40b、40c 電力センサ
42 磁性素子
42a、42b、42c 磁性素子
43 計測抵抗
43a、43b、43c 計測抵抗
44 アンプ
44a、44b、44c アンプ
45 ローパスフィルタ
45a、45b、45c ローパスフィルタ
48 加算器
90 被計測回路
91 電源
92 負荷
12a、12b 接続端子
93a、93b 電線
143、144 素子端子
L26a、L26b 結線
L24a、L24b、L24c 結線
L30a、L30b 配線
10 Regenerative power detection device 12 Power sensor unit (power sensor system)
DESCRIPTION OF SYMBOLS 14 Controller 20 Electric motor system 22 Electric motor 24 Drive device 26 Battery 27 Detector 28 Switcher 24a Inverter circuit 24b Drive controller 30 Rectifier 40 Electric power sensor 40a, 40b, 40c Electric power sensor 42 Magnetic element 42a, 42b, 42c Magnetic element 43 Measurement Resistance 43a, 43b, 43c Measuring resistance 44 Amplifier 44a, 44b, 44c Amplifier 45 Low- pass filter 45a, 45b, 45c Low-pass filter 48 Adder 90 Circuit under measurement 91 Power supply 92 Load 12a, 12b Connection terminal 93a, 93b Electric wire 143, 144 Element Terminals L26a, L26b Connection L24a, L24b, L24c Connection L30a, L30b

Claims (8)

  1.  導体で斜め方向にパターンニングされた磁性膜と、前記導体の一端部と接続された第1の素子端子と、前記導体の他端部と接続された第2の素子端子と、を有し、計測時に前記第1の素子端子が電力計測の対象となる対象装置に接続される磁性素子と、
     一端が前記磁性素子の前記第2の素子端子に接続された計測抵抗と、
    前記第1の素子端子と前記第2の素子端子との間の電圧の直流成分を検出する検出器と、
    を備え、
     前記磁性素子は、計測時に前記第1の素子端子から前記第2の素子端子への方向が、前記対象装置に接続された電線と略平行になるように配置される電力センサ。
    A magnetic film patterned obliquely with a conductor; a first element terminal connected to one end of the conductor; and a second element terminal connected to the other end of the conductor; A magnetic element connected to a target device whose power is to be measured when the first element terminal is measured;
    A measuring resistor having one end connected to the second element terminal of the magnetic element;
    A detector for detecting a DC component of a voltage between the first element terminal and the second element terminal;
    With
    The magnetic element is a power sensor arranged so that a direction from the first element terminal to the second element terminal is substantially parallel to an electric wire connected to the target device during measurement.
  2.  前記検出器は、
     第1の入力が前記第1の素子端子に接続され、第2の入力が前記第2の素子端子に接続され、前記第1の素子端子と前記第2の素子端子との間の電圧を増幅するアンプと、
     入力が前記アンプの出力に接続されたローパスフィルタと、
     を備える請求項1に記載の電力センサ。
    The detector is
    A first input is connected to the first element terminal, a second input is connected to the second element terminal, and a voltage between the first element terminal and the second element terminal is amplified. With an amplifier to
    A low pass filter whose input is connected to the output of the amplifier;
    A power sensor according to claim 1.
  3.  前記磁性膜は、短冊形状であり、
     前記磁性素子は、前記短冊形状の長手方向が前記対象装置に接続された電線と略平行になるように配置される
     請求項1に記載の電力センサ。
    The magnetic film has a strip shape,
    The power sensor according to claim 1, wherein the magnetic element is disposed so that a longitudinal direction of the strip shape is substantially parallel to an electric wire connected to the target device.
  4.  前記計測抵抗の抵抗値は、前記磁性素子の抵抗値より大きい
     請求項1に記載の電力センサ。
    The power sensor according to claim 1, wherein a resistance value of the measurement resistor is larger than a resistance value of the magnetic element.
  5.  請求項1に記載の複数の電力センサと、
     前記複数の電力センサの出力値を加算した加算値を示す信号を出力する加算器と、
     を備え、
     前記複数の電力センサそれぞれが備える磁性素子は、計測時に前記対象装置に接続された複数の電線のうち互いに異なる電線と略平行になるように配置される電力センサシステム。
    A plurality of power sensors according to claim 1;
    An adder that outputs a signal indicating an added value obtained by adding output values of the plurality of power sensors;
    With
    The magnetic sensor provided in each of the plurality of power sensors is a power sensor system arranged so as to be substantially parallel to different wires among the plurality of wires connected to the target device during measurement.
  6.  前記複数の電力センサは、第1の電力センサと第2の電力センサから構成され、
     前記第1の電力センサは、前記第1の素子端子が前記対象装置の第1の出力に接続され、且つ前記計測抵抗の他端が前記対象装置の第2の出力に接続され、且つ計測時に前記第1の素子端子から前記第2の素子端子への方向が、前記対象装置の前記第1の出力に接続された電線と略平行になるように前記磁性素子が配置され、
     前記第2の電力センサは、前記第1の素子端子が前記対象装置の前記第2の出力に接続され、且つ前記計測抵抗の他端が前記対象装置の第3の出力に接続され、且つ計測時に前記第1の素子端子から前記第2の素子端子への方向が、前記対象装置の前記第2の出力に接続された電線と略平行になるように前記磁性素子が配置される
     請求項5に記載の電力センサシステム。
    The plurality of power sensors includes a first power sensor and a second power sensor,
    In the first power sensor, the first element terminal is connected to a first output of the target device, and the other end of the measurement resistor is connected to a second output of the target device. The magnetic element is arranged so that a direction from the first element terminal to the second element terminal is substantially parallel to an electric wire connected to the first output of the target device,
    The second power sensor has a first element terminal connected to the second output of the target device, and the other end of the measurement resistor connected to a third output of the target device. 6. The magnetic element is sometimes arranged such that a direction from the first element terminal to the second element terminal is substantially parallel to an electric wire connected to the second output of the target device. The power sensor system described in 1.
  7.  前記電力センサの数は三つであり、
     計測時に前記計測抵抗の他端が接地に接続される
     請求項5に記載の電力センサシステム。
    The number of the power sensors is three,
    The power sensor system according to claim 5, wherein the other end of the measurement resistor is connected to ground during measurement.
  8.  請求項5に記載の電力センサシステムと、
     前記電力センサシステムが出力する信号が示す値が負になった場合、回生電力が生成したことを通知する通知信号を出力する制御器と、
     を備える回生電力検出装置。
    A power sensor system according to claim 5;
    A controller that outputs a notification signal notifying that regenerative power has been generated when a value indicated by a signal output by the power sensor system is negative;
    A regenerative power detection device.
PCT/JP2015/001575 2014-03-20 2015-03-20 Power sensor, power sensor system, and regenerated power detection device WO2015141235A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016508547A JP6210606B2 (en) 2014-03-20 2015-03-20 Electric power sensor system, regenerative electric power detection device, and electric motor system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-059173 2014-03-20
JP2014059173 2014-03-20

Publications (1)

Publication Number Publication Date
WO2015141235A1 true WO2015141235A1 (en) 2015-09-24

Family

ID=54144215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001575 WO2015141235A1 (en) 2014-03-20 2015-03-20 Power sensor, power sensor system, and regenerated power detection device

Country Status (2)

Country Link
JP (1) JP6210606B2 (en)
WO (1) WO2015141235A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017068916A (en) * 2015-09-28 2017-04-06 公立大学法人大阪市立大学 Secondary battery unit and secondary battery system having the same
WO2023061854A1 (en) * 2021-10-11 2023-04-20 Robert Bosch Gmbh Inverter for an electrical machine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01297568A (en) * 1988-05-25 1989-11-30 Mitsubishi Cable Ind Ltd Measuring method for partial electric discharge
US6037763A (en) * 1995-03-16 2000-03-14 Horstmann Timers & Controls Limited Electricity measurement apparatus using hall effect sensor having rectified bias current
JP2004088862A (en) * 2002-08-26 2004-03-18 Toshiba Corp Self-excited power conversion device
JP2009168586A (en) * 2008-01-16 2009-07-30 Meidensha Corp Electric power measuring device
JP2010261909A (en) * 2009-05-11 2010-11-18 Nippon Soken Inc Power detection device
JP2013205120A (en) * 2012-03-27 2013-10-07 Osaka City Univ Power measuring device
JP2013238434A (en) * 2012-05-11 2013-11-28 Osaka City Univ Power factor measurement device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01297568A (en) * 1988-05-25 1989-11-30 Mitsubishi Cable Ind Ltd Measuring method for partial electric discharge
US6037763A (en) * 1995-03-16 2000-03-14 Horstmann Timers & Controls Limited Electricity measurement apparatus using hall effect sensor having rectified bias current
JP2004088862A (en) * 2002-08-26 2004-03-18 Toshiba Corp Self-excited power conversion device
JP2009168586A (en) * 2008-01-16 2009-07-30 Meidensha Corp Electric power measuring device
JP2010261909A (en) * 2009-05-11 2010-11-18 Nippon Soken Inc Power detection device
JP2013205120A (en) * 2012-03-27 2013-10-07 Osaka City Univ Power measuring device
JP2013238434A (en) * 2012-05-11 2013-11-28 Osaka City Univ Power factor measurement device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017068916A (en) * 2015-09-28 2017-04-06 公立大学法人大阪市立大学 Secondary battery unit and secondary battery system having the same
WO2023061854A1 (en) * 2021-10-11 2023-04-20 Robert Bosch Gmbh Inverter for an electrical machine

Also Published As

Publication number Publication date
JP6210606B2 (en) 2017-10-11
JPWO2015141235A1 (en) 2017-04-06

Similar Documents

Publication Publication Date Title
JP5699301B2 (en) Current sensor
JP5531213B2 (en) Current sensor
JP5577544B2 (en) Current sensor
US8465859B2 (en) Current sensor
US20100244760A1 (en) System and method for detecting loss of isolation while an ac motor is operating
JP5686146B2 (en) Voltage measuring device with temperature abnormality detection function and power conversion device
JP2009162670A (en) Resolver abnormality detection circuit
JP5979413B2 (en) Power measuring device
JP2009229112A (en) Voltage detection circuit
JP6210606B2 (en) Electric power sensor system, regenerative electric power detection device, and electric motor system
US10120001B2 (en) Power factor measurement device
JP2018040632A (en) Current detection circuit unsusceptible to noise
US20120229134A1 (en) Current detection device
JP5678287B2 (en) Current sensor
JP3590679B2 (en) Abnormality detection device for floating DC power supply
JP5560232B2 (en) Current detector
JP5282064B2 (en) Motor drive circuit and motor control device with failure detection function for inrush current suppression circuit
JP6411540B2 (en) Drive control device and drive control system having the same
JP2008109836A (en) Current measuring device of inverter
JP2006345683A (en) Current detector
CN104283474B (en) Rotary electric machine controller with abnormal detection function
JP5537360B2 (en) Electric vehicle control device
JP2002048849A (en) Current detecting system of battery system for electric car
CN104284828B (en) Electric power-assisted steering apparatus
JP2010206859A (en) Short-circuit detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15765360

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016508547

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15765360

Country of ref document: EP

Kind code of ref document: A1