WO2015140834A1 - Air-conditioning system - Google Patents

Air-conditioning system Download PDF

Info

Publication number
WO2015140834A1
WO2015140834A1 PCT/JP2014/001637 JP2014001637W WO2015140834A1 WO 2015140834 A1 WO2015140834 A1 WO 2015140834A1 JP 2014001637 W JP2014001637 W JP 2014001637W WO 2015140834 A1 WO2015140834 A1 WO 2015140834A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioning
heating element
indoor
unit
conditioning system
Prior art date
Application number
PCT/JP2014/001637
Other languages
French (fr)
Japanese (ja)
Inventor
豊大 薮田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2014/001637 priority Critical patent/WO2015140834A1/en
Publication of WO2015140834A1 publication Critical patent/WO2015140834A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • F24F2120/12Position of occupants

Definitions

  • the present invention relates to an air conditioning system for cooling a space containing a movable heating element
  • the present invention relates to a system that is provided corresponding to an indoor unit and includes a plurality of heating element detectors for measuring the skin temperature or body surface temperature of a heating element, and that realizes an air conditioning environment suitable for a heating element such as a human body existing indoors.
  • An air conditioning system installed in a building air conditioner will be described.
  • An air conditioning system installed in a building or the like does not use a single air-conditioning indoor unit to control a single space, as in a home air conditioner.
  • the indoor unit is used to control the air conditioner so as to provide a uniform air conditioning environment throughout the space.
  • Patent Document 1 The conventional air conditioning system An area-specific air conditioning control system for controlling an air conditioner having one or a plurality of air conditioning indoor units (71 to 75) provided as a common air conditioning environment providing means for a plurality of areas, An area information input unit (12) for receiving area information (20) which is information relating to the air conditioning environment of the area; A control unit (13) for controlling the air conditioner according to the area information and providing an air conditioning environment corresponding to the area information to each area; In consideration of the content of the control of the control unit, it is configured to include a calculation unit (14) that apportions the energy consumption of the air conditioner required for providing the air conditioning environment to each of the areas,
  • the characteristic structure is a control part (13) which controls an air conditioning apparatus according to area information, and provides the air-conditioning environment corresponding to area information with respect to each area.
  • a control part (13) controls the motion of the flap which changes the speed of the air to blow off, or the direction of blowing air according to area information (20), and the flow of the air blown off from an air-conditioning indoor unit is controlled. Control. For this reason, an individual air conditioning environment can be provided for each of a plurality of areas.
  • the present invention has been made to solve the above-mentioned problems, and the first object is to An object of the present invention is to provide an air conditioning system that includes a plurality of heating element detectors and executes an appropriate air-conditioning environment according to the state of the heating elements existing in the room based on the detection results of the heating element detectors.
  • a second object is to obtain an air conditioning system that can eliminate energy-saving operation of the air conditioner and provide energy saving depending on the state of the heating element existing in the air-conditioning target space.
  • the air conditioning system of the present invention is An air conditioning system for cooling a space containing a movable heating element,
  • the air conditioning system is A plurality of indoor units that cool the movable heating element;
  • a plurality of heating element detectors provided corresponding to the indoor unit, Based on the detection results of the plurality of heating element detectors, an air conditioning management device that controls the operation of the indoor unit in association with the corresponding heating element detector; Is an air conditioning system.
  • the air conditioning system according to the invention can implement an air conditioning environment suitable for the state of the heating element by performing air conditioning on the movable heating element existing in the indoor space. Energy saving can be realized by reducing energy consumption by reducing waste of air conditioning for a portion where no heating element is present.
  • FIG. 3 is a block diagram illustrating a configuration of an air conditioning management device 700 according to Embodiment 1.
  • FIG. It is a block diagram which shows the structure of the indoor unit 300 based on Embodiment 1.
  • FIG. It is a flowchart which shows the process sequence of the air-conditioning process based on the infrared sensors 301 and 311 in the air-conditioning management apparatus 700 based on Embodiment 1.
  • FIG. FIG. 5 is a flowchart showing a processing procedure showing details regarding the “initial setting process (step S1)” in FIG. 4 according to the first embodiment.
  • FIG. 3 is a diagram showing an arrangement of indoor units 300a to 300c in an indoor space 100 according to Embodiment 1.
  • FIG. FIG. 5 is a flowchart showing a processing procedure showing in detail the “infrared sensor data acquisition process (step S3)” of FIG. 4. It is a flowchart which shows the process sequence regarding the data acquisition of the said indoor unit in "infrared sensor data acquisition processing (step S3).”
  • FIG. 5 is a flowchart showing a processing procedure showing details of the “save operation determination process (step S4)” in FIG. 4.
  • FIG. 5 is a flowchart showing a processing procedure showing details regarding the “save operation canceling process (step S5)” of FIG.
  • FIG. 4 It is a figure which shows the whole air conditioning system 2000 which shows Embodiment 2 of this invention.
  • FIG. 6 is a diagram showing an arrangement of indoor units 320a to 320c and remote controllers 420a to 420c in an indoor space 120 according to Embodiment 2.
  • FIG. 10 is a flowchart showing a processing procedure of air conditioning processing based on infrared sensors 421a to 421c in the air conditioning management device 700 according to Embodiment 2.
  • the first embodiment is an air conditioning system that cools a space containing a movable heating element, and this system connects one or a plurality of outdoor units and two or more indoor units to a refrigerant pipe.
  • An air conditioning system configured by an air conditioning system configured by connecting, an air conditioning management device that is a centralized controller for operating the air conditioning system, and a remote controller (hereinafter referred to as a remote controller),
  • the outdoor unit, the indoor unit, the air conditioning management device, and the remote controller are connected to each other via a transmission line for communication.
  • Each indoor unit is provided with a heating element detector composed of an infrared sensor (hereinafter also referred to as a sensor as appropriate), and information on each infrared sensor is collected in an air conditioning management device via a transmission line.
  • the apparatus is configured to collectively perform individual control for a plurality of indoor units arranged in the same space based on the collected information of the infrared sensors.
  • FIG. 1 shows an entire air conditioning system 1000 showing Embodiment 1 of the present invention.
  • the heating element will be described as a human body.
  • the state of the heating element means a broad sense including the presence / absence of the presence of the heating element in the indoor space to be air-conditioned and the temperature distribution due to the presence of the heating element.
  • the air conditioning system 1000 includes indoor units 300a to 300c that cool the indoor space 100 (abbreviated as space as appropriate), an outdoor unit 200 that releases indoor heat absorbed by the indoor units 300a to 300c, A remote control 400 for operating the air conditioner by supplying operation control signals to the outdoor unit 200 and the indoor units 300a to 300c, and sharing various information regarding the operation state between the indoor units 300a to 300c and the outdoor unit 200 Transmission line 500, indoor unit 300a-300c and outdoor unit 200 connected to each other, refrigerant pipe 600 for circulating the refrigerant between indoor units 300a-300c and outdoor unit 200, and air conditioning control for the space
  • the air-conditioning management device 700 that collectively controls the operation of the system.
  • indoor units 310a to 310c that cool an indoor space 110 different from the indoor space 100
  • an outdoor unit 210 that releases indoor heat absorbed by the indoor units 310a to 310c
  • the outdoor unit 210 and A remote control 410 for supplying an operation control signal to the indoor units 310a to 310c to operate these air conditioners
  • a transmission line 500 for sharing various information regarding the operation state between the indoor units 310a to 310c and the outdoor unit 210.
  • a refrigerant pipe 610 that connects the indoor units 310a to 310c and the outdoor unit 210 and circulates and supplies the refrigerant between the indoor units 310a to 310c and the outdoor unit 210.
  • an outdoor unit 200 and three indoor units 300a to 300c are installed in an indoor space 100 in which air conditioning is to be performed, and each is connected to a refrigerant pipe 600 by a communication transmission line 500.
  • a remote controller 400 for operating these air conditioners is connected to the same transmission line 500, and the indoor units 300a to 300c are operated by operating the remote controller 400.
  • the indoor units 300a to 300c are provided with infrared sensors 301a to 301c, respectively.
  • the indoor unit includes temperature sensors 302a to 302c for measuring the temperature of the indoor space at the air intake port of the indoor unit.
  • the indoor units 300a to 300c, 310a to 310c and the outdoor units 200 and 210 have at least one variable capacity compressor, a heat source side heat exchanger, an expansion valve, and a user side.
  • the heat exchanger and the heat exchanger are sequentially arranged in an annular shape to form a refrigeration cycle, and indoor cooling is realized.
  • the air conditioning management device 700 includes a transmission line 500. Are connected to the indoor units 300a to 300c, 310a to 310c, the outdoor units 200 and 210, and the remote controllers 400 and 410.
  • the air conditioning management device 700 includes infrared sensors 301a to 301c and 311a to 311c, which will be described later. It is configured to collect sensor information and control each indoor unit based on the information.
  • each device connected to the transmission line 500 has, for example, a unique number in communication, an address, etc. (hereinafter referred to as an address) and is distinguished.
  • an address a unique number in communication
  • a signal including data of a signal transmission destination and a transmission source address is transmitted.
  • one or a plurality of outdoor units 200 (two in FIG. 1) provided in a building such as a building and a plurality of indoor units 300a to 300c, 310a to 310c (six in FIG. 1) are refrigerant pipes.
  • the air conditioning is performed on the indoor space 100 and the indoor space 110 by changing the pressure of the refrigerant flowing through the pipe and absorbing and radiating the refrigerant.
  • the air conditioning management device 700 is a centralized controller that can individually (ie, collectively) control the plurality of indoor units 300a to 300c and 310a to 310c.
  • the device is capable of managing data such as schedule management, indoor unit operation status, and sensor information from the heating element detector.
  • the air conditioning management device 700 includes a communication unit 701, a management information collection unit 702, a management information storage unit 703, a management information processing unit 704, a management information setting unit 705, a sensor information collection unit 706, a sensor information storage unit 707, Sensor information processing means 708, sensor information setting means 709, processing control means 710, management information changing means 711, and change storage means 712 are provided.
  • the communication unit 701 is connected to the transmission line 500 externally, receives a signal flowing through the transmission line 500, and extracts data.
  • extracting the data means that a signal on which the voltage of the pulse signal is superimposed is transmitted to the transmission line 500 in a state in which a constant voltage is applied, so that the communication unit 701 uses the voltage of the superimposed pulse signal. Is converted into a communication signal and recognized as an individual communication signal arranged for each information to realize communication with each air conditioner.
  • the communication unit 701 performs a role of analyzing a general voltage signal flowing through the transmission line 500 and capturing it as a communication signal, or conversely converting a communication signal into a voltage.
  • the management information collecting unit 702 collects necessary data from the data extracted by the communication unit 701 as management information and stores it in the management information storage unit 703.
  • the data related to the management information is information relating to the operation status of the plurality of indoor units 300a to 300c, such as operation mode, wind speed, wind direction, set temperature, and save operation.
  • the management information collecting means 702 is a means for collecting the operating state of the indoor unit, and collects data such as the operating state of the indoor unit and the set temperature for each indoor unit. To do.
  • the management information collecting means 702 has a time measuring means such as a timer for performing the collecting process.
  • the management information storage unit 703 individually stores indoor unit operation information and the like.
  • the management information processing unit 704 processes the management information stored in the management information storage unit 703 based on the contents of the management information set by the management information setting unit 705 described later, and stores the management information in the management information 703 again.
  • the management information setting unit 705 is a setting unit for operating each of the indoor units 300a to 300c and 310a to 310c, and can change ON / OFF of the operation of each indoor unit, a set temperature, and the like.
  • the sensor information of the infrared sensors 301a to 301c of the indoor units 300a to 300c is collected in the air conditioning management device 700 via the transmission line 500.
  • the sensor information collecting unit 706 collects data related to sensor information from the data extracted by the communication unit 701 and stores it in the sensor information storage unit 707.
  • the sensor information collecting means 706 collects sensor information such as the suction temperature attached to the indoor units 300a to 300c and 310a to 310c and the sensor attached to the infrared sensor, and stores the information as sensor information. It is stored in the means 707.
  • the sensor information collecting means 706 has a time measuring means similar to the management information collecting means 702.
  • the sensor information setting unit 709 determines how to process the sensor information, and the sensor information processing unit 708 processes the sensor information based on the determination by the sensor information setting unit 709. .
  • the sensor information setting means 709 is a setting means for using / not using sensor information and can finely adjust the sensor information.
  • the sensor information processing unit 708 determines whether to change the sensor information according to the contents set by the sensor information setting unit 709 and the sensor information data (detection result) acquired by the sensor information collection unit 706.
  • the process control unit 710 performs a process for realizing each function.
  • the processing control means 710 has a procedure of processing contents as a program in advance, and realizes each function by executing this program.
  • the process control unit 710 changes the management information based on the management information processed by the management information processing unit 704 and the sensor information processed by the sensor information processing unit 708.
  • processing for determining how to control the entire function is performed.
  • the management information changing unit 711 changes the management content based on the content of the process control unit 710 and stores the changed content in the change storage unit 712.
  • the management information changing unit 711 finally performs processing for changing the operation information and the like based on the result of the processing control unit 710, and the changed contents are stored in the change storage unit 712.
  • FIG. 3 is a diagram illustrating a configuration of the indoor unit 300 according to the first embodiment.
  • the indoor unit 300 is a device that cools the room, and includes at least an infrared sensor 301, a temperature sensor 302, a communication unit 303, an actuator output unit 304, a management information processing unit 305, a management information storage unit 306, and a control information process.
  • Means 307, control information storage means 308, processing control means 309, and sensor data storage means 313 are provided.
  • the indoor unit 300 is directly arranged with respect to the indoor space 100 that is desired to be air-conditioned, and includes a signal including an operation command from the remote control 400 and the air conditioning management device 700 via the transmission line 500 or a signal received by the indoor unit communication unit 303. Based on this, control for operating each actuator output means 304 is performed.
  • examples of the actuator include an electric valve that adjusts the refrigerant amount of the refrigerant pipe 600 connected to the outdoor unit 200 (not shown), a wind direction valve that adjusts the air direction with respect to the space, and the like.
  • the temperature sensor 302 is provided in each indoor unit, and the temperature sensor 302 measures the temperature in the indoor space 100.
  • the thermo judgment of the indoor unit is performed based on the value of this temperature.
  • the temperature sensor 302 and the infrared sensor 301 are selectively switched for use.
  • the temperature value obtained by the temperature sensor 302 is not used, and the thermosensor is determined by measuring the human temperature obtained by each infrared sensor.
  • the infrared sensor can be switched between valid / invalid, and in the case of invalidity, it can also be determined by the space temperature using the conventional temperature sensor 302.
  • thermo determination using only an infrared sensor will be described.
  • the communication unit 303 is connected to the transmission line 500, receives a signal flowing through the transmission line 500, and extracts data.
  • the communication unit 303 analyzes a general voltage signal flowing through the transmission line 500 and takes it in as a communication signal. It plays a role such as converting to.
  • the management information processing unit 305 collects data such as necessary operation commands from the data extracted by the communication unit 303 as management information and stores it in the management information storage unit 306.
  • the indoor unit 300 since the indoor unit 300 finally performs control according to the state of the outdoor unit 200, the indoor unit 300 communicates control information with the outdoor unit 200 via the transmission line 500. .
  • the control information processing unit 307 performs a collection process on the content related to the control information from the information extracted by the communication unit 303, and the collection result is stored in the control information storage unit 308.
  • the process control unit 309 controls the actuator output unit 304 based on the management information and the control information obtained by the management information processing unit 305 and the control information processing unit 307.
  • detection information obtained by the infrared sensor 301 that measures the temperature of the heating element installed in the indoor unit 300 and the temperature sensor 302 that measures the temperature of the air in the indoor space is processed by the processing control unit 309. After being processed, it is stored in the sensor data storage means 313.
  • the sensor data and the like processed by the processing control unit 309 is transmitted as control information to the outdoor unit 200, the air conditioning management device 700, and the like via the control information processing unit 307 and the communication unit 303.
  • it is also used as data for controlling its own actuator in the indoor unit 300.
  • the air conditioning management device 700 collects sensor information of the infrared sensors 301a to 301c connected to the indoor units 300a to 300c, and also operates information on the indoor units 300a to 300c (described above). Management information) is collected, and air conditioning control in accordance with the temperature of the human body in the indoor space 100 is realized.
  • the cooling operation is started when the operator operates the remote controller 400 that controls the air conditioner 1000.
  • the target temperature hereinafter, set temperature
  • the target temperature in the air-conditioned space is 27 ° C.
  • the indoor units 300a to 300c judge the air conditioning thermo ON / OFF for each by the temperature sensor 302 provided in the indoor unit 300, and the temperature in the indoor space 100 is uniformly set to 27 ° C.
  • the air-conditioning management apparatus 700 uses the infrared sensors 301a to 301c provided in advance in the three indoor units 300a to 300c in the area of the indoor space 100. Execute operational control individually.
  • step S1 to step S5 The air conditioning control using the infrared sensors 301a to 301c by the air conditioning management device 700 is realized by performing the processing procedure shown in FIG. 4 (hereinafter, step S1 to step S5). First, a large flow will be described with reference to FIGS.
  • the initial operation is “perform initial setting processing (step S1)”.
  • step S1 After completion of the “initial setting process (step S1)”, the air conditioning management device 700 continues the process of the following step S2.
  • step S2 it is determined whether or not the indoor units 300a to 300c in the target indoor space 100 are in operation. If the indoor units 300a to 300c are stopped, the process proceeds to NO, and these indoor units 300a. ⁇ 300c stands by until the operation operation is started by the remote controller 400 or the air conditioning management device 700.
  • step S3 When the corresponding indoor units 300a to 300c are in operation, the process proceeds to YES, and “infrared sensor data acquisition processing” is performed (step S3). Thereafter, a “save operation determination process” is performed for each of the infrared sensors 301a to 301c (step S4), and a “save operation release process” is performed (step S5).
  • the operation modes of the plurality of indoor units include a normal operation mode and a save operation mode
  • the save operation mode is an operation mode with lower power consumption than the normal operation mode.
  • the air conditioning management device 700 After the power is turned on, the air conditioning management device 700 repeatedly performs the processes in steps S2 to S5.
  • Steps S1, S2, S4, and S5 are all performed by the air conditioning management device 700.
  • the indoor unit including the air conditioning management device 700 and the infrared sensors 301a to 301c. 300a to 300c are processes executed.
  • step S1 the processing procedure of the “initial setting process (step S1)” described above will be described in more detail with reference to FIG.
  • the air-conditioning control using the infrared sensors 301 and 311 requires the “initial setting process” in the air-conditioning management apparatus 700 as described above, and the infrared sensors 301 and 311 and the indoor units 300a to 300c and 310a to 310c This association is the main operation of the “initial setting process”.
  • FIG. 5 shows a processing procedure (step S1 ') showing details regarding the "initial setting process (step S1)" in FIG.
  • step S110 When the “initial setting process (S1 ′)” is started, the indoor space 100 is associated with the indoor units 300a to 300c and 310a to 310c that air-condition the spaces corresponding to the detection areas of the infrared sensors 301 and 311. It is confirmed whether or not (step S110). If it is determined in step S110 that the association has not been made, the process proceeds to NO to associate each infrared sensor with each indoor unit (step S120). If the association has been made, the process proceeds to YES, and the “initial setting process (S1 ′)” is terminated (step S130).
  • Embodiment 1 since the infrared sensors 301 and 311 provided in advance in each indoor unit are used, the correspondence between them is known, and the indoor units 300a to 300c and 310a to 310c and the infrared sensors 301 and 311 are known. Is associated in advance. In such a case, the process of the “initial setting process (step S1)” is virtually unnecessary.
  • FIG. 6 is a layout diagram of the indoor units 300a to 300c in the indoor space 100, and three broken-line circles in FIG. 6 indicate the relationship between the positions of the infrared sensors 301a to 301c and the detection areas 800a to 800c. .
  • the detection area 800a corresponds to the infrared sensor 301a portion of the indoor unit 300a
  • the detection area 800b corresponds to the infrared sensor 301b of the indoor unit 300b
  • the detection area 800c corresponds to the 300c infrared sensor 301c.
  • These three indoor units 300a to 300c perform air conditioning in the indoor space 100, and the infrared sensors 301a to 301c installed in each indoor unit are responsible for these three areas in the indoor space 100. Yes. Note that the detection areas 800a to 800c partially overlap in adjacent areas.
  • FIG. 7 shows a detailed processing procedure of the contents related to the “infrared sensor data acquisition process (step S3)” of FIG.
  • the sensor information collection unit 706 starts the infrared sensor data acquisition process from the infrared sensors 301 and 311 and is a fixed time (for example, every 60 seconds) from the previous acquisition of the infrared sensor data. It is determined whether or not elapses (step S310).
  • step S320 the process proceeds to NO, and returns to step S310 as a loop.
  • the process proceeds to YES, where the sensor information collecting means 706 sends infrared sensor data from the infrared sensors 301 and 311 to all the indoor units 300a to 300c and 310a to 310c as transmission lines. Monitoring is started via 500 and the communication means 701 (step S320).
  • the sensor information collecting unit 706 stores the data acquired from each of the infrared sensors 301 and 311 as infrared sensor data in the sensor information storage unit 707 (step S330), and “infrared sensor data acquisition process (step S3)”. Is completed (step S340).
  • FIG. 8 shows a processing procedure related to data acquisition of each indoor unit with respect to “infrared sensor data acquisition processing (S3)”.
  • each of the indoor units is started based on the data obtained by the processing information processing unit 305 by the processing control unit 309 after being activated by the power source of the indoor units 300a to 300c (step S3201) It is determined whether or not is in operation (step S3202).
  • the processing control unit 309 waits until the operation of the indoor units 300a to 300c is started. After the operation of the indoor units 300a to 300c is started, the processing control unit 309 acquires infrared sensor data from the infrared sensors 301a to 301c. It is determined whether or not a certain time (for example, every 30 seconds) has elapsed since step S3203.
  • Step S3204 the process proceeds to NO, and returns to step S3203 as a loop.
  • the process proceeds to YES, and the processing control unit 309 detects the information of the detection areas 800a to 800c in charge of the infrared sensors 301a to 301c owned by itself, and starts analysis ( Step S3204).
  • step S3205 If the infrared sensor data acquisition by the infrared sensors 301 and 311 is the first time, the process proceeds to YES (step S3205), and the process control unit 309 calculates the average temperature based on the detected temperature data within the limit range (step S3206). ).
  • the temperature within the limit range is a temperature that can be taken by a person who is a heating element in calculating an average temperature, or a temperature that falls within data (for example, 30 degrees to 40 degrees) within an assumed temperature range. Therefore, the average temperature is calculated using the temperature data within the limit range as an effective value.
  • the process proceeds to NO, and the data analysis result of the infrared sensor 301 is detected the previous time.
  • the processing control unit 309 determines whether or not the result has changed (step S3207).
  • step S3209 If the acquired data is unchanged from the previous time, the process proceeds to NO, and the process control unit 309 keeps the average temperature acquired last time in the sensor data storage unit 313 as it is (step S3209). If the acquired data has changed from the previous time, the process proceeds to YES, and the processing control unit 309 extracts data of only the portion where the change has occurred, and calculates the average temperature of only the portion where the change has occurred. Calculate (step S3208).
  • the process control unit 309 stores the average temperature calculated in steps S3206, S3208, and S3209 in the sensor data storage unit 313 as transmission data when monitoring is requested from the air conditioning management device 700 ( Step S3210).
  • the process control unit 309 stores the transmission data in the sensor data storage unit 313 as an invalid value. Let me.
  • steps S3202 to S3210 are repeated until data is monitored from the infrared sensors 301 and 311 by the air conditioning management device 700 (step S3211), and the monitoring request is made. If the transmission data calculated above is returned to the air conditioning management device 700 (step S3212), the processing of steps S3202 to S3210 is repeated.
  • the temperature of the human body existing in the detection areas 800a to 800c in charge of the infrared sensors 301a to 301c installed in the indoor space 100 (for example, skin temperature, body surface, etc.) Temperature).
  • the sensors corresponding to the detection areas detect each other.
  • step S3211 If there is no infrared sensor data monitoring request in step S3211, the process proceeds to NO and returns to step S3201.
  • step S4 the processing procedure of the “save operation determination process (step S4)” described in FIG. 4 will be described based on FIG.
  • step S4 “is performed, and it is determined whether or not each indoor unit is to be subjected to a save operation based on the infrared sensor data acquired from the infrared sensors 301 and 311. This processing is sequentially performed individually for each of the indoor units 300a to 300c based on the acquired data of the infrared sensors 301 and 311.
  • the air-conditioning management apparatus 700 determines whether the infrared sensor data acquired from the infrared sensors 301 and 311 has changed in the “infrared sensor data acquisition process (step S3)” (step S410).
  • the sensor information processing unit 708 determines whether the infrared sensor data is a valid value (that is, not an invalid value) ( Step S420).
  • step S420 if the infrared sensor data is not a valid value (invalid value), the process proceeds to NO, whether there is no change in temperature, or whether the invalid value state continues for a certain time (for example, 10 minutes). Is judged by the sensor information processing means 708 (step S460).
  • the air-conditioning management device 700 continues the operation state in front of the indoor units 300a to 300c until the predetermined time elapses. If this continues for a predetermined time or longer (here, 10 minutes), the process proceeds to YES to enter the indoor space. It is determined that there is no human body, and the process control unit 710 determines to perform demand control on the corresponding indoor units of the infrared sensors 301 and 311 to perform a save operation (step S470).
  • the management information changing unit 711 transmits a control signal to the corresponding indoor unit via the communication unit 701 and the transmission line 500 so as to perform a save operation.
  • step S420 when the sensor information processing means 708 describes a case where the received temperature data is changed and the value is determined to be an effective value, the process proceeds to YES.
  • the comparison temperature data is compared (step S430).
  • the process proceeds to YES and the processing control means 710 detects the detection areas of the infrared sensors 301 and 311. It is determined that demand control is performed on the indoor unit corresponding to (1) and a save operation is performed (step S440), and a control signal is transmitted from the management information control means 711 so that the save operation is performed on the corresponding indoor unit.
  • step S450 if the received temperature data acquired by each of the infrared sensors 301 and 311 is higher than the temperature data for comparison, the process proceeds to NO, and the indoor unit remains in normal operation (step S450).
  • step S4 After determining whether it is appropriate to normally operate the indoor unit or to perform a save operation, the “save operation determination process (step S4)” is terminated (step S480).
  • the comparative temperature data set internally is a value determined by the set temperature set for each indoor unit, and is generally set to a different value depending on the operation mode and set temperature. Has been.
  • the internal comparison temperature data is 35 ° C.
  • the comparative temperature data is determined to be 33 ° C, etc.
  • the comparative temperature data is determined as 35 ° C. or the like.
  • the temperature data for comparison set inside can be changed by rewriting the initial setting by the sensor information setting means 709 described above.
  • step S5 the processing procedure of the “save operation canceling process (step S5)” described in FIG. 4 will be described in detail based on FIG.
  • FIG. 10 shows a detailed processing procedure of the contents related to the “save operation canceling process (step S5)” described in FIG.
  • step S4 when the save operation release process is started (step S500), the management information changing unit 711 performs a save operation on the corresponding indoor unit.
  • the management information collecting unit 702 collects the information together, and the management information processing unit 704 determines whether at least one indoor unit is performing a save operation (step S510).
  • step S520 If even one unit is performing a save operation, it is also determined whether there is any other indoor unit that is normally operated (step S520).
  • Step S550 when all the indoor units 300a to 300c are performing the save operation and there is no indoor unit that is normally operated, the process proceeds to NO, and the “save operation canceling process (S5)” is ended ( Step S550).
  • the process proceeds to YES, and the management information collection means 702 causes the indoor unit that started the save operation to proceed. It is determined whether or not a certain time (for example, 30 minutes) has elapsed since the machine started the save operation (step S530).
  • a certain time for example, 30 minutes
  • the management information collecting unit 702 is said to be weak in the effect of air conditioning. A determination is made, the process proceeds to YES, and the process control means 710 determines that the indoor unit that is performing the save operation is returned to the normal operation (step S540).
  • step S540 based on the determination by the air conditioning management device 700, the management information changing unit 711 transmits a command to perform the normal operation to the indoor unit that is performing the save operation via the communication unit 701 and the transmission line 500. Then, the “save operation canceling process (step S5)” is terminated (step S550).
  • step S5 When the “save operation canceling process (step S5)” is completed as described above, the process returns to step S2 in FIG. 4 and the processes in steps S2 to S5 described in FIG. 4 are repeatedly performed.
  • the air conditioning management device 700 and the indoor units 300a to 300c arranged in the indoor space 100 are mainly described. Needless to say, the same thing can be done for 0a to 310c at the same time.
  • each infrared sensor is attached to the indoor unit and is virtually associated in advance.
  • the sensor may be installed at a position away from the indoor unit.
  • the indoor unit should be associated with each other.
  • Embodiment 2 Prior to specific description of the second embodiment, an outline will be described.
  • the air-conditioning control is performed using the infrared sensors 301a to 301c in which the positional relationship with each indoor unit provided in advance in each of the indoor units 300a to 300c is fixed has been described.
  • infrared sensors 321a to 321c (hereinafter referred to as first heating element detectors) having a fixed positional relationship with each indoor unit provided in advance in each of the indoor units 320a to 320c, and further a remote controller 420a Air-conditioning control is performed using in combination with portable infrared sensors 421a to 421c (hereinafter referred to as second heating element detectors) attached to .about.420c.
  • the detection area that could not be captured by the infrared sensor of the indoor unit can be complemented by a person moving in the room with a remote controller, the range that can be detected is naturally limited. Compared with the first embodiment, it is possible to detect a human body more precisely.
  • FIG. 11 is basically the same system configuration as FIG. 1 except that in the figure, an infrared sensor is newly attached to the remote controller.
  • FIG. 2 has basically the same configuration as FIG. Therefore, the system configuration of the second embodiment is basically the same as the system configuration of the first embodiment except that the above-described remote controller includes an infrared sensor.
  • FIG. 13 shows a control operation flow when the remote control according to Embodiment 2 of the present invention is used together, and the control flow is partially changed accordingly. Since the basic operation is the same as that of the first embodiment, different points will be mainly described. Specifically, steps S1 to S5 in FIG. 13 are the same control operation flow as steps S1 to S5 in FIG. Among them, the second embodiment is different in that step S3-2 is added between steps S3 and S4 in FIG.
  • FIG. 11 shows the entire air conditioning system 2000 according to Embodiment 2 of the present invention.
  • an outdoor unit 220 three indoor units 320a to 320c, and three remote controllers 420a to 420c are installed in an indoor space 120 where air conditioning is performed.
  • the transmission line 500 is connected.
  • Embodiment 2 there are three indoor units 320a to 320c and three remote controllers 420a to 420c in the indoor space 120, and their respective infrared sensors 321a to 321c and infrared sensors 421a to 421c.
  • the temperature data in this space is detected by two types of infrared sensors.
  • the infrared sensors 321a to 321c attached to the indoor units 320a to 320c have detection areas 810a to 810c formed by three broken circles around each installed indoor unit. Three broken circles are the same as those in the first embodiment.
  • triangular or fan-shaped detection areas 820a to 820c are newly formed in front.
  • the heating element detection area by the first heating element detector and the heating element detection area by the second heating element detector have different detection characteristics.
  • infrared sensors are provided in the indoor space 120 by two types of infrared sensors, infrared sensors 321a to 321c installed in each indoor unit and infrared sensors 421a to 421c installed in each remote controller. Is responsible for three areas, and the adjacent areas partially overlap.
  • FIG. 13 is a flowchart showing a processing procedure for performing air conditioning processing based on the infrared sensors 321a to 321c and the infrared sensors 421a to 421c by the air conditioning management device 700 in the second embodiment.
  • step S3-2 described below is the same as in the first embodiment except that step S3-2 described below is newly added in the second embodiment.
  • step S3 for acquiring infrared sensor data Since the operation up to step S3 for acquiring infrared sensor data is the same as that already described in the first embodiment, step S3-2 and subsequent steps immediately after step S3 will be described.
  • step S3 of the infrared sensor data acquisition processing from the infrared sensors 301a to 301c already described in the first embodiment the data is monitored by the infrared sensors 301 and 311 only for the indoor units.
  • infrared sensor data is monitored by the infrared sensors 321a to 321c and the infrared sensors 421a to 421c for both the indoor unit and the remote controller.
  • the infrared sensors 321a to 321c included in the indoor units 320a to 320c and the infrared sensors 421a to 421c included in the remote controllers 420a to 420c are provided at regular intervals (for example, 60 seconds).
  • the information acquired from the above is monitored by the sensor information collection unit 706 via the transmission line 500 and the communication unit 701. (Step S320)
  • steps S3201 to S3212 are repeatedly performed, so that the detection areas 810a to 810c of the infrared sensors 321a to 321c installed in the indoor space 120 and the detection areas 820a of the infrared sensors 421a to 421c are performed.
  • the temperature of the human body existing in ⁇ 820c (for example, skin temperature, body surface temperature, etc.) can be detected.
  • the sensor serving as the detection area shall detect the temperature of the human body.
  • the air-conditioning management apparatus 700 uses all the infrared sensors 321a to 321c provided in advance in the indoor units 320a to 320c and all the infrared rays provided to the remote controls 420a to 420c in the “infrared sensor data acquisition process (step S3)”.
  • infrared sensor data can be acquired from both of the sensors 421a to 421c, this data acquisition operation is repeated a plurality of times with time.
  • the sensor information processing unit 708 further transmits a plurality of infrared sensor data between the detectors in order to control the indoor units 320a to 320c set in step S1. Averaging is performed (step S3-2), and the data is stored in the sensor information storage unit 707.
  • the averaging between the detectors in step S3-2 is, as shown in FIG. 12, for example, in the detection area 810a, the infrared sensor 321a as the first heating element detector,
  • the two types of detection data obtained from the two types of sensors with the infrared sensor 421a, which is a heating element detector are averaged for each corresponding indoor unit. That is, the averaging operation is performed by the air conditioning management device 700, and the air conditioning management device 700 performs an averaging operation between data obtained by each detector. Therefore, the air conditioning management device 700 does not average the detection data across the detection areas.
  • the detection data is averaged using only the effective value, and all the acquired sensor information data are invalid values.
  • the average value itself is treated as an invalid value.
  • the temperature outside the limit range is not used for the calculation of the average value.
  • step S4 determines whether the above two types of infrared sensor data are averaged.
  • step S5 save operation release process
  • the infrared sensors 321a to 321c attached to the indoor units can detect a wide range, but detection is performed from above the space. There are few detection parts per person.
  • infrared sensors 421a to 421c attached to the remote control are detected from the side of the space, a large number of detection portions per person can be obtained, but the number of undetectable portions increases in the detection portion of the entire space. Become.
  • both the case where the infrared sensors 321a to 321c are attached to the indoor unit and the case where the infrared sensors 421a to 421c are attached to the remote controller are both used. It is possible to incorporate the excellent points of.
  • the infrared sensors 321a to 321c provided to the indoor units 320a to 320c and the infrared sensors 421a to 421c provided to the remote controllers 420a to 420c are the above two types of infrared sensors.
  • the acquired temperature data is collected by the air conditioning management device 700 (step S3), and averaged for each infrared sensor corresponding to the indoor unit to be controlled (step S3-2).
  • the human body existing in the indoor space can be detected based on the two types of data of the infrared sensors 321a to 321c attached to the upper part of the space and the infrared sensors 421a to 421c attached to the side of the space.
  • the accuracy of detection of temperature data acquired from the human body can be improved as compared with the first embodiment.
  • the indoor unit can be controlled using the data of the infrared sensors 421a to 421c attached to the remote controller.
  • data can be collected by the air-conditioning management device if an infrared sensor is additionally installed at an optional location and connected via an I / F to connect it to the transmission line. Needless to say, it is possible to control the indoor unit with higher accuracy.
  • the first embodiment describes the detection by the infrared sensors 301 and 311 installed in the indoor unit 300
  • the second embodiment describes the infrared sensor 301 in the first embodiment.
  • 311 and the infrared sensors 421a to 421c attached to the remote controllers 420a to 420c have been described.
  • the movable heating element may be an animal other than a human body, or may be a plant or food that can be carried by a person or animal.
  • this air conditioning system when applied to a pet hotel, it may be used as a heating element when applied to a variable temperature animal such as a crocodile or a lizard and when applied to a constant temperature animal such as a dog or a cat.
  • the appropriate temperature varies depending on the indoor space (booth). Also, if food is selected as the heating element and there is a dish that needs to be cooled and thawed, each table has a different temperature suitable for temperature control. For example, the appropriate temperature is 3 ° C for meat, banana Then, it may be different from 5 ° C.
  • the present invention it is possible to realize an appropriate air-conditioned environment according to the state of the heating element with respect to air conditioning the indoor space in which the heating element is accommodated. For example, it is possible to reduce energy consumption and reduce energy consumption by reducing waste of air conditioning for a portion where no heating element exists in the same space.

Abstract

The present invention pertains to an air-conditioning system which cools a space housing heat-generating bodies capable of moving, and which is equipped with multiple heat generating body detectors that measure the skin temperature or surface temperature of the heat generating bodies and are provided in correspondence with indoor units, and provides individual air-conditioning environments tailored to the persons present in a room. This air-conditioning system, which cools a space housing heat-generating bodies capable of moving, is equipped with: multiple indoor units that cool the heat generating bodies capable of moving; multiple heat generating body detectors provided in correspondence with the indoor units; and an air-conditioning management device that, on the basis of the detection results from the multiple heat generating body detectors, controls the operation of the indoor unit corresponding to the relevant heat generating body.

Description

空気調和システムAir conditioning system
 本発明は、移動可能な発熱体を収容する空間を冷却する空気調和システムに関し、
 室内機に対応して設けられ、発熱体の皮膚温度または体表面温度を測定する複数の発熱体検出器を備え、室内に存在する人体などの発熱体に適合した空調環境を実現するシステムに関する。
The present invention relates to an air conditioning system for cooling a space containing a movable heating element,
The present invention relates to a system that is provided corresponding to an indoor unit and includes a plurality of heating element detectors for measuring the skin temperature or body surface temperature of a heating element, and that realizes an air conditioning environment suitable for a heating element such as a human body existing indoors.
 一例として、ビル用空調に設置される空気調和システムについて述べる。
 ビルなどに設置される空気調和システムは、家庭用の空調機のように、一つの空間に対し一台毎の空調室内機を用いて制御するのではなく、一つの空間に対して複数の空調室内機を用いて、空間全体を均一な空調環境を提供するように空気調和装置を制御している。
As an example, an air conditioning system installed in a building air conditioner will be described.
An air conditioning system installed in a building or the like does not use a single air-conditioning indoor unit to control a single space, as in a home air conditioner. The indoor unit is used to control the air conditioner so as to provide a uniform air conditioning environment throughout the space.
 一方で、空調対象である空間が大きい場合、複数の人がその空間に存在あるいは出入りし、空間の中で存在する場所や各人の基礎体温の違いによって、それら複数の人が感じる体感温度は様々であり、均一な空調環境を提供しても同一空間に存在する人が一様に快適ではないことが多い。 On the other hand, when the space to be air-conditioned is large, multiple people can enter or leave the space, and depending on the location in the space and the basic body temperature of each person, Even if a uniform air conditioning environment is provided, people in the same space are often not uniformly comfortable.
 例えば、この種の従来例としては特許文献1に示されるものがあり、
その従来の空気調和システムは、
 複数のエリアに対する共通の空調環境提供手段として配備される1又は複数の空調室内機(71~75)を有する空気調和装置を制御するエリア別空調制御システムであって、
 エリアの空調環境に関する情報であるエリア情報(20)を受けるエリア情報入力部(12)と、
エリア情報に応じて空気調和装置を制御し、エリア情報に対応した空調環境をエリアそれぞれに対して提供する制御部(13)と、
制御部の制御の内容を加味して、空調環境の提供に要した空気調和装置の消費エネルギー量を前記エリアそれぞれに対して按分する演算部(14)と、を備えた構成としており、
 その特徴的な構成は、エリア情報に応じて空気調和装置を制御し、エリア情報に対応した空調環境をエリアそれぞれに対して提供する制御部(13)である。
 これにより、制御部(13)は、エリア情報(20)に応じて、吹き出す空気の速度や、吹き出し空気の方向を変えるフラップの動きを制御して、空調室内機から吹き出される空気の流れを制御する。このため、複数のエリアそれぞれに個別の空調環境を提供することができる。(特許文献1参照)
For example, as a conventional example of this type, there is one shown in Patent Document 1,
The conventional air conditioning system
An area-specific air conditioning control system for controlling an air conditioner having one or a plurality of air conditioning indoor units (71 to 75) provided as a common air conditioning environment providing means for a plurality of areas,
An area information input unit (12) for receiving area information (20) which is information relating to the air conditioning environment of the area;
A control unit (13) for controlling the air conditioner according to the area information and providing an air conditioning environment corresponding to the area information to each area;
In consideration of the content of the control of the control unit, it is configured to include a calculation unit (14) that apportions the energy consumption of the air conditioner required for providing the air conditioning environment to each of the areas,
The characteristic structure is a control part (13) which controls an air conditioning apparatus according to area information, and provides the air-conditioning environment corresponding to area information with respect to each area.
Thereby, a control part (13) controls the motion of the flap which changes the speed of the air to blow off, or the direction of blowing air according to area information (20), and the flow of the air blown off from an air-conditioning indoor unit is controlled. Control. For this reason, an individual air conditioning environment can be provided for each of a plurality of areas. (See Patent Document 1)
特開2004-144348号公報(0069段落、第1図)JP 2004-144348 A (0069 paragraph, FIG. 1)
 上述している特許文献1では、エリア毎に分けられた空調環境に関するエリア情報をあらかじめ手入力、または他のコンピューター等を介して設定し、それに応じて空調機はエリア情報に従って制御するようにされている。このように、あらかじめ設定された情報に基づいて空調機を制御するため、空間に存在する人の情報や人の体表面温度(皮膚温度等)などの発熱体情報を考慮した制御を行っておらず、適正な空調を実行するということに関しても、その適正の程度についても自ずから限界があった。 In Patent Document 1 described above, area information related to the air conditioning environment divided for each area is set in advance manually or via another computer, and the air conditioner is controlled according to the area information accordingly. ing. In this way, in order to control the air conditioner based on preset information, control is performed in consideration of information on a person existing in the space and information on a heating element such as a human body surface temperature (skin temperature, etc.). First of all, there was a limit to the degree of appropriateness in terms of executing appropriate air conditioning.
 本発明は上述の課題を解決するためになされたもので、第1の目的は、
 複数の発熱体検出器を備え、それら発熱体検出器の検出結果に基づき、室内に存在する発熱体の状況に応じた適正な空調環境を実行する空気調和システムの提供を目的とする。
The present invention has been made to solve the above-mentioned problems, and the first object is to
An object of the present invention is to provide an air conditioning system that includes a plurality of heating element detectors and executes an appropriate air-conditioning environment according to the state of the heating elements existing in the room based on the detection results of the heating element detectors.
 また、第2の目的は空調対象空間に存在する発熱体の状況により、空調機の無駄運転をなくし、省エネを提供することができる空気調和システムを得るものである。 Also, a second object is to obtain an air conditioning system that can eliminate energy-saving operation of the air conditioner and provide energy saving depending on the state of the heating element existing in the air-conditioning target space.
 本発明の空気調和システムは、
 移動可能な発熱体を収容する空間を冷却する空気調和システムであって、
 上記空気調和システムは、
 移動可能な発熱体を冷却する複数の室内機と、
 上記室内機に対応して設けられた複数の発熱体検出器と、
 上記複数の発熱体検出器の検出結果に基づき、該当する発熱体検出器と対応付けて室内
機を運転制御する空調管理装置と、
を備える空気調和システムである。
The air conditioning system of the present invention is
An air conditioning system for cooling a space containing a movable heating element,
The air conditioning system is
A plurality of indoor units that cool the movable heating element;
A plurality of heating element detectors provided corresponding to the indoor unit,
Based on the detection results of the plurality of heating element detectors, an air conditioning management device that controls the operation of the indoor unit in association with the corresponding heating element detector;
Is an air conditioning system.
 発明に係る空気調和システムは、室内空間に存在する移動可能な発熱体に対して、空調を実施して発熱体の状況に応じた適正な空気調和環境を実現でき、例えば、空調対象空間のうち発熱体が存在しない部分に対しては空調の無駄を削減することにより消費エネルギーを削減して省エネを実現することができる。 The air conditioning system according to the invention can implement an air conditioning environment suitable for the state of the heating element by performing air conditioning on the movable heating element existing in the indoor space. Energy saving can be realized by reducing energy consumption by reducing waste of air conditioning for a portion where no heating element is present.
本発明の実施の形態1を示す空気調和システム1000の全体を示す図である。It is a figure which shows the whole air conditioning system 1000 which shows Embodiment 1 of this invention. 実施の形態1に係る、空調管理装置700の構成を示すブロック図である。3 is a block diagram illustrating a configuration of an air conditioning management device 700 according to Embodiment 1. FIG. 実施の形態1に係る、室内機300の構成を示すブロック図である。It is a block diagram which shows the structure of the indoor unit 300 based on Embodiment 1. FIG. 実施の形態1に係る、空調管理装置700における赤外線センサ301,311に基づく空調処理の処理手順を示すフロー図である。It is a flowchart which shows the process sequence of the air-conditioning process based on the infrared sensors 301 and 311 in the air-conditioning management apparatus 700 based on Embodiment 1. FIG. 実施の形態1に係る、図4の「初設定処理(ステップS1)」に関する内容を詳細に示した処理手順を示すフロー図である。FIG. 5 is a flowchart showing a processing procedure showing details regarding the “initial setting process (step S1)” in FIG. 4 according to the first embodiment. 実施の形態1に係る、室内空間100内の室内機300a~300c配置を示す図である。3 is a diagram showing an arrangement of indoor units 300a to 300c in an indoor space 100 according to Embodiment 1. FIG. 図4の「赤外線センサデータ取得処理(ステップS3)」を詳細に示した処理手順を示すフロー図である。FIG. 5 is a flowchart showing a processing procedure showing in detail the “infrared sensor data acquisition process (step S3)” of FIG. 4. 「赤外線センサデータ取得処理(ステップS3)」において、上記室内機のデータ取得に関する処理手順を示すフロー図である。It is a flowchart which shows the process sequence regarding the data acquisition of the said indoor unit in "infrared sensor data acquisition processing (step S3)." 図4の「セーブ運転判断処理(ステップS4)」に関する内容を詳細に示した処理手順を示すフロー図である。FIG. 5 is a flowchart showing a processing procedure showing details of the “save operation determination process (step S4)” in FIG. 4. 図4の「セーブ運転解除処理(ステップS5)」に関する内容を詳細に示した処理手順を示すフロー図である。FIG. 5 is a flowchart showing a processing procedure showing details regarding the “save operation canceling process (step S5)” of FIG. 4; 本発明の実施の形態2を示す空気調和システム2000の全体を示す図である。It is a figure which shows the whole air conditioning system 2000 which shows Embodiment 2 of this invention. 実施の形態2に係る、室内空間120内の室内機320a~320c及びリモコン420a~420c配置を示す図である。FIG. 6 is a diagram showing an arrangement of indoor units 320a to 320c and remote controllers 420a to 420c in an indoor space 120 according to Embodiment 2. 実施の形態2に係る、空調管理装置700における赤外線センサ421a~421cに基づく空調処理の処理手順を示すフロー図である。FIG. 10 is a flowchart showing a processing procedure of air conditioning processing based on infrared sensors 421a to 421c in the air conditioning management device 700 according to Embodiment 2.
実施の形態1.
 具体的な説明に先立ち、本実施の形態1の概要を述べる。この実施の形態1のものは移動可能な発熱体を収容する空間を冷却する空気調和システムであって、このシステムは1又は複数の室外機と、2台以上の複数の室内機とを冷媒配管で接続して構成される空気調和装置と、この空器調和装置を操作する集中コントローラである空調管理装置と、リモートコントローラ(以下、リモコンと称する)とで構成される空気調和システムであり、上記室外機、室内機、空調管理装置、リモコンは通信を行うための伝送線でそれら相互に接続されている。
 また、室内機には赤外線センサからなる発熱体検出器(適宜、以下センサとも記す)が各々設置されており、各赤外線センサの情報が伝送線を介して空調管理装置に集められ、この空調管理装置は集められた赤外線センサの情報をもとに同一空間に配置される複数の室内機に対して、個別の制御を統括的に実施するようにしたものである。
Embodiment 1 FIG.
Prior to specific description, an outline of the first embodiment will be described. The first embodiment is an air conditioning system that cools a space containing a movable heating element, and this system connects one or a plurality of outdoor units and two or more indoor units to a refrigerant pipe. An air conditioning system configured by an air conditioning system configured by connecting, an air conditioning management device that is a centralized controller for operating the air conditioning system, and a remote controller (hereinafter referred to as a remote controller), The outdoor unit, the indoor unit, the air conditioning management device, and the remote controller are connected to each other via a transmission line for communication.
Each indoor unit is provided with a heating element detector composed of an infrared sensor (hereinafter also referred to as a sensor as appropriate), and information on each infrared sensor is collected in an air conditioning management device via a transmission line. The apparatus is configured to collectively perform individual control for a plurality of indoor units arranged in the same space based on the collected information of the infrared sensors.
 図1は、この発明の実施の形態1を示す空気調和システム1000の全体を示している。以下、発熱体を人体として説明する。
 また、本願明細書中で、発熱体の状況とは、空調対象である室内空間における発熱体の存在の有無や、発熱体の存在による温度の分布などを含む広義の状況を意味している。
FIG. 1 shows an entire air conditioning system 1000 showing Embodiment 1 of the present invention. Hereinafter, the heating element will be described as a human body.
Further, in the present specification, the state of the heating element means a broad sense including the presence / absence of the presence of the heating element in the indoor space to be air-conditioned and the temperature distribution due to the presence of the heating element.
 具体的詳細な構成を説明するに先立ち、まず、空気調和システム1000とそれを構成する主要回路について述べる。なお、図1において複数の室内機300a~300c,310a~310cに関し、それらを個々に区別して説明する場合には、番号に添字a~cを付す。それらを個々に区別しない場合には単に番号を記載し、図中で同一の番号は、同一又は相当の機能を有することを示す。 Prior to describing a specific detailed configuration, first, the air conditioning system 1000 and main circuits constituting the system will be described. In FIG. 1, when a plurality of indoor units 300a to 300c and 310a to 310c are described separately, the suffixes a to c are added to the numbers. In the case where they are not individually distinguished, numbers are simply described, and the same numbers in the drawings indicate that they have the same or corresponding functions.
 以下、第1図の実施の形態1に基づいて、具体的に述べる。
 空気調和システム1000は、室内空間100(適宜、空間と略記する)を冷却する室内機300a~300cと、この室内機300a~300cで吸収した室内の熱を室外へ放出する室外機200と、この室外機200及び室内機300a~300cに運転制御信号を供給してこれらの空調機を操作するためのリモコン400と、室内機300a~300cと室外機200との間で運転状態に関する各種情報を共有する伝送線500と、室内機300a~300cと室外機200との間を結線して室内機300a~300cと室外機200間で冷媒を循環させて供給する冷媒配管600と、上記空間に対する空調制御を一括して運転制御する空調管理装置700と、から主に構成されている。
A specific description will be given below based on the first embodiment shown in FIG.
The air conditioning system 1000 includes indoor units 300a to 300c that cool the indoor space 100 (abbreviated as space as appropriate), an outdoor unit 200 that releases indoor heat absorbed by the indoor units 300a to 300c, A remote control 400 for operating the air conditioner by supplying operation control signals to the outdoor unit 200 and the indoor units 300a to 300c, and sharing various information regarding the operation state between the indoor units 300a to 300c and the outdoor unit 200 Transmission line 500, indoor unit 300a-300c and outdoor unit 200 connected to each other, refrigerant pipe 600 for circulating the refrigerant between indoor units 300a-300c and outdoor unit 200, and air conditioning control for the space The air-conditioning management device 700 that collectively controls the operation of the system.
 同様に、室内空間100とは別の室内空間110を冷却する室内機310a~310cと、この室内機310a~310cで吸収した室内の熱を室外へ放出する室外機210と、この室外機210及び室内機310a~310cに運転制御信号を供給してこれらの空調機を操作するためのリモコン410と、室内機310a~310cと室外機210との間で運転状態に関する各種情報を共有する伝送線500と、室内機310a~310cと室外機210との間を結線して室内機310a~310cと室外機210間で冷媒を循環させて供給する冷媒配管610とから主に構成されている。 Similarly, indoor units 310a to 310c that cool an indoor space 110 different from the indoor space 100, an outdoor unit 210 that releases indoor heat absorbed by the indoor units 310a to 310c, and the outdoor unit 210 and A remote control 410 for supplying an operation control signal to the indoor units 310a to 310c to operate these air conditioners, and a transmission line 500 for sharing various information regarding the operation state between the indoor units 310a to 310c and the outdoor unit 210. And a refrigerant pipe 610 that connects the indoor units 310a to 310c and the outdoor unit 210 and circulates and supplies the refrigerant between the indoor units 310a to 310c and the outdoor unit 210.
 図1において、空調を実施したい室内空間100に対して、室外機200と3台の室内機300a~300cとが設置され、それぞれが冷媒配管600と通信用の伝送線500で接続されている。また、これらの空調機を操作するためのリモコン400が同じ伝送線500に接続され、リモコン400の操作により室内機300a~300cが動作する。 In FIG. 1, an outdoor unit 200 and three indoor units 300a to 300c are installed in an indoor space 100 in which air conditioning is to be performed, and each is connected to a refrigerant pipe 600 by a communication transmission line 500. A remote controller 400 for operating these air conditioners is connected to the same transmission line 500, and the indoor units 300a to 300c are operated by operating the remote controller 400.
 室内機300a~300cは赤外線センサ301a~301cをそれぞれ備えている。 また、室内機は、赤外線センサ301a~301c以外に、室内機の空気の取込み口に、室内空間の温度を測定する温度センサ302a~302cを備えている。 The indoor units 300a to 300c are provided with infrared sensors 301a to 301c, respectively. In addition to the infrared sensors 301a to 301c, the indoor unit includes temperature sensors 302a to 302c for measuring the temperature of the indoor space at the air intake port of the indoor unit.
 なお、上記室内機300a~300c,310a~310c及び室外機200,210には、図示しないがその内部に少なくとも1つの容量可変な圧縮機と、熱源側熱交換器と、膨張弁と、利用側熱交換器とが順次環状に配置されて冷凍サイクルが形成されており、室内の冷却が実現される。 The indoor units 300a to 300c, 310a to 310c and the outdoor units 200 and 210, although not shown, have at least one variable capacity compressor, a heat source side heat exchanger, an expansion valve, and a user side. The heat exchanger and the heat exchanger are sequentially arranged in an annular shape to form a refrigeration cycle, and indoor cooling is realized.
 また、これらの空調機を操作する集中コントローラとして上記のリモコン400,410以外に、複数の空間に対する空調制御を一括して制御する空調管理装置700があり、この空調管理装置700は、伝送線500を介して室内機300a~300c,310a~310c及び室外機200,210、リモコン400,410に接続されており、この空調管理装置700は、赤外線センサ301a~301c、及び、311a~311cの後述するセンサ情報を収集して、それらの情報をもとに各室内機を制御するように構成されている。 In addition to the above remote controllers 400 and 410, there is an air conditioning management device 700 that collectively controls air conditioning control for a plurality of spaces as a centralized controller for operating these air conditioners. The air conditioning management device 700 includes a transmission line 500. Are connected to the indoor units 300a to 300c, 310a to 310c, the outdoor units 200 and 210, and the remote controllers 400 and 410. The air conditioning management device 700 includes infrared sensors 301a to 301c and 311a to 311c, which will be described later. It is configured to collect sensor information and control each indoor unit based on the information.
 ここで、伝送線500に接続される各機器は、例えば通信における固有の番号、アドレス等(以下アドレスという)を有しており、区別されている。また、各機器が通信を行う際には、信号の送信先、送信元のアドレスのデータを含めた信号を送信するものとする。 Here, each device connected to the transmission line 500 has, for example, a unique number in communication, an address, etc. (hereinafter referred to as an address) and is distinguished. In addition, when each device performs communication, a signal including data of a signal transmission destination and a transmission source address is transmitted.
 そして、例えばビル等の建物に設けられた1または複数の室外機200(図1では2台)と、複数の室内機300a~300c,310a~310c(図1では6台)とは、冷媒配管600で接続されていて、この配管中を流れる冷媒の圧力を変化させて冷媒の吸熱、放熱により室内空間100及び室内空間110に対して、空気調和を実施している。 For example, one or a plurality of outdoor units 200 (two in FIG. 1) provided in a building such as a building and a plurality of indoor units 300a to 300c, 310a to 310c (six in FIG. 1) are refrigerant pipes. The air conditioning is performed on the indoor space 100 and the indoor space 110 by changing the pressure of the refrigerant flowing through the pipe and absorbing and radiating the refrigerant.
 続いて、空気調和システム1000が備える空調管理装置700内の具体的構成について、図2のブロック図を参照して、説明する。 Next, a specific configuration in the air conditioning management device 700 included in the air conditioning system 1000 will be described with reference to the block diagram of FIG.
 空調管理装置700は、先に説明したように複数の室内機300a~300c,310a~310cを1台で個別に(すなわち統括的に)運転制御することができる集中コントローラであり、室内機の監視・操作といった内容以外に、スケジュール管理や、室内機の運転状態や発熱体検出器からのセンサ情報といったデータの管理を行うことができる装置である。 As described above, the air conditioning management device 700 is a centralized controller that can individually (ie, collectively) control the plurality of indoor units 300a to 300c and 310a to 310c. In addition to the contents such as operation, the device is capable of managing data such as schedule management, indoor unit operation status, and sensor information from the heating element detector.
 空調管理装置700は、その内部に、通信手段701、管理情報収集手段702、管理情報記憶手段703、管理情報処理手段704、管理情報設定手段705、センサ情報収集手段706、センサ情報記憶手段707、センサ情報処理手段708、センサ情報設定手段709、処理制御手段710、管理情報変更手段711、変更記憶手段712を備えている。 The air conditioning management device 700 includes a communication unit 701, a management information collection unit 702, a management information storage unit 703, a management information processing unit 704, a management information setting unit 705, a sensor information collection unit 706, a sensor information storage unit 707, Sensor information processing means 708, sensor information setting means 709, processing control means 710, management information changing means 711, and change storage means 712 are provided.
 通信手段701は、伝送線500と外部で接続しており、伝送線500に流れる信号を受信してデータを抽出する。
 ここで、データを抽出するとは、一定の電圧が印加された状態の伝送線500に、パルス信号の電圧を重畳された信号が伝えられるため、通信手段701が、この重畳されたパルス信号の電圧の部分を通信信号に変換し、情報ごとに整理された個別の通信信号として認識して、各空調機との通信を実現することである。
The communication unit 701 is connected to the transmission line 500 externally, receives a signal flowing through the transmission line 500, and extracts data.
Here, extracting the data means that a signal on which the voltage of the pulse signal is superimposed is transmitted to the transmission line 500 in a state in which a constant voltage is applied, so that the communication unit 701 uses the voltage of the superimposed pulse signal. Is converted into a communication signal and recognized as an individual communication signal arranged for each information to realize communication with each air conditioner.
 通信手段701は、伝送線500に流れる一般的な電圧信号を解析して、通信信号として取り込むための役目や、逆に通信信号を電圧に変換する等の役目を果たす。 The communication unit 701 performs a role of analyzing a general voltage signal flowing through the transmission line 500 and capturing it as a communication signal, or conversely converting a communication signal into a voltage.
 管理情報収集手段702は、上記で通信手段701が抽出したデータから必要なデータを管理情報として収集処理を行い、管理情報記憶手段703内に記憶する。 The management information collecting unit 702 collects necessary data from the data extracted by the communication unit 701 as management information and stores it in the management information storage unit 703.
 ここで、管理情報に係わるデータとは、複数の室内機300a~300cの運転状況に関する、例えば運転モード、風速、風向、設定温度、セーブ運転等の情報である。 Here, the data related to the management information is information relating to the operation status of the plurality of indoor units 300a to 300c, such as operation mode, wind speed, wind direction, set temperature, and save operation.
 ここで、管理情報収集手段702は、室内機の運転状態がどのような状態にあるかを収集するための手段であり、室内機の運転状態や、設定温度等のデータを室内機毎に収集する。 Here, the management information collecting means 702 is a means for collecting the operating state of the indoor unit, and collects data such as the operating state of the indoor unit and the set temperature for each indoor unit. To do.
 さらに、管理情報収集手段702は、収集処理を行うためにタイマ等の計時手段を有している。 Furthermore, the management information collecting means 702 has a time measuring means such as a timer for performing the collecting process.
 管理情報記憶手段703は、内部に室内機の運転情報等を個別に保存している。 The management information storage unit 703 individually stores indoor unit operation information and the like.
 管理情報処理手段704は、後述する管理情報設定手段705で設定される管理情報の内容に基づき、管理情報記憶手段703内に保存した管理情報を処理して、再度管理情報703内に記憶させる。 The management information processing unit 704 processes the management information stored in the management information storage unit 703 based on the contents of the management information set by the management information setting unit 705 described later, and stores the management information in the management information 703 again.
 次に、管理情報処理手段704は、管理情報設定手段705で設定された内容と管理情報収集手段702で取得した実際の室内機300a~300c,310a~310cの情報に従って、管理情報を変更させるかどうかの判断を行う。 Next, whether the management information processing unit 704 changes the management information according to the contents set by the management information setting unit 705 and the information of the actual indoor units 300a to 300c and 310a to 310c acquired by the management information collection unit 702. Make a judgment.
 なお、管理情報設定手段705は、各室内機300a~300c,310a~310cを操作するための設定手段であり、各室内機の運転のON/OFFや設定温度等を変更することができる。 The management information setting unit 705 is a setting unit for operating each of the indoor units 300a to 300c and 310a to 310c, and can change ON / OFF of the operation of each indoor unit, a set temperature, and the like.
 次に、センサ情報の収集について述べる。
 管理情報と同様に、室内機300a~300cの赤外線センサ301a~301cのセンサ情報が伝送線500を介して、空調管理装置700に収集される。
Next, collection of sensor information will be described.
Similar to the management information, the sensor information of the infrared sensors 301a to 301c of the indoor units 300a to 300c is collected in the air conditioning management device 700 via the transmission line 500.
 センサ情報収集手段706は、通信手段701が抽出したデータからセンサ情報に係わるデータの収集処理を行い、センサ情報記憶手段707内部に記憶する。 The sensor information collecting unit 706 collects data related to sensor information from the data extracted by the communication unit 701 and stores it in the sensor information storage unit 707.
 ここで、センサ情報収集手段706では、室内機300a~300c,310a~310cに取り付けられている吸込み温度や赤外線センサに取り付けられているセンサ等のセンサ情報を収集し、それらの情報をセンサ情報記憶手段707内に保存している。 Here, the sensor information collecting means 706 collects sensor information such as the suction temperature attached to the indoor units 300a to 300c and 310a to 310c and the sensor attached to the infrared sensor, and stores the information as sensor information. It is stored in the means 707.
 さらに、センサ情報収集手段706は、管理情報収集手段702と同様に計時手段を有している。 Further, the sensor information collecting means 706 has a time measuring means similar to the management information collecting means 702.
 次に、センサ情報設定手段709は、センサ情報をどのようにして処理するかを決定させるものであり、センサ情報処理手段708がセンサ情報設定手段709での決定に基づいて、センサ情報を処理する。 Next, the sensor information setting unit 709 determines how to process the sensor information, and the sensor information processing unit 708 processes the sensor information based on the determination by the sensor information setting unit 709. .
 ここで、センサ情報設定手段709では、センサの情報を使用/未使用にする設定手段であり、センサ情報に対する微調整をすることができる。 Here, the sensor information setting means 709 is a setting means for using / not using sensor information and can finely adjust the sensor information.
 次に、センサ情報処理手段708は、センサ情報設定手段709で設定した内容とセンサ情報収集手段706で取得したセンサ情報データ(検出結果)に従い、センサ情報を変更するかどうかの判断を行う。 Next, the sensor information processing unit 708 determines whether to change the sensor information according to the contents set by the sensor information setting unit 709 and the sensor information data (detection result) acquired by the sensor information collection unit 706.
 最後に、処理制御手段710は、各機能を実現させるための処理を実施する。
処理制御手段710は、処理内容の手順をあらかじめプログラムとして内部に有しており、このプログラムを実行することで各機能を実現する。
Finally, the process control unit 710 performs a process for realizing each function.
The processing control means 710 has a procedure of processing contents as a program in advance, and realizes each function by executing this program.
 処理制御手段710は、管理情報処理手段704で処理された管理情報と、センサ情報処理手段708で処理されたセンサ情報とに基づいて、管理情報を変更させる。
 ここでは、管理情報処理手段704の結果とセンサ情報処理手段708の結果を基に、機能全体としてどのように制御を行うかを判断する処理を行う。
The process control unit 710 changes the management information based on the management information processed by the management information processing unit 704 and the sensor information processed by the sensor information processing unit 708.
Here, based on the result of the management information processing unit 704 and the result of the sensor information processing unit 708, processing for determining how to control the entire function is performed.
 実際には管理情報変更手段711が、処理制御手段710の内容に基づき管理内容を変更し、変更記憶手段712内部に変更された内容を記憶している。
 管理情報変更手段711が最終的に処理制御手段710での結果をもとに、運転情報等を変更する処理を行い、この変更された内容が変更記憶手段712内に保存される。
In practice, the management information changing unit 711 changes the management content based on the content of the process control unit 710 and stores the changed content in the change storage unit 712.
The management information changing unit 711 finally performs processing for changing the operation information and the like based on the result of the processing control unit 710, and the changed contents are stored in the change storage unit 712.
 そして、管理情報変更手段711により変更記憶手段712内部に変更された内容が通信手段701を介して伝送線500に送信される。 Then, the contents changed in the change storage means 712 by the management information changing means 711 are transmitted to the transmission line 500 via the communication means 701.
 続いて空気調和システム1000が備える室内機300内の具体的構成について、図3のブロック図を参照して説明する。 Next, a specific configuration of the indoor unit 300 included in the air conditioning system 1000 will be described with reference to the block diagram of FIG.
 なお、第1図における複数の室内機300に関し、複数の室内機を区別する場合には番号に添字a~cを付した。図3中で同一の番号は、同一又は相当の機能を有することを示している。(すなわち、室内機300b,300cは、室内機300aと同じ構成であり、ここでは添字の記載を省略している。) In addition, regarding the plurality of indoor units 300 in FIG. 1, when distinguishing a plurality of indoor units, suffixes a to c are added to the numbers. In FIG. 3, the same numbers indicate that they have the same or corresponding functions. (That is, the indoor units 300b and 300c have the same configuration as the indoor unit 300a, and the subscripts are omitted here.)
 図3は、実施の形態1に係わる室内機300の構成を示す図である。
 この室内機300は、室内を冷却する装置であり、その内部に少なくとも赤外線センサ301、温度センサ302、通信手段303、アクチュエータ出力手段304、管理情報処理手段305、管理情報記憶手段306、制御情報処理手段307、制御情報記憶手段308、処理制御手段309、センサデータ記憶手段313を備えている。
FIG. 3 is a diagram illustrating a configuration of the indoor unit 300 according to the first embodiment.
The indoor unit 300 is a device that cools the room, and includes at least an infrared sensor 301, a temperature sensor 302, a communication unit 303, an actuator output unit 304, a management information processing unit 305, a management information storage unit 306, and a control information process. Means 307, control information storage means 308, processing control means 309, and sensor data storage means 313 are provided.
 室内機300は、空調したい室内空間100に対して直接配置され、伝送線500を経由したリモコン400や空調管理装置700からの操作指令を含む信号、または室内機通信手段303で受信される信号に基づき、各アクチュエータ出力手段304を動作させるための制御を実施する。 The indoor unit 300 is directly arranged with respect to the indoor space 100 that is desired to be air-conditioned, and includes a signal including an operation command from the remote control 400 and the air conditioning management device 700 via the transmission line 500 or a signal received by the indoor unit communication unit 303. Based on this, control for operating each actuator output means 304 is performed.
 ここで、アクチュエータとは、ここでは図示していない室外機200と接続する冷媒配管600の冷媒量を調整する電動弁や、空間に対する風向を調整する風向弁等が挙げられる。 Here, examples of the actuator include an electric valve that adjusts the refrigerant amount of the refrigerant pipe 600 connected to the outdoor unit 200 (not shown), a wind direction valve that adjusts the air direction with respect to the space, and the like.
 温度センサ302は、各室内機に備え付けられおり、この温度センサ302により室内空間100内の温度を測定している。従来の空気調和システムでは、空調の温度を測定する際に、この温度の値によって室内機のサーモ判定を実施していた。
 なお、実施の形態1では、基本的にこの温度センサ302と赤外線センサ301とを選択的に切り替えて使用している。実施の形態1では、この温度センサ302で得られた温度の値は使わず、各赤外線センサで得られた人感温度を測定してサーモを判定しているが、ユーザーの手による初期設定にて赤外線センサの有効/無効を切替え可能にし、無効の場合には、従来のこの温度センサ302を使用した空間温度により判定することもできる。
 以下、赤外センサのみを使用したサーモ判定につき述べる。
The temperature sensor 302 is provided in each indoor unit, and the temperature sensor 302 measures the temperature in the indoor space 100. In the conventional air conditioning system, when the temperature of the air conditioning is measured, the thermo judgment of the indoor unit is performed based on the value of this temperature.
In the first embodiment, basically, the temperature sensor 302 and the infrared sensor 301 are selectively switched for use. In the first embodiment, the temperature value obtained by the temperature sensor 302 is not used, and the thermosensor is determined by measuring the human temperature obtained by each infrared sensor. In this case, the infrared sensor can be switched between valid / invalid, and in the case of invalidity, it can also be determined by the space temperature using the conventional temperature sensor 302.
Hereinafter, thermo determination using only an infrared sensor will be described.
 通信手段303は、伝送線500と接続しており、伝送線500に流れる信号を受信してデータを抽出する。 The communication unit 303 is connected to the transmission line 500, receives a signal flowing through the transmission line 500, and extracts data.
 ここで、通信手段303は、空調管理装置700内の通信手段701と同様、伝送線500に流れる一般的な電圧信号を解析して、通信信号として取り込むための役目や、逆に通信信号を電圧に変換する等の役目を果たす。 Here, like the communication unit 701 in the air conditioning management device 700, the communication unit 303 analyzes a general voltage signal flowing through the transmission line 500 and takes it in as a communication signal. It plays a role such as converting to.
 管理情報処理手段305は、上記で通信手段303が抽出したデータから必要な操作指令等のデータを管理情報として収集処理を行い、管理情報記憶手段306内に記憶される。 The management information processing unit 305 collects data such as necessary operation commands from the data extracted by the communication unit 303 as management information and stores it in the management information storage unit 306.
 ところで、室内機300は室外機200との状態に応じて最終的に制御を実施しているため、室内機300は、伝送線500を介して室外機200との制御情報を互いに通信している。 By the way, since the indoor unit 300 finally performs control according to the state of the outdoor unit 200, the indoor unit 300 communicates control information with the outdoor unit 200 via the transmission line 500. .
 次に、制御情報の収集について述べる。
 制御情報処理手段307は、通信手段303で抽出した情報の中から、制御情報に関する内容に関して収集処理を行い、この収集結果が制御情報記憶手段308内に保存される。
Next, collection of control information will be described.
The control information processing unit 307 performs a collection process on the content related to the control information from the information extracted by the communication unit 303, and the collection result is stored in the control information storage unit 308.
 この後、処理制御手段309は、管理情報処理手段305と制御情報処理手段307とで得られた管理情報と制御情報とに基づき、アクチュエータ出力手段304を制御する。 Thereafter, the process control unit 309 controls the actuator output unit 304 based on the management information and the control information obtained by the management information processing unit 305 and the control information processing unit 307.
 また、室内機300内に設置されている発熱体の温度を測定する赤外線センサ301や、室内空間の空気の温度を測定する温度センサ302により得られた検出情報は、処理制御手段309でデータを処理された後、センサデータ記憶手段313内に保存される。 In addition, detection information obtained by the infrared sensor 301 that measures the temperature of the heating element installed in the indoor unit 300 and the temperature sensor 302 that measures the temperature of the air in the indoor space is processed by the processing control unit 309. After being processed, it is stored in the sensor data storage means 313.
 この後、処理制御手段309でデータを処理されたセンサデータ等は、制御情報として、制御情報処理手段307と通信手段303とを介して、室外機200や空調管理装置700等に情報が伝達されるとともに、室内機300内で自らのアクチュエータを制御するためのデータとしても使われる。 Thereafter, the sensor data and the like processed by the processing control unit 309 is transmitted as control information to the outdoor unit 200, the air conditioning management device 700, and the like via the control information processing unit 307 and the communication unit 303. In addition, it is also used as data for controlling its own actuator in the indoor unit 300.
 次に、室内機300内の動作について説明する。
 このように構成された空気調和システムにおいて、空調管理装置700が室内機300a~300cに接続された赤外線センサ301a~301cのセンサ情報を収集し、あわせて室内機300a~300cの運転情報(上記の管理情報)を収集して、室内空間100内で人体の温度にあわせた空調制御を実現する。
Next, the operation in the indoor unit 300 will be described.
In the air conditioning system configured as described above, the air conditioning management device 700 collects sensor information of the infrared sensors 301a to 301c connected to the indoor units 300a to 300c, and also operates information on the indoor units 300a to 300c (described above). Management information) is collected, and air conditioning control in accordance with the temperature of the human body in the indoor space 100 is realized.
 ここで、操作者が空気調和装置1000を制御するリモコン400を操作することで、冷房運転が開始される。ここでは例えば、空調空間内の目標温度(以後、設定温度)を27℃と仮定する。 Here, the cooling operation is started when the operator operates the remote controller 400 that controls the air conditioner 1000. Here, for example, it is assumed that the target temperature (hereinafter, set temperature) in the air-conditioned space is 27 ° C.
 従来型の空気調和システムでは室内機300に備えられている温度センサ302によって室内機300a~300cがそれぞれに空調のサーモON/OFFを判断して室内空間100内の温度を一様に27℃になるように制御していたが、実施の形態1では、空調管理装置700が、室内空間100内の領域を3台の室内機300a~300cに予め備えられている赤外線センサ301a~301cを用いて、個別に運転制御を実施する。 In the conventional air conditioning system, the indoor units 300a to 300c judge the air conditioning thermo ON / OFF for each by the temperature sensor 302 provided in the indoor unit 300, and the temperature in the indoor space 100 is uniformly set to 27 ° C. In the first embodiment, the air-conditioning management apparatus 700 uses the infrared sensors 301a to 301c provided in advance in the three indoor units 300a to 300c in the area of the indoor space 100. Execute operational control individually.
 空調管理装置700による本赤外線センサ301a~301cを用いた空調制御は、図4に示す処理手順(以下ステップS1~ステップS5)を実施することで実現される。まず、図1から図3を参照しながら大きな流れを説明する。 The air conditioning control using the infrared sensors 301a to 301c by the air conditioning management device 700 is realized by performing the processing procedure shown in FIG. 4 (hereinafter, step S1 to step S5). First, a large flow will be described with reference to FIGS.
 空調管理装置700の電源が起動した後、最初に操作により「初期設定処理(ステップS1)を行う」。 After the power supply of the air-conditioning management device 700 is activated, the initial operation is “perform initial setting processing (step S1)”.
 「初設定処理(ステップS1)」の完了後には、空調管理装置700が以下のステップS2の処理を継続して行う。 After completion of the “initial setting process (step S1)”, the air conditioning management device 700 continues the process of the following step S2.
 ステップS2では、対象となる室内空間100内の室内機300a~300cが運転中であるかどうかを判断し、室内機300a~300cが停止中の場合には、NOへ進み、これらの室内機300a~300cはリモコン400や、空調管理装置700で運転操作が開始されるまで待機する。 In step S2, it is determined whether or not the indoor units 300a to 300c in the target indoor space 100 are in operation. If the indoor units 300a to 300c are stopped, the process proceeds to NO, and these indoor units 300a. ˜300c stands by until the operation operation is started by the remote controller 400 or the air conditioning management device 700.
 該当する室内機300a~300cが運転中の場合には、YESへ進み、「赤外線センサデータ取得処理」を実施する(ステップS3)。
 その後、赤外線センサ301a~301c毎に「セーブ運転判断処理」を実施し(ステップS4)、「セーブ運転解除処理」を行う(ステップS5)。
When the corresponding indoor units 300a to 300c are in operation, the process proceeds to YES, and “infrared sensor data acquisition processing” is performed (step S3).
Thereafter, a “save operation determination process” is performed for each of the infrared sensors 301a to 301c (step S4), and a “save operation release process” is performed (step S5).
 ここで、複数の室内機の運転モードには通常運転モードとセーブ運転モードとがあり、
セーブ運転モードとは、通常運転モードよりも低消費電力での運転モードである。
Here, the operation modes of the plurality of indoor units include a normal operation mode and a save operation mode,
The save operation mode is an operation mode with lower power consumption than the normal operation mode.
 電源の起動後には、空調管理装置700が上記ステップS2~S5の処理を繰り返し実施する。 After the power is turned on, the air conditioning management device 700 repeatedly performs the processes in steps S2 to S5.
 なお、上記ステップS1、S2、S4、S5についてはいずれも空調管理装置700が実施する処理であったが、上記ステップS3については、空調管理装置700と赤外線センサ301a~301cを備えている室内機300a~300cとが実施する処理である。 Steps S1, S2, S4, and S5 are all performed by the air conditioning management device 700. However, for step S3, the indoor unit including the air conditioning management device 700 and the infrared sensors 301a to 301c. 300a to 300c are processes executed.
 ここでは、上記で説明した「初期設定処理(ステップS1)」の処理手順について、図5を用いてさらに詳細に説明する。 Here, the processing procedure of the “initial setting process (step S1)” described above will be described in more detail with reference to FIG.
 本赤外線センサ301,311を用いた空調制御は、空調管理装置700において、既に説明したように「初期設定処理」が必要であり、赤外線センサ301,311と室内機300a~300c、310a~310cとの関連付けを行い、この関連付けが、「初期設定処理」の主要動作となる。 The air-conditioning control using the infrared sensors 301 and 311 requires the “initial setting process” in the air-conditioning management apparatus 700 as described above, and the infrared sensors 301 and 311 and the indoor units 300a to 300c and 310a to 310c This association is the main operation of the “initial setting process”.
 図5が、図4の「初期設定処理(ステップS1)」に関する内容を詳細に示した処理手順(ステップS1’)を示している。 FIG. 5 shows a processing procedure (step S1 ') showing details regarding the "initial setting process (step S1)" in FIG.
 「初期設定処理(S1’)」が開始されると、室内空間100に対して、赤外線センサ301,311の検知エリアに該当する空間を空調する各室内機300a~300c、310a~310cとの関連付けがされているかどうか確認する(ステップS110)。
 ステップS110で、関連付けがされていなかった場合には、NOへ進み、各赤外線センサと各室内機との関連付けを行う(ステップS120)。
 関連付けがされていた場合には、YESへ進み、「初期設定処理(S1’)」が終了する(ステップS130)。
When the “initial setting process (S1 ′)” is started, the indoor space 100 is associated with the indoor units 300a to 300c and 310a to 310c that air-condition the spaces corresponding to the detection areas of the infrared sensors 301 and 311. It is confirmed whether or not (step S110).
If it is determined in step S110 that the association has not been made, the process proceeds to NO to associate each infrared sensor with each indoor unit (step S120).
If the association has been made, the process proceeds to YES, and the “initial setting process (S1 ′)” is terminated (step S130).
 実施の形態1では、各室内機に予め備えてある赤外線センサ301,311を使用するので、これらの間の対応関係は既知であり、室内機300a~300c、310a~310cと赤外線センサ301,311とは予め関連付けられていることになる。
 このような場合には、上記「初期設定処理(ステップS1)」の処理は事実上不要となる。
In Embodiment 1, since the infrared sensors 301 and 311 provided in advance in each indoor unit are used, the correspondence between them is known, and the indoor units 300a to 300c and 310a to 310c and the infrared sensors 301 and 311 are known. Is associated in advance.
In such a case, the process of the “initial setting process (step S1)” is virtually unnecessary.
 図6は、室内空間100内における室内機300a~300cの配置図であり、同図の破線状の3つの円が赤外線センサ301a~301cの位置と検知エリア800a~800cとの関連を示している。 FIG. 6 is a layout diagram of the indoor units 300a to 300c in the indoor space 100, and three broken-line circles in FIG. 6 indicate the relationship between the positions of the infrared sensors 301a to 301c and the detection areas 800a to 800c. .
 第6図では、室内機300aの赤外線センサ301aの部分に該当しているのが検知エリア800aで、同様に室内機300bの赤外線センサ301bに該当しているのが検知エリア800b、同様に室内機300cの赤外線センサ301cに該当しているのが検知エリア800cとなる。 In FIG. 6, the detection area 800a corresponds to the infrared sensor 301a portion of the indoor unit 300a, and similarly, the detection area 800b corresponds to the infrared sensor 301b of the indoor unit 300b. The detection area 800c corresponds to the 300c infrared sensor 301c.
 これらの3台の室内機300a~300cが室内空間100内において空調を行っており、各室内機に設置されている赤外線センサ301a~301cが室内空間100内において、これら三つの領域を担当している。なお、隣接する領域では検知エリア800a~800cが部分的に重複している。 These three indoor units 300a to 300c perform air conditioning in the indoor space 100, and the infrared sensors 301a to 301c installed in each indoor unit are responsible for these three areas in the indoor space 100. Yes. Note that the detection areas 800a to 800c partially overlap in adjacent areas.
 次に、「赤外線センサデータ取得処理(ステップS3)」の処理手順の詳細について、図7を用いて説明する。 Next, details of the processing procedure of the “infrared sensor data acquisition process (step S3)” will be described with reference to FIG.
 図7は、図4の「赤外線センサデータ取得処理(ステップS3)」に関する内容の詳細な処理手順を示している。 FIG. 7 shows a detailed processing procedure of the contents related to the “infrared sensor data acquisition process (step S3)” of FIG.
 「赤外線センサデータ取得処理(ステップS3)」では、センサ情報収集手段706が、赤外線センサ301,311から赤外線センサデータ取得処理を開始し、前回の赤外線センサデータ取得から一定時間(例えば60秒毎)が経過したかどうか判断する(ステップS310)。 In the “infrared sensor data acquisition process (step S3)”, the sensor information collection unit 706 starts the infrared sensor data acquisition process from the infrared sensors 301 and 311 and is a fixed time (for example, every 60 seconds) from the previous acquisition of the infrared sensor data. It is determined whether or not elapses (step S310).
 この一定時間が経過するまでは、NOへ進み、ステップS310にループして戻る。
 一定時間(例えば60秒毎)経過後には、YESへ進み、センサ情報収集手段706が、全ての室内機300a~300c,310a~310cに対して赤外線センサ301,311から赤外線センサデータを、伝送線500と通信手段701とを介してモニタ開始する(ステップS320)。
Until this fixed time has elapsed, the process proceeds to NO, and returns to step S310 as a loop.
After a predetermined time (for example, every 60 seconds), the process proceeds to YES, where the sensor information collecting means 706 sends infrared sensor data from the infrared sensors 301 and 311 to all the indoor units 300a to 300c and 310a to 310c as transmission lines. Monitoring is started via 500 and the communication means 701 (step S320).
 その後、センサ情報収集手段706は、各赤外線センサ301,311から取得したデータを赤外線センサデータとしてセンサ情報記憶手段707内部に保存して(ステップS330)、「赤外線センサデータ取得処理(ステップS3)」が終了する(ステップS340) Thereafter, the sensor information collecting unit 706 stores the data acquired from each of the infrared sensors 301 and 311 as infrared sensor data in the sensor information storage unit 707 (step S330), and “infrared sensor data acquisition process (step S3)”. Is completed (step S340).
 次に、赤外線センサ301a~301cを備えた室内機300a~300cが、各赤外線センサ301,311からデータを取得して空調管理装置700に応答するまでの処理手順について、図8を用いて説明する。 Next, a processing procedure until the indoor units 300a to 300c including the infrared sensors 301a to 301c acquire data from the infrared sensors 301 and 311 and respond to the air conditioning management apparatus 700 will be described with reference to FIG. .
 第8図は、「赤外線センサデータ取得処理(S3)」に関して、各室内機のデータ取得に係る処理手順を示している。 FIG. 8 shows a processing procedure related to data acquisition of each indoor unit with respect to “infrared sensor data acquisition processing (S3)”.
 「赤外線センサデータ取得処理(S3)」では、室内機300a~300cの電源(ステップS3201)で起動した後に、処理制御手段309が管理情報処理手段305で得られたデータを基に、各室内機が運転中であるかどうかを判断する(ステップS3202)。 In the “infrared sensor data acquisition process (S3)”, each of the indoor units is started based on the data obtained by the processing information processing unit 305 by the processing control unit 309 after being activated by the power source of the indoor units 300a to 300c (step S3201) It is determined whether or not is in operation (step S3202).
 処理制御手段309は、室内機300a~300cの運転が開始されるまでは待機しており、室内機300a~300cの運転が開始した後には、赤外線センサ301a~301cから赤外線センサデータを取得してから一定時間(例えば30秒毎)が経過したかどうか判断する(ステップS3203)。 The processing control unit 309 waits until the operation of the indoor units 300a to 300c is started. After the operation of the indoor units 300a to 300c is started, the processing control unit 309 acquires infrared sensor data from the infrared sensors 301a to 301c. It is determined whether or not a certain time (for example, every 30 seconds) has elapsed since step S3203.
 この一定時間が経過するまでは、NOへ進み、ステップS3203にループして戻る。
 一定時間経過後(ここでは30秒毎)は、YESへ進み、処理制御手段309が、自らがもつ赤外線センサ301a~301cの担当する検知エリア800a~800cの情報を検出して分析を開始する(ステップS3204)。
Until this fixed time has elapsed, the process proceeds to NO, and returns to step S3203 as a loop.
After a predetermined time has elapsed (here, every 30 seconds), the process proceeds to YES, and the processing control unit 309 detects the information of the detection areas 800a to 800c in charge of the infrared sensors 301a to 301c owned by itself, and starts analysis ( Step S3204).
 赤外線センサ301,311による赤外線センサデータ取得が初めての場合は、YESへ進み、(ステップS3205)、処理制御手段309は、検出した制限範囲内の温度データを基に平均温度を算出する(ステップS3206)。 If the infrared sensor data acquisition by the infrared sensors 301 and 311 is the first time, the process proceeds to YES (step S3205), and the process control unit 309 calculates the average temperature based on the detected temperature data within the limit range (step S3206). ).
 ここで、制限範囲内の温度とは平均温度を算出するにあたって、発熱体である人としてとりうる温度、あるいは想定される温度の範囲内のデータ(例えば、30度~40度)に収まる温度のことであり、この制限範囲内の温度データを有効値として平均温度を算出している。 Here, the temperature within the limit range is a temperature that can be taken by a person who is a heating element in calculating an average temperature, or a temperature that falls within data (for example, 30 degrees to 40 degrees) within an assumed temperature range. Therefore, the average temperature is calculated using the temperature data within the limit range as an effective value.
 なお、複数の発熱体検出器を用いてセンサ情報データ(検出結果)を得る場合、一般的に、この検出結果の信頼性がより高まるように時間的に繰り返し測定が行われており、1つの発熱体検出器につき複数回の検出結果を得るようにしている。 In addition, when obtaining sensor information data (detection results) using a plurality of heating element detectors, in general, measurement is repeatedly performed in time so that the reliability of the detection results is further increased. Multiple detection results are obtained for each heating element detector.
 赤外線センサ301,311によるデータ取得が二回目以降の場合(すなわち、取得されたデータが前回と変化していなかった場合)には、NOへ進み、赤外線センサ301のデータ分析結果が前回取得した検出結果から変化しているかどうか処理制御手段309が判断する(ステップS3207)。 When the data acquisition by the infrared sensors 301 and 311 is performed for the second time or later (that is, when the acquired data has not changed from the previous time), the process proceeds to NO, and the data analysis result of the infrared sensor 301 is detected the previous time. The processing control unit 309 determines whether or not the result has changed (step S3207).
 取得したデータが前回と変化がない場合には、NOへ進み、処理制御手段309は、前回取得した平均温度をセンサデータ記憶手段313内にそのまま保持しておき(ステップS3209)、
 取得されたデータが前回から変化があった場合には、YESへ進み、処理制御手段309は、その変化があった部分のみのデータを抽出して、その変化のあった部分のみの平均温度を算出する(ステップS3208)。
If the acquired data is unchanged from the previous time, the process proceeds to NO, and the process control unit 309 keeps the average temperature acquired last time in the sensor data storage unit 313 as it is (step S3209).
If the acquired data has changed from the previous time, the process proceeds to YES, and the processing control unit 309 extracts data of only the portion where the change has occurred, and calculates the average temperature of only the portion where the change has occurred. Calculate (step S3208).
 次に、処理制御手段309は、上記ステップS3206、S3208,S3209で算出した平均温度を、空調管理装置700からモニタを要求された場合の送信用データとしてセンサデータ記憶手段313に記憶しておく(ステップS3210)。 Next, the process control unit 309 stores the average temperature calculated in steps S3206, S3208, and S3209 in the sensor data storage unit 313 as transmission data when monitoring is requested from the air conditioning management device 700 ( Step S3210).
 ただし、取得された全てのデータが上記制限範囲内の温度の範囲外であって平均温度が算出できない場合には、処理制御手段309は、送信用データを無効値としてセンサデータ記憶手段313に記憶させておく。 However, if all of the acquired data is outside the temperature range within the above-mentioned limit range and the average temperature cannot be calculated, the process control unit 309 stores the transmission data in the sensor data storage unit 313 as an invalid value. Let me.
 この要領で、室内機300a~300cの電源起動後に、これらの処理(ステップS3202~S3210)を空調管理装置700で赤外線センサ301,311からデータがモニタされるまで繰り返し(ステップS3211)、モニタ要求された場合には上記で算出した送信用データを空調管理装置700に応答した上(ステップS3212)で、上記ステップS3202~S3210の処理を繰り返す。 In this manner, after the power of the indoor units 300a to 300c is turned on, these processes (steps S3202 to S3210) are repeated until data is monitored from the infrared sensors 301 and 311 by the air conditioning management device 700 (step S3211), and the monitoring request is made. If the transmission data calculated above is returned to the air conditioning management device 700 (step S3212), the processing of steps S3202 to S3210 is repeated.
 上記ステップS3202~S3210の処理を繰り返し実施することで、室内空間100内に設置された赤外線センサ301a~301cの担当する検知エリア800a~800cの中に存在する人体の温度(例えば皮膚温度、体表温度等)が検知できる。
 また、それぞれの検知エリア800a~800cが重複したエリアに人体が存在する場合には、検知エリアに該当するセンサがそれぞれ検知を行うものとする。
By repeatedly performing the processes of steps S3202 to S3210, the temperature of the human body existing in the detection areas 800a to 800c in charge of the infrared sensors 301a to 301c installed in the indoor space 100 (for example, skin temperature, body surface, etc.) Temperature).
In addition, when a human body is present in an area where the detection areas 800a to 800c overlap, the sensors corresponding to the detection areas detect each other.
 なお、ステップS3211において、赤外線センサデータのモニタ要求がなかった場合には、NOへ進み、ステップS3201へ戻る。 If there is no infrared sensor data monitoring request in step S3211, the process proceeds to NO and returns to step S3201.
 次に、図4で説明した「セーブ運転判断処理(ステップS4)」の処理手順について、第9図に基づいて説明する。 Next, the processing procedure of the “save operation determination process (step S4)” described in FIG. 4 will be described based on FIG.
 概要を述べておくと、セーブ運転判断処理が開始され(S400)、空調管理装置700が、各室内機300a~300cに備えた赤外線センサ301,311からのデータを取得できた場合、「セーブ運転判断処理(ステップS4)」が実施され、この赤外線センサ301,311から取得された赤外線センサデータにより各室内機をセーブ運転させるかどうかの判断を行う。
 この処理は、取得された赤外線センサ301,311のデータに基づいて、各室内機300a~300c毎に、それぞれ個別に順次実施される。
In brief, when the save operation determination process is started (S400) and the air-conditioning management apparatus 700 can acquire data from the infrared sensors 301 and 311 provided in each of the indoor units 300a to 300c, “save operation” is described. The determination process (step S4) "is performed, and it is determined whether or not each indoor unit is to be subjected to a save operation based on the infrared sensor data acquired from the infrared sensors 301 and 311.
This processing is sequentially performed individually for each of the indoor units 300a to 300c based on the acquired data of the infrared sensors 301 and 311.
 次に、図9に沿って、この処理を詳細に説明する。
 セーブ運転判断処理が開始されると(ステップS400)、
 空調管理装置700は、「赤外線センサデータ取得処理(ステップS3)」で赤外線センサ301,311から取得された赤外線センサデータが変化しているかどうかセンサ情報処理手段708で判断する(ステップS410)。
Next, this process will be described in detail with reference to FIG.
When the save driving determination process is started (step S400),
The air-conditioning management apparatus 700 determines whether the infrared sensor data acquired from the infrared sensors 301 and 311 has changed in the “infrared sensor data acquisition process (step S3)” (step S410).
 センサ情報処理手段708は、上記ステップS410で取得された赤外線センサデータに変化があった場合に、その赤外線センサデータが有効値である(すなわち無効値でないか)どうかもあわせて判断している(ステップS420)。 When there is a change in the infrared sensor data acquired in step S410, the sensor information processing unit 708 also determines whether the infrared sensor data is a valid value (that is, not an invalid value) ( Step S420).
 ステップS420で、その赤外線センサデータが有効値でなかった(無効値である)場合には、NOへ進み、温度の変化がない、または無効値の状態が一定時間(例えば10分)続くかどうかをセンサ情報処理手段708で判断する(ステップS460)。 In step S420, if the infrared sensor data is not a valid value (invalid value), the process proceeds to NO, whether there is no change in temperature, or whether the invalid value state continues for a certain time (for example, 10 minutes). Is judged by the sensor information processing means 708 (step S460).
 空調管理装置700は、この一定時間が経過するまでは、室内機300a~300cの前の運転状態を継続させ、これが一定時間以上(ここでは10分)続く場合にはYESへ進み、室内空間に人体がいないものとして判断し、処理制御手段710にて赤外線センサ301,311の該当する室内機に対して、デマンド制御を行い、セーブ運転をさせるように判断する(ステップS470)。 The air-conditioning management device 700 continues the operation state in front of the indoor units 300a to 300c until the predetermined time elapses. If this continues for a predetermined time or longer (here, 10 minutes), the process proceeds to YES to enter the indoor space. It is determined that there is no human body, and the process control unit 710 determines to perform demand control on the corresponding indoor units of the infrared sensors 301 and 311 to perform a save operation (step S470).
 これらの結果により、管理情報変更手段711は通信手段701と伝送線500とを介して該当する室内機に対して、セーブ運転をさせるように制御信号を送信する。 Based on these results, the management information changing unit 711 transmits a control signal to the corresponding indoor unit via the communication unit 701 and the transmission line 500 so as to perform a save operation.
 次に、ステップS420において、センサ情報処理手段708は、受信した温度データに変化があり、かつ、その値が有効値であると判断した場合について述べると、YESへ進み、この場合、予め内部に設定してある比較用温度データと比較する(ステップS430)。 Next, in step S420, when the sensor information processing means 708 describes a case where the received temperature data is changed and the value is determined to be an effective value, the process proceeds to YES. The comparison temperature data is compared (step S430).
 例えば、冷房運転の場合には、先に算出した平均温度が内部で設定されている比較用温度データより低かった場合には、YESへ進み、処理制御手段710が赤外線センサ301,311の検知エリアに該当する室内機に対してデマンド制御を行いセーブ運転をさせるように判断し(ステップS440)、管理情報制御手段711から該当する室内機に対してセーブ運転をするように制御信号を送信する。 For example, in the case of cooling operation, if the previously calculated average temperature is lower than the comparative temperature data set inside, the process proceeds to YES and the processing control means 710 detects the detection areas of the infrared sensors 301 and 311. It is determined that demand control is performed on the indoor unit corresponding to (1) and a save operation is performed (step S440), and a control signal is transmitted from the management information control means 711 so that the save operation is performed on the corresponding indoor unit.
 逆に、受信した各赤外線センサ301,311で取得された温度データの方が比較用温度データよりも高かった場合は、NOへ進み、その室内機は通常運転のままとする(ステップS450)。 Conversely, if the received temperature data acquired by each of the infrared sensors 301 and 311 is higher than the temperature data for comparison, the process proceeds to NO, and the indoor unit remains in normal operation (step S450).
 室内機を通常運転することが適切であるかもしくは、セーブ運転することが適切であるかを判断した後は、「セーブ運転判断処理(ステップS4)」を終了する(ステップS480)。 After determining whether it is appropriate to normally operate the indoor unit or to perform a save operation, the “save operation determination process (step S4)” is terminated (step S480).
 ここで、内部で設定されてある比較用温度データは、各室内機に対して設定する設定温度により決定される値で、一般的には、運転モードと設定温度によりそれぞれ異った値に設定されている。 Here, the comparative temperature data set internally is a value determined by the set temperature set for each indoor unit, and is generally set to a different value depending on the operation mode and set temperature. Has been.
 例えば、冷房運転を28℃に設定した時には、内部の比較用温度データは35℃、
冷房運転を22℃に設定した場合には比較用温度データは33℃などと決定し、
 暖房運転を25℃に設定の場合は、比較用温度データは35℃などのように決められている。
For example, when the cooling operation is set to 28 ° C., the internal comparison temperature data is 35 ° C.
When the cooling operation is set to 22 ° C, the comparative temperature data is determined to be 33 ° C, etc.
When the heating operation is set to 25 ° C., the comparative temperature data is determined as 35 ° C. or the like.
 なお、この内部で設定される比較用温度データは、先に説明したセンサ情報設定手段709により初期設定を書き換えることによっても変更することが可能である。 The temperature data for comparison set inside can be changed by rewriting the initial setting by the sensor information setting means 709 described above.
 次に、図4で説明した「セーブ運転解除処理(ステップS5)」の処理手順について、第10図に基づいて詳細に説明する。 Next, the processing procedure of the “save operation canceling process (step S5)” described in FIG. 4 will be described in detail based on FIG.
 図10は、図4で説明した「セーブ運転解除処理(ステップS5)」に関する内容の詳細な処理手順を示している。 FIG. 10 shows a detailed processing procedure of the contents related to the “save operation canceling process (step S5)” described in FIG.
 図4で説明した「セーブ運転判断処理(ステップS4)」の処理で、セーブ運転解除処理が開始されると(ステップS500)、管理情報変更手段711が、該当する室内機に対してセーブ運転の指示を送信した時点で、管理情報収集手段702はその情報を合わせて収集し、管理情報処理手段704は、少なくとも一台以上の室内機がセーブ運転をしているかどうか判断する(ステップS510)。 In the “save operation determination process (step S4)” described with reference to FIG. 4, when the save operation release process is started (step S500), the management information changing unit 711 performs a save operation on the corresponding indoor unit. When the instruction is transmitted, the management information collecting unit 702 collects the information together, and the management information processing unit 704 determines whether at least one indoor unit is performing a save operation (step S510).
 この管理情報収集手段702によりその情報を収集した結果、室内機が1台もセーブ運転をしていなかった場合には、NOへ進み、「セーブ運転解除処理(S5)」を終了し(ステップS550)、1台でもセーブ運転している場合には、通常運転している室内機が他にないかどうかも判断する(ステップS520)。 As a result of collecting the information by the management information collecting means 702, if no indoor unit is performing a save operation, the process proceeds to NO, and the “save operation canceling process (S5)” is terminated (step S550). ) If even one unit is performing a save operation, it is also determined whether there is any other indoor unit that is normally operated (step S520).
 同様に、全ての室内機300a~300cがセーブ運転を実施しており、通常運転している室内機が存在しなかった場合もNOへ進み、「セーブ運転解除処理(S5)」を終了する(ステップS550)。 Similarly, when all the indoor units 300a to 300c are performing the save operation and there is no indoor unit that is normally operated, the process proceeds to NO, and the “save operation canceling process (S5)” is ended ( Step S550).
 1台でも通常運転している室内機が存在し、かつセーブ運転を実施している室内機も共存していた場合には、YESへ進み、管理情報収集手段702は、セーブ運転を開始した室内機がセーブ運転を開始してから一定時間(例えば30分)以上経過しているかどうか判断する(ステップS530)。 If at least one indoor unit is operating normally and there are coexisting indoor units that are performing save operation, the process proceeds to YES, and the management information collection means 702 causes the indoor unit that started the save operation to proceed. It is determined whether or not a certain time (for example, 30 minutes) has elapsed since the machine started the save operation (step S530).
 また、通常運転している室内機の受信した赤外線センサ301,311の温度データが比較用温度データに対して低くならなかった場合には、管理情報収集手段702は、空調の効果が弱いためという判断を下し、YESへ進み、処理制御手段710はセーブ運転している室内機に対して通常運転に戻すように判断する(ステップS540)。 In addition, when the temperature data of the infrared sensors 301 and 311 received by the indoor unit that is normally operated is not lower than the temperature data for comparison, the management information collecting unit 702 is said to be weak in the effect of air conditioning. A determination is made, the process proceeds to YES, and the process control means 710 determines that the indoor unit that is performing the save operation is returned to the normal operation (step S540).
 上記ステップS540において、空調管理装置700の判断により、管理情報変更手段711は、通信手段701と伝送線500とを介してセーブ運転している室内機に対して、通常運転するように指令を送信し、「セーブ運転解除処理(ステップS5)」を終了させる(ステップS550)。 In step S540, based on the determination by the air conditioning management device 700, the management information changing unit 711 transmits a command to perform the normal operation to the indoor unit that is performing the save operation via the communication unit 701 and the transmission line 500. Then, the “save operation canceling process (step S5)” is terminated (step S550).
 上記で「セーブ運転解除処理(ステップS5)」が終了した場合には、また図4中のステップS2に戻り、図4中で説明したステップS2~S5の処理を繰り返し実施する。 When the “save operation canceling process (step S5)” is completed as described above, the process returns to step S2 in FIG. 4 and the processes in steps S2 to S5 described in FIG. 4 are repeatedly performed.
 以上のように、空間内に人が存在する場合には、人が存在するところには、個別の空調
環境を提供して快適な環境を提供し、一方、人がいなくて十分に空調環境が提供できてい
るところには、セーブ運転をさせて、冷えすぎや暖めすぎを防ぐとともに、省エネを実施
することができる。
As described above, if there are people in the space, provide a comfortable environment by providing individual air-conditioning environments where there are people. Where it can be provided, save operation can be performed to prevent over-cooling and over-heating, and to save energy.
 また、空調管理装置700と室内空間100に配置された室内機300a~300c
について主に説明をしているが、別の空間である室内空間110に配置された室内機31
0a~310c対しても同時に同じ事が行えるのは言うまでもない。
In addition, the air conditioning management device 700 and the indoor units 300a to 300c arranged in the indoor space 100.
The indoor unit 31 disposed in the indoor space 110, which is another space, is mainly described.
Needless to say, the same thing can be done for 0a to 310c at the same time.
 また、上記説明では、室外機1台と室内機3台とを接続した例を用いたが、室外機が複
数台の場合や、室内機が3台以上の複数台であっても構わない。
In the above description, an example in which one outdoor unit and three indoor units are connected is used. However, when there are a plurality of outdoor units, or a plurality of indoor units may be three or more.
 さらに、実施の形態1の説明では、各赤外線センサが室内機に装着されており、事実上予め対応付けされていたが、センサが室内機とは離れた位置に設置されていてもよく、センサと室内機とが対応付けられていれば十分である。 Furthermore, in the description of the first embodiment, each infrared sensor is attached to the indoor unit and is virtually associated in advance. However, the sensor may be installed at a position away from the indoor unit. And the indoor unit should be associated with each other.
 ところで、上記説明では、冷房を用いた例で説明したが、これを暖房に置き換えた場合
でも同様の効果が得られるのは言うまでもない。
なお、本システムは一例であって、本発明はこのシステム構成に限定するものではない。
By the way, in the above description, an example using cooling was described, but it goes without saying that the same effect can be obtained even when this is replaced with heating.
This system is an example, and the present invention is not limited to this system configuration.
実施の形態2.
 実施の形態2の具体的説明に先立ち、概要について述べる。
 実施の形態1では、室内機300a~300cのそれぞれに予め備えられた各室内機との位置関係が固定的な赤外線センサ301a~301cを用いて空調制御を実施する場合を説明したが、本実施の形態2では、室内機320a~320cのそれぞれに予め備えられた各室内機との位置関係が固定的な赤外線センサ321a~321c(以降、第1の発熱体検出器という)と、さらにリモコン420a~420cに取り付けられた可搬可能な赤外線センサ421a~421c(以降、第2の発熱体検出器という)とを併せて用いて空調制御を実施する。
Embodiment 2. FIG.
Prior to specific description of the second embodiment, an outline will be described.
In the first embodiment, the case where the air-conditioning control is performed using the infrared sensors 301a to 301c in which the positional relationship with each indoor unit provided in advance in each of the indoor units 300a to 300c is fixed has been described. In Embodiment 2, infrared sensors 321a to 321c (hereinafter referred to as first heating element detectors) having a fixed positional relationship with each indoor unit provided in advance in each of the indoor units 320a to 320c, and further a remote controller 420a Air-conditioning control is performed using in combination with portable infrared sensors 421a to 421c (hereinafter referred to as second heating element detectors) attached to .about.420c.
 このため、実施の形態2では、人がリモコンを持って部屋の中を移動することで、室
内機の赤外線センサで捕捉できなかった検知領域を補完できるので、検知できる範囲に自
ずから限界のあった実施の形態1と比較して、きめ細かい人体の検出が可能となる。
For this reason, in the second embodiment, since the detection area that could not be captured by the infrared sensor of the indoor unit can be complemented by a person moving in the room with a remote controller, the range that can be detected is naturally limited. Compared with the first embodiment, it is possible to detect a human body more precisely.
 また、実施の形態2では、同図において、リモコンに赤外線センサが新たに取り付け
られている点を除くと、図11は図1と基本的に同じシステム構成である。同様に、図1
2に示す検知エリアは、図6と基本的に同じ構成である。
従って、実施の形態2のシステム構成も、上述のリモコンに赤外線センサを備えている
点を除くと、実施の形態1のシステム構成と、基本的に同一である。
Further, in the second embodiment, FIG. 11 is basically the same system configuration as FIG. 1 except that in the figure, an infrared sensor is newly attached to the remote controller. Similarly, FIG.
The detection area shown in FIG. 2 has basically the same configuration as FIG.
Therefore, the system configuration of the second embodiment is basically the same as the system configuration of the first embodiment except that the above-described remote controller includes an infrared sensor.
 また、図13は、本発明の実施の形態2に係るリモコンを併用した時の制御動作フローを示しており、これに伴い制御フローが一部変更されている。
 なお、基本動作は、実施の形態1と同一であるため、異なる箇所を主体に説明する。
 具体的には、図13中のステップS1~S5が、図4中のステップS1~S5と同一の制御動作フローである。このうち、実施の形態2では、ステップS3-2が、図4中のステップS3とS4の間に追加されている点が異なる。
FIG. 13 shows a control operation flow when the remote control according to Embodiment 2 of the present invention is used together, and the control flow is partially changed accordingly.
Since the basic operation is the same as that of the first embodiment, different points will be mainly described.
Specifically, steps S1 to S5 in FIG. 13 are the same control operation flow as steps S1 to S5 in FIG. Among them, the second embodiment is different in that step S3-2 is added between steps S3 and S4 in FIG.
 図11は、この発明の実施の形態2を示す空気調和システム2000の全体を示す。
 図11において、空調を実施する室内空間120に対して、室外機220と3台の室内
機320a~320cと3台のリモコン420a~420cとが設置されており、冷媒配
管620と、通信用の伝送線500とで接続されている。
FIG. 11 shows the entire air conditioning system 2000 according to Embodiment 2 of the present invention.
In FIG. 11, an outdoor unit 220, three indoor units 320a to 320c, and three remote controllers 420a to 420c are installed in an indoor space 120 where air conditioning is performed. The transmission line 500 is connected.
 図12に基づき、実施の形態2に係る、2種類の赤外センサによる移動可能な発熱体の検知エリアについて以下に述べる。 Based on FIG. 12, the detection area of the heating element that can be moved by the two types of infrared sensors according to the second embodiment will be described below.
 実施の形態2では、室内空間120内に、3台の室内機320a~320cと3台のリモコン420a~420cとが存在しており、それらのそれぞれの赤外線センサ321a~321cと赤外線センサ421a~421cとの2種類の赤外センサでこの空間内の温度データを検出している。 In Embodiment 2, there are three indoor units 320a to 320c and three remote controllers 420a to 420c in the indoor space 120, and their respective infrared sensors 321a to 321c and infrared sensors 421a to 421c. The temperature data in this space is detected by two types of infrared sensors.
 実施の形態2では、室内機320a~320cに取り付けられた赤外線センサ321a~321cは備え付けられている各室内機を中心として破線状の3つの円で検知エリア810a~810cが形成されており、この破線状の3つの円は実施の形態1と同一である。 In the second embodiment, the infrared sensors 321a to 321c attached to the indoor units 320a to 320c have detection areas 810a to 810c formed by three broken circles around each installed indoor unit. Three broken circles are the same as those in the first embodiment.
 また、3台のリモコン420a~420cに取り付けられた若干指向性を持った赤外線センサ421a~421cは、前方に三角形状または扇状の検知エリア820a~820cが新たに形成されている。ここで、上記第1の発熱体検出器による発熱体の検知エリアと、上記第2の発熱体検出器による発熱体の検知エリアとは、検出の特性が異なる部分を有する。 In addition, in the infrared sensors 421a to 421c having slight directivity attached to the three remote controllers 420a to 420c, triangular or fan-shaped detection areas 820a to 820c are newly formed in front. Here, the heating element detection area by the first heating element detector and the heating element detection area by the second heating element detector have different detection characteristics.
 なお、これらの赤外線センサは、各室内機に設置されている赤外線センサ321a~321cと、各リモコンに設置されている赤外線センサ421a~421cとの2種類の赤外センサにより、それぞれ室内空間120内において三つの領域を担当しており、隣接する領域では部分的に重複している。 Note that these infrared sensors are provided in the indoor space 120 by two types of infrared sensors, infrared sensors 321a to 321c installed in each indoor unit and infrared sensors 421a to 421c installed in each remote controller. Is responsible for three areas, and the adjacent areas partially overlap.
 次に動作について、図13に基づいて説明する。
 図13は、本実施の形態2における、空調管理装置700による赤外線センサ321a~321c、及び、赤外線センサ421a~421cに基づく空調処理を行う処理手順を示すフロー図である。
 図13において、以下で述べるステップS3-2が、この実施の形態2で新たに追加された点を除けば、実施の形態1と同じである。
Next, the operation will be described with reference to FIG.
FIG. 13 is a flowchart showing a processing procedure for performing air conditioning processing based on the infrared sensors 321a to 321c and the infrared sensors 421a to 421c by the air conditioning management device 700 in the second embodiment.
In FIG. 13, step S3-2 described below is the same as in the first embodiment except that step S3-2 described below is newly added in the second embodiment.
 赤外線センサデータを取得するステップS3までは、実施の形態1で既に説明した動作と同じであるので、次に、ステップS3の直後であるステップS3-2以降について、説明する。 Since the operation up to step S3 for acquiring infrared sensor data is the same as that already described in the first embodiment, step S3-2 and subsequent steps immediately after step S3 will be described.
 実施の形態1で既に説明した赤外線センサ301a~301cからの赤外線センサデータ取得処理の内容(ステップS3)では、室内機のみに対して赤外線センサ301,311によりデータをモニタしていたが、実施の形態2では、室内機とリモコンの双方に対して赤外線センサ321a~321c及び、赤外線センサ421a~421cにより赤外線センサデータのモニタを実施する。 In the contents (step S3) of the infrared sensor data acquisition processing from the infrared sensors 301a to 301c already described in the first embodiment, the data is monitored by the infrared sensors 301 and 311 only for the indoor units. In mode 2, infrared sensor data is monitored by the infrared sensors 321a to 321c and the infrared sensors 421a to 421c for both the indoor unit and the remote controller.
 以降、第7図で既に説明したように一定時間(例えば60秒)毎に、室内機320a~320cに備えられた赤外線センサ321a~321cと、リモコン420a~420cに備えられた赤外線センサ421a~421cとから取得した情報を、伝送線500と通信手段701とを介してセンサ情報収集手段706でモニタする。(ステップS320) Thereafter, as already described with reference to FIG. 7, the infrared sensors 321a to 321c included in the indoor units 320a to 320c and the infrared sensors 421a to 421c included in the remote controllers 420a to 420c are provided at regular intervals (for example, 60 seconds). The information acquired from the above is monitored by the sensor information collection unit 706 via the transmission line 500 and the communication unit 701. (Step S320)
 これに続く赤外線センサ321a~321cを備えた室内機320a~320cと、赤外線センサ421a~421cを備えたリモコン420a~420cのセンサ情報データ取得に係る処理手順は、実施の形態1で第8図を用いて既に述べた上記ステップS3201~S3212と同じである。 Subsequent processing procedures for acquiring sensor information data of the indoor units 320a to 320c having the infrared sensors 321a to 321c and the remote controllers 420a to 420c having the infrared sensors 421a to 421c are shown in FIG. This is the same as steps S3201 to S3212 described above.
 以降、上記ステップS3201~S3212(図8)の処理を繰り返し実施することで、室内空間120内に設置された赤外線センサ321a~321cの検知エリア810a~810cと、赤外線センサ421a~421cの検知エリア820a~820cとの中に存在する人体の温度(例えば皮膚温度、体表温度等)が検知できる。 Thereafter, the processes in steps S3201 to S3212 (FIG. 8) are repeatedly performed, so that the detection areas 810a to 810c of the infrared sensors 321a to 321c installed in the indoor space 120 and the detection areas 820a of the infrared sensors 421a to 421c are performed. The temperature of the human body existing in ˜820c (for example, skin temperature, body surface temperature, etc.) can be detected.
 また、それぞれの検知エリア810a~810cおよび820a~820cの重複したエリアに人体が存在する場合には、検知エリアとなっているセンサがそれぞれ人体の温度検知するものとする。 In addition, when a human body exists in the overlapping area of the respective detection areas 810a to 810c and 820a to 820c, the sensor serving as the detection area shall detect the temperature of the human body.
 空調管理装置700は、「赤外線センサデータ取得処理(ステップS3)」にて室内機320a~320cに予め備えてある全ての赤外線センサ321a~321cと、リモコン420a~420cに備え付けられている全ての赤外線センサ421a~421cとの双方から赤外線センサデータが取得できた場合、時間をおいてこのデータの取得動作を複数回繰り返すことになる。
 センサ情報処理手段708は、実施の形態1で実施したこの時間的な平均に加え、さらに、ステップS1で設定した室内機320a~320cを制御するために、複数の赤外線センサデータを検出器間でも平均化を行い(ステップS3-2)、センサ情報記憶手段707内部に保存する。
The air-conditioning management apparatus 700 uses all the infrared sensors 321a to 321c provided in advance in the indoor units 320a to 320c and all the infrared rays provided to the remote controls 420a to 420c in the “infrared sensor data acquisition process (step S3)”. When infrared sensor data can be acquired from both of the sensors 421a to 421c, this data acquisition operation is repeated a plurality of times with time.
In addition to the temporal average performed in the first embodiment, the sensor information processing unit 708 further transmits a plurality of infrared sensor data between the detectors in order to control the indoor units 320a to 320c set in step S1. Averaging is performed (step S3-2), and the data is stored in the sensor information storage unit 707.
 ここで、ステップS3-2でいう検出器間での平均化とは、図12に示すように、例えば、検知エリア810a内において、第1の発熱体検出器である赤外線センサ321aと、第2の発熱体検出器である赤外線センサ421aとの2種類のセンサから得られた2種類の検出データを、該当する室内機毎に平均化することを意味する。
 すなわち、平均化動作は空調管理装置700が実施しており、空調管理装置700は各
検出器で得られたデータ間で平均化動作を行う。
 従って、空調管理装置700は、検知エリアを跨って検出データを平均化することはない。
Here, the averaging between the detectors in step S3-2 is, as shown in FIG. 12, for example, in the detection area 810a, the infrared sensor 321a as the first heating element detector, This means that the two types of detection data obtained from the two types of sensors with the infrared sensor 421a, which is a heating element detector, are averaged for each corresponding indoor unit.
That is, the averaging operation is performed by the air conditioning management device 700, and the air conditioning management device 700 performs an averaging operation between data obtained by each detector.
Therefore, the air conditioning management device 700 does not average the detection data across the detection areas.
 なお、実施の形態1の場合と同様に、取得したセンサ情報データに無効値があった場合は、有効値のみを用いて検出データを平均化し、取得したセンサ情報データ全てが無効値であった場合は、その平均値自体も無効値として扱う。このように、制限範囲内の温度を外れたものは平均値算出の計算には用いない。 As in the case of the first embodiment, when there is an invalid value in the acquired sensor information data, the detection data is averaged using only the effective value, and all the acquired sensor information data are invalid values. In this case, the average value itself is treated as an invalid value. As described above, the temperature outside the limit range is not used for the calculation of the average value.
 上記2種類の赤外線センサデータの平均化が行われた後は、「セーブ運転判断処理(ステップS4)」と「セーブ運転解除処理(ステップS5)」とを実施する。 After the above two types of infrared sensor data are averaged, “save operation determination process (step S4)” and “save operation release process (step S5)” are performed.
 なお、上記の「セーブ運転判断処理(S4)」と「セーブ運転解除処理(S5)」の内容に関しては、既に第9図,第10図を用いて説明した実施の形態1と同じであるので、これ以降は省略する。 The contents of the “save operation determination process (S4)” and the “save operation release process (S5)” are the same as those in the first embodiment described with reference to FIGS. This is omitted from this point onward.
 ここで、人体から検出した温度データの検出の精度の向上について述べておくと、室内機に取り付けられた赤外線センサ321a~321cでは広範囲を検出することができるが、空間上部からの検出となるため、1人当たりの検出部分は少ない。 Here, to improve the accuracy of detection of temperature data detected from the human body, the infrared sensors 321a to 321c attached to the indoor units can detect a wide range, but detection is performed from above the space. There are few detection parts per person.
 また、リモコンに取り付けられた赤外線センサ421a~421cでは、空間横側からの検出となるため、1人あたりの検出部分が多くとれるが、空間全体の検出部分に検出不可能な部分が増えることになる。 In addition, since infrared sensors 421a to 421c attached to the remote control are detected from the side of the space, a large number of detection portions per person can be obtained, but the number of undetectable portions increases in the detection portion of the entire space. Become.
 このように本実施の形態2では、2種類の赤外線センサを組み合わせて対応することで、上述した室内機に赤外線センサ321a~321cをとりつける場合と、リモコンに赤外線センサ421a~421cをとりつける場合の双方の優れた点を取り入れることが可能となる。 As described above, in the second embodiment, by combining two types of infrared sensors, both the case where the infrared sensors 321a to 321c are attached to the indoor unit and the case where the infrared sensors 421a to 421c are attached to the remote controller are both used. It is possible to incorporate the excellent points of.
 以上のように、実施の形態2では、室内機320a~320cに備え付けられている赤外線センサ321a~321cと、リモコン420a~420cに備え付けられている赤外線センサ421a~421cの上記2種類の赤外線センサで取得した温度データを空調管理装置700が収集し(ステップS3)、それらを制御対象となる室内機に該当する赤外線センサ毎に平均化させる(ステップS3-2)。
 このため、空間の上部につけられている赤外線センサ321a~321cと、空間の横側につけられている赤外線センサ421a~421cとの2種類のデータに基づいて、室内空間に存在する人体を検出できるため、実施の形態1よりも人体から取得する温度データの検出の精度を高めることが出来る。
As described above, in the second embodiment, the infrared sensors 321a to 321c provided to the indoor units 320a to 320c and the infrared sensors 421a to 421c provided to the remote controllers 420a to 420c are the above two types of infrared sensors. The acquired temperature data is collected by the air conditioning management device 700 (step S3), and averaged for each infrared sensor corresponding to the indoor unit to be controlled (step S3-2).
For this reason, the human body existing in the indoor space can be detected based on the two types of data of the infrared sensors 321a to 321c attached to the upper part of the space and the infrared sensors 421a to 421c attached to the side of the space. Thus, the accuracy of detection of temperature data acquired from the human body can be improved as compared with the first embodiment.
 ところで、これまでの実施の形態1と2での説明においては、冷房装置を用いて説明を実施したが、これが暖房装置に置き換えられた場合でも同様の効果が得られるのは言うまでもない。 By the way, in the description in the first and second embodiments so far, the description was made using the cooling device, but it goes without saying that the same effect can be obtained even when this is replaced with the heating device.
 また、室内機に赤外線センサ321a~321cが取り付けられていない場合にも、リモコンに取り付けられている赤外線センサ421a~421cのデータを使用して、室内機を制御することができるのは言うまでもない。 Of course, even when the infrared sensors 321a to 321c are not attached to the indoor unit, the indoor unit can be controlled using the data of the infrared sensors 421a to 421c attached to the remote controller.
 また、室内機やリモコン以外に、別途任意の箇所に赤外線センサを追加でとりつけて、それを伝送線に接続するためのI/Fを経由させれば、空調管理装置でデータを収集することができ、さらに精度の高い室内機の制御が実現出来ることは言うまでもない。 In addition to indoor units and remote controllers, data can be collected by the air-conditioning management device if an infrared sensor is additionally installed at an optional location and connected via an I / F to connect it to the transmission line. Needless to say, it is possible to control the indoor unit with higher accuracy.
 以上の記載から明らかのように、実施の形態1では、室内機300内に設置されている赤外線センサ301,311による検出の場合を述べ、実施の形態2では、実施の形態1における赤外線センサ301,311と、リモコン420a~420cに取り付けられた赤外線センサ421a~421cとを併用した検出の場合について述べた。 As is clear from the above description, the first embodiment describes the detection by the infrared sensors 301 and 311 installed in the indoor unit 300, and the second embodiment describes the infrared sensor 301 in the first embodiment. 311 and the infrared sensors 421a to 421c attached to the remote controllers 420a to 420c have been described.
 なお、移動可能な発熱体とは人体以外の動物であっても構わないし、人や動物などによって可搬可能な植物又は食品などでも良い。
 例えば、この空気調和システムがペットホテルに適用される場合には、発熱体として、ワニやトカゲなどの変温動物に適用されるときと、犬や猫などの恒温動物に適用されるときとでは、室内空間(ブース)ごとでの適切な温度が異なる。
 また、発熱体として食品が選択された場合に冷却や解凍が必要な料理があったとすると、それぞれのテーブルごとに温度管理に適切な温度がそれぞれ異なり、例えば適切な温度が肉では3℃、バナナでは5℃と異なる場合がある。
The movable heating element may be an animal other than a human body, or may be a plant or food that can be carried by a person or animal.
For example, when this air conditioning system is applied to a pet hotel, it may be used as a heating element when applied to a variable temperature animal such as a crocodile or a lizard and when applied to a constant temperature animal such as a dog or a cat. The appropriate temperature varies depending on the indoor space (booth).
Also, if food is selected as the heating element and there is a dish that needs to be cooled and thawed, each table has a different temperature suitable for temperature control. For example, the appropriate temperature is 3 ° C for meat, banana Then, it may be different from 5 ° C.
 以上のように、本願発明では、発熱体を収容する室内空間を空調することに関し、発熱体の状況に応じた適正な空気調和環境を実現できる。例えば、同一空間に発熱体が存在しない部分に対しては空調の無駄を削減することにより消費エネルギーを削減して省エネを実施することもできる。 As described above, according to the present invention, it is possible to realize an appropriate air-conditioned environment according to the state of the heating element with respect to air conditioning the indoor space in which the heating element is accommodated. For example, it is possible to reduce energy consumption and reduce energy consumption by reducing waste of air conditioning for a portion where no heating element exists in the same space.
100,110,120 空間、200,210,220 室外機、300a~300c,310a~310c,320a~320c 室内機、301a~301c,311a~311c,321a~321c 赤外線センサ(室内機設置)、302a~302c,312a~312c,322a~322c 温度センサ、303 通信手段、304 アクチュエータ出力手段、305 管理情報処理手段、306 管理情報記憶手段、307 制御情報処理手段、308 制御情報記憶手段、309 処理制御手段、313 センサデータ記憶手段、400,410,420a~420c リモコン、421a~421c 赤外線センサ(リモコン設置)、500 伝送線、600,610,620 冷媒配管、700 空調管理装置、701 通信手段、702 管理情報収集手段、703 管理情報記憶手段、704 管理情報処理手段、705 管理情報設定手段、706 センサ情報収集手段、707 センサ情報記憶手段、708 センサ情報処理手段、709 センサ情報設定手段、710 処理制御手段、711 管理情報変更手段、712 変更記憶手段、800a~800c,810a~810c,820a~820c 検知エリア、1000,2000 空気調和システム 100, 110, 120 space, 200, 210, 220 outdoor unit, 300a-300c, 310a-310c, 320a-320c indoor unit, 301a-301c, 311a-311c, 321a-321c infrared sensor (indoor unit installation), 302a- 302c, 312a to 312c, 322a to 322c Temperature sensor, 303 communication means, 304 actuator output means, 305 management information processing means, 306 management information storage means, 307 control information processing means, 308 control information storage means, 309 processing control means, 313 Sensor data storage means, 400, 410, 420a to 420c remote control, 421a to 421c infrared sensor (remote control installation), 500 transmission line, 600, 610, 620 refrigerant piping, 700 air conditioning management device, 7 1 communication means, 702 management information collection means, 703 management information storage means, 704 management information processing means, 705 management information setting means, 706 sensor information collection means, 707 sensor information storage means, 708 sensor information processing means, 709 sensor information setting Means, 710 processing control means, 711 management information changing means, 712 change storage means, 800a to 800c, 810a to 810c, 820a to 820c detection area, 1000, 2000 air conditioning system

Claims (8)

  1.  移動可能な発熱体を収容する空間を冷却する空気調和システムであって、
     上記空気調和システムは、
     移動可能な発熱体を冷却する複数の室内機と、
     上記室内機に対応して設けられた複数の発熱体検出器と、
     上記複数の発熱体検出器の検出結果に基づき、該当する発熱体検出器と対応付けて室内
    機を運転制御する空調管理装置と、
    を備える空気調和システム。
    An air conditioning system for cooling a space containing a movable heating element,
    The air conditioning system is
    A plurality of indoor units that cool the movable heating element;
    A plurality of heating element detectors provided corresponding to the indoor unit,
    Based on the detection results of the plurality of heating element detectors, an air conditioning management device that controls the operation of the indoor unit in association with the corresponding heating element detector;
    Air conditioning system with
  2.  前記空調管理装置は、上記複数の室内機の運転を統括的に運転制御することを特徴と
    する請求項1に記載の空気調和システム。
    The air conditioning system according to claim 1, wherein the air conditioning management device performs overall operation control of the operation of the plurality of indoor units.
  3.  前記空調管理装置による上記複数の室内機の運転制御は、
     上記複数の室内機の運転状況に関する管理情報と、前記発熱体検出器からのセンサ情
    報とに基づいて、実行されることを特徴とする請求項1または2に記載の空気調和シス
    テム。
    The operation control of the plurality of indoor units by the air conditioning management device is as follows:
    3. The air conditioning system according to claim 1, wherein the air conditioning system is executed based on management information related to operating conditions of the plurality of indoor units and sensor information from the heating element detector. 4.
  4.  前記室内機の運転は、
     通常運転モードと、この通常運転モードよりも低消費電力でのセーブ運転モードとの、
    複数の運転モードからなることを特徴とする請求項1乃至3のいずれかに記載の空気調和
    システム。
    The operation of the indoor unit is as follows:
    The normal operation mode and the save operation mode with lower power consumption than the normal operation mode,
    The air conditioning system according to any one of claims 1 to 3, comprising a plurality of operation modes.
  5.  前記空調管理装置は、前記発熱体検出器での複数回の検出結果に基づいて平均温度を
    求め、この平均温度に基づいて、該当する室内機の検知エリアの温度を制御することを特
    徴とする請求項1乃至4のいずれかに記載の空気調和システム。
    The air conditioning management device calculates an average temperature based on a plurality of detection results of the heating element detector, and controls the temperature of the detection area of the corresponding indoor unit based on the average temperature. The air conditioning system according to any one of claims 1 to 4.
  6.  前記空調管理装置は、予め内部に設定された比較用温度データを有しており、
    上記平均温度の算出の際に、前記発熱体検出器で取得された赤外線センサデータが、前記
    比較用温度データと前記平均温度とを比較して制限範囲内の温度データでなかった場合、
    その赤外線センサデータを無効値とすることを特徴とする請求項5に記載の空気調和シス
    テム。
    The air conditioning management device has temperature data for comparison set in advance in advance,
    When calculating the average temperature, the infrared sensor data acquired by the heating element detector is not temperature data within a limited range by comparing the temperature data for comparison with the average temperature,
    6. The air conditioning system according to claim 5, wherein the infrared sensor data is an invalid value.
  7.  上記複数の発熱体検出器は、
    上記室内機に対応づけられた上記室内機との位置関係が固定的な第1の発熱体検出器と、
    上記室内機に対応づけられた可搬可能な第2の発熱体検出器と、からなり、
    上記第1の発熱体検出器による前記移動可能な発熱体の検知エリアと、
    上記第2の発熱体検出器による前記移動可能な発熱体の検知エリアとは、検出の特性が異なる部分を有することを特徴とする請求項1乃至6のいずれかに記載の空気調和システム。
    The plurality of heating element detectors are
    A first heating element detector having a fixed positional relationship with the indoor unit associated with the indoor unit;
    A portable second heating element detector associated with the indoor unit,
    A detection area of the movable heating element by the first heating element detector;
    The air conditioning system according to any one of claims 1 to 6, wherein a detection area of the movable heating element by the second heating element detector has a part having different detection characteristics.
  8.  前記移動可能な発熱体は、人体又は動物又は、可搬可能な植物又は食品であることを特徴とする請求項1乃至7のいずれかに記載の空気調和システム。 The air conditioning system according to any one of claims 1 to 7, wherein the movable heating element is a human body or an animal, or a portable plant or food.
PCT/JP2014/001637 2014-03-20 2014-03-20 Air-conditioning system WO2015140834A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/001637 WO2015140834A1 (en) 2014-03-20 2014-03-20 Air-conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/001637 WO2015140834A1 (en) 2014-03-20 2014-03-20 Air-conditioning system

Publications (1)

Publication Number Publication Date
WO2015140834A1 true WO2015140834A1 (en) 2015-09-24

Family

ID=54143862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001637 WO2015140834A1 (en) 2014-03-20 2014-03-20 Air-conditioning system

Country Status (1)

Country Link
WO (1) WO2015140834A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113091248A (en) * 2021-03-29 2021-07-09 青岛海尔空调器有限总公司 Control method, device and equipment of air conditioner and storage medium

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05272790A (en) * 1992-03-26 1993-10-19 Matsushita Electric Works Ltd Hot heat environment detector and air conditioner using the same
JPH06117836A (en) * 1992-08-21 1994-04-28 Matsushita Electric Ind Co Ltd Image processing apparatus, controller of air conditioner, and applied equipment using the apparatus
JP2003042508A (en) * 2001-07-25 2003-02-13 Fujita Corp Method of controlling air-conditioning and air- conditioning system
JP2005172288A (en) * 2003-12-09 2005-06-30 Mitsubishi Heavy Ind Ltd Controlling system for air conditioner
JP2008025951A (en) * 2006-07-25 2008-02-07 Jfe Techno Research Corp Method and device for controlling operation of air conditioning equipment
JP2008309379A (en) * 2007-06-13 2008-12-25 Mitsubishi Electric Corp Remote controller for air conditioning, air conditioner, and air conditioning system
JP2009133499A (en) * 2007-11-28 2009-06-18 Daikin Ind Ltd Air conditioner
JP2011069601A (en) * 2009-05-11 2011-04-07 Panasonic Electric Works Co Ltd Apparatus management device and program

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05272790A (en) * 1992-03-26 1993-10-19 Matsushita Electric Works Ltd Hot heat environment detector and air conditioner using the same
JPH06117836A (en) * 1992-08-21 1994-04-28 Matsushita Electric Ind Co Ltd Image processing apparatus, controller of air conditioner, and applied equipment using the apparatus
JP2003042508A (en) * 2001-07-25 2003-02-13 Fujita Corp Method of controlling air-conditioning and air- conditioning system
JP2005172288A (en) * 2003-12-09 2005-06-30 Mitsubishi Heavy Ind Ltd Controlling system for air conditioner
JP2008025951A (en) * 2006-07-25 2008-02-07 Jfe Techno Research Corp Method and device for controlling operation of air conditioning equipment
JP2008309379A (en) * 2007-06-13 2008-12-25 Mitsubishi Electric Corp Remote controller for air conditioning, air conditioner, and air conditioning system
JP2009133499A (en) * 2007-11-28 2009-06-18 Daikin Ind Ltd Air conditioner
JP2011069601A (en) * 2009-05-11 2011-04-07 Panasonic Electric Works Co Ltd Apparatus management device and program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113091248A (en) * 2021-03-29 2021-07-09 青岛海尔空调器有限总公司 Control method, device and equipment of air conditioner and storage medium
CN113091248B (en) * 2021-03-29 2022-09-06 青岛海尔空调器有限总公司 Control method, device and equipment of air conditioner and storage medium

Similar Documents

Publication Publication Date Title
JP4757918B2 (en) Air conditioning system
CN101191652B (en) Air conditioner and method of controlling airflow having the same
CN104110789B (en) Air conditioner control method and system on basis of environment sensor of mobile terminal
CN103912960B (en) A kind of air-conditioner control system and its control method
KR102151260B1 (en) Building automation system with fine dust detector
US10091300B2 (en) Wireless management and communication network system for multi-zones and managing method for the network system
KR101824324B1 (en) Air conditioner and method for controlling thereof
CN205137798U (en) Energy -conserving temperature control device
US20220170659A1 (en) Air conditioning control system, air conditioner, and machine learning device
JP7178389B2 (en) Controller for variable refrigerant flow system and method of operating equipment in same system
CN108131783A (en) A kind of air-conditioner control method
TWI598541B (en) Power optimization system for air-side apparatus of air conditioning and power optimization method of the same
WO2016092635A1 (en) Air control system
JP2014077598A (en) Temperature controller, air conditioner, hot water supplier, and floor heating
JP6972340B2 (en) Air conditioning system
JPWO2018203368A1 (en) Air conditioning apparatus, air conditioning system, air conditioning method and program
WO2015140834A1 (en) Air-conditioning system
JP2015152192A (en) air conditioning system
CN109725609B (en) Intelligent air conditioning system
CN113503633B (en) Intelligent management method, controller and management system for building central air conditioner
CN208458193U (en) A kind of radiation cooling system dew-point control system
JP2016145650A (en) Air conditioner
JP6906685B2 (en) Air conditioning system
KR100765165B1 (en) The control method of air conditioner and air conditioner using the method
JPS6129638A (en) Controlling device of indoor environment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14886471

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14886471

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP