WO2015139655A1 - 剩余电流保护装置 - Google Patents

剩余电流保护装置 Download PDF

Info

Publication number
WO2015139655A1
WO2015139655A1 PCT/CN2015/074669 CN2015074669W WO2015139655A1 WO 2015139655 A1 WO2015139655 A1 WO 2015139655A1 CN 2015074669 W CN2015074669 W CN 2015074669W WO 2015139655 A1 WO2015139655 A1 WO 2015139655A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
current
detecting
fault
residual current
Prior art date
Application number
PCT/CN2015/074669
Other languages
English (en)
French (fr)
Inventor
陈永亮
徐磊
陈黎俊
杨世江
Original Assignee
上海电科电器科技有限公司
浙江正泰电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=54121968&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2015139655(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 上海电科电器科技有限公司, 浙江正泰电器股份有限公司 filed Critical 上海电科电器科技有限公司
Priority to ES15766034T priority Critical patent/ES2731812T3/es
Priority to DK15766034.1T priority patent/DK3121921T3/da
Priority to EP15766034.1A priority patent/EP3121921B1/en
Publication of WO2015139655A1 publication Critical patent/WO2015139655A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/32Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors
    • H02H3/34Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors of a three-phase system
    • H02H3/347Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors of a three-phase system using summation current transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/32Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors
    • H02H3/33Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers
    • H02H3/332Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers with means responsive to dc component in the fault current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0007Details of emergency protective circuit arrangements concerning the detecting means
    • H02H1/003Fault detection by injection of an auxiliary voltage

Definitions

  • This invention relates to current protection devices and, more particularly, to a residual current protection device that is sensitive to full current.
  • the current protection by monitoring the residual current is an important protection measure in the electric circuit.
  • the prior art mainly uses the excitation circuit to generate a high-frequency current in the magnetic core, thereby generating a high-frequency magnetic field, and a low-frequency or direct current occurs when the primary coil is present.
  • the DC current can be measured by causing a change in the saturation of the magnetic circuit and a shift in the high frequency magnetic field.
  • the Chinese patent application entitled “Detecting Transformer and Ground Leakage Protection Device for Earth Leakage Protection Device” is disclosed in CN1387213A, which discloses a ground fault leakage current detecting transformer in the form of a toroidal core.
  • Earth leakage protection device sensitive to AC, DC or periodic earth leakage fault current.
  • the protection device includes: an excitation circuit connected to at least one secondary winding of the detection transformer, an excitation circuit applying an excitation signal; a processing circuit connected to the secondary winding; a power supply circuit connected to the excitation circuit and the processing circuit; detecting Transformer.
  • CN1387213A uses a triangular wave as the excitation current. The presence of a DC component causes the saturation point to shift. By measuring the saturation instant, it is determined whether a DC fault current is generated.
  • the drawback of CN1387213A is the use of complex circuits such as integration circuits and saturation detection modules, which increases the cost and complexity of the circuit.
  • Chinese Patent No. CN1712973 entitled “Device for Reading DC and / or AC Current” discloses a device for detecting DC and / or AC current, which can be used to achieve high sensitivity current meter or detection with automatic switch Differential fault.
  • the device of the present invention comprises a device that can be placed a magnetic core around at least one current carrying conductor.
  • the coil surrounds the core and is connected to the resistor.
  • the voltage source generates a drive voltage (Vexcit) that allows the contact current (Iexcit) to flow in the coil and the resistor.
  • the amplifying means is for detecting a voltage (Vsense) across the resistor to generate a first signal (Vamp1) representing the current defined above (Iexcit).
  • the apparatus of the present invention further includes a feedback adjustment circuit block (70) that captures the first input signal (Vamp1) to generate a second signal that reverses the drive voltage when the contact current (Iexcit) reaches a preset value (Vexcit).
  • CN1712973 adopts a fixed frequency excitation current, and its detection accuracy is restricted by the original secondary side ampoule ratio.
  • U.S. Patent No. 4,276,510 issued to U.
  • the principle is that the secondary coil of the current transformer is connected to the high frequency AC source, and an inductive sensor alternately senses the inductance of the secondary winding. Any change in inductance is due to the influence of the low frequency primary current, which is used to induce the third coil. The current, the third coil current, therefore becomes the exact value of the primary current.
  • the key principle of US 4,276,510 is to change the inductance (permeability), that is, it cannot be saturated first, nor can it not reach saturation when it fails (unless the fault current is too small), and the commutation is before full saturation. The commutation time depends on R1. R2, R3 value and transistor turn-on voltage.
  • US 4,276,510 requires a third coil and a complex analog circuit, which greatly increases the difficulty and cost of implementation and affects the detection accuracy.
  • the excitation circuit used in the prior art generally requires high electric power, has a complicated structure, greatly increases the cost of the circuit, and is accompanied by a large loss and severe heat generation.
  • a relatively complicated excitation circuit is not applicable. Small size design and electromagnetic compatibility for miniature circuit breakers.
  • the present invention aims to provide a residual current protection device that is simple in structure, easy to implement, but sensitive to full current.
  • a residual current protection device comprising: a first detection core, a second detection core, a first fault current detection circuit, a second fault current detection circuit, a drive circuit and a bipolar Power module.
  • the first detection core is carried around the main return conductor.
  • Second The test core is also carried around the main return conductor.
  • the first fault current detecting circuit is coupled to the first detecting core, and the first fault current detecting circuit relies on the grid voltage to perform full current sampling on the main loop, detecting high frequency alternating current fault residual current, pulsating DC residual current, and smooth DC residual current. .
  • the second fault current detecting circuit is coupled to the second detecting core, and the second fault current detecting circuit is independent of the grid voltage, performs electromagnetic current sampling on the main loop, and detects the power frequency AC residual current and the pulsating DC residual current.
  • the input of the driving circuit is connected to the first fault current detecting circuit and the second fault current detecting circuit, and the output of the driving circuit is connected to the actuator, and the driving circuit triggers the actuator to operate.
  • the bipolar power module is connected to the main loop and the first fault current detecting circuit.
  • the first fault current detection circuit includes a signal sampling circuit, a processing circuit, and a comparison circuit.
  • the signal sampling circuit and the first detecting core are coupled to form a magnetic modulation and demodulation circuit, and the main circuit is subjected to full current sampling, and the signal sampling circuit outputs a sampling waveform.
  • the processing circuit is connected to the signal sampling circuit to amplify and reverse the sampled waveform.
  • the comparison circuit receives the output of the processing circuit, and determines the output of the processing circuit to output a first fault circuit signal.
  • the bipolar power module uses a switching power supply to step down the grid voltage, and forms a positive and negative bipolar power output through the self-feedback balancing circuit as the operating power of the first fault current detecting circuit.
  • the signal sampling circuit, the processing circuit, and the comparison circuit in the first fault current detecting circuit are driven by the bipolar power module to operate.
  • the first detecting core is a full current detecting core
  • the primary winding of the first detecting core is composed of a current carrying conductor
  • the secondary winding is coupled to the sampling circuit.
  • the sampling circuit includes an oscillation assist circuit and a low pass filter circuit.
  • the oscillating auxiliary circuit is coupled with the first detecting core to form an RL multi-resonant circuit
  • the bipolar power module excites the RL multi-resonant circuit, so that the RL multi-resonant circuit couples the residual current and the carrier.
  • the low-pass filter circuit receives the output of the RL multi-resonant circuit, decouples the residual current and the carrier, and filters the carrier signal to output a sample waveform of the residual current.
  • the oscillating auxiliary circuit and the low pass filtering circuit each include an amplifier having a cutoff frequency of 2 kHz.
  • the processing circuit includes an amplification circuit and an absolute value circuit that amplifies and reverses the sampled waveform of the residual current.
  • the comparison circuit includes an amplifier that compares the signal output by the processing circuit to a set threshold and then outputs a first fault circuit signal.
  • the second current detecting circuit is coupled to the second detecting core, the second detecting core is an electromagnetic current transformer, and the secondary winding of the second detecting core is coupled to the second fault current detecting circuit.
  • the second detecting circuit directly obtains energy through the second detecting core in an electromagnetic manner, and the second detecting circuit determines the residual current according to the acquired energy amount and outputs the second fault circuit signal.
  • the driving circuit comprises an operational amplifier, a power-down error compensation circuit and a diode
  • the positive input terminal of the operational amplifier is connected to the first fault current detecting circuit
  • the negative input terminal of the operational amplifier is connected to the power-down compensation circuit
  • the second The fault current detecting circuit is connected to the anode of the diode
  • the cathode of the diode is connected to the output of the operational amplifier as an output of the driving circuit.
  • the actuator outputs a signal actuator action at the drive circuit.
  • the residual current protection device of the invention is sensitive to full current, and ensures two-way detection of complementary interference through two-way operation, and does not require complicated conversion circuit, and has a simple structure and is easy to implement.
  • the invention can work under low loss conditions, and can also avoid the malfunction of the trip unit caused by the malfunction signal of the sampling circuit being turned off.
  • FIG. 1 discloses a schematic diagram of the electrical structure of a residual current protection device in accordance with an embodiment of the present invention.
  • FIG. 2 illustrates a sampling circuit in a residual current protection device in accordance with an embodiment of the present invention Circuit diagram.
  • FIG. 3 discloses a sample waveform diagram of the sampling circuit shown in FIG. 2.
  • FIG. 5 discloses an output waveform diagram of the driving circuit shown in FIG.
  • FIG. 1 discloses a schematic diagram of the electrical structure of the residual current protection device.
  • the residual current protection device includes a first detection core 107, a second detection core 108, a first fault current detection circuit 102, a second fault current detection circuit 103, a drive circuit 104, and a bipolar power supply module 105.
  • the first sensing core 107 is carried around the main return conductor.
  • the first fault current detecting circuit 102 is coupled to the first detecting magnetic core 107.
  • the first fault current detecting circuit 102 relies on the grid voltage to perform full current sampling on the main loop, detecting high frequency alternating current fault residual current, pulsating DC residual current and smoothing. DC residual current.
  • the second sensing core 108 is also carried around the main return conductor.
  • the second fault current detecting circuit 103 is coupled to the second detecting core 108.
  • the second fault current detecting circuit 103 performs electromagnetic current sampling on the main loop independently of the grid voltage, and detects the power frequency AC residual current and the pulsating DC residual current.
  • the input of the drive circuit 104 is coupled to a first fault current detection circuit 102 and a second fault current detection circuit 103.
  • the output of the drive circuit 104 is coupled to an actuator 106 that triggers the actuator 106 to operate.
  • the bipolar power module is connected to the main loop and the first fault current detecting circuit 102.
  • the bipolar power module 105 uses a switching power supply to step down the grid voltage, and forms a positive and negative bipolar power output through the self-feedback balancing circuit to serve as the operating power of the first fault current detecting circuit 102.
  • the present invention proposes a two-way residual current protection device that is sensitive to full current.
  • the first fault current detecting circuit 102 in the device is dependent on the grid voltage.
  • the full current transformer sampling can detect AC fault residual current below 1 kHz, pulsating DC residual current and smooth DC residual current.
  • the second fault current detecting circuit 103 in the device is independent of the grid voltage, and is sampled by the electromagnetic fault current transformer to detect the power frequency AC residual current and the pulsating DC residual current.
  • the first fault current detecting circuit 102 and the second fault current detecting circuit 103 are integrated by the driving circuit 104, and the driving circuit 104 triggers the actuator 106 to operate.
  • the first fault current detecting circuit 102 and the second fault current detecting circuit 103 are coupled to the first detecting core and the second detecting core, respectively.
  • the first detecting core is a full current detecting core
  • the primary winding of the first detecting core is composed of a current carrying conductor
  • the secondary winding is coupled to the sampling circuit 109.
  • the second detecting core is an electromagnetic current transformer, and the secondary winding is connected to the second fault current detecting circuit 103.
  • the first fault current detecting circuit 102 includes a signal sampling circuit 109, a processing circuit 110, and a comparison circuit 111.
  • the signal sampling circuit 109 and the first detecting core 107 are coupled to form a magnetic modulation and demodulation circuit for performing full current sampling on the main loop, and the signal sampling circuit 109 outputs the sampling waveform.
  • Processing circuit 110 is coupled to signal sampling circuit 109 for amplifying and inverting the sampled waveform.
  • the comparison circuit 111 receives the output of the processing circuit 110, determines the output of the processing circuit 110, and outputs a first fail circuit signal.
  • the signal sampling circuit 109, the processing circuit 110, and the comparison circuit 111 in the first fault current detecting circuit 102 are driven by the bipolar power supply module 105 to operate.
  • FIG. 2 shows a circuit diagram of the sampling circuit.
  • the sampling circuit 109 includes an oscillation assist circuit and a low pass filter circuit.
  • the oscillating auxiliary circuit is coupled to the first detecting core 107 to form an RL multi-resonant circuit, and the bipolar power module 105 excites the RL multi-resonant circuit, so that the RL multi-resonant circuit couples the residual current and the carrier.
  • the low-pass filter circuit receives the output of the RL multi-resonant circuit, decouples the residual current and the carrier, and filters the carrier signal to output a sample waveform of the residual current.
  • the oscillation assist circuit and the low pass filter circuit each include an amplifier, and the cutoff frequency of the low pass filter circuit is 2 kHz.
  • the processing circuit 110 includes an amplifying circuit and an absolute value circuit for amplifying and inverting the sampled waveform of the residual current.
  • Comparison circuit 111 package Including an amplifier, the comparison circuit 111 compares the signal output from the processing circuit 110 with a set threshold value, and then outputs a first fail circuit signal. Therefore, the first fault current detecting circuit 102 of the present invention can realize all functions by using four operational amplifiers, and has low cost and low loss.
  • the sampling circuit 109 and the first detecting core 107 constitute an RL multi-resonance circuit, which can effectively simplify the circuit structure, and can couple the fault current signal into the sampling circuit through the coupling of the high-frequency excitation current and the fault current, including the AC residual current. Fluctuating DC residual current, smoothing DC residual current.
  • Detecting AC residual current below 1 kHz requires that the frequency of the excitation current is much higher than the frequency of the fault current, at least five times the frequency of the modulated wave, preferably at least 10 times the frequency of the modulated wave, and thus the high frequency excitation current
  • the coupled fault current signal is decoupled by filtering the high frequency excitation signal in the low pass detection circuit to restore the residual current signal and convert it into a voltage signal for processing at the back end.
  • the detected voltage signal is amplified by the processing circuit 110 and filtered out of the signal pulse spike, and then the fault signal is rectified into a forward voltage signal by the absolute value circuit, and then sent to the comparison circuit 111.
  • the first detecting core 107 is connected to the inverting input terminal and the output terminal of the operational amplifier U1, and the resistors R1 and R2 respectively connect the reverse and forward input terminals of the operational amplifier U1 to the ground.
  • the resistor R3 is connected as a positive feedback to the positive input terminal and the input terminal of the operational amplifier U1, thereby forming an RL multi-resonant circuit, which can reflect the change of the magnetic field around the first detecting core 107 in the output square wave. The amount of change in space ratio.
  • the operational amplifier U1 and the auxiliary components constitute an oscillation assisting circuit.
  • the RL multi-resonant circuit output connects the capacitor C1 and the resistor R4, and then connects the resistors R5 and R6 respectively, wherein the resistor R5 is connected to the ground level, and the resistor R6 is connected to the operational amplifier U2 and the capacitor C2, respectively, and one end of the capacitor C2 is connected to the ground level.
  • the operational amplifier U2 and the auxiliary components constitute a low-pass filter and demodulation circuit that converts the amount of change in duty ratio into a level change amount.
  • FIG. 3 discloses a sample waveform diagram of the sampling circuit shown in FIG. 2. The waveform at the top of Figure 3 is the waveform when there is no residual current in the main loop.
  • the waveform at the bottom of Figure 3 is the waveform when there is residual current in the main loop. It can be seen from Fig. 3 that when there is residual current in the main circuit, the boundary (ie, period) of the square wave at the output of the RL oscillation circuit does not change, and the division line of the intermediate duty ratio appears to be offset, which reflects The change in the ratio.
  • the first detecting core 107 is a full current detecting core, the primary winding of the first detecting core 107 is composed of a current carrying conductor, and the secondary winding is coupled to the sampling circuit 109.
  • the first current detecting core 107 and the sampling circuit 109 constitute an RL multivibrator circuit, which acts as an inductance in the multivibrator circuit. Since the current in the inductor cannot be abruptly changed, the current is attenuated in the inductor. Compared with the reference voltage of the non-inverting input of the op amp, the reference voltage is inverted, and the multivibrator circuit generates self-oscillation, so that the high-frequency carrier current signal is passed into the secondary winding.
  • the current is modulated by the carrier signal, provided that the carrier frequency is much higher than the modulated wave, at least five times the frequency of the modulated wave, preferably at least 10 times the frequency of the modulated wave.
  • the carrier frequency 8 kHz is preferred.
  • the RL multivibrator circuit in the sampling circuit 109 is connected to the low pass filter circuit, and the coupled fault current signal is decoupled from the carrier signal in the low pass filter circuit, wherein the preferred cutoff frequency is 2 kHz, so that the carrier signal in the circuit is filtered out.
  • the sampling signal is connected to the processing circuit 110, and after loading the half-wave rectifying circuit on the inverting amplifier, a full-wave rectifying circuit is formed.
  • the demodulated current signal is passed to the comparison circuit 111.
  • the comparison circuit 111 When the fault current signal is greater than the threshold voltage of the inverting input terminal of the comparison circuit 111, the comparison circuit 111 outputs a forward voltage signal to the drive circuit 104, thereby driving the actuator 106. Disconnect the grid switch.
  • the second current detecting circuit 103 is coupled to the second detecting core 108, the second detecting core 108 is an electromagnetic current transformer, and the secondary winding of the second detecting core 108 is coupled to the second fault current detecting circuit 103.
  • the second detecting circuit 103 directly obtains energy through the second detecting core 108 in an electromagnetic manner, and the second detecting circuit 103 determines the residual current according to the acquired energy amount and outputs the second failing circuit signal.
  • the first current detecting circuit 102 and the second current detecting circuit 103 can work together and do not interfere with each other, and do not require complicated switching circuits, and are easy to implement.
  • the first current detecting circuit 102 is connected to a diode and a voltage dividing resistor to prevent the output signal from interfering with the components in the second current detecting circuit 103.
  • the driving circuit 104 includes an operational amplifier, a power-down error compensation circuit, and a diode.
  • the positive input terminal of the amplifier is connected to the first fault current detecting circuit 102
  • the negative input terminal of the operational amplifier is connected to the power failure compensation circuit
  • the second fault current detecting circuit 103 is connected to the anode of the diode, the cathode of the diode and the output of the operational amplifier. Connection is made as the output of the drive circuit 104.
  • the drive circuit 104 is A power-down error compensation circuit is added, and the power-down error compensation circuit is composed of a triode voltage regulator circuit.
  • 4 discloses a circuit diagram of a drive circuit in a residual current protection device in accordance with an embodiment of the present invention.
  • the inverting input terminal of the operational amplifier U3 is connected to the power-down error compensation circuit, and the power-down error compensation circuit is composed of resistors R7, R8, R9, and R10, a Zener diode Z1, and a transistor Q1.
  • the forward input terminal of the operational amplifier U3 is connected to the output signal V1 of the first current detecting circuit 102.
  • V2 is an output signal of the second current detecting circuit 103, and V2 is connected to the output terminal of the diode D1 to the operational amplifier U3 to form a driving signal Vo.
  • the RL multi-resonant circuit will generate a power-down pulse signal, causing a malfunction.
  • the triode in the power-down error compensation circuit also generates a large pulse, and the signal is connected to the reverse of the comparison circuit. Input to compensate for the error signal.
  • FIG. 5 discloses an output waveform diagram of the driving circuit shown in FIG. As shown in FIG. 5, the upper waveform in FIG.
  • the power-down error compensation circuit outputs a pulse signal (compensation pulse signal) whose rising edge is faster than and higher than the main circuit (power-down error pulse signal) when the power is turned off.
  • Actuator 106 outputs a signal actuator action at drive circuit 104.
  • the basic working process of the residual current protection device of the present invention is as follows: the first current detecting core 107 carried around the main loop conductor and the sampling circuit 109 in the first fault current detecting circuit 102 constitute an RL multi-resonant circuit for inductive fault current. And converted into a sampled output signal by a low pass filter circuit inside the sampling circuit 109. Then, the back end of the sampling circuit 109 is connected to the processing circuit 110.
  • the processing circuit 110 is composed of a negative feedback amplifying circuit and an absolute value circuit, and the front end sampling output signal is amplified and inverted to form a preprocessed signal.
  • the processing circuit 110 is connected to the back end of the comparison circuit 111.
  • the comparison circuit is mainly composed of an operational amplifier, and compares the preprocessed signal with a set threshold to output a fault signal.
  • the comparison circuit 111 is directly connected to the drive circuit 104.
  • the second fault current detecting circuit 103 adopts electromagnetic fault current detection, directly supplies energy and signals from the second current detecting core 108, and can detect alternating current and pulsating DC residual current, independent of the grid voltage, and the fault output signal is connected to the driving circuit.
  • the driving circuit 104 is composed of a compensation circuit and a double protection circuit.
  • the supplementary circuit mainly prevents the power failure error of the RL multi-resonant circuit, and the double protection circuit mainly prevents mutual interference between the first fault current detecting circuit and the second fault current detecting circuit.
  • the rear end of the driving circuit 104 is directly connected to the actuator 106, and the actuator 106 is triggered by the output signal of the driving circuit 104.
  • the bipolar power supply circuit 105 is mainly composed of a switching power supply, is introduced by the grid voltage, converted into a DC power supply required by the first fault current detecting circuit 102, and provides positive and negative current excitation for the RL multi-resonant circuit.
  • the electromagnetic detecting circuit (the first current detecting core 107 and the first fault current detecting circuit 102) and the electronic detecting circuit (the second current detecting core 108 and the second fault current detecting circuit 103) are common Working, if the residual current is the AC residual current of the grid frequency or the pulsating DC residual current, both detection circuits can output a fault signal to drive the actuator 106 through the drive circuit 104, and the two signals do not interfere with each other. If the residual current is a smooth DC or high frequency residual current, only the first fault current detecting circuit 102 outputs a fault signal to drive the actuator 106 through the drive circuit 104.
  • the signal passes through the reverse diode and the voltage dividing resistor, which is insufficient to affect the polarity capacitance in the second fault current detecting circuit 103, and the input signal of the second fault current detecting circuit 103 is weak, which does not affect the first fault current detecting circuit 102. Normal operation is also insufficient to drive actuator 106 through drive circuit 104.
  • the first fault current detecting circuit 102 When the grid voltage is not present, the first fault current detecting circuit 102 does not operate and does not interfere with other circuits, and the second fault current detecting circuit 103 can detect the AC residual current of the grid frequency and the pulsating DC residual current.
  • the residual current protection device of the invention is sensitive to full current, and ensures two-way detection of complementary interference through two-way operation, and does not require complicated conversion circuit, and has a simple structure and is easy to implement. This invention It can work under low loss conditions, and can also avoid the malfunction of the trip unit caused by the malfunction signal of the sampling circuit being turned off.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Dc-Dc Converters (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

一种剩余电流保护装置,包括:承载在主回路导线周围的第一检测磁芯(107)和第二检测磁芯(108);与第一检测磁芯(107)耦接的第一故障电流检测电路(102),第一故障电流检测电路(102)依赖电网电压,对主回路进行全电流采样,检测高频交流故障剩余电流、脉动直流剩余电流和平滑直流剩余电流;与第二检测磁芯(108)耦接的第二故障电流检测电路(103),第二故障电流检测电路(103)独立于电网电压,对主回路进行电磁式电流采样,检测工频交流剩余电流和脉动直流剩余电流;驱动电路(104),其输入连接到第一故障电流检测电路(102)和第二故障电流检测电路(103),输出连接到执行机构(106),触发执行机构(106)动作;双极性电源模块(105),连接到主回路和第一故障电流检测电路(102)。

Description

剩余电流保护装置 技术领域
本发明涉及电流保护装置,更具体地说,涉及一种对于全电流敏感的剩余电流保护装置。
背景技术
通过对剩余电流的监控而实现电流保护是电气线路中重要的保护措施,现有技术主要利用激磁电路在磁芯中产生高频电流,进而产生高频磁场,当原边线圈出现低频或直流电流时,可以引起磁路的饱和程度的改变和高频磁场的偏移来测量直流电流。
例如,公开号为CN1387213A,题为“用于对地漏电保护装置的检测互感器和对地漏电保护装置”的中国专利申请揭示了一种环形铁心形式的对地漏电故障电流检测互感器,用于对AC、DC或周期性对地漏电故障电流灵敏的对地漏电保护装置。该保护装置包括:连接到检测互感器中的至少一个次级绕组的激磁电路,激磁电路施加激磁信号;连接到该次级绕组的处理电路;连接到该激磁电路和处理电路的电源电路;检测互感器。还包括由以铁为主的磁性材料构成的磁路,该磁性材料具有的晶粒尺寸小于100纳米,其静态或低频磁化特性为:磁化回线可为明显的矩形及矫顽磁场低于每米3安。CN1387213A采用三角波作为激磁电流,直流分量出现会使饱和点出现偏移,通过测量饱和瞬间来判断是否产生直流故障电流。CN1387213A的缺陷是使用了积分电路、饱和检测模块等复杂电路,增加了电路成本和复杂程度。
公开号为CN1712973,题为“读取直流和/或交流电流的设备”的中国专利揭示了检测直流和/或交流电流的设备,该设备能用于实现高灵敏度电流测量计或检测伴随自动开关的差分故障。本发明的设备包含能放置在 至少一个承载电流的导体周围的磁芯。线圈环绕磁芯并连接到电阻器。电压源产生驱动电压(Vexcit),该电压能允许接触电流(Iexcit)在线圈)和电阻器中流动。放大装置用于检测电阻器两端的电压(Vsense)以产生表示上述定义的电流(Iexcit)的第一信号(Vampl)。本发明的设备还包含反馈调整电路块(70),其捕获第一输入信号(Vampl)来产生第二信号,该第二信号在接触电流(Iexcit)达到预置值时反转所述驱动电压(Vexcit)。CN1712973采用固定频率的激磁电流,其检测精度受到原副边安匝比的制约。
公开号为US4,276,510的美国专利提出了一种为电流互感器测量原边电流的设备。其原理为电流互感器的次级线圈通以高频交流源,一个电感传感器交替感应次级绕组电感,任何电感的变化都是因为低频原边电流的影响,它被用来感应出第三线圈电流,第三线圈电流因此成为测量原边电流的精确值。US4,276,510的关键原理是让电感(磁导率)变化,即不能先饱和,也不能故障时达不到饱和(除非故障电流太小),完全饱和前换向,换向时间取决于R1、R2、R3的值和晶体管导通电压。US4,276,510需要第三线圈和复杂的模拟电路,大大增加了实现的难度和成本,影响检测精度。
总结而言,现有技术中使用的激磁电路通常需要很高的电功率,结构复杂,大大增加了电路的成本,并伴随着很大的损耗和严重发热,另外,比较复杂的激磁电路也不适用于小型断路器的小尺寸设计和电磁兼容。
发明内容
本发明旨在提出一种结构简单,容易实现但又能对全电流敏感的剩余电流保护装置。
根据本发明的一实施例,提出一种剩余电流保护装置,包括:第一检测磁芯、第二检测磁芯、第一故障电流检测电路、第二故障电流检测电路、驱动电路和双极性电源模块。第一检测磁芯承载在主回路导线周围。第二 检测磁芯也承载在主回路导线周围。第一故障电流检测电路与第一检测磁芯耦接,第一故障电流检测电路依赖电网电压,对主回路进行全电流采样,检测高频交流故障剩余电流、脉动直流剩余电流和平滑直流剩余电流。第二故障电流检测电路与第二检测磁芯耦接,第二故障电流检测电路独立于电网电压,对主回路进行电磁式电流采样,检测工频交流剩余电流和脉动直流剩余电流。驱动电路的输入连接到第一故障电流检测电路和第二故障电流检测电路,驱动电路的输出连接到执行机构,驱动电路触发执行机构动作。双极性电源模块连接到主回路和第一故障电流检测电路。
在一个实施例中,第一故障电流检测电路包括信号采样电路、处理电路和比较电路。信号采样电路和第一检测磁芯耦合组成磁调制和解调电路,对主回路进行全电流采样,信号采样电路输出采样波形。处理电路连接到信号采样电路,对采样波形进行放大和反向翻转。比较电路接收处理电路的输出,对处理电路的输出进行判别后输出第一故障电路信号。
在一个实施例中,双极性电源模块采用开关电源对电网电压进行降压处理,并通过自反馈平衡电路形成正负双极性的电源输出用作第一故障电流检测电路的工作电源。第一故障电流检测电路中的信号采样电路、处理电路和比较电路由双极性电源模块驱动而工作。
在一个实施例中,所述第一检测磁芯是全电流检测磁芯,第一检测磁芯的一次绕组由载流导体组成,次级绕组与采样电路耦接。采样电路包括振荡辅助电路和低通滤波电路。振荡辅助电路与第一检测磁芯耦接构成RL多谐振荡电路,双极性电源模块对RL多谐振荡电路进行激磁,使得RL多谐振荡电路对剩余电流和载波进行耦合调制。低通滤波电路接收RL多谐振荡电路的输出,对剩余电流和载波进行解耦,滤除载波信号后输出剩余电流的采样波形。
在一个实施例中,振荡辅助电路和低通滤波电路各自包括一个放大器,所述低通滤波电路的截止频率为2kHz。
在一个实施例中,处理电路包括放大电路和绝对值电路,对剩余电流的采样波形进行放大和反向翻转。
在一个实施例中,比较电路包括放大器,比较电路将处理电路输出的信号与设定的阈值进行比较,然后输出第一故障电路信号。
在一个实施例中,第二电流检测电路与第二检测磁芯耦接,第二检测磁芯是电磁式电流互感器,第二检测磁芯的次级绕组与第二故障电流检测电路耦接,第二检测电路以电磁方式直接通过第二检测磁芯获取能量,第二检测电路根据所获取的能量大小判别剩余电流并输出第二故障电路信号。
在一个实施例中,驱动电路包括运算放大器、掉电误差补偿电路和二极管,运算放大器的正输入端连接到第一故障电流检测电路,运算放大器的负输入端连接到掉电补偿电路,第二故障电流检测电路连接到二极管的正极,二极管的负极和运算放大器的输出连接,作为驱动电路的输出。
在一个实施例中,执行机构在驱动电路输出信号执行机构动作。
本发明的剩余电流保护装置对全电流敏感,通过双路工作,确保两路检测互补干扰,也不需要复杂的转换电路,结构简单,容易实现。本发明在低损耗情况下可以工作,也能够避免由于采样电路关断的误动作信号而产生的脱扣器的误动作。
附图说明
本发明上述的以及其他的特征、性质和优势将通过下面结合附图和实施例的描述而变的更加明显,在附图中相同的附图标记始终表示相同的特征,其中:
图1揭示了根据本发明的一实施例的剩余电流保护装置的电气结构示意图。
图2揭示了根据本发明的一实施例的剩余电流保护装置中的采样电路 的电路图。
图3揭示了图2所示的采样电路的采样波形图。
图4揭示了根据本发明的一实施例的剩余电流保护装置中的驱动电路的电路图。
图5揭示了图4所示的驱动电路的输出波形图。
具体实施方式
参考图1所示,本发明提出一种剩余电流保护装置,图1揭示了该剩余电流保护装置的电气结构示意图。该剩余电流保护装置包括第一检测磁芯107、第二检测磁芯108、第一故障电流检测电路102、第二故障电流检测电路103、驱动电路104和双极性电源模块105。
第一检测磁芯107承载在主回路导线周围。第一故障电流检测电路102与第一检测磁芯107耦接,第一故障电流检测电路102依赖电网电压,对主回路进行全电流采样,检测高频交流故障剩余电流、脉动直流剩余电流和平滑直流剩余电流。
第二检测磁芯108也承载在主回路导线周围。第二故障电流检测电路103与第二检测磁芯108耦接,第二故障电流检测电路103独立于电网电压,对主回路进行电磁式电流采样,检测工频交流剩余电流和脉动直流剩余电流。
驱动电路104的输入连接到第一故障电流检测电路102和第二故障电流检测电路103,驱动电路104的输出连接到执行机构106,驱动电路104触发执行机构106动作。
双极性电源模块连接到主回路和第一故障电流检测电路102。双极性电源模块105采用开关电源对电网电压进行降压处理,并通过自反馈平衡电路形成正负双极性的电源输出用作第一故障电流检测电路102的工作电源。
由此,本发明提出一种对全电流敏感的双路剩余电流保护装置。该装置中的第一故障电流检测电路102是依赖电网电压的,通过全电流互感器采样能够检测1kHz以下的交流故障剩余电流、脉动直流剩余电流和平滑直流剩余电流。该装置中的第二故障电流检测电路103是独立于电网电压的,通过电磁式故障电流互感器采样,检测工频交流剩余电流和脉动直流剩余电流。第一故障电流检测电路102和第二故障电流检测电路103通过驱动电路104整合,驱动电路104触发执行机构106动作。第一故障电流检测电路102和第二故障电流检测电路103分别与第一检测磁芯和第二检测磁芯耦接。第一检测磁芯是全电流检测磁芯,第一检测磁芯的一次绕组由载流导体组成,次级绕组与采样电路109耦接。第二检测磁芯是电磁式电流互感器,次级绕组连接到第二故障电流检测电路103。
第一故障电流检测电路102包括信号采样电路109、处理电路110和比较电路111。信号采样电路109和第一检测磁芯107耦合组成磁调制和解调电路,对主回路进行全电流采样,信号采样电路109输出采样波形。处理电路110连接到信号采样电路109,对采样波形进行放大和反向翻转。比较电路111接收处理电路110的输出,对处理电路110的输出进行判别后输出第一故障电路信号。第一故障电流检测电路102中的信号采样电路109、处理电路110和比较电路111由双极性电源模块105驱动而工作。
参考图2所示,图2揭示了采样电路的电路图。采样电路109包括振荡辅助电路和低通滤波电路。振荡辅助电路与第一检测磁芯107耦接构成RL多谐振荡电路,双极性电源模块105对RL多谐振荡电路进行激磁,使得RL多谐振荡电路对剩余电流和载波进行耦合调制。低通滤波电路接收RL多谐振荡电路的输出,对剩余电流和载波进行解耦,滤除载波信号后输出剩余电流的采样波形。振荡辅助电路和低通滤波电路各自包括一个放大器,低通滤波电路的截止频率为2kHz。处理电路110包括放大电路和绝对值电路,对剩余电流的采样波形进行放大和反向翻转。比较电路111包 括放大器,比较电路111将处理电路110输出的信号与设定的阈值进行比较,然后输出第一故障电路信号。于是,本发明的第一故障电流检测电路102采用四个运算放大器就可以实现全部功能,成本低,损耗小。采样电路109同第一检测磁芯107构成RL多谐振电路,可以有效的简化电路结构,通过高频激磁电流与故障电流的耦合,可以把故障电流信号提取到采样电路中,包括交流剩余电流,脉动直流剩余电流,平滑直流剩余电流。检测低于1kHz的交流剩余电流需要激磁电流的频率远远高于故障电流的频率,至少是被调制波的频率的5倍,优选至少是被调制波频率的10倍,从而与高频激磁电流耦合的故障电流信号通过低通检波电路中滤除高频激磁信号进行解耦,使剩余电流信号还原,转换成供后端处理的电压信号。检测出的电压信号经过处理电路110放大并滤除信号脉冲尖峰,再由绝对值电路使故障信号整流成正向电压信号,然后送入比较电路111。继续参考图2所示,第一检测磁芯107与连接至运算放大器U1的反向输入端和输出端,电阻R1、R2分别将运算放大器U1的反向、正向输入端接入至地电平,电阻R3作为正反馈连接运算放大器U1的正向输入端和输入端,由此构成RL多谐振荡电路,该电路可以将第一检测磁芯107周围磁场的变化体现在输出方波的占空比变化量上。运算放大器U1以及辅助元器件构成了振荡辅助电路。RL多谐振荡电路输出连接电容C1、电阻R4,而后分别连接电阻R5、R6,其中电阻R5连接至地电平,电阻R6分别连接运算放大器U2和电容C2,电容C2一端连至地电平。运算放大器U2和辅助元器件构成了低通滤波及解调电路,将占空比的变化量转换为电平变化量。图3揭示了图2所示的采样电路的采样波形图。其中图3上方的波形是主回路中不存在剩余电流时的波形,图3下方的波形图是主回路中存在剩余电流时的波形图。由图3可以看出,当主回路有剩余电流时,在RL振荡电路输出端方波的边界(即周期)未发生变化,而中间的占空比的分隔线出现了偏移,则反映出占空比的变化。
第一检测磁芯107是全电流检测磁芯,第一检测磁芯107的一次绕组由载流导体组成,次级绕组与采样电路109耦接。第一电流检测磁芯107与采样电路109构成RL多谐振荡器电路,该次级绕组充当了多谐振荡器电路中的电感,由于电感中的电流不能发生突变,所以电流在电感中衰减,与运放正相输入端的基准电压进行比较,小于基准电压发生翻转,多谐振荡器电路产生自激振荡,从而使次级绕组中通入了高频载波电流信号,当主电网发生故障时,故障电流被载波信号调制,前提是载波频率远远高于被调制波,至少是被调制波的频率的5倍,优选至少是被调制波频率的10倍,本实施例优选8kHz的载波频率,可以检测1kHz以下的交流剩余电流,脉动直流剩余电流和平滑直流剩余电流。采样电路109中RL多谐振荡器电路与低通滤波电路连接,耦合的故障电流信号与载波信号在低通滤波电路解耦,其中优选的截止频率为2kHz,从而电路中的载波信号被滤除,然后采样信号连接到处理电路110,在反相放大器上加载半波整流电路后,形成一个全波整流电路,为了保证输出电压各个波峰之间高度相同,电路需要满足一定条件。解调处理后的电流信号通入比较电路111,当故障电流信号大于比较电路111反相输入端的阈值电压时,比较电路111输出正向电压信号,传给驱动电路104,从而驱动执行机构106,断开电网开关。
第二电流检测电路103与第二检测磁芯108耦接,第二检测磁芯108是电磁式电流互感器,第二检测磁芯108的次级绕组与第二故障电流检测电路103耦接。第二检测电路103以电磁方式直接通过第二检测磁芯108获取能量,第二检测电路103根据所获取的能量大小判别剩余电流并输出第二故障电路信号。第一电流检测电路102与第二电流检测电路103可以共同工作且两者之间不互相干扰,并且不需要复杂的转换电路,容易实现。第一电流检测电路102连接一个二极管和分压电阻,以避免输出信号干扰第二电流检测电路103中的元器件。
驱动电路104包括运算放大器、掉电误差补偿电路和二极管,运算放 大器的正输入端连接到第一故障电流检测电路102,运算放大器的负输入端连接到掉电补偿电路,第二故障电流检测电路103连接到二极管的正极,二极管的负极和运算放大器的输出连接,作为驱动电路104的输出。由于RL多谐振荡电路中的三极管关断时会产生一个误差信号,通过解耦电路、滤波电路、绝对值电路、比较电路等耦合到输出端,使执行机构产生误动作,所以在驱动电路104中增加一个掉电误差补偿电路,掉电误差补偿电路由一个三极管稳压电路组成。图4揭示了根据本发明的一实施例的剩余电流保护装置中的驱动电路的电路图。运算放大器U3的反向输入端连接掉电误差补偿电路,掉电误差补偿电路由电阻R7、R8、R9、R10,稳压管Z1和三极管Q1构成。运算放大器U3的正向输入端连接第一电流检测电路102的输出信号V1。V2为第二电流检测电路103的输出信号,V2连接二极管D1至运算放大器U3的输出端,形成驱动信号Vo。由于电源电压关断时,RL多谐振荡电路会产生掉电脉冲信号,导致误动作,此时掉电误差补偿电路中的三极管也产生一个较大的脉冲,该信号接入比较电路的反向输入端,从而补偿误差信号。图5揭示了图4所示的驱动电路的输出波形图。如图5所示,图5中上方的波形是补偿脉冲信号,图5中下方的波形是掉电误差脉冲信号。掉电误差补偿电路在电源断开时输出一个上升沿快于且高于主电路(的掉电误差脉冲信号)的脉冲信号(补偿脉冲信号)。
执行机构106在驱动电路104输出信号执行机构动作。
本发明的剩余电流保护装置的基本工作过程如下:承载在主回路导线周围的第一电流检测磁芯107与第一故障电流检测电路102中的采样电路109构成感应故障电流的RL多谐振荡电路,并由采样电路109内部的低通滤波电路转化为采样输出信号。而后采样电路109后端连接处理电路110,处理电路110由负反馈放大电路和绝对值电路构成,将前端采样输出信号进行放大翻转,形成预处理信号。处理电路110后端连接比较电路 111,比较电路主要由运算放大器构成,将预处理信号与设定阈值进行比较,输出故障信号。比较电路111直接连接驱动电路104。第二故障电流检测电路103采用电磁式故障电流检测,直接由第二电流检测磁芯108提供能量及信号,可以检测交流和脉动直流剩余电流,与电网电压无关,其故障输出信号连接至驱动电路104。驱动电路104由补偿电路和双路保护电路构成,补充电路主要防止RL多谐振荡电路的掉电误差,双路保护电路主要防止第一故障电流检测电路和第二故障电流检测电路间的相互干扰,驱动电路104后端直接连接执行机构106,执行机构106通过驱动电路104的输出信号触发机构动作。双极性电源电路105主要由开关电源构成,通过电网电压引入,转换为第一故障电流检测电路102所需的直流电源,并为RL多谐振荡电路提供正负电流激励。
当电网电压存在时,电磁式检测电路(第一电流检测磁芯107以及第一故障电流检测电路102)和电子式检测电路(第二电流检测磁芯108和第二故障电流检测电路103)共同工作,如果剩余电流是电网频率的交流剩余电流或脉动直流剩余电流,则两个检测电路均可以输出故障信号通过驱动电路104驱动执行机构106,而且两个信号不会相互干扰。如果剩余电流是平滑直流或高频剩余电流时,则仅第一故障电流检测电路102输出一个故障信号通过驱动电路104驱动执行机构106。该信号通过反向二极管及分压电阻,不足以影响第二故障电流检测电路103中的极性电容,同时第二故障电流检测电路103的输入信号微弱,既不影响第一故障电流检测电路102的正常工作,也不足以通过驱动电路104驱动执行机构106。
当电网电压不存在时,第一故障电流检测电路102不工作且不干扰其他电路,第二故障电流检测电路103可以检测电网频率的交流剩余电流和脉动直流剩余电流。
本发明的剩余电流保护装置对全电流敏感,通过双路工作,确保两路检测互补干扰,也不需要复杂的转换电路,结构简单,容易实现。本发明 在低损耗情况下可以工作,也能够避免由于采样电路关断的误动作信号而产生的脱扣器的误动作。
上述实施例是提供给熟悉本领域内的人员来实现或使用本发明的,熟悉本领域的人员可在不脱离本发明的发明思想的情况下,对上述实施例做出种种修改或变化,因而本发明的保护范围并不被上述实施例所限,而应该是符合权利要求书提到的创新性特征的最大范围。

Claims (10)

  1. 一种剩余电流保护装置,其特征在于,包括:
    第一检测磁芯(107),承载在主回路导线周围;
    第二检测磁芯(108),承载在主回路导线周围;
    第一故障电流检测电路(102),第一故障电流检测电路(102)与第一检测磁芯(107)耦接,第一故障电流检测电路(102)依赖电网电压,对主回路进行全电流采样,检测高频交流故障剩余电流、脉动直流剩余电流和平滑直流剩余电流;
    第二故障电流检测电路(103),第二故障电流检测电路(103)与第二检测磁芯(108)耦接,第二故障电流检测电路(103)独立于电网电压,对主回路进行电磁式电流采样,检测工频交流剩余电流和脉动直流剩余电流;
    驱动电路(104),驱动电路(104)的输入连接到第一故障电流检测电路(102)和第二故障电流检测电路(103),驱动电路(104)的输出连接到执行机构(106),驱动电路(104)触发执行机构(106)动作;
    双极性电源模块(105),连接到主回路和第一故障电流检测电路(102)。
  2. 如权利要求1所述的剩余电流保护装置,其特征在于,所述第一故障电流检测电路(102)包括信号采样电路(109)、处理电路(110)和比较电路(111);
    信号采样电路(109)和第一检测磁芯(107)耦合组成磁调制和解调电路,对主回路进行全电流采样,信号采样电路(109)输出采样波形;
    处理电路(110)连接到信号采样电路(109),对采样波形进行放大和反向翻转;
    比较电路(111)接收处理电路(110)的输出,对处理电路(110) 的输出进行判别后输出第一故障电路信号。
  3. 如权利要求2所述的剩余电流保护装置,其特征在于,所述双极性电源模块(105)采用开关电源对电网电压进行降压处理,并通过自反馈平衡电路形成正负双极性的电源输出用作第一故障电流检测电路(102)的工作电源;
    第一故障电流检测电路(102)中的信号采样电路(109)、处理电路(110)和比较电路(111)由双极性电源模块(105)驱动而工作。
  4. 如权利要求3所述的剩余电流保护装置,其特征在于,
    所述第一检测磁芯(107)是全电流检测磁芯,第一检测磁芯(107)的一次绕组由载流导体组成,次级绕组与采样电路(109)耦接;
    所述采样电路(109)包括振荡辅助电路和低通滤波电路;
    所述振荡辅助电路与第一检测磁芯(107)耦接构成RL多谐振荡电路,双极性电源模块(105)对RL多谐振荡电路进行激磁,使得RL多谐振荡电路对剩余电流和载波进行耦合调制;
    所述低通滤波电路接收RL多谐振荡电路的输出,对剩余电流和载波进行解耦,滤除载波信号后输出剩余电流的采样波形。
  5. 如权利要求4所述的剩余电流保护装置,其特征在于,
    所述振荡辅助电路和低通滤波电路各自包括一个放大器,所述低通滤波电路的截止频率为2kHz。
  6. 如权利要求3所述的剩余电流保护装置,其特征在于,所述处理电路(110)包括放大电路和绝对值电路,对剩余电流的采样波形进行放大和反向翻转。
  7. 如权利要求3所述的剩余电流保护装置,其特征在于,所述比较电路(111)包括放大器,比较电路(111)将处理电路(110)输出的信号与设定的阈值进行比较,然后输出第一故障电路信号。
  8. 如权利要求1所述的剩余电流保护装置,其特征在于,所述第二电流检测电路(103)与第二检测磁芯(108)耦接,第二检测磁芯(108)是电磁式电流互感器,第二检测磁芯(108)的次级绕组与第二故障电流检测电路(103)耦接;
    第二检测电路(103)以电磁方式直接通过第二检测磁芯(108)获取能量,第二检测电路(103)根据所获取的能量大小判别剩余电流并输出第二故障电路信号。
  9. 如权利要求1所述的剩余电流保护装置,其特征在于,所述驱动电路(104)包括运算放大器、掉电误差补偿电路和二极管,运算放大器的正输入端连接到第一故障电流检测电路(102),运算放大器的负输入端连接到掉电补偿电路,第二故障电流检测电路(103)连接到二极管的正极,二极管的负极和运算放大器的输出连接,作为驱动电路(104)的输出。
  10. 如权利要求1所述的剩余电流保护装置,其特征在于,所述执行机构(106)在驱动电路(104)输出信号执行机构动作。
PCT/CN2015/074669 2014-03-21 2015-03-20 剩余电流保护装置 WO2015139655A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
ES15766034T ES2731812T3 (es) 2014-03-21 2015-03-20 Dispositivo de protección de corriente residual
DK15766034.1T DK3121921T3 (en) 2014-03-21 2015-03-20 Residual current protection device
EP15766034.1A EP3121921B1 (en) 2014-03-21 2015-03-20 Residual current protection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410108242.2 2014-03-21
CN201410108242.2A CN104934931B (zh) 2014-03-21 2014-03-21 剩余电流保护装置

Publications (1)

Publication Number Publication Date
WO2015139655A1 true WO2015139655A1 (zh) 2015-09-24

Family

ID=54121968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/074669 WO2015139655A1 (zh) 2014-03-21 2015-03-20 剩余电流保护装置

Country Status (5)

Country Link
EP (1) EP3121921B1 (zh)
CN (1) CN104934931B (zh)
DK (1) DK3121921T3 (zh)
ES (1) ES2731812T3 (zh)
WO (1) WO2015139655A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2527892A (en) * 2014-07-04 2016-01-06 Siemens Ag Residual current protection apparatus with detection which is purely dependent on the power supply system voltage.
WO2017093670A1 (fr) * 2015-12-03 2017-06-08 Hager-Electro Sas (Société Par Actions Simplifiée) Dispositif de protection différentielle du type b ou b+ comportant deux modules en parallèle et en concurrence
CN109932558A (zh) * 2019-04-15 2019-06-25 苏州未来电器股份有限公司 基于单正电源供电的磁调制交直流剩余电流检测系统
CN111864694A (zh) * 2019-04-30 2020-10-30 上海复旦微电子集团股份有限公司 剩余电流保护电路
CN111934280A (zh) * 2020-09-09 2020-11-13 南方电网数字电网研究院有限公司 漏电故障检测方法、装置、存储介质和配电网关
CN112491001A (zh) * 2020-12-04 2021-03-12 国创新能源汽车智慧能源装备创新中心(江苏)有限公司 一种免滤波的信号采集方法及其系统和漏电保护装置
CN112736835A (zh) * 2020-12-03 2021-04-30 深圳供电局有限公司 剩余电流保护装置
CN112951670A (zh) * 2019-12-10 2021-06-11 华为数字技术(苏州)有限公司 一种具有电流检测功能的断路器及通信电源

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105914723B (zh) * 2016-06-12 2019-05-03 上海电科电器科技有限公司 剩余电流断路器的切换装置
CN107204606A (zh) * 2017-07-27 2017-09-26 河北工业大学 一种任意波形下无死区漏电保护方法及装置
CN107332207A (zh) * 2017-08-30 2017-11-07 乐清拓优电气有限公司 一种交直流敏感的故障电流保护装置
CN107979066A (zh) * 2017-12-26 2018-05-01 浙江威利坚科技股份有限公司 B型漏电断路器及其检测方法
CN110224378B (zh) * 2018-03-02 2023-01-10 西门子公司 故障电流保护单元和方法
CN110190581B (zh) * 2019-06-04 2021-11-23 上海良信电器股份有限公司 断路器的剩余电流保护装置及方法
CN110672913B (zh) * 2019-10-09 2022-06-21 青岛鼎信通讯股份有限公司 一种适于交直流漏电检测的复杂波形信号处理方法
CN110794191A (zh) * 2019-10-17 2020-02-14 天津大学 一种抑制零点漂移影响的磁调制式直流漏电保护装置
CN112763938A (zh) * 2020-12-24 2021-05-07 唐新颖 一种基于磁通门检测剩余漏电方法
CN113495186B (zh) * 2021-07-27 2024-03-15 国创移动能源创新中心(江苏)有限公司 磁调制电流互感器的信号采集方法、装置和保护系统
US20230184812A1 (en) * 2021-12-10 2023-06-15 Vertiv Corporation Residual current monitoring type b with integrated self-test system and method
CN116794560B (zh) * 2023-08-21 2023-11-28 中国计量科学研究院 一种宽频剩余电流传感器
CN117543503B (zh) * 2023-11-13 2024-05-24 重庆电道智能科技有限公司 漏电保护装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3823101A1 (de) * 1988-07-07 1990-01-11 Siemens Ag Redundante ausloeseeinrichtung
DE19943801A1 (de) * 1999-09-13 2001-03-15 Siemens Ag Fehlerstrom-Schutzeinrichtung
US6437954B1 (en) * 1997-08-14 2002-08-20 Siemens Aktiengesellschaft Residual current device
CN1712973A (zh) * 2004-06-21 2005-12-28 Abb服务有限公司 读取直流和/或交流电流的设备
CN101208845A (zh) * 2005-06-22 2008-06-25 西门子公司 用于检测故障电流的故障电流分析器和具有故障电流检测功能的装置
CN101217232A (zh) * 2008-01-14 2008-07-09 王继杰 具有元件故障自动跳闸功能的全电流型剩余电流动作装置
CN104111366A (zh) * 2013-04-19 2014-10-22 本德尔有限两合公司 具有参数配置的交流/直流敏感型剩余电流保护器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2348881C3 (de) * 1973-09-28 1980-10-16 Siemens Ag, 1000 Berlin Und 8000 Muenchen Fehlerstromschutzschalter
EP0349880A1 (de) * 1988-07-07 1990-01-10 Siemens Aktiengesellschaft Einrichtung zum Schutz vor Fehlerströmen
US6658360B1 (en) * 2000-06-09 2003-12-02 Siemens Aktiengesellschaft Software-controlled evaluation of fault currents for protection and monitoring systems
JP5948958B2 (ja) * 2012-02-29 2016-07-06 富士電機機器制御株式会社 電流検出装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3823101A1 (de) * 1988-07-07 1990-01-11 Siemens Ag Redundante ausloeseeinrichtung
US6437954B1 (en) * 1997-08-14 2002-08-20 Siemens Aktiengesellschaft Residual current device
DE19943801A1 (de) * 1999-09-13 2001-03-15 Siemens Ag Fehlerstrom-Schutzeinrichtung
CN1712973A (zh) * 2004-06-21 2005-12-28 Abb服务有限公司 读取直流和/或交流电流的设备
CN101208845A (zh) * 2005-06-22 2008-06-25 西门子公司 用于检测故障电流的故障电流分析器和具有故障电流检测功能的装置
CN101217232A (zh) * 2008-01-14 2008-07-09 王继杰 具有元件故障自动跳闸功能的全电流型剩余电流动作装置
CN104111366A (zh) * 2013-04-19 2014-10-22 本德尔有限两合公司 具有参数配置的交流/直流敏感型剩余电流保护器

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2527892A (en) * 2014-07-04 2016-01-06 Siemens Ag Residual current protection apparatus with detection which is purely dependent on the power supply system voltage.
GB2527892B (en) * 2014-07-04 2021-09-08 Siemens Ag Residual current protection apparatus with detection which is purely dependent on the power supply system voltage.
AU2016361996B2 (en) * 2015-12-03 2021-01-28 Hager-Electro Sas B or B+ differential protection device comprising two parallel concurrent modules
WO2017093670A1 (fr) * 2015-12-03 2017-06-08 Hager-Electro Sas (Société Par Actions Simplifiée) Dispositif de protection différentielle du type b ou b+ comportant deux modules en parallèle et en concurrence
FR3044836A1 (fr) * 2015-12-03 2017-06-09 Hager-Electro Sas Dispositif de protection differentielle du type b ou b+ comportant deux modules en parallele et en concurrence
CN109932558A (zh) * 2019-04-15 2019-06-25 苏州未来电器股份有限公司 基于单正电源供电的磁调制交直流剩余电流检测系统
CN111864694A (zh) * 2019-04-30 2020-10-30 上海复旦微电子集团股份有限公司 剩余电流保护电路
CN111864694B (zh) * 2019-04-30 2022-09-27 上海复旦微电子集团股份有限公司 剩余电流保护电路
CN112951670A (zh) * 2019-12-10 2021-06-11 华为数字技术(苏州)有限公司 一种具有电流检测功能的断路器及通信电源
CN112951670B (zh) * 2019-12-10 2024-05-17 华为数字能源技术有限公司 一种具有电流检测功能的断路器及通信电源
CN111934280A (zh) * 2020-09-09 2020-11-13 南方电网数字电网研究院有限公司 漏电故障检测方法、装置、存储介质和配电网关
CN112736835A (zh) * 2020-12-03 2021-04-30 深圳供电局有限公司 剩余电流保护装置
CN112736835B (zh) * 2020-12-03 2023-03-03 深圳供电局有限公司 剩余电流保护装置
CN112491001A (zh) * 2020-12-04 2021-03-12 国创新能源汽车智慧能源装备创新中心(江苏)有限公司 一种免滤波的信号采集方法及其系统和漏电保护装置
CN112491001B (zh) * 2020-12-04 2022-08-23 国创移动能源创新中心(江苏)有限公司 一种免滤波的信号采集方法及其系统和漏电保护装置

Also Published As

Publication number Publication date
ES2731812T3 (es) 2019-11-19
EP3121921A4 (en) 2017-12-13
DK3121921T3 (en) 2019-05-20
EP3121921B1 (en) 2019-03-20
CN104934931B (zh) 2019-01-04
EP3121921A1 (en) 2017-01-25
CN104934931A (zh) 2015-09-23

Similar Documents

Publication Publication Date Title
WO2015139655A1 (zh) 剩余电流保护装置
EP3121609B1 (en) Direct-current residual-current detecting device
KR101329240B1 (ko) 플럭스 게이트 방식의 비접촉 전류 계측기
US20220373579A1 (en) Residual current detection method based on magnetic core working state switching
CN101846702B (zh) 一种电感电流检测电路
TWI357702B (en) Error detecting circuit and error detcting method
CN204347174U (zh) 一种基于磁调制的直流漏电流传感器
CN104515931B (zh) 一种基于磁调制的直流漏电流传感器
CN209231409U (zh) 一种自激型开环磁通门电流传感器电路
JP2012225664A (ja) 電流センサ及び電流検出方法
CN107979066A (zh) B型漏电断路器及其检测方法
WO2022037099A1 (zh) 一种低成本电流传感器
CN212780965U (zh) 一种剩余电流检测电路
CN204028283U (zh) 一种新型的故障电弧检测装置
CN106405189B (zh) 一种具有温度稳定性的电流传感器及其测量方法
CN208125798U (zh) 开口式漏电流传感器
TWI221354B (en) Method and controller for depressing DC magnetic declination of transformer
CN205015411U (zh) 串联故障电弧检测电路
CN207399036U (zh) 一种用于光离子化检测器的低功耗直流偏置电压产生电路
CN114414878B (zh) 一种双激磁自动退饱和闭环磁通门电流传感器电路
CN207625283U (zh) B型漏电断路器
CN203490357U (zh) 自检式的剩余电流互感器检测电路
CN113552406A (zh) 一种单电源供电的高精度剩余电流检测装置
CN103728576B (zh) 一种用于电工钢连续铁损测量的直流磁场补偿装置及方法
CN203630327U (zh) 一种用于电工钢连续铁损测量的直流磁场补偿装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15766034

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015766034

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015766034

Country of ref document: EP