WO2015140912A1 - Negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and battery pack - Google Patents

Negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and battery pack Download PDF

Info

Publication number
WO2015140912A1
WO2015140912A1 PCT/JP2014/057187 JP2014057187W WO2015140912A1 WO 2015140912 A1 WO2015140912 A1 WO 2015140912A1 JP 2014057187 W JP2014057187 W JP 2014057187W WO 2015140912 A1 WO2015140912 A1 WO 2015140912A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
electrode active
battery
material layer
Prior art date
Application number
PCT/JP2014/057187
Other languages
French (fr)
Japanese (ja)
Inventor
松野 真輔
久保木 貴志
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Priority to PCT/JP2014/057187 priority Critical patent/WO2015140912A1/en
Publication of WO2015140912A1 publication Critical patent/WO2015140912A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/664Ceramic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Embodiments of the present invention relate to a negative electrode for a nonaqueous electrolyte secondary battery, a nonaqueous electrolyte secondary battery, and a battery pack.
  • Nonaqueous electrolyte secondary batteries such as lithium ion secondary batteries.
  • Nonaqueous electrolyte secondary batteries have already been put into practical use as power sources in a wide range of fields, from small items such as various electronic devices to large items such as electric vehicles.
  • non-aqueous electrolyte secondary batteries there are demands from users for further miniaturization, weight reduction, and longer life. In order to meet such demands, it is necessary to further increase the capacity and cycle characteristics of non-aqueous electrolyte secondary batteries.
  • Some nonaqueous electrolyte secondary batteries use a carbon material as a negative electrode active material and a layered oxide containing nickel, cobalt, manganese, or the like as a positive electrode active material.
  • a carbon material is used as the negative electrode active material, there is a limit to improving the charge / discharge capacity.
  • low-temperature calcined carbon has attracted attention as a carbon material from which a high capacity battery can be obtained.
  • the low-temperature calcined carbon has a low density, it is difficult to increase the charge / discharge capacity per unit volume. Therefore, in order to realize a battery with a higher capacity, it is necessary to develop a new negative electrode active material.
  • a simple metal such as aluminum (Al), silicon (Si), germanium (Ge), tin (Sn), or antimony (Sb) may be used. Proposed.
  • Si silicon
  • Ge germanium
  • Sn tin
  • Sb antimony
  • Si silicon
  • a high capacity of 4200 mAh per unit weight (1 g) can be obtained.
  • the negative electrode active material composed of these simple metals is liable to cause microscopic pulverization of elements due to repeated insertion and extraction of Li. For this reason, in a battery using these negative electrode active materials, high cycle characteristics may not be obtained.
  • amorphous tin oxide or silicon oxide as a material for a negative electrode active material with high cycle characteristics.
  • these oxides it is possible to achieve both high battery capacity and high cycle characteristics.
  • the volume change of the negative electrode active material accompanying charging / discharging can be suppressed by combining these oxides with a carbon material and using it as a negative electrode active material.
  • an internal short circuit may occur due to charge / discharge.
  • the internal short circuit of the battery was likely to occur when a material having a large volume change of the negative electrode active material accompanying charging / discharging such as tin oxide or silicon oxide was used as the negative electrode active material.
  • the problem to be solved by the present invention is to provide a negative electrode for a non-aqueous electrolyte secondary battery that can prevent an internal short circuit of the battery.
  • the negative electrode for a nonaqueous electrolyte secondary battery of the embodiment has a negative electrode current collector, a negative electrode active material layer, and an oxide insulating layer.
  • the negative electrode active material layer is formed on one side or both sides of the negative electrode current collector.
  • the oxide insulating layer covers at least a part of the outer edge of the negative electrode active material layer.
  • the expanded cross-section schematic diagram which showed the negative electrode for nonaqueous electrolyte secondary batteries of 1st Embodiment.
  • the cross-sectional schematic diagram for demonstrating an example of the nonaqueous electrolyte secondary battery which has the negative electrode for nonaqueous electrolyte secondary batteries of 1st Embodiment.
  • Sectional drawing which shows an example of the flat type nonaqueous electrolyte battery which concerns on 2nd Embodiment.
  • the expanded sectional view of the A section shown in FIG. The partial notch perspective view which shows typically the other example of the flat type nonaqueous electrolyte battery which concerns on 2nd Embodiment.
  • FIG. 6 is a schematic enlarged cross-sectional view of a portion B in FIG. 5.
  • the disassembled perspective view which shows the battery pack which concerns on 3rd Embodiment.
  • the block diagram which shows the electric circuit with which the battery pack shown in FIG. 7 was equipped.
  • a negative electrode for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery (hereinafter may be abbreviated as “battery”) according to embodiments will be described with reference to the drawings.
  • the drawings shown below are schematic diagrams for explaining the nonaqueous electrolyte secondary battery and the negative electrode for a nonaqueous electrolyte secondary battery according to the embodiment, and the shapes, dimensions, ratios, and the like thereof are different from those of the actual apparatus. Although there are places, these can be appropriately modified in consideration of the following description and known techniques.
  • FIG. 1 is an enlarged schematic cross-sectional view showing a negative electrode for a nonaqueous electrolyte secondary battery according to the first embodiment.
  • a negative electrode 3 for a non-aqueous electrolyte secondary battery shown in FIG. 1 (hereinafter sometimes abbreviated as “negative electrode”) has a negative electrode current collector 3 a, a negative electrode active material layer 3 b, and an oxide insulating layer 13. .
  • a negative electrode active material layer 3b is formed on the entire surface of one surface 11a (upper surface in FIG. 1) and the other surface 11b (lower surface in FIG. 1) of the negative electrode current collector 3a.
  • the oxide insulating layer 13 includes an outer edge 12a on the one surface 11a side and an end surface of the negative electrode current collector 3a from the outer peripheral portion 12b of the negative electrode active material layer 3b formed on the one surface 11a.
  • 11c and the outer edge 12a of the negative electrode active material layer 3b formed on the other surface 11b are continuously formed up to the outer peripheral portion 12b of the negative electrode active material layer 3b on the other surface 11b side.
  • a negative electrode 3 shown in FIG. 1 has a rectangular shape in plan view, a negative electrode current collector 3a defining the planar shape of the negative electrode 3, and a negative electrode active material layer 3b formed on the entire surface of the negative electrode current collector 3a.
  • the oxide insulating layer 13 is continuously formed along the four sides of the negative electrode 3 in the cross-sectional shape shown in FIG. Therefore, the oxide insulating layer 13 covers the entire outer edge 12a of the negative electrode active material layer 3b.
  • a metal foil such as a stainless steel foil, a copper foil, a copper alloy foil, an aluminum foil, an aluminum alloy foil, a titanium foil, or a nickel foil can be used.
  • the negative electrode current collector 3a is preferably a metal foil having a tensile strength of 500 N / mm 2 or more and 2000 N / mm 2 or less. Examples of the negative electrode current collector 3a having a tensile strength in the above range include a stainless steel foil and a copper alloy foil.
  • the tensile strength of a negative electrode electrical power collector is the numerical value measured by the method based on JISZ2241: 2011.
  • the tensile strength of the negative electrode current collector 3a is at 500 N / mm 2 or more, as a negative electrode active material contained in the anode active material layer 3b, in case of using a large volume change of the negative electrode active material associated with charge and discharge Even if it exists, it will become difficult to produce the deformation
  • the tensile strength of the negative electrode current collector 3a is more preferably 550 N / mm 2 or more in order to more effectively prevent deformation of the negative electrode current collector 3a.
  • the oxide insulating layer 13 can effectively prevent an internal short circuit. More specifically, when forming the negative electrode 3, as described later, a step of forming the negative electrode active material layer 3 b on the negative electrode current collector 3 a and cutting it into a predetermined shape corresponding to the negative electrode 3 is performed. Is going. In this step, burrs may be formed on the outer edge 12a of the negative electrode active material layer 3b located at the upper and lower ends of the cut surface. The burr is composed of the negative electrode current collector 3a and the negative electrode active material layer 3b, and has a sharp shape.
  • the negative electrode 3 forming the battery is disposed to face the positive electrode through a separator.
  • the negative electrode 3 may be deformed by the volume expansion of the negative electrode active material accompanying charging of the battery, and the outer peripheral portion may be warped.
  • the warped negative electrode 3 has a burr on the outer edge 12a of the negative electrode active material layer 3b, the burr is pressed against the separator through the oxide insulating layer 13. At this time, if the burr breaks through the oxide insulating layer 13 and the separator, a hole may be formed in the separator and an internal short circuit may occur.
  • the tensile strength of the negative electrode current collector 3a is more preferably 1500 N / mm 2 or less.
  • the negative electrode active material layer 3b includes a negative electrode active material and a binder.
  • a negative electrode active material silicon, silicon-containing oxide, tin, tin-containing oxide, anatase type titanium dioxide TiO 2 , ⁇ -type titanium dioxide, ramsdellite type lithium titanate Li 2 Ti 3 O 7 , spinel type titanium Li 4 Ti 5 O 12 that is lithium acid, niobium oxide, niobium-containing composite oxide, or the like can be used. These negative electrode active materials may be mixed and used.
  • the negative electrode active material preferably contains one or more selected from silicon, silicon-containing oxides, tin, and tin-containing oxides.
  • silicon-containing oxide, SiO, SiO 2 and the like. SiO and SiO 2 may have Si deposited on the surface.
  • the tin-containing oxide, SnO, SnO 2 and the like. SnO and SnO 2 may have Sn deposited on the surface.
  • the negative electrode active material may be a composite of silicon-containing oxide and / or tin-containing oxide coated with carbon. Compared with the case where a silicon-containing oxide and / or a tin-containing oxide that is not complexed is included, the volume of the negative electrode active material accompanying charge / discharge is reduced by using the negative electrode 3 including such a negative electrode active material. Change can be suppressed. Therefore, it is possible to prevent the outer peripheral portion of the negative electrode 3 from warping while achieving both high battery capacity and high cycle characteristics, and effectively prevent an internal short circuit.
  • binders polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluorine-based rubber, ethylene-butadiene rubber (SBR), polypropylene (PP), polyethylene (PE), carboxymethylcellulose (CMC), polyimide (PI), polyacrylimide (PAI), and the like can be used.
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylidene fluoride
  • SBR ethylene-butadiene rubber
  • PP polypropylene
  • PE polyethylene
  • CMC carboxymethylcellulose
  • PI polyimide
  • PAI polyacrylimide
  • the negative electrode active material layer 3b may contain a negative electrode conductive agent as necessary.
  • a negative electrode conductive agent for example, a carbon material can be used.
  • the carbon material it is preferable to use a material having high alkali metal occlusion and conductivity. Examples of such a carbon material include hard carbon (non-graphitizable carbon), acetylene black, carbon black, and highly crystalline graphite.
  • the negative electrode active material layer 3b may contain a small amount of elements different from the negative electrode active material.
  • the blending ratio of the negative electrode active material, the negative electrode conductive agent, and the binder is 70 to 95% by mass of the negative electrode active material, 0 to 25% by mass of the negative electrode conductive agent, and 2 to 10% by mass of the binder. It is preferable that When the negative electrode active material contains silicon element, the atomic ratio of silicon element to carbon element in negative electrode active material layer 3b ((number of silicon atoms / number of carbon atoms) ⁇ 100 (atomic%)) is 5 to 50 atomic%.
  • the atomic ratio of tin to carbon element in the negative electrode active material layer 3b ((tin atom number / carbon atom number) ⁇ 100 (atomic%)) is 5 to 50 It is preferably atomic%.
  • the oxide insulating layer 13 is an insulator containing an oxide and a binder.
  • the insulator means that the electrical resistivity is 10 6 ⁇ m or more.
  • the binder polyvinylidene fluoride (PVdF), an acrylic binder, or the like can be used.
  • any oxide may be used as long as the oxide insulating layer 13 having the above electrical resistivity can be obtained.
  • the oxide preferably contains one or more selected from SiO 2 , Al 2 O 3 , and ZrO 2 .
  • the oxide contained in the oxide insulating layer 13 is at least one selected from these, the oxide insulating layer 13 having a sufficiently high electrical resistivity can be obtained.
  • These oxides are preferable as a material for the oxide insulating layer 13 because they can suppress side reactions between HF contained in the nonaqueous electrolyte and the negative electrode active material layer 3b.
  • the oxide insulating layer 13 preferably has a thickness t1, t2 in the direction perpendicular to the surface of the negative electrode active material layer 3b shown in FIG.
  • the thicknesses t1 and t2 in the direction perpendicular to the surface of the negative electrode active material layer 3b of the oxide insulating layer 13 are 1 ⁇ m or more, even if burrs are formed on the outer edge 12a of the negative electrode active material layer 3b, the oxide insulating layer 13 Thus, it is possible to effectively prevent the burr pressed against the separator from breaking through the separator. Therefore, the internal short circuit in the battery having the negative electrode 3 can be more effectively prevented.
  • the thicknesses t1 and t2 of the oxide insulating layer 13 are more preferably 5 ⁇ m or more in order to further improve the effect of preventing an internal short circuit in the battery having the negative electrode 3.
  • the oxide insulating layer 13 has thicknesses t1 and t2 in the direction perpendicular to the surface of the negative electrode active material layer 3b of 15 ⁇ m or less, the portion where the oxide insulating layer 13 is formed on the negative electrode active material layer 3b; The step difference from the portion where the oxide insulating layer 13 is not formed is small. For this reason, the level
  • the thicknesses t1 and t2 of the oxide insulating layer 13 are more preferably 10 ⁇ m or less.
  • the oxide insulating layer 13 may have the same thickness t1 and t2 in the direction perpendicular to the surface of the negative electrode active material layer 3b on the one surface 11a side and the other surface 11b side of the negative electrode current collector 3a. It may be good or different. In the oxide insulating layer 13 shown in FIG. 1, the thicknesses t1 and t2 in the direction perpendicular to the surface of the negative electrode active material layer 3b are different on the one surface 11a side and the other surface 11b side of the negative electrode current collector 3a. Yes. In the oxide insulating layer 13 shown in FIG. 1, the thickness t1 of the oxide insulating layer 13 on the one surface 11a side is thicker than the thickness t2 of the oxide insulating layer 13 on the other surface 11b side.
  • the widths D1 and D2 of the oxide insulating layer 13 illustrated in FIG. 1 are dimensions from the outer edge 12a of the negative electrode active material layer 3b to the inner end of the oxide insulating layer 13 in plan view.
  • the widths D1 and D2 of the oxide insulating layer 13 are preferably 1 mm to 1 cm.
  • the widths D1 and D2 of the oxide insulating layer 13 are 1 mm or more, even if the oxide insulating layer 13 of the warped negative electrode 3 is pressed against the separator, even if the separator has a hole, the positive electrode side through the hole The part exposed to is likely to be only the oxide insulating layer 13.
  • the oxide insulating layer 13 is an insulator, an internal short circuit of the battery is prevented even when exposed to the positive electrode side. Further, when the oxide insulating layer 13 is formed by a method of applying a slurry containing an oxide and a binder, the width D1 and D2 of the oxide insulating layer 13 is 1 mm or more. The dimensions corresponding to the widths D1 and D2 of the insulating layer 13 can be easily controlled.
  • the widths D1 and D2 of the oxide insulating layer 13 are 2 mm or more, the internal short circuit of the battery is much less likely to occur. Moreover, when the oxide insulating layer 13 is formed by the method of applying the slurry, it is more preferable that the widths D1 and D2 of the oxide insulating layer 13 be 2 mm or more because the application width of the slurry can be controlled with high accuracy. .
  • the widths D1 and D2 of the oxide insulating layer 13 are 1 cm or less, reduction of the charge / discharge reaction area on the negative electrode active material layer 3b due to the formation of the oxide insulating layer 13 can be suppressed.
  • the widths D1 and D2 of the oxide insulating layer 13 are more preferably 7 mm or less.
  • the widths D1 and D2 of the oxide insulating layer 13 may be the same or different on the one surface 11a side and the other surface 11b side of the negative electrode current collector 3a.
  • the widths D1 and D2 of the oxide insulating layer 13 shown in FIG. 1 are different on the one surface 11a side and the other surface 11b side of the negative electrode current collector 3a.
  • the width D1 of the oxide insulating layer 13 on the one surface 11a side is larger than the width D2 of the oxide insulating layer 13 on the other surface 11b side.
  • the manufacturing method of the negative electrode 3 of this embodiment is demonstrated.
  • the negative electrode active material layer 3b is formed on the entire surfaces of the negative electrode current collector 3a.
  • a slurry in which the negative electrode active material, the negative electrode conductive agent, and the binder are dispersed in an organic solvent is prepared.
  • the slurry is applied to the entire surface of the negative electrode current collector 3a, dried, and then pressed.
  • the organic solvent used in the slurry for forming the negative electrode active material layer 3b include N-methyl-2-pyrrolidone (NMP) and dimethylformamide (DMF).
  • the negative electrode current collector 3 a on which the negative electrode active material layer 3 b is formed is cut into a predetermined shape corresponding to the negative electrode 3.
  • burrs may be formed on the outer edge 12a of the negative electrode active material layer 3b located at the upper and lower ends of the cut surface.
  • the oxide insulating layer 13 that covers the entire outer edge 12a of the negative electrode active material layer 3b is formed.
  • a slurry in which an oxide and a binder are dispersed in an organic solvent is prepared.
  • the organic solvent used in the slurry for forming the oxide insulating layer 13 for example, N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), or the like can be used.
  • the oxide insulating layer 13 is formed on the outer edge 12a of the negative electrode active material layer 3b formed on the one surface 11a of the negative electrode current collector 3a with the one surface 11a of the negative electrode current collector 3a facing upward.
  • the slurry is applied so as to have a thickness t1 and a width D1.
  • a part of the slurry applied to the outer edge 12a protrudes from the negative electrode active material layer 3b to the end face 11c side of the negative electrode current collector 3a.
  • the slurry is also applied to the end face 11c of the negative electrode current collector 3a.
  • the oxide insulating layer 13 is formed on the outer edge 12a of the negative electrode active material layer 3b formed on the other surface 11b of the negative electrode current collector 3a.
  • the slurry is applied so as to have a thickness t2 and a width D2. At this time, a part of the slurry applied to the outer edge 12a protrudes from the negative electrode active material layer 3b to the end face 11c side of the negative electrode current collector 3a.
  • the outer peripheral portion 12b of the negative electrode active material layer 3b formed on the one surface 11a of the negative electrode current collector 3a the outer edge 12a on the one surface 11a side, the end surface 11c of the negative electrode current collector 3a, and the negative electrode
  • the slurry is continuously applied to the outer peripheral portion 12b of the negative electrode active material layer 3b on the other surface 11b side, covering the outer edge 12a of the negative electrode active material layer 3b formed on the other surface 11b of the current collector 3a.
  • the applied slurry is dried and pressed to obtain the oxide insulating layer 13 having the cross-sectional shape shown in FIG.
  • the negative electrode 3 of this embodiment includes a negative electrode current collector 3a, a negative electrode active material layer 3b formed on both surfaces of the negative electrode current collector 3a, and an oxide insulating layer 13 that covers all the outer edges 12a of the negative electrode active material layer 3b. It has. For this reason, even if the negative electrode 3 has a burr on the outer edge 12a of the negative electrode active material layer 3b, the burr is covered with the oxide insulating layer 13. Moreover, since the negative electrode 3 has the oxide insulating layer 13, in the battery using this, the deformation accompanying the volume change of the negative electrode active material is difficult to occur.
  • the outer periphery of the negative electrode 3 hardly warps, and even if the outer periphery warps, The burrs are pressed against the separator through the oxide insulating layer 13. Therefore, the burr pressed against the separator can be prevented from breaking through the separator, and an internal short circuit of the battery due to the burr of the negative electrode 3 can be prevented.
  • the oxide insulating layer 13 is an insulator, even if the oxide insulating layer 13 of the warped negative electrode 3 is pressed against the separator and a hole is formed in the separator, the oxide insulating layer 13 is exposed to the positive electrode side through the hole. In the case where only the oxide insulating layer 13 is present, the internal short circuit of the battery does not occur. Therefore, the battery having the negative electrode 3 of the present embodiment is less likely to cause an internal short circuit.
  • the outer edge 12a of the negative electrode active material layer 3b is covered with the oxide insulating layer 13.
  • the outer edge 12a of the negative electrode active material layer 3b is a portion where lithium deposition is likely to occur due to current density concentration in a battery using the negative electrode active material layer 3b.
  • the outer edge 12a of the negative electrode active material layer 3b in which lithium is likely to precipitate does not contact the nonaqueous electrolyte. For this reason, in the negative electrode 3, it can prevent that lithium precipitates on the outer peripheral part 12b of the negative electrode active material layer 3b.
  • the negative electrode active material layer 3b includes a negative electrode active material containing one or more selected from silicon, silicon-containing oxides, tin, and tin-containing oxides
  • High cycle characteristics can be achieved at the same time.
  • the negative electrode active material including one or more selected from silicon, silicon-containing oxide, tin, and tin-containing oxide has a large volume change of the negative electrode active material accompanying charge / discharge. For this reason, in the negative electrode 3 using these negative electrode active materials, the outer peripheral portion is likely to warp. Therefore, in the past, batteries having a negative electrode using these negative electrode active materials have been particularly prone to internal short circuits.
  • the warpage of the outer peripheral portion can be suppressed by the oxide insulating layer 13.
  • the oxide insulating layer 13 can prevent an internal short circuit of the battery using the negative electrode 3. Therefore, in the battery using the negative electrode 3 of the present embodiment, the negative electrode active material layer 3b including the negative electrode active material including one or more selected from silicon, silicon-containing oxide, tin, and tin-containing oxide is formed. Thus, high capacity and high cycle characteristics can be realized while suppressing internal short circuit.
  • the negative electrode active material layer is formed on the entire surface of both surfaces of the negative electrode current collector, but the negative electrode active material layer may be formed only on one surface of the negative electrode current collector. Further, the negative electrode active material layer on one surface and / or the other surface of the negative electrode current collector is formed only on a part of the surface of the negative electrode current collector and has a region where the negative electrode active material layer is not formed. There may be.
  • the oxide insulating layer covers all of the outer edge of the negative electrode active material layer, but may cover only a part of the outer edge of the negative electrode active material layer.
  • the oxide insulating layer is formed on both the first surface 11a and the other surface 11b of the negative electrode current collector 3a. It is preferable that the outer edge of the negative electrode active material layer is covered, but the outer edge of the negative electrode active material layer formed on the one surface 11a may be covered.
  • the oxide insulating layer may cover the end surface 11c of the negative electrode current collector 3a, but the oxide insulating layer 13 may not be formed on the end surface 11c of the negative electrode current collector 3a. Part or all of the end face 11c of the current collector 3a may be exposed.
  • the planar shapes of the negative electrode 3, the negative electrode current collector 3a, and the negative electrode active material layer 3b are appropriately determined according to the shape of the battery in which the negative electrode 3 is used, and are not particularly limited.
  • the negative electrode 3 of the present embodiment for example, instead of the oxide insulating layer 13, it may be possible to form an insulating layer having the same shape as the oxide insulating layer 13 using a resin.
  • the resin is not suitable as compared with the oxide from the viewpoints of solvent resistance, reduction resistance, handling, and the like.
  • FIG. 2 is a schematic cross-sectional view for explaining an example of a non-aqueous electrolyte secondary battery having the negative electrode for a non-aqueous electrolyte secondary battery according to the first embodiment.
  • a non-aqueous electrolyte secondary battery 10 shown in FIG. 2 includes the negative electrode 3, the positive electrode 5, the separator 4 disposed between the negative electrode 3 and the positive electrode 5, and a non-aqueous electrolyte (not shown).
  • the positive electrode 5 includes a positive electrode current collector 5a and a positive electrode active material layer 5b formed on both surfaces of the positive electrode current collector 5a.
  • the battery 10 shown in FIG. 2 has a first region 14 in which the region where the negative electrode active material layer 3b of the negative electrode 3 is formed and the region where the positive electrode active material layer 5b of the positive electrode 5 are formed overlap in a plan view. is doing.
  • the battery 10 shown in FIG. 2 has a second region 15 in which the positive electrode 5 is not disposed and the negative electrode active material layer 3 b of the negative electrode 3 is formed outside the first region 14.
  • the battery 10 shown in FIG. 2 has the second region 15, so that concentration of current density in the outer peripheral portion 12 b of the negative electrode active material layer 3 b can be suppressed, and lithium is deposited on the outer peripheral portion 12 b of the negative electrode active material layer 3 b. Can be prevented.
  • a positive electrode active material layer 5b is formed on the entire surface of both surfaces of the positive electrode current collector 5a.
  • a metal foil such as a stainless steel foil, a copper foil, a copper alloy foil, an aluminum foil, an aluminum alloy foil, a titanium foil, or a nickel foil can be used.
  • the positive electrode active material layer 5b includes a positive electrode active material and a binder.
  • a lithium composite oxide can be used as the positive electrode active material.
  • the lithium composite oxide include lithium manganese composite oxide (for example, LiMn 2 O 4 or LiMnO 2 ), lithium nickel composite oxide (for example, LiNiO 2 ), lithium cobalt composite oxide (LiCoO 2 ), and lithium nickel cobalt composite oxide.
  • a binder As a binder, the thing similar to the binder contained in the negative electrode active material layer 3b of the negative electrode 3 can be used. Specifically, as a binder contained in the positive electrode active material layer 5b, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluorine-based rubber, ethylene-butadiene rubber (SBR), polypropylene (PP), Polyethylene (PE), carboxymethylcellulose (CMC), polyimide (PI), polyacrylimide (PAI), and the like can be used.
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylidene fluoride
  • SBR ethylene-butadiene rubber
  • PP polypropylene
  • PE Polyethylene
  • CMC carboxymethylcellulose
  • PI polyimide
  • PAI polyacrylimide
  • the positive electrode active material layer 5b may contain a positive electrode conductive agent as necessary.
  • a positive electrode conductive agent for example, a carbon material can be used. Examples of the carbon material include acetylene black, carbon black, and graphite.
  • the mixing ratio of the positive electrode active material, the positive electrode conductive agent and the binder is 80 to 95% by mass of the positive electrode active material, 3 to 20% by mass of the positive electrode conductive agent, and 2 to 7% by mass of the binder. It is preferable that
  • the positive electrode 5 can be formed by a conventionally known method.
  • a slurry is prepared by dispersing a positive electrode active material, a positive electrode conductive agent, and a binder in an organic solvent.
  • the organic solvent used in the slurry for forming the positive electrode active material layer 5b for example, N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), or the like can be used.
  • NMP N-methyl-2-pyrrolidone
  • DMF dimethylformamide
  • the separator 4 for example, a porous film or a resin nonwoven fabric can be used.
  • the porous film include those made of polyethylene and polypropylene.
  • Such a separator 4 is easy to add a shutdown function that melts and closes the pores when the temperature of the battery 10 rises and reaches a certain temperature, and greatly attenuates the charge / discharge current. It is preferable because safety can be improved. Moreover, you may use what consists of a cellulose-type material as the separator 4 from a viewpoint of cost reduction.
  • the nonaqueous electrolyte for example, a liquid non-aqueous electrolyte prepared by dissolving a solute in an organic solvent, or a gel non-aqueous electrolyte in which a liquid electrolyte and a polymer material are combined can be used.
  • the liquid non-aqueous electrolyte is preferably obtained by dissolving a solute in an organic solvent at a concentration of 0.5 mol / L or more and 2.5 mol / L or less.
  • solutes examples include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium arsenic hexafluoride (LiAsF 6 ), trifluorometa Lithium sulfonate (LiCF 3 SO 3 ), lithium bistrifluoromethylsulfonylimide [LiN (CF 3 SO 2 ) 2 ], [LiN (C 2 F 5 SO 2 ) 2 ], [Li (CF 3 SO 2 ) 3 C ], 1 or more types of lithium salt chosen from LiB [(OCO) 2 ] 2, etc. are preferable. It is preferable that the solute is difficult to oxidize even at a high potential, and LiPF 6 is most preferable.
  • organic solvents examples include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), and vinylene carbonate; chain forms such as diethyl carbonate (DEC), dimethyl carbonate (DMC), and methyl ethyl carbonate (MEC). Carbonates; cyclic ethers such as tetrahydrofuran (THF), 2-methyltetrahydrofuran (2MeTHF), dioxolane (DOX); chain ethers such as dimethoxyethane (DME) and diethoxyethane (DEE); or ⁇ -butyrolactone (GBL) , Acetonitrile (AN), and sulfolane (SL). These organic solvents can be used alone or in the form of a mixed solvent.
  • cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), and vinylene carbonate
  • chain forms such as diethyl carbonate (DEC), dimethyl carbonate (DMC), and methyl
  • a mixed solvent in which at least two or more of the group consisting of methyl ethyl carbonate (MEC), propylene carbonate (PC), ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed
  • MEC methyl ethyl carbonate
  • PC propylene carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • GBL ⁇ -butyrolactone
  • Examples of the polymer material constituting the gel-like nonaqueous electrolyte include those containing polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), and polyethylene oxide (PEO).
  • PVdF polyvinylidene fluoride
  • PAN polyacrylonitrile
  • PEO polyethylene oxide
  • a room temperature molten salt (ionic melt) containing lithium ions can be used as the non-aqueous electrolyte.
  • ionic melt composed of lithium ions, an organic cation and an anion, which is liquid at 100 ° C. or less, preferably at room temperature or less.
  • the battery 10 shown in FIG. 2 can be manufactured using a conventionally known method.
  • the battery 10 shown in FIG. 2 can be used as a material for a wound nonaqueous electrolyte battery and a laminated nonaqueous electrolyte battery, as will be described later.
  • a wound electrode group of a wound nonaqueous electrolyte battery can be formed by stacking the battery 10 shown in FIG. 2 on the separator 4 to form a laminate, and winding this into a spiral.
  • . 2 can be stacked to form a stacked battery group of stacked nonaqueous electrolyte batteries.
  • the battery 10 according to the present embodiment includes the negative electrode 3 according to the first embodiment, the positive electrode 5 including the positive electrode active material layer 5b, and the nonaqueous electrolyte. Therefore, an internal short circuit is unlikely to occur.
  • the battery 10 of the present embodiment has a region in which the negative electrode active material layer 3 b of the negative electrode 3 is formed and a positive electrode active material layer 5 b of the positive electrode 5 in plan view. Since the first region 14 that overlaps with the region and the second region 15 in which the positive electrode 5 is not disposed and the negative electrode active material layer 3b is formed outside the first region 14 are described below. As shown in FIG. 3, the outer periphery of the negative electrode 3 is likely to warp.
  • the negative electrode 3 in the second region 15 since the positive electrode 5 does not exist in the second region 15, the negative electrode 3 in the second region 15 has a larger space that can be deformed than the first region 14 by the volume of the positive electrode 5. For this reason, the negative electrode 3 in the second region 15 is more easily deformed than the negative electrode 3 in the first region 14, and easily absorbs stress due to volume expansion of the negative electrode active material. Therefore, the negative electrode 3 in the second region 15 functions as a stress escape field due to the volume expansion of the negative electrode active material. Therefore, in the battery 10, the stress due to the volume expansion of the negative electrode active material to the negative electrode 3 in the second region 15 is larger than that of the negative electrode 3 in the first region 14, and the outer peripheral portion of the negative electrode 3 is easily warped. .
  • the oxide insulating layer 13 suppresses the warpage of the outer peripheral portion of the negative electrode 3. Even if the outer periphery of the negative electrode 3 is warped, the oxide insulating layer 13 can prevent an internal short circuit of the battery 10. Therefore, in the battery 10 using the negative electrode 3 of the present embodiment, it is possible to prevent lithium from being deposited on the outer peripheral portion 12b of the negative electrode active material layer 3b by providing the second region 15 while suppressing an internal short circuit.
  • the example in which the second region 15 is provided outside the first region 14 has been described as an example, but the second region 15 may be omitted.
  • the nonaqueous electrolyte battery according to the second embodiment is not limited to the one shown in FIG.
  • a flat type nonaqueous electrolyte battery (nonaqueous electrolyte battery) 100 shown in FIGS. 3 and 4 will be described.
  • FIG. 3 is a schematic cross-sectional view of the flat type nonaqueous electrolyte battery 100.
  • FIG. 4 is an enlarged cross-sectional view of a portion A shown in FIG.
  • a nonaqueous electrolyte battery 100 shown in FIGS. 3 and 4 is a wound nonaqueous electrolyte battery, and includes an exterior material 2, a flat wound electrode group 1 housed in the exterior material 2, and an exterior material 2. And a non-aqueous electrolyte filled therein.
  • the nonaqueous electrolyte battery 100 shown in FIGS. 3 and 4 is a laminate in which the battery 10 shown in FIG. 2 is laminated on the separator 4 and laminated in the order of the negative electrode 3, the separator 4, the positive electrode 5, and the separator 4. Is wound in a spiral shape and has a wound electrode group 1 formed by press molding.
  • the non-aqueous electrolyte the same one as described in the battery 10 shown in FIG. 2 can be used.
  • the negative electrode 3 located on the outermost periphery of the wound electrode group 1 has a configuration in which a negative electrode layer 3b is formed on one surface on the inner surface side of the negative electrode current collector 3a.
  • a portion of the negative electrode 3 other than the outermost periphery has a configuration in which the negative electrode layer 3b is formed on both surfaces of the negative electrode current collector 3a.
  • a gel nonaqueous electrolyte may be used.
  • the negative electrode terminal 6 is electrically connected to the negative electrode current collector 3a of the outermost negative electrode 3 in the vicinity of the outer peripheral end thereof.
  • the positive electrode terminal 7 is electrically connected to the positive electrode current collector 5 a of the inner positive electrode 5.
  • the negative electrode terminal 6 and the positive electrode terminal 7 are extended to the outside of the exterior material 2 or connected to a take-out electrode provided in the exterior material 2.
  • the exterior material 2 may be a laminate film formed in a bag shape or a metal container.
  • the wound electrode group 1 to which the negative electrode terminal 6 and the positive electrode terminal 7 are connected is mounted on the bag-shaped exterior material 2 having an opening. Enter.
  • a liquid non-aqueous electrolyte is injected from the opening of the exterior material 2.
  • the wound electrode group 1 and the liquid nonaqueous electrolyte are completely sealed by heat-sealing the opening of the bag-shaped outer packaging material 2 with the negative electrode terminal 6 and the positive electrode terminal 7 interposed therebetween.
  • the winding electrode group 1 to which the negative electrode terminal 6 and the positive electrode terminal 7 were connected is inserted into the metal container which has an opening part.
  • a liquid non-aqueous electrolyte is injected from the opening of the exterior material 2, and a lid is attached to the metal container to seal the opening.
  • the negative electrode terminal 6 for example, a material having electrical stability and conductivity in a range where the potential with respect to lithium is 1 V or more and 3 V or less can be used. Specifically, aluminum or an aluminum alloy containing elements such as Mg, Ti, Zn, Mn, Fe, Cu, and Si can be given.
  • the negative electrode terminal 6 is more preferably made of the same material as the negative electrode current collector 3a in order to reduce the contact resistance with the negative electrode current collector 3a.
  • the positive electrode terminal 7 a material having electrical stability and conductivity in the range of 3 to 4.25 V with respect to lithium can be used. Specifically, aluminum or an aluminum alloy containing an element such as Mg, Ti, Zn, Mn, Fe, Cu, or Si can be given.
  • the positive electrode terminal 7 is preferably made of the same material as the positive electrode current collector 5a in order to reduce the contact resistance with the positive electrode current collector 5a.
  • the exterior material 2 is formed of a laminate film having a thickness of 0.5 mm or less, or a metal container having a thickness of 1 mm or less.
  • the shape of the exterior material 2 can be appropriately selected from a flat type (thin type), a square type, a cylindrical type, a coin type, and a button type.
  • Examples of the exterior material 2 include, for example, a small battery exterior material loaded on a portable electronic device, a large battery exterior material loaded on a two-wheel or four-wheel automobile, etc., depending on the battery size. It is.
  • the exterior material 2 made of a laminate film When the exterior material 2 made of a laminate film is used, a multilayer film in which a metal layer is interposed between resin layers is used.
  • a metal layer in this case, it is preferable to employ an aluminum foil or an aluminum alloy foil for weight reduction.
  • a resin layer polymeric materials, such as a polypropylene (PP), polyethylene (PE), nylon, a polyethylene terephthalate (PET), can be used, for example.
  • PP polypropylene
  • PE polyethylene
  • nylon a polyethylene terephthalate
  • PET polyethylene terephthalate
  • the laminate film can be molded into the shape of an exterior material by sealing by heat sealing.
  • the exterior material 2 made of a metal container one made of aluminum or an aluminum alloy is used.
  • an aluminum alloy an alloy containing elements such as magnesium, zinc, and silicon is preferable.
  • transition metals such as iron, copper, nickel, and chromium, are contained in an aluminum alloy, it is preferable to suppress the content to 100 mass ppm or less.
  • packing material 2 which consists of metal containers it is more preferable to use a thing with thickness of 0.5 mm or less.
  • the nonaqueous electrolyte battery 100 shown in FIG. 3 and FIG. 4 described above has the negative electrode 3 having the oxide insulating layer covering at least a part of the outer edge of the negative electrode active material layer, so that an internal short circuit hardly occurs. .
  • the nonaqueous electrolyte battery according to the second embodiment may be a battery having the configuration shown in FIGS. 5 and 6.
  • FIG. 5 is a partially cutaway perspective view schematically showing another flat type non-aqueous electrolyte secondary battery according to the second embodiment.
  • 6 is an enlarged cross-sectional view of a portion B in FIG.
  • the nonaqueous electrolyte battery shown in FIGS. 5 and 6 is a stacked nonaqueous electrolyte battery, and a stacked electrode group 31 is housed in an exterior member 32.
  • the laminated electrode group 31 is a laminate in which the negative electrode 3, the separator 4, the positive electrode 5, and the separator 4 are laminated in this order, and is formed by laminating a plurality of these.
  • the separator 4 and the nonaqueous electrolyte the same materials as those described in the battery 10 shown in FIG. 2 can be used.
  • the oxide insulating layer 13 covers the outer edge of the negative electrode active material layer 3b on the three sides of the rectangular negative electrode 3 as shown in FIG. This is different from the negative electrode 3 of FIG. About others, it is the same as the negative electrode 3 of the battery 10 shown in FIG. Therefore, the oxide insulating layer 13 is not formed on one side of the negative electrode 3 and covers only a part of the outer edge of the negative electrode active material layer 3b.
  • the negative electrode current collector 3 a protrudes from the negative electrode 3 on one side where the oxide insulating layer of the negative electrode 3 is not formed.
  • the protruding negative electrode current collector 3 a is electrically connected to a strip-shaped negative electrode terminal 36. The tip of the strip-shaped negative electrode terminal 36 is drawn out from the exterior member 32 to the outside.
  • the positive electrode 5 forming the stacked electrode group 31 has the battery shown in FIG. 2 in that the side of the positive electrode current collector 5a opposite to the protruding side of the negative electrode current collector 3a protrudes from the positive electrode 5. 10 different from the positive electrode 5. About others, it is the same as the positive electrode 5 of the battery 10 shown in FIG.
  • the positive electrode current collector 5 a protruding from the positive electrode 5 is electrically connected to a belt-like positive electrode terminal 37.
  • the front end of the belt-like positive electrode terminal 37 is located on the side opposite to the negative electrode terminal 36 and is drawn out from the exterior member 32 to the outside.
  • the non-aqueous electrolyte battery shown in FIGS. 5 and 6 described above has the negative electrode 3 having the oxide insulating layer covering at least a part of the outer edge of the negative electrode active material layer, and therefore an internal short circuit hardly occurs.
  • the battery pack according to the present embodiment has one or more nonaqueous electrolyte batteries (that is, single cells) according to the second embodiment.
  • the single cells are electrically connected in series, parallel, or connected in series and parallel.
  • the battery pack 200 which concerns on this embodiment is demonstrated concretely.
  • the flat type nonaqueous electrolyte battery 100 shown in FIG. 3 is used as the unit cell 121.
  • the plurality of single cells 121 are stacked such that the negative electrode terminal 6 and the positive electrode terminal 7 extending to the outside are aligned in the same direction, and are fastened with an adhesive tape 122 to constitute an assembled battery 123.
  • These unit cells 121 are electrically connected to each other in series as shown in FIGS.
  • the printed wiring board 124 is disposed to face the side surface of the unit cell 121 from which the negative electrode terminal 6 and the positive electrode terminal 7 extend. As shown in FIG. 7, a thermistor 125 (see FIG. 8), a protection circuit 126, and a terminal 127 for energizing external devices are mounted on the printed wiring board 124. Note that an insulating plate (not shown) is attached to the surface of the printed wiring board 124 facing the assembled battery 123 in order to avoid unnecessary connection with the wiring of the assembled battery 123.
  • the positive electrode side lead 128 is connected to the positive electrode terminal 7 located in the lowermost layer of the assembled battery 123, and the tip thereof is inserted into the positive electrode side connector 129 of the printed wiring board 124 and electrically connected thereto.
  • the negative electrode side lead 130 is connected to the negative electrode terminal 6 located in the uppermost layer of the assembled battery 123, and the tip thereof is inserted into the negative electrode side connector 131 of the printed wiring board 124 and electrically connected thereto.
  • These connectors 129 and 131 are connected to the protection circuit 126 through wirings 132 and 133 (see FIG. 8) formed on the printed wiring board 124.
  • the thermistor 125 is used to detect the temperature of the unit cell 121 and is not shown in FIG. 7, but is provided in the vicinity of the unit cell 121 and its detection signal is transmitted to the protection circuit 126. .
  • the protection circuit 126 can cut off the plus-side wiring 134a and the minus-side wiring 134b between the protection circuit 126 and the terminal 127 for energizing external devices under a predetermined condition.
  • the predetermined condition is, for example, when the temperature detected by the thermistor 125 is equal to or higher than a predetermined temperature.
  • the predetermined condition is when an overcharge, overdischarge, overcurrent, or the like of the unit cell 121 is detected.
  • Such detection of overcharge or the like is performed for each single cell 121 or the entire single cell 121.
  • a battery voltage may be detected and a positive electrode potential or a negative electrode potential may be detected.
  • a lithium electrode used as a reference electrode is inserted into each unit cell 121.
  • a voltage detection wiring 135 is connected to each single cell 121, and a detection signal is transmitted to the protection circuit 126 through these wirings 135.
  • protective sheets 136 made of rubber or resin are disposed on the three side surfaces of the assembled battery 123 excluding the side surfaces from which the positive electrode terminal 7 and the negative electrode terminal 6 protrude.
  • the assembled battery 123 is stored in the storage container 137 together with the protective sheets 136 and the printed wiring board 124. That is, the protective sheet 136 is disposed on each of the inner side surface in the long side direction and the inner side surface in the short side direction of the storage container 137, and the printed wiring board 124 is disposed on the inner side surface opposite to the protective sheet 136 in the short side direction. Be placed.
  • the assembled battery 123 is located in a space surrounded by the protective sheet 136 and the printed wiring board 124.
  • the lid 138 is attached to the upper surface of the storage container 137.
  • a heat shrink tape may be used for fixing the assembled battery 123.
  • protective sheets are arranged on both side surfaces of the assembled battery, the heat shrinkable tape is circulated, and then the heat shrinkable tape is heat shrunk to bind the assembled battery.
  • the unit cells 121 may be connected in series. However, in order to increase the battery capacity, the unit cells 121 may be connected in parallel, or the series connection and the parallel connection may be performed. A combined configuration may be used. In addition, the assembled battery packs can be further connected in series and in parallel. Since the battery pack of the present embodiment described above has a negative electrode having an oxide insulating layer covering at least a part of the outer edge of the negative electrode active material layer, an internal short circuit hardly occurs.
  • a battery pack is changed suitably according to a use.
  • an electronic device and further one that is required to exhibit excellent cycle characteristics when a large current is taken out is preferable.
  • Specific examples include a power source for a digital camera, a vehicle for a two- to four-wheel hybrid electric vehicle, a two- to four-wheel electric vehicle, an assist bicycle, and the like.
  • a battery pack using a nonaqueous electrolyte battery having excellent high temperature characteristics is suitably used for in-vehicle use.
  • Example 1 ⁇ Production of negative electrode> 80% by weight of silicon powder (Si) as a negative electrode active material, 10% by weight of hard carbon powder (negative electrode conductive agent), and 10% by weight of polyimide (PI) (binder) are used as N-methyl as an organic solvent.
  • a slurry was prepared by adding to pyrrolidone (NMP) and mixing. The obtained slurry was applied to both surfaces of a 10 ⁇ m-thick stainless steel foil (tensile strength 1250 N / mm 2 ) (negative electrode current collector), dried and then pressed. As a result, a negative electrode current collector having a negative electrode active material layer formed thereon was obtained. Thereafter, the negative electrode current collector on which the negative electrode active material layer was formed was cut into a rectangle having a length of 55 mm and a width of 870 mm.
  • an oxide insulating layer 90 wt% of SiO 2 powder (average particle size: 6 ⁇ m) and 10 wt% of polyvinylidene fluoride (PVdF) binder are added to NMP and mixed to prepare a slurry. did.
  • An oxide insulating layer is formed on the outer edge of the negative electrode active material layer formed on one surface of the negative electrode current collector with the slurry facing one surface of the negative electrode current collector on which the negative electrode active material layer is formed facing upward.
  • the slurry was applied so as to have a predetermined thickness t1 and width D1.
  • the oxide insulating layer has a predetermined thickness t2 and width D2 on the outer edge of the negative electrode active material layer formed on the other surface of the negative electrode current collector with the other surface of the negative electrode current collector facing upward.
  • the slurry was applied as follows. At this time, a part of the slurry applied on the negative electrode active material layer protruded from the outer peripheral portion of the negative electrode active material layer to the end face side of the negative electrode current collector.
  • the width D1 of the oxide insulating layer on one surface of the obtained negative electrode was 6 mm, and the thickness t1 in the direction perpendicular to the surface of the negative electrode active material layer was 12 ⁇ m.
  • the width D2 of the oxide insulating layer on the other surface of the negative electrode was 4 mm, and the thickness t2 in the direction perpendicular to the surface of the negative electrode active material layer was 8 ⁇ m.
  • the electric resistivity of the oxide insulating layer was 3.2 ⁇ 10 8 ⁇ m.
  • Electrode group ⁇ Production of electrode group>
  • the negative electrode of Example 1, a separator made of a polyethylene porous film, the positive electrode of Example 1, and the separator were laminated in this order to obtain a laminate.
  • the laminate was wound in a spiral shape so that the negative electrode was located on the outermost periphery, and the electrode group of Example 1 was produced.
  • Ethylene carbonate (EC) and methyl ethyl carbonate (MEC) were mixed at a volume ratio of 1: 2 to obtain a mixed solvent.
  • a nonaqueous electrolyte was prepared by dissolving 1.0 mol / L of lithium hexafluorophosphate (LiPF 6 ) in this mixed solvent.
  • Example 1 ⁇ Preparation of nonaqueous electrolyte secondary battery>
  • the electrode group of Example 1 and the above non-aqueous electrolyte were each stored in a bottomed cylindrical container made of stainless steel. Subsequently, one end of the negative electrode lead was connected to the negative electrode of the electrode group, and the other end of the negative electrode lead was connected to a bottomed cylindrical container that also served as the negative electrode terminal. In addition, an insulating sealing plate having a positive electrode terminal fitted in the center was prepared. Then, one end of the positive electrode lead was connected to the positive electrode terminal, and the other end of the positive electrode lead was connected to the positive electrode of the electrode group.
  • a cylindrical nonaqueous electrolyte secondary battery having a capacity of 3 Ah was assembled by caulking an insulating sealing plate in the upper opening of the container.
  • the obtained secondary battery was charged at 4.3 V in a 0.2 C rate and 25 ° C. environment, and then discharged at a 0.2 C rate until 2 V was reached. Thereafter, charge and discharge were repeated once at a 1C rate in a 25 ° C. environment, and the initial discharge capacity was confirmed.
  • Examples 2 to 7 The conditions shown in Table 1 as the negative electrode (the material of the negative electrode active material, the tensile strength of the negative electrode current collector, the material of the oxide insulating layer, the width of the oxide insulating layer on one side and the other side (D1 / D2) In the same manner as in Example 1, except that the surface of the negative electrode active material layer of the oxide insulating layer on one side and the other side was used in the vertical direction (t1 / t2), non-aqueous An electrolyte secondary battery was produced and the initial discharge capacity was confirmed.
  • Table 1 also shows the mass ratio of Examples 5 to 7 using two types of materials as the negative electrode active material and the mass ratio of Examples 5 to 6 using two types of materials as the oxide insulating layer.
  • the electrical resistivity of the oxide insulating layers of Examples 2 to 7 was 10 6 ⁇ m or more.
  • Example 8 90% by weight of graphite (natural graphite) as a negative electrode active material and 10% by weight of polyvinylidene fluoride (PVdF) (binder) are added to an organic solvent N-methylpyrrolidone (NMP) and mixed to obtain a slurry.
  • NMP organic solvent N-methylpyrrolidone
  • the resulting slurry was applied onto both sides entire thickness 12 ⁇ m copper foil (tensile strength 420N / mm 2) (negative electrode current collector), dried, and pressed. As a result, a negative electrode current collector having a negative electrode active material layer formed thereon was obtained.
  • a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that a negative electrode current collector having a negative electrode active material layer formed in this manner, and the initial discharge capacity was confirmed. Note that the electrical resistivity of the oxide insulating layer of Example 8 was 10 6 ⁇ m or more.
  • Example 9 Provide of negative electrode> A negative electrode current collector having the same negative electrode active material layer as that of Example 1 was produced. Thereafter, the negative electrode current collector on which the negative electrode active material layer was formed was cut into a rectangular shape having a length of 77 mm and a width of 88 mm. When the negative electrode current collector was cut, it was punched out from the central part of one vertical side leaving a tab for taking out the lead (negative electrode terminal 36 in FIG. 5). After that, an oxide insulating layer was formed so as to satisfy the conditions shown in Table 1 for three sides other than the one side where the tabs exist. The electrical resistivity of the oxide insulating layer of Example 9 was 10 6 ⁇ m or more.
  • a positive electrode current collector on which a positive electrode active material layer similar to that in Example 1 was formed was produced. Thereafter, the positive electrode current collector on which the positive electrode active material layer was formed was cut into a rectangular shape having a length of 75 mm and a width of 86 mm. As with the negative electrode, when the positive electrode current collector was cut, it was punched out from the central portion of one vertical side leaving a tab for lead extraction (positive electrode terminal 37 in FIG. 5).
  • Electrode group was prepared using the negative electrode and positive electrode prepared above and a polyethylene porous film having a thickness of 20 ⁇ m as a separator.
  • the positive electrode, the separator, the negative electrode, and the separator were stacked in this order to form a laminate.
  • This laminate was laminated so that the outermost layer was a negative electrode.
  • the produced laminate was pressed while being heated at 90 ° C. to produce a flat electrode group.
  • the obtained electrode group was accommodated in a bag-shaped exterior member and vacuum-dried at 80 ° C. for 24 hours.
  • the exterior member is formed of a laminate film having a thickness of 0.1 mm, which includes an aluminum foil having a thickness of 40 ⁇ m and a polypropylene layer formed on both surfaces of the aluminum foil.
  • a non-aqueous electrolyte similar to that in Example 1 was injected into the exterior member that accommodated the electrode group, and sealed to produce a non-aqueous electrolyte secondary battery shown in FIG. This battery had a capacity of 3 Ah.
  • the initial discharge capacity was confirmed in the same manner as in Example 1.
  • Example 1 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the oxide insulating layer was not formed, and the initial discharge capacity was confirmed.
  • Comparative Example 2 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 8 except that the oxide insulating layer was not formed, and the initial discharge capacity was confirmed.
  • the remaining capacity rate is an index indicating the degree of internal short circuit of the nonaqueous electrolyte secondary battery. Table 2 shows the results of the remaining capacity ratios of Examples 1 to 9 and Comparative Examples 1 and 2.
  • Example 1 to 7 in which the oxide insulating layer was formed, it was confirmed that the residual capacity ratio was higher than that in Comparative Example 1 in which the oxide insulating layer was not formed.
  • Example 8 in which the oxide insulating layer was formed, the residual capacity ratio was higher than that in Comparative Example 2 in which the oxide insulating layer was not formed.
  • Example 9 in a different form, the residual capacity ratio was high as in Examples 1-7. From the results of Examples 1 to 9 and Comparative Examples 1 and 2, it is possible to effectively suppress internal short circuit by forming an oxide insulating layer even when a negative electrode active material having a large volume change due to charge / discharge is used. I understood.
  • the negative electrode current collector, the negative electrode active material layer formed on one or both surfaces of the negative electrode current collector, and the oxidation covering at least a part of the outer edge of the negative electrode active material layer By using a negative electrode having a physical insulating layer, an internal short circuit in a battery using the negative electrode can be prevented.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

According to an embodiment, provided is a negative electrode for a nonaqueous electrolyte secondary battery, said negative electrode comprising a negative electrode collector, a negative electrode active material layer and an oxide insulator layer. The negative electrode active material layer is formed at least on one surface of the negative electrode collector. The oxide insulator layer coats at least a part of the outer periphery of the negative electrode active material layer.

Description

非水電解質二次電池用負極、非水電解質二次電池および電池パックAnode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and battery pack
 本発明の実施形態は、非水電解質二次電池用負極、非水電解質二次電池および電池パックに関する。 Embodiments of the present invention relate to a negative electrode for a nonaqueous electrolyte secondary battery, a nonaqueous electrolyte secondary battery, and a battery pack.
 従来、リチウムイオン二次電池などの非水電解質二次電池がある。非水電解質二次電池は、各種電子機器といった小型の物から、電気自動車などの大型の物まで、幅広い分野の電源として既に実用化されている。
 現在、非水電解質二次電池においては、利用者から、さらなる小型化、軽量化、長寿命化が要求されている。このような要求に対応するため、非水電解質二次電池の容量およびサイクル特性をさらに高めることが必要となっている。
Conventionally, there are nonaqueous electrolyte secondary batteries such as lithium ion secondary batteries. Nonaqueous electrolyte secondary batteries have already been put into practical use as power sources in a wide range of fields, from small items such as various electronic devices to large items such as electric vehicles.
Currently, in non-aqueous electrolyte secondary batteries, there are demands from users for further miniaturization, weight reduction, and longer life. In order to meet such demands, it is necessary to further increase the capacity and cycle characteristics of non-aqueous electrolyte secondary batteries.
非水電解質二次電池としては、負極活物質として炭素材料を用い、正極活物質としてニッケル、コバルト、マンガン等を含有する層状酸化物を用いたものがある。しかしながら、負極活物質として炭素材料を用いた場合、充放電容量の向上に限界がある。また、高容量の電池が得られる炭素材料として、低温焼成炭素が注目されている。しかし、低温焼成炭素は、密度が小さいため、単位体積あたりの充放電容量を大きくすることが難しい。したがって、さらなる高容量の電池を実現するためには、新しい負極活物質を開発する必要がある。 Some nonaqueous electrolyte secondary batteries use a carbon material as a negative electrode active material and a layered oxide containing nickel, cobalt, manganese, or the like as a positive electrode active material. However, when a carbon material is used as the negative electrode active material, there is a limit to improving the charge / discharge capacity. Further, low-temperature calcined carbon has attracted attention as a carbon material from which a high capacity battery can be obtained. However, since the low-temperature calcined carbon has a low density, it is difficult to increase the charge / discharge capacity per unit volume. Therefore, in order to realize a battery with a higher capacity, it is necessary to develop a new negative electrode active material.
炭素材料よりも高容量の電池が得られる負極活物質の材料として、アルミニウム(Al)、シリコン(Si)、ゲルマニウム(Ge)、スズ(Sn)、アンチモン(Sb)などの金属単体を用いることが提案されている。特に、Siを負極活物質の材料として用いた場合には、単位重量(1g)当り4200mAhという高容量が得られる。しかしながら、これらの金属単体からなる負極活物質は、Liの吸蔵放出を繰り返すことによって、元素のミクロ的な微粉化が生じやすい。このため、これらの負極活物質を用いた電池では、高いサイクル特性が得られない場合があった。 As a material for the negative electrode active material from which a battery having a higher capacity than a carbon material can be obtained, a simple metal such as aluminum (Al), silicon (Si), germanium (Ge), tin (Sn), or antimony (Sb) may be used. Proposed. In particular, when Si is used as the negative electrode active material, a high capacity of 4200 mAh per unit weight (1 g) can be obtained. However, the negative electrode active material composed of these simple metals is liable to cause microscopic pulverization of elements due to repeated insertion and extraction of Li. For this reason, in a battery using these negative electrode active materials, high cycle characteristics may not be obtained.
高いサイクル特性の得られる負極活物質の材料として、アモルファス状のスズ酸化物やシリコン酸化物を用いることが提案されている。これらの酸化物は、負極活物質の材料として用いることで、電池の高容量化と高いサイクル特性とを両立させることができる。さらに、これらの酸化物を炭素材料と複合して負極活物質として用いることで、充放電に伴う負極活物質の体積変化を抑制できる。 It has been proposed to use amorphous tin oxide or silicon oxide as a material for a negative electrode active material with high cycle characteristics. By using these oxides as a material for the negative electrode active material, it is possible to achieve both high battery capacity and high cycle characteristics. Furthermore, the volume change of the negative electrode active material accompanying charging / discharging can be suppressed by combining these oxides with a carbon material and using it as a negative electrode active material.
しかし、炭素材料と複合したスズ酸化物またはシリコン酸化物を、負極活物質として用いたとしても、依然として充電時の体積膨張と放電時の収縮とによる負極活物質の体積変化は大きい。 However, even when tin oxide or silicon oxide combined with a carbon material is used as the negative electrode active material, the volume change of the negative electrode active material due to the volume expansion during charging and the contraction during discharging is still large.
従来、非水電解質二次電池では、充放電を行うことにより内部短絡が起こる場合があった。特に、電池の内部短絡は、負極活物質として、スズ酸化物やシリコン酸化物などの充放電に伴う負極活物質の体積変化の大きい材料を用いた場合に、起こりやすかった。 Conventionally, in a nonaqueous electrolyte secondary battery, an internal short circuit may occur due to charge / discharge. In particular, the internal short circuit of the battery was likely to occur when a material having a large volume change of the negative electrode active material accompanying charging / discharging such as tin oxide or silicon oxide was used as the negative electrode active material.
特開2010-92696号公報JP 2010-92696 A
 本発明が解決しようとする課題は、電池の内部短絡を防止できる非水電解質二次電池用負極を提供することである。 The problem to be solved by the present invention is to provide a negative electrode for a non-aqueous electrolyte secondary battery that can prevent an internal short circuit of the battery.
 実施形態の非水電解質二次電池用負極は、負極集電体と、負極活物質層と、酸化物絶縁層とを持つ。負極活物質層は、負極集電体の片面または両面に形成される。酸化物絶縁層は、負極活物質層の外縁の少なくとも一部を被覆する。 The negative electrode for a nonaqueous electrolyte secondary battery of the embodiment has a negative electrode current collector, a negative electrode active material layer, and an oxide insulating layer. The negative electrode active material layer is formed on one side or both sides of the negative electrode current collector. The oxide insulating layer covers at least a part of the outer edge of the negative electrode active material layer.
第1の実施形態の非水電解質二次電池用負極を示した拡大断面模式図。The expanded cross-section schematic diagram which showed the negative electrode for nonaqueous electrolyte secondary batteries of 1st Embodiment. 第1の実施形態の非水電解質二次電池用負極を有する非水電解質二次電池の一例を説明するための断面模式図。The cross-sectional schematic diagram for demonstrating an example of the nonaqueous electrolyte secondary battery which has the negative electrode for nonaqueous electrolyte secondary batteries of 1st Embodiment. 第2の実施形態に係る扁平型非水電解質電池の一例を示す断面図。Sectional drawing which shows an example of the flat type nonaqueous electrolyte battery which concerns on 2nd Embodiment. 図3中に示したA部の拡大断面図。The expanded sectional view of the A section shown in FIG. 第2の実施形態に係る扁平型非水電解質電池の他の例を模式的に示す部分切欠斜視図。The partial notch perspective view which shows typically the other example of the flat type nonaqueous electrolyte battery which concerns on 2nd Embodiment. 図5のB部の拡大断面模式図。FIG. 6 is a schematic enlarged cross-sectional view of a portion B in FIG. 5. 第3の実施形態に係る電池パックを示す分解斜視図。The disassembled perspective view which shows the battery pack which concerns on 3rd Embodiment. 図7に示した電池パックに備えられた電気回路を示すブロック図。The block diagram which shows the electric circuit with which the battery pack shown in FIG. 7 was equipped.
 以下、実施形態の非水電解質二次電池用負極および非水電解質二次電池(以下「電池」と略記する場合がある。)を、図面を参照して説明する。なお、以下に示す図面は、実施形態に係る非水電解質二次電池および非水電解質二次電池用負極を説明するための模式図であり、その形状や寸法、比などは実際の装置と異なる個所があるが、これらについては、以下の説明と公知技術を参酌して適宜、設計変更することができる。 Hereinafter, a negative electrode for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery (hereinafter may be abbreviated as “battery”) according to embodiments will be described with reference to the drawings. The drawings shown below are schematic diagrams for explaining the nonaqueous electrolyte secondary battery and the negative electrode for a nonaqueous electrolyte secondary battery according to the embodiment, and the shapes, dimensions, ratios, and the like thereof are different from those of the actual apparatus. Although there are places, these can be appropriately modified in consideration of the following description and known techniques.
(第1の実施形態)
図1は、第1の実施形態の非水電解質二次電池用負極を示した拡大断面模式図である。
図1に示す非水電解質二次電池用負極3(以下「負極」と略記する場合がある。)は、負極集電体3aと、負極活物質層3bと、酸化物絶縁層13とを持つ。
(First embodiment)
FIG. 1 is an enlarged schematic cross-sectional view showing a negative electrode for a nonaqueous electrolyte secondary battery according to the first embodiment.
A negative electrode 3 for a non-aqueous electrolyte secondary battery shown in FIG. 1 (hereinafter sometimes abbreviated as “negative electrode”) has a negative electrode current collector 3 a, a negative electrode active material layer 3 b, and an oxide insulating layer 13. .
図1に示すように、負極集電体3aの一方の面11a(図1においては上面)および他方の面11b(図1においては下面)の全面には、負極活物質層3bが形成されている。酸化物絶縁層13は、図1に示すように、一方の面11aに形成された負極活物質層3bの外周部12bから、一方の面11a側の外縁12aと、負極集電体3aの端面11cと、他方の面11bに形成された負極活物質層3bの外縁12aとを覆って、他方の面11b側の負極活物質層3bの外周部12bまで、連続して形成されている。 As shown in FIG. 1, a negative electrode active material layer 3b is formed on the entire surface of one surface 11a (upper surface in FIG. 1) and the other surface 11b (lower surface in FIG. 1) of the negative electrode current collector 3a. Yes. As shown in FIG. 1, the oxide insulating layer 13 includes an outer edge 12a on the one surface 11a side and an end surface of the negative electrode current collector 3a from the outer peripheral portion 12b of the negative electrode active material layer 3b formed on the one surface 11a. 11c and the outer edge 12a of the negative electrode active material layer 3b formed on the other surface 11b are continuously formed up to the outer peripheral portion 12b of the negative electrode active material layer 3b on the other surface 11b side.
図1に示す負極3は、平面視矩形であり、負極3の平面形状を規定している負極集電体3aと、負極集電体3aの両面全面に形成されている負極活物質層3bとは、平面視で略同形となっている。酸化物絶縁層13は、負極3の4つの辺に沿って、図1に示す断面形状で連続して形成されている。したがって、酸化物絶縁層13は、負極活物質層3bの外縁12aの全てを被覆している。 A negative electrode 3 shown in FIG. 1 has a rectangular shape in plan view, a negative electrode current collector 3a defining the planar shape of the negative electrode 3, and a negative electrode active material layer 3b formed on the entire surface of the negative electrode current collector 3a. Are substantially the same shape in plan view. The oxide insulating layer 13 is continuously formed along the four sides of the negative electrode 3 in the cross-sectional shape shown in FIG. Therefore, the oxide insulating layer 13 covers the entire outer edge 12a of the negative electrode active material layer 3b.
負極集電体3aとしては、ステンレス箔、銅箔、銅合金箔、アルミニウム箔、アルミニウム合金箔、チタン箔、ニッケル箔などの金属箔を用いることができる。
負極集電体3aは、引張強さが500N/mm以上2000N/mm以下の金属箔であることが好ましい。引張強さが上記範囲である負極集電体3aとしては、ステンレス箔、銅合金箔からなるものなどが挙げられる。
なお、負極集電体の引張強さは、JIS Z 2241:2011に準拠した方法によって測定した数値である。
As the negative electrode current collector 3a, a metal foil such as a stainless steel foil, a copper foil, a copper alloy foil, an aluminum foil, an aluminum alloy foil, a titanium foil, or a nickel foil can be used.
The negative electrode current collector 3a is preferably a metal foil having a tensile strength of 500 N / mm 2 or more and 2000 N / mm 2 or less. Examples of the negative electrode current collector 3a having a tensile strength in the above range include a stainless steel foil and a copper alloy foil.
In addition, the tensile strength of a negative electrode electrical power collector is the numerical value measured by the method based on JISZ2241: 2011.
 負極集電体3aの引張強さが500N/mm以上であると、負極活物質層3bに含まれる負極活物質として、充放電に伴う負極活物質の体積変化の大きいものを用いた場合であっても、負極活物質の体積変化による負極集電体3aの変形が生じにくいものとなる。負極集電体3aの引張強さは、負極集電体3aの変形をより効果的に防止するために、550N/mm以上であることがより好ましい。 If the tensile strength of the negative electrode current collector 3a is at 500 N / mm 2 or more, as a negative electrode active material contained in the anode active material layer 3b, in case of using a large volume change of the negative electrode active material associated with charge and discharge Even if it exists, it will become difficult to produce the deformation | transformation of the negative electrode collector 3a by the volume change of a negative electrode active material. The tensile strength of the negative electrode current collector 3a is more preferably 550 N / mm 2 or more in order to more effectively prevent deformation of the negative electrode current collector 3a.
負極集電体3aの引張強さが2000N/mm以下であると、酸化物絶縁層13によって効果的に内部短絡を防止できる。
より詳細には、負極3を形成する際には、後述するように、負極集電体3a上に負極活物質層3bを形成し、これを負極3に対応する所定の形状に切断する工程を行っている。この工程では、切断面の上下端部に位置する負極活物質層3bの外縁12aに、バリが形成される場合がある。バリは、負極集電体3aと負極活物質層3bとからなるものであり、尖った形状を有している。また、電池を形成している負極3は、セパレータを介して正極と対向配置されている。負極3は、電池の充電に伴う負極活物質の体積膨張などによって変形し、外周部に反りが生じる場合がある。反った負極3が、負極活物質層3bの外縁12aにバリを有しているものである場合、バリが酸化物絶縁層13を介してセパレータに押し付けられる。この時、バリが酸化物絶縁層13およびセパレータを突き破ると、セパレータに穴が開いて内部短絡が起こる可能性がある。
When the tensile strength of the negative electrode current collector 3a is 2000 N / mm 2 or less, the oxide insulating layer 13 can effectively prevent an internal short circuit.
More specifically, when forming the negative electrode 3, as described later, a step of forming the negative electrode active material layer 3 b on the negative electrode current collector 3 a and cutting it into a predetermined shape corresponding to the negative electrode 3 is performed. Is going. In this step, burrs may be formed on the outer edge 12a of the negative electrode active material layer 3b located at the upper and lower ends of the cut surface. The burr is composed of the negative electrode current collector 3a and the negative electrode active material layer 3b, and has a sharp shape. Further, the negative electrode 3 forming the battery is disposed to face the positive electrode through a separator. The negative electrode 3 may be deformed by the volume expansion of the negative electrode active material accompanying charging of the battery, and the outer peripheral portion may be warped. When the warped negative electrode 3 has a burr on the outer edge 12a of the negative electrode active material layer 3b, the burr is pressed against the separator through the oxide insulating layer 13. At this time, if the burr breaks through the oxide insulating layer 13 and the separator, a hole may be formed in the separator and an internal short circuit may occur.
負極集電体3aの引張強さが2000N/mm以下であると、負極活物質層3bの外縁12aにバリが形成されても、バリの強度が低いものとなる。したがって、負極活物質層3bの外縁12aにバリが形成されていても、酸化物絶縁層13によって、セパレータに押し付けられたバリがセパレータを突き破ることを効果的に防止できる。よって、負極3のバリに起因する電池の内部短絡を効果的に防止できる。負極3を有する電池における内部短絡をより効果的に防止するためには、負極集電体3aの引張強さは1500N/mm以下であることがより好ましい。 When the negative electrode current collector 3a has a tensile strength of 2000 N / mm 2 or less, even if burrs are formed on the outer edge 12a of the negative electrode active material layer 3b, the burr strength is low. Therefore, even if burrs are formed on the outer edge 12a of the negative electrode active material layer 3b, the oxide insulating layer 13 can effectively prevent the burrs pressed against the separator from breaking through the separator. Therefore, the internal short circuit of the battery due to the burr of the negative electrode 3 can be effectively prevented. In order to more effectively prevent an internal short circuit in the battery having the negative electrode 3, the tensile strength of the negative electrode current collector 3a is more preferably 1500 N / mm 2 or less.
負極活物質層3bは、負極活物質と、結着剤とを含むものである。
 負極活物質としては、シリコン、シリコン含有酸化物、スズ、スズ含有酸化物、アナターゼ型二酸化チタンTiO、β型二酸化チタン、ラムスデライト型チタン酸リチウムであるLiTi、スピネル型チタン酸リチウムであるLiTi12、酸化ニオブ、ニオブ含有複合酸化物などを用いることができる。これらの負極活物質は、混合して用いてもよい。
The negative electrode active material layer 3b includes a negative electrode active material and a binder.
As the negative electrode active material, silicon, silicon-containing oxide, tin, tin-containing oxide, anatase type titanium dioxide TiO 2 , β-type titanium dioxide, ramsdellite type lithium titanate Li 2 Ti 3 O 7 , spinel type titanium Li 4 Ti 5 O 12 that is lithium acid, niobium oxide, niobium-containing composite oxide, or the like can be used. These negative electrode active materials may be mixed and used.
負極活物質は、シリコン、シリコン含有酸化物、スズ、スズ含有酸化物から選ばれる1種類以上を含むことが好ましい。これらの負極活物質を含む負極3を有する電池とすることで、電池の高容量化と高いサイクル特性とを両立させることができる。
シリコン含有酸化物としては、SiO、SiOが挙げられる。SiOおよびSiOは、表面にSiが析出しているものであってもよい。スズ含有酸化物としては、SnO、SnOが挙げられる。SnOおよびSnOは、表面にSnが析出しているものであってもよい。
The negative electrode active material preferably contains one or more selected from silicon, silicon-containing oxides, tin, and tin-containing oxides. By making the battery having the negative electrode 3 containing these negative electrode active materials, it is possible to achieve both high battery capacity and high cycle characteristics.
The silicon-containing oxide, SiO, SiO 2 and the like. SiO and SiO 2 may have Si deposited on the surface. The tin-containing oxide, SnO, SnO 2 and the like. SnO and SnO 2 may have Sn deposited on the surface.
負極活物質は、シリコン含有酸化物および/またはスズ含有酸化物を炭素で被覆することにより複合化したものであってもよい。このような負極活物質を含む負極3を有する電池とすることで、複合化していないシリコン含有酸化物および/またはスズ含有酸化物を含む場合と比較して、充放電に伴う負極活物質の体積変化を抑制できる。よって、電池の高容量化と高いサイクル特性とを両立させつつ、負極3の外周部に反りが生じることを防止でき、効果的に内部短絡を防止できる。 The negative electrode active material may be a composite of silicon-containing oxide and / or tin-containing oxide coated with carbon. Compared with the case where a silicon-containing oxide and / or a tin-containing oxide that is not complexed is included, the volume of the negative electrode active material accompanying charge / discharge is reduced by using the negative electrode 3 including such a negative electrode active material. Change can be suppressed. Therefore, it is possible to prevent the outer peripheral portion of the negative electrode 3 from warping while achieving both high battery capacity and high cycle characteristics, and effectively prevent an internal short circuit.
結着剤としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴム、エチレン-ブタジエンゴム(SBR)、ポリプロピレン(PP)、ポリエチレン(PE)、カルボキシメチルセルロース(CMC)、ポリイミド(PI)、ポリアクリルイミド(PAI)などを用いることができる。 As binders, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluorine-based rubber, ethylene-butadiene rubber (SBR), polypropylene (PP), polyethylene (PE), carboxymethylcellulose (CMC), polyimide (PI), polyacrylimide (PAI), and the like can be used.
 負極活物質層3bには、負極活物質と結着剤の他に、必要に応じて負極導電剤が含まれていてもよい。
負極導電剤としては、例えば、炭素材料を用いることができる。炭素材料としては、アルカリ金属の吸蔵性と導電性の両特性の高いものを用いることが好ましい。このような炭素材料としては、ハードカーボン(難黒鉛化性炭素)、アセチレンブラック、カーボンブラック、結晶性の高いグラファイトなどが挙げられる。
負極活物質層3bは、負極活物質自体のサイクル性能を改善するために、負極活物質と異なる微少量の元素を含むものであってもよい。
In addition to the negative electrode active material and the binder, the negative electrode active material layer 3b may contain a negative electrode conductive agent as necessary.
As the negative electrode conductive agent, for example, a carbon material can be used. As the carbon material, it is preferable to use a material having high alkali metal occlusion and conductivity. Examples of such a carbon material include hard carbon (non-graphitizable carbon), acetylene black, carbon black, and highly crystalline graphite.
In order to improve the cycle performance of the negative electrode active material itself, the negative electrode active material layer 3b may contain a small amount of elements different from the negative electrode active material.
 負極活物質層3bにおいて、負極活物質と負極導電剤と結着剤との配合割合は、負極活物質70~95質量%、負極導電剤0~25質量%、結着剤2~10質量%とすることが好ましい。負極活物質がシリコン元素を含むものである場合、負極活物質層3b中の炭素元素に対するシリコン元素の原子比((シリコン原子数/炭素原子数)×100(原子%))は、5~50原子%であることが好ましい。また、負極活物質がスズ元素を含むものである場合、負極活物質層3b中の炭素元素に対するスズ素の原子比((スズ原子数/炭素原子数)×100(原子%))は、5~50原子%であることが好ましい。 In the negative electrode active material layer 3b, the blending ratio of the negative electrode active material, the negative electrode conductive agent, and the binder is 70 to 95% by mass of the negative electrode active material, 0 to 25% by mass of the negative electrode conductive agent, and 2 to 10% by mass of the binder. It is preferable that When the negative electrode active material contains silicon element, the atomic ratio of silicon element to carbon element in negative electrode active material layer 3b ((number of silicon atoms / number of carbon atoms) × 100 (atomic%)) is 5 to 50 atomic%. It is preferable that When the negative electrode active material contains tin element, the atomic ratio of tin to carbon element in the negative electrode active material layer 3b ((tin atom number / carbon atom number) × 100 (atomic%)) is 5 to 50 It is preferably atomic%.
酸化物絶縁層13は、酸化物とバインダーとを含む絶縁体である。ここで、絶縁体とは、電気抵抗率が10Ωm以上であることを意味する。
バインダーとしては、ポリフッ化ビニリデン(PVdF)、アクリル系バインダーなどを用いることができる。
The oxide insulating layer 13 is an insulator containing an oxide and a binder. Here, the insulator means that the electrical resistivity is 10 6 Ωm or more.
As the binder, polyvinylidene fluoride (PVdF), an acrylic binder, or the like can be used.
酸化物としては、上記の電気抵抗率を有する酸化物絶縁層13が得られるものであればよい。具体的には、酸化物は、SiO、Al、ZrOから選ばれる1種以上を含むことが好ましい。酸化物絶縁層13に含まれる酸化物が、これらから選ばれる1種以上である場合、電気抵抗率の十分に高い酸化物絶縁層13が得られる。また、これらの酸化物は、非水電解質中に含まれるHFと負極活物質層3bとの副反応を抑制できるものであるため、酸化物絶縁層13の材料として好ましい。
酸化物絶縁層13に含まれる酸化物が、SiO、Al、ZrOから選ばれる1種以上である場合、酸化物の平均粒子径は0.5~10μmの範囲であることが好ましい。平均粒子径が上記範囲外であると、酸化絶縁物層13が短絡の要因になったり、酸化物とバインダーとを含むスラリーを塗布する方法により酸化物絶縁層13を形成する場合に、スラリーが塗布しにくくなったりする場合がある。
Any oxide may be used as long as the oxide insulating layer 13 having the above electrical resistivity can be obtained. Specifically, the oxide preferably contains one or more selected from SiO 2 , Al 2 O 3 , and ZrO 2 . When the oxide contained in the oxide insulating layer 13 is at least one selected from these, the oxide insulating layer 13 having a sufficiently high electrical resistivity can be obtained. These oxides are preferable as a material for the oxide insulating layer 13 because they can suppress side reactions between HF contained in the nonaqueous electrolyte and the negative electrode active material layer 3b.
Oxide contained in the oxide insulating layer 13, that when it is SiO 2, Al 2 O 3, 1 or more selected from ZrO 2, average particle diameter of the oxide is in the range of 0.5 ~ 10 [mu] m preferable. When the average particle diameter is outside the above range, the oxide insulator layer 13 causes a short circuit, or when the oxide insulating layer 13 is formed by a method of applying a slurry containing an oxide and a binder, It may become difficult to apply.
 酸化物絶縁層13は、図1に示す負極活物質層3bの表面に垂直方向の厚みt1、t2が、1μm以上15μm以下のものであることが好ましい。酸化物絶縁層13の負極活物質層3bの表面に垂直方向の厚みt1、t2が1μm以上であると、負極活物質層3bの外縁12aにバリが形成されていても、酸化物絶縁層13によって、セパレータに押し付けられたバリがセパレータを突き破ることを効果的に防止できる。よって、負極3を有する電池における内部短絡をより効果的に防止できる。上記の酸化物絶縁層13の厚みt1、t2は、負極3を有する電池における内部短絡を防止する効果をさらに向上させるために、5μm以上であることがより好ましい。 The oxide insulating layer 13 preferably has a thickness t1, t2 in the direction perpendicular to the surface of the negative electrode active material layer 3b shown in FIG. When the thicknesses t1 and t2 in the direction perpendicular to the surface of the negative electrode active material layer 3b of the oxide insulating layer 13 are 1 μm or more, even if burrs are formed on the outer edge 12a of the negative electrode active material layer 3b, the oxide insulating layer 13 Thus, it is possible to effectively prevent the burr pressed against the separator from breaking through the separator. Therefore, the internal short circuit in the battery having the negative electrode 3 can be more effectively prevented. The thicknesses t1 and t2 of the oxide insulating layer 13 are more preferably 5 μm or more in order to further improve the effect of preventing an internal short circuit in the battery having the negative electrode 3.
 酸化物絶縁層13が、負極活物質層3bの表面に垂直方向の厚みt1、t2が15μm以下のものであると、負極活物質層3b上の酸化物絶縁層13の形成されている部分と、酸化物絶縁層13の形成されていない部分との段差が小さいものとなる。このため、酸化物絶縁層13の厚みに起因する負極3の表面の段差が、負極3を有する電池の形状に影響を及ぼしにくく、好ましい。上記の酸化物絶縁層13の厚みt1、t2は、より好ましくは10μm以下である。 When the oxide insulating layer 13 has thicknesses t1 and t2 in the direction perpendicular to the surface of the negative electrode active material layer 3b of 15 μm or less, the portion where the oxide insulating layer 13 is formed on the negative electrode active material layer 3b; The step difference from the portion where the oxide insulating layer 13 is not formed is small. For this reason, the level | step difference of the surface of the negative electrode 3 resulting from the thickness of the oxide insulating layer 13 does not affect the shape of the battery which has the negative electrode 3, and is preferable. The thicknesses t1 and t2 of the oxide insulating layer 13 are more preferably 10 μm or less.
 酸化物絶縁層13は、負極活物質層3bの表面に垂直方向の厚みt1、t2が、負極集電体3aの一方の面11a側と、他方の面11b側とで、同じであるものでもよいし、異なっているものであってもよい。
 図1に示す酸化物絶縁層13では、負極活物質層3bの表面に垂直方向の厚みt1、t2が、負極集電体3aの一方の面11a側と、他方の面11b側とで異なっている。図1に示す酸化物絶縁層13では、一方の面11a側の酸化物絶縁層13の厚みt1が、他方の面11b側の酸化物絶縁層13の厚みt2よりも厚くなっている。
The oxide insulating layer 13 may have the same thickness t1 and t2 in the direction perpendicular to the surface of the negative electrode active material layer 3b on the one surface 11a side and the other surface 11b side of the negative electrode current collector 3a. It may be good or different.
In the oxide insulating layer 13 shown in FIG. 1, the thicknesses t1 and t2 in the direction perpendicular to the surface of the negative electrode active material layer 3b are different on the one surface 11a side and the other surface 11b side of the negative electrode current collector 3a. Yes. In the oxide insulating layer 13 shown in FIG. 1, the thickness t1 of the oxide insulating layer 13 on the one surface 11a side is thicker than the thickness t2 of the oxide insulating layer 13 on the other surface 11b side.
図1に示す酸化物絶縁層13の幅D1、D2は、平面視で負極活物質層3bの外縁12aから酸化物絶縁層13の内側の端部までの寸法である。酸化物絶縁層13の幅D1、D2は、1mm~1cmであることが好ましい。
酸化物絶縁層13の幅D1、D2が1mm以上であると、反った負極3の酸化物絶縁層13がセパレータに押し付けられることによって、セパレータに穴が開いたとしても、穴を介して正極側に露出された部分が酸化物絶縁層13のみとなりやすくなる。酸化物絶縁層13は絶縁体であるため、正極側に露出されても、電池の内部短絡が防止される。また、酸化物絶縁層13の幅D1、D2が1mm以上であると、酸化物とバインダーとを含むスラリーを塗布する方法により酸化物絶縁層13を形成する場合に、スラリーの塗布幅を酸化物絶縁層13の幅D1、D2に対応する寸法に容易に制御できる。
The widths D1 and D2 of the oxide insulating layer 13 illustrated in FIG. 1 are dimensions from the outer edge 12a of the negative electrode active material layer 3b to the inner end of the oxide insulating layer 13 in plan view. The widths D1 and D2 of the oxide insulating layer 13 are preferably 1 mm to 1 cm.
When the widths D1 and D2 of the oxide insulating layer 13 are 1 mm or more, even if the oxide insulating layer 13 of the warped negative electrode 3 is pressed against the separator, even if the separator has a hole, the positive electrode side through the hole The part exposed to is likely to be only the oxide insulating layer 13. Since the oxide insulating layer 13 is an insulator, an internal short circuit of the battery is prevented even when exposed to the positive electrode side. Further, when the oxide insulating layer 13 is formed by a method of applying a slurry containing an oxide and a binder, the width D1 and D2 of the oxide insulating layer 13 is 1 mm or more. The dimensions corresponding to the widths D1 and D2 of the insulating layer 13 can be easily controlled.
酸化物絶縁層13の幅D1、D2が2mm以上であると、電池の内部短絡が、より一層生じにくいものとなる。また、酸化物絶縁層13の幅D1、D2が2mm以上であると、上記スラリーを塗布する方法により酸化物絶縁層13を形成する場合に、高精度でスラリーの塗布幅を制御でき、より好ましい。 When the widths D1 and D2 of the oxide insulating layer 13 are 2 mm or more, the internal short circuit of the battery is much less likely to occur. Moreover, when the oxide insulating layer 13 is formed by the method of applying the slurry, it is more preferable that the widths D1 and D2 of the oxide insulating layer 13 be 2 mm or more because the application width of the slurry can be controlled with high accuracy. .
酸化物絶縁層13の幅D1、D2が、1cm以下であると、酸化物絶縁層13が形成されていることによる負極活物質層3b上の充放電反応面積の縮小を抑制できる。負極活物質層3b上の充放電反応面積を確保するために、酸化物絶縁層13の幅D1、D2は、7mm以下であることがより好ましい。 When the widths D1 and D2 of the oxide insulating layer 13 are 1 cm or less, reduction of the charge / discharge reaction area on the negative electrode active material layer 3b due to the formation of the oxide insulating layer 13 can be suppressed. In order to secure a charge / discharge reaction area on the negative electrode active material layer 3b, the widths D1 and D2 of the oxide insulating layer 13 are more preferably 7 mm or less.
 酸化物絶縁層13の幅D1、D2は、負極集電体3aの一方の面11a側と、他方の面11b側とで、同じであってもよいし、異なっていてもよい。
 図1に示す酸化物絶縁層13の幅D1、D2は、負極集電体3aの一方の面11a側と、他方の面11b側とで異なっている。図1に示す酸化物絶縁層13では、一方の面11a側の酸化物絶縁層13の幅D1が、他方の面11b側の酸化物絶縁層13の幅D2よりも厚くなっている。
The widths D1 and D2 of the oxide insulating layer 13 may be the same or different on the one surface 11a side and the other surface 11b side of the negative electrode current collector 3a.
The widths D1 and D2 of the oxide insulating layer 13 shown in FIG. 1 are different on the one surface 11a side and the other surface 11b side of the negative electrode current collector 3a. In the oxide insulating layer 13 shown in FIG. 1, the width D1 of the oxide insulating layer 13 on the one surface 11a side is larger than the width D2 of the oxide insulating layer 13 on the other surface 11b side.
次に、本実施形態の負極3の製造方法について説明する。
 はじめに、負極集電体3aの両面全面に、負極活物質層3bを形成する。負極活物質層3bを形成するには、まず、負極活物質と負極導電剤と結着剤とを、有機溶媒に分散させてなるスラリーを調製する。次いで、スラリーを、負極集電体3aの両面全面に塗布し、乾燥した後、プレスする。
負極活物質層3bを形成するスラリーに用いる有機溶媒としては、例えば、N-メチル-2-ピロリドン(NMP)、ジメチルホルムアミド(DMF)などが使用できる。
Next, the manufacturing method of the negative electrode 3 of this embodiment is demonstrated.
First, the negative electrode active material layer 3b is formed on the entire surfaces of the negative electrode current collector 3a. In order to form the negative electrode active material layer 3b, first, a slurry in which the negative electrode active material, the negative electrode conductive agent, and the binder are dispersed in an organic solvent is prepared. Next, the slurry is applied to the entire surface of the negative electrode current collector 3a, dried, and then pressed.
Examples of the organic solvent used in the slurry for forming the negative electrode active material layer 3b include N-methyl-2-pyrrolidone (NMP) and dimethylformamide (DMF).
その後、負極活物質層3bの形成された負極集電体3aを、負極3に対応する所定の形状に切断する。この際、切断面の上下端部に位置する負極活物質層3bの外縁12aに、バリが形成される場合がある。 Thereafter, the negative electrode current collector 3 a on which the negative electrode active material layer 3 b is formed is cut into a predetermined shape corresponding to the negative electrode 3. At this time, burrs may be formed on the outer edge 12a of the negative electrode active material layer 3b located at the upper and lower ends of the cut surface.
次に、負極活物質層3bの外縁12aの全てを被覆する酸化物絶縁層13を形成する。酸化物絶縁層13を形成するには、まず、酸化物とバインダーとを有機溶媒に分散させてなるスラリーを調製する。
酸化物絶縁層13を形成するスラリーに用いる有機溶媒としては、例えば、N-メチル-2-ピロリドン(NMP)、ジメチルホルムアミド(DMF)などが使用できる。
Next, the oxide insulating layer 13 that covers the entire outer edge 12a of the negative electrode active material layer 3b is formed. In order to form the oxide insulating layer 13, first, a slurry in which an oxide and a binder are dispersed in an organic solvent is prepared.
As the organic solvent used in the slurry for forming the oxide insulating layer 13, for example, N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), or the like can be used.
次いで、負極集電体3aの一方の面11aを上に向けて、負極集電体3aの一方の面11aに形成された負極活物質層3bの外縁12aに、酸化物絶縁層13が所定の厚みt1および幅D1となるようにスラリーを塗布する。このとき、外縁12aに塗布されたスラリーの一部は、負極活物質層3b上から負極集電体3aの端面11c側にはみ出して回り込む。このことによって、負極集電体3aの端面11cにもスラリーが塗布される。 Next, the oxide insulating layer 13 is formed on the outer edge 12a of the negative electrode active material layer 3b formed on the one surface 11a of the negative electrode current collector 3a with the one surface 11a of the negative electrode current collector 3a facing upward. The slurry is applied so as to have a thickness t1 and a width D1. At this time, a part of the slurry applied to the outer edge 12a protrudes from the negative electrode active material layer 3b to the end face 11c side of the negative electrode current collector 3a. As a result, the slurry is also applied to the end face 11c of the negative electrode current collector 3a.
次いで、負極集電体3aの他方の面11bを上に向けて、負極集電体3aの他方の面11bに形成された負極活物質層3bの外縁12aに、酸化物絶縁層13が所定の厚みt2および幅D2となるようにスラリーを塗布する。このとき、外縁12aに塗布されたスラリーの一部は、負極活物質層3b上から負極集電体3aの端面11c側にはみ出して回り込む。このことによって、負極集電体3aの一方の面11aに形成された負極活物質層3bの外周部12bから、一方の面11a側の外縁12aと、負極集電体3aの端面11cと、負極集電体3aの他方の面11bに形成された負極活物質層3bの外縁12aとを覆って、他方の面11b側の負極活物質層3bの外周部12bまで、連続してスラリーが塗布される。
その後、塗布したスラリーを乾燥し、プレスすることにより、図1に示す断面形状を有する酸化物絶縁層13が得られる。
Next, with the other surface 11b of the negative electrode current collector 3a facing upward, the oxide insulating layer 13 is formed on the outer edge 12a of the negative electrode active material layer 3b formed on the other surface 11b of the negative electrode current collector 3a. The slurry is applied so as to have a thickness t2 and a width D2. At this time, a part of the slurry applied to the outer edge 12a protrudes from the negative electrode active material layer 3b to the end face 11c side of the negative electrode current collector 3a. Thus, from the outer peripheral portion 12b of the negative electrode active material layer 3b formed on the one surface 11a of the negative electrode current collector 3a, the outer edge 12a on the one surface 11a side, the end surface 11c of the negative electrode current collector 3a, and the negative electrode The slurry is continuously applied to the outer peripheral portion 12b of the negative electrode active material layer 3b on the other surface 11b side, covering the outer edge 12a of the negative electrode active material layer 3b formed on the other surface 11b of the current collector 3a. The
Thereafter, the applied slurry is dried and pressed to obtain the oxide insulating layer 13 having the cross-sectional shape shown in FIG.
 本実施形態の負極3は、負極集電体3aと、負極集電体3aの両面に形成された負極活物質層3bと、負極活物質層3bの外縁12a全てを被覆する酸化物絶縁層13とを有するものである。このため、負極3が、負極活物質層3bの外縁12aにバリを有するものであったとしても、バリが酸化物絶縁層13に覆われているものとなる。また、負極3は、酸化物絶縁層13を有しているため、これを用いた電池において負極活物質の体積変化に伴う変形が生じにくいものとなる。 The negative electrode 3 of this embodiment includes a negative electrode current collector 3a, a negative electrode active material layer 3b formed on both surfaces of the negative electrode current collector 3a, and an oxide insulating layer 13 that covers all the outer edges 12a of the negative electrode active material layer 3b. It has. For this reason, even if the negative electrode 3 has a burr on the outer edge 12a of the negative electrode active material layer 3b, the burr is covered with the oxide insulating layer 13. Moreover, since the negative electrode 3 has the oxide insulating layer 13, in the battery using this, the deformation accompanying the volume change of the negative electrode active material is difficult to occur.
 すなわち、本実施形態の負極3を用いた電池では、充電時に負極活物質が体積膨張しても、負極3の外周部に反りが生じにくく、外周部に反りが生じたとしても、負極3のバリが酸化物絶縁層13を介してセパレータに押し付けられる。よって、セパレータに押し付けられたバリが、セパレータを突き破ることを防止でき、負極3のバリに起因する電池の内部短絡を防止できる。 That is, in the battery using the negative electrode 3 of the present embodiment, even if the negative electrode active material expands during charging, the outer periphery of the negative electrode 3 hardly warps, and even if the outer periphery warps, The burrs are pressed against the separator through the oxide insulating layer 13. Therefore, the burr pressed against the separator can be prevented from breaking through the separator, and an internal short circuit of the battery due to the burr of the negative electrode 3 can be prevented.
しかも、酸化物絶縁層13は絶縁体であるため、反った負極3の酸化物絶縁層13がセパレータに押し付けられることによって、セパレータに穴が開いたとしても、穴を介して正極側に露出された部分が酸化物絶縁層13のみである場合には、電池の内部短絡は生じない。したがって、本実施形態の負極3を有する電池は、内部短絡が生じにくいものとなる。 In addition, since the oxide insulating layer 13 is an insulator, even if the oxide insulating layer 13 of the warped negative electrode 3 is pressed against the separator and a hole is formed in the separator, the oxide insulating layer 13 is exposed to the positive electrode side through the hole. In the case where only the oxide insulating layer 13 is present, the internal short circuit of the battery does not occur. Therefore, the battery having the negative electrode 3 of the present embodiment is less likely to cause an internal short circuit.
 本実施形態の負極3は、負極活物質層3bの外縁12aが酸化物絶縁層13によって被覆されたものである。負極活物質層3bの外縁12aは、これを用いた電池において、電流密度の集中によるリチウムの析出が生じやすい部分である。本実施形態の負極3を用いた電池では、リチウムの析出が生じやすい負極活物質層3bの外縁12aと、非水電解質とが接触しないものとなる。このため、負極3では、負極活物質層3bの外周部12bにリチウムが析出することを防止できる。 In the negative electrode 3 of the present embodiment, the outer edge 12a of the negative electrode active material layer 3b is covered with the oxide insulating layer 13. The outer edge 12a of the negative electrode active material layer 3b is a portion where lithium deposition is likely to occur due to current density concentration in a battery using the negative electrode active material layer 3b. In the battery using the negative electrode 3 of the present embodiment, the outer edge 12a of the negative electrode active material layer 3b in which lithium is likely to precipitate does not contact the nonaqueous electrolyte. For this reason, in the negative electrode 3, it can prevent that lithium precipitates on the outer peripheral part 12b of the negative electrode active material layer 3b.
 本実施形態の負極3において、負極活物質層3bが、シリコン、シリコン含有酸化物、スズ、スズ含有酸化物から選ばれる1種類以上を含む負極活物質を含むものである場合、電池の高容量化と高いサイクル特性とを両立させることができる。
 なお、シリコン、シリコン含有酸化物、スズ、スズ含有酸化物から選ばれる1種類以上を含む負極活物質は、充放電に伴う負極活物質の体積変化の大きいものである。このためこれらの負極活物質を用いた負極3では、外周部に反りが生じやすい。したがって、従来、これらの負極活物質を用いた負極を有する電池は、特に、内部短絡が起こりやすいものであった。
In the negative electrode 3 of the present embodiment, when the negative electrode active material layer 3b includes a negative electrode active material containing one or more selected from silicon, silicon-containing oxides, tin, and tin-containing oxides, High cycle characteristics can be achieved at the same time.
Note that the negative electrode active material including one or more selected from silicon, silicon-containing oxide, tin, and tin-containing oxide has a large volume change of the negative electrode active material accompanying charge / discharge. For this reason, in the negative electrode 3 using these negative electrode active materials, the outer peripheral portion is likely to warp. Therefore, in the past, batteries having a negative electrode using these negative electrode active materials have been particularly prone to internal short circuits.
これに対し、本実施形態の負極3では、上述したように、酸化物絶縁層13によって外周部の反りを抑制できる。しかも、本実施形態の負極3では、外周部に反りが生じたとしても、酸化物絶縁層13によって、負極3を用いた電池の内部短絡を防止できる。よって、本実施形態の負極3を用いた電池では、シリコン、シリコン含有酸化物、スズ、スズ含有酸化物から選ばれる1種類以上を含む負極活物質を含む負極活物質層3bを形成することで、内部短絡を抑制しつつ、高容量化と高いサイクル特性とを実現できる。 On the other hand, in the negative electrode 3 of the present embodiment, as described above, the warpage of the outer peripheral portion can be suppressed by the oxide insulating layer 13. Moreover, in the negative electrode 3 of the present embodiment, even if the outer peripheral portion is warped, the oxide insulating layer 13 can prevent an internal short circuit of the battery using the negative electrode 3. Therefore, in the battery using the negative electrode 3 of the present embodiment, the negative electrode active material layer 3b including the negative electrode active material including one or more selected from silicon, silicon-containing oxide, tin, and tin-containing oxide is formed. Thus, high capacity and high cycle characteristics can be realized while suppressing internal short circuit.
 上記実施形態の負極3では、負極活物質層は、負極集電体の両面全面に形成したが、負極活物質層は、負極集電体の片面にのみ形成されたものであってもよい。また、負極集電体の一方の面および/または他方の面の負極活物質層が、負極集電体表面の一部にのみ形成され、負極活物質層の形成されていない領域を有するものであってもよい。
 上記実施形態の負極では、酸化物絶縁層が、負極活物質層の外縁の全てを被覆しているものとしたが、負極活物質層の外縁のうち一部のみを被覆していてもよい。
In the negative electrode 3 of the above embodiment, the negative electrode active material layer is formed on the entire surface of both surfaces of the negative electrode current collector, but the negative electrode active material layer may be formed only on one surface of the negative electrode current collector. Further, the negative electrode active material layer on one surface and / or the other surface of the negative electrode current collector is formed only on a part of the surface of the negative electrode current collector and has a region where the negative electrode active material layer is not formed. There may be.
In the negative electrode of the above embodiment, the oxide insulating layer covers all of the outer edge of the negative electrode active material layer, but may cover only a part of the outer edge of the negative electrode active material layer.
 また、負極活物質層が、負極集電体3aの両面に形成されている場合、酸化物絶縁層が、負極集電体3aの一方の面11aと他方の面11bの両方の負極活物質層の外縁を被覆していることが好ましいが、一方の面11aに形成された負極活物質層の外縁のみを被覆しているものであってもよい。 Moreover, when the negative electrode active material layer is formed on both surfaces of the negative electrode current collector 3a, the oxide insulating layer is formed on both the first surface 11a and the other surface 11b of the negative electrode current collector 3a. It is preferable that the outer edge of the negative electrode active material layer is covered, but the outer edge of the negative electrode active material layer formed on the one surface 11a may be covered.
 酸化物絶縁層は、負極集電体3aの端面11cを被覆するものであってもよいが、負極集電体3aの端面11c上に酸化物絶縁層13が形成されていなくてもよく、負極集電体3aの端面11cは一部または全部が露出されていてもよい。
 負極3、負極集電体3a、負極活物質層3bの平面形状は、負極3の用いられる電池の形状に応じて適宜決定され、特に限定されない。
The oxide insulating layer may cover the end surface 11c of the negative electrode current collector 3a, but the oxide insulating layer 13 may not be formed on the end surface 11c of the negative electrode current collector 3a. Part or all of the end face 11c of the current collector 3a may be exposed.
The planar shapes of the negative electrode 3, the negative electrode current collector 3a, and the negative electrode active material layer 3b are appropriately determined according to the shape of the battery in which the negative electrode 3 is used, and are not particularly limited.
 本実施形態の負極3において、例えば、酸化物絶縁層13に代えて、樹脂を用いて酸化物絶縁層13と同様の形状の絶縁層を形成することも考えられる。しかし、樹脂は、耐溶剤性、耐還元性、取扱いなどの観点から、酸化物と比較して不向きである。 In the negative electrode 3 of the present embodiment, for example, instead of the oxide insulating layer 13, it may be possible to form an insulating layer having the same shape as the oxide insulating layer 13 using a resin. However, the resin is not suitable as compared with the oxide from the viewpoints of solvent resistance, reduction resistance, handling, and the like.
(第2の実施形態)
図2は、第1の実施形態の非水電解質二次電池用負極を有する非水電解質二次電池の一例を説明するための断面模式図である。
図2に示す非水電解質二次電池10は、図1に示す負極3と、正極5と、負極3と正極5との間に配置されたセパレータ4と、非水電解質(不図示)とを有する。
正極5は、図2に示すように、正極集電体5aと、正極集電体5aの両面全面に形成された正極活物質層5bとからなる。
(Second Embodiment)
FIG. 2 is a schematic cross-sectional view for explaining an example of a non-aqueous electrolyte secondary battery having the negative electrode for a non-aqueous electrolyte secondary battery according to the first embodiment.
A non-aqueous electrolyte secondary battery 10 shown in FIG. 2 includes the negative electrode 3, the positive electrode 5, the separator 4 disposed between the negative electrode 3 and the positive electrode 5, and a non-aqueous electrolyte (not shown). Have.
As shown in FIG. 2, the positive electrode 5 includes a positive electrode current collector 5a and a positive electrode active material layer 5b formed on both surfaces of the positive electrode current collector 5a.
図2に示す電池10は、平面視で、負極3の負極活物質層3bが形成されている領域と正極5の正極活物質層5bが形成されている領域とが重なり合う第1領域14を有している。また、図2に示す電池10は、第1領域14の外側に、正極5が配置されておらず、負極3の負極活物質層3bが形成されている第2領域15を有している。
図2に示す電池10は、第2領域15を有することにより、負極活物質層3bの外周部12bにおける電流密度の集中を抑制でき、負極活物質層3bの外周部12bにリチウムが析出することを防止できる。
The battery 10 shown in FIG. 2 has a first region 14 in which the region where the negative electrode active material layer 3b of the negative electrode 3 is formed and the region where the positive electrode active material layer 5b of the positive electrode 5 are formed overlap in a plan view. is doing. In addition, the battery 10 shown in FIG. 2 has a second region 15 in which the positive electrode 5 is not disposed and the negative electrode active material layer 3 b of the negative electrode 3 is formed outside the first region 14.
The battery 10 shown in FIG. 2 has the second region 15, so that concentration of current density in the outer peripheral portion 12 b of the negative electrode active material layer 3 b can be suppressed, and lithium is deposited on the outer peripheral portion 12 b of the negative electrode active material layer 3 b. Can be prevented.
 次に、正極5について説明する。
図2に示すように、正極集電体5aの両面全面には、正極活物質層5bが形成されている。
正極集電体5aとしては、ステンレス箔、銅箔、銅合金箔、アルミニウム箔、アルミニウム合金箔、チタン箔、ニッケル箔などの金属箔を用いることができる。
Next, the positive electrode 5 will be described.
As shown in FIG. 2, a positive electrode active material layer 5b is formed on the entire surface of both surfaces of the positive electrode current collector 5a.
As the positive electrode current collector 5a, a metal foil such as a stainless steel foil, a copper foil, a copper alloy foil, an aluminum foil, an aluminum alloy foil, a titanium foil, or a nickel foil can be used.
正極活物質層5bは、正極活物質と、結着剤とを含むものである。
 正極活物質としては、例えば、リチウム複合酸化物を用いることができる。リチウム複合酸化物としては、リチウムマンガン複合酸化物(例えばLiMnまたはLiMnO)、リチウムニッケル複合酸化物(例えばLiNiO)、リチウムコバルト複合酸化物(LiCoO)、リチウムニッケルコバルト複合酸化物(例えばLiNi1-xCo、0<x≦1)、リチウムマンガンコバルト複合酸化物(例えばLiMn2-xCo、0<x≦1)、リチウム銅複合酸化物(例えばLiCuNi1-x、0<x≦1)、リチウム複合リン酸化合物(例えばLiMnFe1-xPO、0<x≦1)などが挙げられる。
The positive electrode active material layer 5b includes a positive electrode active material and a binder.
As the positive electrode active material, for example, a lithium composite oxide can be used. Examples of the lithium composite oxide include lithium manganese composite oxide (for example, LiMn 2 O 4 or LiMnO 2 ), lithium nickel composite oxide (for example, LiNiO 2 ), lithium cobalt composite oxide (LiCoO 2 ), and lithium nickel cobalt composite oxide. (For example, LiNi 1-x Co x O 2 , 0 <x ≦ 1), lithium manganese cobalt composite oxide (for example, LiMn 2-x Co x O 4 , 0 <x ≦ 1), lithium copper composite oxide (for example, Li 2 Cu x Ni 1-x O 4 , 0 <x ≦ 1), lithium composite phosphate compound (for example, LiMn x Fe 1-x PO 4 , 0 <x ≦ 1), and the like.
結着剤としては、負極3の負極活物質層3bに含まれる結着剤と同様のものを用いることができる。具体的には、正極活物質層5bに含まれる結着剤として、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴム、エチレン-ブタジエンゴム(SBR)、ポリプロピレン(PP)、ポリエチレン(PE)、カルボキシメチルセルロース(CMC)、ポリイミド(PI)、ポリアクリルイミド(PAI)などを用いることができる。 As a binder, the thing similar to the binder contained in the negative electrode active material layer 3b of the negative electrode 3 can be used. Specifically, as a binder contained in the positive electrode active material layer 5b, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluorine-based rubber, ethylene-butadiene rubber (SBR), polypropylene (PP), Polyethylene (PE), carboxymethylcellulose (CMC), polyimide (PI), polyacrylimide (PAI), and the like can be used.
 正極活物質層5bには、正極活物質と結着剤の他に、必要に応じて正極導電剤が含まれていてもよい。
正極導電剤としては、例えば、炭素材料を用いることができる。炭素材料としては、アセチレンブラック、カーボンブラック、黒鉛などが挙げられる。
 正極活物質層5bにおいて、正極活物質と正極導電剤と結着剤との配合割合は、正極活物質80~95質量%、正極導電剤3~20質量%、結着剤2~7質量%とすることが好ましい。
In addition to the positive electrode active material and the binder, the positive electrode active material layer 5b may contain a positive electrode conductive agent as necessary.
As the positive electrode conductive agent, for example, a carbon material can be used. Examples of the carbon material include acetylene black, carbon black, and graphite.
In the positive electrode active material layer 5b, the mixing ratio of the positive electrode active material, the positive electrode conductive agent and the binder is 80 to 95% by mass of the positive electrode active material, 3 to 20% by mass of the positive electrode conductive agent, and 2 to 7% by mass of the binder. It is preferable that
正極5は、従来公知の方法により形成できる。
例えば、正極活物質と正極導電剤と結着剤とを、有機溶媒に分散させてなるスラリーを調製する。正極活物質層5bを形成するスラリーに用いる有機溶媒としては、例えば、N-メチル-2-ピロリドン(NMP)、ジメチルホルムアミド(DMF)などが使用できる。次いで、スラリーを、正極集電体5aの両面全面に塗布し、乾燥した後、プレスする。このことにより、正極5が得られる。
The positive electrode 5 can be formed by a conventionally known method.
For example, a slurry is prepared by dispersing a positive electrode active material, a positive electrode conductive agent, and a binder in an organic solvent. As the organic solvent used in the slurry for forming the positive electrode active material layer 5b, for example, N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), or the like can be used. Next, the slurry is applied to the entire surface of the positive electrode current collector 5a, dried, and then pressed. Thereby, the positive electrode 5 is obtained.
 次に、セパレータ4について説明する。
 セパレータ4としては、例えば、多孔質フィルムまたは樹脂不織布を用いることができる。多孔質フィルムとしては、ポリエチレン、ポリプロピレンからなるものが挙げられる。このようなセパレータ4は、電池10の温度が上昇して一定温度に達した場合に、溶融して細孔を閉塞し、充放電電流を大幅に減衰させるシャットダウン機能を付加しやすく、電池10の安全性を向上できるため、好ましい。また、コスト低減の観点から、セパレータ4として、セルロース系材料からなるものを用いてもよい。
Next, the separator 4 will be described.
As the separator 4, for example, a porous film or a resin nonwoven fabric can be used. Examples of the porous film include those made of polyethylene and polypropylene. Such a separator 4 is easy to add a shutdown function that melts and closes the pores when the temperature of the battery 10 rises and reaches a certain temperature, and greatly attenuates the charge / discharge current. It is preferable because safety can be improved. Moreover, you may use what consists of a cellulose-type material as the separator 4 from a viewpoint of cost reduction.
 次に、非水電解質について説明する。
 非水電解質としては、例えば、溶質を有機溶媒に溶解することにより調製される液状非水電解質、液状電解質と高分子材料とを複合化したゲル状非水電解質を用いることができる。
液状非水電解質は、溶質を0.5mol/L以上2.5mol/L以下の濃度で有機溶媒に溶解して得られたものが好ましい。
Next, the nonaqueous electrolyte will be described.
As the non-aqueous electrolyte, for example, a liquid non-aqueous electrolyte prepared by dissolving a solute in an organic solvent, or a gel non-aqueous electrolyte in which a liquid electrolyte and a polymer material are combined can be used.
The liquid non-aqueous electrolyte is preferably obtained by dissolving a solute in an organic solvent at a concentration of 0.5 mol / L or more and 2.5 mol / L or less.
 溶質の例としては、過塩素酸リチウム(LiClO)、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)、六フッ化砒素リチウム(LiAsF)、トリフルオロメタスルホン酸リチウム(LiCFSO)、ビストリフルオロメチルスルホニルイミドリチウム[LiN(CFSO]、[LiN(CSO]、[Li(CFSOC]、LiB[(OCO)などから選ばれる一種以上のリチウム塩が好ましい。溶質は、高電位でも酸化し難いものであることが好ましく、LiPFが最も好ましい。 Examples of solutes include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium arsenic hexafluoride (LiAsF 6 ), trifluorometa Lithium sulfonate (LiCF 3 SO 3 ), lithium bistrifluoromethylsulfonylimide [LiN (CF 3 SO 2 ) 2 ], [LiN (C 2 F 5 SO 2 ) 2 ], [Li (CF 3 SO 2 ) 3 C ], 1 or more types of lithium salt chosen from LiB [(OCO) 2 ] 2, etc. are preferable. It is preferable that the solute is difficult to oxidize even at a high potential, and LiPF 6 is most preferable.
 有機溶媒の例としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ビニレンカーボネートのような環状カーボネート;ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)のような鎖状カーボネート;テトラヒドロフラン(THF)、2メチルテトラヒドロフラン(2MeTHF)、ジオキソラン(DOX)のような環状エーテル;ジメトキシエタン(DME)、ジエトキシエタン(DEE)のような鎖状エーテル;またはγ-ブチロラクトン(GBL)、アセトニトリル(AN)、スルホラン(SL)が挙げられる。これらの有機溶媒は、単独または混合溶媒の形態で用いることができる。 Examples of organic solvents include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), and vinylene carbonate; chain forms such as diethyl carbonate (DEC), dimethyl carbonate (DMC), and methyl ethyl carbonate (MEC). Carbonates; cyclic ethers such as tetrahydrofuran (THF), 2-methyltetrahydrofuran (2MeTHF), dioxolane (DOX); chain ethers such as dimethoxyethane (DME) and diethoxyethane (DEE); or γ-butyrolactone (GBL) , Acetonitrile (AN), and sulfolane (SL). These organic solvents can be used alone or in the form of a mixed solvent.
 上記の中でも、好ましい有機溶媒としては、メチルエチルカーボネート(MEC)、プロピレンカーボネート(PC)、エチレンカーボネート(EC)およびジエチルカーボネート(DEC)からなる群のうち、少なくとも2つ以上を混合した混合溶媒、またはγ-ブチロラクトン(GBL)を含む混合溶媒が挙げられる。これらの混合溶媒を用いることにより、高温特性の優れた非水電解質電池を得ることができる。 Among the above, as a preferable organic solvent, a mixed solvent in which at least two or more of the group consisting of methyl ethyl carbonate (MEC), propylene carbonate (PC), ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed, Another example is a mixed solvent containing γ-butyrolactone (GBL). By using these mixed solvents, a nonaqueous electrolyte battery having excellent high temperature characteristics can be obtained.
 ゲル状非水電解質を構成する高分子材料の例としては、ポリフッ化ビニリデン(PVdF)、ポリアクリロニトリル(PAN)、ポリエチレンオキサイド(PEO)を含むものが挙げられる。 Examples of the polymer material constituting the gel-like nonaqueous electrolyte include those containing polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), and polyethylene oxide (PEO).
 また、非水電解質としては、リチウムイオンを含有した常温溶融塩(イオン性融体)を用いることも可能である。具体的には、例えば、リチウムイオンと有機物カチオンとアニオンから構成されるイオン性融体であって、100℃以下、好ましくは室温以下においても液状であるものを選択すると、動作温度の広い非水電解質電池を得ることができる。 Also, as the non-aqueous electrolyte, a room temperature molten salt (ionic melt) containing lithium ions can be used. Specifically, for example, when an ionic melt composed of lithium ions, an organic cation and an anion, which is liquid at 100 ° C. or less, preferably at room temperature or less, is selected, An electrolyte battery can be obtained.
 図2に示す電池10は、従来公知の方法を用いて製造できる。
図2に示す電池10は、後述するように、捲回型非水電解質電池および積層型非水電解質電池の材料として用いることができる。
具体的には、例えば、図2に示す電池10をセパレータ4上に積層して積層物とし、これを渦巻き状に捲回すことで、捲回型非水電解質電池の捲回電極群を形成できる。
また、図2に示す電池10をセパレータ4上に積層してなる積層物を、複数積層して、積層型非水電解質電池の積層型電池群を形成できる。
The battery 10 shown in FIG. 2 can be manufactured using a conventionally known method.
The battery 10 shown in FIG. 2 can be used as a material for a wound nonaqueous electrolyte battery and a laminated nonaqueous electrolyte battery, as will be described later.
Specifically, for example, a wound electrode group of a wound nonaqueous electrolyte battery can be formed by stacking the battery 10 shown in FIG. 2 on the separator 4 to form a laminate, and winding this into a spiral. .
2 can be stacked to form a stacked battery group of stacked nonaqueous electrolyte batteries. The stacked battery group shown in FIG.
 本実施形態の電池10は、第1の実施形態の負極3と、正極活物質層5bを含む正極5と、非水電解質とを有するものであるため、内部短絡が生じにくいものである。
 また、本実施形態の電池10は、図2に示すように、平面視で、負極3の負極活物質層3bが形成されている領域と、正極5の正極活物質層5bが形成されている領域とが重なり合う第1領域14と、第1領域14の外側に、正極5が配置されておらず、負極活物質層3bが形成されている第2領域15とを有するものであるため、以下に示すように、負極3の外周部に反りが生じやすい。
The battery 10 according to the present embodiment includes the negative electrode 3 according to the first embodiment, the positive electrode 5 including the positive electrode active material layer 5b, and the nonaqueous electrolyte. Therefore, an internal short circuit is unlikely to occur.
In addition, as shown in FIG. 2, the battery 10 of the present embodiment has a region in which the negative electrode active material layer 3 b of the negative electrode 3 is formed and a positive electrode active material layer 5 b of the positive electrode 5 in plan view. Since the first region 14 that overlaps with the region and the second region 15 in which the positive electrode 5 is not disposed and the negative electrode active material layer 3b is formed outside the first region 14 are described below. As shown in FIG. 3, the outer periphery of the negative electrode 3 is likely to warp.
すなわち、第2領域15には正極5が存在しないため、第2領域15の負極3は、正極5の体積分だけ第1領域14よりも変形可能な空間が広いことになる。このため、第2領域15の負極3は、第1領域14の負極3よりも変形しやすく、負極活物質の体積膨張による応力を吸収しやすいものとなっている。このことから、第2領域15の負極3は、負極活物質の体積膨張による応力の逃げ場として機能している。よって、電池10では、第1領域14の負極3よりも第2領域15の負極3への負極活物質の体積膨張による応力が大きいものとなり、負極3の外周部に反りが生じやすくなっている。 That is, since the positive electrode 5 does not exist in the second region 15, the negative electrode 3 in the second region 15 has a larger space that can be deformed than the first region 14 by the volume of the positive electrode 5. For this reason, the negative electrode 3 in the second region 15 is more easily deformed than the negative electrode 3 in the first region 14, and easily absorbs stress due to volume expansion of the negative electrode active material. Therefore, the negative electrode 3 in the second region 15 functions as a stress escape field due to the volume expansion of the negative electrode active material. Therefore, in the battery 10, the stress due to the volume expansion of the negative electrode active material to the negative electrode 3 in the second region 15 is larger than that of the negative electrode 3 in the first region 14, and the outer peripheral portion of the negative electrode 3 is easily warped. .
しかし、本実施形態の電池10では、酸化物絶縁層13によって負極3の外周部の反りが抑制されている。また、負極3の外周部に反りが生じたとしても、酸化物絶縁層13によって、電池10の内部短絡を防止できる。よって、本実施形態の負極3を用いた電池10では、内部短絡を抑制しつつ、第2領域15を設けることにより負極活物質層3bの外周部12bにリチウムが析出するのを防止できる。 However, in the battery 10 of the present embodiment, the oxide insulating layer 13 suppresses the warpage of the outer peripheral portion of the negative electrode 3. Even if the outer periphery of the negative electrode 3 is warped, the oxide insulating layer 13 can prevent an internal short circuit of the battery 10. Therefore, in the battery 10 using the negative electrode 3 of the present embodiment, it is possible to prevent lithium from being deposited on the outer peripheral portion 12b of the negative electrode active material layer 3b by providing the second region 15 while suppressing an internal short circuit.
 上記実施形態の電池では、第1領域14の外側に、第2領域15を有しているものを例に挙げて説明したが、第2領域15はなくてもよい。 In the battery of the above-described embodiment, the example in which the second region 15 is provided outside the first region 14 has been described as an example, but the second region 15 may be omitted.
   第2の実施形態に係る非水電解質電池は、前述した図2に示す構成のものに限らない。
 以下、第2の実施形態に係る非水電解質電池の他の例として、図3及び図4に示す扁平型非水電解質電池(非水電解質電池)100について説明する。図3は、扁平型非水電解質電池100の断面模式図である。また、図4は、図3中に示すA部の拡大断面図である。
The nonaqueous electrolyte battery according to the second embodiment is not limited to the one shown in FIG.
Hereinafter, as another example of the nonaqueous electrolyte battery according to the second embodiment, a flat type nonaqueous electrolyte battery (nonaqueous electrolyte battery) 100 shown in FIGS. 3 and 4 will be described. FIG. 3 is a schematic cross-sectional view of the flat type nonaqueous electrolyte battery 100. FIG. 4 is an enlarged cross-sectional view of a portion A shown in FIG.
 図3および図4に示す非水電解質電池100は、捲回型非水電解質電池であり、外装材2と、外装材2内に収納された扁平状の捲回電極群1と、外装材2内に充填された非水電解質とを含む。図3および図4に示す非水電解質電池100は、図2に示す電池10をセパレータ4上に積層して、負極3、セパレータ4、正極5、セパレータ4の順で積層した積層物とし、これを渦巻き状に捲回し、プレス成型することにより形成した捲回電極群1を有している。非水電解質としては、図2に示す電池10において説明したものと同様のものを用いることができる。 A nonaqueous electrolyte battery 100 shown in FIGS. 3 and 4 is a wound nonaqueous electrolyte battery, and includes an exterior material 2, a flat wound electrode group 1 housed in the exterior material 2, and an exterior material 2. And a non-aqueous electrolyte filled therein. The nonaqueous electrolyte battery 100 shown in FIGS. 3 and 4 is a laminate in which the battery 10 shown in FIG. 2 is laminated on the separator 4 and laminated in the order of the negative electrode 3, the separator 4, the positive electrode 5, and the separator 4. Is wound in a spiral shape and has a wound electrode group 1 formed by press molding. As the non-aqueous electrolyte, the same one as described in the battery 10 shown in FIG. 2 can be used.
 図3および図4に示すように、捲回電極群1の最外周に位置する負極3は、負極集電体3aの内面側の片面に負極層3bが形成された構成を有する。最外周以外の部分の負極3は、負極集電体3aの両面に負極層3bが形成された構成を有する。なお、セパレータ4に代えて、ゲル状非水電解質を用いてもよい。 3 and 4, the negative electrode 3 located on the outermost periphery of the wound electrode group 1 has a configuration in which a negative electrode layer 3b is formed on one surface on the inner surface side of the negative electrode current collector 3a. A portion of the negative electrode 3 other than the outermost periphery has a configuration in which the negative electrode layer 3b is formed on both surfaces of the negative electrode current collector 3a. In place of the separator 4, a gel nonaqueous electrolyte may be used.
 図3に示す捲回電極群1は、その外周端近傍において、負極端子6が最外周の負極3の負極集電体3aに電気的に接続されている。正極端子7は内側の正極5の正極集電体5aに電気的に接続されている。これらの負極端子6および正極端子7は、外装材2の外部に延出されるか、外装材2に備えられた取り出し電極に接続される。 In the wound electrode group 1 shown in FIG. 3, the negative electrode terminal 6 is electrically connected to the negative electrode current collector 3a of the outermost negative electrode 3 in the vicinity of the outer peripheral end thereof. The positive electrode terminal 7 is electrically connected to the positive electrode current collector 5 a of the inner positive electrode 5. The negative electrode terminal 6 and the positive electrode terminal 7 are extended to the outside of the exterior material 2 or connected to a take-out electrode provided in the exterior material 2.
外装材2は、ラミネートフィルムを袋状に形成したものでもよく、金属製の容器であってもよい。
 ラミネートフィルムからなる外装材を備えた非水電解質電池100を製造する際は、負極端子6及び正極端子7が接続された捲回電極群1を、開口部を有する袋状の外装材2に装入する。次いで、液状非水電解質を外装材2の開口部から注入する。そして、袋状の外装材2の開口部を、負極端子6および正極端子7を挟んだ状態でヒートシールすることにより、捲回電極群1および液状非水電解質を完全密封させる。
The exterior material 2 may be a laminate film formed in a bag shape or a metal container.
When manufacturing the nonaqueous electrolyte battery 100 including the exterior material made of a laminate film, the wound electrode group 1 to which the negative electrode terminal 6 and the positive electrode terminal 7 are connected is mounted on the bag-shaped exterior material 2 having an opening. Enter. Next, a liquid non-aqueous electrolyte is injected from the opening of the exterior material 2. Then, the wound electrode group 1 and the liquid nonaqueous electrolyte are completely sealed by heat-sealing the opening of the bag-shaped outer packaging material 2 with the negative electrode terminal 6 and the positive electrode terminal 7 interposed therebetween.
 また、金属容器からなる外装材を備えた非水電解質電池100を製造する際は、負極端子6及び正極端子7が接続された捲回電極群1を、開口部を有する金属容器に装入する。次いで、液状非水電解質を外装材2の開口部から注入し、更に、金属容器に蓋体を装着して開口部を封口させる。 Moreover, when manufacturing the nonaqueous electrolyte battery 100 provided with the exterior material which consists of metal containers, the winding electrode group 1 to which the negative electrode terminal 6 and the positive electrode terminal 7 were connected is inserted into the metal container which has an opening part. . Next, a liquid non-aqueous electrolyte is injected from the opening of the exterior material 2, and a lid is attached to the metal container to seal the opening.
 負極端子6としては、例えば、リチウムに対する電位が1V以上3V以下の範囲において電気的安定性と導電性とを備える材料を用いることができる。具体的には、アルミニウム、または、Mg、Ti、Zn、Mn、Fe、Cu、Si等の元素を含むアルミニウム合金が挙げられる。また、負極端子6は、負極集電体3aとの接触抵抗を低減するために、負極集電体3aと同様の材料であることがより好ましい。 As the negative electrode terminal 6, for example, a material having electrical stability and conductivity in a range where the potential with respect to lithium is 1 V or more and 3 V or less can be used. Specifically, aluminum or an aluminum alloy containing elements such as Mg, Ti, Zn, Mn, Fe, Cu, and Si can be given. The negative electrode terminal 6 is more preferably made of the same material as the negative electrode current collector 3a in order to reduce the contact resistance with the negative electrode current collector 3a.
 正極端子7としては、リチウムに対する電位が3~4.25Vの範囲において電気的安定性と導電性とを備える材料を用いることができる。具体的には、アルミニウムまたはMg、Ti、Zn、Mn、Fe、Cu、Si等の元素を含むアルミニウム合金が挙げられる。正極端子7は、正極集電体5aとの接触抵抗を低減するために、正極集電体5aと同様の材料であることが好ましい。 As the positive electrode terminal 7, a material having electrical stability and conductivity in the range of 3 to 4.25 V with respect to lithium can be used. Specifically, aluminum or an aluminum alloy containing an element such as Mg, Ti, Zn, Mn, Fe, Cu, or Si can be given. The positive electrode terminal 7 is preferably made of the same material as the positive electrode current collector 5a in order to reduce the contact resistance with the positive electrode current collector 5a.
 以下、外装材2について詳細に説明する。
 外装材2は、厚さ0.5mm以下のラミネートフィルムから形成されたもの、あるいは、肉厚1mm以下の金属製容器が用いられる。
 このような外装材2の形状としては、扁平型(薄型)、角型、円筒型、コイン型、およびボタン型から適宜選択できる。
外装材2の例には、電池寸法に応じて、例えば、携帯用電子機器等に積載される小型電池用外装材、二輪乃至四輪の自動車等に積載される大型電池用外装材などが含まれる。
Hereinafter, the exterior material 2 will be described in detail.
The exterior material 2 is formed of a laminate film having a thickness of 0.5 mm or less, or a metal container having a thickness of 1 mm or less.
The shape of the exterior material 2 can be appropriately selected from a flat type (thin type), a square type, a cylindrical type, a coin type, and a button type.
Examples of the exterior material 2 include, for example, a small battery exterior material loaded on a portable electronic device, a large battery exterior material loaded on a two-wheel or four-wheel automobile, etc., depending on the battery size. It is.
 ラミネートフィルムからなる外装材2を用いる場合は、樹脂層間に金属層を介在した多層フィルムが用いられる。この場合の金属層には、軽量化のためにアルミニウム箔若しくはアルミニウム合金箔を採用することが好ましい。また、樹脂層としては、例えば、ポリプロピレン(PP)、ポリエチレン(PE)、ナイロン、ポリエチレンテレフタレート(PET)等の高分子材料を用いることができる。ラミネートフィルムは、熱融着によりシールを行って外装材の形状に成形することができる。 When the exterior material 2 made of a laminate film is used, a multilayer film in which a metal layer is interposed between resin layers is used. For the metal layer in this case, it is preferable to employ an aluminum foil or an aluminum alloy foil for weight reduction. Moreover, as a resin layer, polymeric materials, such as a polypropylene (PP), polyethylene (PE), nylon, a polyethylene terephthalate (PET), can be used, for example. The laminate film can be molded into the shape of an exterior material by sealing by heat sealing.
 金属製容器からなる外装材2を用いる場合には、アルミニウムまたはアルミニウム合金等から作製されたものが用いられる。このようなアルミニウム合金としては、マグネシウム、亜鉛、ケイ素等の元素を含む合金が好ましい。また、アルミニウム合金中に、鉄、銅、ニッケル、クロム等の遷移金属が含まれる場合、その含有量を100質量ppm以下に抑制することが好ましい。また、金属製容器からなる外装材2を用いる場合、肉厚が0.5mm以下のものを用いることがより好ましい。 When the exterior material 2 made of a metal container is used, one made of aluminum or an aluminum alloy is used. As such an aluminum alloy, an alloy containing elements such as magnesium, zinc, and silicon is preferable. Moreover, when transition metals, such as iron, copper, nickel, and chromium, are contained in an aluminum alloy, it is preferable to suppress the content to 100 mass ppm or less. Moreover, when using the exterior | packing material 2 which consists of metal containers, it is more preferable to use a thing with thickness of 0.5 mm or less.
 以上説明した図3および図4に示す非水電解質電池100は、負極活物質層の外縁の少なくとも一部を被覆する酸化物絶縁層を有する負極3を有するものであるため、内部短絡が起こりにくい。 The nonaqueous electrolyte battery 100 shown in FIG. 3 and FIG. 4 described above has the negative electrode 3 having the oxide insulating layer covering at least a part of the outer edge of the negative electrode active material layer, so that an internal short circuit hardly occurs. .
 第2の実施形態に係る非水電解質電池は、図5および図6に示す構成の電池であってもよい。図5は、第2の実施形態に係る別の扁平型非水電解質二次電池を模式的に示す部分切欠斜視図である。図6は、図5のB部の拡大断面図である。
図5および図6に示す非水電解質電池は、積層型非水電解質電池であり、積層型電極群31が外装部材32内に収納されている。積層型電極群31は、負極3、セパレータ4、正極5、セパレータ4の順で積層した積層物とし、これを複数積層して形成したものである。セパレータ4、非水電解質としては、図2に示す電池10において説明したものと同様のものを用いることができる。
The nonaqueous electrolyte battery according to the second embodiment may be a battery having the configuration shown in FIGS. 5 and 6. FIG. 5 is a partially cutaway perspective view schematically showing another flat type non-aqueous electrolyte secondary battery according to the second embodiment. 6 is an enlarged cross-sectional view of a portion B in FIG.
The nonaqueous electrolyte battery shown in FIGS. 5 and 6 is a stacked nonaqueous electrolyte battery, and a stacked electrode group 31 is housed in an exterior member 32. The laminated electrode group 31 is a laminate in which the negative electrode 3, the separator 4, the positive electrode 5, and the separator 4 are laminated in this order, and is formed by laminating a plurality of these. As the separator 4 and the nonaqueous electrolyte, the same materials as those described in the battery 10 shown in FIG. 2 can be used.
積層型電極群31を形成している負極3は、酸化物絶縁層13が、矩形の負極3の3辺における負極活物質層3bの外縁を被覆している点が、図2に示す電池10の負極3と異なっている。その他については、図2に示す電池10の負極3と同じである。したがって、酸化物絶縁層13は、負極3の1辺には形成されておらず、負極活物質層3bの外縁のうち一部のみを被覆している。
そして、負極3の酸化物絶縁層の形成されていない1辺では、負極集電体3aが負極3から突出している。突出した負極集電体3aは、帯状の負極端子36に電気的に接続されている。帯状の負極端子36の先端は、外装部材32から外部に引き出されている。
In the negative electrode 3 forming the stacked electrode group 31, the oxide insulating layer 13 covers the outer edge of the negative electrode active material layer 3b on the three sides of the rectangular negative electrode 3 as shown in FIG. This is different from the negative electrode 3 of FIG. About others, it is the same as the negative electrode 3 of the battery 10 shown in FIG. Therefore, the oxide insulating layer 13 is not formed on one side of the negative electrode 3 and covers only a part of the outer edge of the negative electrode active material layer 3b.
The negative electrode current collector 3 a protrudes from the negative electrode 3 on one side where the oxide insulating layer of the negative electrode 3 is not formed. The protruding negative electrode current collector 3 a is electrically connected to a strip-shaped negative electrode terminal 36. The tip of the strip-shaped negative electrode terminal 36 is drawn out from the exterior member 32 to the outside.
積層型電極群31を形成している正極5は、正極集電体5aの負極集電体3aの突出辺と反対側に位置する辺が正極5から突出している点が、図2に示す電池10の正極5と異なっている。その他については、図2に示す電池10の正極5と同じである。
正極5から突出した正極集電体5aは、帯状の正極端子37に電気的に接続されている。帯状の正極端子37の先端は、負極端子36とは反対側に位置し、外装部材32から外部に引き出されている。
The positive electrode 5 forming the stacked electrode group 31 has the battery shown in FIG. 2 in that the side of the positive electrode current collector 5a opposite to the protruding side of the negative electrode current collector 3a protrudes from the positive electrode 5. 10 different from the positive electrode 5. About others, it is the same as the positive electrode 5 of the battery 10 shown in FIG.
The positive electrode current collector 5 a protruding from the positive electrode 5 is electrically connected to a belt-like positive electrode terminal 37. The front end of the belt-like positive electrode terminal 37 is located on the side opposite to the negative electrode terminal 36 and is drawn out from the exterior member 32 to the outside.
 以上説明した図5および図6に示す非水電解質電池は、負極活物質層の外縁の少なくとも一部を被覆する酸化物絶縁層を有する負極3を有するものであるため、内部短絡が起こりにくい。 The non-aqueous electrolyte battery shown in FIGS. 5 and 6 described above has the negative electrode 3 having the oxide insulating layer covering at least a part of the outer edge of the negative electrode active material layer, and therefore an internal short circuit hardly occurs.
(第3の実施形態)
 次に、第3の実施形態に係る電池パックについて詳細に説明する。
 本実施形態に係る電池パックは、上記第2の実施形態に係る非水電解質電池(即ち、単電池)を一以上有する。電池パックに複数の単電池が含まれる場合、各単電池は、電気的に直列、並列、或いは、直列と並列に接続して配置される。
(Third embodiment)
Next, the battery pack according to the third embodiment will be described in detail.
The battery pack according to the present embodiment has one or more nonaqueous electrolyte batteries (that is, single cells) according to the second embodiment. When the battery pack includes a plurality of single cells, the single cells are electrically connected in series, parallel, or connected in series and parallel.
 図7および図8を参照して、本実施形態に係る電池パック200を具体的に説明する。図7に示す電池パック200においては、単電池121として、図3に示す扁平型非水電解質電池100を使用している。
 複数の単電池121は、外部に延出した負極端子6および正極端子7が同じ向きに揃えられるように積層され、粘着テープ122で締結することによって組電池123を構成している。これらの単電池121は、図7および図8に示すように、互いに電気的に直列に接続されている。
With reference to FIG. 7 and FIG. 8, the battery pack 200 which concerns on this embodiment is demonstrated concretely. In the battery pack 200 shown in FIG. 7, the flat type nonaqueous electrolyte battery 100 shown in FIG. 3 is used as the unit cell 121.
The plurality of single cells 121 are stacked such that the negative electrode terminal 6 and the positive electrode terminal 7 extending to the outside are aligned in the same direction, and are fastened with an adhesive tape 122 to constitute an assembled battery 123. These unit cells 121 are electrically connected to each other in series as shown in FIGS.
 プリント配線基板124は、負極端子6および正極端子7が延出する単電池121側面と対向して配置されている。図7に示すように、プリント配線基板124には、サーミスタ125(図8を参照)、保護回路126および外部機器への通電用端子127が搭載されている。なお、組電池123と対向するプリント配線基板124の面には、組電池123の配線と不要な接続を回避するために絶縁板(図示せず)が取り付けられている。 The printed wiring board 124 is disposed to face the side surface of the unit cell 121 from which the negative electrode terminal 6 and the positive electrode terminal 7 extend. As shown in FIG. 7, a thermistor 125 (see FIG. 8), a protection circuit 126, and a terminal 127 for energizing external devices are mounted on the printed wiring board 124. Note that an insulating plate (not shown) is attached to the surface of the printed wiring board 124 facing the assembled battery 123 in order to avoid unnecessary connection with the wiring of the assembled battery 123.
 正極側リード128は、組電池123の最下層に位置する正極端子7に接続され、その先端はプリント配線基板124の正極側コネクタ129に挿入されて電気的に接続されている。負極側リード130は、組電池123の最上層に位置する負極端子6に接続され、その先端は、プリント配線基板124の負極側コネクタ131に挿入されて電気的に接続されている。これらのコネクタ129、131は、プリント配線基板124に形成された配線132、133(図8を参照)を通じて保護回路126に接続されている。 The positive electrode side lead 128 is connected to the positive electrode terminal 7 located in the lowermost layer of the assembled battery 123, and the tip thereof is inserted into the positive electrode side connector 129 of the printed wiring board 124 and electrically connected thereto. The negative electrode side lead 130 is connected to the negative electrode terminal 6 located in the uppermost layer of the assembled battery 123, and the tip thereof is inserted into the negative electrode side connector 131 of the printed wiring board 124 and electrically connected thereto. These connectors 129 and 131 are connected to the protection circuit 126 through wirings 132 and 133 (see FIG. 8) formed on the printed wiring board 124.
 サーミスタ125は、単電池121の温度を検出するために用いられ、図7においては図示を省略しているが、単電池121の近傍に設けられるとともに、その検出信号は保護回路126に送信される。保護回路126は、所定の条件で保護回路126と外部機器への通電用端子127との間のプラス側配線134aおよびマイナス側配線134bを遮断できる。ここで、上記の所定の条件とは、例えば、サーミスタ125の検出温度が所定温度以上になったときである。さらに、所定の条件とは、単電池121の過充電、過放電、過電流等を検出したときである。このような過充電等の検出は、個々の単電池121もしくは単電池121全体について行われる。なお、個々の単電池121における過充電等を検出する場合には、電池電圧を検出してもよいし、正極電位もしくは負極電位を検出してもよい。後者の場合、個々の単電池121中に参照極として用いるリチウム電極が挿入される。図7および図8の場合、単電池121それぞれに電圧検出のための配線135を接続し、これら配線135を通して検出信号が保護回路126に送信される。 The thermistor 125 is used to detect the temperature of the unit cell 121 and is not shown in FIG. 7, but is provided in the vicinity of the unit cell 121 and its detection signal is transmitted to the protection circuit 126. . The protection circuit 126 can cut off the plus-side wiring 134a and the minus-side wiring 134b between the protection circuit 126 and the terminal 127 for energizing external devices under a predetermined condition. Here, the predetermined condition is, for example, when the temperature detected by the thermistor 125 is equal to or higher than a predetermined temperature. Furthermore, the predetermined condition is when an overcharge, overdischarge, overcurrent, or the like of the unit cell 121 is detected. Such detection of overcharge or the like is performed for each single cell 121 or the entire single cell 121. In addition, when detecting the overcharge etc. in each single battery 121, a battery voltage may be detected and a positive electrode potential or a negative electrode potential may be detected. In the latter case, a lithium electrode used as a reference electrode is inserted into each unit cell 121. In the case of FIG. 7 and FIG. 8, a voltage detection wiring 135 is connected to each single cell 121, and a detection signal is transmitted to the protection circuit 126 through these wirings 135.
 図7に示すように、正極端子7および負極端子6が突出する側面を除く組電池123の三側面には、ゴムもしくは樹脂からなる保護シート136がそれぞれ配置されている。 As shown in FIG. 7, protective sheets 136 made of rubber or resin are disposed on the three side surfaces of the assembled battery 123 excluding the side surfaces from which the positive electrode terminal 7 and the negative electrode terminal 6 protrude.
 組電池123は、各保護シート136およびプリント配線基板124とともに、収納容器137内に収納される。すなわち、収納容器137の長辺方向の両方の内側面と短辺方向の内側面それぞれに保護シート136が配置され、短辺方向の保護シート136とは反対側の内側面にプリント配線基板124が配置される。組電池123は、保護シート136およびプリント配線基板124で囲まれた空間内に位置する。蓋138は、収納容器137の上面に取り付けられている。 The assembled battery 123 is stored in the storage container 137 together with the protective sheets 136 and the printed wiring board 124. That is, the protective sheet 136 is disposed on each of the inner side surface in the long side direction and the inner side surface in the short side direction of the storage container 137, and the printed wiring board 124 is disposed on the inner side surface opposite to the protective sheet 136 in the short side direction. Be placed. The assembled battery 123 is located in a space surrounded by the protective sheet 136 and the printed wiring board 124. The lid 138 is attached to the upper surface of the storage container 137.
 なお、組電池123の固定には、粘着テープ122に代えて熱収縮テープを用いてもよい。この場合、組電池の両側面に保護シートを配置し、熱収縮テープを周回させた後、熱収縮テープを熱収縮させて組電池を結束させる。 In addition, instead of the adhesive tape 122, a heat shrink tape may be used for fixing the assembled battery 123. In this case, protective sheets are arranged on both side surfaces of the assembled battery, the heat shrinkable tape is circulated, and then the heat shrinkable tape is heat shrunk to bind the assembled battery.
 図7および図8においては、単電池121を直列接続した形態を示したが、電池容量を増大させるためには、単電池121を並列に接続しても、または、直列接続と並列接続とを組み合わせた構成としてもよい。また、組み上がった電池パックを、さらに直列、並列に接続することも可能である。
 以上説明した本実施形態の電池パックは、負極活物質層の外縁の少なくとも一部を被覆する酸化物絶縁層を有する負極を有するものであるため、内部短絡が起こりにくい。
7 and 8 show the configuration in which the unit cells 121 are connected in series. However, in order to increase the battery capacity, the unit cells 121 may be connected in parallel, or the series connection and the parallel connection may be performed. A combined configuration may be used. In addition, the assembled battery packs can be further connected in series and in parallel.
Since the battery pack of the present embodiment described above has a negative electrode having an oxide insulating layer covering at least a part of the outer edge of the negative electrode active material layer, an internal short circuit hardly occurs.
 なお、電池パックの態様は用途により適宜変更される。本実施形態に係る電池パックの用途としては、電子機器、さらには大電流を取り出したときに優れたサイクル特性を示すことが要求されるものが好ましい。具体的には、デジタルカメラの電源用や、二輪乃至四輪のハイブリッド電気自動車、二輪乃至四輪の電気自動車、アシスト自転車等の車載用が挙げられる。特に、高温特性の優れた非水電解質電池を用いた電池パックは、車載用に好適に用いられる。 In addition, the aspect of a battery pack is changed suitably according to a use. As a use of the battery pack according to the present embodiment, an electronic device, and further one that is required to exhibit excellent cycle characteristics when a large current is taken out is preferable. Specific examples include a power source for a digital camera, a vehicle for a two- to four-wheel hybrid electric vehicle, a two- to four-wheel electric vehicle, an assist bicycle, and the like. In particular, a battery pack using a nonaqueous electrolyte battery having excellent high temperature characteristics is suitably used for in-vehicle use.
(実施例1)
<負極の作製>
 負極活物質であるシリコン粉末(Si)80重量%と、ハードカーボン粉末(負極導電剤)10重量%と、ポリイミド(PI)(結着剤)10重量%とを、有機溶媒であるN-メチルピロリドン(NMP)に加えて混合し、スラリーを調製した。
 得られたスラリーを、厚さ10μmのステンレス箔(引張強度1250N/mm)(負極集電体)の両面全面に塗布し、乾燥した後、プレスした。このことにより、負極活物質層の形成された負極集電体を得た。
 その後、負極活物質層の形成された負極集電体を、縦55mm、横870mmの矩形に切断した。
Example 1
<Production of negative electrode>
80% by weight of silicon powder (Si) as a negative electrode active material, 10% by weight of hard carbon powder (negative electrode conductive agent), and 10% by weight of polyimide (PI) (binder) are used as N-methyl as an organic solvent. A slurry was prepared by adding to pyrrolidone (NMP) and mixing.
The obtained slurry was applied to both surfaces of a 10 μm-thick stainless steel foil (tensile strength 1250 N / mm 2 ) (negative electrode current collector), dried and then pressed. As a result, a negative electrode current collector having a negative electrode active material layer formed thereon was obtained.
Thereafter, the negative electrode current collector on which the negative electrode active material layer was formed was cut into a rectangle having a length of 55 mm and a width of 870 mm.
 次に、酸化物絶縁層を形成するため、SiO粉末(平均粒子径;6μm)を90重量%と、ポリフッ化ビニリデン(PVdF)バインダー10重量%を、NMPに加えて混合し、スラリーを調整した。
このスラリーを、負極活物質層の形成された負極集電体の一方の面を上に向けて、負極集電体の一方の面に形成された負極活物質層の外縁に、酸化物絶縁層が所定の厚みt1および幅D1となるようにスラリーを塗布した。このとき、負極活物質層上に塗布したスラリーの一部は、負極活物質層の外周部から負極集電体の端面側にはみ出して回り込んだ。このことによって、負極集電体の端面にもスラリーが塗布された。
Next, in order to form an oxide insulating layer, 90 wt% of SiO 2 powder (average particle size: 6 μm) and 10 wt% of polyvinylidene fluoride (PVdF) binder are added to NMP and mixed to prepare a slurry. did.
An oxide insulating layer is formed on the outer edge of the negative electrode active material layer formed on one surface of the negative electrode current collector with the slurry facing one surface of the negative electrode current collector on which the negative electrode active material layer is formed facing upward. The slurry was applied so as to have a predetermined thickness t1 and width D1. At this time, a part of the slurry applied on the negative electrode active material layer protruded from the outer peripheral portion of the negative electrode active material layer to the end face side of the negative electrode current collector. As a result, the slurry was also applied to the end face of the negative electrode current collector.
次いで、負極集電体の他方の面を上に向けて、負極集電体の他方の面に形成された負極活物質層の外縁に、酸化物絶縁層が所定の厚みt2および幅D2となるようにスラリーを塗布した。このとき、負極活物質層上に塗布したスラリーの一部が、負極活物質層の外周部から負極集電体の端面側にはみ出して回り込んだ。このことによって、負極集電体の一方の面に形成された負極活物質層の外周部から、一方の面側の外縁と、負極集電体の端面と、負極集電体の他方の面に形成された負極活物質層の外縁とを覆って、他方の面側の負極活物質層の外周部まで、連続してスラリーが塗布された。
その後、塗布したスラリーを乾燥し、プレスすることにより、図1に示す断面形状を有する酸化物絶縁層を有する実施例1の負極を得た。
Next, the oxide insulating layer has a predetermined thickness t2 and width D2 on the outer edge of the negative electrode active material layer formed on the other surface of the negative electrode current collector with the other surface of the negative electrode current collector facing upward. The slurry was applied as follows. At this time, a part of the slurry applied on the negative electrode active material layer protruded from the outer peripheral portion of the negative electrode active material layer to the end face side of the negative electrode current collector. By this, from the outer periphery of the negative electrode active material layer formed on one surface of the negative electrode current collector, the outer edge on one surface side, the end surface of the negative electrode current collector, and the other surface of the negative electrode current collector The slurry was continuously applied to the outer periphery of the negative electrode active material layer on the other surface side, covering the outer edge of the formed negative electrode active material layer.
Thereafter, the applied slurry was dried and pressed to obtain a negative electrode of Example 1 having an oxide insulating layer having a cross-sectional shape shown in FIG.
 得られた負極の一方の面の酸化物絶縁層の幅D1は6mmであり、負極活物質層の表面に垂直方向の厚みt1は12μmであった。また、負極の他方の面の酸化物絶縁層の幅D2は4mmであり、負極活物質層の表面に垂直方向の厚みt2は8μmであった。また、酸化物絶縁層の電気抵抗率は3.2×10Ωmであった。 The width D1 of the oxide insulating layer on one surface of the obtained negative electrode was 6 mm, and the thickness t1 in the direction perpendicular to the surface of the negative electrode active material layer was 12 μm. The width D2 of the oxide insulating layer on the other surface of the negative electrode was 4 mm, and the thickness t2 in the direction perpendicular to the surface of the negative electrode active material layer was 8 μm. The electric resistivity of the oxide insulating layer was 3.2 × 10 8 Ωm.
<正極の作製>
 正極活物質であるリチウムニッケルマンガンコバルト複合酸化物(LiNi1/3Mn1/3Co1/3)粉末90重量%と、アセチレンブラック(正極導電剤)5重量%と、ポリフッ化ビニリデン(PVdF)(結着剤)5重量%とを、N-メチルピロリドンに加えて混合し、スラリーを調製した。
得られたスラリーを、厚さ15μmのアルミニウム箔(正極集電体)に塗布し、乾燥した後、プレスした。その後、縦54mm、横850mmの矩形に切断して、密度3.2g/cmの正極活物質層を有する実施例1の正極を作製した。
<Preparation of positive electrode>
90% by weight of lithium nickel manganese cobalt composite oxide (LiNi 1/3 Mn 1/3 Co 1/3 O 2 ) powder as a positive electrode active material, 5% by weight of acetylene black (positive electrode conductive agent), polyvinylidene fluoride ( PVdF) (binder) 5 wt% was added to N-methylpyrrolidone and mixed to prepare a slurry.
The obtained slurry was applied to an aluminum foil (positive electrode current collector) having a thickness of 15 μm, dried, and then pressed. Then, it cut | disconnected into the rectangle of length 54mm and width 850mm, and produced the positive electrode of Example 1 which has a positive electrode active material layer with a density of 3.2 g / cm < 3 >.
<電極群の作製>
 実施例1の負極と、ポリエチレン製多孔質フィルムからなるセパレータと、実施例1の正極と、前記セパレータとをこの順序で積層して積層物とした。この積層物を負極が最外周に位置するように渦巻き状に捲回して実施例1の電極群を作製した。
<Production of electrode group>
The negative electrode of Example 1, a separator made of a polyethylene porous film, the positive electrode of Example 1, and the separator were laminated in this order to obtain a laminate. The laminate was wound in a spiral shape so that the negative electrode was located on the outermost periphery, and the electrode group of Example 1 was produced.
<非水電解質の調製>
 エチレンカーボネート(EC)とメチルエチルカーボネート(MEC)とを、体積比で1:2になるように混合して混合溶媒とした。この混合溶媒に六フッ化リン酸リチウム(LiPF)を1.0モル/L溶解して非水電解質を調製した。
<Preparation of non-aqueous electrolyte>
Ethylene carbonate (EC) and methyl ethyl carbonate (MEC) were mixed at a volume ratio of 1: 2 to obtain a mixed solvent. A nonaqueous electrolyte was prepared by dissolving 1.0 mol / L of lithium hexafluorophosphate (LiPF 6 ) in this mixed solvent.
<非水電解質二次電池の調製>
 実施例1の電極群と上記の非水電解質とを、ステンレス製の有底円筒状容器内にそれぞれ収納した。続いて、負極リードの一端を電極群の負極に接続し、負極リードの他端を、負極端子を兼ねる有底円筒状容器に接続した。また、中央に正極端子が嵌着された絶縁封口板を用意した。そして、正極リードの一端を正極端子に接続し、正極リードの他端を電極群の正極に接続した。その後、容器の上部開口部に、絶縁封口板をかしめ加工することにより、3Ahの容量を持つ円筒形非水電解質二次電池を組み立てた。
 得られた二次電池を、0.2Cレート、25℃環境下にて、4.3Vで充電し、その後、2Vに達するまで0.2Cレートで放電した。その後、25℃環境下、1Cレートにて充放電を1回繰り返し、初回の放電容量を確認した。
<Preparation of nonaqueous electrolyte secondary battery>
The electrode group of Example 1 and the above non-aqueous electrolyte were each stored in a bottomed cylindrical container made of stainless steel. Subsequently, one end of the negative electrode lead was connected to the negative electrode of the electrode group, and the other end of the negative electrode lead was connected to a bottomed cylindrical container that also served as the negative electrode terminal. In addition, an insulating sealing plate having a positive electrode terminal fitted in the center was prepared. Then, one end of the positive electrode lead was connected to the positive electrode terminal, and the other end of the positive electrode lead was connected to the positive electrode of the electrode group. Thereafter, a cylindrical nonaqueous electrolyte secondary battery having a capacity of 3 Ah was assembled by caulking an insulating sealing plate in the upper opening of the container.
The obtained secondary battery was charged at 4.3 V in a 0.2 C rate and 25 ° C. environment, and then discharged at a 0.2 C rate until 2 V was reached. Thereafter, charge and discharge were repeated once at a 1C rate in a 25 ° C. environment, and the initial discharge capacity was confirmed.
(実施例2~7)
 負極として、表1に示す条件(負極活物質の材料、負極集電体の引張強度、酸化物絶縁層の材料、一方の面のおよび他方の面の酸化物絶縁層の幅(D1/D2)、一方の面のおよび他方の面の酸化物絶縁層の負極活物質層の表面に垂直方向の厚み(t1/t2))のものを用いたこと以外は、実施例1と同様にして非水電解質二次電池を作製し、初回の放電容量を確認した。
 表1には、負極活物質として2種類の材料を用いた実施例5~7の質量比、酸化物絶縁層として2種類の材料を用いた実施例5~6の質量比も併せて示す。
 なお、実施例2~7の酸化物絶縁層の電気抵抗率は10Ωm以上であった。
(Examples 2 to 7)
The conditions shown in Table 1 as the negative electrode (the material of the negative electrode active material, the tensile strength of the negative electrode current collector, the material of the oxide insulating layer, the width of the oxide insulating layer on one side and the other side (D1 / D2) In the same manner as in Example 1, except that the surface of the negative electrode active material layer of the oxide insulating layer on one side and the other side was used in the vertical direction (t1 / t2), non-aqueous An electrolyte secondary battery was produced and the initial discharge capacity was confirmed.
Table 1 also shows the mass ratio of Examples 5 to 7 using two types of materials as the negative electrode active material and the mass ratio of Examples 5 to 6 using two types of materials as the oxide insulating layer.
The electrical resistivity of the oxide insulating layers of Examples 2 to 7 was 10 6 Ωm or more.
(実施例8)
 負極活物質であるグラファイト(天然黒鉛)90重量%と、ポリフッ化ビニリデン(PVdF)(結着剤)10重量%とを、有機溶媒であるN-メチルピロリドン(NMP)に加えて混合し、スラリーを調製した。
 得られたスラリーを、厚さ12μmの銅箔(引張強度420N/mm)(負極集電体)の両面全面に塗布し、乾燥した後、プレスした。このことにより、負極活物質層の形成された負極集電体を得た。
 このようにして負極活物質層の形成された負極集電体を作製したこと以外は、実施例1と同様にして非水電解質二次電池を作製し、初回の放電容量を確認した。
なお、実施例8の酸化物絶縁層の電気抵抗率は10Ωm以上であった。
(Example 8)
90% by weight of graphite (natural graphite) as a negative electrode active material and 10% by weight of polyvinylidene fluoride (PVdF) (binder) are added to an organic solvent N-methylpyrrolidone (NMP) and mixed to obtain a slurry. Was prepared.
The resulting slurry was applied onto both sides entire thickness 12μm copper foil (tensile strength 420N / mm 2) (negative electrode current collector), dried, and pressed. As a result, a negative electrode current collector having a negative electrode active material layer formed thereon was obtained.
A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that a negative electrode current collector having a negative electrode active material layer formed in this manner, and the initial discharge capacity was confirmed.
Note that the electrical resistivity of the oxide insulating layer of Example 8 was 10 6 Ωm or more.
(実施例9)
<負極の作製>
 実施例1と同様の負極活物質層の形成された負極集電体を作製した。その後、負極活物質層の形成された負極集電体を、縦77mm、横88mmの矩形状に切断した。なお、負極集電体を切断する際に、縦の1辺の中央部からリード取り出し用のタブ(図5の負極端子36)を残して打ち抜いた。
その後、タブが存在する1辺以外の3辺に対して、表1の条件になるように酸化物絶縁層を形成した。
 実施例9の酸化物絶縁層の電気抵抗率は10Ωm以上であった。
Example 9
<Production of negative electrode>
A negative electrode current collector having the same negative electrode active material layer as that of Example 1 was produced. Thereafter, the negative electrode current collector on which the negative electrode active material layer was formed was cut into a rectangular shape having a length of 77 mm and a width of 88 mm. When the negative electrode current collector was cut, it was punched out from the central part of one vertical side leaving a tab for taking out the lead (negative electrode terminal 36 in FIG. 5).
After that, an oxide insulating layer was formed so as to satisfy the conditions shown in Table 1 for three sides other than the one side where the tabs exist.
The electrical resistivity of the oxide insulating layer of Example 9 was 10 6 Ωm or more.
<正極の作製>
 実施例1と同様の正極活物質層の形成された正極集電体を作製した。その後、正極活物質層の形成された正極集電体を、縦75mm、横86mmの矩形状に切断した。なお、負極同様、正極集電体を切断する際に、縦の1辺の中央部からリード取り出し用のタブ(図5の正極端子37)を残して打ち抜いた。
<Preparation of positive electrode>
A positive electrode current collector on which a positive electrode active material layer similar to that in Example 1 was formed was produced. Thereafter, the positive electrode current collector on which the positive electrode active material layer was formed was cut into a rectangular shape having a length of 75 mm and a width of 86 mm. As with the negative electrode, when the positive electrode current collector was cut, it was punched out from the central portion of one vertical side leaving a tab for lead extraction (positive electrode terminal 37 in FIG. 5).
<電極群の作製>
 上記で作製した負極及び正極と、セパレータとしての厚さ20μmのポリエチレン製多孔質フィルムとを用いて、電極群を作製した。正極と、セパレータと、負極と、セパレータとをこの順で重ねて積層体とした。この積層体は、最外層が負極となるように積層した。作製した積層体を、90℃で加熱しながらプレスすることにより、偏平状の電極群を作製した。
<Production of electrode group>
An electrode group was prepared using the negative electrode and positive electrode prepared above and a polyethylene porous film having a thickness of 20 μm as a separator. The positive electrode, the separator, the negative electrode, and the separator were stacked in this order to form a laminate. This laminate was laminated so that the outermost layer was a negative electrode. The produced laminate was pressed while being heated at 90 ° C. to produce a flat electrode group.
<非水電解質二次電池の調製>
 得られた電極群を袋状の外装部材に収容し、80℃で24時間真空乾燥した。外装部材は、厚さが40μmのアルミニウム箔と、該アルミニウム箔の両面に形成されたポリプロピレン層とからなる厚さ0.1mmのラミネートフィルムで形成されたものである。
 電極群を収容した外装部材に、実施例1と同様の非水電解質を注入し、密封して、図5に示す非水電解質二次電池を作製した。この電池は、3Ahの容量を有した。実施例9の非水電解質二次電池について、実施例1と同様にして、初回の放電容量を確認した。
<Preparation of nonaqueous electrolyte secondary battery>
The obtained electrode group was accommodated in a bag-shaped exterior member and vacuum-dried at 80 ° C. for 24 hours. The exterior member is formed of a laminate film having a thickness of 0.1 mm, which includes an aluminum foil having a thickness of 40 μm and a polypropylene layer formed on both surfaces of the aluminum foil.
A non-aqueous electrolyte similar to that in Example 1 was injected into the exterior member that accommodated the electrode group, and sealed to produce a non-aqueous electrolyte secondary battery shown in FIG. This battery had a capacity of 3 Ah. For the nonaqueous electrolyte secondary battery of Example 9, the initial discharge capacity was confirmed in the same manner as in Example 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(比較例1)
 酸化物絶縁層を形成しなかったこと以外は、実施例1と同様にして非水電解質二次電池を作製し、初回の放電容量を確認した。
(比較例2)
 酸化物絶縁層を形成しなかったこと以外は、実施例8と同様にして非水電解質二次電池を作製し、初回の放電容量を確認した。
(Comparative Example 1)
A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the oxide insulating layer was not formed, and the initial discharge capacity was confirmed.
(Comparative Example 2)
A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 8 except that the oxide insulating layer was not formed, and the initial discharge capacity was confirmed.
 実施例1~9および比較例1~2の非水電解質二次電池を、25℃環境下、1Cレートで4.3Vまで充電した後、1週間、-30℃の環境下で貯蔵した。その後、充電せずに2Vまで放電試験を実施し、貯蔵後の放電容量を確認し、残存容量率(残存容量率=(貯蔵後の放電容量/初回の放電容量)×100(%))を算出した。残存容量率は、非水電解質二次電池の内部短絡の度合いを示す指標となる。実施例1~9および比較例1~2の残存容量率の結果を表2に示す。 The non-aqueous electrolyte secondary batteries of Examples 1 to 9 and Comparative Examples 1 and 2 were charged to 4.3 V at a 1C rate in a 25 ° C. environment and then stored in an environment of −30 ° C. for 1 week. After that, a discharge test was conducted up to 2V without charging, the discharge capacity after storage was confirmed, and the remaining capacity ratio (remaining capacity ratio = (discharge capacity after storage / initial discharge capacity) × 100 (%)) Calculated. The remaining capacity rate is an index indicating the degree of internal short circuit of the nonaqueous electrolyte secondary battery. Table 2 shows the results of the remaining capacity ratios of Examples 1 to 9 and Comparative Examples 1 and 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 酸化物絶縁層を形成した実施例1~7では、酸化物絶縁層を形成しなかった比較例1と比較して、残存容量率が高いことが確認できた。
酸化物絶縁層を形成した実施例8では、酸化物絶縁層を形成しなかった比較例2とを比較して残存容量率が高かった。異なる形態での実施例9においても、実施例1~7と同様に残存容量率が高かった。
実施例1~9および比較例1~2の結果から、充放電に伴う体積変化の大きい負極活物質を用いた場合でも、酸化物絶縁層を形成することで内部短絡を効果的に抑制できることが分かった。
In Examples 1 to 7 in which the oxide insulating layer was formed, it was confirmed that the residual capacity ratio was higher than that in Comparative Example 1 in which the oxide insulating layer was not formed.
In Example 8 in which the oxide insulating layer was formed, the residual capacity ratio was higher than that in Comparative Example 2 in which the oxide insulating layer was not formed. In Example 9 in a different form, the residual capacity ratio was high as in Examples 1-7.
From the results of Examples 1 to 9 and Comparative Examples 1 and 2, it is possible to effectively suppress internal short circuit by forming an oxide insulating layer even when a negative electrode active material having a large volume change due to charge / discharge is used. I understood.
以上説明した少なくともひとつの実施形態によれば、負極集電体と、負極集電体の片面または両面に形成された負極活物質層と、負極活物質層の外縁の少なくとも一部を被覆する酸化物絶縁層とを持つ負極とすることにより、これを用いた電池における内部短絡を防止できる。 According to at least one embodiment described above, the negative electrode current collector, the negative electrode active material layer formed on one or both surfaces of the negative electrode current collector, and the oxidation covering at least a part of the outer edge of the negative electrode active material layer By using a negative electrode having a physical insulating layer, an internal short circuit in a battery using the negative electrode can be prevented.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.
3…負極、3a…負極集電体、3b…負極活物質層、4…セパレータ、5…正極、5a…正極集電体、5b…正極活物質層、10…非水電解質二次電池(電池)、11a…一方の面、11b…他方の面、11c…端面、12a…外縁、12b…外周部、13…酸化物絶縁層、14…第1領域、15…第2領域 DESCRIPTION OF SYMBOLS 3 ... Negative electrode, 3a ... Negative electrode collector, 3b ... Negative electrode active material layer, 4 ... Separator, 5 ... Positive electrode, 5a ... Positive electrode collector, 5b ... Positive electrode active material layer, 10 ... Nonaqueous electrolyte secondary battery (battery 11a ... one surface, 11b ... the other surface, 11c ... end face, 12a ... outer edge, 12b ... outer periphery, 13 ... oxide insulating layer, 14 ... first region, 15 ... second region

Claims (7)

  1. 負極集電体と、
    前記負極集電体の片面または両面に形成された負極活物質層と、
    前記負極活物質層の外縁の少なくとも一部を被覆する酸化物絶縁層とを有する非水電解質二次電池用負極。
    A negative electrode current collector;
    A negative electrode active material layer formed on one or both sides of the negative electrode current collector;
    The negative electrode for nonaqueous electrolyte secondary batteries which has an oxide insulating layer which coat | covers at least one part of the outer edge of the said negative electrode active material layer.
  2.  前記酸化物絶縁層が、SiO、Al、ZrOから選ばれる1種以上を含む請求項1に記載の非水電解質二次電池用負極。 The negative electrode for a nonaqueous electrolyte secondary battery according to claim 1, wherein the oxide insulating layer contains one or more selected from SiO 2 , Al 2 O 3 , and ZrO 2 .
  3.  前記酸化物絶縁層は、前記負極活物質層の表面に垂直方向の厚みが、1μm以上15μm以下である請求項1または請求項2に記載の非水電解質二次電池用負極。 3. The negative electrode for a non-aqueous electrolyte secondary battery according to claim 1, wherein the oxide insulating layer has a thickness in a direction perpendicular to a surface of the negative electrode active material layer of 1 μm or more and 15 μm or less.
  4.  前記負極集電体は、引張強さが500N/mm以上2000N/mm以下の金属箔である請求項1~請求項3のいずれか一項に記載の非水電解質二次電池用負極。 The negative electrode for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein the negative electrode current collector is a metal foil having a tensile strength of 500 N / mm 2 or more and 2000 N / mm 2 or less.
  5.  前記負極活物質層が、シリコン、シリコン含有酸化物、スズ、スズ含有酸化物から選ばれる1種類以上を含む負極活物質を含む請求項1~請求項4のいずれか一項に記載の非水電解質二次電池用負極。 The non-aqueous solution according to any one of claims 1 to 4, wherein the negative electrode active material layer includes a negative electrode active material containing one or more selected from silicon, a silicon-containing oxide, tin, and a tin-containing oxide. Negative electrode for electrolyte secondary battery.
  6. 請求項1~請求項5のいずれか一項に記載の非水電解質二次電池用負極と、正極活物質層を含む正極と、非水電解質とを有する非水電解質二次電池。 A nonaqueous electrolyte secondary battery comprising the negative electrode for a nonaqueous electrolyte secondary battery according to any one of claims 1 to 5, a positive electrode including a positive electrode active material layer, and a nonaqueous electrolyte.
  7.  請求項6記載の非水電解質二次電池を有する電池パック。 A battery pack comprising the nonaqueous electrolyte secondary battery according to claim 6.
PCT/JP2014/057187 2014-03-17 2014-03-17 Negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and battery pack WO2015140912A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/057187 WO2015140912A1 (en) 2014-03-17 2014-03-17 Negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/057187 WO2015140912A1 (en) 2014-03-17 2014-03-17 Negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and battery pack

Publications (1)

Publication Number Publication Date
WO2015140912A1 true WO2015140912A1 (en) 2015-09-24

Family

ID=54143929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057187 WO2015140912A1 (en) 2014-03-17 2014-03-17 Negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and battery pack

Country Status (1)

Country Link
WO (1) WO2015140912A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019064645A1 (en) * 2017-09-28 2019-04-04 株式会社日立製作所 Half secondary battery and secondary battery
CN110431692A (en) * 2017-03-31 2019-11-08 松下知识产权经营株式会社 Secondary cell
CN112054189A (en) * 2019-06-06 2020-12-08 丰田自动车株式会社 Nonaqueous electrolyte secondary battery
US20210328268A1 (en) * 2019-02-21 2021-10-21 Ningde Amperex Technology Limited Electrochemical device and electronic device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005235695A (en) * 2004-02-23 2005-09-02 Matsushita Electric Ind Co Ltd Lithium-ion secondary battery
JP2006196447A (en) * 2004-12-16 2006-07-27 Matsushita Electric Ind Co Ltd Negative electrode for lithium ion secondary battery, its manufacturing method, and lithium ion secondary battery using it
JP2007227328A (en) * 2006-01-24 2007-09-06 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery, method of manufacturing the electrode, and lithium secondary battery
WO2010050507A1 (en) * 2008-10-31 2010-05-06 日立マクセル株式会社 Nonaqueous secondary battery
JP2010160984A (en) * 2009-01-08 2010-07-22 Nissan Motor Co Ltd Anode for lithium-ion secondary battery and lithium-ion secondary battery
JP2011096575A (en) * 2009-10-30 2011-05-12 Denso Corp Electrode for secondary battery, manufacturing method for the same and nonaqueous electrolyte secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005235695A (en) * 2004-02-23 2005-09-02 Matsushita Electric Ind Co Ltd Lithium-ion secondary battery
JP2006196447A (en) * 2004-12-16 2006-07-27 Matsushita Electric Ind Co Ltd Negative electrode for lithium ion secondary battery, its manufacturing method, and lithium ion secondary battery using it
JP2007227328A (en) * 2006-01-24 2007-09-06 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery, method of manufacturing the electrode, and lithium secondary battery
WO2010050507A1 (en) * 2008-10-31 2010-05-06 日立マクセル株式会社 Nonaqueous secondary battery
JP2010160984A (en) * 2009-01-08 2010-07-22 Nissan Motor Co Ltd Anode for lithium-ion secondary battery and lithium-ion secondary battery
JP2011096575A (en) * 2009-10-30 2011-05-12 Denso Corp Electrode for secondary battery, manufacturing method for the same and nonaqueous electrolyte secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110431692A (en) * 2017-03-31 2019-11-08 松下知识产权经营株式会社 Secondary cell
CN110431692B (en) * 2017-03-31 2022-10-04 松下知识产权经营株式会社 Secondary battery
WO2019064645A1 (en) * 2017-09-28 2019-04-04 株式会社日立製作所 Half secondary battery and secondary battery
JPWO2019064645A1 (en) * 2017-09-28 2020-01-16 株式会社日立製作所 Semi-secondary and secondary batteries
US20210328268A1 (en) * 2019-02-21 2021-10-21 Ningde Amperex Technology Limited Electrochemical device and electronic device
CN112054189A (en) * 2019-06-06 2020-12-08 丰田自动车株式会社 Nonaqueous electrolyte secondary battery
CN112054189B (en) * 2019-06-06 2024-03-22 丰田自动车株式会社 Nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
KR101892846B1 (en) Electrode structure, secondary battery, battery pack and vehicle
KR100981473B1 (en) Nonaqueous electrolyte battery and battery pack
JP5586532B2 (en) Nonaqueous electrolyte battery and battery pack
KR101141867B1 (en) Secondary battery
JP5178111B2 (en) Non-aqueous electrolyte battery and pack battery
US9515298B2 (en) Nonaqueous electrolyte battery and battery pack
JP5694221B2 (en) Nonaqueous electrolyte battery and battery pack
JP6139780B2 (en) Negative electrode active material, non-aqueous electrolyte battery, battery pack and vehicle
JP6305263B2 (en) Non-aqueous electrolyte battery, battery pack, battery pack and car
JP6334308B2 (en) Non-aqueous electrolyte battery, battery pack, and car
JP2017168255A (en) Nonaqueous electrolyte secondary battery, battery pack, and vehicle
JP2014154317A (en) Electrode, nonaqueous electrolyte battery and battery pack
JP5622692B2 (en) Nonaqueous electrolyte battery and battery pack
WO2015140912A1 (en) Negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and battery pack
JP5865951B2 (en) Nonaqueous electrolyte battery and battery pack
US20180006338A1 (en) Assembled battery and battery pack using the same
JP4836612B2 (en) Nonaqueous electrolyte battery and battery pack
JP6054540B2 (en) Positive electrode active material, non-aqueous electrolyte battery, and battery pack
WO2015140992A1 (en) Nonaqueous-electrolyte secondary-battery positive electrode, nonaqueous-electrolyte secondary battery, and battery pack
JP5361940B2 (en) Nonaqueous electrolyte battery and battery pack
JP5361939B2 (en) Nonaqueous electrolyte battery and battery pack
US20150086854A1 (en) Nonaqueous electrolyte secondary battery and battery pack
JP2012104498A (en) Nonaqueous electrolyte battery, and battery pack

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14886427

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14886427

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP