WO2015139322A1 - Base station, user equipment, and control channel transmission and receiving method - Google Patents

Base station, user equipment, and control channel transmission and receiving method Download PDF

Info

Publication number
WO2015139322A1
WO2015139322A1 PCT/CN2014/073900 CN2014073900W WO2015139322A1 WO 2015139322 A1 WO2015139322 A1 WO 2015139322A1 CN 2014073900 W CN2014073900 W CN 2014073900W WO 2015139322 A1 WO2015139322 A1 WO 2015139322A1
Authority
WO
WIPO (PCT)
Prior art keywords
control channel
subframe
subframes
predetermined
transmission
Prior art date
Application number
PCT/CN2014/073900
Other languages
French (fr)
Chinese (zh)
Inventor
余政
程型清
南方
刘江华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2014/073900 priority Critical patent/WO2015139322A1/en
Priority to CN201480000263.0A priority patent/CN105122707B/en
Publication of WO2015139322A1 publication Critical patent/WO2015139322A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end

Definitions

  • Base station user equipment, and control channel transmission and reception method
  • the present invention relates to the field of communications technologies, and in particular, to a method for transmitting and receiving a control channel, and to a base station and a user equipment.
  • MTC machine type communication
  • MTC UE User Equipment
  • the path loss needs to be increased by 15dB or 20dB. Therefore, operators want to have additional enhancements when providing services to MTC user devices.
  • the method of coverage enhancement is generally to increase information resources, such as power, time, frequency, codeword and the like, so as to reliably perform information transmission.
  • the information may be repeatedly transmitted multiple times, TTI-bundling (Transmission Time Interval-bundling), by increasing the number of retransmissions of information, using robust spreading coding, ⁇ Robust coding modulation (such as low-order modulation and low coding rate), and / or power control to improve the reliability of information transmission.
  • the information may be control information, data information, reference signals or system information. Reliable transmission of control information is a prerequisite for normal communication.
  • the downlink control information is called DCI (downlink control information), and the DCI is carried by the downlink control channel.
  • the downlink control channel may be a PDCCH (Physical Downlink Control Channel) or an enhanced PDCCH (enhanced PDCCH), and the PDCCH or the ePDCCH may be used for a public message, an uplink dedicated message, and a downlink dedicated channel. There are scheduling of information, etc.
  • the repeated transmission of the DCI or the repeated transmission of the downlink control channel is generally used in the prior art to improve the reliability of the control channel transmission.
  • the PDCCH or ePDCCH is transmitted on one or more CCE (Control Channel Element) or eCCE (enhanced-CCE, enhanced control channel element).
  • the aggregation level aggregation level is usually used to indicate the number of CCEs used for PDCCH transmission or the number of eCCEs used for ePDCCH transmission.
  • one PDCCH or ePDCCH can be mapped in only one subframe, and the base station determines the aggregation level of the PDCCH or ePDCCH according to the channel condition of the UE, and multiple PDCCHs in the search space corresponding to the aggregation level.
  • one PDCCH candidate is determined to perform mapping of the PDCCH or the ePDCCH.
  • control channel transmission needs to be enhanced, it may be necessary to perform enhanced transmission on the control channel, and the prior art does not solve how to enhance the transmission of the control channel. For example, when the control channel enhances transmission in multiple subframes, how to determine the resources used to transmit the control channel in each of the plurality of subframes.
  • the present application mainly solves the problem of how to perform enhanced transmission on the control channel, thereby reducing scheduling complexity and UE blind detection complexity.
  • the embodiments of the present application provide a method for transmitting and receiving a base station, a user equipment, and a control channel.
  • a first aspect of the present application provides a method for transmitting a control channel, where the method includes: determining a plurality of subframes for performing enhanced transmission on a control channel; performing enhanced transmission on the control channel in the multiple subframes, where The enhanced transmission is at least one of a repetitive transmission, a spread spectrum transmission, a transmission time interval bundling transmission, and a power boost transmission.
  • the performing enhanced transmission of the control channel in the multiple subframes includes: transmitting a control channel on each of the multiple subframes, and The first parameter used to transmit the control channel on each of the plurality of subframes is the same; wherein the first parameter is a number of a starting control channel element or a number of a control channel element.
  • the method includes: the first parameter used for transmitting a control channel in each of the multiple subframes is pre-defined; or The first parameter used to transmit the control channel on each of the plurality of subframes is determined according to a predetermined functional relationship.
  • determining, according to a predetermined index, a number used for transmitting a control channel on each of the multiple subframes Or determining, according to two predetermined indexes, a first parameter used for transmitting a control channel on each of the plurality of subframes; or, according to a predetermined index and a predetermined total
  • the CCE number determines a first parameter used to transmit a control channel on each of the plurality of subframes.
  • the predetermined one index is an index of a predetermined one subframe, where the predetermined one subframe is: a p-th subframe of the plurality of subframes, where p is a predetermined integer; or, a subframe having a smallest total number of CCEs among the plurality of subframes; or, a minimum total number of CCEs among the plurality of subframes
  • the predetermined total number of CCEs is a total of the subframes having the smallest or largest total CCE number of the multiple subframes The number of CCEs.
  • the index of the two predefined indexes is an index of a first predetermined one subframe, where the first advance
  • the specified one subframe is: a p-th subframe of the plurality of subframes, where p is a predetermined integer; or a subframe index of a subframe having a smallest total number of CCEs among the plurality of subframes; or And the qth subframe in the subframe having the smallest total CCE number among the plurality of subframes, where q is a predetermined integer.
  • the another index of the two predefined indexes is an index of a second predetermined one subframe, where the second The predetermined one subframe is: the rth subframe of the plurality of subframes, where r is a predetermined integer; or, the subframe index of the subframe having the smallest total number of CCEs among the multiple subframes; Or, the wth subframe in the subframe having the smallest total CCE number among the plurality of subframes, where w is a predetermined integer.
  • the first parameter used by the transmission control channel satisfies a certain range, so that the control channel for scheduling the dedicated data is occupied.
  • the control channel element has no resource overlap with the control channel element occupied by the control channel for scheduling the common data; or the first parameter used by the transmission control channel satisfies a certain range, so that the control channel for scheduling the dedicated data is occupied.
  • Control channel elements and control channels in a common search space Elements have no resource overlap.
  • the enhanced transmission of the control channel in the multiple subframes, the antenna port of the common reference signal in each of the multiple subframes And the number of orthogonal frequency division multiplexing OFDM symbols used for the control channel is the same; and/or, the physical hybrid automatic repeat request indicates that the configuration of the channel is the same PHICH-Config; and/or, the frame structure
  • the mi factors used to determine PHICH resources in Type 2 are the same; and/or, the cyclic prefixes used are the same; and/or PHICH-duration is normal.
  • each of the multiple subframes is not a multimedia multicast single frequency network MBSFN subframe; or, each of the plurality of subframes is an MBSFN subframe; or for frame structure type 2, each of the plurality of subframes is an MBSFN subframe, or a subframe 1, or a subframe 6.
  • the enhanced transmission is performed on the control channel in the multiple subframes: the subframe index in the multiple subframes belongs to ⁇ 0, 4, 5, There are CFI OFDM symbols in the subframe of 9 ⁇ for the control channel, and there are two OFDM symbols in the subframe in which the subframe index in the plurality of subframes does not belong to ⁇ 0, 4, 5, 9 ⁇ for control a channel; or, for frame structure type 2, a subframe in which the subframe index belongs to ⁇ 0, 5 ⁇ has CFI OFDM symbols for a control channel, and subframes in the multiple subframes There are two OFDM symbols in the subframe whose index does not belong to ⁇ 0, 5 ⁇ for the control channel; wherein the value of CFI is 3 or 4.
  • the enhanced transmission of the control channel in the multiple subframes the bandwidth of the carrier used for the enhanced transmission of the control channel belongs to the first In the bandwidth range, there are u OFDM symbols in each subframe of the multiple subframes for the control channel or the data channel; when the bandwidth of the carrier used for the enhanced transmission of the control channel belongs to the second bandwidth range, Each of the plurality of subframes has V OFDM symbols for a control channel or a data channel; wherein, the first bandwidth range and the second bandwidth range are predetermined bandwidth ranges, and the first bandwidth range And the second bandwidth range do not intersect each other, u and V are natural numbers, and u is not equal to V.
  • a second aspect of the present application provides a base station, where the base station includes: a determining module, configured to determine a control And the transmitting module is configured to perform enhanced transmission on the control channel in the multiple subframes determined by the determining module, where the enhanced transmission is repeated transmission, spread spectrum transmission, and transmission. At least one of time interval bundling transmission and power boost transmission.
  • the sending module is specifically configured to: transmit a control channel on each of the multiple subframes, and each of the multiple subframes
  • the first parameters used to transmit the control channel on all subframes are the same; wherein the first parameter is the number of the starting control channel element or the number of the control channel element.
  • the method includes: the first parameter used by the sending module to transmit a control channel in each of the multiple subframes is a predetermined Or the first parameter used by the sending module to transmit the control channel on each of the multiple subframes is determined according to a predetermined functional relationship.
  • the processing module is configured to: determine, according to a predetermined index, transmission on each of the multiple subframes a first parameter used by the control channel; or determining, according to two predetermined indexes, a first parameter used for transmitting a control channel on each of the plurality of subframes; or, according to a predetermined index and a predetermined The total CCE number determines a first parameter used to transmit a control channel on each of the plurality of subframes.
  • the predetermined one index is an index of a predetermined one subframe, where the predetermined one subframe is: a p-th subframe of the plurality of subframes, where p is a predetermined integer; or, a subframe having a smallest total number of CCEs among the plurality of subframes; or, a minimum total number of CCEs among the plurality of subframes
  • the predetermined total number of CCEs is a total number of subframes of the plurality of subframes having a minimum or maximum total number of CCEs The number of CCEs.
  • the predetermined One of the two indexes is an index of a first predetermined one subframe, wherein the first predetermined one subframe is: a p-th subframe of the plurality of subframes, where p is a predetermined Or an integer of a subframe of a subframe having a smallest total number of CCEs among the plurality of subframes; or a qth subframe of the subframes having the smallest total number of CCEs of the plurality of subframes, where q is a predetermined integer.
  • the another one of the two predefined indexes is an index of a second predetermined one subframe, where the second The predetermined one subframe is: the rth subframe of the plurality of subframes, where r is a predetermined integer; or, the subframe index of the subframe having the smallest total number of CCEs among the multiple subframes; Or, the wth subframe in the subframe having the smallest total CCE number among the plurality of subframes, where w is a predetermined integer.
  • the first parameter used by the sending module to transmit the control channel satisfies a certain range, so as to control the scheduling of the dedicated data.
  • the control channel element occupied by the channel has no resource overlap with the control channel element occupied by the control channel for scheduling the common data; or the first parameter used by the transmitting module to transmit the control channel satisfies a certain range, so that the dedicated data is scheduled.
  • the control channel elements occupied by the control channel have no resource overlap with the control channel elements in the common search space.
  • the sending module performs enhanced transmission on a control channel in the multiple subframes, and in each subframe of the multiple subframes: a common reference signal
  • the number of antenna ports is the same; and/or the number of orthogonal frequency division multiplexing OFDM symbols used for the control channel is the same; and/or, the physical hybrid automatic repeat request indication channel is configured with the same PHICH-Config; and/or,
  • the mi factor used to determine PHICH resources in frame structure type 2 is the same; and/or, the cyclic prefix used is the same; and/or PHICH-duration is normal.
  • each of the multiple subframes is not a multimedia multicast Single frequency network MBSFN subframe; or, each of the multiple subframes is an MBSFN subframe; or for frame structure type 2, each of the multiple subframes is an MBSFN subframe, or a subframe 1, or a sub-frame Frame 6.
  • the sending module is in the multiple
  • the subframe index of the plurality of subframes belongs to the ⁇ 0, 4, 5, 9 ⁇ subframe, and the CFI OFDM symbols are used for the control channel
  • the plurality of sub-frames There are two OFDM symbols in the subframe in which the subframe index in the frame does not belong to ⁇ 0, 4, 5, 9 ⁇ is used for the control channel; or, for the frame structure type 2, the subframe index in the multiple subframes belongs to There are CFI OFDM symbols in the subframe of ⁇ 0, 5 ⁇ for the control channel, and two subframes in the subframes that do not belong to ⁇ 0, 5 ⁇ have two OFDM symbols for the control channel.
  • CFI has a value of 3 or 4.
  • the sending module is specifically configured to: when the bandwidth of a carrier used for performing enhanced transmission on the control channel belongs to a first bandwidth range, the multiple There are u OFDM symbols in each subframe of the frame for the control channel or the data channel; each subframe of the multiple subframes when the bandwidth of the carrier used for the enhanced transmission of the control channel belongs to the second bandwidth range There are V OFDM symbols for a control channel or a data channel; wherein the first bandwidth range and the second bandwidth range are predetermined bandwidth ranges, and the first bandwidth range and the second bandwidth range are mutually Disjoint, u and V are natural numbers, and u is not equal to V.
  • a third aspect of the present application provides a method for receiving a control channel, where the receiving method includes: determining a plurality of subframes of a control channel enhanced transmission; receiving, in the plurality of subframes, a control channel for enhanced transmission, where the enhanced transmission It is at least one of repeated transmission, spread spectrum transmission, transmission time interval bundling transmission, and power boost transmission.
  • the receiving, by the multiple subframes, the control channel for enhanced transmission includes: receiving a control channel on each of the multiple subframes, and The first parameter used to receive the control channel on each of the plurality of subframes is the same; wherein the first parameter is a number of a starting control channel element or a number of a control channel element.
  • the method includes: the first parameter used to receive the control channel in each of the multiple subframes is pre-defined; or The first parameter used to receive the control channel on each of the plurality of subframes is determined according to a predetermined functional relationship.
  • a third possible implementation Determining an index to determine a first parameter used by each of the plurality of subframes to receive a control channel; or determining, according to two predetermined indexes, a control channel on each of the plurality of subframes The first parameter used; or, according to a predetermined index and a predetermined total
  • the CCE number determines a first parameter used to receive the control channel on each of the plurality of subframes.
  • the predetermined one index is an index of a predetermined one subframe, where the predetermined one subframe is: a p-th subframe of the plurality of subframes, where p is a predetermined integer; or, a subframe having a smallest total number of CCEs among the plurality of subframes; or, a minimum total number of CCEs among the plurality of subframes
  • the predetermined total number of CCEs is a total of the subframes that have the smallest or largest total number of CCEs in the multiple subframes. The number of CCEs.
  • the one of the two predefined indexes is an index of a first predetermined one subframe, where the first advance
  • the specified one subframe is: a p-th subframe of the plurality of subframes, where p is a predetermined integer; or a subframe index of a subframe having a smallest total number of CCEs among the plurality of subframes; or And the qth subframe in the subframe having the smallest total CCE number among the plurality of subframes, where q is a predetermined integer.
  • the another index of the two predefined indexes is an index of a second predetermined one subframe, where the second The predetermined one subframe is: the rth subframe of the plurality of subframes, where r is a predetermined integer; or, the subframe index of the subframe having the smallest total number of CCEs among the multiple subframes; Or, the wth subframe in the subframe having the smallest total CCE number among the plurality of subframes, where w is a predetermined integer.
  • the control channel that receives the enhanced transmission in the multiple subframes each of the multiple subframes
  • the first parameter used by the receiving control channel in the frame satisfies a certain range, so that the control channel element occupied by the control channel for scheduling the dedicated data and the control channel element occupied by the control channel for scheduling the common data are not Or having a resource overlap; or, the first parameter used by the control channel in each of the plurality of subframes meets a determined range, so that the control channel element occupied by the control channel for scheduling the dedicated data and the common search Control channel elements in space have no resource overlap.
  • the control channel that receives an enhanced transmission in the multiple subframes an antenna of a common reference signal in each of the multiple subframes
  • the number of ports is the same; and/or, the number of orthogonal frequency division multiplexing OFDM symbols used for the control channel is the same; and/or, the physical hybrid automatic repeat request indicates that the configuration of the channel is the same PHICH-Config; and/or, the frame
  • the mi factors used to determine PHICH resources in Structure Type 2 are the same; and/or, the cyclic prefixes used are the same; and/or PHICH-duration is normal.
  • each of the multiple subframes is not a multimedia multicast single frequency.
  • a network MBSFN subframe; or, each of the plurality of subframes is an MBSFN subframe; or for frame structure type 2, each of the plurality of subframes is an MBSFN subframe, or a subframe 1, or a subframe 6 .
  • the subframe index in the multiple subframes belongs to ⁇ 0, 4, 5
  • There are CFI OFDM symbols in the subframe of 9 ⁇ for the control channel and there are two OFDM symbols in the subframe in which the subframe index in the plurality of subframes does not belong to ⁇ 0, 4, 5, 9 ⁇ a control channel; or, for frame structure type 2, a subframe in which the subframe index belongs to ⁇ 0, 5 ⁇ has CFI OFDM symbols for the control channel, and the sub-frames of the plurality of subframes There are two OFDM symbols in the subframe whose frame index does not belong to ⁇ 0, 5 ⁇ for the control channel; wherein the value of CFI is 3 or 4.
  • the receiving, by the multiple subframes, the control channel for enhancing transmission further comprising: receiving an enhanced transmission on a carrier whose bandwidth belongs to the first bandwidth range
  • the control channel there are u OFDM symbols in each subframe of the multiple subframes for a control channel or a data channel; when the control channel for enhanced transmission is received on a carrier whose bandwidth belongs to the second bandwidth range,
  • Each of the plurality of subframes has V OFDM symbols for a control channel or a data channel, where the first bandwidth range and the second bandwidth range are predetermined bandwidth ranges, And the first bandwidth range and the second bandwidth range do not intersect each other, U and V are natural numbers, and U is not equal to.
  • a fourth aspect of the present application provides a user equipment, where the user equipment includes: a determining module, configured to determine a plurality of subframes of a control channel enhanced transmission; and a receiving module, configured to: the multiple subframes determined by the determining module Receiving a control channel for enhanced transmission, wherein the enhanced transmission is at least one of a repetitive transmission, a spread spectrum transmission, a transmission time interval bundling transmission, and a power boost transmission.
  • the receiving module is specifically configured to: receive a control channel on each of the multiple subframes, and each of the multiple subframes
  • the first parameters used to receive the control channel on all subframes are the same; wherein the first parameter is the number of the starting control channel element or the number of the control channel element.
  • the method includes: the first parameter used by the receiving module to receive a control channel in each of the multiple subframes is a predetermined Or the first parameter used by the receiving module to receive the control channel in each of the multiple subframes is determined according to a predetermined functional relationship.
  • the user equipment further includes a processing module, where the processing module is configured to: determine the multiple according to a predetermined index The first parameter used by the control channel is received on each of the sub-frames; or the first parameter used to receive the control channel in each of the plurality of sub-frames is determined according to two predetermined indexes; or A predetermined index and a predetermined total number of CCEs determine a first parameter used to receive the control channel on each of the plurality of subframes.
  • the predetermined one index is an index of a predetermined one subframe, where the predetermined one subframe is: a p-th subframe of the plurality of subframes, where p is a predetermined integer; or, a subframe having a smallest total number of CCEs among the plurality of subframes; or, a minimum total number of CCEs among the plurality of subframes
  • the predetermined The total number of CCEs is the total number of CCEs in the subframe having the smallest or largest total number of CCEs among the plurality of subframes.
  • the one of the two predefined indexes is an index of a first predetermined one subframe, where the first advance
  • the specified one subframe is: a p-th subframe of the plurality of subframes, where p is a predetermined integer; or a subframe index of a subframe having a smallest total number of CCEs among the plurality of subframes; or And the qth subframe in the subframe having the smallest total CCE number among the plurality of subframes, where q is a predetermined integer.
  • the another index of the two predefined indexes is an index of a second predetermined one subframe, where the second The predetermined one subframe is: the rth subframe of the plurality of subframes, where r is a predetermined integer; or, the subframe index of the subframe having the smallest total number of CCEs among the multiple subframes; Or, the wth subframe in the subframe having the smallest total CCE number among the plurality of subframes, where w is a predetermined integer.
  • the receiving module is configured to receive, in the multiple subframes, an enhanced transmission control channel:
  • the first parameter used by the receiving control channel in each subframe satisfies a certain range, so that the control channel element occupied by the control channel scheduling the dedicated data has no resource overlap with the control channel element occupied by the control channel scheduling the common data;
  • the first parameter used by the control channel in each of the multiple subframes meets a certain range, so that the control channel element occupied by the control channel scheduling the dedicated data and the control channel in the common search space are Elements have no resource overlap.
  • the receiving module in a control channel that receives an enhanced transmission in the multiple subframes: in each subframe of the multiple subframes: a common reference signal
  • the number of antenna ports is the same; and/or the number of orthogonal frequency division multiplexing OFDM symbols used for the control channel is the same; and/or, the physical hybrid automatic repeat request indication channel is configured with the same PHICH-Config; and/or
  • the frame factor type 2 is used to determine that the PH factor of the PHICH resource is the same; and/or, the cyclic prefix used is the same; and/or, PHICH-duration is normal.
  • the receiving module is in the multiple In the control channel for receiving the enhanced transmission in the frame: each of the multiple subframes is not a multimedia multicast single frequency network MBSFN subframe; or, each of the multiple subframes is an MBSFN subframe; or For frame structure type 2, each of the plurality of subframes is an MBSFN subframe, or a subframe 1, or a subframe 6.
  • the receiving module in the control channel that receives the enhanced transmission in the multiple subframes, the sub-frame index in the multiple subframes belongs to ⁇ 0, 4 There are CFI OFDM symbols in the subframe of 5,9 ⁇ for the control channel, and there are two OFDM symbols in the subframe in which the subframe index in the plurality of subframes does not belong to ⁇ 0, 4, 5, 9 ⁇ For the control channel; or, for the frame structure type 2, the subframe index of the plurality of subframes belongs to ⁇ 0, 5 ⁇ , and there are CFI OFDM symbols for the control channel, and the multiple subframes The subframe in which the subframe index does not belong to ⁇ 0, 5 ⁇ has two OFDM symbols for the control channel; wherein the value of CFI is 3 or 4.
  • the receiving module is specifically configured to: when receiving the control channel that is enhanced to be transmitted on a carrier whose bandwidth belongs to the first bandwidth, the multiple subframes There are u OFDM symbols in each subframe for a control channel or a data channel; when the control channel for enhanced transmission is received on a carrier whose bandwidth belongs to the second bandwidth range, there are V in each subframe of the multiple subframes
  • the OFDM symbol is used for a control channel or a data channel; wherein, the first bandwidth range and the second bandwidth range are predetermined bandwidth ranges, and the first bandwidth range and the second bandwidth range do not intersect each other, u and V are natural numbers, and u is not equal to V.
  • a fifth aspect of the present application provides a base station, where the base station includes: a processor, configured to determine a plurality of subframes for performing enhanced transmission on a control channel; and a transmitter, configured to be used in the multiple subframes determined by the processor
  • the enhanced transmission is performed on the control channel, wherein the enhanced transmission is at least one of a repetitive transmission, a spread spectrum transmission, a transmission time interval bundling transmission, and a power boost transmission.
  • the transmitter is specifically configured to: transmit a control channel on each of the multiple subframes, and each of the multiple subframes
  • the first parameters used to transmit the control channel on all subframes are the same; wherein the first parameter is the number of the starting control channel element or the number of the control channel element.
  • the transmitter is Determining, by a predetermined parameter, a first parameter used for transmitting a control channel on each of the plurality of subframes; or a first parameter used by the transmitter to transmit a control channel on each of the plurality of subframes It is determined according to a predetermined functional relationship.
  • the processor is further configured to: determine, according to a predetermined index, each subframe of the multiple subframes a first parameter used for transmitting a control channel; or determining, according to two predetermined indexes, a first parameter used for transmitting a control channel on each of the plurality of subframes; or, according to a predetermined index and an advance
  • the specified total number of CCEs determines a first parameter used to transmit a control channel on each of the plurality of subframes.
  • the predetermined one index is an index of a predetermined one subframe, where the predetermined one subframe is: a p-th subframe of the plurality of subframes, where p is a predetermined integer; or, a subframe having a smallest total number of CCEs among the plurality of subframes; or, a minimum total number of CCEs among the plurality of subframes
  • the predetermined total number of CCEs is a total number of subframes of the plurality of subframes having a minimum or maximum total number of CCEs The number of CCEs.
  • the one of the two predefined indexes is an index of a first predetermined one subframe, where the first advance
  • the specified one subframe is: a p-th subframe of the plurality of subframes, where p is a predetermined integer; or a subframe index of a subframe having a smallest total number of CCEs among the plurality of subframes; or And the qth subframe in the subframe having the smallest total CCE number among the plurality of subframes, where q is a predetermined integer.
  • the another one of the two predefined indexes is an index of a second predetermined one subframe, where the second The predetermined one subframe is: the rth subframe of the plurality of subframes, where r is a predetermined integer; or, the subframe index of the subframe having the smallest total number of CCEs among the multiple subframes; Or, the plurality of The wth subframe in the subframe having the smallest total number of CCEs in the subframe, where w is a predetermined integer.
  • the first parameter used by the transmitter to transmit the control channel satisfies a certain range, so as to control the scheduling of the dedicated data.
  • the control channel element occupied by the channel has no resource overlap with the control channel element occupied by the control channel for scheduling the common data; or the first parameter used by the transmitter to transmit the control channel satisfies a certain range, so that the dedicated data is scheduled.
  • the control channel elements occupied by the control channel have no resource overlap with the control channel elements in the common search space.
  • the transmitter performs enhanced transmission on a control channel in the multiple subframes, and in each subframe of the multiple subframes: a common reference signal
  • the number of antenna ports is the same; and/or the number of orthogonal frequency division multiplexing OFDM symbols used for the control channel is the same; and/or, the physical hybrid automatic repeat request indication channel is configured with the same PHICH-Config; and/or,
  • the mi factor used to determine PHICH resources in frame structure type 2 is the same; and/or, the cyclic prefix used is the same; and/or PHICH-duration is normal.
  • each of the multiple subframes is not a multimedia multicast Single frequency network MBSFN subframe; or, each of the multiple subframes is an MBSFN subframe; or for frame structure type 2, each of the multiple subframes is an MBSFN subframe, or a subframe 1, or a sub-frame Frame 6.
  • the subframe index in the multiple subframes belongs to ⁇ 0, 4
  • There are CFI OFDM symbols in the subframe of 5, 9 ⁇ for the control channel and there are two OFDM symbols in the subframe in which the subframe index in the plurality of subframes does not belong to ⁇ 0, 4, 5, 9 ⁇
  • the subframe index of the plurality of subframes belongs to ⁇ 0, 5 ⁇
  • the CFI OFDM symbols are used for the control channel, and the multiple subframes
  • the subframe in which the subframe index does not belong to ⁇ 0, 5 ⁇ has two OFDM symbols for the control channel; wherein the value of CFI is 3 or 4.
  • the transmitter is specifically configured to: when a bandwidth of a carrier used for performing enhanced transmission on the control channel belongs to a first bandwidth range, Each of the subframes has u OFDM symbols for a control channel or a data channel; when the bandwidth of the carrier used for the enhanced transmission of the control channel belongs to the second bandwidth range, each of the plurality of subframes There are V OFDM symbols in the frame for the control channel or the data channel; wherein the first bandwidth range and the second bandwidth range are predetermined bandwidth ranges, and the first bandwidth range and the second bandwidth range Do not intersect each other, u and V are natural numbers, and u is not equal to V.
  • a sixth aspect of the present application provides a user equipment, where the user equipment includes: a processor, configured to determine a plurality of subframes for controlling channel enhanced transmission; and a receiver, configured to determine, by the processor, the multiple subframes Receiving a control channel for enhanced transmission, wherein the enhanced transmission is at least one of a repetitive transmission, a spread spectrum transmission, a transmission time interval bundling transmission, and a power boost transmission.
  • the receiver is specifically configured to: receive a control channel on each of the multiple subframes, and each of the multiple subframes
  • the first parameters used to receive the control channel on all subframes are the same; wherein the first parameter is the number of the starting control channel element or the number of the control channel element.
  • the first parameter used by the receiver to receive the control channel in each of the multiple subframes is predetermined; or The first parameter used by the receiver to receive the control channel on each of the plurality of subframes is determined according to a predetermined functional relationship.
  • the first parameter used for receiving the control channel in each of the multiple subframes is determined according to a predetermined index. Or determining, according to two predetermined indexes, a first parameter used by each of the plurality of subframes to receive a control channel; or determining, according to a predetermined index and a predetermined total number of CCEs.
  • the first parameter used by the control channel is received on each of the sub-frames.
  • the predetermined one index is an index of a predetermined one subframe, where the predetermined one subframe is: a p-th subframe of the plurality of subframes, where p is a predetermined integer; or, a subframe having a smallest total number of CCEs among the plurality of subframes; or, a minimum total number of CCEs among the plurality of subframes In the sub-frame
  • the qth subframe where q is a predetermined integer.
  • the predetermined total number of CCEs is a total number of subframes of the plurality of subframes having a minimum or maximum total number of CCEs The number of CCEs.
  • the one of the two predefined indexes is an index of a first predetermined one subframe, where the first advance
  • the specified one subframe is: a p-th subframe of the plurality of subframes, where p is a predetermined integer; or a subframe index of a subframe having a smallest total number of CCEs among the plurality of subframes; or And the qth subframe in the subframe having the smallest total CCE number among the plurality of subframes, where q is a predetermined integer.
  • the another index of the two predefined indexes is an index of a second predetermined one subframe, where the second The predetermined one subframe is: the rth subframe of the plurality of subframes, where r is a predetermined integer; or, the subframe index of the subframe having the smallest total number of CCEs among the multiple subframes; Or, the wth subframe in the subframe having the smallest total CCE number among the plurality of subframes, where w is a predetermined integer.
  • the receiver is configured to receive, in the multiple subframes, an enhanced transmission control channel:
  • the first parameter used by the receiving control channel in each subframe satisfies a certain range, so that the control channel element occupied by the control channel scheduling the dedicated data has no resource overlap with the control channel element occupied by the control channel scheduling the common data;
  • the first parameter used by the control channel in each of the multiple subframes meets a certain range, so that the control channel element occupied by the control channel scheduling the dedicated data and the control channel in the common search space are Elements have no resource overlap.
  • the receiver in the control channel that receives the enhanced transmission in the multiple subframes: in each of the multiple subframes: a common reference signal
  • the number of antenna ports is the same; and/or the number of orthogonal frequency division multiplexing OFDM symbols used for the control channel is the same; and/or, the physical hybrid automatic repeat request indication channel is configured with the same PHICH-Config; and/or , the frame factor type 2 is used to determine the same mi factor of the PHICH resource; and/or, the loop used The prefix is the same; and/or PHICH-duration is normal.
  • the receiver is configured to receive the enhanced transmission in the multiple subframes: each of the multiple subframes is not a multimedia multicast a frequency network MBSFN subframe; or, each of the plurality of subframes is an MBSFN subframe; or for frame structure type 2, each of the plurality of subframes is an MBSFN subframe, or a subframe 1, or a subframe 6.
  • the receiver in the control channel that receives the enhanced transmission in the multiple subframes, the sub-frame index in the multiple subframes belongs to ⁇ 0, 4 There are CFI OFDM symbols in the subframe of 5, 9 ⁇ for the control channel, and there are two OFDM symbols in the subframe in which the subframe index in the plurality of subframes does not belong to ⁇ 0, 4, 5, 9 ⁇ For the control channel; or, for the frame structure type 2, the subframe index of the plurality of subframes belongs to ⁇ 0, 5 ⁇ , and the CFI OFDM symbols are used for the control channel, and the multiple subframes
  • the subframe in which the subframe index does not belong to ⁇ 0, 5 ⁇ has two OFDM symbols for the control channel; wherein the value of CFI is 3 or 4.
  • the receiver is specifically configured to: when receiving the control channel of the enhanced transmission on a carrier whose bandwidth belongs to the first bandwidth, the multiple subframes There are u OFDM symbols in each subframe for a control channel or a data channel; when the control channel for enhanced transmission is received on a carrier whose bandwidth belongs to the second bandwidth range, there are V in each subframe of the multiple subframes
  • the OFDM symbol is used for a control channel or a data channel; wherein, the first bandwidth range and the second bandwidth range are predetermined bandwidth ranges, and the first bandwidth range and the second bandwidth range do not intersect each other, u and V are natural numbers, and u is not equal to V.
  • the present invention facilitates the determined multiple subframes by predetermining a plurality of subframes, and performing enhanced transmission, such as repeated transmission, spread spectrum transmission, transmission time interval bundling transmission, and power boost transmission, on the control channel in the multiple subframes.
  • enhanced transmission such as repeated transmission, spread spectrum transmission, transmission time interval bundling transmission, and power boost transmission, on the control channel in the multiple subframes.
  • the mapping and detection of control information are performed, which reduces the complexity of scheduling and the complexity of detection.
  • 1 is a flowchart of an embodiment of a method for transmitting a control channel of the present application
  • 2 is a block diagram of a block diagram of an embodiment of a base station of the present application
  • FIG. 3 is a block diagram of another embodiment of a base station of the present application.
  • FIG. 4 is a flowchart of an embodiment of a method for receiving a control channel of the present application
  • FIG. 5 is a block diagram of a module of an embodiment of a user equipment of the present application.
  • FIG. 6 is a block diagram of another embodiment of a user equipment of the present application.
  • GSM Global System for Mobile Communications
  • CDMA Code Division Multiple Access
  • Code Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • FDMA Frequency Division Multiple Addressing
  • OFDM Orthogonal Frequency-Division Multiple Access
  • SC-FDMA single carrier FDMA
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • the user equipment which may be a wireless terminal or a wired terminal, may be a device that provides voice and/or data connectivity to the user, a handheld device with wireless connectivity, or other processing device connected to the wireless modem.
  • the wireless terminal can communicate with one or more core networks via a radio access network (eg, RAN, Radio Access Network), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and with a mobile terminal
  • RAN Radio Access Network
  • the computers for example, can be portable, pocket-sized, handheld, computer-integrated or in-vehicle mobile devices that exchange language and/or data with the wireless access network.
  • a wireless terminal may also be called a system, a Subscriber Unit, a Subscriber Station, a Mobile Station, a Mobile, a Remote Station, an Access Point, Remote Terminal, Access Terminal, User Terminal, User Agent, User Device, or User Equipment.
  • a base station e.g., an access point
  • the base station can refer to a device in an access network that communicates with a wireless terminal over one or more sectors over an air interface.
  • the base station can be used to convert the received air frame to the IP packet as a router between the wireless terminal and the rest of the access network, wherein the remainder of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a Base Station Controller (BSC) in a 2G network, or a Radio Network Controller (RNC) in a 3G network, or an evolved Node B in an LTE network (evolved Node B) , eNodeB).
  • BSC Base Station Controller
  • RNC Radio Network Controller
  • the base station may be a base station (BTS, Base Transceiver Station) in GSM or CDMA, or may be a base station (NodeB) in WCDMA, or may be an evolved base station in LTE (NodeB or eNB or e-NodeB, evolutional Node B), this application is not limited.
  • the base station controller may be a base station controller (BSC) in GSM or CDMA, or a radio network controller (RNC) in WCDMA, which is not limited in this application.
  • BSC base station controller
  • RNC radio network controller
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this article is merely an association describing the associated object, indicating that there can be three relationships, for example, A and / or B, which can mean: A exists separately, and both A and B exist, exist alone B these three situations.
  • the character " /" in this article generally means that the contextual object is an "or" relationship, which represents the division in the formula operation.
  • the control channel is a channel carrying control information.
  • the control channel is a physical downlink control channel PDCCH, or an enhanced physical downlink control channel ePDCCH.
  • the enhanced transmission may be one or more combinations of repeated transmission, spread spectrum transmission, transmission time interval bundling transmission, and power boost transmission.
  • the power boost can be either an increase in transmit power or an increase in power spectral density.
  • the increase in power spectral density may be that signal transmission occupies a smaller frequency width or a single carrier transmission or a smaller scheduling granularity (e.g., 15 kHz) than a physical resource block.
  • the control channel enhanced transmission or enhanced transmission control channel is an enhanced transmission of the control channel or an enhanced transmission of the control channel carried by the control channel.
  • Control information can be down Control information DCI.
  • the DCI may be control information for downlink data scheduling or control information for uplink data scheduling.
  • Control channel enhanced transmission or enhanced transmission control channel refers to enhanced transmission of a control channel or a control channel in multiple subframes.
  • the control channel element may be a control channel element CCE or an enhanced control channel element eCCE.
  • the enhanced transmission is repeated transmission
  • the control channel element is CCE
  • the control channel is PDCCH as an example to illustrate the solution of the present application.
  • the solution of the present application is also applicable to: replacing the repeated transmission in the embodiment with a spread spectrum transmission, or a transmission time interval bundle transmission, or a power boost transmission; and/or, replacing the CCE in the embodiment with the eCCE And/or, the PDCCH in the embodiment is replaced with an ePDCCH.
  • the method for implementing the different solutions described above may be the same as the method described in the following embodiments, and the present application is not described or limited.
  • the number of NccE ' k is at least in subframe k
  • a plurality of subframes refer to subframes used for control channel or control information to be repeatedly transmitted X times.
  • the UE may determine the value of the repetition number X according to a predetermined rule or signaling configuration. At this time, the UE does not need to perform blind detection on the number of repetitions of the control channel repeated transmission. Alternatively, the UE may try the possible value of the repetition number X when detecting the control channel. The UE needs to detect the control channel according to the available aggregation level and control channel candidates for the control channel transmission according to the number of possible repetitions of the control channel repeated transmission.
  • the number of repeated transmissions X of the repeated transmission of the control channel in multiple subframes includes the initial control channel transmission, that is, the control channel repeated transmission X times includes the initial primary control channel transmission and additional X-1 repetitions of transmission.
  • the control channel transmitted in the subframe A in the present application may be transmitted on a subframe of one radio frame, or may be transmitted on a subframe of multiple radio frames.
  • the control channel may be repeatedly transmitted on one or more subframes whose subframe index is k, and one or more subframes whose subframe index is k is located at one Or multiple radio frames.
  • FIG. 1 is a flowchart of an implementation manner of a method for transmitting a control channel according to the present application.
  • This embodiment is described by using an implementation process between a base station and a UE, and of course, a control channel may be performed between the UE and the UE.
  • the transmission method is not limited herein.
  • the transmission method of this embodiment includes but is not limited to the following steps.
  • the multiple subframes may be multiple subframes in the same radio frame, or may be multiple subframes composed of at least one subframe in each of the plurality of radio frames, which is not limited herein.
  • a control channel is transmitted on each of the plurality of subframes, and the first parameter used for transmitting the control channel in each of the plurality of subframes is the same; wherein, the first parameter Is the number of the starting control channel element or the number of the control channel element.
  • the first parameter used for transmitting the control channel on each of the plurality of subframes is predetermined; or, for transmitting the control channel on each of the plurality of subframes
  • the first parameter is determined according to a predetermined functional relationship.
  • the first parameter used for transmitting the control channel on each of the multiple subframes may be determined according to a predetermined index; or, the multiple indexes in the multiple subframes may be determined according to two predefined indexes.
  • the first parameter used for transmitting the control channel on each subframe; or, the first parameter used for transmitting the control channel in each of the plurality of subframes may be determined according to a predetermined index and a predetermined total number of CCEs.
  • a predetermined index is a predetermined index of one subframe, where a predetermined one subframe may be: a p-th subframe in multiple subframes, where p is a predetermined integer; or a subframe having a smallest total number of CCEs among the plurality of subframes; or a qth subframe of the subframes having the smallest total number of CCEs among the plurality of subframes, where q is a predetermined integer.
  • one of the two predefined indexes is an index of the first predetermined one subframe
  • the first predetermined one subframe may be: the pth in the multiple subframes a subframe, where p is a predetermined integer; or, a subframe index of a subframe having a smallest total number of CCEs among the plurality of subframes; or a qth of the subframes having the smallest total number of CCEs among the plurality of subframes Subframes, where q is a predetermined integer.
  • the other of the two predefined indexes is the second a predetermined index of one subframe
  • the second predetermined one subframe may be: the rth subframe of the plurality of subframes, where r is a predetermined integer; or, the smallest total CCE among the plurality of subframes a subframe index of the number of subframes; or, the wth subframe in the subframe having the smallest total number of CCEs among the plurality of subframes, where w is a predetermined integer.
  • the first parameter used for transmitting the control channel in each of the plurality of subframes is determined according to a predetermined index and a predetermined total number of CCEs, and the predetermined total number of CCEs may be The total number of CCEs in a subframe having the smallest or largest total number of CCEs among the plurality of subframes.
  • the first parameter used for transmitting the control channel may also satisfy a certain range, so that the control channel element occupied by the control channel for scheduling the dedicated data does not overlap with the control channel element occupied by the control channel for scheduling the common data; or
  • the first parameter used for transmitting the control channel may also satisfy a certain range such that the control channel elements occupied by the control channel scheduling the dedicated data have no resource overlap with the control channel elements in the common search space.
  • each of the multiple subframes is not an MBSFN (Multicast Broadcast Single Frequency Network) subframe; or Each of the plurality of subframes is an MBSFN subframe; or for the frame structure type 2, each of the plurality of subframes is an MBSFN subframe, or a subframe 1, or a subframe 6.
  • MBSFN Multicast Broadcast Single Frequency Network
  • a subframe index in a plurality of subframes belongs to a subframe of ⁇ 0, 4, 5, 9 ⁇ , and CFI OFDM symbols are used for a control channel, and There are two OFDM symbols in the subframe in which the subframe index in the plurality of subframes does not belong to ⁇ 0, 4, 5, 9 ⁇ are used for the control channel; or, for the frame structure type 2, the subframe index in the plurality of subframes belongs to There are CFI OFDM symbols in the subframe of ⁇ 0, 5 ⁇ for the control channel, and there are two OFDM symbols in the subframe in which the subframe index in the plurality of subframes does not belong to ⁇ 0, 5 ⁇ is used for the control channel.
  • the value of CFI is 3 or 4.
  • the control channel when the control channel is enhanced in multiple subframes: when the bandwidth of the carrier used for the enhanced transmission of the control channel belongs to the first bandwidth range, there are u OFDM symbols in each subframe of the multiple subframes. On the control channel or the data channel; when the bandwidth of the carrier used for the enhanced transmission of the control channel belongs to the second bandwidth range, there are V OFDM symbols in each subframe of the multiple subframes for the control channel or the data channel.
  • the first bandwidth range and the second bandwidth range are predetermined bandwidth ranges. And the first bandwidth range and the second bandwidth range do not intersect each other, U and V are natural numbers, and U is not equal to V.
  • the present application may also define multiple subframes used by the control channel for enhanced transmission in multiple subframes, thereby determining the use of the control channel in each subframe when performing enhanced transmission of the control channel in multiple subframes.
  • the resources and/or resource locations are the same, and the specific implementation process is as follows.
  • the control channel is enhanced in a plurality of subframes, and the number of antenna ports of the common reference signal in each of the plurality of subframes may be the same; and/or OFDM for the control channel (Orthogonal Frequency Division Multiplex)
  • the number of symbols may be the same; and/or PHICH (Physical Hybrid ARQ Indicator Channel) - Config may be the same; and/or frame structure type 2
  • the mi factors used to determine PHICH resources may be the same; and/or, the cyclic prefixes used may be the same; and/or, PHICH-duration is normal padding
  • the used resources and/or resource locations of the control channel in each subframe are the same, which facilitates control channel allocation or mapping to the UE. It also facilitates the UE to perform control channel detection, etc., which reduces the complexity of system scheduling and the complexity of detection.
  • the timing of the plurality of subframes needs to be determined.
  • the time of the plurality of subframes may be predetermined by the system or determined according to the parameterized parameters of the signaling or the blind detection.
  • the control channel performs repeated transmissions on each of the determined plurality of subframes.
  • the aggregation level used to transmit the control channel on each of the plurality of subframes is the same. That is, the aggregation level used to transmit the control channel on any two of the plurality of subframes is the same.
  • the aggregation level used to transmit the control channel on each of the plurality of subframes is.
  • control channel candidate indexes used for transmitting the control channel in the search space corresponding to the aggregation level L in each of the plurality of subframes are the same. That is, the control channel candidate indices used for transmitting the control channel in the search space corresponding to the aggregation level L in any two of the plurality of subframes are the same.
  • the control channel candidate index in the search space corresponding to the aggregation level is m, and then the control used to transmit the control channel in the search space corresponding to the aggregation level in each of the plurality of subframes
  • the channel candidate indices are all m.
  • the set of values of m may be specified to be related to the aggregation level L, or the set of values of m may be specified regardless of the aggregation level L.
  • each of the plurality of subframes is reserved for the resource elements used by the common reference signal according to the number of antenna ports.
  • each of the plurality of subframes is reserved for the resource elements used by the common reference signal according to the number of antenna ports.
  • the UE when receiving the repeated control channel, the UE considers that each of the multiple subframes is reserved according to the number of antenna ports of 2 for the resource elements used by the common reference signal; or, the UE receives the repeated When the channel is controlled, it is considered that each of the plurality of subframes is reserved according to the resource element used for the common reference signal by 4 antenna ports.
  • the number of orthogonal frequency division multiplexing OFDM symbols used for the control channel in each of the plurality of subframes is the same. For example, there are 2 OFDM symbols in each of the plurality of subframes for the control channel; or, 3 OFDM symbols in each of the plurality of subframes are used for the control channel; or, each of the plurality of subframes There are 4 OFDM symbols in the subframe for the control channel.
  • the subframes of the plurality of subframes are composed of a plurality of subframe sets, and the number of OFDM symbols used for the control channel or the data channel in the subframes included in the different subframe sets is different.
  • the set of multiple subframes may be predetermined.
  • a subframe in a plurality of subframes is composed of a set of 2 subframes, which are a first subframe set and a second subframe set, respectively, and the first subframe set and the second subframe set are different sets.
  • Each of the first subframe set has u OFDM symbols for the control channel
  • each of the second subframe set has V OFDM symbols for the control channel, where u, v are positive integers, and u is not equal to V.
  • the subframe index in the multiple subframes may belong to the ⁇ 0, 4, 5, 9 ⁇ subframe, and there are 3 or 4 OFDM symbols used for the control channel, and the multiple subframes There are 2 OFDM symbols in the subframe in which the subframe index does not belong to ⁇ 0, 4, 5, 9 ⁇ for the control channel.
  • the frame structure type 2 three or four OFDM symbols in the subframe in which the subframe index in the plurality of subframes belongs to ⁇ 0, 5 ⁇ are used for the control channel, and the subframe index in the plurality of subframes does not belong to ⁇ There are 2 OFDM symbols in the subframe of 0, 5 ⁇ for the control letter. Road.
  • the control channel is: a control channel or a schedule for scheduling a system information block (such as SIB2, System Information Block-2, System Information Block 2) including an MBSFN subframe configuration, including a TDD (Time Division Duplex) configuration
  • SIB1 System Information Block 1
  • each non-MBSFN subframe there are 3 OFDM symbols in each non-MBSFN subframe for the control channel, and 2 OFDM symbols in each MBSFN subframe in the plurality of subframes are used for the control channel.
  • frame structure type 2 if subframe 1 and/or subframe 6 are also included in multiple subframes, then 2 subframes in each of subframes 1 and/or subframe 6 of the plurality of subframes are used for the control channel.
  • the bandwidth of the carrier belongs to the first bandwidth
  • the first bandwidth range and the second bandwidth range are predetermined bandwidth ranges
  • the first bandwidth range and the second bandwidth range are different bandwidth ranges
  • u, v are natural numbers, and u Not equal to V.
  • a large bandwidth carrier such as a carrier larger than 1.4 MHz ( Mega Hertz, megahertz)
  • for the small bandwidth carrier As less than a 1.4 MHz carrier, there are 4 OFDM symbols in each of the plurality of subframes for the control channel.
  • For a large bandwidth carrier, such as a carrier larger than 1.4 MHz there are 2 OFDM symbols in each of the plurality of subframes for the control channel, and for the small bandwidth carrier, such as less than 1.4 MHz carrier, multiple subframes There are 3 OFDM symbols in each non-MBSFN subframe in the control channel. If the MBSFN subframe is further included in the plurality of subframes, there are 2 OFDM symbols in each of the plurality of subframes for the control channel.
  • the PHICH-Config of each of the plurality of subframes is the same.
  • the PHICH-Config of the present embodiment includes an information element of a PHICH-continuous PHICH-Duration and an information element of a PHICH resource Resource.
  • PHICH-Config is included in the MIB (Master Information Block). Therefore, in a plurality of subframes in which the control channel is repeatedly transmitted, the base station considers that the PHICH-Config included in the MIB does not change when transmitting the control channel; accordingly, in a plurality of subframes in which the control channel is repeatedly transmitted, the UE side is receiving the control channel. It is considered that the PHICH-Config included in the MIB does not change.
  • the mi factors for determining PHICH resources in each of the plurality of subframes are the same.
  • the size of mi can be determined according to advance regulations.
  • the repeating transmission of the mi of the starting subframe in the plurality of subframes determines the mi of each of the plurality of subframes. If the UE determines that the control channel repeatedly transmits the mi of the starting subframe in the multiple subframes, determining that the control channel repeatedly transmits the multiple subframes according to the same mi factor for determining the PHICH resource in each of the multiple subframes. Mi in other subframes.
  • the mi factor for determining the PHICH resource in each of the plurality of subframes may be configured by signaling.
  • the value of the present embodiment mi is determined by the MIB notification configuration.
  • the UE when receiving the control channel of the system information block (such as SIB1) that includes the TDD configuration, the UE does not know the uplink and downlink configuration of the TDD, and therefore cannot determine the mi of the subframe that carries the control channel.
  • the present embodiment may indicate in the MIB that the bearer of the control channel of the control channel including the system information block (such as SIB1) of the TDD configuration is scheduled.
  • the UE detects the MIB it may determine that mi of the subframe in which the control channel repeat transmission of the system information block (SIB1) of the TDD configuration is scheduled, so as to detect the control channel according to the determined mi.
  • SIB1 system information block
  • the UE can blindly detect the control channel by attempting a possible mi value. For example, if the control channel scheduling SIB1 is transmitted on subframe 5, since the value of mi may be 0, 1, 2 in subframe 5, the UE needs to try different mi values to detect the PDCCH.
  • the cyclic prefix of each of the subframes in which the plurality of control channels are repeatedly transmitted is the same.
  • the cyclic prefix of each subframe in a subframe that is repeatedly transmitted as a plurality of control channels is a normal cyclic prefix.
  • the cyclic prefix of each of the subframes in which the plurality of control channels are repeatedly transmitted is an extended cyclic prefix.
  • the PHICH configuration in the MIB is unchanged, for the frame structure type 1, the PHICH configuration and the resource size of the subframes of different radio frames are the same.
  • frame structure type 2 if the PHICH configuration in the MIB is unchanged and the TDD uplink and downlink configuration is unchanged, the subframes of different radio frames have the same mi.
  • the present application can preferably be implemented by the following process.
  • the first parameters used for transmitting the control channel in each of the plurality of subframes are the same, that is, the first parameters used for transmitting the control channel in any two of the plurality of subframes are the same.
  • the first parameter is the number of the initial control channel element, and the number of the initial control channel element used to transmit the control channel on each of the plurality of subframes is n. . Where n. It can be a pre-specified value, or n. It is determined according to a predetermined functional relationship.
  • the embodiment may specify that the value of n 0 satisfies a certain range, so that the CCE resource occupied by the PDCCH scheduling the dedicated data does not overlap or the CCE resource occupied by the PDCCH scheduling the public data, or the scheduling The CCE resources occupied by the PDCCH with data are not in the common search space.
  • n 0 is greater than 15.
  • the first parameter is a number of a control channel element.
  • This embodiment is in each of a plurality of subframes
  • the number of the (aggregation level L) control channel elements used to transmit the control channel on each subframe is the same. That is, the number of aggregation level L control channel elements used to transmit the control channel on any two of the plurality of subframes is the same.
  • the number of the control channel element used to transmit the control channel on each of the plurality of subframes is ⁇ , , . . . , ⁇ ⁇ -1 , where the number of the L control channel elements is n 0 , n l5 Hence , ⁇ may be a predetermined value, or ⁇ , ⁇ , ..., ⁇ is determined according to a predetermined functional relationship.
  • the first parameter used for transmitting the control channel in each of the plurality of subframes may be determined according to a predetermined index.
  • a pre-specified index with a value of ⁇ is pre-specified.
  • the value is determined according to the pre-rules.
  • it is a sub-frame index of a predetermined subframe.
  • a predetermined one subframe is the pth subframe of the plurality of subframes, where p is a predetermined integer.
  • a predetermined one subframe is a subframe having a minimum or maximum total number of CCEs among a plurality of subframes of the repeated transmission control channel. Therefore, the subframe index of the subframe having the smallest or largest total CCE number among the plurality of subframes of the transmission control channel is repeatedly transmitted.
  • the predetermined one subframe is the qth subframe in the subframe having the smallest or largest total CCE number among the plurality of subframes of the repeated transmission control channel.
  • the number n Q of the initial control channel element used for control channel transmission in each of the plurality of subframes or the control channel element number no, . . . , n may be determined according to a predetermined index k.
  • the two pre-specified indexes are A ⁇ fe7.
  • the value of A is predetermined. For example, / ⁇ 0. Or, the value is determined according to the pre-rules. For example, it is a sub-frame index of a predetermined subframe.
  • the value of ⁇ is determined according to pre-rules. For example, it is a sub-frame index of a predetermined subframe.
  • One of the predetermined subframes is a subframe having the smallest or largest total number of CCEs among the plurality of subframes of the repeated transmission control channel. Therefore / ⁇ is the subframe index of the subframe having the smallest or largest total number of CCEs among the plurality of subframes of the repeated transmission control channel.
  • a predetermined one subframe is a qth subframe in a subframe having a minimum or maximum total number of CCEs among a plurality of subframes of the repeated transmission control channel, and q is a predetermined integer.
  • q l. Therefore, ka is a subframe index of the qth subframe in the subframe having the smallest total number of CCEs among the plurality of subframes of the transmission control channel.
  • n Q or ⁇ x ⁇ (Y k + m') mod L ⁇ CCE) ifl / ⁇ + (Formula 2)
  • Equation 2 The parameters in Equation 2 are interpreted as Equation 1, and are not described here.
  • the embodiment may further determine, according to a predetermined index and a predetermined total number of CCEs, a number of the initial control channel element used for transmitting the control channel in each of the multiple subframes or an aggregation level L control channel elements. The number.
  • the value of a predetermined index is ⁇ A.
  • the value is determined according to the pre-rules.
  • it is a sub-frame index of a predetermined subframe.
  • one of the predetermined subframes is the p-th subframe of the plurality of subframes in which the control channel is repeatedly transmitted.
  • p is a predetermined integer.
  • the pre-specified total number of CCEs is Wc CE .
  • n Q or ⁇ , ⁇ , ..., n il o can be determined.
  • Equation 3 The parameters in Equation 3 are explained as Equation 1, and are not described herein.
  • the UE may try to detect the control channel by using a possible aggregation level and possible control channel candidates under the aggregation level. Further, if the UE does not know the number of the multiple subframes or the number of repetitions for controlling the channel enhanced transmission when detecting the control channel, the UE also needs to try to detect the control channel according to the number of possible multiple subframes or the number of repetitions.
  • the number of antenna ports of the common reference signal in each of the plurality of subframes may be the same or different.
  • the CFI values in multiple subframes may be the same or different.
  • the PHICH-Config of each of the plurality of subframes may be the same or different.
  • the cyclic prefix of each of the plurality of subframes may be the same or different.
  • the mi factors used to determine the PHICH resources in each of the plurality of subframes may be the same or different.
  • the control channel is a schedule for SIB1 or a system information block containing a TDD configuration.
  • the CFI of the subframe in which the control channel is transmitted is 2, or the control channel is repeatedly transmitted on one or more of the subframes 0, 4, 5, 9. Further, when the control channel is transmitted on one or more of the subframes 0, 4, 5, 9, the CFI of the subframe is 3.
  • the CFI of the subframe in which the control channel is transmitted is 2, or the control channel is repeatedly transmitted on subframes 0 and/or 5. Further, when the control channel is transmitted on one or more of the subframes 0 and/or 5, the CFI of the subframe is 3.
  • control channel is repeatedly transmitted on subframes 0 and/or 5, and the control channel may also be repeatedly transmitted on subframes 1 and/or 6.
  • the control channel of the scheduling SIBx is repeatedly transmitted on subframes 0 and/or 5.
  • the CFI of the subframe is 3.
  • scheduling the control channel of the SIBx The transmission is repeated on subframes 0 and/or 5, and the control channel scheduling the SIBx may also be repeated on subframes 1 and/or 6.
  • Transmitting CFI 3 of a subframe of a control channel scheduling SIBx on one or more of subframes 0 and/or 5, and transmitting SIBx scheduling on one or more of subframes 1 and/or 6
  • the CFI of the subframe of the control channel is 2.
  • the manner of determining the number of the control channel element by using the above embodiment does not It is ensured that the control channel mapped on each of the plurality of subframes has the same resource element location on the physical resource.
  • the present embodiment further makes it possible to map the control elements transmitted on each of the plurality of subframes to the same resource element positions on the physical resources by the following method.
  • each of the plurality of subframes may be set to meet one or more of the following provisions:
  • Rule 1 The number of antenna ports of the common reference signal in each of the plurality of subframes is the same; Specification 2: the number of OFDM symbols used for the control channel in each of the plurality of subframes is the same; The PHICH-Config of each subframe in the subframe is the same;
  • each of the plurality of subframes is not an MBSFN subframe; or each of the plurality of subframes is an MBSFN Subframe; or, for frame structure type 2, each of the plurality of subframes is an MBSFN subframe, and/or subframe 1, and/or subframe 6;
  • the transmission of the control channel may be performed in each of the plurality of subframes according to one or more of the above provisions.
  • each of the plurality of subframes satisfies at least the above-mentioned provisions 1 to 4.
  • the reception of the control channel may be performed in each of the plurality of subframes according to one or more of the above provisions.
  • Table 1 is the value of the frame structure type 2, the mi factor in different uplink and downlink configurations and different subframes:
  • the value of mi when the subframe k is configured in different uplink and downlink configurations, the value of mi may be different. For example, when the uplink and downlink configurations are 0, mi of subframe 0 is equal to 2; when the uplink and downlink configuration is 1, the mi of subframe 0 is equal to 0; when the uplink and downlink configuration is 3, mi of subframe 0 is equal to 1. For the same uplink and downlink configuration, the values of mi in different subframes may also be different. For example, when the uplink and downlink configurations are 0, mi of subframe 0 is equal to 2, and mi of subframe 1 is equal to 1.
  • the control channel can only be repeatedly transmitted on the same mi subframe. For example, when the upper and lower rows are configured as 0, subframe 0 and subframe 5 have the same mi, so the control channel is repeatedly transmitted on subframe 0 and/or subframe 5. Or, when the uplink and downlink configurations are 0, subframe 1 and subframe 6 have the same mi, so the control channel performs repeated transmission on subframe 1 and/or subframe 6. For another example, when the uplink and downlink configurations are 1, subframe 0 and subframe 5 have the same mi, so the control channel performs repeated transmission on subframe 0 and/or subframe 5. Or, when the uplink and downlink configurations are 1, subframe 1, subframe 4, subframe 6, and subframe 9 have the same mi, so the control channel is in subframe 1, subframe 4, subframe 6, and subframe 9. One or more subframes are repeatedly transmitted.
  • control channel is for scheduling of SIB1 or for scheduling of system information blocks including uplink and downlink configurations
  • the CFI of the subframe in which the control channel is transmitted is 2.
  • the control channel is repeatedly transmitted on one or more of the subframes 0, 4, 5, 9.
  • the user equipment does not know the uplink and downlink configuration when receiving the control channel, and therefore cannot determine the mi value of the subframe.
  • the possible values of mi may be tried in a plurality of predetermined subframes to detect the control channel.
  • the control channel is on one or more subframes with a subframe index of 5.
  • the UE attempts the detection of the control channel by taking the possible mi value on the subframe 5.
  • the CFI of the subframe in which the control channel is transmitted is 3.
  • subframe 1 and subframe 6 have the same mi.
  • the control channel of the scheduling SIBy may be specified to be repeatedly transmitted on one or more subframes having subframe indices of 1 and/or 6. Further, the CFI of the subframe in which the control channel is transmitted is 2.
  • the uplink and downlink configuration is one of 2, 4, 5, and 6.
  • the control channel for scheduling the SIBy may be specified to be 0, 1, 5, and 6 in the subframe index.
  • SIBx System Information Block Type x
  • the control channel of the scheduling SIBx is repeatedly transmitted on one or more of the subframes 0, 4, 5, 9.
  • the control channel of the scheduling SIB2 is repeatedly transmitted on one or more subframes having the same mi. Because the UE knows the uplink and downlink configuration when detecting the SIBx, the UE also knows that the mis of those subframes are the same.
  • the control channel of the scheduling SIB2 is repeatedly transmitted on one or more subframes of the subframes 0, 1, 5, 6 having the same mi. Further, the CFI of the subframe in which the control channel of the SIBx is scheduled is transmitted on one or more of the subframes 0, 1, 5, and 6.
  • the number of total CCEs in each of the plurality of subframes of the repeated transmission control channel can be ensured to be the same, and the repeated transmission can be ensured by the above manner.
  • the physical resources are the same to facilitate the scheduling and detection of control resources.
  • the present application can determine the control channel element number in the manner of deriving the above calculations n Q or ⁇ , , ..., ⁇ ⁇ -1 .
  • the present embodiment can determine n Q or ⁇ , ⁇ , , n LA by using any one of the above formulas 1, 2, and 3 or an extension thereof, which are easily understood by those skilled in the art. Within the scope, it will not be described here.
  • control channel may also be used in each of one or more subframes. Repeated transmissions are performed multiple times within a frame, that is, repeated transmissions are performed in a frequency domain manner.
  • control channel is repeatedly transmitted multiple times within each subframe, the control channel that is repeatedly transmitted in each subframe has a fixed offset in the initial control channel element number in the subframe. If in one subframe, the control channel is carried out
  • the initial control channel element number c 0 of the control channel of the first repeated transmission in the M repeated transmission control channels can be determined in a similar manner to determining the number of the control channel element in the previous embodiment, and
  • the initial control channel element number d c Q + offset of the control channel of the second repeated transmission in the M repeated transmission control channels, where offset is a preset fixed offset value, similarly,
  • the present application can determine that the control channel determines the first parameter used for control channel transmission when the control channel is transmitted in each of the plurality of subframes, and solves the problem. Enhance the mapping resource problem of transmission, thus reducing the complexity of scheduling and detection.
  • the base station of the present embodiment includes but is not limited to the determining module 21, the transmitting module 22, and the processing module 23.
  • the determining module 21 is configured to determine a plurality of subframes for performing enhanced transmission on the control channel.
  • the sending module 22 is configured to perform enhanced transmission on the control channel in the multiple subframes determined by the determining module 21.
  • the enhanced transmission is at least one of a repetitive transmission, a spread spectrum transmission, a transmission time interval bundling transmission, and a power boost transmission.
  • the sending module 22 transmits a control channel on each of the multiple subframes, and the first parameter used for transmitting the control channel in each of the multiple subframes is the same; wherein, the first parameter is The number of the starting control channel element or the number of the control channel element.
  • the first parameter used by the transmitting module 22 to transmit the control channel on each of the plurality of subframes is predetermined; or the transmitting module 22 transmits the control channel for each of the plurality of subframes.
  • a parameter is determined based on a predetermined functional relationship.
  • the processing module 23 is configured to: determine, according to a predetermined index, a first parameter used by each of the multiple subframes to transmit a control channel; or, determine, according to two predefined indexes, multiple subframes.
  • a predetermined one subframe may be: a p-th subframe in a plurality of subframes, where p is a predetermined integer; or, a minimum total CCE among the plurality of subframes a sub-frame of a number; or, a q-th subframe in a subframe having a smallest total number of CCEs among the plurality of subframes, where q is a predetermined integer.
  • the process module 23 determines, in the process of determining the first parameter, one of the two indexes specified in advance is an index of the first predetermined one subframe, where the first predetermined one subframe may be: multiple subframes a p-th subframe in which p is a predetermined integer; or a subframe index of a subframe having a smallest total number of CCEs among the plurality of subframes. Or, the qth subframe in the subframe having the smallest total number of CCEs among the plurality of subframes, where q is a predetermined integer.
  • the other one of the two predetermined indexes is an index of a second predetermined one subframe, wherein the second predetermined one subframe is: the rth subframe of the plurality of subframes, where r is a predetermined integer; or a subframe index of a subframe having a smallest total number of CCEs among the plurality of subframes; or, a w-th subframe of the subframe having the smallest total number of CCEs among the plurality of subframes, where w is A predetermined integer.
  • the predetermined total number of CCEs is the total number of CCEs in the subframes having the smallest or largest total number of CCEs in the plurality of subframes.
  • the first parameter of this embodiment may satisfy one or more conditions.
  • the first parameter used by the sending module 22 to transmit the control channel satisfies a certain range, so that the control channel element occupied by the control channel for scheduling the dedicated data has no resource overlap with the control channel element occupied by the control channel for scheduling the common data;
  • the first parameter used by the transmitting module 22 to transmit the control channel satisfies a determined range such that the control channel element occupied by the control channel scheduling the dedicated data has no resource overlap with the control channel element in the common search space.
  • each of the multiple subframes is not a multimedia multicast single frequency network MBSFN subframe; or each of the multiple subframes
  • the frames are all MBSFN subframes; or for frame structure type 2, each of the plurality of subframes is an MBSFN subframe, or a subframe 1, or a subframe 6.
  • the subframe index in the multiple subframes belongs to the ⁇ 0, 4, 5, 9 ⁇ subframe, and the CFI OFDM symbols are used for control.
  • a channel, and a subframe index in a plurality of subframes that does not belong to ⁇ 0, 4, 5, 9 ⁇ has two OFDM symbols for the control channel; or, for frame structure type 2, a sub-frame among the plurality of subframes
  • a subframe with a frame index of ⁇ 0, 5 ⁇ has CFI OFDM symbols for the control channel, and a subframe in which the subframe index does not belong to ⁇ 0, 5 ⁇ has two OFDM symbols for control.
  • the value of CFI is 3 or 4.
  • the sending module 22 when the bandwidth of the carrier used by the control channel for the enhanced transmission belongs to the first bandwidth, the sending module 22 has u OFDM symbols in each subframe of the multiple subframes for the control channel or the data channel;
  • the module 22 has V OFDM symbols in each of the plurality of subframes for the control channel or the data channel when the bandwidth of the carrier used for the enhanced transmission of the control channel belongs to the second bandwidth range.
  • the first bandwidth range and the second bandwidth range are predetermined bandwidth ranges, and the first bandwidth range and the second bandwidth range do not intersect each other, u and V are natural numbers, and u is not equal to V.
  • the foregoing process achieves the same CCE number used for enhanced transmission of the control channel in each subframe in multiple subframes to facilitate scheduling and reduce the complexity of UE detection.
  • the above procedure does not guarantee that the control channel has the same physical resource element position for enhanced transmission in each subframe in a plurality of subframes.
  • the transmitting module 22 performs enhanced transmission on the control channel in each of the plurality of subframes, in each of the plurality of subframes.
  • the number of antenna ports of the common reference signal is the same; and/or, the number of OFDM symbols used for the control channel is the same; and/or PHICH-Config is the same; and/or, the frame structure type 2 is used to determine the PHICH resource.
  • the mi factors are the same; and/or, the cyclic prefix used is the same; and/or PHICH-duration is normal.
  • the base station shown in Fig. 2 of the present embodiment will be further described below by way of a specific embodiment.
  • the control channel When the control channel is repeatedly transmitted in a plurality of subframes, the timing of the plurality of subframes needs to be determined. The time of multiple subframes may be predetermined by the system or determined according to signaled parameters or blind detection. The control channel performs repeated transmissions on each of the determined plurality of subframes.
  • the aggregation level used to transmit the control channel on each of the plurality of subframes is the same. That is, the aggregation level used to transmit the control channel on any two of the plurality of subframes is the same.
  • the aggregation level used to transmit the control channel on each of the plurality of subframes is.
  • a set of 8 ⁇ is pre-defined.
  • control channel candidate indexes used for transmitting the control channel in the search space corresponding to the aggregation level L in each of the plurality of subframes are the same. That is, the control channel candidate indices used for transmitting the control channel in the search space corresponding to the aggregation level L in any two of the plurality of subframes are the same.
  • the control channel candidate index in the search space corresponding to the aggregation level is m, then, in multiple
  • the control channel candidate index used for transmitting the control channel in the search space corresponding to the aggregation level in each subframe in the subframe is m.
  • the set of values of m may be specified to be related to the aggregation level L, or the set of values of m may be specified regardless of the aggregation level L.
  • each of the plurality of subframes is reserved for the resource element used for the common reference signal according to the number of antenna ports 2.
  • each of the plurality of subframes is reserved for the resource element used by the common reference signal according to the number of antenna ports 4.
  • the UE considers that each of the multiple subframes is reserved according to the number of antenna ports 2 for the resource elements used by the common reference signal; or, the UE receives the repeated control. In the case of a channel, it is considered that each of the plurality of subframes is reserved for the resource elements used for the common reference signal according to the number of antenna ports 4.
  • the number of orthogonal frequency division multiplexing OFDM symbols used for the control channel in each of the plurality of subframes is the same. For example, there are 2 OFDM symbols in each of the plurality of subframes for the control channel; or, 3 OFDM symbols in each of the plurality of subframes are used for the control channel; or, each of the plurality of subframes There are 4 OFDM symbols in the subframe for the control channel.
  • the subframes of the plurality of subframes are composed of a plurality of subframe sets, and the number of OFDM symbols used for the control channel or the data channel in the subframes included in the different subframe sets is different.
  • the set of multiple subframes may be predetermined.
  • a subframe in a plurality of subframes is composed of a set of 2 subframes, which are a first subframe set and a second subframe set, respectively, and the first subframe set and the second subframe set are different sets.
  • Each of the first subframe set has u OFDM symbols for the control channel
  • each of the second subframe set has V OFDM symbols for the control channel, where u, v are positive integers, and u is not equal to V.
  • the subframe index in the multiple subframes may belong to the ⁇ 0, 4, 5, 9 ⁇ subframe, and there are 3 or 4 OFDM symbols used for the control channel, and the multiple subframes There are 2 OFDM symbols in the subframe in which the subframe index does not belong to ⁇ 0, 4, 5, 9 ⁇ for the control channel.
  • the frame structure type 2 three or four OFDM symbols are used for the control channel in the subframe in which the subframe index in the plurality of subframes belongs to ⁇ 0, 5 ⁇ , And there are 2 OFDM symbols in the subframe in which the subframe index in the plurality of subframes does not belong to ⁇ 0, 5 ⁇ is used for the control channel.
  • the control channel is as follows: A control channel that schedules a system information block (such as SIB2) that includes an MBSFN subframe configuration or a control channel that includes a system information block (such as SIB1) that includes a TDD configuration.
  • SIB2 system information block
  • SIB1 system information block
  • each non-MBSFN subframe there are 3 OFDM symbols in each non-MBSFN subframe for the control channel, and 2 OFDM symbols in each MBSFN subframe in the plurality of subframes are used for the control channel.
  • frame structure type 2 if subframe 1 and/or subframe 6 are also included in multiple subframes, then 2 subframes in each of subframes 1 and/or subframe 6 of the plurality of subframes are used for the control channel.
  • the bandwidth of the carrier belongs to the first bandwidth
  • multiple sub-bands There are V OFDM symbols in each subframe in the frame for the control channel or data channel.
  • the first bandwidth range and the second bandwidth range are predetermined bandwidth ranges
  • the first bandwidth range and the second bandwidth range are different bandwidth ranges
  • u, v are natural numbers, and u is not equal.
  • a large bandwidth carrier such as a carrier larger than 1.4 MHz ( Mega Hertz, megahertz)
  • for the small bandwidth carrier As less than a 1.4 MHz carrier, there are 4 OFDM symbols in each of the plurality of subframes for the control channel.
  • For a large bandwidth carrier, such as a carrier larger than 1.4 MHz there are 2 OFDM symbols in each of the plurality of subframes for the control channel, and for the small bandwidth carrier, such as less than 1.4 MHz carrier, multiple subframes There are 3 OFDM symbols in each non-MBSFN subframe in the control channel. If the MBSFN subframe is further included in the plurality of subframes, there are 2 OFDM symbols in each of the plurality of subframes for the control channel.
  • the PHICH-Config of each of the plurality of subframes is the same.
  • the PHICH-Config of the present embodiment includes an information element of PHICH-Duration and an information element of PHICH resource Resource.
  • PHICH-Config is included in the MIB. Therefore, in a plurality of subframes in which the control channel is repeatedly transmitted, the base station considers that the PHICH-Config included in the MIB does not change when transmitting the control channel; accordingly, in a plurality of subframes in which the control channel is repeatedly transmitted, the UE side is receiving the control channel. It is considered that the PHICH-Config included in the MIB does not change.
  • the mi factors for determining PHICH resources in each of the plurality of subframes are the same.
  • the size of mi can be determined according to advance regulations.
  • the repeating transmission of the mi of the starting subframe in the plurality of subframes determines the mi of each of the plurality of subframes. If the UE determines that the control channel repeatedly transmits the mi of the starting subframe in the multiple subframes, determining that the control channel repeatedly transmits the multiple subframes according to the same mi factor for determining the PHICH resource in each of the multiple subframes. Mi in other subframes.
  • the mi factor for determining the PHICH resource in each of the plurality of subframes may be configured by signaling.
  • the value of the present embodiment mi is determined by the MIB notification configuration.
  • the UE when receiving the control channel of the system information block (such as SIB1) that includes the TDD configuration, the UE does not know the uplink and downlink configuration of the TDD, and therefore cannot determine the mi of the subframe that carries the control channel.
  • the present embodiment may indicate in the MIB that the bearer of the control channel of the control channel including the system information block (such as SIB1) of the TDD configuration is scheduled.
  • the UE detects the MIB it may determine that mi of the subframe in which the control channel repeat transmission of the system information block (SIB1) of the TDD configuration is scheduled, so as to detect the control channel according to the determined mi.
  • SIB1 system information block
  • the UE can blindly detect the control channel by attempting a possible mi value. For example, if the control channel scheduling SIB1 is transmitted on subframe 5, since the value of mi may be 0, 1, 2 in subframe 5, the UE may try different mi values to detect the PDCCH.
  • the cyclic prefix of each of the subframes in which the plurality of control channels are repeatedly transmitted is the same.
  • the cyclic prefix of each subframe in a subframe that is repeatedly transmitted as a plurality of control channels is a normal cyclic prefix.
  • the cyclic prefix of each of the subframes in which the plurality of control channels are repeatedly transmitted is an extended cyclic prefix.
  • the PHICH configuration in the MIB is unchanged, for the frame structure type 1, the PHICH configuration and the resource size of the subframes of different radio frames are the same.
  • frame structure type 2 if the PHICH configuration in the MIB is unchanged and the TDD uplink and downlink configuration is unchanged, the subframes of different radio frames have the same mi.
  • the first parameter is the number of the starting control channel element or the number of the control channel element.
  • the first parameter used for transmitting the control channel in each of the plurality of subframes is the same, that is, the control channel is used for transmitting the control channel in any two of the plurality of subframes.
  • the first parameters are the same.
  • the first parameter is the number of the starting control channel element
  • the first parameter used to transmit the control channel in each of the plurality of subframes is n . . Where n. It can be a pre-specified value, or n. It is determined according to a predetermined functional relationship. In particular, this embodiment can specify n.
  • the first parameter is a number of a control channel element.
  • the numbers of the (aggregation level L) control channel elements used for transmitting the control channel in each of the plurality of subframes are the same. That is, the number of aggregation level L control channel elements used to transmit the control channel on any two of the plurality of subframes is the same.
  • the number of the control channel element used to transmit the control channel on each of the plurality of subframes is ⁇ , , . . . , ⁇ ⁇ -1 , where the number of the L control channel elements is n 0 , n l5 ...... , ⁇ may be a predetermined value, or ⁇ , ⁇ , ..., ⁇ is determined according to a predetermined functional relationship.
  • the present embodiment determines, in particular, a first parameter used for transmitting a control channel on each of a plurality of subframes based on a predetermined index.
  • defining a predetermined index of the value of ⁇ ⁇ is predetermined.
  • the value of A can be determined according to a predetermined rule.
  • it is a sub-frame index of a predetermined subframe.
  • a predetermined one subframe is the pth subframe of the plurality of subframes, where p is a predetermined integer.
  • a predetermined one subframe is a subframe having a minimum or maximum total CCE number among a plurality of subframes of the repeated transmission control channel. Therefore, it is a subframe index of a subframe in which a minimum or maximum total number of CCEs among the plurality of subframes of the control channel is repeatedly transmitted.
  • the predetermined one subframe is the qth subframe in the subframe having the smallest or largest total CCE number among the plurality of subframes of the repeated transmission control channel.
  • the application example 1 can determine the number n Q or the control channel element number ⁇ , ⁇ of the initial control channel element used for control channel transmission in each of the plurality of subframes according to a predetermined index A. , ⁇ ⁇ -1 :
  • the two pre-specified indexes are A ⁇ fe7.
  • the value of A is predetermined. For example, / ⁇ 0. Or, the value is determined according to the pre-rules. For example, it is a sub-frame index of a predetermined subframe.
  • the value of ⁇ is determined according to pre-rules. For example, it is a sub-frame index of a predetermined subframe.
  • One of the predetermined subframes is a subframe having the smallest or largest total number of CCEs among the plurality of subframes of the repeated transmission control channel. Therefore / ⁇ is the subframe index of the subframe having the smallest or largest total number of CCEs among the plurality of subframes of the repeated transmission control channel.
  • a predetermined one subframe is a qth subframe in a subframe having a minimum or maximum total number of CCEs among a plurality of subframes of the repeated transmission control channel, and q is a predetermined integer.
  • q l. Therefore, ka is a subframe index of the qth subframe in the subframe having the smallest total number of CCEs among the plurality of subframes of the transmission control channel.
  • n Q or ⁇ x ⁇ (Y k + m') mod L ⁇ CCE) ifl / ⁇ + ( ⁇ 5)
  • Equation 5 The parameters in Equation 5 are explained as Equation 4, and are not described here.
  • the present application may also determine a first parameter used for transmitting a control channel on each of the plurality of subframes according to a predetermined index and a predetermined total number of CCEs.
  • the value of a predetermined index A is predetermined. For example, specify ⁇ 0.
  • the value is determined according to the pre-rules.
  • it is a sub-frame index of a predetermined subframe.
  • one of the predetermined subframes is the p-th subframe of the plurality of subframes in which the control channel is repeatedly transmitted.
  • p is a predetermined integer.
  • the pre-specified total number of CCEs is Wc CE .
  • R subframe indices of the r+1th subframe in the subframe for controlling channel repetition transmission According to a predetermined subframe index and WCCE of one subframe, n Q or ⁇ , ⁇ , ..., n il o can be determined.
  • Equation 6 The parameters in Equation 6 are explained as Equation 4, and are not described herein.
  • the UE may try to detect the control channel by using a possible aggregation level and possible control channel candidates under the aggregation level. Further, if the UE does not know the number of the multiple subframes or the number of repetitions for controlling the channel enhanced transmission when detecting the control channel, the UE may also try to detect the control channel according to the number of possible multiple subframes or the number of repetitions.
  • the number of antenna ports of the common reference signal in each of the plurality of subframes may be the same or different.
  • the CFI values in multiple subframes may be the same or different.
  • the PHICH-Config of each of the plurality of subframes may be the same or different.
  • the cyclic prefix of each of the plurality of subframes may be the same or different.
  • the mi factors used to determine the PHICH resources in each of the plurality of subframes may be the same or different.
  • the control channel is a schedule for SIB1 or a system information block containing a TDD configuration.
  • the CFI of the subframe in which the control channel is transmitted is 2, or the control channel is repeatedly transmitted on one or more of the subframes 0, 4, 5, 9. Further, when the control channel is transmitted on one or more of the subframes 0, 4, 5, 9, the CFI of the subframe is 3.
  • the CFI of the subframe in which the control channel is transmitted is 2, or the control channel is repeatedly transmitted on subframes 0 and/or 5. Further, when the control channel is transmitted on one or more of the subframes 0 and/or 5, the CFI of the subframe is 3.
  • control channel is repeatedly transmitted on subframes 0 and/or 5, and the control channel may also be repeatedly transmitted on subframes 1 and/or 6.
  • the control channel of the SIBx is repeatedly transmitted on subframes 0 and/or 5.
  • the control channel scheduling the SIBx is repeatedly transmitted on subframes 0 and/or 5
  • the control channel scheduling the SIBx may also be repeatedly transmitted on subframes 1 and/or 6.
  • Propagating a control channel for scheduling SIBx on one or more of subframes 0 and/or 5 The CFI of the subframe is 3, and the CFI of the subframe in which the control channel of the SIBx is scheduled is transmitted on one or more of the subframes 1 and/or 6.
  • the control channel map transmitted on each of the plurality of subframes has the same resource element location on the physical resource.
  • the present application will cause the control channel transmitted on each of the plurality of subframes to be mapped to the same resource element location on the physical resource by the following method.
  • each of the plurality of subframes may be set to meet one or more of the following provisions:
  • Rule 1 The number of antenna ports of the common reference signal in each of the plurality of subframes is the same; Specification 2: the number of OFDM symbols used for the control channel in each of the plurality of subframes is the same; The PHICH-Config of each subframe in the subframe is the same;
  • each of the plurality of subframes is not an MBSFN subframe; or each of the plurality of subframes is an MBSFN subframe; or For frame structure type 2, each of the plurality of subframes is an MBSFN subframe, and/or subframe 1, and/or subframe 6;
  • the present application passes the enhanced transmission method of the control channel according to the special application example of 1-7, and the control channel can be transmitted in each of the plurality of subframes according to one or more of the above provisions.
  • each of the plurality of sub-frames satisfies at least the above-mentioned provisions 1 to 4. Accordingly, on the UE side, the reception of the control channel can be performed in each of the plurality of subframes in accordance with one or more of the above provisions.
  • the control channels can only be repeatedly transmitted on the same mi subframe. For example, when the uplink and downlink configurations are 0, subframe 0 and subframe 5 have the same mi, so the control channel performs repeated transmission on subframe 0 and/or subframe 5. Alternatively, when the uplink and downlink configurations are 0, subframe 1 and subframe 6 have the same mi, so the control channel performs repeated transmission on subframe 1 and/or subframe 6. For another example, when the uplink and downlink configurations are 1, subframe 0 and subframe 5 have the same mi, so the control channel performs repeated transmission on subframe 0 and/or subframe 5. Or, when the uplink and downlink configurations are 1, subframe 1, subframe 4, subframe 6, and subframe 9 have the same mi, so the control channel is in subframe 1, subframe 4, subframe 6, and subframe 9. One or more subframes are repeatedly transmitted.
  • control channel is for scheduling of SIB1 or for scheduling of system information blocks including uplink and downlink configurations
  • the CFI of the subframe in which the control channel is transmitted is 2.
  • the control channel is repeatedly transmitted on one or more of the subframes 0, 4, 5, 9.
  • the UE does not know the uplink and downlink configuration when receiving the control channel, and therefore cannot determine the mi value of the subframe.
  • the possible values of mi may be tried in a plurality of predetermined subframes to detect the control channel. If the control channel is repeatedly transmitted on one or more subframes with a subframe index of 5, the UE attempts a detection of the control channel by taking the possible mi value on the subframe 5. Further, the CFI of the subframe in which the control channel is transmitted is 3.
  • subframe 1 and subframe 6 have the same mi.
  • the control channel of the scheduling SIBy may be specified to be repeatedly transmitted on one or more subframes having subframe indices of 1 and/or 6. Further, the CFI of the subframe in which the control channel is transmitted is 2.
  • the MBSFN subframe configuration is included in the System Information Block Type x (SIBx).
  • SIBx System Information Block Type x
  • scheduling the control channel of the SIBx in subframes 0, 4, 5, The transmission is repeated on one or more subframes in 9.
  • the control channel of the scheduling SIB2 is repeatedly transmitted on one or more subframes having the same mi. Since the UE knows the uplink and downlink configuration when detecting the SIBx, the UE also knows that the mis of those subframes are the same.
  • the control channel of the scheduling SIB2 is repeatedly transmitted on one or more subframes of the subframes 0, 1, 5, 6 having the same mi. Further, the CFI of the subframe in which the control channel of the SIBx is scheduled is transmitted on one or more of the subframes 0, 1, 5, and 6.
  • the present embodiment can be guaranteed to be the same by the total number of CCEs and the first parameter in each of a plurality of subframes for repeatedly transmitting the control channel by the above-described special application examples 1, 2, 3 and 2.
  • the present application can determine n 0 or n 0 , n l5 , n il o according to any one of the three methods involved in the formulas 4, 5, and 6. Specifically, in the embodiment, the foregoing formula 4 and formula 5 can be used. Any one of Formula 6 or its extended manner determines n Q or ⁇ , , ... These are within the scope easily understood by those skilled in the art, and are not described herein again.
  • the control channel may also perform multiple transmissions in each subframe of one or more subframes. , that is, repeated transmission in the frequency domain.
  • the control channel repeats transmission multiple times within each subframe, the control channel that is repeatedly transmitted in each subframe has a fixed offset in the first parameter in the subframe.
  • the control channel performs one-time repeated transmission, and the first parameter c Q of the first repeated transmission of the control channel in the repeated transmission of the control channel may be determined according to the previous embodiment.
  • a similar method determines, and the first parameter CfCo+offset of the control channel of the second repeated transmission in the M repeated transmission control channels, where offset is a preset fixed offset value, similarly, M repetitions
  • the first parameter c ⁇ Ci.j+offset, i l, 2, , M of the control channel of the ith repeated transmission in the transmitted control channel.
  • the present application implements the same first parameter used for enhanced transmission of a control channel in each subframe within a plurality of subframes and/or ensures that the control channel has the same physical resource element location for enhanced transmission in each subframe of the plurality of subframes. It is convenient for scheduling implementation and reducing the complexity of UE detection.
  • the base station of the present embodiment includes but is not limited to a processor 31, a transmitter 32, a receiver 33, and the like connected through a bus, where the transmitter 32 is configured to transmit channels and data.
  • the receiver 33 is configured to receive channels and data, and the processor 31 is used for data, etc. Comprehensive processing.
  • the processor 31 is configured to determine a plurality of subframes for performing enhanced transmission on the control channel.
  • the transmitter 32 is configured to perform enhanced transmission on the control channel in multiple subframes determined by the processor 31.
  • the enhanced transmission is at least one of a repetitive transmission, a spread spectrum transmission, a transmission time interval bundling transmission, and a power boost transmission.
  • the transmitter 32 transmits a control channel on each of the plurality of subframes, and the first parameter used for transmitting the control channel in each of the plurality of subframes is the same, wherein the first parameter is The number of the control channel element or the number of the control channel element.
  • the first parameter is the number of the starting control channel element.
  • the first parameter used by the transmitter 32 to transmit the control channel on each of the plurality of subframes is predetermined; or the transmitter 32 transmits the control channel for each of the plurality of subframes.
  • a parameter is determined based on a predetermined functional relationship.
  • the processor 31 is configured to: determine, according to a predetermined index, a first parameter used by each of the multiple subframes to transmit a control channel; or, determine, according to two predefined indexes, multiple subframes.
  • the processor 31 specifies a predetermined index of one subframe, where a predetermined one subframe may be: the first one of the multiple subframes. p subframes, where p is a predetermined integer; or, a subframe having a smallest total number of CCEs among the plurality of subframes; or, a qth subframe of the subframes having the smallest total number of CCEs among the plurality of subframes, Where q is a predetermined integer.
  • the processor 31 processes, in the process of processing the number of the control channel element, one of the two indexes specified in advance is an index of the first predetermined one subframe, wherein the first predetermined one subframe may be: The pth subframe in the subframe, where p is a predetermined integer; or, the subframe index of the subframe having the smallest total number of CCEs among the plurality of subframes. Or, the qth subframe in the subframe having the smallest total number of CCEs among the plurality of subframes, where q is a predetermined integer.
  • the other one of the two predetermined indexes is an index of a second predetermined one subframe, wherein the second predetermined one subframe is: the rth subframe of the plurality of subframes, where r is a predetermined integer; or a subframe index of a subframe having a smallest total number of CCEs among the plurality of subframes; or, a w-th subframe of the subframe having the smallest total number of CCEs among the plurality of subframes, where w is A predetermined integer.
  • the predetermined total number of CCEs is the total number of CCEs in the subframes having the smallest or largest total number of CCEs in the plurality of subframes.
  • the first parameter of this embodiment may satisfy one or more conditions.
  • the first parameter used by the transmitter 32 to transmit the control channel satisfies a certain range, so that the control channel element occupied by the control channel for scheduling the dedicated data has no resource overlap with the control channel element occupied by the control channel for scheduling the common data;
  • the first parameter used by the transmitter 32 to transmit the control channel satisfies a certain range such that the control channel elements occupied by the control channel scheduling the proprietary data do not have resource overlap with the control channel elements in the common search space.
  • each of the multiple subframes is not a multimedia multicast single frequency network MBSFN subframe; or each of the multiple subframes
  • the frames are all MBSFN subframes; or for frame structure type 2, each of the plurality of subframes is an MBSFN subframe, or a subframe 1, or a subframe 6.
  • the subframe index in the multiple subframes belongs to the ⁇ 0, 4, 5, 9 ⁇ subframe, and the CFI OFDM symbols are used for control.
  • a channel, and a subframe index in a plurality of subframes that does not belong to ⁇ 0, 4, 5, 9 ⁇ has two OFDM symbols for the control channel; or, for frame structure type 2, a sub-frame among the plurality of subframes
  • a subframe with a frame index of ⁇ 0, 5 ⁇ has CFI OFDM symbols for the control channel, and a subframe in which the subframe index does not belong to ⁇ 0, 5 ⁇ has two OFDM symbols for control.
  • the value of CFI is 3 or 4.
  • the bandwidth of the carrier used by the control channel for the enhanced transmission of the control channel belongs to the first bandwidth range
  • the bandwidth of the carrier used by the transmitter 32 for the enhanced transmission of the control channel belongs to the second bandwidth range
  • the first bandwidth range and the second bandwidth range are predetermined bandwidth ranges, and the first bandwidth range and the second bandwidth range do not intersect each other, u and V are natural numbers, and u is not equal to V.
  • the foregoing process achieves the same CCE number for enhancing transmission of the control channel in each subframe in multiple subframes to facilitate the scheduling implementation and reduce the complexity of UE detection.
  • the above procedure does not guarantee that the control channel has the same physical resource element location for enhanced transmission in each subframe within a plurality of subframes.
  • the transmitter 32 can be further configured if the control channel is to have the same physical resource element location for enhanced transmission in each of the plurality of sub-frames.
  • the transmitter 32 performs enhanced transmission on the control channel in multiple subframes, and the number of antenna ports of the common reference signal is the same in each of the plurality of subframes; and/or the OFDM symbols used for the control channel The same number; and / or, PHICH-Config is the same; and/or, the mi factor used to determine PHICH resources in frame structure type 2 is the same; and/or, the cyclic prefix used is the same; and/or PHICH-duration is normal.
  • FIG. 4 is a flowchart of an embodiment of a method for receiving a control channel according to the present application.
  • the receiving method in this embodiment includes but is not limited to the following steps.
  • the multiple subframes may be multiple subframes in the same radio frame, or may be multiple subframes composed of at least one subframe in each of the plurality of radio frames, which is not limited herein.
  • the UE may determine multiple subframes by using signaling received in advance, or according to a preset manner, or blind detection, and details are not described herein.
  • a control channel is received on each of the multiple subframes, and the first parameter used for receiving the control channel in each of the multiple subframes is the same, where the first parameter Is the number of the starting control channel element or the number of the control channel element.
  • the first parameter is the number of the starting control channel element.
  • the first parameter used to receive the control channel in each of the plurality of subframes is predetermined; or the first parameter used to receive the control channel in each of the plurality of subframes It is determined according to a predetermined functional relationship.
  • the present application may determine, according to a predetermined index, a first parameter used by each of the multiple subframes to receive the control channel, or determine, according to two predefined indexes, the multiple subframes.
  • the first parameter used by the control channel is received on each subframe; or the first parameter used to receive the control channel in each of the plurality of subframes is determined according to a predetermined index and a predetermined total number of CCEs.
  • a predetermined index is a predetermined index of one subframe, wherein a predetermined one subframe is: a p-th subframe in a plurality of subframes, where p is a predetermined integer; or, multiple sub-frames a subframe having a minimum total number of CCEs in the frame; or, a qth subframe of the subframe having the smallest total number of CCEs among the plurality of subframes, where q is a predetermined integer.
  • one of the two indexes specified in this embodiment is an index of the first predetermined one subframe, where the first predetermined one subframe is: the p-th subframe in the multiple subframes, Where p is a predetermined integer; or, a subframe of a subframe having a smallest total number of CCEs among the plurality of subframes Or; the qth subframe in the subframe having the smallest total number of CCEs among the plurality of subframes, where q is a predetermined integer.
  • the other one of the two indexes specified in this embodiment is an index of a second predetermined one subframe, where the second predetermined one subframe is: the rth subframe in the multiple subframes, Where r is a predetermined integer; or, a subframe index of a subframe having a smallest total number of CCEs among the plurality of subframes; or, a w-th subframe of the subframes having the smallest total number of CCEs among the plurality of subframes, Where w is a predetermined integer.
  • the predetermined total number of CCEs is the total number of CCEs in the subframe having the smallest or largest total number of CCEs among the plurality of subframes.
  • the control channel that receives the enhanced transmission in multiple subframes may satisfy a certain range, so that the scheduling The control channel element occupied by the control channel with data has no resource overlap with the control channel element occupied by the control channel scheduling the common data; or, the first parameter used for receiving the control channel in each of the plurality of subframes satisfies a certain determination
  • the range is such that the control channel elements occupied by the control channel scheduling the proprietary data do not overlap with the control channel elements in the common search space.
  • each of the multiple subframes is not a multimedia multicast single frequency network MBSFN subframe; or each of the multiple subframes
  • the frames are all MBSFN subframes; or for frame structure type 2, each of the plurality of subframes is an MBSFN subframe, or a subframe 1, or a subframe 6.
  • a subframe index in a plurality of subframes belongs to a subframe of ⁇ 0, 4, 5, 9 ⁇ , and CFI OFDM symbols are used for a control channel, and There are two OFDM symbols in the subframe in which the subframe index in the plurality of subframes does not belong to ⁇ 0, 4, 5, 9 ⁇ are used for the control channel; or, for the frame structure type 2, the subframe index in the plurality of subframes belongs to There are CFI OFDM symbols in the subframe of ⁇ 0, 5 ⁇ for the control channel, and there are two OFDM symbols in the subframe in which the subframe index in the plurality of subframes does not belong to ⁇ 0, 5 ⁇ is used for the control channel.
  • the value of CFI is 3 or 4.
  • the OFDM symbol is used for a control channel or a data channel; and when the control channel for enhanced transmission is received on a carrier whose bandwidth belongs to the second bandwidth range, there are V OFDM symbols in each subframe of the plurality of subframes for the control channel or the data channel.
  • the first bandwidth range and the second bandwidth range are predetermined bandwidth ranges, and the first bandwidth range and the second bandwidth range do not intersect each other, u and V are natural numbers, and u is not equal to V.
  • the UE may consider that the control channel in the enhanced transmission is received in multiple subframes: within each subframe of the multiple subframes: the number of antenna ports of the common reference signal is the same; and/or The number of orthogonal frequency division multiplexing OFDM symbols of the control channel is the same; and/or, the configuration of the physical hybrid automatic repeat request indication channel is the same PHICH-Config; and/or, the frame structure type 2 is used to determine the PHICH resource.
  • the mi factors are the same; and/or, the cyclic prefixes are the same; and/or PHICH-duration is normal. In this way, when the UE performs reception of the control channel in multiple subframes, the used resources and/or resource locations of the control channel in each subframe are the same.
  • the timing of the plurality of subframes needs to be determined.
  • the time of multiple subframes may be predetermined by the system or determined according to signaled parameters or blind detection.
  • the control channel performs repeated transmissions on each of the determined plurality of subframes.
  • the aggregation level used to transmit the control channel on each of the plurality of subframes is the same. That is, the aggregation level used to transmit the control channel on any two of the plurality of subframes is the same.
  • the aggregation level used to transmit the control channel on each of the plurality of subframes is.
  • a set of 8 ⁇ is pre-defined.
  • control channel candidate indexes used for transmitting the control channel in the search space corresponding to the aggregation level L in each of the plurality of subframes are the same. That is, the control channel candidate indices used for transmitting the control channel in the search space corresponding to the aggregation level L in any two of the plurality of subframes are the same.
  • the control channel candidate index in the search space corresponding to the aggregation level is m
  • the control channel candidate index used for transmitting the control channel in the search space corresponding to the aggregation level in each of the plurality of subframes is m. .
  • the set of values of m may be specified to be related to the aggregation level L, or the set of values of m may be specified regardless of the aggregation level L.
  • each of the plurality of subframes is reserved for the resource element used by the common reference signal according to the number of antenna ports 2.
  • each of the plurality of subframes is reserved for the resource element used by the common reference signal according to the number of antenna ports 4.
  • the UE when receiving the repeated control channel, the UE considers each subframe in multiple subframes
  • the resource element used for the common reference signal is reserved according to the number of antenna ports 2; or, when the UE receives the repeated control channel, the resources used by the common reference signal according to the number of antenna ports 4 in each of the plurality of subframes are considered.
  • the element is reserved.
  • the number of orthogonal frequency division multiplexing OFDM symbols used for the control channel in each of the plurality of subframes is the same. For example, there are 2 OFDM symbols in each of the plurality of subframes for the control channel; or, 3 OFDM symbols in each of the plurality of subframes are used for the control channel; or, each of the plurality of subframes There are 4 OFDM symbols in the subframe for the control channel.
  • the subframes of the plurality of subframes are composed of a plurality of subframe sets, and the number of OFDM symbols used for the control channel or the data channel in the subframes included in the different subframe sets is different.
  • the set of multiple subframes may be predetermined.
  • a subframe in a plurality of subframes is composed of a set of 2 subframes, which are a first subframe set and a second subframe set, respectively, and the first subframe set and the second subframe set are different sets.
  • Each of the first subframe set has u OFDM symbols for the control channel
  • each of the second subframe set has V OFDM symbols for the control channel, where u, v are positive integers, and u is not equal to V.
  • the subframe index in the multiple subframes may belong to the ⁇ 0, 4, 5, 9 ⁇ subframe, and there are 3 or 4 OFDM symbols used for the control channel, and the multiple subframes There are 2 OFDM symbols in the subframe in which the subframe index does not belong to ⁇ 0, 4, 5, 9 ⁇ for the control channel.
  • the frame structure type 2 three or four OFDM symbols in the subframe in which the subframe index in the plurality of subframes belongs to ⁇ 0, 5 ⁇ are used for the control channel, and the subframe index in the plurality of subframes does not belong to ⁇ There are 2 OFDM symbols in the subframe of 0, 5 ⁇ for the control channel.
  • the control channel is as follows: a control channel for scheduling a system information block (e.g., SIB2) including an MBSFN subframe configuration or a control channel for scheduling a system information block (e.g., SIB1) including a TDD configuration.
  • SIB2 system information block
  • SIB1 system information block
  • each non-MBSFN subframe there are 3 OFDM symbols in each non-MBSFN subframe for the control channel, and 2 OFDM symbols in each MBSFN subframe in the multiple subframes are used for the control channel.
  • frame structure type 2 if subframe 1 and/or subframe 6 are also included in multiple subframes, there are 2 OFDM symbols in each of subframes 1 and/or subframe 6 of the plurality of subframes for the control channel.
  • the bandwidth of the carrier belongs to the first bandwidth
  • U OFDM symbols in each of the multiple subframes for the control channel or the data channel and when the bandwidth of the carrier belongs to the second bandwidth
  • the first bandwidth range and the second bandwidth range are predetermined bandwidth ranges, and the first bandwidth range and the second bandwidth range are different bandwidth ranges, and u, v are natural numbers, and u Not equal to V.
  • a large bandwidth carrier such as a carrier larger than 1.4 MHz ( Mega Hertz, megahertz)
  • for the small bandwidth carrier As less than a 1.4 MHz carrier, there are 4 OFDM symbols in each of the plurality of subframes for the control channel.
  • For a large bandwidth carrier, such as a carrier larger than 1.4 MHz there are 2 OFDM symbols in each of the plurality of subframes for the control channel, and for the small bandwidth carrier, such as less than 1.4 MHz carrier, multiple subframes There are 3 OFDM symbols in each non-MBSFN subframe in the control channel. If the MBSFN subframe is further included in the plurality of subframes, there are 2 OFDM symbols in each of the plurality of subframes for the control channel.
  • the PHICH-Config of each of the plurality of subframes is the same.
  • the PHICH-Config of the present embodiment includes an information element of PHICH-Duration and an information element of PHICH resource Resource.
  • PHICH-Config is included in the MIB. Therefore, in a plurality of subframes in which the control channel is repeatedly transmitted, the base station considers that the PHICH-Config included in the MIB does not change when transmitting the control channel; accordingly, in a plurality of subframes in which the control channel is repeatedly transmitted, the UE side is receiving the control channel. It is considered that the PHICH-Config included in the MIB does not change.
  • the mi factors for determining PHICH resources in each of the plurality of subframes are the same.
  • the size of mi can be determined according to advance regulations.
  • the mi of each of the plurality of subframes is determined by pre-specifying mi of the start subframe in the plurality of subframes in which the control channel repeatedly transmits. If the UE determines that the control channel repeatedly transmits the mi of the starting subframe in the multiple subframes, determining that the control channel repeatedly transmits the multiple subframes according to the same mi factor for determining the PHICH resource in each of the multiple subframes. Mi in other subframes.
  • the mi factor for determining the PHICH resource in each of the plurality of subframes may be configured by signaling.
  • the value of the present embodiment mi is specifically determined by the MIB notification configuration.
  • the UE when receiving the control channel of the system information block (such as SIB1) that includes the TDD configuration, the UE does not know the uplink and downlink configuration of the TDD, and therefore cannot determine the mi of the subframe that carries the control channel;
  • the present embodiment may indicate in the MIB that the bearer of the control channel of the control channel including the system information block (such as SIB1) of the TDD configuration is scheduled.
  • the UE detects the MIB it may determine that the control channel of the system information block (SIB1) including the TDD configuration is scheduled.
  • SIB1 system information block
  • the UE can blindly detect the control channel by attempting a possible mi value. For example, if the control channel scheduling SIB1 is transmitted on subframe 5, since the value of mi may be 0, 1, 2 in subframe 5, the UE may try different mi values to detect the PDCCH.
  • the cyclic prefix of each of the subframes in which the plurality of control channels are repeatedly transmitted is the same.
  • the cyclic prefix of each subframe in a subframe that is repeatedly transmitted as a plurality of control channels is a normal cyclic prefix.
  • the cyclic prefix of each of the subframes in which the plurality of control channels are repeatedly transmitted is an extended cyclic prefix.
  • the first parameter is the number of the starting control channel element or the number of the control channel element, which can be realized in particular by the following procedure.
  • the first parameters used to transmit the control channel in each of the plurality of subframes are the same. That is, the first parameters used to transmit the control channel on any two of the plurality of subframes are the same.
  • the first parameter is the number of the starting control channel element
  • the first parameter used to transmit the control channel in each of the plurality of subframes is n . . Where n. It can be a pre-specified value, or n. It is determined according to a predetermined functional relationship. In particular, this embodiment can specify n.
  • n 0 is greater than 15.
  • the first parameter is a number of a control channel element.
  • the numbers of the (aggregation level L) control channel elements used for transmitting the control channel in each of the plurality of subframes are the same. That is, the number of aggregation level L control channel elements used to transmit the control channel on any two of the plurality of subframes is the same.
  • the number of the control channel element used to transmit the control channel on each of the plurality of subframes is ⁇ , , . . . , ⁇ ⁇ -1 , where the number of the L control channel elements is n 0 , n l5 Hence , ⁇ may be a predetermined value, or ⁇ , ⁇ , ..., ⁇ is determined according to a predetermined functional relationship.
  • each subframe in multiple subframes may be determined according to a predetermined index.
  • defining a predetermined value for an index A is predetermined.
  • the rule ⁇ 0. the value is determined according to the pre-rules.
  • it is a sub-frame index of a predetermined subframe.
  • a predetermined one subframe is the pth subframe of the plurality of subframes, where p is a predetermined integer.
  • a predetermined one subframe is a subframe having a minimum or maximum total number of CCEs among a plurality of subframes of the repeated transmission control channel. Therefore, the subframe index of the subframe having the smallest or largest total CCE number among the plurality of subframes of the transmission control channel is repeatedly transmitted.
  • the predetermined one subframe is the qth subframe in the subframe having the smallest or largest total CCE number among the plurality of subframes of the repeated transmission control channel.
  • the present embodiment can determine the number n of the initial control channel element used for control channel transmission in each of the plurality of subframes according to a predetermined index k. Or control channel element number no, ..., n il o
  • the two pre-specified indexes are A ⁇ fe7.
  • the value of A is predetermined. As specified / ⁇ 0.
  • the value is determined according to the pre-rules. For example, it is a sub-frame index of a predetermined subframe.
  • the predetermined subframes is a subframe having the smallest or largest total number of CCEs among the plurality of subframes of the repeated transmission control channel. Therefore / ⁇ is the subframe index of the subframe having the smallest or largest total number of CCEs among the plurality of subframes of the transmission control channel.
  • the predetermined one subframe is the qth subframe in the subframe having the smallest or largest total CCE number among the plurality of subframes of the repeated transmission control channel, and q is a predetermined integer.
  • q l. Therefore, ka is a subframe index of the qth subframe in the subframe having the smallest total number of CCEs among the plurality of subframes in which the control channel is repeatedly transmitted.
  • Equation 8 The parameters in Equation 8 are explained as Equation 7, and are not described here.
  • the first parameter used for transmitting the control channel in each of the plurality of subframes may be determined according to a predetermined index and a predetermined total number of CCEs.
  • the value of a predetermined index is ⁇ A.
  • the value is determined according to the pre-rules.
  • it is a sub-frame index of a predetermined subframe.
  • one of the predetermined subframes is the p-th subframe of the plurality of subframes in which the control channel is repeatedly transmitted.
  • p is a predetermined integer.
  • the pre-specified total number of CCEs is Wc CE .
  • n Q or ⁇ , , . . . , n il o can be determined.
  • Equation 9 The parameters in Equation 9 are explained as Equation 7, and are not described herein.
  • the UE may try to detect the control channel by using a possible aggregation level and possible control channel candidates under the aggregation level. Further, if the UE does not know the number of the multiple subframes or the number of repetitions for controlling the channel enhanced transmission when the UE detects the control channel, the UE may further The number of possible multiple subframes or the number of repetitions is attempted to detect the control channel.
  • the number of antenna ports of the common reference signal in each of the plurality of subframes may be the same or different.
  • the CFI values in multiple subframes may be the same or different.
  • the PHICH-Config of each of the plurality of subframes may be the same or different.
  • the cyclic prefix of each of the plurality of subframes may be the same or different.
  • the mi factors used to determine the PHICH resources in each of the plurality of subframes may be the same or different.
  • the control channel is a schedule for SIB1 or a system information block containing a TDD configuration.
  • the CFI of the subframe in which the control channel is transmitted is 2, or the control channel is repeatedly transmitted on one or more of the subframes 0, 4, 5, 9.
  • CFI 3 of the subframe in which the control channel is transmitted on one or more of the subframes 0, 4, 5, 9.
  • the CFI of the subframe in which the control channel is transmitted is 2.
  • the control channel is repeatedly transmitted on subframes 0 and/or 5.
  • CFI 3 of the subframe in which the control channel is transmitted on one or more of subframes 0 and/or 5.
  • control channel is repeatedly transmitted on subframes 0 and/or 5, and the control channel may also be repeatedly transmitted on subframes 1 and/or 6.
  • the control channel of the scheduling SIBx is repeatedly transmitted on one or more of the subframes 0, 4, 5, 9.
  • the CFI of the subframe in which the control channel of the SIBx is scheduled is transmitted on one or more of the subframes 0, 4, 5, and 9.
  • the control channel of the scheduling SIBx is repeatedly transmitted on subframes 0 and/or 5.
  • the CFI of the subframe of the control channel of the scheduling SIBx is transmitted on one or more of the subframes 0 and/or 5.
  • the control channel of the scheduling SIBx is repeatedly transmitted on subframes 0 and/or 5
  • the control channel scheduling the SIBx may also be repeatedly transmitted on subframes 1 and/or 6.
  • the CFI of the subframe of the control channel is 2.
  • the manner of determining the number of the control channel element by using the above embodiment does not Guaranteed control channel for transmission on each of a plurality of subframes
  • the location of resource elements mapped on physical resources is the same.
  • the present embodiment will make the resource element positions mapped on the physical resources of the control channel uploaded in each of the plurality of subframes the same in the following manner.
  • the PHICH resource size of each subframe is related to mi, so that the total number of CCEs in each subframe is related to mi of the subframe.
  • each of the plurality of subframes may be set to meet one or more of the following provisions:
  • Rule 1 The number of antenna ports of the common reference signal in each of the plurality of subframes is the same; Specification 2: the number of OFDM symbols used for the control channel in each of the plurality of subframes is the same; The PHICH-Config of each subframe in the subframe is the same;
  • each of the plurality of subframes is not an MBSFN subframe; or each of the plurality of subframes is an MBSFN subframe; or For frame structure type 2, each of the plurality of subframes is an MBSFN subframe, and/or subframe 1, and/or subframe 6;
  • the control channel may be transmitted in each of the plurality of subframes according to one or more of the above provisions.
  • each of the plurality of subframes satisfies at least the foregoing requirements. 1 to regulation 4. Accordingly, on the UE side, reception of the control channel can be performed in each of the plurality of subframes in accordance with one or more of the above provisions.
  • the mi factor is in different uplink and downlink configurations and values in different subframes: Uplink and downlink configuration subframe index i
  • the value of mi may be different. For example, when the uplink and downlink configurations are 0, mi of subframe 0 is equal to 2; when the uplink and downlink configuration is 1, the mi of subframe 0 is equal to 0; when the uplink and downlink configuration is 3, mi of subframe 0 is equal to 1. For the same uplink and downlink configuration, the values of mi in different subframes may also be different. For example, when the uplink and downlink configurations are 0, mi of subframe 0 is equal to 2, and mi of subframe 1 is equal to 1.
  • the control channel can only be repeatedly transmitted on the same mi subframe. For example, when the upper and lower rows are configured as 0, subframe 0 and subframe 5 have the same mi, so the control channel is repeatedly transmitted on subframe 0 and/or subframe 5. Or, when the uplink and downlink configurations are 0, subframe 1 and subframe 6 have the same mi, so the control channel performs repeated transmission on subframe 1 and/or subframe 6. For another example, when the uplink and downlink configurations are 1, subframe 0 and subframe 5 have the same mi, so the control channel performs repeated transmission on subframe 0 and/or subframe 5. Or, when the uplink and downlink configurations are 1, subframe 1, subframe 4, subframe 6, and subframe 9 have the same mi, so the control channel is in subframe 1, subframe 4, subframe 6, and subframe 9. One or more subframes are repeatedly transmitted.
  • control channel is for scheduling of SIB1 or for scheduling of system information blocks including uplink and downlink configurations
  • the CFI of the subframe in which the control channel is transmitted is 2.
  • the control channel is repeatedly transmitted on one or more of the subframes 0, 4, 5, 9.
  • the user equipment does not know the uplink and downlink configuration when receiving the control channel, and therefore cannot determine the mi value of the subframe.
  • the possible values of mi may be tried in a plurality of predetermined subframes to detect the control channel. If the control channel is repeatedly transmitted on one or more subframes whose subframe index is 5, the UE attempts the detection of the control channel by taking the possible mi value on the subframe 5. Further, the CFI of the subframe in which the control channel is transmitted is 3. As another example, since the uplink and downlink configurations are 0 to 6, subframe 1 and subframe 6 have the same mi.
  • the control channel scheduling the SIBy may be specified to be repeated on one or more subframes with subframe indices of 1 and/or 6. Further, the CFI of the subframe in which the control channel is transmitted is 2.
  • SIBx System Information Block Type x
  • the control channel of the scheduling SIBx is repeatedly transmitted on one or more of the subframes 0, 4, 5, 9.
  • the control channel of the scheduling SIB2 is repeatedly transmitted on one or more subframes having the same mi. Because the UE already knows the uplink and downlink configuration when detecting the SIBx, the UE also knows that the mis of those subframes are the same.
  • the control channel of the scheduling SIB2 is repeatedly transmitted on one or more subframes of the subframes 0, 1, 5, 6 having the same mi. Further, the CFI of the subframe in which the control channel of the SIBx is scheduled is transmitted on one or more of the subframes 0, 1, 5, and 6.
  • the present embodiment can similarly determine n Q or ⁇ , , , n L according to any one of the above formulas 7, 8, and 9.
  • the method 9 or the extended manner thereof can be used. Determine n. Or ⁇ , ⁇ , , ⁇ ⁇ -1 , which will be omitted from the scope which is easily understood by those skilled in the art.
  • the present application ensures that the UE uses the first parameter and/or the used parameter in each subframe when the UE receives the control channel in multiple subframes by specifying 1-7 and Equations 7, 8, and 9.
  • the resource locations are the same.
  • control channel may also perform multiple transmissions in each subframe of one or more subframes. , that is, repeated transmission in the frequency domain.
  • control channel repeats transmission multiple times in each subframe, the control channel repeatedly transmitted in each subframe within the subframe is within the subframe
  • the starting control channel element number has a fixed offset. If in one subframe, the control channel is carried out
  • the initial control channel element number c 0 of the control channel of the first repeated transmission in the M repeated transmission control channels can be determined in a similar manner to determining the number of the control channel element in the previous embodiment, and The initial control channel element number CfCo+offset of the control channel of the second repeated transmission in the M repeated transmission control channels, where offset is a preset fixed offset value, similarly, the repeated transmission
  • the starting control channel element number of the control channel of the ith repeated transmission in the control channel i l,2, ,M
  • the number of the plurality of subframes or the number of repetitions for controlling the repeated transmission of the channel is determined. For example, if the control channel performs 4 repeated transmissions in 4 subframes within one radio frame, the subframe indices of the 4 subframes are 0, 1, 5, and 6, respectively. It is specified that the aggregation level used for transmitting the control channel on each of the four subframes is L, that is, the transmission control channel occupies L control channel elements in each of the four subframes, and L may be equal to 4 Or 8.
  • the UE detects the control channel by attempting a possible aggregation level and possible control channel candidates under the aggregation level.
  • the UE needs to determine the number of all control channel elements in each of the 4 subframes of the CCE for each control channel candidate for each aggregation level.
  • the UE attempts to detect the control channel:
  • the control channel is extracted in the subframe 0 according to the aggregation level 4 and the PDCCH candidate 0.
  • the control channel is extracted in the subframe 1 by using the aggregation level 4 and the PDCCH candidate 0
  • the control channel is extracted in the subframe 5 by using the aggregation level 4 and the PDCCH candidate 0
  • the aggregation level 4 and the PDCCH candidate 0 are used in the subframe 6.
  • Extract the control channel is performed according to Equation 7, Equation 8, Equation 9, or its extended calculation method. The following examples are calculated according to Equation 9.
  • ni 4x ⁇ ( y o + 0) mod L CCE / 4j ⁇ + i , and ⁇ is calculated.
  • the UE may extract the control channel on the CCEs of the CCE numbers 28, 29, 30, 31 of each of the 4 subframes, and then perform information combining (such as soft information combining or soft demodulation combining) to detect and control. channel. If the control channel is not detected successfully:
  • the UE continues to attempt to detect the control channel: the control channel is extracted according to the aggregation level 4 and the PDCCH candidate 1 in the subframe 0, the control channel is extracted in the subframe 1 using the aggregation level 4 and the PDCCH candidate 1, and the aggregation is used in the subframe 5.
  • Level 4 and PDCCH candidate 1 extract the control channel, and in subframe 6, the control channel is extracted using aggregation level 4 and PDCCH candidate 1.
  • Pass ni 4x ⁇ (y.+i)m.
  • the UE can be in 4 subframes
  • the CCE number of each subframe is 0, 1, 2, 3, and the control channel is extracted, and information is combined to detect the control channel. If the control channel is still not successfully detected:
  • the UE continues to try to detect the control channel: the control channel is extracted according to the aggregation level 8 and the PDCCH candidate 0 in the subframe 0, the control channel is extracted in the subframe 1 using the aggregation level 8 and the PDCCH candidate 0, and the aggregation is used in the subframe 5.
  • Level 8 and PDCCH candidate 0 extract the control channel, and in subframe 6, the control channel is extracted using aggregation level 8 and PDCCH candidate 0.
  • the UE can have a CCE number of 24, 25, 26, 27 in each of the 4 subframes.
  • the control channel is extracted from the CCE of 28, 29, 30, 31, and information is combined to detect the control channel. If the control channel is still not successfully detected:
  • the UE continues to try to detect the control channel: the control channel is extracted according to the aggregation level 8 and the PDCCH candidate 1 in the subframe 0, the control channel is extracted in the subframe 1 using the aggregation level 8 and the PDCCH candidate 1, and the aggregation is used in the subframe 5.
  • Level 8 and PDCCH candidate 1 extract the control channel, and in subframe 6, the aggregation level 8 and PDCCH candidate 1 are used to extract the control channel. by! !
  • the UE may extract the control channel on the CCEs whose CCE numbers are 0, 1, 2, 3, 4, 5, 6, and 7 in each of the four subframes, and perform a information combining detection control channel.
  • the UE when detecting the control channel, the UE generally does not know the number of repetitions used by the base station to perform repeated transmission of the control channel. At this time, the UE needs to control the channel transmission according to the number of repetitions of the repeated transmission of the control channel according to the number of repetitions.
  • the aggregation level and control channel candidates detect the control channel. For example, the number of repeated transmissions of the control channel configured by the base station to the UE is N and M.
  • UE repeats The number of times N attempts to detect the control channel on each of the corresponding plurality of subframes according to each aggregation level and each control channel candidate that can be supported by the number of repetitions. If the control channel is not successfully detected, the UE attempts to detect the control channel according to the repetition number M in each of the corresponding multiple subframes according to each aggregation level and each control channel candidate that can be supported by the repetition number.
  • the first parameters obtained by the UE in each subframe of the multiple subframes are the same.
  • An application example 2 is given below. According to the application example, the first parameter obtained by the UE in each subframe of the multiple subframes and the resource location used for control channel transmission are the same.
  • the specific implementation of the application example 2 includes the following process.
  • the frame structure type is 2, and the uplink and downlink configurations of TDD are 0.
  • the number of times or the number of repetitions of the plurality of subframes used by the base station to control channel repetition transmission is determined.
  • the control channel performs four repetition transmissions in four subframes within one radio frame, and the subframe indexes of the four subframes are respectively 0.
  • the first two subframes of the four subframes may be located in one radio frame, and the last two subframes of the four subframes are located in the next radio frame.
  • the aggregation level used for transmitting the control channel on each of the four subframes is L, that is, the transmission control channel occupies L control channel elements in each of the four subframes, where L may be equal to 4 or 8.
  • the total number of CCEs in the control region of each of the four subframes is NCC , W CCE , respectively.
  • the UE detects the control channel by attempting a possible aggregation level and possible control channel candidates under the aggregation level.
  • the UE needs to determine the number of all control channel elements in each of the 4 subframes of the CCE for each control channel candidate for each aggregation level.
  • RNTI 16 and determines n or n 0 , n l5 ... , ⁇ ⁇ according to the calculation formula of one or more of the previous embodiments or its extension.
  • W CCE , 0 , N CCE , 5 , N CCE , 0 , W CCE 5 ) 68 .
  • the following example is root
  • the UE attempts to detect the control channel:
  • the control channel is extracted in the subframe 0 according to the aggregation level 4 and the PDCCH candidate 0.
  • the control channel is extracted in the subframe 1 by using the aggregation level 4 and the PDCCH candidate 0
  • the control channel is extracted in the subframe 5 by using the aggregation level 4 and the PDCCH candidate 0
  • the aggregation level 4 and the PDCCH candidate 0 are used in the subframe 6.
  • the UE may extract control on the CCEs with CCE numbers 12, 13, 14, 3115 in each of the 4 subframes. Channel, information is combined to detect the control channel. If the control channel is not detected successfully:
  • the UE continues to attempt to detect the control channel: the control channel is extracted according to the aggregation level 4 and the PDCCH candidate 1 in the subframe 0, the control channel is extracted in the subframe 1 using the aggregation level 4 and the PDCCH candidate 1, and the aggregation is used in the subframe 5.
  • Level 4 and PDCCH candidate 1 extract the control channel, and in subframe 6, the control channel is extracted using aggregation level 4 and PDCCH candidate 1.
  • the UE may extract the control channel on the CCEs of the CCE numbers 16, 17, 18, 19 of each of the four subframes, and perform information combining to detect the control channel. If the control channel is not detected successfully:
  • the UE continues to try to detect the control channel: the control channel is extracted according to the aggregation level 8 and the PDCCH candidate 0 in the subframe 0, the control channel is extracted in the subframe 1 using the aggregation level 8 and the PDCCH candidate 0, and the aggregation is used in the subframe 5.
  • Level 8 and PDCCH candidate 0 extract the control channel, and in subframe 6, the control channel is extracted using aggregation level 8 and PDCCH candidate 0.
  • the UE may extract the control channel on the CCEs of the CCE numbers 56, 57, 58, 59, 60, 61, 62, 63 of each of the four subframes, and perform information combining to detect the control channel. If the control channel is not detected successfully:
  • the UE continues to try to detect the control channel: the control channel is extracted according to the aggregation level 8 and the PDCCH candidate 1 in the subframe 0, the control channel is extracted in the subframe 1 using the aggregation level 8 and the PDCCH candidate 1, and the aggregation is used in the subframe 5.
  • Level 8 and PDCCH candidate 1 extract the control channel, and in subframe 6, the aggregation level 8 and PDCCH candidate 1 are used to extract the control channel.
  • the UE when detecting the control channel, the UE generally does not know the number of repetitions used by the base station to perform repeated transmission of the control channel. At this time, the UE needs to control the channel transmission according to the number of repetitions of the repeated transmission of the control channel according to the number of repetitions.
  • the aggregation level and control channel candidates detect the control channel. For example, the number of repeated transmissions of the control channel configured by the base station to the UE is N and M.
  • the UE attempts to detect the control channel according to the repetition number N for each aggregation level and each control channel candidate that can be supported by the repetition number in the corresponding plurality of subframes. If the control channel is not successfully detected, the UE repeats the number of times M At each of the corresponding multiple subframes, each control level and each control channel candidate that can be supported by the number of repetitions is attempted to detect the control channel.
  • FIG. 5 is a block diagram of an embodiment of a user equipment of the present application.
  • the user equipment of this embodiment includes but is not limited to the determining module 51, the receiving module 52, and the processing module 53.
  • the determining module 51 is configured to determine a plurality of subframes of the control channel enhanced transmission.
  • the receiving module 52 is configured to receive, in a plurality of subframes determined by the determining module 51, a control channel for enhancing transmission, where the enhanced transmission is at least one of a repetitive transmission, a spread spectrum transmission, a transmission time interval bundling transmission, and a power boost transmission. .
  • the receiving module 52 receives the control channel in each of the multiple subframes, and the first parameters used to receive the control channel in each of the multiple subframes are the same, where the The first parameter is the number of the starting control channel element or the number of the control channel element.
  • the first parameter used by the receiving module 52 to receive the control channel in each of the multiple subframes is predetermined; or, the receiving module 52 receives the control channel in each of the multiple subframes.
  • the first parameter is determined according to a predetermined functional relationship.
  • the processing module 53 is configured to determine, according to a predetermined index, a first parameter used by each of the plurality of subframes to receive the control channel, or determine, according to the two preset indexes, the receiving of each of the multiple subframes. And determining, by the first parameter used by the control channel, a first parameter used for receiving the control channel in each of the plurality of subframes according to a predetermined index and a predetermined total number of CCEs.
  • one of the two preset indexes is an index of a first predetermined one subframe, where the first predetermined one subframe is: a p-th subframe in the multiple subframes, Wherein p is a predetermined integer; or, a subframe index of a subframe having a smallest total number of CCEs among the plurality of subframes; or, a qth subframe of the subframes having the smallest total number of CCEs among the plurality of subframes, Where q is a predetermined integer.
  • another index of the two predetermined indexes is an index of a second predetermined one subframe, wherein the second predetermined one subframe is: the rth subframe of the plurality of subframes, where r is a predetermined integer; or a subframe index of a subframe having a smallest total number of CCEs among the plurality of subframes; or, a w-th subframe of the subframe having the smallest total number of CCEs among the plurality of subframes, where w is A predetermined integer.
  • an index specified in advance in this embodiment is an index of a predetermined one subframe, where a predetermined one subframe is: a p-th subframe in multiple subframes, where p is a predetermined whole a number; or a subframe having a smallest total number of CCEs among the plurality of subframes; or a qth subframe of the subframes having the smallest total number of CCEs among the plurality of subframes, where q is a predetermined integer.
  • the predetermined total number of CCEs is the total number of CCEs in the subframe having the smallest or largest total CCE number among the plurality of subframes.
  • the receiving module 52 receives the enhanced transmission control channel in multiple subframes: the first parameter used by the receiving control channel in each of the multiple subframes satisfies a certain range, so that the scheduling is exclusive.
  • the control channel element occupied by the control channel of the data has no resource overlap with the control channel element occupied by the control channel for scheduling the common data; or, the first parameter used for receiving the control channel in each of the plurality of subframes satisfies a certain
  • the range is such that the control channel elements occupied by the control channel scheduling the proprietary data do not have resource overlap with the control channel elements in the common search space.
  • the receiving module 52 receives the enhanced transmission in a plurality of subframes: in each of the plurality of subframes: the common reference signal has the same number of antenna ports; and/or is used for orthogonality of the control channel
  • the number of frequency division multiplexed OFDM symbols is the same; and/or, the physical hybrid automatic repeat request indication channel is configured with the same PHICH-Config; and/or, the mi factor for determining the PHICH resource in frame structure type 2 is the same; / or, the cyclic prefix used is the same; and / or PHICH-duration is normal.
  • the UE performs reception of the control channel in a plurality of subframes, the used resources and/or resource locations of the control channel in each subframe are the same.
  • the receiving module 52 receives the enhanced transmission control channel in multiple subframes: each of the multiple subframes is not a multimedia multicast single frequency network MBSFN subframe; or, each of the multiple subframes
  • the frames are all MBSFN subframes; or for frame structure type 2, each of the plurality of subframes is an MBSFN subframe, or a subframe 1, or a subframe 6.
  • the receiving module 52 receives the enhanced transmission in the control channel in multiple subframes: the subframe index in the plurality of subframes belongs to the ⁇ 0, 4, 5, 9 ⁇ subframe, and the CFI OFDM symbols are used in the control channel. And two subframes in the subframes that do not belong to ⁇ 0, 4, 5, 9 ⁇ have two OFDM symbols for the control channel; or, for frame structure type 2, subframes in the multiple subframes A subframe in which the index belongs to ⁇ 0, 5 ⁇ has CFI OFDM symbols for the control channel, and a subframe in which the subframe index in the plurality of subframes does not belong to ⁇ 0, 5 ⁇ has two OFDM symbols for the control channel. . Among them, the value of CFI is 3 or 4.
  • the receiving module 52 when the receiving module 52 receives the enhanced transmission control channel on the carrier whose bandwidth belongs to the first bandwidth range, there are u OFDM symbols in each subframe of the multiple subframes for the control channel or the data channel;
  • a control channel for enhanced transmission is received on a carrier of the second bandwidth range, there are V OFDM symbols in each subframe of the plurality of subframes for the control channel or the data channel.
  • the first bandwidth range and the second bandwidth range are predetermined bandwidth ranges, and the first bandwidth range and the second bandwidth range do not intersect each other.
  • U and V are natural numbers, and U is not equal to V.
  • the number of the plurality of subframes or the number of repetitions for controlling the repeated transmission of the channel is determined. For example, if the control channel performs 4 repeated transmissions in 4 subframes within one radio frame, the subframe indices of the 4 subframes are 0, 1, 5, and 6, respectively. It is specified that the aggregation level used for transmitting the control channel on each of the four subframes is L, that is, the transmission control channel occupies L control channel elements in each of the four subframes, and L may be equal to 4 Or 8.
  • the UE detects the control channel by attempting a possible aggregation level and possible control channel candidates under the aggregation level.
  • the UE needs to determine the number of all control channel elements in each of the 4 subframes of the CCE for each control channel candidate for each aggregation level.
  • RNTI 16 and determines n. or n., n, ⁇ ⁇ -1 according to the method in one or more of the previous embodiments.
  • the UE attempts to detect the control channel:
  • the control channel is extracted in the subframe 0 according to the aggregation level 4 and the PDCCH candidate 0.
  • the control channel is extracted in the subframe 1 by using the aggregation level 4 and the PDCCH candidate 0
  • the control channel is extracted in the subframe 5 by using the aggregation level 4 and the PDCCH candidate 0
  • the aggregation level 4 and the PDCCH candidate 0 are used in the subframe 6.
  • the UE may extract the control channel on the CCEs of CCE numbers 28, 29, 30, 31 of each of the four subframes, and then perform information combining ( For example, soft information combining or soft demodulation combining to detect the control channel. If the control channel is not detected successfully:
  • the UE continues to attempt to detect the control channel: the control channel is extracted according to the aggregation level 4 and the PDCCH candidate 1 in the subframe 0, the control channel is extracted in the subframe 1 using the aggregation level 4 and the PDCCH candidate 1, and the aggregation is used in the subframe 5.
  • Level 4 and PDCCH candidate 1 extract the control channel, and in subframe 6, the control channel is extracted using aggregation level 4 and PDCCH candidate 1.
  • the UE may extract the control channel on the CCEs with CCE numbers 0, 1, 2, 3 in each of the 4 subframes, and perform information combining to detect the control channel. If the control channel is still not detected successfully:
  • the UE continues to try to detect the control channel: the control channel is extracted according to the aggregation level 8 and the PDCCH candidate 0 in the subframe 0, the control channel is extracted in the subframe 1 using the aggregation level 8 and the PDCCH candidate 0, and the aggregation is used in the subframe 5.
  • Level 8 and PDCCH candidate 0 extract the control channel, and in subframe 6, the control channel is extracted using aggregation level 8 and PDCCH candidate 0. 9 is calculated according to the formula calculation, such as by calculating ⁇ ⁇ ⁇ Videos or ⁇ ...... A is: n.
  • the UE may extract the control channel on the CCEs of CCE numbers 24, 25, 26, 27, 28, 29, 30, 31 of each of the 4 subframes, and perform information combining to detect the control channel. If the control channel is still not detected successfully:
  • the UE continues to try to detect the control channel: the control channel is extracted according to the aggregation level 8 and the PDCCH candidate 1 in the subframe 0, the control channel is extracted in the subframe 1 using the aggregation level 8 and the PDCCH candidate 1, and the aggregation is used in the subframe 5.
  • Level 8 and PDCCH candidate 1 extract the control channel, and in subframe 6, the aggregation level 8 and PDCCH candidate 1 are used to extract the control channel.
  • the UE may extract the control channel on the CCEs whose CCE numbers are 0, 1, 2, 3, 4, 5, 6, and 7 in each of the four subframes, and perform a information combining detection control channel.
  • the UE when detecting the control channel, the UE generally does not know the number of repetitions used by the base station to perform repeated transmission of the control channel. At this time, the UE needs to control the channel transmission according to the number of repetitions of the repeated transmission of the control channel according to the number of repetitions.
  • the aggregation level and control channel candidates detect the control channel. For example, the number of repeated transmissions of the control channel configured by the base station to the UE is N and M.
  • the UE attempts to detect the control channel according to the number of repetitions N in each of the corresponding multiple subframes according to each aggregation level and each control channel candidate that can be supported by the repetition number. If the control channel is not successfully detected, the UE attempts to detect the control channel according to the repetition number M in each corresponding subframe according to each aggregation level and each control channel candidate that can be supported by the repetition number.
  • the first parameter obtained by the UE in each subframe of the multiple subframes is the same.
  • An application example 4 is given below, according to the application example, the first parameter obtained by the UE in each subframe of multiple subframes
  • the resource locations used for control channel transmission are the same.
  • the specific implementation of the fourth application example includes the following process.
  • the frame structure type is 2, and the uplink and downlink configurations of TDD are 0.
  • the number of times or the number of repetitions of the plurality of subframes used by the base station to control channel repetition transmission is determined.
  • the control channel performs four repetition transmissions in four subframes within one radio frame, and the subframe indexes of the four subframes are respectively 0.
  • the first two subframes of the four subframes may be located in one radio frame, and the last two subframes of the four subframes are located in the next radio frame.
  • the aggregation level used for transmitting the control channel on each of the four subframes is L, that is, the transmission control channel occupies L control channel elements in each of the four subframes, where L may be equal to 4 or 8.
  • the total number of CCEs in the control region of each of the four subframes is NCC , W CCE , respectively.
  • the UE detects the control channel by attempting a possible aggregation level and possible control channel candidates under the aggregation level.
  • the UE needs to determine the number of all control channel elements in each of the 4 subframes of the CCE for each control channel candidate for each aggregation level.
  • RNTI 16 and determines n or n 0 , n l5 ... , ⁇ ⁇ according to the calculation formula of one or more of the previous embodiments or its extension.
  • WccE'o , W CCE 5 , N CCE , 0 , N CCE , 5 ) 68 .
  • the UE attempts to detect the control channel:
  • the control channel is extracted in the subframe 0 according to the aggregation level 4 and the PDCCH candidate 0.
  • the control channel is extracted in the subframe 1 by using the aggregation level 4 and the PDCCH candidate 0
  • the control channel is extracted in the subframe 5 by using the aggregation level 4 and the PDCCH candidate 0
  • the aggregation level 4 and the PDCCH candidate 0 are used in the subframe 6.
  • Extract the control channel is performed according to the calculation method of Equation 9, such as by ⁇ (y.+o) m.
  • the UE may extract the control channel on the CCEs of the CCE numbers 12, 13, 14, 3115 of each of the 4 subframes, and perform information combining to detect the control channel. If the control channel is not detected successfully:
  • the UE continues to attempt to detect the control channel: the control channel is extracted according to the aggregation level 4 and the PDCCH candidate 1 in the subframe 0, the control channel is extracted in the subframe 1 using the aggregation level 4 and the PDCCH candidate 1, and the aggregation is used in the subframe 5.
  • Level 4 and PDCCH candidate 1 extract the control channel, and in subframe 6, the control channel is extracted using aggregation level 4 and PDCCH candidate 1. And according to the calculation method of Equation 9, the calculation is as follows. 1 9 .
  • the UE may extract the control channel on the CCEs with the CCE numbers of 16, 17, 18, 19 in each of the four subframes, and perform information combining to detect the control channel. If the control channel is not detected successfully:
  • the UE continues to try to detect the control channel: the control channel is extracted according to the aggregation level 8 and the PDCCH candidate 0 in the subframe 0, the control channel is extracted in the subframe 1 using the aggregation level 8 and the PDCCH candidate 0, and the aggregation is used in the subframe 5.
  • Level 8 and PDCCH candidate 0 extract the control channel, and in subframe 6, the control channel is extracted using aggregation level 8 and PDCCH candidate 0.
  • the UE may extract the control channel on the CCEs of the CCE numbers 56, 57, 58, 59, 60, 61, 62, 63 of each of the four subframes, and perform information combining to detect the control channel. If the control channel is not detected successfully:
  • the UE continues to try to detect the control channel: the control channel is extracted according to the aggregation level 8 and the PDCCH candidate 1 in the subframe 0, the control channel is extracted in the subframe 1 using the aggregation level 8 and the PDCCH candidate 1, and the aggregation is used in the subframe 5.
  • Level 8 and PDCCH candidate 1 extract the control channel, and in subframe 6, the aggregation level 8 and PDCCH candidate 1 are used to extract the control channel.
  • the UE when detecting the control channel, the UE generally does not know the number of repetitions used by the base station to perform repeated transmission of the control channel. At this time, the UE needs to control the channel transmission according to the number of repetitions of the repeated transmission of the control channel according to the number of repetitions.
  • the aggregation level and control channel candidates detect the control channel. For example, the number of repeated transmissions of the control channel configured by the base station to the UE is N and M.
  • the UE attempts to detect the control channel according to the number of repetitions N in each of the corresponding multiple subframes according to each aggregation level and each control channel candidate that can be supported by the repetition number. If the control channel is not successfully detected, the UE attempts to detect the control channel according to the repetition number M in each corresponding subframe according to each aggregation level and each control channel candidate that can be supported by the repetition number.
  • FIG. 6 is a block diagram of another embodiment of a user equipment of the present application.
  • the user equipment of the present embodiment includes but is not limited to a processor 61, a receiver 62, and a transmitter 63, wherein the processor 61, the receiver 62, and the transmitter 63 are between Connected via a bus.
  • the processor 61 is configured to determine a plurality of subframes of the control channel enhanced transmission.
  • the receiver 62 is configured to receive, in a plurality of subframes determined by the processor 61, an enhanced transmission control channel, where the enhanced transmission is at least one of a repetitive transmission, a spread spectrum transmission, a transmission time interval bundling transmission, and a power boost transmission. .
  • the receiver 62 receives the control channel in each of the plurality of subframes, and the first parameters used to receive the control channel in each of the plurality of subframes are the same, wherein the first parameter is the same.
  • the first parameter is the number of the starting control channel element or the number of the control channel element.
  • the first parameter used by the receiver 62 to receive the control channel in each of the plurality of subframes is predetermined; or, the receiver 62 receives the control channel for each of the plurality of subframes.
  • the first parameter is determined according to a predetermined functional relationship.
  • the processor 61 is further configured to determine, according to a predetermined index, a first parameter used by each of the plurality of subframes to receive the control channel, or determine, according to the two preset indexes, each subframe of the multiple subframes. And receiving, by the first parameter used by the control channel, the first parameter used for receiving the control channel in each of the plurality of subframes according to a predetermined index and a predetermined total number of CCEs.
  • one of the two preset indexes is an index of a first predetermined one subframe, where the first predetermined one subframe is: a p-th subframe in the multiple subframes, Wherein p is a predetermined integer; or, a subframe index of a subframe having a smallest total number of CCEs among the plurality of subframes; or, a qth subframe of the subframes having the smallest total number of CCEs among the plurality of subframes, Where q is a predetermined integer.
  • another index of the two predetermined indexes is an index of a second predetermined one subframe, wherein the second predetermined one subframe is: the rth subframe of the plurality of subframes, where r is a predetermined integer; or a subframe index of a subframe having a smallest total number of CCEs among the plurality of subframes; or, a w-th subframe of the subframe having the smallest total number of CCEs among the plurality of subframes, where w is A predetermined integer.
  • an index specified in advance in this embodiment is an index of a predetermined one subframe, where a predetermined one subframe is: a p-th subframe in the plurality of subframes, where p is a predetermined integer; or a subframe having a smallest total number of CCEs among the plurality of subframes; or a qth subframe of the subframes having the smallest total number of CCEs among the plurality of subframes, where q is a predetermined integer.
  • the predetermined total CCE The number is the total number of CCEs in a subframe having the smallest or largest total number of CCEs among the plurality of subframes.
  • the receiver 62 receives the enhanced transmission control channel in multiple subframes: the first parameter used by the receiving control channel in each of the multiple subframes satisfies a certain range, so that the scheduling is exclusive.
  • the control channel element occupied by the control channel of the data has no resource overlap with the control channel element occupied by the control channel for scheduling the common data; or, the first parameter used for receiving the control channel in each of the plurality of subframes satisfies a certain
  • the range is such that the control channel elements occupied by the control channel scheduling the proprietary data do not have resource overlap with the control channel elements in the common search space.
  • the receiver 62 receives the enhanced transmission control channel in the plurality of subframes: within each of the plurality of subframes: the common reference signal has the same number of antenna ports; and/or is used for orthogonality of the control channel
  • the number of frequency division multiplexed OFDM symbols is the same; and/or, the physical hybrid automatic repeat request indication channel is configured with the same PHICH-Config; and/or, the mi factor for determining the PHICH resource in frame structure type 2 is the same; / or, the cyclic prefix used is the same; and / or PHICH-duration is normal.
  • the UE performs reception of the control channel in a plurality of subframes, the used resources and/or resource locations of the control channel in each subframe are the same.
  • the receiver 62 receives the enhanced transmission control channel in multiple subframes: each of the multiple subframes is not a multimedia multicast single frequency network MBSFN subframe; or each of the multiple subframes
  • the frames are all MBSFN subframes; or for frame structure type 2, each of the plurality of subframes is an MBSFN subframe, or a subframe 1, or a subframe 6.
  • the receiver 62 receives the enhanced transmission in the control channel in the plurality of subframes: the subframe index in the plurality of subframes belongs to the ⁇ 0, 4, 5, 9 ⁇ subframe, and the CFI OFDM symbols are used in the control channel. And two subframes in the subframes that do not belong to ⁇ 0, 4, 5, 9 ⁇ have two OFDM symbols for the control channel; or, for frame structure type 2, subframes in the multiple subframes A subframe in which the index belongs to ⁇ 0, 5 ⁇ has CFI OFDM symbols for the control channel, and a subframe in which the subframe index in the plurality of subframes does not belong to ⁇ 0, 5 ⁇ has two OFDM symbols for the control channel. . Among them, the value of CFI is 3 or 4.
  • the receiver 62 when the receiver 62 receives the enhanced transmission control channel on the carrier whose bandwidth belongs to the first bandwidth range, there are u OFDM symbols in each subframe of the multiple subframes for the control channel or the data channel;
  • a control channel for enhanced transmission is received on a carrier of the second bandwidth range, there are V OFDM symbols in each subframe of the plurality of subframes for the control channel or the data channel.
  • the first bandwidth range and the second bandwidth range are predetermined bandwidth ranges, and the first bandwidth range and the second bandwidth range do not intersect each other, u and V are natural numbers, and u is not equal to V.
  • Application Example 5 it should be noted that, on the base station side, the number of multiple subframes or the number of repetitions for controlling channel repetition transmission is determined.
  • the subframe indices of the 4 subframes are 0, 1, 5, and 6, respectively.
  • the aggregation level used for transmitting the control channel on each of the four subframes is L, that is, the transmission control channel occupies L control channel elements in each of the four subframes, and L may be equal to 4 Or 8.
  • the UE detects the control channel by attempting a possible aggregation level and possible control channel candidates under the aggregation level.
  • the UE needs to determine the number of all control channel elements in each of the 4 subframes of the CCE for each control channel candidate for each aggregation level.
  • ⁇ CCE ⁇ ( ⁇ CCE '° , NCE , ⁇ , ⁇ CCE,5 , ⁇ CCE'6) 2 35
  • the UE attempts to detect the control channel:
  • the control channel is extracted in the subframe 0 according to the aggregation level 4 and the PDCCH candidate 0.
  • the control channel is extracted in the subframe 1 by using the aggregation level 4 and the PDCCH candidate 0
  • the control channel is extracted in the subframe 5 by using the aggregation level 4 and the PDCCH candidate 0
  • the aggregation level 4 and the PDCCH candidate 0 are used in the subframe 6.
  • the UE may extract the control channel on the CCEs of the CCE numbers 28, 29, 30, 31 of each of the four subframes, and then Perform information combining (such as soft information combining or soft demodulation combining) to detect the control channel. If the control channel is not detected successfully:
  • the UE continues to attempt to detect the control channel: the control channel is extracted according to the aggregation level 4 and the PDCCH candidate 1 in the subframe 0, the control channel is extracted in the subframe 1 using the aggregation level 4 and the PDCCH candidate 1, and the aggregation is used in the subframe 5.
  • Level 4 and PDCCH candidate 1 extract the control channel, and in subframe 6, the control channel is extracted using aggregation level 4 and PDCCH candidate 1.
  • the calculation is performed according to the calculation method of Equation 9, such as by ⁇ (y.+i)m.
  • the UE may extract control on the CCEs with CCE numbers 0, 1, 2, 3 in each of the 4 subframes. Channels are combined to detect the control channel. If the control channel is still not detected successfully:
  • the UE continues to try to detect the control channel: the control channel is extracted according to the aggregation level 8 and the PDCCH candidate 0 in the subframe 0, the control channel is extracted in the subframe 1 using the aggregation level 8 and the PDCCH candidate 0, and the aggregation is used in the subframe 5.
  • Level 8 and PDCCH candidate 0 extract the control channel, and in subframe 6, the control channel is extracted using aggregation level 8 and PDCCH candidate 0.
  • the UE may extract the control channel on the CCEs of CCE numbers 24, 25, 26, 27, 28, 29, 30, 31 of each of the 4 subframes, and perform information combining to detect the control channel. If the control channel is still not detected successfully:
  • the UE continues to try to detect the control channel: the control channel is extracted according to the aggregation level 8 and the PDCCH candidate 1 in the subframe 0, the control channel is extracted in the subframe 1 using the aggregation level 8 and the PDCCH candidate 1, and the aggregation is used in the subframe 5.
  • Level 8 and PDCCH candidate 1 extract the control channel, and in subframe 6, the aggregation level 8 and PDCCH candidate 1 are used to extract the control channel. Calculate according to the calculation method of Equation 9, such as by ⁇
  • the UE may extract the control channel on the CCEs whose CCE numbers are 0, 1, 2, 3, 4, 5, 6, and 7 in each of the four subframes, and perform a information combining detection control channel.
  • the UE when detecting the control channel, the UE generally does not know the number of repetitions used by the base station to perform repeated transmission of the control channel. At this time, the UE needs to control the channel transmission according to the number of repetitions of the repeated transmission of the control channel according to the number of repetitions.
  • the aggregation level and control channel candidates detect the control channel. For example, the number of repeated transmissions of the control channel configured by the base station to the UE is N and M.
  • the UE attempts to detect the control channel according to the number of repetitions N in each of the corresponding multiple subframes according to each aggregation level and each control channel candidate that can be supported by the repetition number. If the control channel is not successfully detected, the UE attempts to detect the control channel according to the repetition number M in each corresponding subframe according to each aggregation level and each control channel candidate that can be supported by the repetition number.
  • the frame structure type is 2, and the uplink and downlink configurations of TDD are 0.
  • the first two subframes of the four subframes may be located in one radio frame, and the last two subframes of the four subframes are located in the next radio frame.
  • the aggregation level used for transmitting the control channel on each of the four subframes is L, that is, the transmission control channel occupies L control channel elements in each of the four subframes, where L may be equal to 4 or 8.
  • the UE detects the control channel by attempting a possible aggregation level and possible control channel candidates under the aggregation level.
  • the UE needs to determine the number of all control channel elements in each of the 4 subframes of the CCE for each control channel candidate for each aggregation level.
  • RNTI 16 and determine n according to the calculation formula of one or more of the previous embodiments or its extension. or n 0 , n l5 ... , ⁇ ⁇ . Further, this embodiment specifies k Is the subframe number of the first subframe of the 4 subframes,
  • the UE attempts to detect the control channel:
  • the control channel is extracted in the subframe 0 according to the aggregation level 4 and the PDCCH candidate 0.
  • the control channel is extracted in the subframe 1 by using the aggregation level 4 and the PDCCH candidate 0
  • the control channel is extracted in the subframe 5 by using the aggregation level 4 and the PDCCH candidate 0
  • the aggregation level 4 and the PDCCH candidate 0 are used in the subframe 6.
  • the UE may extract the control channel on the CCEs of the CCE numbers 12, 13, 14, 3115 of each of the 4 subframes, and perform information combining to detect the control channel. If the control channel is not detected successfully:
  • the UE continues to attempt to detect the control channel: the control channel is extracted according to the aggregation level 4 and the PDCCH candidate 1 in the subframe 0, the control channel is extracted in the subframe 1 using the aggregation level 4 and the PDCCH candidate 1, and the aggregation is used in the subframe 5.
  • Level 4 and PDCCH candidate 1 extract the control channel, and in subframe 6, the control channel is extracted using aggregation level 4 and PDCCH candidate 1.
  • d Lw ⁇ E / 4" Calculates ⁇ . Or ⁇ . , ⁇ , ...
  • the UE may extract the control channel on the CCEs of the CCE numbers 16, 17, 18, 19 of each of the four subframes, and perform information combining to detect the control channel. If the control channel is not detected successfully:
  • the UE continues to try to detect the control channel: according to aggregation level 8 and PDCCH candidate 0 in subframe 0
  • the control channel is extracted, the control channel is extracted by using the aggregation level 8 and the PDCCH candidate 0 in the subframe 1, and the control channel is extracted by using the aggregation level 8 and the PDCCH candidate 0 in the subframe 5, and the aggregation level 8 is used in the subframe 6.
  • the control channel is extracted with PDCCH candidate 0. According to the calculation method of Equation 9, the calculation is performed, for example, by ⁇ A is: n .
  • the UE may extract the control channel on the CCEs of the CCE numbers 56, 57, 58, 59, 60, 61, 62, 63 of each of the four subframes, and perform information combining to detect the control channel. If the control channel is not detected successfully:
  • the UE continues to try to detect the control channel: the control channel is extracted according to the aggregation level 8 and the PDCCH candidate 1 in the subframe 0, the control channel is extracted in the subframe 1 using the aggregation level 8 and the PDCCH candidate 1, and the aggregation is used in the subframe 5.
  • Level 8 and PDCCH candidate 1 extract the control channel, and in subframe 6, the aggregation level 8 and PDCCH candidate 1 are used to extract the control channel.
  • the UE when detecting the control channel, the UE generally does not know the number of repetitions used by the base station to perform repeated transmission of the control channel. At this time, the UE needs to control the channel transmission according to the number of repetitions of the repeated transmission of the control channel according to the number of repetitions.
  • the aggregation level and control channel candidates detect the control channel. For example, the number of repeated transmissions of the control channel configured by the base station to the UE is N and M.
  • the UE attempts to detect the control channel according to the number of repetitions N in each of the corresponding multiple subframes according to each aggregation level and each control channel candidate that can be supported by the repetition number. If the control channel is not successfully detected, the UE attempts to detect the control channel according to the repetition number M in each corresponding subframe according to each aggregation level and each control channel candidate that can be supported by the repetition number.
  • the present application determines a plurality of subframes in advance, and performs repeated transmission, spread spectrum transmission, and transmission time interval bundling transmission on the control channel in the multiple subframes.
  • the enhanced transmission mode such as power boost transmission, which facilitates mapping and detection on the determined subframes, and reduces the complexity of the system scheduling and the complexity of the detection.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device implementations described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • the units described as separate components may or may not be physically separate, and the components displayed as the units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the instructions include a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Provided are a base station, user equipment (UE), and control channel transmission and receiving method, the transmission method comprising: determining a plurality of subframes for conducting enhanced transmission on a control channel; and conducting enhanced transmission on the control channel in the plurality of subframes, the enhanced transmission being at least one of repetitive transmission, spread-spectrum transmission, transmission time interval-bundling (TTI-bundling) transmission and power increasing transmission. The base station and the UE can conduct control information mapping and detection on the determined plurality of subframes using the method of the present invention, thus reducing scheduling complexity and detection complexity.

Description

基站、 用户设备及控制信道的传输、 接收方法  Base station, user equipment, and control channel transmission and reception method
【技术领域】 [Technical Field]
本申请涉及通信技术领域, 具体涉及一种控制信道的传输、 接收方法, 还 涉及一种基站和用户设备。  The present invention relates to the field of communications technologies, and in particular, to a method for transmitting and receiving a control channel, and to a base station and a user equipment.
【背景技术】 【Background technique】
MTC ( machine type communication, 机器类型通信) 的其中一个重要应用 是智能仪表, 而智能仪表一般安装在住房的地下室中, 或是被金属外壳所隔离。 在这种情况下, MTC UE ( User Equipment )会比普通的 UE经历更加严重的路 径损耗,比如路径损耗需要额外增加 15dB或 20dB。因此,运营商希望在给 MTC 用户设备提供服务时, 其覆盖有额外的增强。  One of the important applications of MTC (machine type communication) is smart meters, which are typically installed in the basement of a home or are isolated by a metal enclosure. In this case, the MTC UE (User Equipment) will experience more serious path loss than the normal UE. For example, the path loss needs to be increased by 15dB or 20dB. Therefore, operators want to have additional enhancements when providing services to MTC user devices.
现有技术中, 覆盖增强的方法通常是增加信息的资源, 比如功率、 时间、 频率、 码字等开销, 从而可靠地进行信息传输。 具体而言, 譬如可以将信息进 行多次的重复发送、 通过 TTI-bundling ( Transmission Time Interval- bundling, 传 输时间间隔捆绑)、 通过增加信息的重传次数、 釆用鲁棒的扩频编码、 釆用鲁棒 的编码调制方式 (譬如釆用低阶调制和低编码率), 和 /或釆用功率控制等方式来 提高信息传输的可靠性。 其中, 信息可以是控制信息、 数据信息、 参考信号或 系统信息等。 控制信息的可靠传输是实现正常通信的前提。  In the prior art, the method of coverage enhancement is generally to increase information resources, such as power, time, frequency, codeword and the like, so as to reliably perform information transmission. Specifically, for example, the information may be repeatedly transmitted multiple times, TTI-bundling (Transmission Time Interval-bundling), by increasing the number of retransmissions of information, using robust spreading coding, 釆Robust coding modulation (such as low-order modulation and low coding rate), and / or power control to improve the reliability of information transmission. The information may be control information, data information, reference signals or system information. Reliable transmission of control information is a prerequisite for normal communication.
在 LTE ( Long Term Evolution, 长期演进 )或 LTE演进的系统中, 用于下行 的控制信息叫做 DCI ( Downlink Control Information, 下行控制信息 ) , DCI通过 下行控制信道来承载。 如, 下行控制信道可以是 PDCCH ( Physical Downlink Control Channel, 物理下行控制信道)或 ePDCCH ( enhanced-PDCCH, 增强的 物理下行控制信道), PDCCH或 ePDCCH可以用于公共消息, 上行专有消息, 下行专有信息的调度等。 考虑到控制信道的覆盖增强, 现有技术中通常釆用重 复传输 DCI或重复传输下行控制信道来提高控制信道传输的可靠性。  In the LTE (Long Term Evolution) or LTE-evolved system, the downlink control information is called DCI (downlink control information), and the DCI is carried by the downlink control channel. For example, the downlink control channel may be a PDCCH (Physical Downlink Control Channel) or an enhanced PDCCH (enhanced PDCCH), and the PDCCH or the ePDCCH may be used for a public message, an uplink dedicated message, and a downlink dedicated channel. There are scheduling of information, etc. In view of the coverage enhancement of the control channel, the repeated transmission of the DCI or the repeated transmission of the downlink control channel is generally used in the prior art to improve the reliability of the control channel transmission.
PDCCH或 ePDCCH在一个或者多个 CCE ( Control Channel Element, 控制 信道元素)或 eCCE ( enhanced-CCE, 增强的控制信道元素)上传输。 通常用聚 合级别 aggregation level来表示 PDCCH传输所用的 CCE个数或 ePDCCH传输 所用的 eCCE的个数。 现有系统中, 一个 PDCCH或 ePDCCH只能在一个子帧内进行映射, 基站 会根据 UE的信道状况确定 PDCCH或 ePDCCH釆用的聚合级别, 并在该聚合 级别对应的搜索空间内的多个 PDCCH 候选中确定一个 PDCCH 候选进行 PDCCH或 ePDCCH的映射。 The PDCCH or ePDCCH is transmitted on one or more CCE (Control Channel Element) or eCCE (enhanced-CCE, enhanced control channel element). The aggregation level aggregation level is usually used to indicate the number of CCEs used for PDCCH transmission or the number of eCCEs used for ePDCCH transmission. In the existing system, one PDCCH or ePDCCH can be mapped in only one subframe, and the base station determines the aggregation level of the PDCCH or ePDCCH according to the channel condition of the UE, and multiple PDCCHs in the search space corresponding to the aggregation level. Among the candidates, one PDCCH candidate is determined to perform mapping of the PDCCH or the ePDCCH.
当控制信道传输需要增强时, 可能需要对控制信道进行增强传输, 而现有 技术并没有解决如何对控制信道进行增强传输。 如, 控制信道在多个子帧中增 强传输时, 如何确定在多个子帧的每一个子帧内传输控制信道所用的资源。  When the control channel transmission needs to be enhanced, it may be necessary to perform enhanced transmission on the control channel, and the prior art does not solve how to enhance the transmission of the control channel. For example, when the control channel enhances transmission in multiple subframes, how to determine the resources used to transmit the control channel in each of the plurality of subframes.
【发明内容】 [Summary of the Invention]
本申请主要解决如何对控制信道进行增强传输,从而降低调度复杂度和 UE 盲检测复杂度的问题。  The present application mainly solves the problem of how to perform enhanced transmission on the control channel, thereby reducing scheduling complexity and UE blind detection complexity.
有鉴于此, 本申请实施方式提供一种基站、 用户设备及控制信道的传输、 接收方法。  In view of this, the embodiments of the present application provide a method for transmitting and receiving a base station, a user equipment, and a control channel.
本申请第一方面提供一种控制信道的传输方法, 所述传输方法包括: 确定 对控制信道进行增强传输的多个子帧; 在所述多个子帧中对控制信道进行增强 传输, 其中, 所述增强传输是重复传输、 扩频传输、 传输时间间隔捆绑传输以 及功率提升传输中的至少一种。  A first aspect of the present application provides a method for transmitting a control channel, where the method includes: determining a plurality of subframes for performing enhanced transmission on a control channel; performing enhanced transmission on the control channel in the multiple subframes, where The enhanced transmission is at least one of a repetitive transmission, a spread spectrum transmission, a transmission time interval bundling transmission, and a power boost transmission.
结合第一方面, 在第一种可能的实现方式中, 所述在所述多个子帧中对控 制信道进行增强传输, 包括: 在所述多个子帧中的每个子帧上传输控制信道, 且在所述多个子帧中的每个子帧上传输控制信道所用的第一参数都相同; 其中 所述第一参数是起始控制信道元素的编号或控制信道元素的编号。  With reference to the first aspect, in a first possible implementation, the performing enhanced transmission of the control channel in the multiple subframes includes: transmitting a control channel on each of the multiple subframes, and The first parameter used to transmit the control channel on each of the plurality of subframes is the same; wherein the first parameter is a number of a starting control channel element or a number of a control channel element.
结合第一方面的第一种可能, 在第二种可能的实现方式中, 包括: 所述在 所述多个子帧中的每个子帧上传输控制信道所用的第一参数是预先规定的; 或 者, 所述在所述多个子帧中的每个子帧上传输控制信道所用的第一参数是根据 预先规定的函数关系确定的。  With reference to the first possibility of the first aspect, in a second possible implementation, the method includes: the first parameter used for transmitting a control channel in each of the multiple subframes is pre-defined; or The first parameter used to transmit the control channel on each of the plurality of subframes is determined according to a predetermined functional relationship.
结合第一方面的第一种或第二种可能, 在第三种可能的实现方式中: 根据 预先规定的一个索引确定所述多个子帧中的每个子帧上传输控制信道所用的第 一参数; 或者, 根据预先规定的两个索引确定所述多个子帧中的每个子帧上传 输控制信道所用的第一参数; 或者, 根据预先规定的一个索引和预先规定的总In combination with the first or second possibility of the first aspect, in a third possible implementation manner, determining, according to a predetermined index, a number used for transmitting a control channel on each of the multiple subframes Or determining, according to two predetermined indexes, a first parameter used for transmitting a control channel on each of the plurality of subframes; or, according to a predetermined index and a predetermined total
CCE数确定所述多个子帧中的每个子帧上传输控制信道所用的第一参数。 The CCE number determines a first parameter used to transmit a control channel on each of the plurality of subframes.
结合第一方面的第三种可能, 在第四种可能的实现方式中, 所述预先规定 的一个索引是预先规定的一个子帧的索引, 其中所述预先规定的一个子帧是:所 述多个子帧中的第 p个子帧, 其中 p是预先规定的整数; 或, 所述多个子帧中 有最小的总 CCE数的子帧; 或,所述多个子帧中有最小的总 CCE数的子帧中的 第 q个子帧, 其中 q是预先规定的整数。  With reference to the third possibility of the first aspect, in a fourth possible implementation, the predetermined one index is an index of a predetermined one subframe, where the predetermined one subframe is: a p-th subframe of the plurality of subframes, where p is a predetermined integer; or, a subframe having a smallest total number of CCEs among the plurality of subframes; or, a minimum total number of CCEs among the plurality of subframes The qth subframe in the subframe, where q is a predetermined integer.
结合第一方面的第三种可能, 在第五种可能的实现方式中, 所述预先规定 的总 CCE数是所述多个子帧中的有最小或最大的总 CCE数的子帧中的总 CCE 数。  With reference to the third possibility of the first aspect, in a fifth possible implementation, the predetermined total number of CCEs is a total of the subframes having the smallest or largest total CCE number of the multiple subframes The number of CCEs.
结合第一方面的第三种可能, 在第六种可能的实现方式中: 所述预先规定 的两个索引中的一个索引是第一预先规定的一个子帧的索引, 其中所述第一预 先规定的一个子帧是: 所述多个子帧中的第 p个子帧, 其中 p是预先规定的整 数; 或, 所述多个子帧中有最小的总 CCE数的子帧的子帧索引; 或, 所述多个 子帧中有最小的总 CCE数的子帧中的第 q个子帧, 其中 q是预先规定的整数。  With reference to the third possibility of the first aspect, in a sixth possible implementation, the index of the two predefined indexes is an index of a first predetermined one subframe, where the first advance The specified one subframe is: a p-th subframe of the plurality of subframes, where p is a predetermined integer; or a subframe index of a subframe having a smallest total number of CCEs among the plurality of subframes; or And the qth subframe in the subframe having the smallest total CCE number among the plurality of subframes, where q is a predetermined integer.
结合第一方面的第六种可能, 在第七种可能的实现方式中, 所述预先规定 的两个索引中的另一个索引是第二预先规定的一个子帧的索引, 其中所述第二 预先规定的一个子帧是: 所述多个子帧中的第 r个子帧, 其中 r是预先规定的整 数; 或, 所述多个子帧中有最小的总 CCE数的子帧的子帧索引; 或, 所述多个 子帧中有最小的总 CCE数的子帧中的第 w个子帧, 其中 w是预先规定的整数。  With reference to the sixth possibility of the first aspect, in a seventh possible implementation, the another index of the two predefined indexes is an index of a second predetermined one subframe, where the second The predetermined one subframe is: the rth subframe of the plurality of subframes, where r is a predetermined integer; or, the subframe index of the subframe having the smallest total number of CCEs among the multiple subframes; Or, the wth subframe in the subframe having the smallest total CCE number among the plurality of subframes, where w is a predetermined integer.
结合第一方面的第一种到第七种可能, 在第八种可能的实现方式中: 所述 传输控制信道所用的第一参数满足一个确定的范围, 以使调度专有数据的控制 信道占用的控制信道元素与调度公共数据的控制信道占用的控制信道元素没有 资源交叠; 或者, 所述传输控制信道所用的第一参数满足一个确定的范围, 以 使调度专有数据的控制信道占用的控制信道元素与公共搜索空间中的控制信道 元素没有资源交叠。 With reference to the first to seventh possibilities of the first aspect, in an eighth possible implementation, the first parameter used by the transmission control channel satisfies a certain range, so that the control channel for scheduling the dedicated data is occupied. The control channel element has no resource overlap with the control channel element occupied by the control channel for scheduling the common data; or the first parameter used by the transmission control channel satisfies a certain range, so that the control channel for scheduling the dedicated data is occupied. Control channel elements and control channels in a common search space Elements have no resource overlap.
结合第一方面, 在第九种可能的实现方式中, 所述在所述多个子帧中对控 制信道进行增强传输, 所述多个子帧中的每个子帧内的: 公共参考信号的天线 端口数相同; 和 /或, 用于控制信道的正交频分复用 OFDM符号的个数相同; 和 /或, 物理混合自动重发请求指示信道的配置 PHICH-Config相同; 和 /或, 帧结 构类型 2中用于确定 PHICH资源的 mi因子相同; 和 /或,釆用的循环前缀相同; 和 /或, PHICH-duration均为 normal。  With reference to the first aspect, in a ninth possible implementation, the enhanced transmission of the control channel in the multiple subframes, the antenna port of the common reference signal in each of the multiple subframes And the number of orthogonal frequency division multiplexing OFDM symbols used for the control channel is the same; and/or, the physical hybrid automatic repeat request indicates that the configuration of the channel is the same PHICH-Config; and/or, the frame structure The mi factors used to determine PHICH resources in Type 2 are the same; and/or, the cyclic prefixes used are the same; and/or PHICH-duration is normal.
结合第一方面, 在第十种可能的实现方式中, 所述在所述多个子帧中对控 制信道进行增强传输: 所述多个子帧中的每个子帧均不为多媒体组播单频网络 MBSFN子帧; 或, 多个子帧中的每个子帧均为 MBSFN子帧; 或对于帧结构类 型 2, 多个子帧中的每个子帧为 MBSFN子帧, 或子帧 1 , 或子帧 6。  With reference to the first aspect, in a tenth possible implementation, the enhanced transmission is performed on the control channel in the multiple subframes: each of the multiple subframes is not a multimedia multicast single frequency network MBSFN subframe; or, each of the plurality of subframes is an MBSFN subframe; or for frame structure type 2, each of the plurality of subframes is an MBSFN subframe, or a subframe 1, or a subframe 6.
结合第一方面, 在第十一种可能的实现方式中, 所述在所述多个子帧中对 控制信道进行增强传输: 所述多个子帧中的子帧索引属于 {0,4,5 ,9 }的子帧中有 CFI个 OFDM符号用于控制信道,且所述多个子帧中的子帧索引不属于 {0,4,5,9} 的子帧中有两个 OFDM符号用于控制信道; 或, 对于帧结构类型 2, 所述多个 子帧中的子帧索引属于 {0,5}的子帧中有 CFI个 OFDM符号用于控制信道,且所 述多个子帧中的子帧索引不属于 {0,5}的子帧中有两个 OFDM符号用于控制信 道; 其中, CFI的值为 3或 4。  With reference to the first aspect, in an eleventh possible implementation manner, the enhanced transmission is performed on the control channel in the multiple subframes: the subframe index in the multiple subframes belongs to {0, 4, 5, There are CFI OFDM symbols in the subframe of 9 } for the control channel, and there are two OFDM symbols in the subframe in which the subframe index in the plurality of subframes does not belong to {0, 4, 5, 9} for control a channel; or, for frame structure type 2, a subframe in which the subframe index belongs to {0, 5} has CFI OFDM symbols for a control channel, and subframes in the multiple subframes There are two OFDM symbols in the subframe whose index does not belong to {0, 5} for the control channel; wherein the value of CFI is 3 or 4.
结合第一方面, 在第十二种可能的实现方式中, 所述在所述多个子帧中对 控制信道进行增强传输: 当所述控制信道进行增强传输所釆用的载波的带宽属 于第一带宽范围时, 所述多个子帧的每个子帧中有 u个 OFDM符号用于控制信 道或数据信道; 当所述控制信道进行增强传输所釆用的载波的带宽属于第二带 宽范围时, 所述多个子帧的每个子帧中有 V个 OFDM符号用于控制信道或数据 信道; 其中, 所述第一带宽范围和所述第二带宽范围为预定的带宽范围, 且所 述第一带宽范围和所述第二带宽范围互不相交, u和 V为自然数,且 u不等于 V。  With reference to the first aspect, in a twelfth possible implementation, the enhanced transmission of the control channel in the multiple subframes: the bandwidth of the carrier used for the enhanced transmission of the control channel belongs to the first In the bandwidth range, there are u OFDM symbols in each subframe of the multiple subframes for the control channel or the data channel; when the bandwidth of the carrier used for the enhanced transmission of the control channel belongs to the second bandwidth range, Each of the plurality of subframes has V OFDM symbols for a control channel or a data channel; wherein, the first bandwidth range and the second bandwidth range are predetermined bandwidth ranges, and the first bandwidth range And the second bandwidth range do not intersect each other, u and V are natural numbers, and u is not equal to V.
本申请第二方面提供一种基站, 所述基站包括: 确定模块, 用于确定对控 制信道进行增强传输的多个子帧; 发送模块, 用于在所述确定模块确定的所述 多个子帧中对控制信道进行增强传输, 其中, 所述增强传输是重复传输、 扩频 传输、 传输时间间隔捆绑传输以及功率提升传输中的至少一种。 A second aspect of the present application provides a base station, where the base station includes: a determining module, configured to determine a control And the transmitting module is configured to perform enhanced transmission on the control channel in the multiple subframes determined by the determining module, where the enhanced transmission is repeated transmission, spread spectrum transmission, and transmission. At least one of time interval bundling transmission and power boost transmission.
结合第二方面, 在第一种可能的实现方式中, 所述发送模块, 具体用于: 在所述多个子帧中的每个子帧上传输控制信道, 且在所述多个子帧中的每个子 帧上传输控制信道所用的第一参数都相同; 其中所述第一参数是起始控制信道 元素的编号或控制信道元素的编号。  With reference to the second aspect, in a first possible implementation, the sending module is specifically configured to: transmit a control channel on each of the multiple subframes, and each of the multiple subframes The first parameters used to transmit the control channel on all subframes are the same; wherein the first parameter is the number of the starting control channel element or the number of the control channel element.
结合第二方面的第一种可能, 在第二种可能的实现方式中, 包括: 所述发 送模块在所述多个子帧中的每个子帧上传输控制信道所用的第一参数是预先规 定的; 或者, 所述发送模块在所述多个子帧中的每个子帧上传输控制信道所用 的第一参数是根据预先规定的函数关系确定的。  With reference to the first possibility of the second aspect, in a second possible implementation, the method includes: the first parameter used by the sending module to transmit a control channel in each of the multiple subframes is a predetermined Or the first parameter used by the sending module to transmit the control channel on each of the multiple subframes is determined according to a predetermined functional relationship.
结合第二方面的第一种或第二种可能, 在第三种可能的实现方式中, 所述 处理模块用于: 根据预先规定的一个索引确定所述多个子帧中的每个子帧上传 输控制信道所用的第一参数; 或者, 根据预先规定的两个索引确定所述多个子 帧中的每个子帧上传输控制信道所用的第一参数; 或者, 根据预先规定的一个 索引和预先规定的总 CCE数确定所述多个子帧中的每个子帧上传输控制信道所 用的第一参数。  With reference to the first or second possibility of the second aspect, in a third possible implementation, the processing module is configured to: determine, according to a predetermined index, transmission on each of the multiple subframes a first parameter used by the control channel; or determining, according to two predetermined indexes, a first parameter used for transmitting a control channel on each of the plurality of subframes; or, according to a predetermined index and a predetermined The total CCE number determines a first parameter used to transmit a control channel on each of the plurality of subframes.
结合第二方面的第三种可能, 在第四种可能的实现方式中, 所述预先规定 的一个索引是预先规定的一个子帧的索引, 其中所述预先规定的一个子帧是:所 述多个子帧中的第 p个子帧, 其中 p是预先规定的整数; 或, 所述多个子帧中 有最小的总 CCE数的子帧; 或,所述多个子帧中有最小的总 CCE数的子帧中的 第 q个子帧, 其中 q是预先规定的整数。  With reference to the third possibility of the second aspect, in a fourth possible implementation, the predetermined one index is an index of a predetermined one subframe, where the predetermined one subframe is: a p-th subframe of the plurality of subframes, where p is a predetermined integer; or, a subframe having a smallest total number of CCEs among the plurality of subframes; or, a minimum total number of CCEs among the plurality of subframes The qth subframe in the subframe, where q is a predetermined integer.
结合第二方面的第三种可能, 在第五种可能的实现方式中, 所述预先规定 的总 CCE数是所述多个子帧中的有最小或最大的总 CCE数的子帧中的总 CCE 数。  With reference to the third possibility of the second aspect, in a fifth possible implementation, the predetermined total number of CCEs is a total number of subframes of the plurality of subframes having a minimum or maximum total number of CCEs The number of CCEs.
结合第二方面的第三种可能, 在第六种可能的实现方式中, 所述预先规定 的两个索引中的一个索引是第一预先规定的一个子帧的索引, 其中所述第一预 先规定的一个子帧是: 所述多个子帧中的第 p个子帧, 其中 p是预先规定的整 数; 或, 所述多个子帧中有最小的总 CCE数的子帧的子帧索引; 或, 所述多个 子帧中有最小的总 CCE数的子帧中的第 q个子帧, 其中 q是预先规定的整数。 In combination with the third possibility of the second aspect, in a sixth possible implementation manner, the predetermined One of the two indexes is an index of a first predetermined one subframe, wherein the first predetermined one subframe is: a p-th subframe of the plurality of subframes, where p is a predetermined Or an integer of a subframe of a subframe having a smallest total number of CCEs among the plurality of subframes; or a qth subframe of the subframes having the smallest total number of CCEs of the plurality of subframes, where q is a predetermined integer.
结合第二方面的第六种可能, 在第七种可能的实现方式中, 所述预先规定 的两个索引中的另一个索引是第二预先规定的一个子帧的索引, 其中所述第二 预先规定的一个子帧是: 所述多个子帧中的第 r个子帧, 其中 r是预先规定的整 数; 或, 所述多个子帧中有最小的总 CCE数的子帧的子帧索引; 或, 所述多个 子帧中有最小的总 CCE数的子帧中的第 w个子帧, 其中 w是预先规定的整数。  With reference to the sixth aspect of the second aspect, in a seventh possible implementation, the another one of the two predefined indexes is an index of a second predetermined one subframe, where the second The predetermined one subframe is: the rth subframe of the plurality of subframes, where r is a predetermined integer; or, the subframe index of the subframe having the smallest total number of CCEs among the multiple subframes; Or, the wth subframe in the subframe having the smallest total CCE number among the plurality of subframes, where w is a predetermined integer.
结合第二方面的第一种到第七种可能, 在第八种可能的实现方式中: 所述 发送模块传输控制信道所用的第一参数满足一个确定的范围, 以使调度专有数 据的控制信道占用的控制信道元素与调度公共数据的控制信道占用的控制信道 元素没有资源交叠; 或者, 所述发送模块传输控制信道所用的第一参数满足一 个确定的范围, 以使调度专有数据的控制信道占用的控制信道元素与公共搜索 空间中的控制信道元素没有资源交叠。  With reference to the first to seventh possibilities of the second aspect, in an eighth possible implementation, the first parameter used by the sending module to transmit the control channel satisfies a certain range, so as to control the scheduling of the dedicated data. The control channel element occupied by the channel has no resource overlap with the control channel element occupied by the control channel for scheduling the common data; or the first parameter used by the transmitting module to transmit the control channel satisfies a certain range, so that the dedicated data is scheduled. The control channel elements occupied by the control channel have no resource overlap with the control channel elements in the common search space.
结合第二方面, 在第九种可能的实现方式中, 所述发送模块在所述多个子 帧中对控制信道进行增强传输, 所述多个子帧中的每个子帧内的: 公共参考信 号的天线端口数相同; 和 /或, 用于控制信道的正交频分复用 OFDM符号的个数 相同; 和 /或, 物理混合自动重发请求指示信道的配置 PHICH-Config相同; 和 / 或, 帧结构类型 2中用于确定 PHICH资源的 mi因子相同; 和 /或, 釆用的循环 前缀相同; 和 /或, PHICH-duration均为 normal。  With reference to the second aspect, in a ninth possible implementation manner, the sending module performs enhanced transmission on a control channel in the multiple subframes, and in each subframe of the multiple subframes: a common reference signal The number of antenna ports is the same; and/or the number of orthogonal frequency division multiplexing OFDM symbols used for the control channel is the same; and/or, the physical hybrid automatic repeat request indication channel is configured with the same PHICH-Config; and/or, The mi factor used to determine PHICH resources in frame structure type 2 is the same; and/or, the cyclic prefix used is the same; and/or PHICH-duration is normal.
结合第二方面, 在第十种可能的实现方式中, 所述发送模块在所述多个子 帧中对控制信道进行增强传输时, 所述多个子帧中的每个子帧均不为多媒体组 播单频网络 MBSFN子帧; 或, 多个子帧中的每个子帧均为 MBSFN子帧; 或对 于帧结构类型 2, 多个子帧中的每个子帧为 MBSFN子帧, 或子帧 1 , 或子帧 6。  With reference to the second aspect, in a tenth possible implementation manner, when the sending module performs enhanced transmission on the control channel in the multiple subframes, each of the multiple subframes is not a multimedia multicast Single frequency network MBSFN subframe; or, each of the multiple subframes is an MBSFN subframe; or for frame structure type 2, each of the multiple subframes is an MBSFN subframe, or a subframe 1, or a sub-frame Frame 6.
结合第二方面, 在第十一种可能的实现方式中, 所述发送模块在所述多个 子帧中对控制信道进行增强传输时: 所述多个子帧中的子帧索引属于 {0,4,5,9} 的子帧中有 CFI个 OFDM符号用于控制信道, 且所述多个子帧中的子帧索引不 属于 {0,4,5,9}的子帧中有两个 OFDM符号用于控制信道;或,对于帧结构类型 2, 所述多个子帧中的子帧索引属于 {0,5}的子帧中有 CFI个 OFDM符号用于控制信 道, 且所述多个子帧中的子帧索引不属于 {0,5}的子帧中有两个 OFDM符号用于 控制信道; 其中, CFI的值为 3或 4。 With reference to the second aspect, in an eleventh possible implementation manner, the sending module is in the multiple When the control channel is enhanced in the subframe, the subframe index of the plurality of subframes belongs to the {0, 4, 5, 9} subframe, and the CFI OFDM symbols are used for the control channel, and the plurality of sub-frames There are two OFDM symbols in the subframe in which the subframe index in the frame does not belong to {0, 4, 5, 9} is used for the control channel; or, for the frame structure type 2, the subframe index in the multiple subframes belongs to There are CFI OFDM symbols in the subframe of {0, 5} for the control channel, and two subframes in the subframes that do not belong to {0, 5} have two OFDM symbols for the control channel. Where CFI has a value of 3 or 4.
结合第二方面, 在第十二种可能的实现方式中, 所述发送模块具体用于: 在所述控制信道进行增强传输所釆用的载波的带宽属于第一带宽范围时, 所述 多个子帧的每个子帧中有 u个 OFDM符号用于控制信道或数据信道; 在所述控 制信道进行增强传输所釆用的载波的带宽属于第二带宽范围时, 所述多个子帧 的每个子帧中有 V个 OFDM符号用于控制信道或数据信道; 其中, 所述第一带 宽范围和所述第二带宽范围为预定的带宽范围, 且所述第一带宽范围和所述第 二带宽范围互不相交, u和 V为自然数, 且 u不等于 V。  With reference to the second aspect, in a twelfth possible implementation, the sending module is specifically configured to: when the bandwidth of a carrier used for performing enhanced transmission on the control channel belongs to a first bandwidth range, the multiple There are u OFDM symbols in each subframe of the frame for the control channel or the data channel; each subframe of the multiple subframes when the bandwidth of the carrier used for the enhanced transmission of the control channel belongs to the second bandwidth range There are V OFDM symbols for a control channel or a data channel; wherein the first bandwidth range and the second bandwidth range are predetermined bandwidth ranges, and the first bandwidth range and the second bandwidth range are mutually Disjoint, u and V are natural numbers, and u is not equal to V.
本申请第三方面提供一种控制信道的接收方法, 所述接收方法包括: 确定 控制信道增强传输的多个子帧; 在所述多个子帧中接收增强传输的控制信道, 其中, 所述增强传输是重复传输、 扩频传输、 传输时间间隔捆绑传输以及功率 提升传输中的至少一种。  A third aspect of the present application provides a method for receiving a control channel, where the receiving method includes: determining a plurality of subframes of a control channel enhanced transmission; receiving, in the plurality of subframes, a control channel for enhanced transmission, where the enhanced transmission It is at least one of repeated transmission, spread spectrum transmission, transmission time interval bundling transmission, and power boost transmission.
结合第三方面, 在第一种可能的实现方式中, 所述在所述多个子帧中接收 增强传输的控制信道, 包括: 在所述多个子帧中的每个子帧上接收控制信道, 且在所述多个子帧中的每个子帧上接收控制信道所用的第一参数都相同; 其中 所述第一参数是起始控制信道元素的编号或控制信道元素的编号。  With reference to the third aspect, in a first possible implementation, the receiving, by the multiple subframes, the control channel for enhanced transmission, includes: receiving a control channel on each of the multiple subframes, and The first parameter used to receive the control channel on each of the plurality of subframes is the same; wherein the first parameter is a number of a starting control channel element or a number of a control channel element.
结合第三方面的第一种可能, 在第二种可能的实现方式中, 包括: 所述在 所述多个子帧中的每个子帧上接收控制信道所用的第一参数是预先规定的; 或 者, 所述在所述多个子帧中的每个子帧上接收控制信道所用的第一参数是根据 预先规定的函数关系确定的。  With reference to the first possibility of the third aspect, in a second possible implementation, the method includes: the first parameter used to receive the control channel in each of the multiple subframes is pre-defined; or The first parameter used to receive the control channel on each of the plurality of subframes is determined according to a predetermined functional relationship.
结合第三方面的第一种或第二种可能, 在第三种可能的实现方式中: 根据 预先规定的一个索引确定所述多个子帧中的每个子帧上接收控制信道所用的第 一参数; 或者, 根据预先规定的两个索引确定所述多个子帧中的每个子帧上接 收控制信道所用的第一参数; 或者, 根据预先规定的一个索引和预先规定的总In combination with the first or second possibility of the third aspect, in a third possible implementation: Determining an index to determine a first parameter used by each of the plurality of subframes to receive a control channel; or determining, according to two predetermined indexes, a control channel on each of the plurality of subframes The first parameter used; or, according to a predetermined index and a predetermined total
CCE数确定所述多个子帧中的每个子帧上接收控制信道所用的第一参数。 The CCE number determines a first parameter used to receive the control channel on each of the plurality of subframes.
结合第三方面的第三种可能, 在第四种可能的实现方式中: 所述预先规定 的一个索引是预先规定的一个子帧的索引, 其中所述预先规定的一个子帧是:所 述多个子帧中的第 p个子帧, 其中 p是预先规定的整数; 或, 所述多个子帧中 有最小的总 CCE数的子帧; 或,所述多个子帧中有最小的总 CCE数的子帧中的 第 q个子帧, 其中 q是预先规定的整数。  With reference to the third possibility of the third aspect, in a fourth possible implementation manner, the predetermined one index is an index of a predetermined one subframe, where the predetermined one subframe is: a p-th subframe of the plurality of subframes, where p is a predetermined integer; or, a subframe having a smallest total number of CCEs among the plurality of subframes; or, a minimum total number of CCEs among the plurality of subframes The qth subframe in the subframe, where q is a predetermined integer.
结合第三方面的第三种可能, 在第五种可能的实现方式中, 所述预先规定 的总 CCE数是所述多个子帧中的有最小或最大的总 CCE数的子帧中的总 CCE 数。  With reference to the third possibility of the third aspect, in a fifth possible implementation, the predetermined total number of CCEs is a total of the subframes that have the smallest or largest total number of CCEs in the multiple subframes. The number of CCEs.
结合第三方面的第三种可能, 在第六种可能的实现方式中: 所述预先规定 的两个索引中的一个索引是第一预先规定的一个子帧的索引, 其中所述第一预 先规定的一个子帧是: 所述多个子帧中的第 p个子帧, 其中 p是预先规定的整 数; 或, 所述多个子帧中有最小的总 CCE数的子帧的子帧索引; 或, 所述多个 子帧中有最小的总 CCE数的子帧中的第 q个子帧, 其中 q是预先规定的整数。  With reference to the third possibility of the third aspect, in a sixth possible implementation, the one of the two predefined indexes is an index of a first predetermined one subframe, where the first advance The specified one subframe is: a p-th subframe of the plurality of subframes, where p is a predetermined integer; or a subframe index of a subframe having a smallest total number of CCEs among the plurality of subframes; or And the qth subframe in the subframe having the smallest total CCE number among the plurality of subframes, where q is a predetermined integer.
结合第三方面的第六种可能, 在第七种可能的实现方式中, 所述预先规定 的两个索引中的另一个索引是第二预先规定的一个子帧的索引, 其中所述第二 预先规定的一个子帧是: 所述多个子帧中的第 r个子帧, 其中 r是预先规定的整 数; 或, 所述多个子帧中有最小的总 CCE数的子帧的子帧索引; 或, 所述多个 子帧中有最小的总 CCE数的子帧中的第 w个子帧, 其中 w是预先规定的整数。  With reference to the sixth aspect of the third aspect, in a seventh possible implementation, the another index of the two predefined indexes is an index of a second predetermined one subframe, where the second The predetermined one subframe is: the rth subframe of the plurality of subframes, where r is a predetermined integer; or, the subframe index of the subframe having the smallest total number of CCEs among the multiple subframes; Or, the wth subframe in the subframe having the smallest total CCE number among the plurality of subframes, where w is a predetermined integer.
结合第三方面的第一种到第七种可能, 在第八种可能的实现方式中, 所述 在所述多个子帧中接收增强传输的控制信道中: 所述多个子帧中的每个子帧内 的接收控制信道所用的第一参数满足一个确定的范围, 以使调度专有数据的控 制信道占用的控制信道元素与调度公共数据的控制信道占用的控制信道元素没 有资源交叠; 或者, 所述多个子帧中的每个子帧内的接收控制信道所用的第一 参数满足一个确定的范围, 以使调度专有数据的控制信道占用的控制信道元素 与公共搜索空间中的控制信道元素没有资源交叠。 With reference to the first to seventh possibilities of the third aspect, in an eighth possible implementation, the control channel that receives the enhanced transmission in the multiple subframes: each of the multiple subframes The first parameter used by the receiving control channel in the frame satisfies a certain range, so that the control channel element occupied by the control channel for scheduling the dedicated data and the control channel element occupied by the control channel for scheduling the common data are not Or having a resource overlap; or, the first parameter used by the control channel in each of the plurality of subframes meets a determined range, so that the control channel element occupied by the control channel for scheduling the dedicated data and the common search Control channel elements in space have no resource overlap.
结合第三方面, 在第九种可能的实现方式中, 所述在所述多个子帧中接收 增强传输的控制信道中: 所述多个子帧中的每个子帧内的: 公共参考信号的天 线端口数相同; 和 /或, 用于控制信道的正交频分复用 OFDM符号的个数相同; 和 /或, 物理混合自动重发请求指示信道的配置 PHICH-Config相同; 和 /或, 帧 结构类型 2中用于确定 PHICH资源的 mi因子相同; 和 /或, 釆用的循环前缀相 同; 和 /或, PHICH-duration均为 normal。  With reference to the third aspect, in a ninth possible implementation manner, the control channel that receives an enhanced transmission in the multiple subframes: an antenna of a common reference signal in each of the multiple subframes The number of ports is the same; and/or, the number of orthogonal frequency division multiplexing OFDM symbols used for the control channel is the same; and/or, the physical hybrid automatic repeat request indicates that the configuration of the channel is the same PHICH-Config; and/or, the frame The mi factors used to determine PHICH resources in Structure Type 2 are the same; and/or, the cyclic prefixes used are the same; and/or PHICH-duration is normal.
结合第三方面, 在第十种可能的实现方式中, 所述在所述多个子帧中接收 增强传输的控制信道中: 所述多个子帧中的每个子帧均不为多媒体组播单频网 络 MBSFN子帧; 或, 多个子帧中的每个子帧均为 MBSFN子帧; 或对于帧结构 类型 2, 多个子帧中的每个子帧为 MBSFN子帧, 或子帧 1 , 或子帧 6。  With reference to the third aspect, in a tenth possible implementation manner, in the control channel that receives the enhanced transmission in the multiple subframes, each of the multiple subframes is not a multimedia multicast single frequency. a network MBSFN subframe; or, each of the plurality of subframes is an MBSFN subframe; or for frame structure type 2, each of the plurality of subframes is an MBSFN subframe, or a subframe 1, or a subframe 6 .
结合第三方面, 在第十一种可能的实现方式中, 所述在所述多个子帧中接 收增强传输的控制信道中:所述多个子帧中的子帧索引属于 {0,4,5,9}的子帧中有 CFI个 OFDM符号用于控制信道,且所述多个子帧中的子帧索引不属于 {0,4,5,9} 的子帧中有两个 OFDM符号用于控制信道; 或, 对于帧结构类型 2, 所述多个 子帧中的子帧索引属于 {0,5}的子帧中有 CFI个 OFDM符号用于控制信道,且所 述多个子帧中的子帧索引不属于 {0,5}的子帧中有两个 OFDM符号用于控制信 道; 其中, CFI的值为 3或 4。  With reference to the third aspect, in an eleventh possible implementation manner, in the control channel that receives the enhanced transmission in the multiple subframes, the subframe index in the multiple subframes belongs to {0, 4, 5 There are CFI OFDM symbols in the subframe of 9} for the control channel, and there are two OFDM symbols in the subframe in which the subframe index in the plurality of subframes does not belong to {0, 4, 5, 9} a control channel; or, for frame structure type 2, a subframe in which the subframe index belongs to {0, 5} has CFI OFDM symbols for the control channel, and the sub-frames of the plurality of subframes There are two OFDM symbols in the subframe whose frame index does not belong to {0, 5} for the control channel; wherein the value of CFI is 3 or 4.
结合第三方面, 在第十二种可能的实现方式中, 所述在所述多个子帧中接 收增强传输的控制信道, 还包括: 当在带宽属于第一带宽范围的载波上接收增 强传输的所述控制信道时, 所述多个子帧的每个子帧中有 u个 OFDM符号用于 控制信道或数据信道; 当在带宽属于第二带宽范围的载波上接收增强传输的所 述控制信道时, 所述多个子帧的每个子帧中有 V个 OFDM符号用于控制信道或 数据信道; 其中, 所述第一带宽范围和所述第二带宽范围为预定的带宽范围, 且所述第一带宽范围和所述第二带宽范围互不相交, U和 V为自然数, 且 U不等 于 。 With reference to the third aspect, in a twelfth possible implementation manner, the receiving, by the multiple subframes, the control channel for enhancing transmission, further comprising: receiving an enhanced transmission on a carrier whose bandwidth belongs to the first bandwidth range In the control channel, there are u OFDM symbols in each subframe of the multiple subframes for a control channel or a data channel; when the control channel for enhanced transmission is received on a carrier whose bandwidth belongs to the second bandwidth range, Each of the plurality of subframes has V OFDM symbols for a control channel or a data channel, where the first bandwidth range and the second bandwidth range are predetermined bandwidth ranges, And the first bandwidth range and the second bandwidth range do not intersect each other, U and V are natural numbers, and U is not equal to.
本申请第四方面提供一种用户设备, 所述用户设备包括: 确定模块, 用于 确定控制信道增强传输的多个子帧; 接收模块, 用于在所述确定模块所确定的 所述多个子帧中接收增强传输的控制信道, 其中, 所述增强传输是重复传输、 扩频传输、 传输时间间隔捆绑传输以及功率提升传输中的至少一种。  A fourth aspect of the present application provides a user equipment, where the user equipment includes: a determining module, configured to determine a plurality of subframes of a control channel enhanced transmission; and a receiving module, configured to: the multiple subframes determined by the determining module Receiving a control channel for enhanced transmission, wherein the enhanced transmission is at least one of a repetitive transmission, a spread spectrum transmission, a transmission time interval bundling transmission, and a power boost transmission.
结合第四方面, 在第一种可能的实现方式中, 所述接收模块, 具体用于: 在所述多个子帧中的每个子帧上接收控制信道, 且在所述多个子帧中的每个子 帧上接收控制信道所用的第一参数都相同; 其中所述第一参数是起始控制信道 元素的编号或控制信道元素的编号。  With reference to the fourth aspect, in a first possible implementation, the receiving module is specifically configured to: receive a control channel on each of the multiple subframes, and each of the multiple subframes The first parameters used to receive the control channel on all subframes are the same; wherein the first parameter is the number of the starting control channel element or the number of the control channel element.
结合第四方面的第一种可能, 在第二种可能的实现方式中, 包括: 所述接 收模块在所述多个子帧中的每个子帧上接收控制信道所用的第一参数是预先规 定的; 或者, 所述接收模块在所述多个子帧中的每个子帧上接收控制信道所用 的第一参数是根据预先规定的函数关系确定的。  With reference to the first possibility of the fourth aspect, in a second possible implementation manner, the method includes: the first parameter used by the receiving module to receive a control channel in each of the multiple subframes is a predetermined Or the first parameter used by the receiving module to receive the control channel in each of the multiple subframes is determined according to a predetermined functional relationship.
结合第四方面的第一种或第二种可能, 在第三种可能的实现方式中, 所述 用户设备还包括处理模块, 所述处理模块用于: 根据预先规定的一个索引确定 所述多个子帧中的每个子帧上接收控制信道所用的第一参数; 或者, 根据预先 规定的两个索引确定所述多个子帧中的每个子帧上接收控制信道所用的第一参 数; 或者, 根据预先规定的一个索引和预先规定的总 CCE数确定所述多个子帧 中的每个子帧上接收控制信道所用的第一参数。  With reference to the first or second possibility of the fourth aspect, in a third possible implementation, the user equipment further includes a processing module, where the processing module is configured to: determine the multiple according to a predetermined index The first parameter used by the control channel is received on each of the sub-frames; or the first parameter used to receive the control channel in each of the plurality of sub-frames is determined according to two predetermined indexes; or A predetermined index and a predetermined total number of CCEs determine a first parameter used to receive the control channel on each of the plurality of subframes.
结合第四方面的第三种可能, 在第四种可能的实现方式中, 所述预先规定 的一个索引是预先规定的一个子帧的索引, 其中所述预先规定的一个子帧是:所 述多个子帧中的第 p个子帧, 其中 p是预先规定的整数; 或, 所述多个子帧中 有最小的总 CCE数的子帧; 或,所述多个子帧中有最小的总 CCE数的子帧中的 第 q个子帧, 其中 q是预先规定的整数。  With reference to the third possibility of the fourth aspect, in a fourth possible implementation, the predetermined one index is an index of a predetermined one subframe, where the predetermined one subframe is: a p-th subframe of the plurality of subframes, where p is a predetermined integer; or, a subframe having a smallest total number of CCEs among the plurality of subframes; or, a minimum total number of CCEs among the plurality of subframes The qth subframe in the subframe, where q is a predetermined integer.
结合第四方面的第三种可能, 在第五种可能的实现方式中, 所述预先规定 的总 CCE数是所述多个子帧中的有最小或最大的总 CCE数的子帧中的总 CCE 数。 In combination with the third possibility of the fourth aspect, in a fifth possible implementation manner, the predetermined The total number of CCEs is the total number of CCEs in the subframe having the smallest or largest total number of CCEs among the plurality of subframes.
结合第四方面的第三种可能, 在第六种可能的实现方式中: 所述预先规定 的两个索引中的一个索引是第一预先规定的一个子帧的索引, 其中所述第一预 先规定的一个子帧是: 所述多个子帧中的第 p个子帧, 其中 p是预先规定的整 数; 或, 所述多个子帧中有最小的总 CCE数的子帧的子帧索引; 或, 所述多个 子帧中有最小的总 CCE数的子帧中的第 q个子帧, 其中 q是预先规定的整数。  With reference to the third possibility of the fourth aspect, in a sixth possible implementation, the one of the two predefined indexes is an index of a first predetermined one subframe, where the first advance The specified one subframe is: a p-th subframe of the plurality of subframes, where p is a predetermined integer; or a subframe index of a subframe having a smallest total number of CCEs among the plurality of subframes; or And the qth subframe in the subframe having the smallest total CCE number among the plurality of subframes, where q is a predetermined integer.
结合第四方面的第六种可能, 在第七种可能的实现方式中, 所述预先规定 的两个索引中的另一个索引是第二预先规定的一个子帧的索引, 其中所述第二 预先规定的一个子帧是: 所述多个子帧中的第 r个子帧, 其中 r是预先规定的整 数; 或, 所述多个子帧中有最小的总 CCE数的子帧的子帧索引; 或, 所述多个 子帧中有最小的总 CCE数的子帧中的第 w个子帧, 其中 w是预先规定的整数。  With reference to the sixth aspect of the fourth aspect, in a seventh possible implementation, the another index of the two predefined indexes is an index of a second predetermined one subframe, where the second The predetermined one subframe is: the rth subframe of the plurality of subframes, where r is a predetermined integer; or, the subframe index of the subframe having the smallest total number of CCEs among the multiple subframes; Or, the wth subframe in the subframe having the smallest total CCE number among the plurality of subframes, where w is a predetermined integer.
结合第四方面的第一种到第七种可能, 在第八种可能的实现方式中, 所述 接收模块在所述多个子帧中接收增强传输的控制信道中: 所述多个子帧中的每 个子帧内的接收控制信道所用的第一参数满足一个确定的范围, 以使调度专有 数据的控制信道占用的控制信道元素与调度公共数据的控制信道占用的控制信 道元素没有资源交叠; 或者, 所述多个子帧中的每个子帧内的接收控制信道所 用的第一参数满足一个确定的范围, 以使调度专有数据的控制信道占用的控制 信道元素与公共搜索空间中的控制信道元素没有资源交叠。  With reference to the first to seventh possibilities of the fourth aspect, in an eighth possible implementation, the receiving module is configured to receive, in the multiple subframes, an enhanced transmission control channel: The first parameter used by the receiving control channel in each subframe satisfies a certain range, so that the control channel element occupied by the control channel scheduling the dedicated data has no resource overlap with the control channel element occupied by the control channel scheduling the common data; Or the first parameter used by the control channel in each of the multiple subframes meets a certain range, so that the control channel element occupied by the control channel scheduling the dedicated data and the control channel in the common search space are Elements have no resource overlap.
结合第四方面, 在第九种可能的实现方式中, 所述接收模块在所述多个子 帧中接收增强传输的控制信道中: 所述多个子帧中的每个子帧内的: 公共参考 信号的天线端口数相同; 和 /或, 用于控制信道的正交频分复用 OFDM符号的个 数相同; 和 /或, 物理混合自动重发请求指示信道的配置 PHICH-Config相同; 和 /或, 帧结构类型 2中用于确定 PHICH资源的 mi因子相同; 和 /或, 釆用的循环 前缀相同; 和 /或, PHICH-duration均为 normal。  With reference to the fourth aspect, in a ninth possible implementation manner, the receiving module, in a control channel that receives an enhanced transmission in the multiple subframes: in each subframe of the multiple subframes: a common reference signal The number of antenna ports is the same; and/or the number of orthogonal frequency division multiplexing OFDM symbols used for the control channel is the same; and/or, the physical hybrid automatic repeat request indication channel is configured with the same PHICH-Config; and/or The frame factor type 2 is used to determine that the PH factor of the PHICH resource is the same; and/or, the cyclic prefix used is the same; and/or, PHICH-duration is normal.
结合第四方面, 在第十种可能的实现方式中, 所述接收模块在所述多个子 帧中接收增强传输的控制信道中: 所述多个子帧中的每个子帧均不为多媒体组 播单频网络 MBSFN子帧; 或, 多个子帧中的每个子帧均为 MBSFN子帧; 或对 于帧结构类型 2, 多个子帧中的每个子帧为 MBSFN子帧, 或子帧 1 , 或子帧 6。 With reference to the fourth aspect, in a tenth possible implementation manner, the receiving module is in the multiple In the control channel for receiving the enhanced transmission in the frame: each of the multiple subframes is not a multimedia multicast single frequency network MBSFN subframe; or, each of the multiple subframes is an MBSFN subframe; or For frame structure type 2, each of the plurality of subframes is an MBSFN subframe, or a subframe 1, or a subframe 6.
结合第四方面, 在第十一种可能的实现方式中, 所述接收模块在所述多个 子帧中接收增强传输的控制信道中: 所述多个子帧中的子帧索引属于 {0,4,5,9} 的子帧中有 CFI个 OFDM符号用于控制信道, 且所述多个子帧中的子帧索引不 属于 {0,4,5,9}的子帧中有两个 OFDM符号用于控制信道;或,对于帧结构类型 2, 所述多个子帧中的子帧索引属于 {0,5}的子帧中有 CFI个 OFDM符号用于控制信 道, 且所述多个子帧中的子帧索引不属于 {0,5}的子帧中有两个 OFDM符号用于 控制信道; 其中, CFI的值为 3或 4。  With reference to the fourth aspect, in an eleventh possible implementation manner, the receiving module, in the control channel that receives the enhanced transmission in the multiple subframes, the sub-frame index in the multiple subframes belongs to {0, 4 There are CFI OFDM symbols in the subframe of 5,9} for the control channel, and there are two OFDM symbols in the subframe in which the subframe index in the plurality of subframes does not belong to {0, 4, 5, 9} For the control channel; or, for the frame structure type 2, the subframe index of the plurality of subframes belongs to {0, 5}, and there are CFI OFDM symbols for the control channel, and the multiple subframes The subframe in which the subframe index does not belong to {0, 5} has two OFDM symbols for the control channel; wherein the value of CFI is 3 or 4.
结合第四方面, 在第十二种可能的实现方式中, 所述接收模块, 具体用于: 在带宽属于第一带宽范围的载波上接收增强传输的所述控制信道时, 所述多个 子帧的每个子帧中有 u个 OFDM符号用于控制信道或数据信道; 在带宽属于第 二带宽范围的载波上接收增强传输的所述控制信道时, 所述多个子帧的每个子 帧中有 V个 OFDM符号用于控制信道或数据信道; 其中, 所述第一带宽范围和 所述第二带宽范围为预定的带宽范围, 且所述第一带宽范围和所述第二带宽范 围互不相交, u和 V为自然数, 且 u不等于 V。  With reference to the fourth aspect, in a twelfth possible implementation, the receiving module is specifically configured to: when receiving the control channel that is enhanced to be transmitted on a carrier whose bandwidth belongs to the first bandwidth, the multiple subframes There are u OFDM symbols in each subframe for a control channel or a data channel; when the control channel for enhanced transmission is received on a carrier whose bandwidth belongs to the second bandwidth range, there are V in each subframe of the multiple subframes The OFDM symbol is used for a control channel or a data channel; wherein, the first bandwidth range and the second bandwidth range are predetermined bandwidth ranges, and the first bandwidth range and the second bandwidth range do not intersect each other, u and V are natural numbers, and u is not equal to V.
本申请第五方面提供一种基站, 所述基站包括: 处理器, 用于确定对控制 信道进行增强传输的多个子帧; 发送器, 用于在所述处理器确定的所述多个子 帧中对控制信道进行增强传输, 其中, 所述增强传输是重复传输、 扩频传输、 传输时间间隔捆绑传输以及功率提升传输中的至少一种。  A fifth aspect of the present application provides a base station, where the base station includes: a processor, configured to determine a plurality of subframes for performing enhanced transmission on a control channel; and a transmitter, configured to be used in the multiple subframes determined by the processor The enhanced transmission is performed on the control channel, wherein the enhanced transmission is at least one of a repetitive transmission, a spread spectrum transmission, a transmission time interval bundling transmission, and a power boost transmission.
结合第五方面, 在第一种可能的实现方式中, 所述发送器, 具体用于: 在 所述多个子帧中的每个子帧上传输控制信道, 且在所述多个子帧中的每个子帧 上传输控制信道所用的第一参数都相同; 其中所述第一参数是起始控制信道元 素的编号或控制信道元素的编号。  With reference to the fifth aspect, in a first possible implementation, the transmitter is specifically configured to: transmit a control channel on each of the multiple subframes, and each of the multiple subframes The first parameters used to transmit the control channel on all subframes are the same; wherein the first parameter is the number of the starting control channel element or the number of the control channel element.
结合第五方面的第一种可能, 在第二种可能的实现方式中, 所述发送器在 所述多个子帧中的每个子帧上传输控制信道所用的第一参数是预先规定的; 或 者, 所述发送器在所述多个子帧中的每个子帧上传输控制信道所用的第一参数 是根据预先规定的函数关系确定的。 In conjunction with the first possibility of the fifth aspect, in a second possible implementation manner, the transmitter is Determining, by a predetermined parameter, a first parameter used for transmitting a control channel on each of the plurality of subframes; or a first parameter used by the transmitter to transmit a control channel on each of the plurality of subframes It is determined according to a predetermined functional relationship.
结合第五方面的第一种或第二种可能, 在第三种可能的实现方式中, 所述 处理器, 还用于: 根据预先规定的一个索引确定所述多个子帧中的每个子帧上 传输控制信道所用的第一参数; 或者, 根据预先规定的两个索引确定所述多个 子帧中的每个子帧上传输控制信道所用的第一参数; 或者, 根据预先规定的一 个索引和预先规定的总 CCE数确定所述多个子帧中的每个子帧上传输控制信道 所用的第一参数。  With reference to the first or second possibility of the fifth aspect, in a third possible implementation, the processor is further configured to: determine, according to a predetermined index, each subframe of the multiple subframes a first parameter used for transmitting a control channel; or determining, according to two predetermined indexes, a first parameter used for transmitting a control channel on each of the plurality of subframes; or, according to a predetermined index and an advance The specified total number of CCEs determines a first parameter used to transmit a control channel on each of the plurality of subframes.
结合第五方面的第三种可能, 在第四种可能的实现方式中, 所述预先规定 的一个索引是预先规定的一个子帧的索引, 其中所述预先规定的一个子帧是:所 述多个子帧中的第 p个子帧, 其中 p是预先规定的整数; 或, 所述多个子帧中 有最小的总 CCE数的子帧; 或,所述多个子帧中有最小的总 CCE数的子帧中的 第 q个子帧, 其中 q是预先规定的整数。  With reference to the third possibility of the fifth aspect, in a fourth possible implementation, the predetermined one index is an index of a predetermined one subframe, where the predetermined one subframe is: a p-th subframe of the plurality of subframes, where p is a predetermined integer; or, a subframe having a smallest total number of CCEs among the plurality of subframes; or, a minimum total number of CCEs among the plurality of subframes The qth subframe in the subframe, where q is a predetermined integer.
结合第五方面的第三种可能, 在第五种可能的实现方式中: 所述预先规定 的总 CCE数是所述多个子帧中的有最小或最大的总 CCE数的子帧中的总 CCE 数。  With reference to the third possibility of the fifth aspect, in a fifth possible implementation manner, the predetermined total number of CCEs is a total number of subframes of the plurality of subframes having a minimum or maximum total number of CCEs The number of CCEs.
结合第五方面的第三种可能, 在第六种可能的实现方式中: 所述预先规定 的两个索引中的一个索引是第一预先规定的一个子帧的索引, 其中所述第一预 先规定的一个子帧是: 所述多个子帧中的第 p个子帧, 其中 p是预先规定的整 数; 或, 所述多个子帧中有最小的总 CCE数的子帧的子帧索引; 或, 所述多个 子帧中有最小的总 CCE数的子帧中的第 q个子帧, 其中 q是预先规定的整数。  With reference to the third possibility of the fifth aspect, in a sixth possible implementation, the one of the two predefined indexes is an index of a first predetermined one subframe, where the first advance The specified one subframe is: a p-th subframe of the plurality of subframes, where p is a predetermined integer; or a subframe index of a subframe having a smallest total number of CCEs among the plurality of subframes; or And the qth subframe in the subframe having the smallest total CCE number among the plurality of subframes, where q is a predetermined integer.
结合第五方面的第六种可能, 在第七种可能的实现方式中, 所述预先规定 的两个索引中的另一个索引是第二预先规定的一个子帧的索引, 其中所述第二 预先规定的一个子帧是: 所述多个子帧中的第 r个子帧, 其中 r是预先规定的整 数; 或, 所述多个子帧中有最小的总 CCE数的子帧的子帧索引; 或, 所述多个 子帧中有最小的总 CCE数的子帧中的第 w个子帧, 其中 w是预先规定的整数。 结合第五方面的第一种到第七种可能, 在第八种可能的实现方式中: 所述 发送器传输控制信道所用的第一参数满足一个确定的范围, 以使调度专有数据 的控制信道占用的控制信道元素与调度公共数据的控制信道占用的控制信道元 素没有资源交叠; 或者, 所述发送器传输控制信道所用的第一参数满足一个确 定的范围, 以使调度专有数据的控制信道占用的控制信道元素与公共搜索空间 中的控制信道元素没有资源交叠。 With reference to the sixth aspect of the fifth aspect, in a seventh possible implementation, the another one of the two predefined indexes is an index of a second predetermined one subframe, where the second The predetermined one subframe is: the rth subframe of the plurality of subframes, where r is a predetermined integer; or, the subframe index of the subframe having the smallest total number of CCEs among the multiple subframes; Or, the plurality of The wth subframe in the subframe having the smallest total number of CCEs in the subframe, where w is a predetermined integer. With reference to the first to seventh possibilities of the fifth aspect, in an eighth possible implementation manner, the first parameter used by the transmitter to transmit the control channel satisfies a certain range, so as to control the scheduling of the dedicated data. The control channel element occupied by the channel has no resource overlap with the control channel element occupied by the control channel for scheduling the common data; or the first parameter used by the transmitter to transmit the control channel satisfies a certain range, so that the dedicated data is scheduled. The control channel elements occupied by the control channel have no resource overlap with the control channel elements in the common search space.
结合第五方面, 在第九种可能的实现方式中, 所述发送器在所述多个子帧 中对控制信道进行增强传输, 所述多个子帧中的每个子帧内的: 公共参考信号 的天线端口数相同; 和 /或, 用于控制信道的正交频分复用 OFDM符号的个数相 同; 和 /或, 物理混合自动重发请求指示信道的配置 PHICH-Config相同; 和 /或, 帧结构类型 2中用于确定 PHICH资源的 mi因子相同; 和 /或, 釆用的循环前缀 相同; 和 /或, PHICH-duration均为 normal。  With reference to the fifth aspect, in a ninth possible implementation manner, the transmitter performs enhanced transmission on a control channel in the multiple subframes, and in each subframe of the multiple subframes: a common reference signal The number of antenna ports is the same; and/or the number of orthogonal frequency division multiplexing OFDM symbols used for the control channel is the same; and/or, the physical hybrid automatic repeat request indication channel is configured with the same PHICH-Config; and/or, The mi factor used to determine PHICH resources in frame structure type 2 is the same; and/or, the cyclic prefix used is the same; and/or PHICH-duration is normal.
结合第五方面, 在第十种可能的实现方式中, 所述发送器在所述多个子帧 中对控制信道进行增强传输时, 所述多个子帧中的每个子帧均不为多媒体组播 单频网络 MBSFN子帧; 或, 多个子帧中的每个子帧均为 MBSFN子帧; 或对于 帧结构类型 2, 多个子帧中的每个子帧为 MBSFN子帧, 或子帧 1 , 或子帧 6。  With reference to the fifth aspect, in a tenth possible implementation manner, when the transmitter performs enhanced transmission on the control channel in the multiple subframes, each of the multiple subframes is not a multimedia multicast Single frequency network MBSFN subframe; or, each of the multiple subframes is an MBSFN subframe; or for frame structure type 2, each of the multiple subframes is an MBSFN subframe, or a subframe 1, or a sub-frame Frame 6.
结合第五方面, 在第十一种可能的实现方式中, 所述发送器在所述多个子 帧中对控制信道进行增强传输时:所述多个子帧中的子帧索引属于 {0,4,5,9}的子 帧中有 CFI个 OFDM符号用于控制信道, 且所述多个子帧中的子帧索引不属于 {0,4,5,9}的子帧中有两个 OFDM符号用于控制信道; 或, 对于帧结构类型 2, 所 述多个子帧中的子帧索引属于 {0,5}的子帧中有 CFI个 OFDM符号用于控制信 道, 且所述多个子帧中的子帧索引不属于 {0,5}的子帧中有两个 OFDM符号用于 控制信道; 其中, CFI的值为 3或 4。  With reference to the fifth aspect, in an eleventh possible implementation manner, when the transmitter performs enhanced transmission on the control channel in the multiple subframes, the subframe index in the multiple subframes belongs to {0, 4 There are CFI OFDM symbols in the subframe of 5, 9} for the control channel, and there are two OFDM symbols in the subframe in which the subframe index in the plurality of subframes does not belong to {0, 4, 5, 9} For the control channel; or, for the frame structure type 2, the subframe index of the plurality of subframes belongs to {0, 5}, and the CFI OFDM symbols are used for the control channel, and the multiple subframes The subframe in which the subframe index does not belong to {0, 5} has two OFDM symbols for the control channel; wherein the value of CFI is 3 or 4.
结合第五方面, 在第十二种可能的实现方式中, 所述发送器具体用于: 在 所述控制信道进行增强传输所釆用的载波的带宽属于第一带宽范围时, 所述多 个子帧的每个子帧中有 u个 OFDM符号用于控制信道或数据信道; 在所述控制 信道进行增强传输所釆用的载波的带宽属于第二带宽范围时, 所述多个子帧的 每个子帧中有 V个 OFDM符号用于控制信道或数据信道; 其中, 所述第一带宽 范围和所述第二带宽范围为预定的带宽范围, 且所述第一带宽范围和所述第二 带宽范围互不相交, u和 V为自然数, 且 u不等于 V。 With reference to the fifth aspect, in a twelfth possible implementation, the transmitter is specifically configured to: when a bandwidth of a carrier used for performing enhanced transmission on the control channel belongs to a first bandwidth range, Each of the subframes has u OFDM symbols for a control channel or a data channel; when the bandwidth of the carrier used for the enhanced transmission of the control channel belongs to the second bandwidth range, each of the plurality of subframes There are V OFDM symbols in the frame for the control channel or the data channel; wherein the first bandwidth range and the second bandwidth range are predetermined bandwidth ranges, and the first bandwidth range and the second bandwidth range Do not intersect each other, u and V are natural numbers, and u is not equal to V.
本申请第六方面提供一种用户设备, 所述用户设备包括: 处理器, 用于确 定控制信道增强传输的多个子帧; 接收器, 用于在所述处理器所确定的所述多 个子帧中接收增强传输的控制信道, 其中, 所述增强传输是重复传输、 扩频传 输、 传输时间间隔捆绑传输以及功率提升传输中的至少一种。  A sixth aspect of the present application provides a user equipment, where the user equipment includes: a processor, configured to determine a plurality of subframes for controlling channel enhanced transmission; and a receiver, configured to determine, by the processor, the multiple subframes Receiving a control channel for enhanced transmission, wherein the enhanced transmission is at least one of a repetitive transmission, a spread spectrum transmission, a transmission time interval bundling transmission, and a power boost transmission.
结合第六方面, 在第一种可能的实现方式中, 所述接收器, 具体用于: 在 所述多个子帧中的每个子帧上接收控制信道, 且在所述多个子帧中的每个子帧 上接收控制信道所用的第一参数都相同; 其中所述第一参数是起始控制信道元 素的编号或控制信道元素的编号。  With reference to the sixth aspect, in a first possible implementation, the receiver is specifically configured to: receive a control channel on each of the multiple subframes, and each of the multiple subframes The first parameters used to receive the control channel on all subframes are the same; wherein the first parameter is the number of the starting control channel element or the number of the control channel element.
结合第六方面的第一种可能, 在第二种可能的实现方式中, 所述接收器在 所述多个子帧中的每个子帧上接收控制信道所用的第一参数是预先规定的; 或 者, 所述接收器在所述多个子帧中的每个子帧上接收控制信道所用的第一参数 是根据预先规定的函数关系确定的。  With reference to the first possibility of the sixth aspect, in a second possible implementation manner, the first parameter used by the receiver to receive the control channel in each of the multiple subframes is predetermined; or The first parameter used by the receiver to receive the control channel on each of the plurality of subframes is determined according to a predetermined functional relationship.
结合第六方面的第一种或第二种可能, 在第三种可能的实现方式中: 根据 预先规定的一个索引确定所述多个子帧中的每个子帧上接收控制信道所用的第 一参数; 或者, 根据预先规定的两个索引确定所述多个子帧中的每个子帧上接 收控制信道所用的第一参数; 或者, 根据预先规定的一个索引和预先规定的总 CCE数确定所述多个子帧中的每个子帧上接收控制信道所用的第一参数。  With reference to the first or second possibility of the sixth aspect, in a third possible implementation, the first parameter used for receiving the control channel in each of the multiple subframes is determined according to a predetermined index. Or determining, according to two predetermined indexes, a first parameter used by each of the plurality of subframes to receive a control channel; or determining, according to a predetermined index and a predetermined total number of CCEs. The first parameter used by the control channel is received on each of the sub-frames.
结合第六方面的第三种可能, 在第四种可能的实现方式中, 所述预先规定 的一个索引是预先规定的一个子帧的索引, 其中所述预先规定的一个子帧是:所 述多个子帧中的第 p个子帧, 其中 p是预先规定的整数; 或, 所述多个子帧中 有最小的总 CCE数的子帧; 或,所述多个子帧中有最小的总 CCE数的子帧中的 第 q个子帧, 其中 q是预先规定的整数。 With reference to the third possibility of the sixth aspect, in a fourth possible implementation, the predetermined one index is an index of a predetermined one subframe, where the predetermined one subframe is: a p-th subframe of the plurality of subframes, where p is a predetermined integer; or, a subframe having a smallest total number of CCEs among the plurality of subframes; or, a minimum total number of CCEs among the plurality of subframes In the sub-frame The qth subframe, where q is a predetermined integer.
结合第六方面的第三种可能, 在第五种可能的实现方式中, 所述预先规定 的总 CCE数是所述多个子帧中的有最小或最大的总 CCE数的子帧中的总 CCE 数。  With reference to the third possibility of the sixth aspect, in a fifth possible implementation, the predetermined total number of CCEs is a total number of subframes of the plurality of subframes having a minimum or maximum total number of CCEs The number of CCEs.
结合第六方面的第三种可能, 在第六种可能的实现方式中: 所述预先规定 的两个索引中的一个索引是第一预先规定的一个子帧的索引, 其中所述第一预 先规定的一个子帧是: 所述多个子帧中的第 p个子帧, 其中 p是预先规定的整 数; 或, 所述多个子帧中有最小的总 CCE数的子帧的子帧索引; 或, 所述多个 子帧中有最小的总 CCE数的子帧中的第 q个子帧, 其中 q是预先规定的整数。  With reference to the third possibility of the sixth aspect, in a sixth possible implementation, the one of the two predefined indexes is an index of a first predetermined one subframe, where the first advance The specified one subframe is: a p-th subframe of the plurality of subframes, where p is a predetermined integer; or a subframe index of a subframe having a smallest total number of CCEs among the plurality of subframes; or And the qth subframe in the subframe having the smallest total CCE number among the plurality of subframes, where q is a predetermined integer.
结合第六方面的第六种可能, 在第七种可能的实现方式中, 所述预先规定 的两个索引中的另一个索引是第二预先规定的一个子帧的索引, 其中所述第二 预先规定的一个子帧是: 所述多个子帧中的第 r个子帧, 其中 r是预先规定的整 数; 或, 所述多个子帧中有最小的总 CCE数的子帧的子帧索引; 或, 所述多个 子帧中有最小的总 CCE数的子帧中的第 w个子帧, 其中 w是预先规定的整数。  With reference to the sixth possibility of the sixth aspect, in a seventh possible implementation, the another index of the two predefined indexes is an index of a second predetermined one subframe, where the second The predetermined one subframe is: the rth subframe of the plurality of subframes, where r is a predetermined integer; or, the subframe index of the subframe having the smallest total number of CCEs among the multiple subframes; Or, the wth subframe in the subframe having the smallest total CCE number among the plurality of subframes, where w is a predetermined integer.
结合第六方面的第一种到第七种可能, 在第八种可能的实现方式中, 所述 接收器在所述多个子帧中接收增强传输的控制信道中: 所述多个子帧中的每个 子帧内的接收控制信道所用的第一参数满足一个确定的范围, 以使调度专有数 据的控制信道占用的控制信道元素与调度公共数据的控制信道占用的控制信道 元素没有资源交叠; 或者, 所述多个子帧中的每个子帧内的接收控制信道所用 的第一参数满足一个确定的范围, 以使调度专有数据的控制信道占用的控制信 道元素与公共搜索空间中的控制信道元素没有资源交叠。  With reference to the first to seventh possibilities of the sixth aspect, in an eighth possible implementation, the receiver is configured to receive, in the multiple subframes, an enhanced transmission control channel: The first parameter used by the receiving control channel in each subframe satisfies a certain range, so that the control channel element occupied by the control channel scheduling the dedicated data has no resource overlap with the control channel element occupied by the control channel scheduling the common data; Or the first parameter used by the control channel in each of the multiple subframes meets a certain range, so that the control channel element occupied by the control channel scheduling the dedicated data and the control channel in the common search space are Elements have no resource overlap.
结合第六方面, 在第九种可能的实现方式中, 所述接收器在所述多个子帧 中接收增强传输的控制信道中: 所述多个子帧中的每个子帧内的: 公共参考信 号的天线端口数相同; 和 /或, 用于控制信道的正交频分复用 OFDM符号的个数 相同; 和 /或, 物理混合自动重发请求指示信道的配置 PHICH-Config相同; 和 / 或, 帧结构类型 2中用于确定 PHICH资源的 mi因子相同; 和 /或, 釆用的循环 前缀相同; 和 /或, PHICH-duration均为 normal。 With reference to the sixth aspect, in a ninth possible implementation manner, the receiver, in the control channel that receives the enhanced transmission in the multiple subframes: in each of the multiple subframes: a common reference signal The number of antenna ports is the same; and/or the number of orthogonal frequency division multiplexing OFDM symbols used for the control channel is the same; and/or, the physical hybrid automatic repeat request indication channel is configured with the same PHICH-Config; and/or , the frame factor type 2 is used to determine the same mi factor of the PHICH resource; and/or, the loop used The prefix is the same; and/or PHICH-duration is normal.
结合第六方面, 在第十种可能的实现方式中, 述接收器在所述多个子帧中 接收增强传输的控制信道中: 所述多个子帧中的每个子帧均不为多媒体组播单 频网络 MBSFN子帧; 或, 多个子帧中的每个子帧均为 MBSFN子帧; 或对于帧 结构类型 2, 多个子帧中的每个子帧为 MBSFN子帧, 或子帧 1 , 或子帧 6。  With reference to the sixth aspect, in a tenth possible implementation, the receiver is configured to receive the enhanced transmission in the multiple subframes: each of the multiple subframes is not a multimedia multicast a frequency network MBSFN subframe; or, each of the plurality of subframes is an MBSFN subframe; or for frame structure type 2, each of the plurality of subframes is an MBSFN subframe, or a subframe 1, or a subframe 6.
结合第六方面, 在第十一种可能的实现方式中, 所述接收器在所述多个子 帧中接收增强传输的控制信道中:所述多个子帧中的子帧索引属于 {0,4,5,9}的子 帧中有 CFI个 OFDM符号用于控制信道, 且所述多个子帧中的子帧索引不属于 {0,4,5,9}的子帧中有两个 OFDM符号用于控制信道; 或, 对于帧结构类型 2, 所 述多个子帧中的子帧索引属于 {0,5}的子帧中有 CFI个 OFDM符号用于控制信 道, 且所述多个子帧中的子帧索引不属于 {0,5}的子帧中有两个 OFDM符号用于 控制信道; 其中, CFI的值为 3或 4。  With reference to the sixth aspect, in an eleventh possible implementation manner, the receiver, in the control channel that receives the enhanced transmission in the multiple subframes, the sub-frame index in the multiple subframes belongs to {0, 4 There are CFI OFDM symbols in the subframe of 5, 9} for the control channel, and there are two OFDM symbols in the subframe in which the subframe index in the plurality of subframes does not belong to {0, 4, 5, 9} For the control channel; or, for the frame structure type 2, the subframe index of the plurality of subframes belongs to {0, 5}, and the CFI OFDM symbols are used for the control channel, and the multiple subframes The subframe in which the subframe index does not belong to {0, 5} has two OFDM symbols for the control channel; wherein the value of CFI is 3 or 4.
结合第六方面, 在第十二种可能的实现方式中, 所述接收器, 具体用于: 在带宽属于第一带宽范围的载波上接收增强传输的所述控制信道时, 所述多个 子帧的每个子帧中有 u个 OFDM符号用于控制信道或数据信道; 在带宽属于第 二带宽范围的载波上接收增强传输的所述控制信道时, 所述多个子帧的每个子 帧中有 V个 OFDM符号用于控制信道或数据信道; 其中, 所述第一带宽范围和 所述第二带宽范围为预定的带宽范围, 且所述第一带宽范围和所述第二带宽范 围互不相交, u和 V为自然数, 且 u不等于 V。  With reference to the sixth aspect, in a twelfth possible implementation, the receiver is specifically configured to: when receiving the control channel of the enhanced transmission on a carrier whose bandwidth belongs to the first bandwidth, the multiple subframes There are u OFDM symbols in each subframe for a control channel or a data channel; when the control channel for enhanced transmission is received on a carrier whose bandwidth belongs to the second bandwidth range, there are V in each subframe of the multiple subframes The OFDM symbol is used for a control channel or a data channel; wherein, the first bandwidth range and the second bandwidth range are predetermined bandwidth ranges, and the first bandwidth range and the second bandwidth range do not intersect each other, u and V are natural numbers, and u is not equal to V.
本申请通过预先确定多个子帧, 并在所述多个子帧中对控制信道进行重复 传输、 扩频传输、 传输时间间隔捆绑传输以及功率提升传输等增强传输的方式, 便于在确定的多个子帧上进行控制信息的映射和检测等, 降低了调度的复杂度 和检测的复杂度。  The present invention facilitates the determined multiple subframes by predetermining a plurality of subframes, and performing enhanced transmission, such as repeated transmission, spread spectrum transmission, transmission time interval bundling transmission, and power boost transmission, on the control channel in the multiple subframes. The mapping and detection of control information are performed, which reduces the complexity of scheduling and the complexity of detection.
【附图说明】 [Description of the Drawings]
图 1是本申请控制信道的传输方法一实施方式的流程图; 图 2是本申请基站一实施方式的模块框图; 1 is a flowchart of an embodiment of a method for transmitting a control channel of the present application; 2 is a block diagram of a block diagram of an embodiment of a base station of the present application;
图 3是本申请基站另一实施方式的模块框图;  3 is a block diagram of another embodiment of a base station of the present application;
图 4是本申请控制信道的接收方法一实施方式的流程图;  4 is a flowchart of an embodiment of a method for receiving a control channel of the present application;
图 5是本申请用户设备一实施方式的模块框图;  5 is a block diagram of a module of an embodiment of a user equipment of the present application;
图 6是本申请用户设备另一实施方式的模块框图。  6 is a block diagram of another embodiment of a user equipment of the present application.
【具体实施方式】 【detailed description】
以下描述中, 为了说明而不是为了限定, 提出了诸如特定系统结构、 接口、 技术之类的具体细节, 以便透彻理解本申请。 然而, 本领域的技术人员应当清 省略对众所周知的装置、 电路以及方法的详细说明, 以免不必要的细节妨碍本 申请的描述。  In the following description, for purposes of explanation and description, reference, However, a detailed description of well-known devices, circuits, and methods may be omitted to avoid obscuring the details of the application.
本文中描述的技术可用于各种通信系统, 例如当前 2G, 3G, 4G通信系统 和下一代通信系统, 例如全球移动通信系统(GSM, Global System for Mobile communications ), 码分多址 ( CDMA, Code Division Multiple Access ) 系统, 时 分多址( TDMA, Time Division Multiple Access )系统,宽带码分多址( WCDMA, Wideband Code Division Multiple Access Wireless ),频分多址 ( FDMA, Frequency Division Multiple Addressing ) 系统, 正交频分多址 (OFDMA , Orthogonal Frequency-Division Multiple Access ) 系统, 单载波 FDMA ( SC-FDMA ) 系统, 通用分组无线业务( GPRS , General Packet Radio Service )系统,长期演进( LTE, Long Term Evolution ) 系统, 以及此类通信系统演进或升级的其他系统。  The techniques described herein can be used in a variety of communication systems, such as current 2G, 3G, 4G communication systems and next generation communication systems, such as Global System for Mobile Communications (GSM), Code Division Multiple Access (CDMA, Code). Division Multiple Access) system, Time Division Multiple Access (TDMA), Wideband Code Division Multiple Access (WCDMA), Frequency Division Multiple Access (FDMA), Frequency Division Multiple Addressing (FDMA) system, OFDM (Orthogonal Frequency-Division Multiple Access) system, single carrier FDMA (SC-FDMA) system, General Packet Radio Service (GPRS) system, Long Term Evolution (LTE) Systems, and other systems in which such communication systems evolve or upgrade.
本文中结合用户设备和 /或基站和 /或基站控制器来描述各种方面。  Various aspects are described herein in connection with user equipment and/or base stations and/or base station controllers.
用户设备, 可以是无线终端也可以是有线终端, 无线终端可以是指向用户 提供语音和 /或数据连通性的设备, 具有无线连接功能的手持式设备、 或连接到 无线调制解调器的其他处理设备。 无线终端可以经无线接入网 (例如, RAN, Radio Access Network )与一个或多个核心网进行通信, 无线终端可以是移动终 端, 如移动电话(或称为"蜂窝"电话)和具有移动终端的计算机, 例如, 可以是 便携式、 袖珍式、 手持式、 计算机内置的或者车载的移动装置, 它们与无线接 入网交换语言和 /或数据。 例如, 个人通信业务(PCS, Personal Communication Service ) 电话、 无绳电话、 会话发起协议(SIP )话机、 无线本地环路 ( WLL, Wireless Local Loop )站、 个人数字助理 ( PDA, Personal Digital Assistant )等设 备。 无线终端也可以称为系统、 订户单元( Subscriber Unit )、 订户站( Subscriber Station ), 移动站( Mobile Station )、 移动台( Mobile )、 远程站( Remote Station )、 接入点( Access Point )、远程终端( Remote Terminal )、接入终端( Access Terminal )、 用户终端 ( User Terminal )、 用户代理( User Agent )、 用户设备 ( User Device )、 或用户装备 ( User Equipment )。 The user equipment, which may be a wireless terminal or a wired terminal, may be a device that provides voice and/or data connectivity to the user, a handheld device with wireless connectivity, or other processing device connected to the wireless modem. The wireless terminal can communicate with one or more core networks via a radio access network (eg, RAN, Radio Access Network), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and with a mobile terminal The computers, for example, can be portable, pocket-sized, handheld, computer-integrated or in-vehicle mobile devices that exchange language and/or data with the wireless access network. For example, Personal Communication Service (PCS), Cordless Phone, Session Initiation Protocol (SIP), Wireless Local Loop (WLL, Wireless Local Loop), personal digital assistant (PDA, Personal Digital Assistant) and other devices. A wireless terminal may also be called a system, a Subscriber Unit, a Subscriber Station, a Mobile Station, a Mobile, a Remote Station, an Access Point, Remote Terminal, Access Terminal, User Terminal, User Agent, User Device, or User Equipment.
基站 (例如, 接入点)可以是指接入网中在空中接口上通过一个或多个扇 区与无线终端通信的设备。基站可用于将收到的空中帧与 IP分组进行相互转换, 作为无线终端与接入网的其余部分之间的路由器, 其中接入网的其余部分可包 括网际协议(IP ) 网络。 基站还可协调对空中接口的属性管理。  A base station (e.g., an access point) can refer to a device in an access network that communicates with a wireless terminal over one or more sectors over an air interface. The base station can be used to convert the received air frame to the IP packet as a router between the wireless terminal and the rest of the access network, wherein the remainder of the access network can include an Internet Protocol (IP) network. The base station can also coordinate attribute management of the air interface.
例如,基站可以为 2G网络中的基站控制器( Base Station Controller, BSC ), 或 3G网络中的无线网络控制器(Radio Network Controller, RNC ), 或 LTE网 络中的演进型节点 B ( evolved Node B, eNodeB )。 例如, 基站可以是 GSM或 CDMA中的基站(BTS, Base Transceiver Station ), 也可以是 WCDMA中的基 站(NodeB ), 还可以是 LTE 中的演进型基站 (NodeB 或 eNB 或 e-NodeB, evolutional Node B ), 本申请并不限定。  For example, the base station may be a Base Station Controller (BSC) in a 2G network, or a Radio Network Controller (RNC) in a 3G network, or an evolved Node B in an LTE network (evolved Node B) , eNodeB). For example, the base station may be a base station (BTS, Base Transceiver Station) in GSM or CDMA, or may be a base station (NodeB) in WCDMA, or may be an evolved base station in LTE (NodeB or eNB or e-NodeB, evolutional Node B), this application is not limited.
基站控制器, 可以是 GSM或 CDMA中的基站控制器(BSC, base station controller ), 也可以是 WCDMA 中的无线网络控制器 (RNC , Radio Network Controller ) , 本申请并不限定。  The base station controller may be a base station controller (BSC) in GSM or CDMA, or a radio network controller (RNC) in WCDMA, which is not limited in this application.
另夕卜,本文中术语"系统,,和"网络,,在本文中常被可互换使用。本文中术语"和 /或", 仅仅是一种描述关联对象的关联关系, 表示可以存在三种关系, 例如, A 和 /或 B, 可以表示: 单独存在 A, 同时存在 A和 B, 单独存在 B这三种情况。 另外, 本文中字符" /", 一般表示前后关联对象是一种"或"的关系, 在公式运算 中表示除号。  In addition, the terms "system," and "network" are used interchangeably herein. The term "and/or" in this article is merely an association describing the associated object, indicating that there can be three relationships, for example, A and / or B, which can mean: A exists separately, and both A and B exist, exist alone B these three situations. In addition, the character " /" in this article generally means that the contextual object is an "or" relationship, which represents the division in the formula operation.
本申请中, 控制信道是承载控制信息的信道。 例如, 控制信道是物理下行 控制信道 PDCCH, 或是增强物理下行控制信道 ePDCCH。 增强传输可以是重复 传输、 扩频传输、 传输时间间隔捆绑传输和功率提升传输中的一种或多种组合。 功率提升可以是发射功率提升, 也可以是功率谱密度的提升。 功率谱密度的提 升可以是信号传输占用更小的频率宽度或单载波传输或比物理资源块更小的调 度粒度 (如 15KHz)。控制信道增强传输或增强传输控制信道是对控制信道的增强 传输, 也可以是对控制信道承载的控制信道的增强传输。 控制信息可以是下行 控制信息 DCI。 DCI 可以是用于下行数据调度的控制信息, 也可以是用于上行 数据调度的控制信息。 控制信道增强传输或增强传输控制信道是指将控制信道 或控制信道在多个子帧中进行增强传输。 控制信道元素可以是控制信道元素 CCE, 也可以是增强的控制信道元素 eCCE。 In the present application, the control channel is a channel carrying control information. For example, the control channel is a physical downlink control channel PDCCH, or an enhanced physical downlink control channel ePDCCH. The enhanced transmission may be one or more combinations of repeated transmission, spread spectrum transmission, transmission time interval bundling transmission, and power boost transmission. The power boost can be either an increase in transmit power or an increase in power spectral density. The increase in power spectral density may be that signal transmission occupies a smaller frequency width or a single carrier transmission or a smaller scheduling granularity (e.g., 15 kHz) than a physical resource block. The control channel enhanced transmission or enhanced transmission control channel is an enhanced transmission of the control channel or an enhanced transmission of the control channel carried by the control channel. Control information can be down Control information DCI. The DCI may be control information for downlink data scheduling or control information for uplink data scheduling. Control channel enhanced transmission or enhanced transmission control channel refers to enhanced transmission of a control channel or a control channel in multiple subframes. The control channel element may be a control channel element CCE or an enhanced control channel element eCCE.
本申请中以增强传输是重复传输, 控制信道元素是 CCE , 控制信道是 PDCCH为例阐述本申请的方案。 需要说明的是本申请的方案同样适用于: 将实 施方式中的重复传输更换为扩频传输, 或传输时间间隔捆绑传输, 或功率提升 传输;和 /或,将实施方式中的 CCE更换为 eCCE; 和 /或,将实施方式中的 PDCCH 更换为 ePDCCH。 其中, 对于上述不同的方案的实施方法可以与下述实施方式 描述的方法相同, 而本申请不再赘述和限定。  In the present application, the enhanced transmission is repeated transmission, the control channel element is CCE, and the control channel is PDCCH as an example to illustrate the solution of the present application. It should be noted that the solution of the present application is also applicable to: replacing the repeated transmission in the embodiment with a spread spectrum transmission, or a transmission time interval bundle transmission, or a power boost transmission; and/or, replacing the CCE in the embodiment with the eCCE And/or, the PDCCH in the embodiment is replaced with an ePDCCH. The method for implementing the different solutions described above may be the same as the method described in the following embodiments, and the present application is not described or limited.
本申请中, 记 Ncc^是索引为 A的子帧(即子帧 的控制区域中总的 CCE的 数目, 且子帧 的控制区域中的 CCE的编号为 0,1, ..... , N _ \ 。 其中, 可以 根据时隙编号 得出, 如 k=floor(ns/2) ,其中 _ ¾or (^为向下取整的函数。 NccE'k 的个数至少与子帧 k 中的公共参考信号的天线端口数、 用于控制信道的正交频 分复用 OFDM符号的个数、物理混合自动重发请求指示信道配置 PHICH-Config、 确定 PHICH资源的 mi因子中的一种或多种有关。 In the present application, Ncc^ is a subframe with index A (ie, the total number of CCEs in the control region of the subframe, and the number of CCEs in the control region of the subframe is 0, 1, ..... N _ \ where can be derived from the slot number, such as k = floor(n s /2), where _ 3⁄4or (^ is a round-down function. The number of NccE ' k is at least in subframe k The number of antenna ports of the common reference signal, the number of orthogonal frequency division multiplexing OFDM symbols used for the control channel, the physical hybrid automatic repeat request indication channel configuration PHICH-Config, one of the mi factors determining the PHICH resource or A variety of related.
本申请中多个子帧是指控制信道或控制信息重复传输 X次所用的子帧。 换 而言之, 如果确定了控制信道的重复传输次数, 就等同于确定了控制信道重复 传输所用的子帧数, 反之亦然。 对应地在 UE侧, UE在检测控制信道时, 可以 根据预定的规则或信令通知配置来确定重复次数 X的值。此时, UE不需要对控 制信道重复传输的重复次数进行盲检测。 或者, UE在检测控制信道时, 可以尝 试重复次数 X的可能值。 UE需要根据控制信道重复传输的每种可能的重复次数 按照该重复次数下控制信道传输可用的聚合级别和控制信道候选对控制信道进 行检测。  In the present application, a plurality of subframes refer to subframes used for control channel or control information to be repeatedly transmitted X times. In other words, if the number of repeated transmissions of the control channel is determined, it is equivalent to determining the number of subframes used for repeated transmission of the control channel, and vice versa. Correspondingly, on the UE side, when detecting the control channel, the UE may determine the value of the repetition number X according to a predetermined rule or signaling configuration. At this time, the UE does not need to perform blind detection on the number of repetitions of the control channel repeated transmission. Alternatively, the UE may try the possible value of the repetition number X when detecting the control channel. The UE needs to detect the control channel according to the available aggregation level and control channel candidates for the control channel transmission according to the number of possible repetitions of the control channel repeated transmission.
需要说明的是, 本申请中控制信道在多个子帧中的重复传输的重复传输次 数 X包含了初始的控制信道传输, 即, 控制信道重复传输 X次包含了初始的一 次控制信道传输以及额外的 X-1次重复传输。  It should be noted that, in the present application, the number of repeated transmissions X of the repeated transmission of the control channel in multiple subframes includes the initial control channel transmission, that is, the control channel repeated transmission X times includes the initial primary control channel transmission and additional X-1 repetitions of transmission.
本申请中控制信道在子帧 A上传输可以是在一个无线帧的子帧 上传输,也 可以是在多个无线帧的子帧 上传输。 换言之, 控制信道可以在子帧索引为 k 的一个或多个子帧上重复传输, 所述子帧索引为 k的一个或多个子帧位于一个 或多个无线帧内。 The control channel transmitted in the subframe A in the present application may be transmitted on a subframe of one radio frame, or may be transmitted on a subframe of multiple radio frames. In other words, the control channel may be repeatedly transmitted on one or more subframes whose subframe index is k, and one or more subframes whose subframe index is k is located at one Or multiple radio frames.
下面结合附图对本申请的其中一个或多个实施方式进行说明。  One or more embodiments of the present application will be described below with reference to the accompanying drawings.
请参阅图 1 , 图 1是本申请控制信道的传输方法一实施方式的流程图, 本实 施方式以基站与 UE之间的实现过程进行说明 , 当然, 也可以为 UE与 UE之间 进行控制信道传输, 在此不作限定, 本实施方式传输方法包括但不限于以下步 骤。  Referring to FIG. 1 , FIG. 1 is a flowchart of an implementation manner of a method for transmitting a control channel according to the present application. This embodiment is described by using an implementation process between a base station and a UE, and of course, a control channel may be performed between the UE and the UE. The transmission method is not limited herein. The transmission method of this embodiment includes but is not limited to the following steps.
5100, 确定对控制信道进行增强传输的多个子帧。  5100. Determine a plurality of subframes for performing enhanced transmission on the control channel.
在 S100中, 多个子帧可以为同一个无线帧内的多个子帧, 也可以为多个无 线帧中的每个无线帧内的至少一个子帧所组成的多个子帧, 在此不作限定。  In S100, the multiple subframes may be multiple subframes in the same radio frame, or may be multiple subframes composed of at least one subframe in each of the plurality of radio frames, which is not limited herein.
5101 , 在多个子帧中对控制信道进行增强传输, 其中, 增强传输是重复传 输、 扩频传输、 传输时间间隔捆绑传输以及功率提升传输中的至少一种。  5101. Perform enhanced transmission on a control channel in multiple subframes, where the enhanced transmission is at least one of repeated transmission, spread spectrum transmission, transmission time interval bundling transmission, and power boost transmission.
值得注意的是, 在 S101中, 在多个子帧中的每个子帧上传输控制信道, 且 在多个子帧中的每个子帧上传输控制信道所用的第一参数都相同; 其中, 第一 参数是起始控制信道元素的编号或控制信道元素的编号。  It is noted that, in S101, a control channel is transmitted on each of the plurality of subframes, and the first parameter used for transmitting the control channel in each of the plurality of subframes is the same; wherein, the first parameter Is the number of the starting control channel element or the number of the control channel element.
在优选的实施方式中, 在基站侧: 在多个子帧中的每个子帧上传输控制信 道所用的第一参数是预先规定的; 或者, 在多个子帧中的每个子帧上传输控制 信道所用的第一参数是根据预先规定的函数关系确定的。  In a preferred embodiment, at the base station side: the first parameter used for transmitting the control channel on each of the plurality of subframes is predetermined; or, for transmitting the control channel on each of the plurality of subframes The first parameter is determined according to a predetermined functional relationship.
可选地, 在基站侧, 可以根据预先规定的一个索引确定多个子帧中的每个 子帧上传输控制信道所用的第一参数; 或者, 可以根据预先规定的两个索引确 定多个子帧中的每个子帧上传输控制信道所用的第一参数; 或者, 可以根据预 先规定的一个索引和预先规定的总 CCE数确定多个子帧中的每个子帧上传输控 制信道所用的第一参数。  Optionally, on the base station side, the first parameter used for transmitting the control channel on each of the multiple subframes may be determined according to a predetermined index; or, the multiple indexes in the multiple subframes may be determined according to two predefined indexes. The first parameter used for transmitting the control channel on each subframe; or, the first parameter used for transmitting the control channel in each of the plurality of subframes may be determined according to a predetermined index and a predetermined total number of CCEs.
在上述实现过程中,预先规定的一个索引是预先规定的一个子帧的索引, 其 中预先规定的一个子帧可以为: 多个子帧中的第 p个子帧, 其中 p是预先规定 的整数; 或, 多个子帧中有最小的总 CCE数的子帧; 或, 多个子帧中有最小的 总 CCE数的子帧中的第 q个子帧, 其中 q是预先规定的整数。  In the foregoing implementation process, a predetermined index is a predetermined index of one subframe, where a predetermined one subframe may be: a p-th subframe in multiple subframes, where p is a predetermined integer; or a subframe having a smallest total number of CCEs among the plurality of subframes; or a qth subframe of the subframes having the smallest total number of CCEs among the plurality of subframes, where q is a predetermined integer.
当然, 在具体的实施方式中, 预先规定的两个索引中的一个索引是第一预 先规定的一个子帧的索引, 其中第一预先规定的一个子帧可以是: 多个子帧中 的第 p个子帧, 其中 p是预先规定的整数; 或, 多个子帧中有最小的总 CCE数 的子帧的子帧索引; 或,多个子帧中有最小的总 CCE数的子帧中的第 q个子帧, 其中 q是预先规定的整数。 此外, 预先规定的两个索引中的另一个索引是第二 预先规定的一个子帧的索引, 其中第二预先规定的一个子帧可以是: 多个子帧 中的第 r个子帧, 其中 r是预先规定的整数; 或, 多个子帧中有最小的总 CCE 数的子帧的子帧索引; 或, 多个子帧中有最小的总 CCE数的子帧中的第 w个子 帧, 其中 w是预先规定的整数。 Certainly, in a specific implementation, one of the two predefined indexes is an index of the first predetermined one subframe, where the first predetermined one subframe may be: the pth in the multiple subframes a subframe, where p is a predetermined integer; or, a subframe index of a subframe having a smallest total number of CCEs among the plurality of subframes; or a qth of the subframes having the smallest total number of CCEs among the plurality of subframes Subframes, where q is a predetermined integer. In addition, the other of the two predefined indexes is the second a predetermined index of one subframe, wherein the second predetermined one subframe may be: the rth subframe of the plurality of subframes, where r is a predetermined integer; or, the smallest total CCE among the plurality of subframes a subframe index of the number of subframes; or, the wth subframe in the subframe having the smallest total number of CCEs among the plurality of subframes, where w is a predetermined integer.
需要说明的是, 本实施方式中根据预先规定的一个索引和预先规定的总 CCE数确定多个子帧中的每个子帧上传输控制信道所用的第一参数中, 预先规 定的总 CCE数可以是多个子帧中的有最小或最大的总 CCE数的子帧中的总 CCE数。  It should be noted that, in the first embodiment, the first parameter used for transmitting the control channel in each of the plurality of subframes is determined according to a predetermined index and a predetermined total number of CCEs, and the predetermined total number of CCEs may be The total number of CCEs in a subframe having the smallest or largest total number of CCEs among the plurality of subframes.
其中,传输控制信道所用的第一参数还可以满足一个确定的范围, 以使调度 专有数据的控制信道占用的控制信道元素与调度公共数据的控制信道占用的控 制信道元素没有资源交叠; 或者, 传输控制信道所用的第一参数还可以满足一 个确定的范围, 以使调度专有数据的控制信道占用的控制信道元素与公共搜索 空间中的控制信道元素没有资源交叠。  The first parameter used for transmitting the control channel may also satisfy a certain range, so that the control channel element occupied by the control channel for scheduling the dedicated data does not overlap with the control channel element occupied by the control channel for scheduling the common data; or The first parameter used for transmitting the control channel may also satisfy a certain range such that the control channel elements occupied by the control channel scheduling the dedicated data have no resource overlap with the control channel elements in the common search space.
不难看出, 通过上述过程确定了在多个子帧中进行控制信道的增强传输时 控制信道在每一个子帧内的所用 CCE的编号相同, 从而降低调度复杂度和 UE 盲检测复杂度。  It is not difficult to see that the above process determines that the CCEs of the control channel in each subframe are the same when the enhanced transmission of the control channel is performed in multiple subframes, thereby reducing scheduling complexity and UE blind detection complexity.
在具体的方式中, 在多个子帧中对控制信道进行增强传输时: 多个子帧中 的每个子帧均不为 MBSFN ( Multicast Broadcast Single Frequency Network, 多播 组播单频网络)子帧; 或, 多个子帧中的每个子帧均为 MBSFN子帧; 或对于帧 结构类型 2, 多个子帧中的每个子帧为 MBSFN子帧, 或子帧 1 , 或子帧 6。  In a specific manner, when the control channel is enhanced and transmitted in multiple subframes: each of the multiple subframes is not an MBSFN (Multicast Broadcast Single Frequency Network) subframe; or Each of the plurality of subframes is an MBSFN subframe; or for the frame structure type 2, each of the plurality of subframes is an MBSFN subframe, or a subframe 1, or a subframe 6.
举例而言, 在多个子帧中对控制信道进行增强传输时: 多个子帧中的子帧 索引属于 {0,4,5,9}的子帧中有 CFI个 OFDM符号用于控制信道, 且多个子帧中 的子帧索引不属于 {0,4,5,9}的子帧中有两个 OFDM符号用于控制信道; 或, 对 于帧结构类型 2, 多个子帧中的子帧索引属于 {0,5}的子帧中有 CFI个 OFDM符 号用于控制信道, 且多个子帧中的子帧索引不属于 {0,5}的子帧中有两个 OFDM 符号用于控制信道。 其中, CFI的值为 3或 4。  For example, when performing enhanced transmission on a control channel in multiple subframes: a subframe index in a plurality of subframes belongs to a subframe of {0, 4, 5, 9}, and CFI OFDM symbols are used for a control channel, and There are two OFDM symbols in the subframe in which the subframe index in the plurality of subframes does not belong to {0, 4, 5, 9} are used for the control channel; or, for the frame structure type 2, the subframe index in the plurality of subframes belongs to There are CFI OFDM symbols in the subframe of {0, 5} for the control channel, and there are two OFDM symbols in the subframe in which the subframe index in the plurality of subframes does not belong to {0, 5} is used for the control channel. Among them, the value of CFI is 3 or 4.
再如, 在多个子帧中对控制信道进行增强传输时: 当控制信道进行增强传 输所釆用的载波的带宽属于第一带宽范围时, 多个子帧的每个子帧中有 u 个 OFDM符号用于控制信道或数据信道; 当控制信道进行增强传输所釆用的载波 的带宽属于第二带宽范围时, 多个子帧的每个子帧中有 V个 OFDM符号用于控 制信道或数据信道。 其中, 第一带宽范围和第二带宽范围为预定的带宽范围, 且第一带宽范围和第二带宽范围互不相交, U和 V为自然数, 且 U不等于 V。 示例一, 本申请也可以对控制信道在多个子帧中增强传输所用的多个子帧 做限定, 从而确定在多个子帧中进行控制信道的增强传输时控制信道在每一个 子帧内的所用的资源和 /或资源位置是相同的, 具体的实现过程如下。 For example, when the control channel is enhanced in multiple subframes: when the bandwidth of the carrier used for the enhanced transmission of the control channel belongs to the first bandwidth range, there are u OFDM symbols in each subframe of the multiple subframes. On the control channel or the data channel; when the bandwidth of the carrier used for the enhanced transmission of the control channel belongs to the second bandwidth range, there are V OFDM symbols in each subframe of the multiple subframes for the control channel or the data channel. The first bandwidth range and the second bandwidth range are predetermined bandwidth ranges. And the first bandwidth range and the second bandwidth range do not intersect each other, U and V are natural numbers, and U is not equal to V. For example, the present application may also define multiple subframes used by the control channel for enhanced transmission in multiple subframes, thereby determining the use of the control channel in each subframe when performing enhanced transmission of the control channel in multiple subframes. The resources and/or resource locations are the same, and the specific implementation process is as follows.
在多个子帧中对控制信道进行增强传输, 多个子帧中的每个子帧内的公共 参考信号的天线端口数可以相同; 和 /或, 用于控制信道的 OFDM ( Orthogonal Frequency Division Multiplex,正交频分复用)符号的个数可以相同; 和 /或, PHICH ( Physical Hybrid ARQ Indicator Channel, 物理混合自动重发请求 指示信道 ) -Config (配置)可以相同; 和 /或, 帧结构类型 2中用于确定 PHICH资 源的 mi因子可以相同;和 /或,釆用的循环前缀可以相同;和 /或, PHICH-duration 均为 normal„  The control channel is enhanced in a plurality of subframes, and the number of antenna ports of the common reference signal in each of the plurality of subframes may be the same; and/or OFDM for the control channel (Orthogonal Frequency Division Multiplex) The number of symbols may be the same; and/or PHICH (Physical Hybrid ARQ Indicator Channel) - Config may be the same; and/or frame structure type 2 The mi factors used to determine PHICH resources may be the same; and/or, the cyclic prefixes used may be the same; and/or, PHICH-duration is normal „
通过上述多个子帧的限定, 确定了在多个子帧中进行控制信道的增强传输 时控制信道在每一个子帧内的所用的资源和 /或资源位置相同, 便于对 UE的控 制信道分配或映射,也便于 UE进行控制信道的检测等, 降低了系统调度的复杂 度和检测的复杂度。  Through the limitation of the foregoing multiple subframes, it is determined that when the enhanced transmission of the control channel is performed in the multiple subframes, the used resources and/or resource locations of the control channel in each subframe are the same, which facilitates control channel allocation or mapping to the UE. It also facilitates the UE to perform control channel detection, etc., which reduces the complexity of system scheduling and the complexity of detection.
下面将通过具体的实施方式对本申请作进一步的说明。  The application will be further described below by way of specific embodiments.
在多个子帧中重复传输控制信道时, 多个子帧的时刻是需要确定的。 多个 子帧的时刻可以是系统预先规定的或根据信令通知的参数确定或盲检测确定。 控制信道在所述确定的多个子帧内的每个子帧上进行重复传输。  When the control channel is repeatedly transmitted in a plurality of subframes, the timing of the plurality of subframes needs to be determined. The time of the plurality of subframes may be predetermined by the system or determined according to the parameterized parameters of the signaling or the blind detection. The control channel performs repeated transmissions on each of the determined plurality of subframes.
特别地, 在多个子帧中的每个子帧上传输控制信道所用的聚合级别都相同。 即, 在多个子帧中的任意两个子帧上传输控制信道所用的聚合级别都相同。 记 在多个子帧中的每个子帧上传输控制信道所用的聚合级别是 。其中 L的值是预 先设定的一个或多个固定值。 如预先固定 =8。 再如, 预先规定 8)集合。 特 别地, 控制信道是 PDCCH时 L的取值集合, 与控制信道是 ePDCCH时 L的取 值集合不同。如,当控制信道是 PDCCH时 =8或 I4'8),而当控制信道是 ePDCCH 时 =16或 {1632}。 In particular, the aggregation level used to transmit the control channel on each of the plurality of subframes is the same. That is, the aggregation level used to transmit the control channel on any two of the plurality of subframes is the same. The aggregation level used to transmit the control channel on each of the plurality of subframes is. Wherein the value of L is one or more fixed values set in advance. If fixed in advance = 8. For another example, 8 ) sets in advance. In particular, the control channel is a set of values of L at the time of the PDCCH, and is different from the set of values of L when the control channel is ePDCCH. For example, when the control channel is PDCCH = 8 or I 4 ' 8 ), and when the control channel is ePDCCH = 16 or { 16 , 32 }.
特别地, 在多个子帧中的每个子帧内的聚合级别 L对应的搜索空间中传输 控制信道所用的控制信道候选索引都相同。 即, 在多个子帧中的任意两个子帧 内的聚合级别 L对应的搜索空间中传输控制信道所用的控制信道候选索引都相 同。 记在聚合级别 对应的搜索空间中的控制信道候选索引为 m, 则, 在多个 子帧中的每一个子帧内的聚合级别 对应的搜索空间中传输控制信道所用的控 制信道候选索引均为 m。 其中, m的值可以是预先设定的一个或多个固定值, 如 m=0, 或预先规定^ {W}或 123。 在其他实施方式中, 也可以规定 m的取 值集合与聚合级别 L相关, 也可以规定 m的取值集合与聚合级别 L无关。 Specifically, the control channel candidate indexes used for transmitting the control channel in the search space corresponding to the aggregation level L in each of the plurality of subframes are the same. That is, the control channel candidate indices used for transmitting the control channel in the search space corresponding to the aggregation level L in any two of the plurality of subframes are the same. The control channel candidate index in the search space corresponding to the aggregation level is m, and then the control used to transmit the control channel in the search space corresponding to the aggregation level in each of the plurality of subframes The channel candidate indices are all m. Wherein, the value of m may be one or more fixed values preset, such as m=0, or pre-specified ^ {W} or 1 , 2 , 3 . In other embodiments, the set of values of m may be specified to be related to the aggregation level L, or the set of values of m may be specified regardless of the aggregation level L.
特别地, 多个子帧中的每个子帧中的公共参考信号的天线端口数相同。 基 站在发送重复的控制信道时, 多个子帧中的每个子帧中按照天线端口数为 2对 公共参考信号所用的资源元素预留。 或者, 基站在发送重复的控制信道时, 多 个子帧中的每个子帧中按照天线端口数为 4对公共参考信号所用的资源元素预 留。 类似地, 在 UE侧, UE在接收重复的控制信道时, 认为多个子帧中的每个 子帧中按照天线端口数为 2对公共参考信号所用的资源元素预留; 或者, UE在 接收重复的控制信道时, 认为多个子帧中的每个子帧中按照天线端口数为 4对 公共参考信号所用的资源元素预留。  In particular, the number of antenna ports of the common reference signal in each of the plurality of subframes is the same. When the base station transmits the repeated control channel, each of the plurality of subframes is reserved for the resource elements used by the common reference signal according to the number of antenna ports. Alternatively, when the base station transmits the repeated control channel, each of the plurality of subframes is reserved for the resource elements used by the common reference signal according to the number of antenna ports. Similarly, on the UE side, when receiving the repeated control channel, the UE considers that each of the multiple subframes is reserved according to the number of antenna ports of 2 for the resource elements used by the common reference signal; or, the UE receives the repeated When the channel is controlled, it is considered that each of the plurality of subframes is reserved according to the resource element used for the common reference signal by 4 antenna ports.
特别地, 多个子帧中的每个子帧中用于控制信道的正交频分复用 OFDM符 号的个数相同。如, 多个子帧中的每个子帧中有 2个 OFDM符号用于控制信道; 或者, 多个子帧中的每个子帧中有 3个 OFDM符号用于控制信道; 或者, 多个 子帧中的每个子帧中有 4个 OFDM符号用于控制信道。  Specifically, the number of orthogonal frequency division multiplexing OFDM symbols used for the control channel in each of the plurality of subframes is the same. For example, there are 2 OFDM symbols in each of the plurality of subframes for the control channel; or, 3 OFDM symbols in each of the plurality of subframes are used for the control channel; or, each of the plurality of subframes There are 4 OFDM symbols in the subframe for the control channel.
特别地, 多个子帧的子帧由多个子帧集合构成, 且不同的子帧集合所包含 的子帧中用于控制信道或数据信道的 OFDM符号个数不相同。 其中, 多个子帧 的集合可以是预先规定的。 例如, 多个子帧中的子帧由 2个子帧集合构成, 分 别是第一子帧集合和第二子帧集合, 且第一子帧集合和第二子帧集合是不同的 集合。 第一子帧集合中的每个子帧中有 u个 OFDM符号用于控制信道, 第二子 帧集合中的每个子帧中有 V个 OFDM符号用于控制信道, 这里 u,v是正整数, 且 u不等于 V。  In particular, the subframes of the plurality of subframes are composed of a plurality of subframe sets, and the number of OFDM symbols used for the control channel or the data channel in the subframes included in the different subframe sets is different. The set of multiple subframes may be predetermined. For example, a subframe in a plurality of subframes is composed of a set of 2 subframes, which are a first subframe set and a second subframe set, respectively, and the first subframe set and the second subframe set are different sets. Each of the first subframe set has u OFDM symbols for the control channel, and each of the second subframe set has V OFDM symbols for the control channel, where u, v are positive integers, and u is not equal to V.
例如, 多个子帧中的每个非 MBSFN子帧中有 3个 OFDM符号用于控制信 道, 而多个子帧中的每个 MBSFN子帧中有 2个 OFDM符号用于控制信道。 例 如, 多个子帧中的每个非 MBSFN子帧中有 4个 OFDM符号用于控制信道, 而 多个子帧中的每个 MBSFN子帧中有 2个 OFDM符号用于控制信道。  For example, there are 3 OFDM symbols in each of the plurality of subframes for the control channel, and 2 of the OFDM symbols in each of the plurality of subframes are used for the control channel. For example, there are 4 OFDM symbols in each of the plurality of subframes for the control channel, and 2 of the OFDM symbols in each of the plurality of subframes are used for the control channel.
可选地, 对于帧结构类型 1 , 多个子帧中的子帧索引可以属于 {0,4,5,9}的子 帧中有 3个或 4个 OFDM符号用于控制信道, 而多个子帧中的子帧索引不属于 {0,4,5,9}的子帧中有 2个 OFDM符号用于控制信道。 而对于帧结构类型 2, 多个 子帧中的子帧索引属于 {0,5}的子帧中有 3个或 4个 OFDM符号用于控制信道, 且多个子帧中的子帧索引不属于 {0,5}的子帧中有 2个 OFDM符号用于控制信 道。 需要说明的是, 由于 MBSFN子帧的配置是基站配置, 因此本实施方式可以 适用于 UE还不知道 MBSFN子帧的配置时,接收控制信道。如所述控制信道是: 调度包含 MBSFN 子帧配置的系统信息块(譬如 SIB2, System Information Block-2, 系统信息块 2)的控制信道或调度包含 TDD ( Time Division Duplex, 时 分双工 ) 配置的系统信息块 (譬如 SIB1)的控制信道。 Optionally, for the frame structure type 1, the subframe index in the multiple subframes may belong to the {0, 4, 5, 9} subframe, and there are 3 or 4 OFDM symbols used for the control channel, and the multiple subframes There are 2 OFDM symbols in the subframe in which the subframe index does not belong to {0, 4, 5, 9} for the control channel. And for the frame structure type 2, three or four OFDM symbols in the subframe in which the subframe index in the plurality of subframes belongs to {0, 5} are used for the control channel, and the subframe index in the plurality of subframes does not belong to { There are 2 OFDM symbols in the subframe of 0, 5} for the control letter. Road. It should be noted that since the configuration of the MBSFN subframe is a base station configuration, the present embodiment can be applied to the case where the UE does not know the configuration of the MBSFN subframe, and receives the control channel. The control channel is: a control channel or a schedule for scheduling a system information block (such as SIB2, System Information Block-2, System Information Block 2) including an MBSFN subframe configuration, including a TDD (Time Division Duplex) configuration The control channel of a system information block (such as SIB1).
举例而言, 每个非 MBSFN子帧中有 3个 OFDM符号用于控制信道, 多个 子帧中的每个 MBSFN子帧中有 2个 OFDM符号用于控制信道。 对于帧结构类 型 2, 若多个子帧中还包括子帧 1和 /或子帧 6, 则多个子帧中的每个子帧 1和 / 或子帧 6中有 2个 OFDM符号用于控制信道。  For example, there are 3 OFDM symbols in each non-MBSFN subframe for the control channel, and 2 OFDM symbols in each MBSFN subframe in the plurality of subframes are used for the control channel. For frame structure type 2, if subframe 1 and/or subframe 6 are also included in multiple subframes, then 2 subframes in each of subframes 1 and/or subframe 6 of the plurality of subframes are used for the control channel.
再如, 当载波的带宽属于第一带宽范围, 则, 多个子帧中的每个子帧中有 u 个 OFDM符号用于控制信道或数据信道,而当载波的带宽属于第二带宽范围时, 多个子帧中的每个子帧中有 V个 OFDM符号用于控制信道或数据信道。 如前所 述, 本实施方式中第一带宽范围和第二带宽范围是预先规定的带宽范围, 且第 一带宽范围和第二带宽范围是不同的带宽范围,而 u,v是自然数,且 u不等于 V。  For example, when the bandwidth of the carrier belongs to the first bandwidth, there are u OFDM symbols in each of the multiple subframes for the control channel or the data channel, and when the bandwidth of the carrier belongs to the second bandwidth, There are V OFDM symbols in each of the sub-frames for the control channel or data channel. As described above, in the embodiment, the first bandwidth range and the second bandwidth range are predetermined bandwidth ranges, and the first bandwidth range and the second bandwidth range are different bandwidth ranges, and u, v are natural numbers, and u Not equal to V.
再如, 对于大带宽载波, 如大于 1.4MHz ( Mega Hertz, 兆赫兹) 的载波, 多个子帧中的每个非 MBSFN子帧中有 3个 OFDM符号用于控制信道, 而对于 小带宽载波, 如小于 1.4MHz载波, 多个子帧中的每个非 MBSFN子帧中有 4个 OFDM符号用于控制信道。 或者, 对于大带宽载波, 如大于 1.4MHz载波, 多 个子帧中的每个非 MBSFN子帧中有 2个 OFDM符号用于控制信道, 对于小带 宽载波, 如小于 1.4MHz载波, 则多个子帧中的每个非 MBSFN子帧中有 3个 OFDM符号用于控制信道。 若多个子帧中还包括 MBSFN子帧, 则多个子帧中 的每个 MBSFN子帧中有 2个 OFDM符号用于控制信道。  For example, for a large bandwidth carrier, such as a carrier larger than 1.4 MHz ( Mega Hertz, megahertz), there are 3 OFDM symbols in each of the plurality of subframes for the control channel, and for the small bandwidth carrier, As less than a 1.4 MHz carrier, there are 4 OFDM symbols in each of the plurality of subframes for the control channel. Or, for a large bandwidth carrier, such as a carrier larger than 1.4 MHz, there are 2 OFDM symbols in each of the plurality of subframes for the control channel, and for the small bandwidth carrier, such as less than 1.4 MHz carrier, multiple subframes There are 3 OFDM symbols in each non-MBSFN subframe in the control channel. If the MBSFN subframe is further included in the plurality of subframes, there are 2 OFDM symbols in each of the plurality of subframes for the control channel.
特别地, 多个子帧中的每个子帧的 PHICH-Config相同。 其中, 本实施方式 的 PHICH-Config包括 PHICH-持续 PHICH-Duration的信息元素和 PHICH资源 Resource 的信息元素。 通常, PHICH-Config 包含在 MIB ( Master Information Block, 主信息块) 中。 因此, 在重复传输控制信道的多个子帧中, 基站在发送 控制信道时认为 MIB包含的 PHICH-Config不发生改变; 相应地, 在重复传输 控制信道的多个子帧中, UE侧在接收控制信道时认为 MIB包含的 PHICH-Config 不发生改变。  In particular, the PHICH-Config of each of the plurality of subframes is the same. The PHICH-Config of the present embodiment includes an information element of a PHICH-continuous PHICH-Duration and an information element of a PHICH resource Resource. Usually, PHICH-Config is included in the MIB (Master Information Block). Therefore, in a plurality of subframes in which the control channel is repeatedly transmitted, the base station considers that the PHICH-Config included in the MIB does not change when transmitting the control channel; accordingly, in a plurality of subframes in which the control channel is repeatedly transmitted, the UE side is receiving the control channel. It is considered that the PHICH-Config included in the MIB does not change.
特别地, 对于帧结构类型 2, 多个子帧中的每个子帧中用于确定 PHICH资 源的 mi因子相同。 mi的大小可以是根据预先规定确定的。如预先规定在控制信 道重复传输多个子帧中起始子帧的 mi确定了多个子帧中的每个子帧的 mi。 若 UE确定了控制信道重复传输多个子帧中起始子帧的 mi ,则根据多个子帧中的每 个子帧中用于确定 PHICH资源的 mi因子相同, 就确定了控制信道重复传输多 个子帧中其他子帧的 mi。或者, 多个子帧中的每个子帧中用于确定 PHICH资源 的 mi因子可以通过信令配置。 特别地, 本实施方式 mi的值是由 MIB通知确定 配置。 特别地, UE在接收调度包含了 TDD配置的系统信息块 (如 SIB1)的控制 信道时, 还不知道 TDD的上下行配置, 因此不能确定承载所述控制信道的子帧 的 mi。 为此, 本实施方式可以在 MIB中指示承载调度包含了 TDD配置的系统 信息块 (如 SIB1)的控制信道的子帧的 mi。相应地,在 UE侧, 当 UE检测出 MIB 后, 就可以确定调度包含了 TDD配置的系统信息块 (SIB1)的控制信道重复传输 的子帧的 mi, 从而根据确定的 mi检测控制信道。 另外, UE可以尝试可能的 mi值, 盲检测控制信道。 如, 若调度 SIB1的控制信道在子帧 5上传输, 因为在 子帧 5上 mi的值可能为 0,1,2, 因此 UE需要尝试不同的 mi值来检测 PDCCH。 In particular, for frame structure type 2, the mi factors for determining PHICH resources in each of the plurality of subframes are the same. The size of mi can be determined according to advance regulations. As specified in the control letter The repeating transmission of the mi of the starting subframe in the plurality of subframes determines the mi of each of the plurality of subframes. If the UE determines that the control channel repeatedly transmits the mi of the starting subframe in the multiple subframes, determining that the control channel repeatedly transmits the multiple subframes according to the same mi factor for determining the PHICH resource in each of the multiple subframes. Mi in other subframes. Alternatively, the mi factor for determining the PHICH resource in each of the plurality of subframes may be configured by signaling. In particular, the value of the present embodiment mi is determined by the MIB notification configuration. In particular, when receiving the control channel of the system information block (such as SIB1) that includes the TDD configuration, the UE does not know the uplink and downlink configuration of the TDD, and therefore cannot determine the mi of the subframe that carries the control channel. To this end, the present embodiment may indicate in the MIB that the bearer of the control channel of the control channel including the system information block (such as SIB1) of the TDD configuration is scheduled. Correspondingly, on the UE side, after the UE detects the MIB, it may determine that mi of the subframe in which the control channel repeat transmission of the system information block (SIB1) of the TDD configuration is scheduled, so as to detect the control channel according to the determined mi. In addition, the UE can blindly detect the control channel by attempting a possible mi value. For example, if the control channel scheduling SIB1 is transmitted on subframe 5, since the value of mi may be 0, 1, 2 in subframe 5, the UE needs to try different mi values to detect the PDCCH.
特别地, 多个控制信道重复传输的子帧中的每个子帧的循环前缀都相同。 如多个控制信道重复传输的子帧中的每个子帧的循环前缀都是正常循环前缀。 或者, 多个控制信道重复传输的子帧中的每个子帧的循环前缀都是扩展循环前 缀。  In particular, the cyclic prefix of each of the subframes in which the plurality of control channels are repeatedly transmitted is the same. The cyclic prefix of each subframe in a subframe that is repeatedly transmitted as a plurality of control channels is a normal cyclic prefix. Alternatively, the cyclic prefix of each of the subframes in which the plurality of control channels are repeatedly transmitted is an extended cyclic prefix.
若 MIB中的 PHICH配置不变, 对于帧结构类型 1 , 不同无线帧的子帧 的 PHICH配置和资源大小相同。对于帧结构类型 2,若 MIB中的 PHICH配置不变, TDD上下行配置不变, 则不同无线帧的子帧 的 mi相同。  If the PHICH configuration in the MIB is unchanged, for the frame structure type 1, the PHICH configuration and the resource size of the subframes of different radio frames are the same. For frame structure type 2, if the PHICH configuration in the MIB is unchanged and the TDD uplink and downlink configuration is unchanged, the subframes of different radio frames have the same mi.
本申请为了确定控制信道元素的编号, 优选地可以通过下述过程实现。 在本实施方式中, 在多个子帧中的每个子帧上传输控制信道所用的第一参 数都相同, 即, 在多个子帧中的任意两个子帧上传输控制信道所用的第一参数 都相同。 如, 第一参数是起始控制信道元素的编号, 记在多个子帧中的每一个 子帧上传输控制信道所用的起始控制信道元素的编号是 n。。 其中, n。是可以是 预先规定的值, 或者 n。是根据预先规定的函数关系确定。 特别地, 本实施方式 可以规定 n0的值满足一个确定的范围,以使调度专有数据的 PDCCH占用的 CCE 资源与调度公共数据的 PDCCH占用的 CCE资源没有交叠或资源碰撞, 或者调 度专有数据的 PDCCH占用的 CCE资源不在公共搜索空间。 特别地, 如规定 n0 大于 15。 In order to determine the number of the control channel element, the present application can preferably be implemented by the following process. In this embodiment, the first parameters used for transmitting the control channel in each of the plurality of subframes are the same, that is, the first parameters used for transmitting the control channel in any two of the plurality of subframes are the same. . For example, the first parameter is the number of the initial control channel element, and the number of the initial control channel element used to transmit the control channel on each of the plurality of subframes is n. . Where n. It can be a pre-specified value, or n. It is determined according to a predetermined functional relationship. In particular, the embodiment may specify that the value of n 0 satisfies a certain range, so that the CCE resource occupied by the PDCCH scheduling the dedicated data does not overlap or the CCE resource occupied by the PDCCH scheduling the public data, or the scheduling The CCE resources occupied by the PDCCH with data are not in the common search space. In particular, it is specified that n 0 is greater than 15.
可选地, 第一参数是控制信道元素的编号。 本实施方式在多个子帧中的每 个子帧上传输控制信道所用的 (聚合级别 L个)控制信道元素的编号都相同。 即, 在多个子帧中的任意两个子帧上传输控制信道所用的聚合级别 L个控制信道元 素的编号都相同。 记在多个子帧中的每一个子帧上传输控制信道所用的控制信 道元素的编号是 ηο, , ...... ,ηζ-1 , 其中, 所述 L 个控制信道元素的编号 n0,nl5...... ,η^可以是预先规定的值, 或者 ηο,ι^, ...... ,η^是根据预先规定的函数 关系确定。 Optionally, the first parameter is a number of a control channel element. This embodiment is in each of a plurality of subframes The number of the (aggregation level L) control channel elements used to transmit the control channel on each subframe is the same. That is, the number of aggregation level L control channel elements used to transmit the control channel on any two of the plurality of subframes is the same. The number of the control channel element used to transmit the control channel on each of the plurality of subframes is ηο, , . . . , η ζ-1 , where the number of the L control channel elements is n 0 , n l5 ...... , η^ may be a predetermined value, or ηο, ι^, ..., η^ is determined according to a predetermined functional relationship.
本实施方式中可以根据预先规定的一个索引确定多个子帧中的每个子帧上 传输控制信道所用的第一参数。  In this embodiment, the first parameter used for transmitting the control channel in each of the plurality of subframes may be determined according to a predetermined index.
举例而言, 定义预先规定的一个索引为 Α的值是预先规定的。 譬如, 规 定^ 0。 再如, 的值是根据预先规则确定的。 如, 是预先规定的一个子帧的 子帧索引。 如, 预先规定的一个子帧是多个子帧中的第 p个子帧, 其中 p是预 先规定的整数。 再如, 预先规定的一个子帧是重复传输控制信道的多个子帧中 有最小或最大的总 CCE数的子帧。 因此 是重复传输控制信道的多个子帧中有 最小或最大的总 CCE数的子帧的子帧索引。 再如, 预先规定的一个子帧是重复 传输控制信道的多个子帧中有最小或最大的总 CCE数的子帧中的第 q个子帧。 q是预先规定的整数, 如 q=l。 因此 是重复传输控制信道的多个子帧中有最小 的总 C C E数的子帧中的第 q个子帧的子帧索引。  For example, defining a pre-specified index with a value of Α is pre-specified. For example, the rule ^ 0. Again, the value is determined according to the pre-rules. For example, it is a sub-frame index of a predetermined subframe. For example, a predetermined one subframe is the pth subframe of the plurality of subframes, where p is a predetermined integer. For another example, a predetermined one subframe is a subframe having a minimum or maximum total number of CCEs among a plurality of subframes of the repeated transmission control channel. Therefore, the subframe index of the subframe having the smallest or largest total CCE number among the plurality of subframes of the transmission control channel is repeatedly transmitted. For another example, the predetermined one subframe is the qth subframe in the subframe having the smallest or largest total CCE number among the plurality of subframes of the repeated transmission control channel. q is a predetermined integer, such as q=l. Therefore, it is a subframe index of the qth subframe in the subframe having the smallest total C C E number among the plurality of subframes of the transmission control channel.
本实施方式可以根据预先规定的一个索引 k可以确定在多个子帧中的每一 个子帧内的控制信道传输所用的起始控制信道元素的编号 nQ或控制信道元素编 号 no ,…… ,ni-l o In this embodiment, the number n Q of the initial control channel element used for control channel transmission in each of the plurality of subframes or the control channel element number no, . . . , n may be determined according to a predetermined index k. Il o
Πι= Ζχ { (Yk + m') mod [_NCCE>k / 」 }+ (式 1 ) Πι= Ζχ { (Y k + m') mod [_N CCE>k / ” }+ (Formula 1)
其中, i为整数 0,1..丄 -1 ; 为在多个子帧中的每一个子帧内的控制信道传 输所用的第 i+1个控制信道元素的编号; k为预先规定的一个索引; m是聚合级 别 L对应的搜索空间中的控制信道候选索引, 且 Μ = Ο · · · Μ(" - Ι , Μ(£)为预定的聚 合级别 L对应的搜索空间内控制信道候选的数目; 对于公共搜索空间 = 对 于用户设备 UE特定的搜索空间且 UE没有被配置载波标识字段时 = 对于Where i is an integer 0,1..丄-1; is the number of the i+1th control channel element used for control channel transmission in each of the plurality of subframes; k is a predetermined index m is the control channel candidate index in the search space corresponding to the aggregation level L, and Μ = Ο · · · Μ ( " - Ι , Μ (£) is the number of control channel candidates in the search space corresponding to the predetermined aggregation level L For public search space = for user equipment UE-specific search space and the UE is not configured with the carrier identification field = for
UE特定的搜索空间而 UE被配置载波标识字段时 ' = + M ' "C/ "c/为载波指 示字段的值; mod为求模函数; / ^为对 ^ccE 向下取整; Ncce k为索引 为 k的子帧的控制信道元素总数; ί^ Ί^ο^ , ^ = 39827 , £) = 65537 , %NTI 为无线网络临时标识符 RNTI的值。 子帧上传输控制信道所用的起始控制信道元素的编号或聚合级别 L个控制信道 元素的编号。 'UE + M '"C/"c/ is the value of the carrier indication field when the UE is configured with the carrier identification field; mod is the modulo function; / ^ is rounded down to ^ccE; N cce k is the total number of control channel elements of the subframe with index k; ί^ Ί^ο^ , ^ = 39827 , £) = 65537 , %NTI is the value of the wireless network temporary identifier RNTI. The number of the initial control channel element used to transmit the control channel on the subframe or the number of the aggregation level L control channel elements.
记预先规定的两个索引分别为 A ^ fe7。 A的值是预先规定的。 如规定 /^0。 或者, 的值是根据预先规则确定的。 如, 是预先规定的一个子帧的子帧索引。 如, 预先规定的一个子帧是重复传输控制信道的多个子帧中的第 p个子帧, 而 p 是预先规定的整数。如 p=l。 因此 是重复传输控制信道的多个子帧中的第 p个 子帧的子帧索引。  The two pre-specified indexes are A ^ fe7. The value of A is predetermined. For example, /^0. Or, the value is determined according to the pre-rules. For example, it is a sub-frame index of a predetermined subframe. For example, one of the predetermined subframes is the p-th subframe of the plurality of subframes in which the control channel is repeatedly transmitted, and p is a predetermined integer. Such as p = l. Therefore, the subframe index of the pth subframe in the plurality of subframes of the transmission control channel is repeatedly transmitted.
预先规定的另一个索引 ^的值是预先规定的。如规定 /^=0。 或者, ^的值 是根据预先规则确定的。 如, 是预先规定的一个子帧的子帧索引。 预先规定的 一个子帧是重复传输控制信道的多个子帧中有最小或最大的总 CCE数的子帧。 因此/ ^是重复传输控制信道的多个子帧中有最小或最大的总 CCE数的子帧的子 帧索引。 再如, 预先规定的一个子帧是重复传输控制信道的多个子帧中有最小 或最大的总 CCE数的子帧中的第 q个子帧, q是预先规定的整数。 如 q=l。 因 此 ka是重复传输控制信道的多个子帧中有最小的总 CCE数的子帧中的第 q个子 帧的子帧索引。  The value of another pre-specified index ^ is pre-specified. For example, /^=0. Alternatively, the value of ^ is determined according to pre-rules. For example, it is a sub-frame index of a predetermined subframe. One of the predetermined subframes is a subframe having the smallest or largest total number of CCEs among the plurality of subframes of the repeated transmission control channel. Therefore / ^ is the subframe index of the subframe having the smallest or largest total number of CCEs among the plurality of subframes of the repeated transmission control channel. For another example, a predetermined one subframe is a qth subframe in a subframe having a minimum or maximum total number of CCEs among a plurality of subframes of the repeated transmission control channel, and q is a predetermined integer. Such as q = l. Therefore, ka is a subframe index of the qth subframe in the subframe having the smallest total number of CCEs among the plurality of subframes of the transmission control channel.
根据预先规定的两个子帧的索引 和 ^可以确定 nQ或 ηο, , ...... ,ni-l o 如, n,= x { (Yk + m') mod L^CCE)ifl / 」 }+ (式 2 ) According to the pre-specified index of two subframes and ^ can determine n Q or ηο, , ..., n il o such as, n, = x { (Y k + m') mod L^ CCE) ifl / }+ (Formula 2)
其中, 式 2中的参数解释如式 1 , 这里不再赘述。  The parameters in Equation 2 are interpreted as Equation 1, and are not described here.
当然, 本实施方式还可以根据预先规定的一个索引和预先规定的总 CCE数 确定多个子帧中的每个子帧上传输控制信道所用的起始控制信道元素的编号或 聚合级别 L个控制信道元素的编号。  Certainly, the embodiment may further determine, according to a predetermined index and a predetermined total number of CCEs, a number of the initial control channel element used for transmitting the control channel in each of the multiple subframes or an aggregation level L control channel elements. The number.
具体而言,记预先规定的一个索引为 ^ A的值是预先规定的。如,规定 0。 或者, 的值是根据预先规则确定的。 如, 是预先规定的一个子帧的子帧索引。 如, 预先规定的一个子帧是重复传输控制信道的多个子帧中的第 p个子帧。 p是 预先规定的整数。 如, p=l。 因此 是重复传输控制信道的多个子帧中的第 p个 子帧的子帧索引。 记预先规定的总 CCE数为 WcCE。 其中, WCCE可以等于多个子 帧中的有最小或最大的总 CCE数的子帧中的总 CCE数。 如, 假设有 R个子帧 用于控制信道的传输, 规定 WccE= min { WcCE, , 其中 r=o,l, ,R-1。 min ( )为 求最小值函数, 是 R个用于控制信道重复传输的子帧中的第 r+1个子帧中 的总 CCE数。 或者, WCCE = MIN { WCCE' }, 其中, F05R_i o ^是 R个用于 控制信道重复传输的子帧中的第 r+1个子帧的子帧索引。 Specifically, it is predetermined that the value of a predetermined index is ^ A. For example, specify 0. Or, the value is determined according to the pre-rules. For example, it is a sub-frame index of a predetermined subframe. For example, one of the predetermined subframes is the p-th subframe of the plurality of subframes in which the control channel is repeatedly transmitted. p is a predetermined integer. For example, p=l. Therefore, the subframe index of the p-th subframe in the plurality of subframes of the transmission control channel is repeatedly transmitted. The pre-specified total number of CCEs is Wc CE . The WCCE may be equal to the total number of CCEs in the subframes having the smallest or largest total CCE number among the multiple subframes. For example, suppose there are R subframes for control channel transmission, and Wcc E = m i n { Wc CE , , where r = o, l, , R-1. Min ( ) is the minimum function, which is the r+1th subframe in the R subframes used for control channel repeated transmission. The total number of CCEs. Or, W CCE = MIN { W CCE ' }, where F 05 R_i o ^ is a subframe index of the r+1th subframe in the R subframes used for control channel repetition transmission.
根据预先规定的一个子帧的子帧索引 和 WCCE可以确定 nQ或 ηο,ι^, ...... ,ni-l o According to a predetermined subframe index and WCCE of one subframe, n Q or ηο, ι^, ..., n il o can be determined.
^口 , ni= x { (Yk + m') mod LWCCE / 」 }+ (式 3 ) ^口, ni= x { (Y k + m') mod LW CCE / ” }+ (Formula 3)
其中, 式 3中的参数解释如式 1 , 在此不作赘述。  The parameters in Equation 3 are explained as Equation 1, and are not described herein.
需要说明的是,在 UE侧, UE可以尝试可能的聚合级别及该聚合级别下的 可能的控制信道候选来检测控制信道。 进一步地, 若 UE在检测控制信道时, 不知道用于控制信道增强传输的多个子帧的数目或重复次数时, UE还需要根 据可能的多个子帧的数目或重复次数来尝试检测控制信道。  It should be noted that, on the UE side, the UE may try to detect the control channel by using a possible aggregation level and possible control channel candidates under the aggregation level. Further, if the UE does not know the number of the multiple subframes or the number of repetitions for controlling the channel enhanced transmission when detecting the control channel, the UE also needs to try to detect the control channel according to the number of possible multiple subframes or the number of repetitions.
在本实施方式中, 多个子帧中的每个子帧中的公共参考信号的天线端口数 可以相同, 也可以不同。 多个子帧中的 CFI值可以相同, 也可以不同。 多个子 帧中的每个子帧的 PHICH-Config可以相同, 也可以不同。 多个子帧中的每个子 帧的循环前缀可以相同, 也可以不同。 对于帧结构类型 2, 多个子帧中的每个子 帧中用于确定 PHICH资源的 mi因子可以相同, 也可以不同。  In this embodiment, the number of antenna ports of the common reference signal in each of the plurality of subframes may be the same or different. The CFI values in multiple subframes may be the same or different. The PHICH-Config of each of the plurality of subframes may be the same or different. The cyclic prefix of each of the plurality of subframes may be the same or different. For frame structure type 2, the mi factors used to determine the PHICH resources in each of the plurality of subframes may be the same or different.
若控制信道是用于 SIB1的调度或包含 TDD配置的系统信息块的调度。 对 于帧结构类型 1 , 传输控制信道的子帧的 CFI=2, 或者控制信道在子帧 0、 4、 5、 9中的一个或多个子帧上重复传输。 进一步地, 在子帧 0、 4、 5、 9中的一个或 多个子帧上传输控制信道时, 所述子帧的 CFI=3。 对于帧结构类型 2, 传输控制 信道的子帧的 CFI=2, 或者控制信道在子帧 0和 /或 5上重复传输。 进一步地, 在子帧 0和 /或 5中的一个或多个子帧上传输控制信道时, 所述子帧的 CFI=3。 或者, 控制信道在子帧 0和 /或 5上重复传输, 并且控制信道也可以在子帧 1和 / 或 6上重复传输。 在子帧 0和 /或 5中的一个或多个子帧上传输控制信道的子帧 的 CFI=3 ,在子帧 1和 /或 6中的一个或多个子帧上传输控制信道的子帧的 CFI=2。  If the control channel is a schedule for SIB1 or a system information block containing a TDD configuration. For frame structure type 1, the CFI of the subframe in which the control channel is transmitted is 2, or the control channel is repeatedly transmitted on one or more of the subframes 0, 4, 5, 9. Further, when the control channel is transmitted on one or more of the subframes 0, 4, 5, 9, the CFI of the subframe is 3. For frame structure type 2, the CFI of the subframe in which the control channel is transmitted is 2, or the control channel is repeatedly transmitted on subframes 0 and/or 5. Further, when the control channel is transmitted on one or more of the subframes 0 and/or 5, the CFI of the subframe is 3. Alternatively, the control channel is repeatedly transmitted on subframes 0 and/or 5, and the control channel may also be repeatedly transmitted on subframes 1 and/or 6. CFI=3 of a subframe in which a control channel is transmitted on one or more of subframes 0 and/or 5, and a subframe of a control channel is transmitted on one or more of subframes 1 and/or 6 CFI=2.
MBSFN子帧配置包含在系统信息块类型 X中, 如 x=2。 对于帧结构类型 1 , 调度 SIBx的控制信道的子帧的 CFI=2, 或者调度 SIBx的控制信道在子帧 0、 4、 5、 9中的一个或多个子帧上重复传输。 进一步地, 在子帧 0、 4、 5、 9中的一个 或多个子帧上传输调度 SIBx的控制信道时, 所述子帧的 CFI=3。 对于帧结构类 型 2, 调度 SIBx的控制信道的子帧的 CFI=2。 或者, 调度 SIBx的控制信道在子 帧 0和 /或 5上重复传输。 进一步地, 在子帧 0和 /或 5中的一个或多个子帧上传 输调度 SIBx的控制信道时, 所述子帧的 CFI=3。 或者, 调度 SIBx的控制信道 在子帧 0和 /或 5上重复传输,并且调度 SIBx的控制信道也可以在子帧 1和 /或 6 上重复传输。在子帧 0和 /或 5中的一个或多个子帧上传输调度 SIBx的控制信道 的子帧的 CFI=3 ,在子帧 1和 /或 6中的一个或多个子帧上传输调度 SIBx的控制 信道的子帧的 CFI=2。 The MBSFN subframe configuration is included in the system information block type X, such as x=2. For frame structure type 1, the CFI of the subframe in which the control channel of the SIBx is scheduled is CFI=2, or the control channel of the scheduling SIBx is repeatedly transmitted on one or more of the subframes 0, 4, 5, 9. Further, when the control channel for scheduling the SIBx is transmitted on one or more of the subframes 0, 4, 5, 9, the CFI of the subframe is 3. For frame structure type 2, the CFI of the subframe in which the control channel of the SIBx is scheduled is CFI=2. Alternatively, the control channel of the scheduling SIBx is repeatedly transmitted on subframes 0 and/or 5. Further, when the control channel scheduling the SIBx is transmitted on one or more of the subframes 0 and/or 5, the CFI of the subframe is 3. Or, scheduling the control channel of the SIBx The transmission is repeated on subframes 0 and/or 5, and the control channel scheduling the SIBx may also be repeated on subframes 1 and/or 6. Transmitting CFI=3 of a subframe of a control channel scheduling SIBx on one or more of subframes 0 and/or 5, and transmitting SIBx scheduling on one or more of subframes 1 and/or 6 The CFI of the subframe of the control channel is 2.
需要说明的是, 由于一个子帧中的总 CCE数与子帧中的公共参考信号的天 线端口数、 用于控制信道的 OFDM符号的个数、 PHICH-Config、 确定 PHICH 资源的 mi因子(譬如对于帧结构类型 2 ) 中的一种或多种相关, 因此, 若多个 子帧中存在两个子帧中的总 CCE数不同时, 釆用上述实施方式确定控制信道元 素的编号的方式, 并不能保证使得在多个子帧中的每个子帧上传输的控制信道 映射在物理资源上的资源元素位置都相同。  It should be noted that, due to the total number of CCEs in one subframe and the number of antenna ports of the common reference signal in the subframe, the number of OFDM symbols used for the control channel, PHICH-Config, and the mi factor determining the PHICH resource (for example, For one or more correlations in the frame structure type 2), therefore, if there are different total CCE numbers in two subframes in multiple subframes, the manner of determining the number of the control channel element by using the above embodiment does not It is ensured that the control channel mapped on each of the plurality of subframes has the same resource element location on the physical resource.
如前所述, 本实施方式将进一步通过下述方法使得在多个子帧中的每个子 帧上传输的控制信道映射在物理资源上的资源元素位置都相同。  As described above, the present embodiment further makes it possible to map the control elements transmitted on each of the plurality of subframes to the same resource element positions on the physical resources by the following method.
对于帧结构类型 2,每个子帧的 PHICH资源大小与 mi有关,从而每个子帧 中总的 CCE数目与该子帧的 mi有关。 为了使多个子帧中的每个子帧上传输的 控制信道映射在物理资源上的资源元素位置都相同, 多个子帧中的每个子帧可 以设定符合下述规定中的一项或多项:  For frame structure type 2, the PHICH resource size of each subframe is related to mi, so that the total number of CCEs in each subframe is related to mi of the subframe. In order to make the control element mapped on each of the plurality of subframes have the same resource element position on the physical resource, each of the plurality of subframes may be set to meet one or more of the following provisions:
规定 1 : 多个子帧中的每个子帧中的公共参考信号的天线端口数相同; 规定 2: 多个子帧中的每个子帧中用于控制信道的 OFDM符号的个数相同; 规定 3: 多个子帧中的每个子帧的 PHICH-Config相同;  Rule 1: The number of antenna ports of the common reference signal in each of the plurality of subframes is the same; Specification 2: the number of OFDM symbols used for the control channel in each of the plurality of subframes is the same; The PHICH-Config of each subframe in the subframe is the same;
规定 4: 对于帧结构类型 2, 多个子帧中的每个子帧中用于确定 PHICH资 源的 mi因子相同;  Rule 4: For frame structure type 2, the mi factor used to determine the PHICH resource in each of the plurality of subframes is the same;
规定 5:若多个子帧中的每个子帧中的 PHICH duration是 extended(扩展的): 多个子帧中的每个子帧都不是 MBSFN子帧;或者,多个子帧中的每个子帧都是 MBSFN子帧; 或者, 对于帧结构类型 2, 多个子帧中的每个子帧是 MBSFN子 帧, 和 /或子帧 1 , 和 /或子帧 6;  Rule 5: If the PHICH duration in each of the plurality of subframes is extended (extended): each of the plurality of subframes is not an MBSFN subframe; or each of the plurality of subframes is an MBSFN Subframe; or, for frame structure type 2, each of the plurality of subframes is an MBSFN subframe, and/or subframe 1, and/or subframe 6;
规定 6: 多个子帧中的每个子帧中的 PHICH duration均为 normal。  Rule 6: The PHICH duration in each of the multiple subframes is normal.
规定 7: 多个子帧中的每个子帧釆用相同的循环前缀。  Rule 7: Each of the multiple subframes uses the same cyclic prefix.
本实施方式控制信道的增强传输方法, 可以按照以上规定中的一项或多项 在多个子帧中的每个子帧中进行控制信道的发送。 通常, 多个子帧中的每个子 帧至少满足上述规定 1至规定 4。 相应地, 在 UE侧, 可以按照以上规定中的一 项或多项在多个子帧中的每个子帧中进行控制信道的接收。 需要说明的是, 表一是对于帧结构类型 2, mi 因子在不同的上下行配置和 不同的子帧中的值: In the enhanced transmission method of the control channel according to this embodiment, the transmission of the control channel may be performed in each of the plurality of subframes according to one or more of the above provisions. Generally, each of the plurality of subframes satisfies at least the above-mentioned provisions 1 to 4. Correspondingly, on the UE side, the reception of the control channel may be performed in each of the plurality of subframes according to one or more of the above provisions. It should be noted that Table 1 is the value of the frame structure type 2, the mi factor in different uplink and downlink configurations and different subframes:
Figure imgf000033_0001
Figure imgf000033_0001
: 帧结构类型 2的 mi因子  : mi factor of frame structure type 2
如上表一所示, 子帧 k在不同的上下行配置时, mi的值可能也不相同。 如, 在上下行配置为 0时, 子帧 0的 mi等于 2; 当上下行配置为 1时, 子帧 0的 mi 等于 0; 当上下行配置为 3时, 子帧 0的 mi等于 1。 对于同一个上下行配置, 不同子帧的 mi的值可能也不相同。 如, 在上下行配置为 0时, 子帧 0的 mi等 于 2, 而子帧 1的 mi等于 1。  As shown in Table 1 above, when the subframe k is configured in different uplink and downlink configurations, the value of mi may be different. For example, when the uplink and downlink configurations are 0, mi of subframe 0 is equal to 2; when the uplink and downlink configuration is 1, the mi of subframe 0 is equal to 0; when the uplink and downlink configuration is 3, mi of subframe 0 is equal to 1. For the same uplink and downlink configuration, the values of mi in different subframes may also be different. For example, when the uplink and downlink configurations are 0, mi of subframe 0 is equal to 2, and mi of subframe 1 is equal to 1.
为了使多个子帧中的每个子帧上传输的控制信道映射在物理资源上的资源 元素位置都相同, 控制信道只能在具有相同的 mi子帧上重复传输。 如, 在上下 行配置为 0时, 子帧 0和子帧 5具有相同的 mi, 因此控制信道在子帧 0和 /或子 帧 5上进行重复传输。 或者, 在上下行配置为 0时, 子帧 1和子帧 6具有相同 的 mi, 因此控制信道在子帧 1和 /或子帧 6上进行重复传输。 再如, 在上下行配 置为 1时, 子帧 0和子帧 5具有相同的 mi, 因此控制信道在子帧 0和 /或子帧 5 上进行重复传输。 或者, 在上下行配置为 1时, 子帧 1、 子帧 4、 子帧 6、 和子 帧 9具有相同的 mi, 因此控制信道在子帧 1、 子帧 4、 子帧 6、 和子帧 9中的一 个或多个子帧进行重复传输。  In order to map the control elements transmitted on each of the plurality of subframes to the same resource element locations on the physical resources, the control channel can only be repeatedly transmitted on the same mi subframe. For example, when the upper and lower rows are configured as 0, subframe 0 and subframe 5 have the same mi, so the control channel is repeatedly transmitted on subframe 0 and/or subframe 5. Or, when the uplink and downlink configurations are 0, subframe 1 and subframe 6 have the same mi, so the control channel performs repeated transmission on subframe 1 and/or subframe 6. For another example, when the uplink and downlink configurations are 1, subframe 0 and subframe 5 have the same mi, so the control channel performs repeated transmission on subframe 0 and/or subframe 5. Or, when the uplink and downlink configurations are 1, subframe 1, subframe 4, subframe 6, and subframe 9 have the same mi, so the control channel is in subframe 1, subframe 4, subframe 6, and subframe 9. One or more subframes are repeatedly transmitted.
若控制信道是用于 SIB1的调度或用于包括上下行配置的系统信息块的调度 If the control channel is for scheduling of SIB1 or for scheduling of system information blocks including uplink and downlink configurations
(SIBy)。 对于帧结构类型 1 , 传输控制信道的子帧的 CFI=2。 或者, 控制信道在 子帧 0、 4、 5、 9中的一个或多个子帧上重复传输。 在子帧 0、 4、 5、 9中的一个 或多个子帧上传输控制信道的子帧的 CFI=3。 (SIBy). For frame structure type 1, the CFI of the subframe in which the control channel is transmitted is 2. Alternatively, the control channel is repeatedly transmitted on one or more of the subframes 0, 4, 5, 9. The CFI of the subframe in which the control channel is transmitted on one or more of the subframes 0, 4, 5, 9 is CFI=3.
对于帧结构类型 2 , 用户设备在接收控制信道的时候还不知道上下行配置, 因此也无法确定子帧的 mi值。 为此, 可以在预先规定的多个子帧中对 mi的可能 取值进行尝试来检测控制信道。 如控制信道在子帧索引为 5的一个或多个子帧上 重复传输, UE尝试子帧 5上可能的 mi取值进行控制信道的检测。 进一步地, 传输 控制信道的子帧的 CFI=3。 For the frame structure type 2, the user equipment does not know the uplink and downlink configuration when receiving the control channel, and therefore cannot determine the mi value of the subframe. To this end, the possible values of mi may be tried in a plurality of predetermined subframes to detect the control channel. For example, the control channel is on one or more subframes with a subframe index of 5. Repeated transmission, the UE attempts the detection of the control channel by taking the possible mi value on the subframe 5. Further, the CFI of the subframe in which the control channel is transmitted is 3.
再如, 因为对于上下行配置 0到 6 , 子帧 1和子帧 6具有相同的 mi。 可以规定调 度 SIBy的控制信道在子帧索引为 1和 /或 6的一个或多个子帧上重复传输。 进一步 地, 传输控制信道的子帧的 CFI=2。  For another example, because the uplink and downlink configurations are 0 to 6, subframe 1 and subframe 6 have the same mi. The control channel of the scheduling SIBy may be specified to be repeatedly transmitted on one or more subframes having subframe indices of 1 and/or 6. Further, the CFI of the subframe in which the control channel is transmitted is 2.
再如, 因为对于上下行配置 2、 4、 5、 6 , 子帧 0、 子帧 1、 子帧 5、 和子帧 6 具有相同的 mi。 若基站在进行控制信道的重复发送时, 上下行配置是 2、 4、 5、 6中的某一种, 此时可以规定调度 SIBy的控制信道在子帧索引为 0、 1、 5、 和 6的 一个或多个子帧上重复传输。 进一步地, CFI=2。  For another example, because the uplink and downlink configurations 2, 4, 5, and 6, sub-frame 0, sub-frame 1, sub-frame 5, and sub-frame 6 have the same mi. If the base station is performing repeated transmission of the control channel, the uplink and downlink configuration is one of 2, 4, 5, and 6. In this case, the control channel for scheduling the SIBy may be specified to be 0, 1, 5, and 6 in the subframe index. The transmission is repeated on one or more subframes. Further, CFI=2.
MBSFN子帧配置包含在系统信息块类型 x (SIBx)中。 如 x=2。 对于 FDD系统, 调 度 SIBx的控制信道的子帧的 CFI=2。 或者, 调度 SIBx的控制信道在子帧 0、 4、 5、 9中的一个或多个子帧上重复传输。 进一步地, 在子帧 0、 4、 5、 9中的一个或多 个子帧上传输调度 SIBx的控制信道的子帧的 CFI=3。  The MBSFN subframe configuration is included in the System Information Block Type x (SIBx). Such as x=2. For FDD systems, the CFI of the subframe of the SIBx control channel is set to CFI=2. Alternatively, the control channel of the scheduling SIBx is repeatedly transmitted on one or more of the subframes 0, 4, 5, 9. Further, the CFI = 3 of the subframe in which the control channel of the SIBx is scheduled is transmitted on one or more of the subframes 0, 4, 5, 9.
对于帧结构类型 2 , 调度 SIBx的控制信道的子帧的 CFI=2。 或者, 调度 SIBx的 控制信道的子帧的 CFI=2 , 且调度 SIB2的控制信道在具有相同 mi的一个或多个子 帧上重复传输。 因为 UE在检测 SIBx时, 已经知道了上下行配置, 从而 UE也知道 了那些子帧的 mi相同。 或者, 调度 SIB2的控制信道在子帧 0、 1、 5、 6中的具有 相同 mi的一个或多个子帧上重复传输。 进一步地, 在子帧 0、 1、 5、 6中的一个 或多个子帧上传输调度 SIBx的控制信道的子帧的 CFI=3。  For frame structure type 2, the subframe of the control channel of the SIBx is scheduled to have a CFI=2. Alternatively, the subframe of the control channel of the SIBx is scheduled to have CFI = 2, and the control channel of the scheduling SIB2 is repeatedly transmitted on one or more subframes having the same mi. Because the UE knows the uplink and downlink configuration when detecting the SIBx, the UE also knows that the mis of those subframes are the same. Alternatively, the control channel of the scheduling SIB2 is repeatedly transmitted on one or more subframes of the subframes 0, 1, 5, 6 having the same mi. Further, the CFI of the subframe in which the control channel of the SIBx is scheduled is transmitted on one or more of the subframes 0, 1, 5, and 6.
本申请按照多个规定 1-7及表一所例举的多个方法,可以保证重复传输控制 信道的多个子帧中的每个子帧中的总 CCE数相同, 通过上述方式, 能够确保重 复传输的物理资源相同, 以利于控制资源的调度和检测。  According to the plurality of methods stipulated in the plurality of regulations 1-7 and Table 1, the number of total CCEs in each of the plurality of subframes of the repeated transmission control channel can be ensured to be the same, and the repeated transmission can be ensured by the above manner. The physical resources are the same to facilitate the scheduling and detection of control resources.
总而言之, 本申请可以按照上述推导计算 nQ或 ηο, , ...... ,ηζ-1的方式确定控 制信道元素编号。 具体地, 本实施方式可以釆用前述式 1、 式 2、 式 3中的任意 一个公式或者其扩展的方式确定 nQ或 ηο,ι^, ,nLA , 这些在本技术领域人员容 易理解的范围内, 此处不再赘述。 In summary, the present application can determine the control channel element number in the manner of deriving the above calculations n Q or ηο, , ..., η ζ-1 . Specifically, the present embodiment can determine n Q or ηο, ι^, , n LA by using any one of the above formulas 1, 2, and 3 or an extension thereof, which are easily understood by those skilled in the art. Within the scope, it will not be described here.
需要特别指出的是, 上述实施方式主要针对控制信道在多个子帧内传输进 行阐述, 而在具体的实现过程中, 控制信道也可以一个或多个子帧中的每个子 帧内进行多次重复传输, 即通过频域的方式进行重复传输。 当控制信道在每个 子帧内多次重复传输时, 在每个子帧内不同次重复传输的控制信道在该子帧内 的起始控制信道元素编号有一个固定的偏移。 如在一个子帧内, 控制信道进行It should be particularly noted that the above embodiments are mainly described for the control channel to be transmitted in multiple subframes, and in a specific implementation process, the control channel may also be used in each of one or more subframes. Repeated transmissions are performed multiple times within a frame, that is, repeated transmissions are performed in a frequency domain manner. When the control channel is repeatedly transmitted multiple times within each subframe, the control channel that is repeatedly transmitted in each subframe has a fixed offset in the initial control channel element number in the subframe. If in one subframe, the control channel is carried out
M次重复传输, 这 M次重复传输的控制信道中的第一次重复传输的控制信道的 起始控制信道元素编号 c0可以按照前面实施方式中确定控制信道元素的编号的 类似方法确定, 而这 M次重复传输的控制信道中的第二次重复传输的控制信道 的起始控制信道元素编号 d=cQ + offset, 其中, offset为预设的固定的偏移值, 类似地 , Μ次重复传输的控制信道中的第 i次重复传输的控制信道的起始控制信 道元素编号 c尸 + offset, i=l,2, ,M。 M times of repeated transmission, the initial control channel element number c 0 of the control channel of the first repeated transmission in the M repeated transmission control channels can be determined in a similar manner to determining the number of the control channel element in the previous embodiment, and The initial control channel element number d=c Q + offset of the control channel of the second repeated transmission in the M repeated transmission control channels, where offset is a preset fixed offset value, similarly, The initial control channel element number c of the control channel of the ith repeated transmission in the repeatedly transmitted control channel is c + offset, i = 1, 2, , M.
通过上述图 1 的实施方式及其延伸扩展的技术方案, 本申请能够确定控制 信道在多个子帧中的每一个子帧中进行控制信道的传输时, 确定控制信道传输 所用的第一参数, 解决增强传输的映射资源问题, 从而降低了调度和检测的复 杂度。  Through the above-mentioned embodiment of FIG. 1 and its extended extended technical solution, the present application can determine that the control channel determines the first parameter used for control channel transmission when the control channel is transmitted in each of the plurality of subframes, and solves the problem. Enhance the mapping resource problem of transmission, thus reducing the complexity of scheduling and detection.
图 2是本申请基站一实施方式的模块框图。 本实施方式基站包括但不限于 确定模块 21、 发送模块 22和处理模块 23。  2 is a block diagram of a block diagram of an embodiment of a base station of the present application. The base station of the present embodiment includes but is not limited to the determining module 21, the transmitting module 22, and the processing module 23.
在本实施方式中, 确定模块 21 , 用于确定对控制信道进行增强传输的多个 子帧。发送模块 22, 用于在确定模块 21确定的多个子帧中对控制信道进行增强 传输。 其中, 增强传输是重复传输、 扩频传输、 传输时间间隔捆绑传输以及功 率提升传输中的至少一种。  In this embodiment, the determining module 21 is configured to determine a plurality of subframes for performing enhanced transmission on the control channel. The sending module 22 is configured to perform enhanced transmission on the control channel in the multiple subframes determined by the determining module 21. The enhanced transmission is at least one of a repetitive transmission, a spread spectrum transmission, a transmission time interval bundling transmission, and a power boost transmission.
需要指出的是, 发送模块 22在多个子帧中的每个子帧上传输控制信道, 且 在多个子帧中的每个子帧上传输控制信道所用的第一参数都相同; 其中, 第一 参数是起始控制信道元素的编号或控制信道元素的编号。  It should be noted that the sending module 22 transmits a control channel on each of the multiple subframes, and the first parameter used for transmitting the control channel in each of the multiple subframes is the same; wherein, the first parameter is The number of the starting control channel element or the number of the control channel element.
特别地, 发送模块 22在多个子帧中的每个子帧上传输控制信道所用的第一 参数是预先规定的; 或者, 发送模块 22在多个子帧中的每个子帧上传输控制信 道所用的第一参数是根据预先规定的函数关系确定的。  In particular, the first parameter used by the transmitting module 22 to transmit the control channel on each of the plurality of subframes is predetermined; or the transmitting module 22 transmits the control channel for each of the plurality of subframes. A parameter is determined based on a predetermined functional relationship.
在具体的实现过程中, 处理模块 23用于: 根据预先规定的一个索引确定多 个子帧中的每个子帧上传输控制信道所用的第一参数; 或者, 根据预先规定的 两个索引确定多个子帧中的每个子帧上传输控制信道所用的第一参数; 或者, 根据预先规定的一个索引和预先规定的总 CCE数确定多个子帧中的每个子帧上 传输控制信道所用的第一参数。  In a specific implementation process, the processing module 23 is configured to: determine, according to a predetermined index, a first parameter used by each of the multiple subframes to transmit a control channel; or, determine, according to two predefined indexes, multiple subframes. The first parameter used for transmitting the control channel on each subframe in the frame; or determining the first parameter used for transmitting the control channel in each of the plurality of subframes according to a predetermined index and a predetermined total number of CCEs.
需要说明的是, 处理模块 23在确定第一参数的过程中, 预先规定的一个索 引是预先规定的一个子帧的索引, 其中预先规定的一个子帧可以是:多个子帧中 的第 p个子帧, 其中 p是预先规定的整数; 或, 多个子帧中有最小的总 CCE数 的子帧; 或, 多个子帧中有最小的总 CCE数的子帧中的第 q个子帧, 其中 q是 预先规定的整数。 It should be noted that, in the process of determining the first parameter, the processing module 23 pre-specifies a cable. The reference is an index of a predetermined subframe, wherein a predetermined one subframe may be: a p-th subframe in a plurality of subframes, where p is a predetermined integer; or, a minimum total CCE among the plurality of subframes a sub-frame of a number; or, a q-th subframe in a subframe having a smallest total number of CCEs among the plurality of subframes, where q is a predetermined integer.
而处理模块 23在确定第一参数的过程中, 预先规定的两个索引中的一个索 引是第一预先规定的一个子帧的索引, 其中第一预先规定的一个子帧可以是: 多个子帧中的第 p个子帧, 其中 p是预先规定的整数; 或, 多个子帧中有最小 的总 CCE数的子帧的子帧索引。或, 多个子帧中有最小的总 CCE数的子帧中的 第 q个子帧, 其中 q是预先规定的整数。  The process module 23 determines, in the process of determining the first parameter, one of the two indexes specified in advance is an index of the first predetermined one subframe, where the first predetermined one subframe may be: multiple subframes a p-th subframe in which p is a predetermined integer; or a subframe index of a subframe having a smallest total number of CCEs among the plurality of subframes. Or, the qth subframe in the subframe having the smallest total number of CCEs among the plurality of subframes, where q is a predetermined integer.
同理, 预先规定的两个索引中的另一个索引是第二预先规定的一个子帧的 索引, 其中第二预先规定的一个子帧是: 多个子帧中的第 r个子帧, 其中 r是预 先规定的整数; 或, 多个子帧中有最小的总 CCE数的子帧的子帧索引; 或, 多 个子帧中有最小的总 CCE数的子帧中的第 w个子帧,其中 w是预先规定的整数。  Similarly, the other one of the two predetermined indexes is an index of a second predetermined one subframe, wherein the second predetermined one subframe is: the rth subframe of the plurality of subframes, where r is a predetermined integer; or a subframe index of a subframe having a smallest total number of CCEs among the plurality of subframes; or, a w-th subframe of the subframe having the smallest total number of CCEs among the plurality of subframes, where w is A predetermined integer.
其中,预先规定的总 CCE数是多个子帧中的有最小或最大的总 CCE数的子 帧中的总 CCE数。  The predetermined total number of CCEs is the total number of CCEs in the subframes having the smallest or largest total number of CCEs in the plurality of subframes.
值得注意的是, 本实施方式第一参数可以满足一个或多个条件。 譬如: 发 送模块 22传输控制信道所用的第一参数满足一个确定的范围, 以使调度专有数 据的控制信道占用的控制信道元素与调度公共数据的控制信道占用的控制信道 元素没有资源交叠; 或者, 发送模块 22传输控制信道所用的第一参数满足一个 确定的范围, 以使调度专有数据的控制信道占用的控制信道元素与公共搜索空 间中的控制信道元素没有资源交叠。  It should be noted that the first parameter of this embodiment may satisfy one or more conditions. For example, the first parameter used by the sending module 22 to transmit the control channel satisfies a certain range, so that the control channel element occupied by the control channel for scheduling the dedicated data has no resource overlap with the control channel element occupied by the control channel for scheduling the common data; Alternatively, the first parameter used by the transmitting module 22 to transmit the control channel satisfies a determined range such that the control channel element occupied by the control channel scheduling the dedicated data has no resource overlap with the control channel element in the common search space.
可选地, 发送模块 22在多个子帧中对控制信道进行增强传输时, 多个子帧 中的每个子帧均不为多媒体组播单频网络 MBSFN子帧;或,多个子帧中的每个 子帧均为 MBSFN子帧;或对于帧结构类型 2,多个子帧中的每个子帧为 MBSFN 子帧, 或子帧 1 , 或子帧 6。  Optionally, when the sending module 22 performs enhanced transmission on the control channel in multiple subframes, each of the multiple subframes is not a multimedia multicast single frequency network MBSFN subframe; or each of the multiple subframes The frames are all MBSFN subframes; or for frame structure type 2, each of the plurality of subframes is an MBSFN subframe, or a subframe 1, or a subframe 6.
可选地, 发送模块 22在多个子帧中对控制信道进行增强传输时: 多个子帧 中的子帧索引属于 {0,4,5,9}的子帧中有 CFI个 OFDM符号用于控制信道, 且多 个子帧中的子帧索引不属于 {0,4,5,9}的子帧中有两个 OFDM符号用于控制信道; 或, 对于帧结构类型 2, 多个子帧中的子帧索引属于 {0,5}的子帧中有 CFI 个 OFDM符号用于控制信道, 且多个子帧中的子帧索引不属于 {0,5}的子帧中有两 个 OFDM符号用于控制信道。 其中, CFI的值为 3或 4。 可选地, 发送模块 22在控制信道进行增强传输所釆用的载波的带宽属于第 一带宽范围时, 多个子帧的每个子帧中有 u个 OFDM符号用于控制信道或数据 信道; 而发送模块 22在控制信道进行增强传输所釆用的载波的带宽属于第二带 宽范围时,多个子帧的每个子帧中有 V个 OFDM符号用于控制信道或数据信道。 其中, 第一带宽范围和第二带宽范围为预定的带宽范围, 且第一带宽范围和第 二带宽范围互不相交, u和 V为自然数, 且 u不等于 V。 Optionally, when the sending module 22 performs enhanced transmission on the control channel in multiple subframes: the subframe index in the multiple subframes belongs to the {0, 4, 5, 9} subframe, and the CFI OFDM symbols are used for control. a channel, and a subframe index in a plurality of subframes that does not belong to {0, 4, 5, 9} has two OFDM symbols for the control channel; or, for frame structure type 2, a sub-frame among the plurality of subframes A subframe with a frame index of {0, 5} has CFI OFDM symbols for the control channel, and a subframe in which the subframe index does not belong to {0, 5} has two OFDM symbols for control. channel. Among them, the value of CFI is 3 or 4. Optionally, when the bandwidth of the carrier used by the control channel for the enhanced transmission belongs to the first bandwidth, the sending module 22 has u OFDM symbols in each subframe of the multiple subframes for the control channel or the data channel; The module 22 has V OFDM symbols in each of the plurality of subframes for the control channel or the data channel when the bandwidth of the carrier used for the enhanced transmission of the control channel belongs to the second bandwidth range. The first bandwidth range and the second bandwidth range are predetermined bandwidth ranges, and the first bandwidth range and the second bandwidth range do not intersect each other, u and V are natural numbers, and u is not equal to V.
上述过程在一定程度上实现了对控制信道在多个子帧内的每个子帧中增强 传输所用的 CCE编号相同, 便于调度实现和降低 UE检测的复杂度。 但上述过 程并不能保证控制信道在多个子帧内的每个子帧中增强传输所用的物理资源元 素位置相同。  The foregoing process achieves the same CCE number used for enhanced transmission of the control channel in each subframe in multiple subframes to facilitate scheduling and reduce the complexity of UE detection. However, the above procedure does not guarantee that the control channel has the same physical resource element position for enhanced transmission in each subframe in a plurality of subframes.
如果要使控制信道在多个子帧内的每个子帧中增强传输所用的物理资源元 素位置相同, 则发送模块 22在多个子帧中对控制信道进行增强传输, 多个子帧 中的每个子帧内的: 公共参考信号的天线端口数相同; 和 /或, 用于控制信道的 OFDM符号的个数相同; 和 /或, PHICH-Config相同; 和 /或, 帧结构类型 2中 用于确定 PHICH资源的 mi 因子相同; 和 /或, 釆用的循环前缀相同; 和 /或, PHICH-duration均为 normal。  If the control channel is to have the same physical resource element location for enhanced transmission in each of the plurality of subframes, the transmitting module 22 performs enhanced transmission on the control channel in each of the plurality of subframes, in each of the plurality of subframes. The number of antenna ports of the common reference signal is the same; and/or, the number of OFDM symbols used for the control channel is the same; and/or PHICH-Config is the same; and/or, the frame structure type 2 is used to determine the PHICH resource. The mi factors are the same; and/or, the cyclic prefix used is the same; and/or PHICH-duration is normal.
下面将通过具体的实施方式对本实施方式图 2所示的基站作进一步的说明。 在多个子帧中重复传输控制信道时, 多个子帧的时刻是需要确定的。 多个 子帧的时刻可以是系统预先规定的或根据信令通知的参数或盲检测确定。 控制 信道在所述确定的多个子帧内的每个子帧上进行重复传输。  The base station shown in Fig. 2 of the present embodiment will be further described below by way of a specific embodiment. When the control channel is repeatedly transmitted in a plurality of subframes, the timing of the plurality of subframes needs to be determined. The time of multiple subframes may be predetermined by the system or determined according to signaled parameters or blind detection. The control channel performs repeated transmissions on each of the determined plurality of subframes.
特别地, 在多个子帧中的每个子帧上传输控制信道所用的聚合级别都相同。 即, 在多个子帧中的任意两个子帧上传输控制信道所用的聚合级别都相同。 记 在多个子帧中的每个子帧上传输控制信道所用的聚合级别是 。其中 L的值是预 先设定的一个或多个固定值。 如预先固定 =8。 再如, 预先规定 8}集合。 特 别地, 控制信道是 PDCCH时 L的取值集合, 且其可以与控制信道是 ePDCCH 时 的取值集合不同。 如, 当控制信道是 PDCCH时 =8或 而当控制信 道是 ePDCCH时 =16或 e {1632 }。 In particular, the aggregation level used to transmit the control channel on each of the plurality of subframes is the same. That is, the aggregation level used to transmit the control channel on any two of the plurality of subframes is the same. The aggregation level used to transmit the control channel on each of the plurality of subframes is. Wherein the value of L is one or more fixed values set in advance. If fixed in advance = 8. For another example, a set of 8 } is pre-defined. In particular, the control channel is a set of values of L at the time of the PDCCH, and it may be different from a set of values when the control channel is an ePDCCH. For example, when the control channel is PDCCH = 8 or when the control channel is ePDCCH = 16 or e { 16 , 32 }.
特别地, 在多个子帧中的每个子帧内的聚合级别 L对应的搜索空间中传输 控制信道所用的控制信道候选索引都相同。 即, 在多个子帧中的任意两个子帧 内的聚合级别 L对应的搜索空间中传输控制信道所用的控制信道候选索引都相 同。 记在聚合级别 对应的搜索空间中的控制信道候选索引为 m, 则, 在多个 子帧中的每一个子帧内的聚合级别 对应的搜索空间中传输控制信道所用的控 制信道候选索引均为 m。 其中, m的值可以是预先设定的一个或多个固定值, 如 m=0, 或预先规定^ 或 123。 在其他实施方式中, 也可以规定 m的取 值集合与聚合级别 L相关, 也可以规定 m的取值集合与聚合级别 L无关。 Specifically, the control channel candidate indexes used for transmitting the control channel in the search space corresponding to the aggregation level L in each of the plurality of subframes are the same. That is, the control channel candidate indices used for transmitting the control channel in the search space corresponding to the aggregation level L in any two of the plurality of subframes are the same. The control channel candidate index in the search space corresponding to the aggregation level is m, then, in multiple The control channel candidate index used for transmitting the control channel in the search space corresponding to the aggregation level in each subframe in the subframe is m. Wherein, the value of m may be one or more fixed values set in advance, such as m=0, or pre-specified ^ or 1 , 2 , 3 . In other embodiments, the set of values of m may be specified to be related to the aggregation level L, or the set of values of m may be specified regardless of the aggregation level L.
特别地, 多个子帧中的每个子帧中的公共参考信号的天线端口数相同。 基 站在发送重复的控制信道时, 多个子帧中的每个子帧中按照天线端口数 2对公 共参考信号所用的资源元素预留。 或者, 基站在发送重复的控制信道时, 多个 子帧中的每个子帧中按照天线端口数 4对公共参考信号所用的资源元素预留。 类似地, 在 UE侧, UE在接收重复的控制信道时, 认为多个子帧中的每个子帧 中按照天线端口数 2对公共参考信号所用的资源元素预留; 或者, UE在接收重 复的控制信道时, 认为多个子帧中的每个子帧中按照天线端口数 4对公共参考 信号所用的资源元素预留。  In particular, the number of antenna ports of the common reference signal in each of the plurality of subframes is the same. When the base station transmits the repeated control channel, each of the plurality of subframes is reserved for the resource element used for the common reference signal according to the number of antenna ports 2. Alternatively, when the base station transmits the repeated control channel, each of the plurality of subframes is reserved for the resource element used by the common reference signal according to the number of antenna ports 4. Similarly, on the UE side, when receiving the repeated control channel, the UE considers that each of the multiple subframes is reserved according to the number of antenna ports 2 for the resource elements used by the common reference signal; or, the UE receives the repeated control. In the case of a channel, it is considered that each of the plurality of subframes is reserved for the resource elements used for the common reference signal according to the number of antenna ports 4.
特别地, 多个子帧中的每个子帧中用于控制信道的正交频分复用 OFDM符 号的个数相同。如, 多个子帧中的每个子帧中有 2个 OFDM符号用于控制信道; 或者, 多个子帧中的每个子帧中有 3个 OFDM符号用于控制信道; 或者, 多个 子帧中的每个子帧中有 4个 OFDM符号用于控制信道。  Specifically, the number of orthogonal frequency division multiplexing OFDM symbols used for the control channel in each of the plurality of subframes is the same. For example, there are 2 OFDM symbols in each of the plurality of subframes for the control channel; or, 3 OFDM symbols in each of the plurality of subframes are used for the control channel; or, each of the plurality of subframes There are 4 OFDM symbols in the subframe for the control channel.
特别地, 多个子帧的子帧由多个子帧集合构成, 且不同的子帧集合所包含 的子帧中用于控制信道或数据信道的 OFDM符号个数不相同。 其中, 多个子帧 的集合可以是预先规定的。 例如, 多个子帧中的子帧由 2个子帧集合构成, 分 别是第一子帧集合和第二子帧集合, 且第一子帧集合和第二子帧集合是不同的 集合。 第一子帧集合中的每个子帧中有 u个 OFDM符号用于控制信道, 第二子 帧集合中的每个子帧中有 V个 OFDM符号用于控制信道, 这里 u,v是正整数, 且 u不等于 V。  In particular, the subframes of the plurality of subframes are composed of a plurality of subframe sets, and the number of OFDM symbols used for the control channel or the data channel in the subframes included in the different subframe sets is different. The set of multiple subframes may be predetermined. For example, a subframe in a plurality of subframes is composed of a set of 2 subframes, which are a first subframe set and a second subframe set, respectively, and the first subframe set and the second subframe set are different sets. Each of the first subframe set has u OFDM symbols for the control channel, and each of the second subframe set has V OFDM symbols for the control channel, where u, v are positive integers, and u is not equal to V.
例如, 多个子帧中的每个非 MBSFN子帧中有 3个 OFDM符号用于控制信 道, 而多个子帧中的每个 MBSFN子帧中有 2个 OFDM符号用于控制信道。 例 如, 多个子帧中的每个非 MBSFN子帧中有 4个 OFDM符号用于控制信道, 而 多个子帧中的每个 MBSFN子帧中有 2个 OFDM符号用于控制信道。  For example, there are 3 OFDM symbols in each of the plurality of subframes for the control channel, and 2 of the OFDM symbols in each of the plurality of subframes are used for the control channel. For example, there are 4 OFDM symbols in each of the plurality of subframes for the control channel, and 2 of the OFDM symbols in each of the plurality of subframes are used for the control channel.
可选地, 对于帧结构类型 1 , 多个子帧中的子帧索引可以属于 {0,4,5,9}的子 帧中有 3个或 4个 OFDM符号用于控制信道, 而多个子帧中的子帧索引不属于 {0,4,5,9}的子帧中有 2个 OFDM符号用于控制信道。 而对于帧结构类型 2, 多个 子帧中的子帧索引属于 {0,5}的子帧中有 3个或 4个 OFDM符号用于控制信道, 且多个子帧中的子帧索引不属于 {0,5}的子帧中有 2个 OFDM符号用于控制信 道。 需要说明的是, 由于 MBSFN子帧的配置由在基站设置, 因此通过这种方式 使得 UE还不知道 MBSFN子帧的配置时, 接收控制信道。 如所述控制信道是: 调度包含 MBSFN 子帧配置的系统信息块 (譬如 SIB2)的控制信道或调度包含 TDD配置的系统信息块 (譬如 SIB1)的控制信道。 Optionally, for the frame structure type 1, the subframe index in the multiple subframes may belong to the {0, 4, 5, 9} subframe, and there are 3 or 4 OFDM symbols used for the control channel, and the multiple subframes There are 2 OFDM symbols in the subframe in which the subframe index does not belong to {0, 4, 5, 9} for the control channel. And for the frame structure type 2, three or four OFDM symbols are used for the control channel in the subframe in which the subframe index in the plurality of subframes belongs to {0, 5}, And there are 2 OFDM symbols in the subframe in which the subframe index in the plurality of subframes does not belong to {0, 5} is used for the control channel. It should be noted that, since the configuration of the MBSFN subframe is set by the base station, when the UE does not know the configuration of the MBSFN subframe in this manner, the control channel is received. The control channel is as follows: A control channel that schedules a system information block (such as SIB2) that includes an MBSFN subframe configuration or a control channel that includes a system information block (such as SIB1) that includes a TDD configuration.
举例而言, 每个非 MBSFN子帧中有 3个 OFDM符号用于控制信道, 多个 子帧中的每个 MBSFN子帧中有 2个 OFDM符号用于控制信道。 对于帧结构类 型 2, 若多个子帧中还包括子帧 1和 /或子帧 6, 则多个子帧中的每个子帧 1和 / 或子帧 6中有 2个 OFDM符号用于控制信道。  For example, there are 3 OFDM symbols in each non-MBSFN subframe for the control channel, and 2 OFDM symbols in each MBSFN subframe in the plurality of subframes are used for the control channel. For frame structure type 2, if subframe 1 and/or subframe 6 are also included in multiple subframes, then 2 subframes in each of subframes 1 and/or subframe 6 of the plurality of subframes are used for the control channel.
例如, 当载波的带宽属于第一带宽范围, 则, 多个子帧中的每个子帧中有 u 个 OFDM符号用于控制信道或数据信道,而当载波的带宽属于第二带宽范围时, 多个子帧中的每个子帧中有 V个 OFDM符号用于控制信道或数据信道。 如前所 述, 本实施方式特别地第一带宽范围和第二带宽范围是预先规定的带宽范围, 且第一带宽范围和第二带宽范围是不同的带宽范围, 而 u,v是自然数, 且 u不等 于 。  For example, when the bandwidth of the carrier belongs to the first bandwidth, there are u OFDM symbols in each of the multiple subframes for the control channel or the data channel, and when the bandwidth of the carrier belongs to the second bandwidth, multiple sub-bands There are V OFDM symbols in each subframe in the frame for the control channel or data channel. As described above, in this embodiment, in particular, the first bandwidth range and the second bandwidth range are predetermined bandwidth ranges, and the first bandwidth range and the second bandwidth range are different bandwidth ranges, and u, v are natural numbers, and u is not equal.
再如, 对于大带宽载波, 如大于 1.4MHz ( Mega Hertz, 兆赫兹) 的载波, 多个子帧中的每个非 MBSFN子帧中有 3个 OFDM符号用于控制信道, 而对于 小带宽载波, 如小于 1.4MHz载波, 多个子帧中的每个非 MBSFN子帧中有 4个 OFDM符号用于控制信道。 或者, 对于大带宽载波, 如大于 1.4MHz载波, 多 个子帧中的每个非 MBSFN子帧中有 2个 OFDM符号用于控制信道, 对于小带 宽载波, 如小于 1.4MHz载波, 则多个子帧中的每个非 MBSFN子帧中有 3个 OFDM符号用于控制信道。 若多个子帧中还包括 MBSFN子帧, 则多个子帧中 的每个 MBSFN子帧中有 2个 OFDM符号用于控制信道。  For example, for a large bandwidth carrier, such as a carrier larger than 1.4 MHz ( Mega Hertz, megahertz), there are 3 OFDM symbols in each of the plurality of subframes for the control channel, and for the small bandwidth carrier, As less than a 1.4 MHz carrier, there are 4 OFDM symbols in each of the plurality of subframes for the control channel. Or, for a large bandwidth carrier, such as a carrier larger than 1.4 MHz, there are 2 OFDM symbols in each of the plurality of subframes for the control channel, and for the small bandwidth carrier, such as less than 1.4 MHz carrier, multiple subframes There are 3 OFDM symbols in each non-MBSFN subframe in the control channel. If the MBSFN subframe is further included in the plurality of subframes, there are 2 OFDM symbols in each of the plurality of subframes for the control channel.
特别地, 多个子帧中的每个子帧的 PHICH-Config相同。 其中, 本实施方式 的 PHICH-Config包括 PHICH-Duration的信息元素和 PHICH资源 Resource的信 息元素。 通常, PHICH-Config包含在 MIB中。 因此, 在重复传输控制信道的多 个子帧中, 基站在发送控制信道时认为 MIB包含的 PHICH-Config不发生改变; 相应地, 在重复传输控制信道的多个子帧中, UE侧在接收控制信道时认为 MIB 包含的 PHICH-Config不发生改变。  In particular, the PHICH-Config of each of the plurality of subframes is the same. The PHICH-Config of the present embodiment includes an information element of PHICH-Duration and an information element of PHICH resource Resource. Usually, PHICH-Config is included in the MIB. Therefore, in a plurality of subframes in which the control channel is repeatedly transmitted, the base station considers that the PHICH-Config included in the MIB does not change when transmitting the control channel; accordingly, in a plurality of subframes in which the control channel is repeatedly transmitted, the UE side is receiving the control channel. It is considered that the PHICH-Config included in the MIB does not change.
特别地, 对于帧结构类型 2, 多个子帧中的每个子帧中用于确定 PHICH资 源的 mi因子相同。 mi的大小可以是根据预先规定确定的。如预先规定在控制信 道重复传输多个子帧中起始子帧的 mi确定了多个子帧中的每个子帧的 mi。 若 UE确定了控制信道重复传输多个子帧中起始子帧的 mi ,则根据多个子帧中的每 个子帧中用于确定 PHICH资源的 mi因子相同, 就确定了控制信道重复传输多 个子帧中其他子帧的 mi。或者, 多个子帧中的每个子帧中用于确定 PHICH资源 的 mi因子可以通过信令配置。 特别地, 本实施方式 mi的值是由 MIB通知确定 配置。 特别地, UE在接收调度包含了 TDD配置的系统信息块 (如 SIB1)的控制 信道时, 还不知道 TDD的上下行配置, 因此不能确定承载所述控制信道的子帧 的 mi。 为此, 本实施方式可以在 MIB中指示承载调度包含了 TDD配置的系统 信息块 (如 SIB1)的控制信道的子帧的 mi。相应地,在 UE侧, 当 UE检测出 MIB 后, 就可以确定调度包含了 TDD配置的系统信息块 (SIB1)的控制信道重复传输 的子帧的 mi, 从而根据确定的 mi检测控制信道。 另外, UE可以尝试可能的 mi值, 盲检测控制信道。 如, 若调度 SIB1的控制信道在子帧 5上传输, 因为在 子帧 5上 mi的值可能为 0,1,2, 因此 UE可以尝试不同的 mi值来检测 PDCCH。 In particular, for frame structure type 2, the mi factors for determining PHICH resources in each of the plurality of subframes are the same. The size of mi can be determined according to advance regulations. As specified in the control letter The repeating transmission of the mi of the starting subframe in the plurality of subframes determines the mi of each of the plurality of subframes. If the UE determines that the control channel repeatedly transmits the mi of the starting subframe in the multiple subframes, determining that the control channel repeatedly transmits the multiple subframes according to the same mi factor for determining the PHICH resource in each of the multiple subframes. Mi in other subframes. Alternatively, the mi factor for determining the PHICH resource in each of the plurality of subframes may be configured by signaling. In particular, the value of the present embodiment mi is determined by the MIB notification configuration. In particular, when receiving the control channel of the system information block (such as SIB1) that includes the TDD configuration, the UE does not know the uplink and downlink configuration of the TDD, and therefore cannot determine the mi of the subframe that carries the control channel. To this end, the present embodiment may indicate in the MIB that the bearer of the control channel of the control channel including the system information block (such as SIB1) of the TDD configuration is scheduled. Correspondingly, on the UE side, after the UE detects the MIB, it may determine that mi of the subframe in which the control channel repeat transmission of the system information block (SIB1) of the TDD configuration is scheduled, so as to detect the control channel according to the determined mi. In addition, the UE can blindly detect the control channel by attempting a possible mi value. For example, if the control channel scheduling SIB1 is transmitted on subframe 5, since the value of mi may be 0, 1, 2 in subframe 5, the UE may try different mi values to detect the PDCCH.
特别地, 多个控制信道重复传输的子帧中的每个子帧的循环前缀都相同。 如多个控制信道重复传输的子帧中的每个子帧的循环前缀都是正常循环前缀。 或者, 多个控制信道重复传输的子帧中的每个子帧的循环前缀都是扩展循环前 缀。  In particular, the cyclic prefix of each of the subframes in which the plurality of control channels are repeatedly transmitted is the same. The cyclic prefix of each subframe in a subframe that is repeatedly transmitted as a plurality of control channels is a normal cyclic prefix. Alternatively, the cyclic prefix of each of the subframes in which the plurality of control channels are repeatedly transmitted is an extended cyclic prefix.
若 MIB中的 PHICH配置不变, 对于帧结构类型 1 , 不同无线帧的子帧 的 PHICH配置和资源大小相同。对于帧结构类型 2,若 MIB中的 PHICH配置不变, TDD上下行配置不变, 则不同无线帧的子帧 的 mi相同。  If the PHICH configuration in the MIB is unchanged, for the frame structure type 1, the PHICH configuration and the resource size of the subframes of different radio frames are the same. For frame structure type 2, if the PHICH configuration in the MIB is unchanged and the TDD uplink and downlink configuration is unchanged, the subframes of different radio frames have the same mi.
本实施方式为了确定第一参数, 特别地可以通过下述过程实现。 其中, 第 一参数是起始控制信道元素的编号或控制信道元素的编号。  In order to determine the first parameter, the present embodiment can be realized in particular by the following process. The first parameter is the number of the starting control channel element or the number of the control channel element.
在本实施方式中, 如前所述, 在多个子帧中的每个子帧上传输控制信道所 用的第一参数都相同, 即, 在多个子帧中的任意两个子帧上传输控制信道所用 的第一参数都相同。 如, 第一参数是起始控制信道元素的编号, 记在多个子帧 中的每一个子帧上传输控制信道所用的第一参数是 n。。 其中, n。是可以是预先 规定的值, 或者 n。是根据预先规定的函数关系确定。 特别地, 本实施方式可以 规定 n。的值满足一个确定的范围, 以使调度专有数据的 PDCCH占用的 CCE资 源与调度公共数据的 PDCCH占用的 CCE资源没有交叠或资源碰撞, 或者调度 专有数据的 PDCCH占用的 CCE资源不在公共搜索空间。 特别地, 如规定 n0大 于 15。 可选地, 第一参数是控制信道元素的编号。 本实施方式在多个子帧中的每 个子帧上传输控制信道所用的 (聚合级别 L个)控制信道元素的编号都相同。 即, 在多个子帧中的任意两个子帧上传输控制信道所用的聚合级别 L个控制信道元 素的编号都相同。 记在多个子帧中的每一个子帧上传输控制信道所用的控制信 道元素的编号是 ηο, , ...... ,ηζ-1 , 其中, 所述 L 个控制信道元素的编号 n0,nl5...... ,η^可以是预先规定的值, 或者 ηο,ι^, ...... ,η^是根据预先规定的函数 关系确定。 In this embodiment, as described above, the first parameter used for transmitting the control channel in each of the plurality of subframes is the same, that is, the control channel is used for transmitting the control channel in any two of the plurality of subframes. The first parameters are the same. For example, the first parameter is the number of the starting control channel element, and the first parameter used to transmit the control channel in each of the plurality of subframes is n . . Where n. It can be a pre-specified value, or n. It is determined according to a predetermined functional relationship. In particular, this embodiment can specify n. The value of the PDCCH occupied by the PDCCH for scheduling the dedicated data does not overlap or the CCE resource occupied by the PDCCH for scheduling the common data does not overlap or the resource collides, or the CCE resource occupied by the PDCCH for scheduling the dedicated data is not in the public. Search space. In particular, it is specified that n 0 is greater than 15. Optionally, the first parameter is a number of a control channel element. In this embodiment, the numbers of the (aggregation level L) control channel elements used for transmitting the control channel in each of the plurality of subframes are the same. That is, the number of aggregation level L control channel elements used to transmit the control channel on any two of the plurality of subframes is the same. The number of the control channel element used to transmit the control channel on each of the plurality of subframes is ηο, , . . . , η ζ-1 , where the number of the L control channel elements is n 0 , n l5 ...... , η^ may be a predetermined value, or ηο, ι^, ..., η^ is determined according to a predetermined functional relationship.
本实施方式特别地根据预先规定的一个索引确定多个子帧中的每个子帧上 传输控制信道所用的第一参数。  The present embodiment determines, in particular, a first parameter used for transmitting a control channel on each of a plurality of subframes based on a predetermined index.
具体应用例 1 , 定义预先规定的一个索引为 ^ Α的值是预先规定的。 譬如, 规定 0。 再如, A的值可以是根据预先规则确定的。 如, 是预先规定的一个 子帧的子帧索引。 如, 预先规定的一个子帧是多个子帧中的第 p个子帧, 其中 p 是预先规定的整数。 再如, 预先规定的一个子帧是重复传输控制信道的多个子 帧中有最小或最大的总 CCE数的子帧。 因此 是重复传输控制信道的多个子帧 中有最小或最大的总 CCE数的子帧的子帧索引。 再如, 预先规定的一个子帧是 重复传输控制信道的多个子帧中有最小或最大的总 CCE数的子帧中的第 q个子 帧。 q是预先规定的整数, 如 q=l。 因此 是重复传输控制信道的多个子帧中有 最小的总 CCE数的子帧中的第 q个子帧的子帧索引。 本应用例 1可以根据预先 规定的一个索引 A可以确定在多个子帧中的每一个子帧内的控制信道传输所用 的起始控制信道元素的编号 nQ或控制信道元素编号 ηο,ι^, ,ηζ-1: Specific application example 1, defining a predetermined index of the value of ^ 是 is predetermined. For example, specify 0. As another example, the value of A can be determined according to a predetermined rule. For example, it is a sub-frame index of a predetermined subframe. For example, a predetermined one subframe is the pth subframe of the plurality of subframes, where p is a predetermined integer. For another example, a predetermined one subframe is a subframe having a minimum or maximum total CCE number among a plurality of subframes of the repeated transmission control channel. Therefore, it is a subframe index of a subframe in which a minimum or maximum total number of CCEs among the plurality of subframes of the control channel is repeatedly transmitted. For another example, the predetermined one subframe is the qth subframe in the subframe having the smallest or largest total CCE number among the plurality of subframes of the repeated transmission control channel. q is a predetermined integer, such as q=l. Therefore, the subframe index of the qth subframe in the subframe having the smallest total number of CCEs among the plurality of subframes of the transmission control channel is repeatedly transmitted. The application example 1 can determine the number n Q or the control channel element number ηο, ι^ of the initial control channel element used for control channel transmission in each of the plurality of subframes according to a predetermined index A. , η ζ-1 :
Πι= Ζχ { (Yk + m') mod [_NCCE>k / 」 }+ i (式 4) Πι= Ζχ { (Y k + m') mod [_N CCE>k / ” }+ i (Formula 4)
其中, i为整数 0,1..丄 -1 ; 为在多个子帧中的每一个子帧内的控制信道传 输所用的第 i+1个控制信道元素的编号; k为预先规定的一个索引; m是聚合级 别 L对应的搜索空间中的控制信道候选索引, 且 Μ = Ο · · · Μ(" - Ι , Μ(£)为预定的聚 合级别 L对应的搜索空间内控制信道候选的数目; 对于公共搜索空间 = 对 于用户设备 UE特定的搜索空间且 UE没有被配置载波标识字段时 = 对于Where i is an integer 0,1..丄-1; is the number of the i+1th control channel element used for control channel transmission in each of the plurality of subframes; k is a predetermined index m is the control channel candidate index in the search space corresponding to the aggregation level L, and Μ = Ο · · · Μ ( " - Ι , Μ (£) is the number of control channel candidates in the search space corresponding to the predetermined aggregation level L For public search space = for user equipment UE-specific search space and the UE is not configured with the carrier identification field = for
UE特定的搜索空间而 UE被配置载波标识字段时 ' = + M ' "C/ "c/为载波指 示字段的值; mod为求模函数; / ^为对 ^ccE 向下取整; Ncce k为索引 为 k的子帧的控制信道元素总数; ί^ Ί^ο^ , ^ = 39827 , £) = 65537 , %NTI 为无线网络临时标识符 RNTI的值。 的每个子帧上传输控制信道所用的第一参数。 'UE + M '"C/"c/ is the value of the carrier indication field when the UE is configured with the carrier identification field; mod is the modulo function; / ^ is rounded down to ^ccE; N cce k is the total number of control channel elements of the subframe with index k; ί^ Ί^ο^ , ^ = 39827 , £) = 65537 , %NTI is the value of the wireless network temporary identifier RNTI. The first parameter used to transmit the control channel on each subframe.
记预先规定的两个索引分别为 A ^ fe7。 A的值是预先规定的。 如规定 /^0。 或者, 的值是根据预先规则确定的。 如, 是预先规定的一个子帧的子帧索引。 如, 预先规定的一个子帧是重复传输控制信道的多个子帧中的第 p个子帧, 而 p 是预先规定的整数。如 p=l。 因此 是重复传输控制信道的多个子帧中的第 p个 子帧的子帧索引。  The two pre-specified indexes are A ^ fe7. The value of A is predetermined. For example, /^0. Or, the value is determined according to the pre-rules. For example, it is a sub-frame index of a predetermined subframe. For example, one of the predetermined subframes is the p-th subframe of the plurality of subframes in which the control channel is repeatedly transmitted, and p is a predetermined integer. Such as p = l. Therefore, the subframe index of the pth subframe in the plurality of subframes of the transmission control channel is repeatedly transmitted.
预先规定的另一个索引 ^的值是预先规定的。如规定 /^=0。 或者, ^的值 是根据预先规则确定的。 如, 是预先规定的一个子帧的子帧索引。 预先规定的 一个子帧是重复传输控制信道的多个子帧中有最小或最大的总 CCE数的子帧。 因此/ ^是重复传输控制信道的多个子帧中有最小或最大的总 CCE数的子帧的子 帧索引。 再如, 预先规定的一个子帧是重复传输控制信道的多个子帧中有最小 或最大的总 CCE数的子帧中的第 q个子帧, q是预先规定的整数。 如 q=l。 因 此 ka是重复传输控制信道的多个子帧中有最小的总 CCE数的子帧中的第 q个子 帧的子帧索引。  The value of another pre-specified index ^ is pre-specified. For example, /^=0. Alternatively, the value of ^ is determined according to pre-rules. For example, it is a sub-frame index of a predetermined subframe. One of the predetermined subframes is a subframe having the smallest or largest total number of CCEs among the plurality of subframes of the repeated transmission control channel. Therefore / ^ is the subframe index of the subframe having the smallest or largest total number of CCEs among the plurality of subframes of the repeated transmission control channel. For another example, a predetermined one subframe is a qth subframe in a subframe having a minimum or maximum total number of CCEs among a plurality of subframes of the repeated transmission control channel, and q is a predetermined integer. Such as q = l. Therefore, ka is a subframe index of the qth subframe in the subframe having the smallest total number of CCEs among the plurality of subframes of the transmission control channel.
根据预先规定的两个子帧的索引 和 ^可以确定 nQ或 ηο, , ...... ,ni-l o 如, n,= x { (Yk + m') mod L^CCE)ifl / 」 }+ (式 5 ) According to the pre-specified index of two subframes and ^ can determine n Q or ηο, , ..., n il o such as, n, = x { (Y k + m') mod L^ CCE) ifl / }+ (式5)
其中, 式 5中的参数解释如式 4, 这里不再赘述。  The parameters in Equation 5 are explained as Equation 4, and are not described here.
当然, 本申请还可以根据预先规定的一个索引和预先规定的总 CCE数确定 多个子帧中的每个子帧上传输控制信道所用的第一参数。  Of course, the present application may also determine a first parameter used for transmitting a control channel on each of the plurality of subframes according to a predetermined index and a predetermined total number of CCEs.
具体应用例 3 , 记预先规定的一个索引为 A的值是预先规定的。 如, 规 定^ 0。 或者, 的值是根据预先规则确定的。 如, 是预先规定的一个子帧的 子帧索引。 如, 预先规定的一个子帧是重复传输控制信道的多个子帧中的第 p 个子帧。 p是预先规定的整数。 如, p=l。 因此 是重复传输控制信道的多个子 帧中的第 p个子帧的子帧索引。 记预先规定的总 CCE数为 WcCE。 其中, WCCE可 以等于多个子帧中的有最小或最大的总 CCE数的子帧中的总 CCE数。如,假设 有 R个子帧用于控制信道的传输,规定 WccE= min { ^CCE,, } ,其中 r=0山 ...... ?R.l o min ( )为求最小值函数, 是 R个用于控制信道重复传输的子帧中的第 r+1 个子帧中的总 CCE数。 或者, WccE= min { WCCE^, 其中, ^oj, R.l oIn the specific application example 3, it is assumed that the value of a predetermined index A is predetermined. For example, specify ^ 0. Or, the value is determined according to the pre-rules. For example, it is a sub-frame index of a predetermined subframe. For example, one of the predetermined subframes is the p-th subframe of the plurality of subframes in which the control channel is repeatedly transmitted. p is a predetermined integer. For example, p=l. Therefore, the subframe index of the p-th subframe in the plurality of subframes of the transmission control channel is repeatedly transmitted. The pre-specified total number of CCEs is Wc CE . The W CCE may be equal to the total number of CCEs in the subframes having the smallest or largest total CCE number among the multiple subframes. For example, suppose there are R subframes for control channel transmission, specifying Wcc E = m i n { ^CCE,, } , where r=0山... ?R . lo min ( ) is the minimum The function is the total number of CCEs in the r+1th subframe in the R subframes used for control channel repetition transmission. Or, Wcc E = m in { W CCE ^, where ^oj, R . lo is
R个用于控制信道重复传输的子帧中的第 r+1个子帧的子帧索引。 根据预先规定的一个子帧的子帧索引 和 WCCE可以确定 nQ或 ηο,ι^, ...... ,ni-l o R subframe indices of the r+1th subframe in the subframe for controlling channel repetition transmission. According to a predetermined subframe index and WCCE of one subframe, n Q or ηο, ι^, ..., n il o can be determined.
^口 , ni= x { (Yk + m') mod LWCCE / 」 }+ (式 6 ) ^口, ni= x { (Y k + m') mod LW CCE / ” }+ (Equation 6)
其中, 式 6中的参数解释如式 4, 在此不作赘述。  The parameters in Equation 6 are explained as Equation 4, and are not described herein.
需要说明的是, 在 UE侧, UE可以尝试可能的聚合级别及该聚合级别下 的可能的控制信道候选来检测控制信道。 进一步地, 若 UE在检测控制信道时, 不知道用于控制信道增强传输的多个子帧的数目或重复次数时, UE还可以根据 可能的多个子帧的数目或重复次数来尝试检测控制信道。  It should be noted that, on the UE side, the UE may try to detect the control channel by using a possible aggregation level and possible control channel candidates under the aggregation level. Further, if the UE does not know the number of the multiple subframes or the number of repetitions for controlling the channel enhanced transmission when detecting the control channel, the UE may also try to detect the control channel according to the number of possible multiple subframes or the number of repetitions.
在本实施方式中, 多个子帧中的每个子帧中的公共参考信号的天线端口数 可以相同, 也可以不同。 多个子帧中的 CFI值可以相同, 也可以不同。 多个子 帧中的每个子帧的 PHICH-Config可以相同, 也可以不同。 多个子帧中的每个子 帧的循环前缀可以相同, 也可以不同。 对于帧结构类型 2, 多个子帧中的每个子 帧中用于确定 PHICH资源的 mi因子可以相同, 也可以不同。  In this embodiment, the number of antenna ports of the common reference signal in each of the plurality of subframes may be the same or different. The CFI values in multiple subframes may be the same or different. The PHICH-Config of each of the plurality of subframes may be the same or different. The cyclic prefix of each of the plurality of subframes may be the same or different. For frame structure type 2, the mi factors used to determine the PHICH resources in each of the plurality of subframes may be the same or different.
若控制信道是用于 SIB1的调度或包含 TDD配置的系统信息块的调度。 对 于帧结构类型 1 , 传输控制信道的子帧的 CFI=2, 或者控制信道在子帧 0、 4、 5、 9中的一个或多个子帧上重复传输。 进一步地, 在子帧 0、 4、 5、 9中的一个或 多个子帧上传输控制信道时, 所述子帧的 CFI=3。 对于帧结构类型 2, 传输控制 信道的子帧的 CFI=2, 或者控制信道在子帧 0和 /或 5上重复传输。 进一步地, 在子帧 0和 /或 5中的一个或多个子帧上传输控制信道时, 所述子帧的 CFI=3。 或者, 控制信道在子帧 0和 /或 5上重复传输, 并且控制信道也可以在子帧 1和 / 或 6上重复传输。 在子帧 0和 /或 5中的一个或多个子帧上传输控制信道的子帧 的 CFI=3 ,在子帧 1和 /或 6中的一个或多个子帧上传输控制信道的子帧的 CFI=2。  If the control channel is a schedule for SIB1 or a system information block containing a TDD configuration. For frame structure type 1, the CFI of the subframe in which the control channel is transmitted is 2, or the control channel is repeatedly transmitted on one or more of the subframes 0, 4, 5, 9. Further, when the control channel is transmitted on one or more of the subframes 0, 4, 5, 9, the CFI of the subframe is 3. For frame structure type 2, the CFI of the subframe in which the control channel is transmitted is 2, or the control channel is repeatedly transmitted on subframes 0 and/or 5. Further, when the control channel is transmitted on one or more of the subframes 0 and/or 5, the CFI of the subframe is 3. Alternatively, the control channel is repeatedly transmitted on subframes 0 and/or 5, and the control channel may also be repeatedly transmitted on subframes 1 and/or 6. CFI=3 of a subframe in which a control channel is transmitted on one or more of subframes 0 and/or 5, and a subframe of a control channel is transmitted on one or more of subframes 1 and/or 6 CFI=2.
MBSFN子帧配置包含在系统信息块类型 X中, 如 x=2。 对于帧结构类型 1 , 调度 SIBx的控制信道的子帧的 CFI=2, 或者调度 SIBx的控制信道在子帧 0、 4、 5、 9中的一个或多个子帧上重复传输。 进一步地, 在子帧 0、 4、 5、 9中的一个 或多个子帧上传输调度 SIBx的控制信道时, 所述子帧的 CFI=3。 对于帧结构类 型 2, 调度 SIBx的控制信道时, 所述子帧的 CFI=2。 或者, 调度 SIBx的控制信 道在子帧 0和 /或 5上重复传输。 进一步地, 在子帧 0和 /或 5中的一个或多个子 帧上传输调度 SIBx的控制信道的子帧的 CFI=3。 或者, 调度 SIBx的控制信道 在子帧 0和 /或 5上重复传输,并且调度 SIBx的控制信道也可以在子帧 1和 /或 6 上重复传输。在子帧 0和 /或 5中的一个或多个子帧上传输调度 SIBx的控制信道 的子帧的 CFI=3 ,在子帧 1和 /或 6中的一个或多个子帧上传输调度 SIBx的控制 信道的子帧的 CFI=2。 The MBSFN subframe configuration is included in the system information block type X, such as x=2. For frame structure type 1, the CFI of the subframe in which the control channel of the SIBx is scheduled is CFI=2, or the control channel of the scheduling SIBx is repeatedly transmitted on one or more of the subframes 0, 4, 5, 9. Further, when the control channel for scheduling the SIBx is transmitted on one or more of the subframes 0, 4, 5, 9, the CFI of the subframe is 3. For frame structure type 2, when the control channel of the SIBx is scheduled, the CFI of the subframe is 2. Alternatively, the control channel of the scheduling SIBx is repeatedly transmitted on subframes 0 and/or 5. Further, the CFI=3 of the subframe in which the control channel of the SIBx is scheduled is transmitted on one or more of the subframes 0 and/or 5. Alternatively, the control channel scheduling the SIBx is repeatedly transmitted on subframes 0 and/or 5, and the control channel scheduling the SIBx may also be repeatedly transmitted on subframes 1 and/or 6. Propagating a control channel for scheduling SIBx on one or more of subframes 0 and/or 5 The CFI of the subframe is 3, and the CFI of the subframe in which the control channel of the SIBx is scheduled is transmitted on one or more of the subframes 1 and/or 6.
需要说明的是, 由于一个子帧中的总 CCE数与子帧中的公共参考信号的天 线端口数、 用于控制信道的 OFDM符号的个数、 PHICH-Config、 确定 PHICH 资源的 mi因子(譬如对于帧结构类型 2 ) 中的一种或多种相关, 因此, 若多个 子帧中存在两个子帧中的总 CCE数不同时, 釆用上述实施方式确定第一参数的 方式, 并不能保证使得在多个子帧中的每个子帧上传输的控制信道映射在物理 资源上的资源元素位置都相同。  It should be noted that, due to the total number of CCEs in one subframe and the number of antenna ports of the common reference signal in the subframe, the number of OFDM symbols used for the control channel, PHICH-Config, and the mi factor determining the PHICH resource (for example, For one or more correlations in the frame structure type 2), therefore, if there are different total CCE numbers in two subframes in multiple subframes, the manner in which the first parameter is determined by the above embodiment is not guaranteed. The control channel map transmitted on each of the plurality of subframes has the same resource element location on the physical resource.
本申请将通过下述方法使得在多个子帧中的每个子帧上传输的控制信道映 射在物理资源上的资源元素位置都相同。  The present application will cause the control channel transmitted on each of the plurality of subframes to be mapped to the same resource element location on the physical resource by the following method.
对于帧结构类型 2,每个子帧的 PHICH资源大小与 mi有关,从而每个子帧 中总的 CCE数目与该子帧的 mi有关。 为了使多个子帧中的每个子帧上传输的 控制信道映射在物理资源上的资源元素位置都相同, 多个子帧中的每个子帧可 以设定符合下述规定中的一项或多项:  For frame structure type 2, the PHICH resource size of each subframe is related to mi, so that the total number of CCEs in each subframe is related to mi of the subframe. In order to make the control element mapped on each of the plurality of subframes have the same resource element position on the physical resource, each of the plurality of subframes may be set to meet one or more of the following provisions:
规定 1 : 多个子帧中的每个子帧中的公共参考信号的天线端口数相同; 规定 2: 多个子帧中的每个子帧中用于控制信道的 OFDM符号的个数相同; 规定 3: 多个子帧中的每个子帧的 PHICH-Config相同;  Rule 1: The number of antenna ports of the common reference signal in each of the plurality of subframes is the same; Specification 2: the number of OFDM symbols used for the control channel in each of the plurality of subframes is the same; The PHICH-Config of each subframe in the subframe is the same;
规定 4: 对于帧结构类型 2, 多个子帧中的每个子帧中用于确定 PHICH资 源的 mi因子相同;  Rule 4: For frame structure type 2, the mi factor used to determine the PHICH resource in each of the plurality of subframes is the same;
规定 5: 若多个子帧中的每个子帧中的 PHICH duration是 extended:多个子 帧中的每个子帧都不是 MBSFN子帧;或者,多个子帧中的每个子帧都是 MBSFN 子帧; 或者, 对于帧结构类型 2, 多个子帧中的每个子帧是 MBSFN子帧, 和 / 或子帧 1 , 和 /或子帧 6;  Rule 5: if the PHICH duration in each of the plurality of subframes is extended: each of the plurality of subframes is not an MBSFN subframe; or each of the plurality of subframes is an MBSFN subframe; or For frame structure type 2, each of the plurality of subframes is an MBSFN subframe, and/or subframe 1, and/or subframe 6;
规定 6: 多个子帧中的每个子帧中的 PHICH duration均为 normal。  Rule 6: The PHICH duration in each of the multiple subframes is normal.
规定 7: 多个子帧中的每个子帧釆用相同的循环前缀。  Rule 7: Each of the multiple subframes uses the same cyclic prefix.
本申请通过规定 1-7的特别应用例,所釆用的控制信道的增强传输方法,可 以按照以上规定中的一项或多项在多个子帧中的每个子帧中进行控制信道的发 送。 通常, 多个子帧中的每个子帧至少满足上述规定 1 至规定 4。 相应地, 在 UE侧, 可以按照以上规定中的一项或多项在多个子帧中的每个子帧中进行控制 信道的接收。  The present application passes the enhanced transmission method of the control channel according to the special application example of 1-7, and the control channel can be transmitted in each of the plurality of subframes according to one or more of the above provisions. Generally, each of the plurality of sub-frames satisfies at least the above-mentioned provisions 1 to 4. Accordingly, on the UE side, the reception of the control channel can be performed in each of the plurality of subframes in accordance with one or more of the above provisions.
需要说明的是, mi因子在不同的上下行配置和不同的子帧中的值如上述实 施例中表一所示。 It should be noted that the values of the mi factor in different uplink and downlink configurations and different subframes are as described above. Table 1 is shown in the example.
示例二, 为了使多个子帧中的每个子帧上传输的控制信道映射在物理资源 上的资源元素位置都相同,控制信道只能在具有相同的 mi子帧上重复传输。如, 在上下行配置为 0时, 子帧 0和子帧 5具有相同的 mi, 因此控制信道在子帧 0 和 /或子帧 5上进行重复传输。 或者, 在上下行配置为 0时, 子帧 1和子帧 6具 有相同的 mi, 因此控制信道在子帧 1和 /或子帧 6上进行重复传输。 再如, 在上 下行配置为 1时, 子帧 0和子帧 5具有相同的 mi, 因此控制信道在子帧 0和 / 或子帧 5上进行重复传输。 或者, 在上下行配置为 1时, 子帧 1、 子帧 4、 子帧 6、 和子帧 9具有相同的 mi, 因此控制信道在子帧 1、 子帧 4、 子帧 6、 和子帧 9 中的一个或多个子帧进行重复传输。  For example two, in order to map the control elements transmitted on each of the plurality of subframes to the same resource elements on the physical resources, the control channels can only be repeatedly transmitted on the same mi subframe. For example, when the uplink and downlink configurations are 0, subframe 0 and subframe 5 have the same mi, so the control channel performs repeated transmission on subframe 0 and/or subframe 5. Alternatively, when the uplink and downlink configurations are 0, subframe 1 and subframe 6 have the same mi, so the control channel performs repeated transmission on subframe 1 and/or subframe 6. For another example, when the uplink and downlink configurations are 1, subframe 0 and subframe 5 have the same mi, so the control channel performs repeated transmission on subframe 0 and/or subframe 5. Or, when the uplink and downlink configurations are 1, subframe 1, subframe 4, subframe 6, and subframe 9 have the same mi, so the control channel is in subframe 1, subframe 4, subframe 6, and subframe 9. One or more subframes are repeatedly transmitted.
若控制信道是用于 SIB1的调度或用于包括上下行配置的系统信息块的调度 If the control channel is for scheduling of SIB1 or for scheduling of system information blocks including uplink and downlink configurations
(SIBy)。 对于帧结构类型 1 , 传输控制信道的子帧的 CFI=2。 或者, 控制信道在 子帧 0、 4、 5、 9中的一个或多个子帧上重复传输。 在子帧 0、 4、 5、 9中的一个 或多个子帧上传输控制信道的子帧的 CFI=3。 (SIBy). For frame structure type 1, the CFI of the subframe in which the control channel is transmitted is 2. Alternatively, the control channel is repeatedly transmitted on one or more of the subframes 0, 4, 5, 9. The CFI of the subframe in which the control channel is transmitted on one or more of the subframes 0, 4, 5, 9 is CFI=3.
对于帧结构类型 2, UE在接收控制信道的时候还不知道上下行配置, 因此也 无法确定子帧的 mi值。 为此, 可以在预先规定的多个子帧中对 mi的可能取值进 行尝试来检测控制信道。 如控制信道在子帧索引为 5的一个或多个子帧上重复传 输, UE尝试子帧 5上可能的 mi取值进行控制信道的检测。 进一步地, 传输控制信 道的子帧的 CFI=3。  For frame structure type 2, the UE does not know the uplink and downlink configuration when receiving the control channel, and therefore cannot determine the mi value of the subframe. To this end, the possible values of mi may be tried in a plurality of predetermined subframes to detect the control channel. If the control channel is repeatedly transmitted on one or more subframes with a subframe index of 5, the UE attempts a detection of the control channel by taking the possible mi value on the subframe 5. Further, the CFI of the subframe in which the control channel is transmitted is 3.
再如, 因为对于上下行配置 0到 6, 子帧 1和子帧 6具有相同的 mi。 可以规定调 度 SIBy的控制信道在子帧索引为 1和 /或 6的一个或多个子帧上重复传输。 进一步 地, 传输控制信道的子帧的 CFI=2。  For another example, because the uplink and downlink configuration 0 to 6, subframe 1 and subframe 6 have the same mi. The control channel of the scheduling SIBy may be specified to be repeatedly transmitted on one or more subframes having subframe indices of 1 and/or 6. Further, the CFI of the subframe in which the control channel is transmitted is 2.
再如, 因为对于上下行配置 2、 4、 5、 6, 子帧 0、 子帧 1、 子帧 5、 和子帧 6 具有相同的 mi。 若基站在进行控制信道的重复发送时, 上下行配置是 2、 4、 5、 6中的某一种, 此时可以规定调度 SIBy的控制信道在子帧索引为 0、 1、 5、 和 6的 一个或多个子帧上重复传输。 进一步地, CFI=2。  For another example, because the uplink and downlink configuration 2, 4, 5, 6, subframe 0, subframe 1, subframe 5, and subframe 6 have the same mi. If the base station is performing repeated transmission of the control channel, the uplink and downlink configuration is one of 2, 4, 5, and 6. In this case, the control channel for scheduling the SIBy may be specified to be 0, 1, 5, and 6 in the subframe index. The transmission is repeated on one or more subframes. Further, CFI=2.
MBSFN子帧配置包含在系统信息块类型 x (SIBx)中。 如 x=2。 对于 FDD系统, 调 度 SIBx的控制信道的子帧的 CFI=2。 或者, 调度 SIBx的控制信道在子帧 0、 4、 5、 9中的一个或多个子帧上重复传输。 进一步地, 在子帧 0、 4、 5、 9中的一个或多 个子帧上传输调度 SIBx的控制信道的子帧的 CFI=3。 The MBSFN subframe configuration is included in the System Information Block Type x (SIBx). Such as x=2. For the FDD system, the CFI of the subframe in which the control channel of the SIBx is scheduled is CFI=2. Or, scheduling the control channel of the SIBx in subframes 0, 4, 5, The transmission is repeated on one or more subframes in 9. Further, the CFI=3 of the subframe in which the control channel of the SIBx is scheduled is transmitted on one or more of the subframes 0, 4, 5, 9.
对于 TDD系统, 调度 SIBx的控制信道的子帧的 CFI=2。 或者, 调度 SIBx的 控制信道的子帧的 CFI=2 ,且调度 SIB2的控制信道在具有相同 mi的一个或多个 子帧上重复传输。 因为 UE在检测 SIBx时, 已经知道了上下行配置, 从而 UE也 知道了那些子帧的 mi相同。 或者, 调度 SIB2的控制信道在子帧 0、 1、 5、 6中 的具有相同 mi 的一个或多个子帧上重复传输。 进一步地, 在子帧 0、 1、 5、 6 中的一个或多个子帧上传输调度 SIBx的控制信道的子帧的 CFI=3。  For the TDD system, the subframe of the control channel of the SIBx is scheduled to have a CFI=2. Alternatively, the subframe of the control channel of the SIBx is scheduled to have CFI = 2, and the control channel of the scheduling SIB2 is repeatedly transmitted on one or more subframes having the same mi. Since the UE knows the uplink and downlink configuration when detecting the SIBx, the UE also knows that the mis of those subframes are the same. Alternatively, the control channel of the scheduling SIB2 is repeatedly transmitted on one or more subframes of the subframes 0, 1, 5, 6 having the same mi. Further, the CFI of the subframe in which the control channel of the SIBx is scheduled is transmitted on one or more of the subframes 0, 1, 5, and 6.
本实施方式通过上述特别应用例 1、 2、 3 以及示例二用于重复传输控制信 道的多个子帧中的每个子帧中的总 CCE数和第一参数可以保证相同。  The present embodiment can be guaranteed to be the same by the total number of CCEs and the first parameter in each of a plurality of subframes for repeatedly transmitting the control channel by the above-described special application examples 1, 2, 3 and 2.
本申请可以按照式 4、 5、 6所涉及的三种方法中的任意一种方法确定 n0或 n0,nl5 ,ni-l o 具体地, 本实施方式可以釆用前述式 4、 式 5、 式 6中的任意一 个公式或者其扩展的方式确定 nQ或 ηο, , ...... 这些在本技术领域人员容易 理解的范围内, 此处不再赘述。 The present application can determine n 0 or n 0 , n l5 , n il o according to any one of the three methods involved in the formulas 4, 5, and 6. Specifically, in the embodiment, the foregoing formula 4 and formula 5 can be used. Any one of Formula 6 or its extended manner determines n Q or ηο, , ... These are within the scope easily understood by those skilled in the art, and are not described herein again.
需要特别指出的是, 上述实施方式主要针对控制信道在多个子帧内传输进 行阐述, 而在具体的实现过程中, 控制信道也可以一个或多个子帧中的每个子 帧内进行多次重复传输, 即通过频域的方式进行重复传输。 当控制信道在每个 子帧内多次重复传输时, 在每个子帧内不同次重复传输的控制信道在该子帧内 的第一参数有一个固定的偏移。如在一个子帧内,控制信道进行 Μ次重复传输, 这 Μ次重复传输的控制信道中的第一次重复传输的控制信道的第一参数 cQ可以 按照前面实施方式中确定第一参数的类似方法确定, 而这 M次重复传输的控制 信道中的第二次重复传输的控制信道的第一参数 CfCo+offset, 其中, offset为预 设的固定的偏移值,类似地, M次重复传输的控制信道中的第 i次重复传输的控 制信道的第一参数 c^Ci. j+offset, i=l,2, ,M。 It should be noted that the foregoing embodiment is mainly directed to the transmission of the control channel in multiple subframes. In a specific implementation process, the control channel may also perform multiple transmissions in each subframe of one or more subframes. , that is, repeated transmission in the frequency domain. When the control channel repeats transmission multiple times within each subframe, the control channel that is repeatedly transmitted in each subframe has a fixed offset in the first parameter in the subframe. For example, in one subframe, the control channel performs one-time repeated transmission, and the first parameter c Q of the first repeated transmission of the control channel in the repeated transmission of the control channel may be determined according to the previous embodiment. A similar method determines, and the first parameter CfCo+offset of the control channel of the second repeated transmission in the M repeated transmission control channels, where offset is a preset fixed offset value, similarly, M repetitions The first parameter c^Ci.j+offset, i=l, 2, , M of the control channel of the ith repeated transmission in the transmitted control channel.
本申请实现了对控制信道在多个子帧内的每个子帧中增强传输所用的第一 参数相同和 /或保证控制信道在多个子帧内的每个子帧中增强传输所用的物理资 源元素位置相同, 便于调度实现和降低 UE检测的复杂度。  The present application implements the same first parameter used for enhanced transmission of a control channel in each subframe within a plurality of subframes and/or ensures that the control channel has the same physical resource element location for enhanced transmission in each subframe of the plurality of subframes. It is convenient for scheduling implementation and reducing the complexity of UE detection.
图 3是本申请基站另一实施方式的模块框图, 本实施方式基站包括但不限 于通过总线连接的处理器 31、 发送器 32和接收器 33等, 其中, 发送器 32用于 发送信道、 数据, 接收器 33用于接收信道、 数据, 而处理器 31用于对数据等 进行综合处理。 3 is a block diagram of another embodiment of a base station of the present application. The base station of the present embodiment includes but is not limited to a processor 31, a transmitter 32, a receiver 33, and the like connected through a bus, where the transmitter 32 is configured to transmit channels and data. The receiver 33 is configured to receive channels and data, and the processor 31 is used for data, etc. Comprehensive processing.
在本实施方式中, 处理器 31 , 用于确定对控制信道进行增强传输的多个子 帧。 发送器 32, 用于在处理器 31确定的多个子帧中对控制信道进行增强传输。 其中, 增强传输是重复传输、 扩频传输、 传输时间间隔捆绑传输以及功率提升 传输中的至少一种。  In this embodiment, the processor 31 is configured to determine a plurality of subframes for performing enhanced transmission on the control channel. The transmitter 32 is configured to perform enhanced transmission on the control channel in multiple subframes determined by the processor 31. The enhanced transmission is at least one of a repetitive transmission, a spread spectrum transmission, a transmission time interval bundling transmission, and a power boost transmission.
需要指出的是, 发送器 32在多个子帧中的每个子帧上传输控制信道, 且在 多个子帧中的每个子帧上传输控制信道所用的第一参数都相同, 其中第一参数 是起始控制信道元素的编号或控制信道元素的编号。 如, 第一参数是起始控制 信道元素的编号。  It should be noted that the transmitter 32 transmits a control channel on each of the plurality of subframes, and the first parameter used for transmitting the control channel in each of the plurality of subframes is the same, wherein the first parameter is The number of the control channel element or the number of the control channel element. For example, the first parameter is the number of the starting control channel element.
特别地, 发送器 32在多个子帧中的每个子帧上传输控制信道所用的第一参 数是预先规定的; 或者, 发送器 32在多个子帧中的每个子帧上传输控制信道所 用的第一参数是根据预先规定的函数关系确定的。  In particular, the first parameter used by the transmitter 32 to transmit the control channel on each of the plurality of subframes is predetermined; or the transmitter 32 transmits the control channel for each of the plurality of subframes. A parameter is determined based on a predetermined functional relationship.
在具体的实现过程中, 处理器 31用于: 根据预先规定的一个索引确定多个 子帧中的每个子帧上传输控制信道所用的第一参数; 或者, 根据预先规定的两 个索引确定多个子帧中的每个子帧上传输控制信道所用的第一参数; 或者, 根 据预先规定的一个索引和预先规定的总 CCE数确定多个子帧中的每个子帧上传 输控制信道所用的第一参数。  In a specific implementation process, the processor 31 is configured to: determine, according to a predetermined index, a first parameter used by each of the multiple subframes to transmit a control channel; or, determine, according to two predefined indexes, multiple subframes. The first parameter used for transmitting the control channel on each subframe in the frame; or determining the first parameter used for transmitting the control channel in each of the plurality of subframes according to a predetermined index and a predetermined total number of CCEs.
需要说明的是, 处理器 31在处理控制信道元素的编号的过程中, 预先规定 的一个索引是预先规定的一个子帧的索引, 其中预先规定的一个子帧可以是:多 个子帧中的第 p个子帧, 其中 p是预先规定的整数; 或, 多个子帧中有最小的 总 CCE数的子帧; 或, 多个子帧中有最小的总 CCE数的子帧中的第 q个子帧, 其中 q是预先规定的整数。  It should be noted that, in the process of processing the number of the control channel element, the processor 31 specifies a predetermined index of one subframe, where a predetermined one subframe may be: the first one of the multiple subframes. p subframes, where p is a predetermined integer; or, a subframe having a smallest total number of CCEs among the plurality of subframes; or, a qth subframe of the subframes having the smallest total number of CCEs among the plurality of subframes, Where q is a predetermined integer.
而处理器 31在处理控制信道元素的编号的过程中, 预先规定的两个索引中 的一个索引是第一预先规定的一个子帧的索引, 其中第一预先规定的一个子帧 可以是: 多个子帧中的第 p个子帧, 其中 p是预先规定的整数; 或, 多个子帧 中有最小的总 CCE数的子帧的子帧索引。或, 多个子帧中有最小的总 CCE数的 子帧中的第 q个子帧, 其中 q是预先规定的整数。  The processor 31 processes, in the process of processing the number of the control channel element, one of the two indexes specified in advance is an index of the first predetermined one subframe, wherein the first predetermined one subframe may be: The pth subframe in the subframe, where p is a predetermined integer; or, the subframe index of the subframe having the smallest total number of CCEs among the plurality of subframes. Or, the qth subframe in the subframe having the smallest total number of CCEs among the plurality of subframes, where q is a predetermined integer.
同理, 预先规定的两个索引中的另一个索引是第二预先规定的一个子帧的 索引, 其中第二预先规定的一个子帧是: 多个子帧中的第 r个子帧, 其中 r是预 先规定的整数; 或, 多个子帧中有最小的总 CCE数的子帧的子帧索引; 或, 多 个子帧中有最小的总 CCE数的子帧中的第 w个子帧,其中 w是预先规定的整数。 其中,预先规定的总 CCE数是多个子帧中的有最小或最大的总 CCE数的子 帧中的总 CCE数。 Similarly, the other one of the two predetermined indexes is an index of a second predetermined one subframe, wherein the second predetermined one subframe is: the rth subframe of the plurality of subframes, where r is a predetermined integer; or a subframe index of a subframe having a smallest total number of CCEs among the plurality of subframes; or, a w-th subframe of the subframe having the smallest total number of CCEs among the plurality of subframes, where w is A predetermined integer. The predetermined total number of CCEs is the total number of CCEs in the subframes having the smallest or largest total number of CCEs in the plurality of subframes.
值得注意的是, 本实施方式第一参数可以满足一个或多个条件。 譬如: 发 送器 32传输控制信道所用的第一参数满足一个确定的范围, 以使调度专有数据 的控制信道占用的控制信道元素与调度公共数据的控制信道占用的控制信道元 素没有资源交叠; 或者, 发送器 32传输控制信道所用的第一参数满足一个确定 的范围, 以使调度专有数据的控制信道占用的控制信道元素与公共搜索空间中 的控制信道元素没有资源交叠。  It should be noted that the first parameter of this embodiment may satisfy one or more conditions. For example, the first parameter used by the transmitter 32 to transmit the control channel satisfies a certain range, so that the control channel element occupied by the control channel for scheduling the dedicated data has no resource overlap with the control channel element occupied by the control channel for scheduling the common data; Alternatively, the first parameter used by the transmitter 32 to transmit the control channel satisfies a certain range such that the control channel elements occupied by the control channel scheduling the proprietary data do not have resource overlap with the control channel elements in the common search space.
具体而言, 发送器 32在多个子帧中对控制信道进行增强传输时, 多个子帧 中的每个子帧均不为多媒体组播单频网络 MBSFN子帧;或,多个子帧中的每个 子帧均为 MBSFN子帧;或对于帧结构类型 2,多个子帧中的每个子帧为 MBSFN 子帧, 或子帧 1 , 或子帧 6。  Specifically, when the transmitter 32 performs enhanced transmission on the control channel in multiple subframes, each of the multiple subframes is not a multimedia multicast single frequency network MBSFN subframe; or each of the multiple subframes The frames are all MBSFN subframes; or for frame structure type 2, each of the plurality of subframes is an MBSFN subframe, or a subframe 1, or a subframe 6.
可选地, 发送器 32在多个子帧中对控制信道进行增强传输时: 多个子帧中 的子帧索引属于 {0,4,5,9}的子帧中有 CFI个 OFDM符号用于控制信道, 且多个 子帧中的子帧索引不属于 {0,4,5,9}的子帧中有两个 OFDM符号用于控制信道; 或, 对于帧结构类型 2, 多个子帧中的子帧索引属于 {0,5}的子帧中有 CFI 个 OFDM符号用于控制信道, 且多个子帧中的子帧索引不属于 {0,5}的子帧中有两 个 OFDM符号用于控制信道。 其中, CFI的值为 3或 4。  Optionally, when the transmitter 32 performs enhanced transmission on the control channel in multiple subframes: the subframe index in the multiple subframes belongs to the {0, 4, 5, 9} subframe, and the CFI OFDM symbols are used for control. a channel, and a subframe index in a plurality of subframes that does not belong to {0, 4, 5, 9} has two OFDM symbols for the control channel; or, for frame structure type 2, a sub-frame among the plurality of subframes A subframe with a frame index of {0, 5} has CFI OFDM symbols for the control channel, and a subframe in which the subframe index does not belong to {0, 5} has two OFDM symbols for control. channel. Among them, the value of CFI is 3 or 4.
此外, 在载波方面, 发送器 32在控制信道进行增强传输所釆用的载波的带 宽属于第一带宽范围时, 多个子帧的每个子帧中有 u个 OFDM符号用于控制信 道或数据信道; 而发送器 32在控制信道进行增强传输所釆用的载波的带宽属于 第二带宽范围时, 多个子帧的每个子帧中有 V个 OFDM符号用于控制信道或数 据信道。 其中, 第一带宽范围和第二带宽范围为预定的带宽范围, 且第一带宽 范围和第二带宽范围互不相交, u和 V为自然数, 且 u不等于 V。  In addition, on the carrier side, when the bandwidth of the carrier used by the control channel for the enhanced transmission of the control channel belongs to the first bandwidth range, there are u OFDM symbols in each subframe of the multiple subframes for the control channel or the data channel; And when the bandwidth of the carrier used by the transmitter 32 for the enhanced transmission of the control channel belongs to the second bandwidth range, there are V OFDM symbols in each subframe of the multiple subframes for the control channel or the data channel. The first bandwidth range and the second bandwidth range are predetermined bandwidth ranges, and the first bandwidth range and the second bandwidth range do not intersect each other, u and V are natural numbers, and u is not equal to V.
上述过程在一定程度上实现了对控制信道在多个子帧内的每个子帧中增强 传输所用的 CCE编号相同, 便于调度实现和降低 UE检测的复杂度。 但上述过 程并不能保证控制信道在多个子帧内的每个子帧中增强传输所用的物理资源元 素位置相同。 如果要使控制信道在多个子帧内的每个子帧中增强传输所用的物 理资源元素位置相同, 可对发送器 32做进一步的设定。 如, 发送器 32在多个 子帧中对控制信道进行增强传输, 多个子帧中的每个子帧内的: 公共参考信号 的天线端口数相同; 和 /或, 用于控制信道的 OFDM符号的个数相同; 和 /或, PHICH-Config相同; 和 /或, 帧结构类型 2中用于确定 PHICH资源的 mi因子相 同; 和 /或, 釆用的循环前缀相同; 和 /或, PHICH-duration均为 normal。 The foregoing process achieves the same CCE number for enhancing transmission of the control channel in each subframe in multiple subframes to facilitate the scheduling implementation and reduce the complexity of UE detection. However, the above procedure does not guarantee that the control channel has the same physical resource element location for enhanced transmission in each subframe within a plurality of subframes. The transmitter 32 can be further configured if the control channel is to have the same physical resource element location for enhanced transmission in each of the plurality of sub-frames. For example, the transmitter 32 performs enhanced transmission on the control channel in multiple subframes, and the number of antenna ports of the common reference signal is the same in each of the plurality of subframes; and/or the OFDM symbols used for the control channel The same number; and / or, PHICH-Config is the same; and/or, the mi factor used to determine PHICH resources in frame structure type 2 is the same; and/or, the cyclic prefix used is the same; and/or PHICH-duration is normal.
上述一个或多个实施方式主要针对基站侧传输控制信道的过程进行描述。 图 4为本申请控制信道的接收方法一实施方式的流程图, 本实施方式接收 方法包括但不限于以下步骤。  One or more of the above embodiments are mainly described for the process of transmitting a control channel on the base station side. FIG. 4 is a flowchart of an embodiment of a method for receiving a control channel according to the present application. The receiving method in this embodiment includes but is not limited to the following steps.
5400, 确定控制信道增强传输的多个子帧。  5400. Determine a plurality of subframes of the control channel enhanced transmission.
在 S400中, 多个子帧可以为同一个无线帧内的多个子帧, 也可以为多个无 线帧中的每个无线帧内的至少一个子帧所组成的多个子帧, 在此不作限定。  In S400, the multiple subframes may be multiple subframes in the same radio frame, or may be multiple subframes composed of at least one subframe in each of the plurality of radio frames, which is not limited herein.
值得注意的是, UE可以通过预先接收的信令, 或者根据预设的方式, 或者 盲检测确定多个子帧, 在此不作细述。  It should be noted that the UE may determine multiple subframes by using signaling received in advance, or according to a preset manner, or blind detection, and details are not described herein.
5401 , 在多个子帧中接收增强传输的控制信道, 其中, 增强传输是重复传 输、 扩频传输、 传输时间间隔捆绑传输以及功率提升传输中的至少一种。  5401. Receive a control channel for enhanced transmission in multiple subframes, where the enhanced transmission is at least one of repeated transmission, spread spectrum transmission, transmission time interval bundling transmission, and power boost transmission.
需要说明的是, 在 S401中: 在多个子帧中的每个子帧上接收控制信道, 且 在多个子帧中的每个子帧上接收控制信道所用的第一参数都相同, 其中, 第一 参数是起始控制信道元素的编号或控制信道元素的编号。 如, 第一参数是起始 控制信道元素的编号。  It should be noted that, in S401: a control channel is received on each of the multiple subframes, and the first parameter used for receiving the control channel in each of the multiple subframes is the same, where the first parameter Is the number of the starting control channel element or the number of the control channel element. For example, the first parameter is the number of the starting control channel element.
在其中一实施方式中: 在多个子帧中的每个子帧上接收控制信道所用的第 一参数是预先规定的; 或者, 在多个子帧中的每个子帧上接收控制信道所用的 第一参数是根据预先规定的函数关系确定的。  In one embodiment: the first parameter used to receive the control channel in each of the plurality of subframes is predetermined; or the first parameter used to receive the control channel in each of the plurality of subframes It is determined according to a predetermined functional relationship.
在另一实施方式中: 本申请可以根据预先规定的一个索引确定多个子帧中 的每个子帧上接收控制信道所用的第一参数; 或者, 根据预先规定的两个索引 确定多个子帧中的每个子帧上接收控制信道所用的第一参数; 或者, 根据预先 规定的一个索引和预先规定的总 CCE数确定多个子帧中的每个子帧上接收控制 信道所用的第一参数。  In another implementation manner, the present application may determine, according to a predetermined index, a first parameter used by each of the multiple subframes to receive the control channel, or determine, according to two predefined indexes, the multiple subframes. The first parameter used by the control channel is received on each subframe; or the first parameter used to receive the control channel in each of the plurality of subframes is determined according to a predetermined index and a predetermined total number of CCEs.
举例而言, 预先规定的一个索引是预先规定的一个子帧的索引, 其中预先 规定的一个子帧是: 多个子帧中的第 p个子帧, 其中 p是预先规定的整数; 或, 多个子帧中有最小的总 CCE数的子帧; 或, 多个子帧中有最小的总 CCE数的子 帧中的第 q个子帧, 其中 q是预先规定的整数。  For example, a predetermined index is a predetermined index of one subframe, wherein a predetermined one subframe is: a p-th subframe in a plurality of subframes, where p is a predetermined integer; or, multiple sub-frames a subframe having a minimum total number of CCEs in the frame; or, a qth subframe of the subframe having the smallest total number of CCEs among the plurality of subframes, where q is a predetermined integer.
可选地, 本实施方式预先规定的两个索引中的一个索引是第一预先规定的 一个子帧的索引, 其中第一预先规定的一个子帧是: 多个子帧中的第 p个子帧, 其中 p是预先规定的整数; 或, 多个子帧中有最小的总 CCE数的子帧的子帧索 引; 或, 多个子帧中有最小的总 CCE数的子帧中的第 q个子帧, 其中 q是预先 规定的整数。 同理, 本实施方式预先规定的两个索引中的另一个索引是第二预 先规定的一个子帧的索引, 其中第二预先规定的一个子帧是: 多个子帧中的第 r 个子帧, 其中 r是预先规定的整数; 或, 多个子帧中有最小的总 CCE数的子帧 的子帧索引; 或, 多个子帧中有最小的总 CCE数的子帧中的第 w个子帧, 其中 w是预先规定的整数。 Optionally, one of the two indexes specified in this embodiment is an index of the first predetermined one subframe, where the first predetermined one subframe is: the p-th subframe in the multiple subframes, Where p is a predetermined integer; or, a subframe of a subframe having a smallest total number of CCEs among the plurality of subframes Or; the qth subframe in the subframe having the smallest total number of CCEs among the plurality of subframes, where q is a predetermined integer. Similarly, the other one of the two indexes specified in this embodiment is an index of a second predetermined one subframe, where the second predetermined one subframe is: the rth subframe in the multiple subframes, Where r is a predetermined integer; or, a subframe index of a subframe having a smallest total number of CCEs among the plurality of subframes; or, a w-th subframe of the subframes having the smallest total number of CCEs among the plurality of subframes, Where w is a predetermined integer.
此外,预先规定的总 CCE数是多个子帧中的有最小或最大的总 CCE数的子 帧中的总 CCE数。  Further, the predetermined total number of CCEs is the total number of CCEs in the subframe having the smallest or largest total number of CCEs among the plurality of subframes.
值得注意的是, 本实施方式在多个子帧中接收增强传输的控制信道中: 多 个子帧中的每个子帧内的接收控制信道所用的第一参数可以满足一个确定的范 围, 以使调度专有数据的控制信道占用的控制信道元素与调度公共数据的控制 信道占用的控制信道元素没有资源交叠; 或者, 多个子帧中的每个子帧内的接 收控制信道所用的第一参数满足一个确定的范围, 以使调度专有数据的控制信 道占用的控制信道元素与公共搜索空间中的控制信道元素没有资源交叠。 在另 一实施方式中, 在多个子帧中接收增强传输的控制信道中: 多个子帧中的每个 子帧均不为多媒体组播单频网络 MBSFN子帧;或,多个子帧中的每个子帧均为 MBSFN子帧; 或对于帧结构类型 2, 多个子帧中的每个子帧为 MBSFN子帧, 或子帧 1 , 或子帧 6。  It should be noted that, in this embodiment, the control channel that receives the enhanced transmission in multiple subframes: the first parameter used in the received control channel in each of the multiple subframes may satisfy a certain range, so that the scheduling The control channel element occupied by the control channel with data has no resource overlap with the control channel element occupied by the control channel scheduling the common data; or, the first parameter used for receiving the control channel in each of the plurality of subframes satisfies a certain determination The range is such that the control channel elements occupied by the control channel scheduling the proprietary data do not overlap with the control channel elements in the common search space. In another embodiment, the control channel that receives the enhanced transmission in the multiple subframes: each of the multiple subframes is not a multimedia multicast single frequency network MBSFN subframe; or each of the multiple subframes The frames are all MBSFN subframes; or for frame structure type 2, each of the plurality of subframes is an MBSFN subframe, or a subframe 1, or a subframe 6.
举例而言, 在多个子帧中接收增强传输的控制信道中: 多个子帧中的子帧 索引属于 {0,4,5,9}的子帧中有 CFI个 OFDM符号用于控制信道, 且多个子帧中 的子帧索引不属于 {0,4,5,9}的子帧中有两个 OFDM符号用于控制信道; 或, 对 于帧结构类型 2, 多个子帧中的子帧索引属于 {0,5}的子帧中有 CFI个 OFDM符 号用于控制信道, 且多个子帧中的子帧索引不属于 {0,5}的子帧中有两个 OFDM 符号用于控制信道。 其中, CFI的值为 3或 4。  For example, in a control channel that receives an enhanced transmission in multiple subframes: a subframe index in a plurality of subframes belongs to a subframe of {0, 4, 5, 9}, and CFI OFDM symbols are used for a control channel, and There are two OFDM symbols in the subframe in which the subframe index in the plurality of subframes does not belong to {0, 4, 5, 9} are used for the control channel; or, for the frame structure type 2, the subframe index in the plurality of subframes belongs to There are CFI OFDM symbols in the subframe of {0, 5} for the control channel, and there are two OFDM symbols in the subframe in which the subframe index in the plurality of subframes does not belong to {0, 5} is used for the control channel. Among them, the value of CFI is 3 or 4.
在 UE接收到的载波方面,在多个子帧中接收增强传输的控制信道: 当在带 宽属于第一带宽范围的载波上接收增强传输的控制信道时, 多个子帧的每个子 帧中有 u个 OFDM符号用于控制信道或数据信道; 而当在带宽属于第二带宽范 围的载波上接收增强传输的控制信道时, 多个子帧的每个子帧中有 V个 OFDM 符号用于控制信道或数据信道。 其中, 第一带宽范围和第二带宽范围为预定的 带宽范围, 且第一带宽范围和第二带宽范围互不相交, u和 V为自然数, 且 u不 等于 V。 此外, UE可以在接收控制信道时, 认为在多个子帧中接收增强传输的控制 信道中: 多个子帧中的每个子帧内的: 公共参考信号的天线端口数相同; 和 /或, 用于控制信道的正交频分复用 OFDM符号的个数相同; 和 /或, 物理混合自动重 发请求指示信道的配置 PHICH-Config相同; 和 /或, 帧结构类型 2中用于确定 PHICH资源的 mi因子相同;和 /或 ,釆用的循环前缀相同;和 /或 , PHICH-duration 均为 normal。这样 UE在多个子帧中进行控制信道的接收时,控制信道在每一个 子帧内的所用的资源和 /或资源位置是相同的。 Receiving a control channel for enhanced transmission in a plurality of subframes in terms of a carrier received by the UE: when receiving a control channel for enhanced transmission on a carrier whose bandwidth belongs to the first bandwidth range, there are u in each subframe of the plurality of subframes The OFDM symbol is used for a control channel or a data channel; and when the control channel for enhanced transmission is received on a carrier whose bandwidth belongs to the second bandwidth range, there are V OFDM symbols in each subframe of the plurality of subframes for the control channel or the data channel. . The first bandwidth range and the second bandwidth range are predetermined bandwidth ranges, and the first bandwidth range and the second bandwidth range do not intersect each other, u and V are natural numbers, and u is not equal to V. In addition, when receiving the control channel, the UE may consider that the control channel in the enhanced transmission is received in multiple subframes: within each subframe of the multiple subframes: the number of antenna ports of the common reference signal is the same; and/or The number of orthogonal frequency division multiplexing OFDM symbols of the control channel is the same; and/or, the configuration of the physical hybrid automatic repeat request indication channel is the same PHICH-Config; and/or, the frame structure type 2 is used to determine the PHICH resource. The mi factors are the same; and/or, the cyclic prefixes are the same; and/or PHICH-duration is normal. In this way, when the UE performs reception of the control channel in multiple subframes, the used resources and/or resource locations of the control channel in each subframe are the same.
下面将通过具体的实施方式对本申请作进一步的说明。  The application will be further described below by way of specific embodiments.
在多个子帧中重复传输控制信道时, 多个子帧的时刻是需要确定的。 多个 子帧的时刻可以是系统预先规定的或根据信令通知的参数或盲检测确定。 控制 信道在所述确定的多个子帧内的每个子帧上进行重复传输。  When the control channel is repeatedly transmitted in a plurality of subframes, the timing of the plurality of subframes needs to be determined. The time of multiple subframes may be predetermined by the system or determined according to signaled parameters or blind detection. The control channel performs repeated transmissions on each of the determined plurality of subframes.
特别地, 在多个子帧中的每个子帧上传输控制信道所用的聚合级别都相同。 即, 在多个子帧中的任意两个子帧上传输控制信道所用的聚合级别都相同。 记 在多个子帧中的每个子帧上传输控制信道所用的聚合级别是 。其中 L的值是预 先设定的一个或多个固定值。 如预先固定 =8。 再如, 预先规定 8}集合。 特 别地, 控制信道是 PDCCH时 L的取值集合, 且其可以与控制信道是 ePDCCH 时 的取值集合不同。 如, 当控制信道是 PDCCH时 =8或 而当控制信 道是 ePDCCH时 =16或 e {1632 }。 In particular, the aggregation level used to transmit the control channel on each of the plurality of subframes is the same. That is, the aggregation level used to transmit the control channel on any two of the plurality of subframes is the same. The aggregation level used to transmit the control channel on each of the plurality of subframes is. Wherein the value of L is one or more fixed values set in advance. If fixed in advance = 8. For another example, a set of 8 } is pre-defined. In particular, the control channel is a set of values of L at the time of the PDCCH, and it may be different from a set of values when the control channel is an ePDCCH. For example, when the control channel is PDCCH = 8 or when the control channel is ePDCCH = 16 or e { 16 , 32 }.
特别地, 在多个子帧中的每个子帧内的聚合级别 L对应的搜索空间中传输 控制信道所用的控制信道候选索引都相同。 即, 在多个子帧中的任意两个子帧 内的聚合级别 L对应的搜索空间中传输控制信道所用的控制信道候选索引都相 同。 记在聚合级别 对应的搜索空间中的控制信道候选索引为 m, 则, 在多个 子帧中的每一个子帧内的聚合级别 对应的搜索空间中传输控制信道所用的控 制信道候选索引均为 m。 其中, m的值可以是预先设定的一个或多个固定值, 如 m=0, 或预先规定^ {<W}或 123 。 在其他实施方式中, 也可以规定 m的取 值集合与聚合级别 L相关, 也可以规定 m的取值集合与聚合级别 L无关。 Specifically, the control channel candidate indexes used for transmitting the control channel in the search space corresponding to the aggregation level L in each of the plurality of subframes are the same. That is, the control channel candidate indices used for transmitting the control channel in the search space corresponding to the aggregation level L in any two of the plurality of subframes are the same. The control channel candidate index in the search space corresponding to the aggregation level is m, and the control channel candidate index used for transmitting the control channel in the search space corresponding to the aggregation level in each of the plurality of subframes is m. . Wherein, the value of m may be one or more fixed values set in advance, such as m=0, or pre-specified ^ {<W} or 1 , 2 , 3 . In other embodiments, the set of values of m may be specified to be related to the aggregation level L, or the set of values of m may be specified regardless of the aggregation level L.
特别地, 多个子帧中的每个子帧中的公共参考信号的天线端口数相同。 基 站在发送重复的控制信道时, 多个子帧中的每个子帧中按照天线端口数 2对公 共参考信号所用的资源元素预留。 或者, 基站在发送重复的控制信道时, 多个 子帧中的每个子帧中按照天线端口数 4对公共参考信号所用的资源元素预留。 类似地, 在 UE侧, UE在接收重复的控制信道时, 认为多个子帧中的每个子帧 中按照天线端口数 2对公共参考信号所用的资源元素预留; 或者, UE在接收重 复的控制信道时, 认为多个子帧中的每个子帧中按照天线端口数 4对公共参考 信号所用的资源元素预留。 In particular, the number of antenna ports of the common reference signal in each of the plurality of subframes is the same. When the base station transmits the repeated control channel, each of the plurality of subframes is reserved for the resource element used by the common reference signal according to the number of antenna ports 2. Or, when the base station sends the repeated control channel, each of the plurality of subframes is reserved for the resource element used by the common reference signal according to the number of antenna ports 4. Similarly, on the UE side, when receiving the repeated control channel, the UE considers each subframe in multiple subframes The resource element used for the common reference signal is reserved according to the number of antenna ports 2; or, when the UE receives the repeated control channel, the resources used by the common reference signal according to the number of antenna ports 4 in each of the plurality of subframes are considered. The element is reserved.
特别地, 多个子帧中的每个子帧中用于控制信道的正交频分复用 OFDM符 号的个数相同。如, 多个子帧中的每个子帧中有 2个 OFDM符号用于控制信道; 或者, 多个子帧中的每个子帧中有 3个 OFDM符号用于控制信道; 或者, 多个 子帧中的每个子帧中有 4个 OFDM符号用于控制信道。  Specifically, the number of orthogonal frequency division multiplexing OFDM symbols used for the control channel in each of the plurality of subframes is the same. For example, there are 2 OFDM symbols in each of the plurality of subframes for the control channel; or, 3 OFDM symbols in each of the plurality of subframes are used for the control channel; or, each of the plurality of subframes There are 4 OFDM symbols in the subframe for the control channel.
特别地, 多个子帧的子帧由多个子帧集合构成, 且不同的子帧集合所包含 的子帧中用于控制信道或数据信道的 OFDM符号个数不相同。 其中, 多个子帧 的集合可以是预先规定的。 例如, 多个子帧中的子帧由 2个子帧集合构成, 分 别是第一子帧集合和第二子帧集合, 且第一子帧集合和第二子帧集合是不同的 集合。 第一子帧集合中的每个子帧中有 u个 OFDM符号用于控制信道, 第二子 帧集合中的每个子帧中有 V个 OFDM符号用于控制信道, 这里 u,v是正整数, 且 u不等于 V。  In particular, the subframes of the plurality of subframes are composed of a plurality of subframe sets, and the number of OFDM symbols used for the control channel or the data channel in the subframes included in the different subframe sets is different. The set of multiple subframes may be predetermined. For example, a subframe in a plurality of subframes is composed of a set of 2 subframes, which are a first subframe set and a second subframe set, respectively, and the first subframe set and the second subframe set are different sets. Each of the first subframe set has u OFDM symbols for the control channel, and each of the second subframe set has V OFDM symbols for the control channel, where u, v are positive integers, and u is not equal to V.
例如, 多个子帧中的每个非 MBSFN子帧中有 3个 OFDM符号用于控制信 道, 而多个子帧中的每个 MBSFN子帧中有 2个 OFDM符号用于控制信道。 例 如, 多个子帧中的每个非 MBSFN子帧中有 4个 OFDM符号用于控制信道, 而 多个子帧中的每个 MBSFN子帧中有 2个 OFDM符号用于控制信道。  For example, there are 3 OFDM symbols in each of the plurality of subframes for the control channel, and 2 of the OFDM symbols in each of the plurality of subframes are used for the control channel. For example, there are 4 OFDM symbols in each of the plurality of subframes for the control channel, and 2 of the OFDM symbols in each of the plurality of subframes are used for the control channel.
可选地, 对于帧结构类型 1 , 多个子帧中的子帧索引可以属于 {0,4,5,9}的子 帧中有 3个或 4个 OFDM符号用于控制信道, 而多个子帧中的子帧索引不属于 {0,4,5,9}的子帧中有 2个 OFDM符号用于控制信道。 而对于帧结构类型 2, 多个 子帧中的子帧索引属于 {0,5}的子帧中有 3个或 4个 OFDM符号用于控制信道, 且多个子帧中的子帧索引不属于 {0,5}的子帧中有 2个 OFDM符号用于控制信 道。 需要说明的是, 由于 MBSFN子帧的配置由在基站设置, 因此本实施方式可 以适用于 UE还不知道 MBSFN子帧的配置时, 接收控制信道。 如所述控制信道 是:调度包含 MBSFN子帧配置的系统信息块 (譬如 SIB2)的控制信道或调度包含 TDD配置的系统信息块 (譬如 SIB1)的控制信道。  Optionally, for the frame structure type 1, the subframe index in the multiple subframes may belong to the {0, 4, 5, 9} subframe, and there are 3 or 4 OFDM symbols used for the control channel, and the multiple subframes There are 2 OFDM symbols in the subframe in which the subframe index does not belong to {0, 4, 5, 9} for the control channel. And for the frame structure type 2, three or four OFDM symbols in the subframe in which the subframe index in the plurality of subframes belongs to {0, 5} are used for the control channel, and the subframe index in the plurality of subframes does not belong to { There are 2 OFDM symbols in the subframe of 0, 5} for the control channel. It should be noted that since the configuration of the MBSFN subframe is set at the base station, the present embodiment can be applied to the case where the UE does not know the configuration of the MBSFN subframe, and receives the control channel. The control channel is as follows: a control channel for scheduling a system information block (e.g., SIB2) including an MBSFN subframe configuration or a control channel for scheduling a system information block (e.g., SIB1) including a TDD configuration.
举例而言, 每个非 MBSFN子帧中有 3个 OFDM符号用于控制信道, 多个 子帧中的每个 MBSFN子帧中有 2个 OFDM符号用于控制信道。 对于帧结构类 型 2, 若多个子帧中还包括子帧 1和 /或子帧 6, 则多个子帧中的每个子帧 1和 / 或子帧 6中有 2个 OFDM符号用于控制信道。 再如, 当载波的带宽属于第一带宽范围, 则, 多个子帧中的每个子帧中有 U 个 OFDM符号用于控制信道或数据信道,而当载波的带宽属于第二带宽范围时, 多个子帧中的每个子帧中有 V个 OFDM符号用于控制信道或数据信道。 如前所 述, 本实施方式中第一带宽范围和第二带宽范围是预先规定的带宽范围, 且第 一带宽范围和第二带宽范围是不同的带宽范围,而 u,v是自然数,且 u不等于 V。 For example, there are 3 OFDM symbols in each non-MBSFN subframe for the control channel, and 2 OFDM symbols in each MBSFN subframe in the multiple subframes are used for the control channel. For frame structure type 2, if subframe 1 and/or subframe 6 are also included in multiple subframes, there are 2 OFDM symbols in each of subframes 1 and/or subframe 6 of the plurality of subframes for the control channel. For example, when the bandwidth of the carrier belongs to the first bandwidth, there are U OFDM symbols in each of the multiple subframes for the control channel or the data channel, and when the bandwidth of the carrier belongs to the second bandwidth, There are V OFDM symbols in each of the sub-frames for the control channel or data channel. As described above, in the embodiment, the first bandwidth range and the second bandwidth range are predetermined bandwidth ranges, and the first bandwidth range and the second bandwidth range are different bandwidth ranges, and u, v are natural numbers, and u Not equal to V.
再如, 对于大带宽载波, 如大于 1.4MHz ( Mega Hertz, 兆赫兹) 的载波, 多个子帧中的每个非 MBSFN子帧中有 3个 OFDM符号用于控制信道, 而对于 小带宽载波, 如小于 1.4MHz载波, 多个子帧中的每个非 MBSFN子帧中有 4个 OFDM符号用于控制信道。 或者, 对于大带宽载波, 如大于 1.4MHz载波, 多 个子帧中的每个非 MBSFN子帧中有 2个 OFDM符号用于控制信道, 对于小带 宽载波, 如小于 1.4MHz载波, 则多个子帧中的每个非 MBSFN子帧中有 3个 OFDM符号用于控制信道。 若多个子帧中还包括 MBSFN子帧, 则多个子帧中 的每个 MBSFN子帧中有 2个 OFDM符号用于控制信道。  For example, for a large bandwidth carrier, such as a carrier larger than 1.4 MHz ( Mega Hertz, megahertz), there are 3 OFDM symbols in each of the plurality of subframes for the control channel, and for the small bandwidth carrier, As less than a 1.4 MHz carrier, there are 4 OFDM symbols in each of the plurality of subframes for the control channel. Or, for a large bandwidth carrier, such as a carrier larger than 1.4 MHz, there are 2 OFDM symbols in each of the plurality of subframes for the control channel, and for the small bandwidth carrier, such as less than 1.4 MHz carrier, multiple subframes There are 3 OFDM symbols in each non-MBSFN subframe in the control channel. If the MBSFN subframe is further included in the plurality of subframes, there are 2 OFDM symbols in each of the plurality of subframes for the control channel.
特别地, 多个子帧中的每个子帧的 PHICH-Config相同。 其中, 本实施方式 的 PHICH-Config包括 PHICH-Duration的信息元素和 PHICH资源 Resource的信 息元素。 通常, PHICH-Config包含在 MIB中。 因此, 在重复传输控制信道的多 个子帧中, 基站在发送控制信道时认为 MIB包含的 PHICH-Config不发生改变; 相应地, 在重复传输控制信道的多个子帧中, UE侧在接收控制信道时认为 MIB 包含的 PHICH-Config不发生改变。  In particular, the PHICH-Config of each of the plurality of subframes is the same. The PHICH-Config of the present embodiment includes an information element of PHICH-Duration and an information element of PHICH resource Resource. Usually, PHICH-Config is included in the MIB. Therefore, in a plurality of subframes in which the control channel is repeatedly transmitted, the base station considers that the PHICH-Config included in the MIB does not change when transmitting the control channel; accordingly, in a plurality of subframes in which the control channel is repeatedly transmitted, the UE side is receiving the control channel. It is considered that the PHICH-Config included in the MIB does not change.
特别地, 对于帧结构类型 2, 多个子帧中的每个子帧中用于确定 PHICH资 源的 mi因子相同。 mi的大小可以是根据预先规定确定的。如预先规定在控制信 道重复传输多个子帧中起始子帧的 mi确定了多个子帧中的每个子帧的 mi。 若 UE确定了控制信道重复传输多个子帧中起始子帧的 mi ,则根据多个子帧中的每 个子帧中用于确定 PHICH资源的 mi因子相同, 就确定了控制信道重复传输多 个子帧中其他子帧的 mi。或者, 多个子帧中的每个子帧中用于确定 PHICH资源 的 mi因子可以通过信令配置。 特别地, 本实施方式 mi的值特别地是由 MIB通 知确定配置。 特别地, UE在接收调度包含了 TDD配置的系统信息块 (如 SIB1) 的控制信道时, 还不知道 TDD的上下行配置, 因此不能确定承载所述控制信道 的子帧的 mi; 为此, 本实施方式可以在 MIB中指示承载调度包含了 TDD配置 的系统信息块 (如 SIB1)的控制信道的子帧的 mi。 相应地, 在 UE侧, 当 UE检 测出 MIB后,就可以确定调度包含了 TDD配置的系统信息块 (SIB1)的控制信道 重复传输的子帧的 mi, 从而根据确定的 mi检测控制信道。 另外, UE可以尝试 可能的 mi值, 盲检测控制信道。 如, 若调度 SIB1的控制信道在子帧 5上传输, 因为在子帧 5上 mi的值可能为 0,1,2, 因此 UE可以尝试不同的 mi值来检测 PDCCH。 In particular, for frame structure type 2, the mi factors for determining PHICH resources in each of the plurality of subframes are the same. The size of mi can be determined according to advance regulations. The mi of each of the plurality of subframes is determined by pre-specifying mi of the start subframe in the plurality of subframes in which the control channel repeatedly transmits. If the UE determines that the control channel repeatedly transmits the mi of the starting subframe in the multiple subframes, determining that the control channel repeatedly transmits the multiple subframes according to the same mi factor for determining the PHICH resource in each of the multiple subframes. Mi in other subframes. Alternatively, the mi factor for determining the PHICH resource in each of the plurality of subframes may be configured by signaling. In particular, the value of the present embodiment mi is specifically determined by the MIB notification configuration. In particular, when receiving the control channel of the system information block (such as SIB1) that includes the TDD configuration, the UE does not know the uplink and downlink configuration of the TDD, and therefore cannot determine the mi of the subframe that carries the control channel; The present embodiment may indicate in the MIB that the bearer of the control channel of the control channel including the system information block (such as SIB1) of the TDD configuration is scheduled. Correspondingly, on the UE side, after the UE detects the MIB, it may determine that the control channel of the system information block (SIB1) including the TDD configuration is scheduled. The mi of the transmitted subframe is repeated, thereby detecting the control channel according to the determined mi. In addition, the UE can blindly detect the control channel by attempting a possible mi value. For example, if the control channel scheduling SIB1 is transmitted on subframe 5, since the value of mi may be 0, 1, 2 in subframe 5, the UE may try different mi values to detect the PDCCH.
特别地, 多个控制信道重复传输的子帧中的每个子帧的循环前缀都相同。 如多个控制信道重复传输的子帧中的每个子帧的循环前缀都是正常循环前缀。 或者, 多个控制信道重复传输的子帧中的每个子帧的循环前缀都是扩展循环前 缀。  In particular, the cyclic prefix of each of the subframes in which the plurality of control channels are repeatedly transmitted is the same. The cyclic prefix of each subframe in a subframe that is repeatedly transmitted as a plurality of control channels is a normal cyclic prefix. Alternatively, the cyclic prefix of each of the subframes in which the plurality of control channels are repeatedly transmitted is an extended cyclic prefix.
若 MIB中的 PHICH配置不变, 对于帧结构类型 1 , 不同无线帧的子帧 的 PHICH配置和资源大小相同。对于帧结构类型 2,若 MIB中的 PHICH配置不变, TDD上下行配置不变, 则不同无线帧的子帧 的 mi相同。 本实施方式为了确定第一参数, 其中第一参数是起始控制信道元素的编号 或控制信道元素的编号, 特别地可以通过下述过程实现。  If the PHICH configuration in the MIB is unchanged, for the frame structure type 1, the PHICH configuration and the resource size of the subframes of different radio frames are the same. For frame structure type 2, if the PHICH configuration in the MIB is unchanged and the TDD uplink and downlink configuration is unchanged, the subframes of different radio frames have the same mi. In order to determine the first parameter, the first parameter is the number of the starting control channel element or the number of the control channel element, which can be realized in particular by the following procedure.
在本实施方式中, 如前所述, 在多个子帧中的每个子帧上传输控制信道所 用的第一参数都相同。 即, 在多个子帧中的任意两个子帧上传输控制信道所用 的第一参数都相同。 如, 第一参数是起始控制信道元素的编号, 记在多个子帧 中的每一个子帧上传输控制信道所用的第一参数是 n。。 其中, n。是可以是预先 规定的值, 或者 n。是根据预先规定的函数关系确定。 特别地, 本实施方式可以 规定 n。的值满足一个确定的范围, 以使调度专有数据的 PDCCH占用的 CCE资 源与调度公共数据的 PDCCH占用的 CCE资源没有交叠或资源碰撞, 或者调度 专有数据的 PDCCH占用的 CCE资源不在公共搜索空间。 特别地, 如规定 n0大 于 15。 In the present embodiment, as described above, the first parameters used to transmit the control channel in each of the plurality of subframes are the same. That is, the first parameters used to transmit the control channel on any two of the plurality of subframes are the same. For example, the first parameter is the number of the starting control channel element, and the first parameter used to transmit the control channel in each of the plurality of subframes is n . . Where n. It can be a pre-specified value, or n. It is determined according to a predetermined functional relationship. In particular, this embodiment can specify n. The value of the PDCCH occupied by the PDCCH for scheduling the dedicated data does not overlap or the CCE resource occupied by the PDCCH for scheduling the common data does not overlap or the resource collides, or the CCE resource occupied by the PDCCH for scheduling the dedicated data is not in the public. Search space. In particular, it is specified that n 0 is greater than 15.
可选地, 第一参数是控制信道元素的编号。 本实施方式在多个子帧中的每 个子帧上传输控制信道所用的 (聚合级别 L个)控制信道元素的编号都相同。 即, 在多个子帧中的任意两个子帧上传输控制信道所用的聚合级别 L个控制信道元 素的编号都相同。 记在多个子帧中的每一个子帧上传输控制信道所用的控制信 道元素的编号是 ηο, , ...... ,ηζ-1 , 其中, 所述 L 个控制信道元素的编号 n0,nl5...... ,η^可以是预先规定的值, 或者 ηο,ι^, ...... ,η^是根据预先规定的函数 关系确定。 Optionally, the first parameter is a number of a control channel element. In this embodiment, the numbers of the (aggregation level L) control channel elements used for transmitting the control channel in each of the plurality of subframes are the same. That is, the number of aggregation level L control channel elements used to transmit the control channel on any two of the plurality of subframes is the same. The number of the control channel element used to transmit the control channel on each of the plurality of subframes is ηο, , . . . , η ζ-1 , where the number of the L control channel elements is n 0 , n l5 ...... , η^ may be a predetermined value, or ηο, ι^, ..., η^ is determined according to a predetermined functional relationship.
本实施方式中可以根据预先规定的一个索引确定多个子帧中的每个子帧上 传输控制信道所用的第一参数。 In this embodiment, each subframe in multiple subframes may be determined according to a predetermined index. The first parameter used to transmit the control channel.
举例而言, 定义预先规定的一个索引为 A的值是预先规定的。 譬如, 规 定^ 0。 再如, 的值是根据预先规则确定的。 如, 是预先规定的一个子帧的 子帧索引。 如, 预先规定的一个子帧是多个子帧中的第 p个子帧, 其中 p是预 先规定的整数。 再如, 预先规定的一个子帧是重复传输控制信道的多个子帧中 有最小或最大的总 CCE数的子帧。 因此 是重复传输控制信道的多个子帧中有 最小或最大的总 CCE数的子帧的子帧索引。 再如, 预先规定的一个子帧是重复 传输控制信道的多个子帧中有最小或最大的总 CCE数的子帧中的第 q个子帧。 q是预先规定的整数, 如 q=l。 因此 是重复传输控制信道的多个子帧中有最小 的总 C C E数的子帧中的第 q个子帧的子帧索引。  For example, defining a predetermined value for an index A is predetermined. For example, the rule ^ 0. Again, the value is determined according to the pre-rules. For example, it is a sub-frame index of a predetermined subframe. For example, a predetermined one subframe is the pth subframe of the plurality of subframes, where p is a predetermined integer. For another example, a predetermined one subframe is a subframe having a minimum or maximum total number of CCEs among a plurality of subframes of the repeated transmission control channel. Therefore, the subframe index of the subframe having the smallest or largest total CCE number among the plurality of subframes of the transmission control channel is repeatedly transmitted. For another example, the predetermined one subframe is the qth subframe in the subframe having the smallest or largest total CCE number among the plurality of subframes of the repeated transmission control channel. q is a predetermined integer, such as q=l. Therefore, it is a subframe index of the qth subframe in the subframe having the smallest total C C E number among the plurality of subframes of the transmission control channel.
本实施方式可以根据预先规定的一个索引 k可以确定在多个子帧中的每一 个子帧内的控制信道传输所用的起始控制信道元素的编号 n。或控制信道元素编 号 no ,…… ,ni-l o The present embodiment can determine the number n of the initial control channel element used for control channel transmission in each of the plurality of subframes according to a predetermined index k. Or control channel element number no, ..., n il o
Πι= Lx { (Yk + m') mod LNCCE i / 」 }+ (式 7) Πι= Lx { (Y k + m') mod LN CCE i / ” }+ (Equation 7)
其中, i为整数 0,1..丄 -1 ; 为在多个子帧中的每一个子帧内的控制信道传 输所用的第 i+1个控制信道元素的编号; k为预先规定的一个索引; m是聚合级 别 L对应的搜索空间中的控制信道候选索引, 且 Μ = Ο,· · ·,Μ(" - Ι , Μ(£)为预定的聚 合级别 L对应的搜索空间内控制信道候选的数目; 对于公共搜索空间 = 对 于用户设备 UE特定的搜索空间且 UE没有被配置载波标识字段时 = 对于Where i is an integer 0,1..丄-1; is the number of the i+1th control channel element used for control channel transmission in each of the plurality of subframes; k is a predetermined index m is the control channel candidate index in the search space corresponding to the aggregation level L, and Μ = Ο, · · ·, Μ ( " - Ι , Μ (£) is the control channel candidate in the search space corresponding to the predetermined aggregation level L Number of; for common search space = for user equipment UE specific search space and the UE is not configured with the carrier identification field = for
UE特定的搜索空间而 UE被配置载波标识字段时"^^^^^/ , "c/为载波指 示字段的值; mod为求模函数;
Figure imgf000055_0001
/ ^为对 ^ccE 向下取整; Ncce k为索引 为 k的子帧的控制信道元素总数; = ( ^ )觸 , ^ = 39827 , £) = 65537 , : "丽 , ¾NTI 为无线网络临时标识符 RNTI的值。 子帧上传输控制信道所用的第一参数。
"UE^^^^/ , "c/ is the value of the carrier indication field when the UE is configured with the carrier identification field; mod is the modulo function;
Figure imgf000055_0001
/ ^ is rounded down to ^ccE; N cce k is the total number of control channel elements of the subframe with index k; = ( ^ ) touch, ^ = 39827 , £) = 65537 , : "丽, 3⁄4NTI for wireless network The value of the temporary identifier RNTI. The first parameter used to transmit the control channel on the subframe.
记预先规定的两个索引分别为 A ^ fe7。 A的值是预先规定的。 如规定 /^0。 或者, 的值是根据预先规则确定的。 如, 是预先规定的一个子帧的子帧索引。 如, 预先规定的一个子帧是重复传输控制信道的多个子帧中的第 p个子帧, 而 p 是预先规定的整数。如 p=l。 因此 是重复传输控制信道的多个子帧中的第 p个 子帧的子帧索引。 预先规定的另一个索引 ^的值是预先规定的。如规定 /^=0。 或者, ^的值 是根据预先规则确定的。 如, 是预先规定的一个子帧的子帧索引。 预先规定的 一个子帧是重复传输控制信道的多个子帧中有最小或最大的总 CCE数的子帧。 因此/ ^是重复传输控制信道的多个子帧中有最小或最大的总 CCE数的子帧的子 帧索引。 再如, 预先规定的一个子帧是重复传输控制信道的多个子帧中有最小 或最大的总 CCE数的子帧中的第 q个子帧, q是预先规定的整数。 如 q=l。 因 此 ka是重复传输控制信道的多个子帧中有最小的总 CCE数的子帧中的第 q个子 帧的子帧索引。 The two pre-specified indexes are A ^ fe7. The value of A is predetermined. As specified / ^ 0. Or, the value is determined according to the pre-rules. For example, it is a sub-frame index of a predetermined subframe. For example, one of the predetermined subframes is the p-th subframe of the plurality of subframes in which the control channel is repeatedly transmitted, and p is a predetermined integer. Such as p = l. Therefore, the subframe index of the p-th subframe in the plurality of subframes of the transmission control channel is repeatedly transmitted. The value of another predetermined index ^ is predetermined. As specified /^=0. Alternatively, the value of ^ is determined according to pre-rules. For example, it is a sub-frame index of a predetermined subframe. One of the predetermined subframes is a subframe having the smallest or largest total number of CCEs among the plurality of subframes of the repeated transmission control channel. Therefore / ^ is the subframe index of the subframe having the smallest or largest total number of CCEs among the plurality of subframes of the transmission control channel. For another example, the predetermined one subframe is the qth subframe in the subframe having the smallest or largest total CCE number among the plurality of subframes of the repeated transmission control channel, and q is a predetermined integer. Such as q = l. Therefore, ka is a subframe index of the qth subframe in the subframe having the smallest total number of CCEs among the plurality of subframes in which the control channel is repeatedly transmitted.
根据预先规定的两个子帧的索引 和 ^可以确定 nQ或 ηο, , ... ... ,ni-l o 如, n,= x { (Yk + m') mod LNCCE / 」 }+ (式 8 ) According to the index and ^ of the two predetermined subframes, it is possible to determine n Q or ηο, , ..., n il o such as, n, = x { (Y k + m') mod LN CCE / ” }+ (Equation 8)
其中, 式 8中的参数解释如式 7 , 这里不再赘述。  The parameters in Equation 8 are explained as Equation 7, and are not described here.
当然, 本实施方式还可以根据预先规定的一个索引和预先规定的总 CCE数 确定多个子帧中的每个子帧上传输控制信道所用的第一参数。  Of course, in this embodiment, the first parameter used for transmitting the control channel in each of the plurality of subframes may be determined according to a predetermined index and a predetermined total number of CCEs.
具体而言,记预先规定的一个索引为 ^ A的值是预先规定的。如,规定 0。 或者, 的值是根据预先规则确定的。 如, 是预先规定的一个子帧的子帧索引。 如, 预先规定的一个子帧是重复传输控制信道的多个子帧中的第 p个子帧。 p是 预先规定的整数。 如, p=l。 因此 是重复传输控制信道的多个子帧中的第 p个 子帧的子帧索引。 记预先规定的总 CCE数为 WcCE。 其中, WCCE可以等于多个子 帧中的有最小或最大的总 CCE数的子帧中的总 CCE数。 如, 假设有 R个子帧 用于控制信道的传输, 规定 WccE = min { WcCE, , 其中 r=o,l, ,R-1。 min ( )为 求最小值函数, 是 R个用于控制信道重复传输的子帧中的第 r+1个子帧中 的总 CCE数。 或者, WCCE = min 其中, F05R_i o ^是 R个用于 控制信道重复传输的子帧中的第 r+1个子帧的子帧索引。 Specifically, it is predetermined that the value of a predetermined index is ^ A. For example, specify 0. Or, the value is determined according to the pre-rules. For example, it is a sub-frame index of a predetermined subframe. For example, one of the predetermined subframes is the p-th subframe of the plurality of subframes in which the control channel is repeatedly transmitted. p is a predetermined integer. For example, p=l. Therefore, the subframe index of the p-th subframe in the plurality of subframes of the transmission control channel is repeatedly transmitted. The pre-specified total number of CCEs is Wc CE . The WCCE may be equal to the total number of CCEs in the subframes having the smallest or largest total CCE number among the multiple subframes. For example, suppose there are R subframes for control channel transmission, and Wcc E = m i n { Wc CE , , where r = o, l, , R-1. Min ( ) is the minimum function, which is the total number of CCEs in the r+1th subframe in the R subframes used for control channel repetition transmission. Or, W CCE = min, where F 05 R_i o ^ is a subframe index of the r+1th subframe in the R subframes used for control channel repetition transmission.
根据预先规定的一个子帧的子帧索引 和 WCCE可以确定 nQ或 ηο, , ...... ,ni-l o According to a predetermined subframe index and WCCE of one subframe, n Q or ηο, , . . . , n il o can be determined.
^口, ΐΰ= χ { (Yk + m')mod [NCCE /L\ }+ i (式 9 ) ^口, ΐΰ= χ { (Y k + m') mod [N CCE /L\ }+ i (Equation 9)
其中, 式 9中的参数解释如式 7 , 在此不作赘述。  The parameters in Equation 9 are explained as Equation 7, and are not described herein.
需要说明的是, 在 UE侧, UE可以尝试可能的聚合级别及该聚合级别下 的可能的控制信道候选来检测控制信道。 进一步地, 若 UE在检测控制信道时, 不知道用于控制信道增强传输的多个子帧的数目或重复次数时, UE还可以根据 可能的多个子帧的数目或重复次数来尝试检测控制信道。 It should be noted that, on the UE side, the UE may try to detect the control channel by using a possible aggregation level and possible control channel candidates under the aggregation level. Further, if the UE does not know the number of the multiple subframes or the number of repetitions for controlling the channel enhanced transmission when the UE detects the control channel, the UE may further The number of possible multiple subframes or the number of repetitions is attempted to detect the control channel.
在本实施方式中, 多个子帧中的每个子帧中的公共参考信号的天线端口数 可以相同, 也可以不同。 多个子帧中的 CFI值可以相同, 也可以不同。 多个子 帧中的每个子帧的 PHICH-Config可以相同, 也可以不同。 多个子帧中的每个子 帧的循环前缀可以相同, 也可以不同。 对于帧结构类型 2, 多个子帧中的每个子 帧中用于确定 PHICH资源的 mi因子可以相同, 也可以不同。  In this embodiment, the number of antenna ports of the common reference signal in each of the plurality of subframes may be the same or different. The CFI values in multiple subframes may be the same or different. The PHICH-Config of each of the plurality of subframes may be the same or different. The cyclic prefix of each of the plurality of subframes may be the same or different. For frame structure type 2, the mi factors used to determine the PHICH resources in each of the plurality of subframes may be the same or different.
若控制信道是用于 SIB1的调度或包含 TDD配置的系统信息块的调度。 对 于帧结构类型 1 , 传输控制信道的子帧的 CFI=2, 或者控制信道在子帧 0、 4、 5、 9中的一个或多个子帧上重复传输。 进一步地, 在子帧 0、 4、 5、 9中的一个或 多个子帧上传输控制信道的子帧的 CFI=3。 对于帧结构类型 2, 传输控制信道的 子帧的 CFI=2。 或者, 控制信道在子帧 0和 /或 5上重复传输。 进一步地, 在子 帧 0和 /或 5中的一个或多个子帧上传输控制信道的子帧的 CFI=3。 或者, 控制 信道在子帧 0和 /或 5上重复传输, 并且控制信道也可以在子帧 1和 /或 6上重复 传输。 在子帧 0和 /或 5中的一个或多个子帧上传输控制信道的子帧的 CFI=3 , 在子帧 1和 /或 6中的一个或多个子帧上传输控制信道的子帧的 CFI=2。  If the control channel is a schedule for SIB1 or a system information block containing a TDD configuration. For frame structure type 1, the CFI of the subframe in which the control channel is transmitted is 2, or the control channel is repeatedly transmitted on one or more of the subframes 0, 4, 5, 9. Further, CFI = 3 of the subframe in which the control channel is transmitted on one or more of the subframes 0, 4, 5, 9. For frame structure type 2, the CFI of the subframe in which the control channel is transmitted is 2. Alternatively, the control channel is repeatedly transmitted on subframes 0 and/or 5. Further, CFI = 3 of the subframe in which the control channel is transmitted on one or more of subframes 0 and/or 5. Alternatively, the control channel is repeatedly transmitted on subframes 0 and/or 5, and the control channel may also be repeatedly transmitted on subframes 1 and/or 6. CFI=3 of a subframe in which a control channel is transmitted on one or more of subframes 0 and/or 5, and a subframe of a control channel is transmitted on one or more of subframes 1 and/or 6 CFI=2.
MBSFN子帧配置包含在系统信息块类型 X中, 如 x=2。 对于 FDD系统, 调度 SIBx的控制信道的子帧的 CFI=2。 或者, 调度 SIBx的控制信道在子帧 0、 4、 5、 9中的一个或多个子帧上重复传输。 进一步地, 在子帧 0、 4、 5、 9中的 一个或多个子帧上传输调度 SIBx的控制信道的子帧的 CFI=3。 对于 TDD系统, 调度 SIBx的控制信道的子帧的 CFI=2。 或者, 调度 SIBx的控制信道在子帧 0 和 /或 5上重复传输。 进一步地, 在子帧 0和 /或 5中的一个或多个子帧上传输调 度 SIBx的控制信道的子帧的 CFI=3。 或者, 调度 SIBx的控制信道在子帧 0和 / 或 5上重复传输,并且调度 SIBx的控制信道也可以在子帧 1和 /或 6上重复传输。 在子帧 0 和 /或 5 中的一个或多个子帧上传输调度 SIBx 的控制信道的子帧的 CFI=3 , 在子帧 1和 /或 6中的一个或多个子帧上传输调度 SIBx的控制信道的子 帧的 CFI=2。  The MBSFN subframe configuration is included in the system information block type X, such as x=2. For the FDD system, the subframe of the control channel of the SIBx is scheduled to have a CFI=2. Alternatively, the control channel of the scheduling SIBx is repeatedly transmitted on one or more of the subframes 0, 4, 5, 9. Further, the CFI of the subframe in which the control channel of the SIBx is scheduled is transmitted on one or more of the subframes 0, 4, 5, and 9. For the TDD system, the subframe of the control channel of the SIBx is scheduled to have a CFI=2. Alternatively, the control channel of the scheduling SIBx is repeatedly transmitted on subframes 0 and/or 5. Further, the CFI of the subframe of the control channel of the scheduling SIBx is transmitted on one or more of the subframes 0 and/or 5. Alternatively, the control channel of the scheduling SIBx is repeatedly transmitted on subframes 0 and/or 5, and the control channel scheduling the SIBx may also be repeatedly transmitted on subframes 1 and/or 6. Transmitting CFI=3 of a subframe of a control channel scheduling SIBx on one or more of subframes 0 and/or 5, transmitting SIBx scheduling on one or more subframes 1 and/or 6 The CFI of the subframe of the control channel is 2.
需要说明的是, 由于一个子帧中的总 CCE数与子帧中的公共参考信号的天 线端口数、 用于控制信道的 OFDM符号的个数、 PHICH-Config、 确定 PHICH 资源的 mi因子(譬如对于帧结构类型 2 ) 中的一种或多种相关, 因此, 若多个 子帧中存在两个子帧中的总 CCE数不同时, 釆用上述实施方式确定控制信道元 素的编号的方式, 并不能保证使得在多个子帧中的每个子帧上传输的控制信道 映射在物理资源上的资源元素位置都相同。 It should be noted that, due to the total number of CCEs in one subframe and the number of antenna ports of the common reference signal in the subframe, the number of OFDM symbols used for the control channel, PHICH-Config, and the mi factor determining the PHICH resource (for example, For one or more correlations in the frame structure type 2), therefore, if there are different total CCE numbers in two subframes in multiple subframes, the manner of determining the number of the control channel element by using the above embodiment does not Guaranteed control channel for transmission on each of a plurality of subframes The location of resource elements mapped on physical resources is the same.
如前所述, 本实施方式将通过下述方式使得在多个子帧中的每个子帧上传 输的控制信道映射在物理资源上的资源元素位置都相同。  As described above, the present embodiment will make the resource element positions mapped on the physical resources of the control channel uploaded in each of the plurality of subframes the same in the following manner.
需要指出的是,对于帧结构类型 2,每个子帧的 PHICH资源大小与 mi有关, 从而每个子帧中总的 CCE数目与该子帧的 mi有关。  It should be noted that for frame structure type 2, the PHICH resource size of each subframe is related to mi, so that the total number of CCEs in each subframe is related to mi of the subframe.
为了使多个子帧中的每个子帧上传输的控制信道映射在物理资源上的资源 元素位置都相同, 多个子帧中的每个子帧可以设定符合下述规定中的一项或多 项:  In order to make the control element mapped on each of the plurality of subframes have the same resource element position on the physical resource, each of the plurality of subframes may be set to meet one or more of the following provisions:
规定 1 : 多个子帧中的每个子帧中的公共参考信号的天线端口数相同; 规定 2: 多个子帧中的每个子帧中用于控制信道的 OFDM符号的个数相同; 规定 3: 多个子帧中的每个子帧的 PHICH-Config相同;  Rule 1: The number of antenna ports of the common reference signal in each of the plurality of subframes is the same; Specification 2: the number of OFDM symbols used for the control channel in each of the plurality of subframes is the same; The PHICH-Config of each subframe in the subframe is the same;
规定 4: 对于帧结构类型 2, 多个子帧中的每个子帧中用于确定 PHICH资 源的 mi因子相同;  Rule 4: For frame structure type 2, the mi factor used to determine the PHICH resource in each of the plurality of subframes is the same;
规定 5: 若多个子帧中的每个子帧中的 PHICH duration是 extended:多个子 帧中的每个子帧都不是 MBSFN子帧;或者,多个子帧中的每个子帧都是 MBSFN 子帧; 或者, 对于帧结构类型 2, 多个子帧中的每个子帧是 MBSFN子帧, 和 / 或子帧 1 , 和 /或子帧 6;  Rule 5: if the PHICH duration in each of the plurality of subframes is extended: each of the plurality of subframes is not an MBSFN subframe; or each of the plurality of subframes is an MBSFN subframe; or For frame structure type 2, each of the plurality of subframes is an MBSFN subframe, and/or subframe 1, and/or subframe 6;
规定 6: 多个子帧中的每个子帧中的 PHICH duration均为 normal;  Rule 6: PHICH duration in each of the multiple subframes is normal;
规定 7: 多个子帧中的每个子帧釆用相同的循环前缀。  Rule 7: Each of the multiple subframes uses the same cyclic prefix.
本实施方式控制信道的传输方法, 可以按照以上规定中的一项或多项在多 个子帧中的每个子帧中进行控制信道的发送, 通常, 多个子帧中的每个子帧至 少满足上述规定 1至规定 4。 相应地, 在 UE侧, 可以按照以上规定中的一项或 多项在多个子帧中的每个子帧中进行控制信道的接收。  In the method for transmitting a control channel according to this embodiment, the control channel may be transmitted in each of the plurality of subframes according to one or more of the above provisions. Generally, each of the plurality of subframes satisfies at least the foregoing requirements. 1 to regulation 4. Accordingly, on the UE side, reception of the control channel can be performed in each of the plurality of subframes in accordance with one or more of the above provisions.
需要说明的是, 表二是对于帧结构类型 2, mi 因子在不同的上下行配置和 不同的子帧中的值: 上下行配置 子帧索引 i It should be noted that, in Table 2, for the frame structure type 2, the mi factor is in different uplink and downlink configurations and values in different subframes: Uplink and downlink configuration subframe index i
0 1 2 3 4 5 6 7 8 9  0 1 2 3 4 5 6 7 8 9
0 2 1 - - - 2 1 - - - 0 2 1 - - - 2 1 - - -
1 0 1 - - 1 0 1 - - 1 1 0 1 - - 1 0 1 - - 1
2 0 0 - 1 0 0 0 - 1 0  2 0 0 - 1 0 0 0 - 1 0
3 1 0 - - - 0 0 0 1 1  3 1 0 - - - 0 0 0 1 1
4 0 0 - - 0 0 0 0 1 1  4 0 0 - - 0 0 0 0 1 1
5 0 0 - 0 0 0 0 0 1 0  5 0 0 - 0 0 0 0 0 1 0
6 1 1 - - - 1 1 - - 1  6 1 1 - - - 1 1 - - 1
表二: 帧结构类型 2的 mi因子  Table 2: mi factor of frame structure type 2
如上表二所示, 子帧 k在不同的上下行配置时, mi的值可能也不相同。 如, 在上下行配置为 0时, 子帧 0的 mi等于 2; 当上下行配置为 1时, 子帧 0的 mi 等于 0; 当上下行配置为 3时, 子帧 0的 mi等于 1。 对于同一个上下行配置, 不同子帧的 mi的值可能也不相同。 如, 在上下行配置为 0时, 子帧 0的 mi等 于 2, 而子帧 1的 mi等于 1。  As shown in Table 2 above, when the subframe k is configured in different uplink and downlink configurations, the value of mi may be different. For example, when the uplink and downlink configurations are 0, mi of subframe 0 is equal to 2; when the uplink and downlink configuration is 1, the mi of subframe 0 is equal to 0; when the uplink and downlink configuration is 3, mi of subframe 0 is equal to 1. For the same uplink and downlink configuration, the values of mi in different subframes may also be different. For example, when the uplink and downlink configurations are 0, mi of subframe 0 is equal to 2, and mi of subframe 1 is equal to 1.
为了使多个子帧中的每个子帧上传输的控制信道映射在物理资源上的资源 元素位置都相同, 控制信道只能在具有相同的 mi子帧上重复传输。 如, 在上下 行配置为 0时, 子帧 0和子帧 5具有相同的 mi, 因此控制信道在子帧 0和 /或子 帧 5上进行重复传输。 或者, 在上下行配置为 0时, 子帧 1和子帧 6具有相同 的 mi, 因此控制信道在子帧 1和 /或子帧 6上进行重复传输。 再如, 在上下行配 置为 1时, 子帧 0和子帧 5具有相同的 mi, 因此控制信道在子帧 0和 /或子帧 5 上进行重复传输。 或者, 在上下行配置为 1时, 子帧 1、 子帧 4、 子帧 6、 和子 帧 9具有相同的 mi, 因此控制信道在子帧 1、 子帧 4、 子帧 6、 和子帧 9中的一 个或多个子帧进行重复传输。  In order to map the control elements transmitted on each of the plurality of subframes to the same resource element locations on the physical resources, the control channel can only be repeatedly transmitted on the same mi subframe. For example, when the upper and lower rows are configured as 0, subframe 0 and subframe 5 have the same mi, so the control channel is repeatedly transmitted on subframe 0 and/or subframe 5. Or, when the uplink and downlink configurations are 0, subframe 1 and subframe 6 have the same mi, so the control channel performs repeated transmission on subframe 1 and/or subframe 6. For another example, when the uplink and downlink configurations are 1, subframe 0 and subframe 5 have the same mi, so the control channel performs repeated transmission on subframe 0 and/or subframe 5. Or, when the uplink and downlink configurations are 1, subframe 1, subframe 4, subframe 6, and subframe 9 have the same mi, so the control channel is in subframe 1, subframe 4, subframe 6, and subframe 9. One or more subframes are repeatedly transmitted.
若控制信道是用于 SIB1的调度或用于包括上下行配置的系统信息块的调度 If the control channel is for scheduling of SIB1 or for scheduling of system information blocks including uplink and downlink configurations
(SIBy)。 对于帧结构类型 1 , 传输控制信道的子帧的 CFI=2。 或者, 控制信道在 子帧 0、 4、 5、 9中的一个或多个子帧上重复传输。 在子帧 0、 4、 5、 9中的一个 或多个子帧上传输控制信道的子帧的 CFI=3。 (SIBy). For frame structure type 1, the CFI of the subframe in which the control channel is transmitted is 2. Alternatively, the control channel is repeatedly transmitted on one or more of the subframes 0, 4, 5, 9. The CFI of the subframe in which the control channel is transmitted on one or more of the subframes 0, 4, 5, 9 is CFI=3.
对于帧结构类型 2 , 用户设备在接收控制信道的时候还不知道上下行配置, 因此也无法确定子帧的 mi值。 为此, 可以在预先规定的多个子帧中对 mi的可能 取值进行尝试来检测控制信道。 如控制信道在子帧索引为 5的一个或多个子帧上 重复传输, UE尝试子帧 5上可能的 mi取值进行控制信道的检测。 进一步地, 传输 控制信道的子帧的 CFI=3。 再如, 因为对于上下行配置 0到 6, 子帧 1和子帧 6具有相同的 mi。 可以规定调 度 SIBy的控制信道在子帧索引为 1和 /或 6的一个或多个子帧上重复传输。 进一步 地, 传输控制信道的子帧的 CFI=2。 For the frame structure type 2, the user equipment does not know the uplink and downlink configuration when receiving the control channel, and therefore cannot determine the mi value of the subframe. To this end, the possible values of mi may be tried in a plurality of predetermined subframes to detect the control channel. If the control channel is repeatedly transmitted on one or more subframes whose subframe index is 5, the UE attempts the detection of the control channel by taking the possible mi value on the subframe 5. Further, the CFI of the subframe in which the control channel is transmitted is 3. As another example, since the uplink and downlink configurations are 0 to 6, subframe 1 and subframe 6 have the same mi. The control channel scheduling the SIBy may be specified to be repeated on one or more subframes with subframe indices of 1 and/or 6. Further, the CFI of the subframe in which the control channel is transmitted is 2.
再如, 因为对于上下行配置 2、 4、 5、 6, 子帧 0、 子帧 1、 子帧 5、 和子帧 6 具有相同的 mi。 若基站在进行控制信道的重复发送时, 上下行配置是 2、 4、 5、 6中的某一种, 此时可以规定调度 SIBy的控制信道在子帧索引为 0、 1、 5、 和 6的 一个或多个子帧上重复传输。 进一步地, CFI=2。  For another example, because the uplink and downlink configuration 2, 4, 5, 6, subframe 0, subframe 1, subframe 5, and subframe 6 have the same mi. If the base station is performing repeated transmission of the control channel, the uplink and downlink configuration is one of 2, 4, 5, and 6. In this case, the control channel for scheduling the SIBy may be specified to be 0, 1, 5, and 6 in the subframe index. The transmission is repeated on one or more subframes. Further, CFI=2.
MBSFN子帧配置包含在系统信息块类型 x (SIBx)中。 如 x=2。 对于 FDD系统, 调 度 SIBx的控制信道的子帧的 CFI=2。 或者, 调度 SIBx的控制信道在子帧 0、 4、 5、 9中的一个或多个子帧上重复传输。 进一步地, 在子帧 0、 4、 5、 9中的一个或多 个子帧上传输调度 SIBx的控制信道的子帧的 CFI=3。  The MBSFN subframe configuration is included in the System Information Block Type x (SIBx). Such as x=2. For FDD systems, the CFI of the subframe of the SIBx control channel is set to CFI=2. Alternatively, the control channel of the scheduling SIBx is repeatedly transmitted on one or more of the subframes 0, 4, 5, 9. Further, the CFI = 3 of the subframe in which the control channel of the SIBx is scheduled is transmitted on one or more of the subframes 0, 4, 5, 9.
对于 TDD系统, 调度 SIBx的控制信道的子帧的 CFI=2。 或者, 调度 SIBx的控制 信道的子帧的 CFI=2 , 且调度 SIB2的控制信道在具有相同 mi的一个或多个子帧上 重复传输。 因为 UE在检测 SIBx时, 已经知道了上下行配置, 从而 UE也知道了那 些子帧的 mi相同。 或者, 调度 SIB2的控制信道在子帧 0、 1、 5、 6中的具有相同 mi的一个或多个子帧上重复传输。 进一步地, 在子帧 0、 1、 5、 6中的一个或多 个子帧上传输调度 SIBx的控制信道的子帧的 CFI=3。  For the TDD system, the subframe of the control channel of the SIBx is scheduled to have a CFI=2. Alternatively, the subframe of the control channel of the SIBx is scheduled to have CFI = 2, and the control channel of the scheduling SIB2 is repeatedly transmitted on one or more subframes having the same mi. Because the UE already knows the uplink and downlink configuration when detecting the SIBx, the UE also knows that the mis of those subframes are the same. Alternatively, the control channel of the scheduling SIB2 is repeatedly transmitted on one or more subframes of the subframes 0, 1, 5, 6 having the same mi. Further, the CFI of the subframe in which the control channel of the SIBx is scheduled is transmitted on one or more of the subframes 0, 1, 5, and 6.
通过上述规定 1至规定 7中的一项规定或多项规定, 可以保证用于重复传 输控制信道的多个子帧中的每个子帧中的总 CCE数相同。 具体而言, 本实施方 式可以类似的按照上述式 7、 8、 9中的任意一种方法确定 nQ或 ηο, , ,nL. 其中, 本实施方式可以釆用式 9或者其扩展的方式确定 n。或 ηο,ι^, ,ηζ-1 , 在 本技术领域人员容易理解的范围内, 不再赘述。 总而言之, 本申请通过规定 1-7 以及式 7、 8、 9的方式, 确保 UE在多个子帧中进行控制信道的接收时, 控制信 道在每一个子帧内的所用的第一参数和 /或资源位置都相同。 By one or more of the above-mentioned provisions 1 to 7, it is possible to ensure that the total number of CCEs in each of a plurality of subframes for repeatedly transmitting a control channel is the same. Specifically, the present embodiment can similarly determine n Q or ηο, , , n L according to any one of the above formulas 7, 8, and 9. In this embodiment, the method 9 or the extended manner thereof can be used. Determine n. Or ηο, ι^, , η ζ-1 , which will be omitted from the scope which is easily understood by those skilled in the art. In summary, the present application ensures that the UE uses the first parameter and/or the used parameter in each subframe when the UE receives the control channel in multiple subframes by specifying 1-7 and Equations 7, 8, and 9. The resource locations are the same.
需要特别指出的是, 上述实施方式主要针对控制信道在多个子帧内传输进 行阐述, 而在具体的实现过程中, 控制信道也可以一个或多个子帧中的每个子 帧内进行多次重复传输, 即通过频域的方式进行重复传输。 当控制信道在每个 子帧内多次重复传输时, 在每个子帧内不同次重复传输的控制信道在该子帧内 的起始控制信道元素编号有一个固定的偏移。 如在一个子帧内, 控制信道进行It should be noted that the foregoing embodiment is mainly directed to the transmission of the control channel in multiple subframes. In a specific implementation process, the control channel may also perform multiple transmissions in each subframe of one or more subframes. , that is, repeated transmission in the frequency domain. When the control channel repeats transmission multiple times in each subframe, the control channel repeatedly transmitted in each subframe within the subframe is within the subframe The starting control channel element number has a fixed offset. If in one subframe, the control channel is carried out
M次重复传输, 这 M次重复传输的控制信道中的第一次重复传输的控制信道的 起始控制信道元素编号 c0可以按照前面实施方式中确定控制信道元素的编号的 类似方法确定, 而这 M次重复传输的控制信道中的第二次重复传输的控制信道 的起始控制信道元素编号 CfCo+offset, 其中, offset为预设的固定的偏移值, 类 似地 , Μ次重复传输的控制信道中的第 i次重复传输的控制信道的起始控制信道 元素编号
Figure imgf000061_0001
i=l,2, ,M
M times of repeated transmission, the initial control channel element number c 0 of the control channel of the first repeated transmission in the M repeated transmission control channels can be determined in a similar manner to determining the number of the control channel element in the previous embodiment, and The initial control channel element number CfCo+offset of the control channel of the second repeated transmission in the M repeated transmission control channels, where offset is a preset fixed offset value, similarly, the repeated transmission The starting control channel element number of the control channel of the ith repeated transmission in the control channel
Figure imgf000061_0001
i=l,2, ,M
特别地, 下述给出了 UE检测控制信道的一个具体实现过程。  In particular, a specific implementation process of the UE detecting the control channel is given below.
应用例一  Application example one
首先需要说明的是, 在基站侧, 用于控制信道重复传输的多个子帧的数目 或重复次数是确定的。 如控制信道在一个无线帧内的 4个子帧中进行 4次重复 传输, 4个子帧的子帧索引分别是 0,1,5,6。规定在 4个子帧中的每一个子帧上传 输控制信道釆用的聚合级别是 L,即在 4个子帧中的每一个子帧上传输控制信道 占用了 L个控制信道元素, L可以等于 4或 8。 而 4叚设在 4个子帧中的每个子帧 内的 CFI为 2, 天线端口为 4, 系统帧结构类型为 2, 上下行配置为 0, 载波带 宽是 20MHz, Ng=l。 记 4个子帧中的每个子帧的控制区域中总的 CCE数分别 为 WcCE'O , WcCE 'l , WcCE Ν CCE ,6 , 贝 'J才艮据上述参数设置 cCE'O =35 , ^CCE .l =39 , =35 WCCE,6 =39 First, it should be noted that, on the base station side, the number of the plurality of subframes or the number of repetitions for controlling the repeated transmission of the channel is determined. For example, if the control channel performs 4 repeated transmissions in 4 subframes within one radio frame, the subframe indices of the 4 subframes are 0, 1, 5, and 6, respectively. It is specified that the aggregation level used for transmitting the control channel on each of the four subframes is L, that is, the transmission control channel occupies L control channel elements in each of the four subframes, and L may be equal to 4 Or 8. The CFI is set to 2 in each of the 4 subframes, the antenna port is 4, the system frame structure type is 2, the uplink and downlink configuration is 0, the carrier bandwidth is 20 MHz, and Ng=l. The total number of CCEs in the control region of each of the four subframes is WcCE'O , WcCE 'l , WcCE Ν CCE , 6 , and B ' is set according to the above parameters cCE'O =35 , ^CCE .l =39 , =35 W CCE , 6 = 39
UE通过尝试可能的聚合级别及该聚合级别下的可能的控制信道候选来检 测控制信道。 UE需要确定每个聚合级别每个控制信道候选的 CCE在 4个子帧 中的每个子帧内的所有控制信道元素中的编号。 在本实施方式中, ^叚设 UE 的 The UE detects the control channel by attempting a possible aggregation level and possible control channel candidates under the aggregation level. The UE needs to determine the number of all control channel elements in each of the 4 subframes of the CCE for each control channel candidate for each aggregation level. In this embodiment, the setting of the UE
"RNTI=16, 并按照前面一个或多个实施方式中的方法确定 n。或 ηο,ι^, ,nLA , 另 外, 规定 k 是 4 个子帧中的第一个子帧的子帧编号, 因此 k=0 , 并且, =niin( ^CCE'° , N ccE , , Ν CCE ,5 35 " RNTI = 16, and determines n or ηο, ι^, , n LA according to the method in one or more of the previous embodiments, and further, specifies that k is the subframe number of the first subframe of the four subframes, Therefore k=0, and, =niin( ^ CCE '° , N ccE , , Ν CCE , 5 35
UE尝试检测控制信道: 在子帧 0中按照聚合级别 4和 PDCCH候选 0提取 控制信道。在子帧 1中釆用聚合级别 4和 PDCCH候选 0提取控制信道,在子帧 5中釆用聚合级别 4和 PDCCH候选 0提取控制信道, 在子帧 6中釆用聚合级别 4和 PDCCH候选 0提取控制信道。 而根据式 7、 式 8、 式 9或其扩展计算方式 进行计算。 以下的举例是根据式 9计算。  The UE attempts to detect the control channel: The control channel is extracted in the subframe 0 according to the aggregation level 4 and the PDCCH candidate 0. The control channel is extracted in the subframe 1 by using the aggregation level 4 and the PDCCH candidate 0, the control channel is extracted in the subframe 5 by using the aggregation level 4 and the PDCCH candidate 0, and the aggregation level 4 and the PDCCH candidate 0 are used in the subframe 6. Extract the control channel. The calculation is performed according to Equation 7, Equation 8, Equation 9, or its extended calculation method. The following examples are calculated according to Equation 9.
根据式 9, ni=4x { (yo + 0)mod L CCE / 4j }+ i , 从而计算得到 η。或 η。,ηι, ...... ,η3为: n0=28, n2=30, n3=31。 此时, UE可在 4个子帧的每一个子帧的 CCE编 号为 28, 29, 30, 31 的 CCE上提取控制信道, 接着进行信息合并(譬如软信 息合并或软解调合并)来检测控制信道。 若控制信道没有检测成功: According to Equation 9, ni = 4x { ( y o + 0) mod L CCE / 4j } + i , and η is calculated. Or η . , ηι , ...... , η 3 are: n 0 = 28, n 2 = 30, n 3 = 31. At this time, the UE may extract the control channel on the CCEs of the CCE numbers 28, 29, 30, 31 of each of the 4 subframes, and then perform information combining (such as soft information combining or soft demodulation combining) to detect and control. channel. If the control channel is not detected successfully:
UE继续尝试检测控制信道: 在子帧 0中按照聚合级别 4和 PDCCH候选 1 提取控制信道,在子帧 1中釆用聚合级别 4和 PDCCH候选 1提取控制信道,在 子帧 5中釆用聚合级别 4和 PDCCH候选 1提取控制信道,在子帧 6中釆用聚合 级别 4和 PDCCH候选 1提取控制信道。 通过 ni= 4x { (y。+i)m。d LwCCE /4」}+ '计算 no 或 n0,n ,n3为: n0=0, n!=l,n2=2, n3=3„ 此时, UE可以在 4个子帧的每一个 子帧的 CCE编号为 0, 1 , 2, 3的 CCE上提取控制信道, 进行信息合并来检测 控制信道。 若控制信道仍没有检测成功: The UE continues to attempt to detect the control channel: the control channel is extracted according to the aggregation level 4 and the PDCCH candidate 1 in the subframe 0, the control channel is extracted in the subframe 1 using the aggregation level 4 and the PDCCH candidate 1, and the aggregation is used in the subframe 5. Level 4 and PDCCH candidate 1 extract the control channel, and in subframe 6, the control channel is extracted using aggregation level 4 and PDCCH candidate 1. Pass ni = 4x { (y.+i)m. d Lw CCE /4"} + 'Calculate no or n 0 , n , n 3 are: n 0 =0, n!=l, n 2 = 2, n 3 = 3 „ At this point, the UE can be in 4 subframes The CCE number of each subframe is 0, 1, 2, 3, and the control channel is extracted, and information is combined to detect the control channel. If the control channel is still not successfully detected:
UE继续尝试检测控制信道: 在子帧 0中按照聚合级别 8和 PDCCH候选 0 提取控制信道,在子帧 1中釆用聚合级别 8和 PDCCH候选 0提取控制信道,在 子帧 5中釆用聚合级别 8和 PDCCH候选 0提取控制信道,在子帧 6中釆用聚合 级别 8和 PDCCH候选 0提取控制信道。 通过 1 1= 8>< { (}^ + () (1 ^^ /8」}+''计算110 或 n0,nl5 ,n7为: n0=24, n1=25,n2=26, n3=27, n4=28, n5=29,n6=30, n7=31。 UE可 在 4个子帧的每一个子帧的 CCE编号为 24,25,26,27,28,29,30,31的 CCE上提取 控制信道, 进行信息合并来检测控制信道。 若控制信道仍没有检测成功: The UE continues to try to detect the control channel: the control channel is extracted according to the aggregation level 8 and the PDCCH candidate 0 in the subframe 0, the control channel is extracted in the subframe 1 using the aggregation level 8 and the PDCCH candidate 0, and the aggregation is used in the subframe 5. Level 8 and PDCCH candidate 0 extract the control channel, and in subframe 6, the control channel is extracted using aggregation level 8 and PDCCH candidate 0. Calculate 110 or n 0 , n l5 , n 7 by 1 1 = 8>< { ( } ^ + () (1 ^^ / 8 ”} + '': n 0 =24, n 1 =25,n 2 =26, n 3 =27, n 4 =28, n 5= 29,n 6 =30, n 7 =31. The UE can have a CCE number of 24, 25, 26, 27 in each of the 4 subframes. The control channel is extracted from the CCE of 28, 29, 30, 31, and information is combined to detect the control channel. If the control channel is still not successfully detected:
UE继续尝试检测控制信道: 在子帧 0中按照聚合级别 8和 PDCCH候选 1 提取控制信道,在子帧 1中釆用聚合级别 8和 PDCCH候选 1提取控制信道,在 子帧 5中釆用聚合级别 8和 PDCCH候选 1提取控制信道,在子帧 6中釆用聚合 级别 8和 PDCCH候选 1提取控制信道。 通过!!产^ ^^^ ^^ 计算^ 或 η0,Πι, ,η7为: η0=0, ηι=1,η2=2, η3=3, η4=4, η5=5,η6=6, η7=7。 此时, UE可以 在 4个子帧的每一个子帧的 CCE编号为 0,1,2,3,4,5,6,7的 CCE上提取控制信道, 进行信息合并检测控制信道。 The UE continues to try to detect the control channel: the control channel is extracted according to the aggregation level 8 and the PDCCH candidate 1 in the subframe 0, the control channel is extracted in the subframe 1 using the aggregation level 8 and the PDCCH candidate 1, and the aggregation is used in the subframe 5. Level 8 and PDCCH candidate 1 extract the control channel, and in subframe 6, the aggregation level 8 and PDCCH candidate 1 are used to extract the control channel. by! ! The production ^ ^^^ ^^ calculates ^ or η 0 , Πι, , η 7 as: η 0 =0, ηι=1, η 2 = 2, η 3 = 3, η 4 = 4, η 5 = 5, η 6 = 6, η 7 = 7. At this time, the UE may extract the control channel on the CCEs whose CCE numbers are 0, 1, 2, 3, 4, 5, 6, and 7 in each of the four subframes, and perform a information combining detection control channel.
值得注意的是, 在应用例一中, 上述多种尝试方式之间的顺序可以任意调 换, 在此不作限定。  It should be noted that, in the first application example, the order between the above multiple attempts may be arbitrarily changed, which is not limited herein.
此外, UE在检测控制信道时, 一般情况下不知道基站进行控制信道重复传 输所用的重复次数,此时 UE需要根据控制信道重复传输的每种可能的重复次数 按照该重复次数下控制信道传输可用的聚合级别和控制信道候选对控制信道进 行检测。 如, 基站给 UE配置的控制信道重复传输次数是 N和M。 UE按照重复 次数 N在对应的多个子帧上按照该重复次数可支持的每种聚合级别和每种控制 信道候选, 尝试检测控制信道。 若控制信道没有检测成功, UE按照重复次数 M 在对应的多个子帧上按照该重复次数可支持的每种聚合级别和每种控制信道候 选, 尝试检测控制信道。 In addition, when detecting the control channel, the UE generally does not know the number of repetitions used by the base station to perform repeated transmission of the control channel. At this time, the UE needs to control the channel transmission according to the number of repetitions of the repeated transmission of the control channel according to the number of repetitions. The aggregation level and control channel candidates detect the control channel. For example, the number of repeated transmissions of the control channel configured by the base station to the UE is N and M. UE repeats The number of times N attempts to detect the control channel on each of the corresponding plurality of subframes according to each aggregation level and each control channel candidate that can be supported by the number of repetitions. If the control channel is not successfully detected, the UE attempts to detect the control channel according to the repetition number M in each of the corresponding multiple subframes according to each aggregation level and each control channel candidate that can be supported by the repetition number.
上述方式 UE在多个子帧的每个子帧中得到的第一参数都是相同的。下面给 出一个应用例二, 根据该应用例, UE在多个子帧的每个子帧中得到的第一参数 和控制信道传输所用的资源位置都是相同的。 应用例二具体实现包括以下过程。  In the foregoing manner, the first parameters obtained by the UE in each subframe of the multiple subframes are the same. An application example 2 is given below. According to the application example, the first parameter obtained by the UE in each subframe of the multiple subframes and the resource location used for control channel transmission are the same. The specific implementation of the application example 2 includes the following process.
应用例二:  Application example 2:
帧结构类型为 2, TDD的上下行配置为 0。基站用于控制信道重复传输的多 个子帧的数目或重复次数是确定的, 如控制信道在一个无线帧内的 4个子帧中 进行 4次重复传输, 4个子帧的子帧索引分别是 0,5,0,5, 4个子帧中的 mi都相 同, 如 mi=2。 其中, 所述 4个子帧中的前 2个子帧可以位于一个无线帧内, 所 述 4个子帧中的后 2个子帧位于后一个无线帧内。 规定在 4个子帧中的每一个 子帧上传输控制信道釆用的聚合级别是 L,即在 4个子帧中的每一个子帧上传输 控制信道占用了 L个控制信道元素, 其中 L可以等于 4或 8。 4叚设在 4个子帧 中的每个子帧内的 CFI=3 , 天线端口为 4, 载波带宽是 20MHz, Ng=l。 记 4个子 帧中的每个子帧的控制区域中总的 CCE数分别为 NCC , WCCE,。, ^CCE ,5 , 则根据上述参数设置 Ν;。 = ^CCE , =68The frame structure type is 2, and the uplink and downlink configurations of TDD are 0. The number of times or the number of repetitions of the plurality of subframes used by the base station to control channel repetition transmission is determined. For example, the control channel performs four repetition transmissions in four subframes within one radio frame, and the subframe indexes of the four subframes are respectively 0. The mi in 5,0,5, 4 sub-frames are the same, such as mi=2. The first two subframes of the four subframes may be located in one radio frame, and the last two subframes of the four subframes are located in the next radio frame. It is specified that the aggregation level used for transmitting the control channel on each of the four subframes is L, that is, the transmission control channel occupies L control channel elements in each of the four subframes, where L may be equal to 4 or 8. 4, CFI=3 in each of the 4 subframes, 4 antenna ports, 20 MHz carrier bandwidth, Ng=l. The total number of CCEs in the control region of each of the four subframes is NCC , W CCE , respectively. , ^CCE , 5 , then set Ν according to the above parameters. = ^CCE , = 68 .
UE通过尝试可能的聚合级别及该聚合级别下的可能的控制信道候选来检 测控制信道。 UE需要确定每个聚合级别每个控制信道候选的 CCE在 4个子帧 中的每个子帧内的所有控制信道元素中的编号。 在本实施方式中, ^叚设 UE 的 The UE detects the control channel by attempting a possible aggregation level and possible control channel candidates under the aggregation level. The UE needs to determine the number of all control channel elements in each of the 4 subframes of the CCE for each control channel candidate for each aggregation level. In this embodiment, the setting of the UE
"RNTI =16, 并按照前面一个或多个实施方式的计算式子或其扩展来确定 n。或 n0,nl5...... ,η^。此夕卜,本实施方式规定 k是 4个子帧中的第一个子帧的子帧编号, 因此 k=0。 并且, WCCE,0 , NCCE,5 , NCCE,0 , WCCE 5 )=68。 以下的举例是根
Figure imgf000063_0001
" RNTI = 16 and determines n or n 0 , n l5 ... , η ^ according to the calculation formula of one or more of the previous embodiments or its extension. In addition, this embodiment specifies k Is the subframe number of the first subframe of the 4 subframes, so k = 0. Also, W CCE , 0 , N CCE , 5 , N CCE , 0 , W CCE 5 ) = 68 . The following example is root
Figure imgf000063_0001
据式 9计算。 UE尝试检测控制信道: 在子帧 0中按照聚合级别 4和 PDCCH候 选 0提取控制信道。在子帧 1中釆用聚合级别 4和 PDCCH候选 0提取控制信道, 在子帧 5中釆用聚合级别 4和 PDCCH候选 0提取控制信道,在子帧 6中釆用聚 合级别 4 和 PDCCH 候选 0 提取控制信道。 根据式 9 , 通过 { (y。+o) m。d LwCCE / 4」}"计算 η。或 η。,ηι,…… , 为: η=12, ηι=13,η2=14, η3=15Calculated according to Equation 9. The UE attempts to detect the control channel: The control channel is extracted in the subframe 0 according to the aggregation level 4 and the PDCCH candidate 0. The control channel is extracted in the subframe 1 by using the aggregation level 4 and the PDCCH candidate 0, the control channel is extracted in the subframe 5 by using the aggregation level 4 and the PDCCH candidate 0, and the aggregation level 4 and the PDCCH candidate 0 are used in the subframe 6. Extract the control channel. According to Equation 9, pass { (y.+o) m. d Lw CCE / 4"}" calculates η or η , ηι , ... , as: η . =12 , ηι=13 , η2=14 , η3=15 .
UE可在 4个子帧的每一个子帧的 CCE编号为 12,13,14,3115的 CCE上提取控制 信道, 进行信息合并来检测控制信道。 若控制信道没有检测成功: The UE may extract control on the CCEs with CCE numbers 12, 13, 14, 3115 in each of the 4 subframes. Channel, information is combined to detect the control channel. If the control channel is not detected successfully:
UE继续尝试检测控制信道: 在子帧 0中按照聚合级别 4和 PDCCH候选 1 提取控制信道,在子帧 1中釆用聚合级别 4和 PDCCH候选 1提取控制信道,在 子帧 5中釆用聚合级别 4和 PDCCH候选 1提取控制信道,在子帧 6中釆用聚合 级别 4和 PDCCH候选 1提取控制信道。 通过 ni=4x { (y+ 1)m d LwCCE /4」}+''计算 no 或 n0,n ,n3为: n。=16, n尸 17,n2=18, n3=19。 此时, UE可以在 4个子帧的每 一个子帧的 CCE编号为 16,17,18,19的 CCE上提取控制信道, 进行信息合并来 检测控制信道。 若控制信道没有检测成功: The UE continues to attempt to detect the control channel: the control channel is extracted according to the aggregation level 4 and the PDCCH candidate 1 in the subframe 0, the control channel is extracted in the subframe 1 using the aggregation level 4 and the PDCCH candidate 1, and the aggregation is used in the subframe 5. Level 4 and PDCCH candidate 1 extract the control channel, and in subframe 6, the control channel is extracted using aggregation level 4 and PDCCH candidate 1. Calculate no or n 0 , n , n 3 by n = 4x { ( y . + 1 ) md Lw CCE /4"}+'': n. =16, n corpse 17, n 2 =18, n 3 =19. At this time, the UE may extract the control channel on the CCEs of the CCE numbers 16, 17, 18, 19 of each of the four subframes, and perform information combining to detect the control channel. If the control channel is not detected successfully:
UE继续尝试检测控制信道: 在子帧 0中按照聚合级别 8和 PDCCH候选 0 提取控制信道,在子帧 1中釆用聚合级别 8和 PDCCH候选 0提取控制信道,在 子帧 5中釆用聚合级别 8和 PDCCH候选 0提取控制信道,在子帧 6中釆用聚合 级别 8和 PDCCH候选 0提取控制信道。 通过 1 1=8>< { (}^ + ())"1 (1 ^^ / 8」}+'计算110 或 η0,Πι, ,η7为: η0=56, ηι=57,η2=58, η3=59, η4=60, η5=61,η6=62, η7=63。 J¾时,The UE continues to try to detect the control channel: the control channel is extracted according to the aggregation level 8 and the PDCCH candidate 0 in the subframe 0, the control channel is extracted in the subframe 1 using the aggregation level 8 and the PDCCH candidate 0, and the aggregation is used in the subframe 5. Level 8 and PDCCH candidate 0 extract the control channel, and in subframe 6, the control channel is extracted using aggregation level 8 and PDCCH candidate 0. Calculate 110 or η 0 , Πι, , η 7 by 1 1 = 8>< { ( } ^ + () )" 1 (1 ^^ / 8 ”} + ': η 0 =56, ηι=57,η 2 =58, η 3 =59, η 4 =60, η 5 =61, η 6 =62, η 7 =63. When J3⁄4,
UE可以在 4个子帧的每一个子帧的 CCE编号为 56,57,58,59,60,61,62,63的 CCE 上提取控制信道, 进行信息合并来检测控制信道。 若控制信道没有检测成功:The UE may extract the control channel on the CCEs of the CCE numbers 56, 57, 58, 59, 60, 61, 62, 63 of each of the four subframes, and perform information combining to detect the control channel. If the control channel is not detected successfully:
UE继续尝试检测控制信道: 在子帧 0中按照聚合级别 8和 PDCCH候选 1 提取控制信道,在子帧 1中釆用聚合级别 8和 PDCCH候选 1提取控制信道,在 子帧 5中釆用聚合级别 8和 PDCCH候选 1提取控制信道,在子帧 6中釆用聚合 级别 8和 PDCCH候选 1提取控制信道。 通过 ^^ ^。"^^ ^"计算^ 或 n0,nl5 ,n7为: n0=0, n1=l,n2=2, n3=3, n4=4, n5=5,n6=6, n7=7。 即 UE可在 4个 子帧的每一个子帧的 CCE编号为 0,1,2,3,4,5,6,7的 CCE上提取控制信道, 进行 信息合并检测控制信道。 The UE continues to try to detect the control channel: the control channel is extracted according to the aggregation level 8 and the PDCCH candidate 1 in the subframe 0, the control channel is extracted in the subframe 1 using the aggregation level 8 and the PDCCH candidate 1, and the aggregation is used in the subframe 5. Level 8 and PDCCH candidate 1 extract the control channel, and in subframe 6, the aggregation level 8 and PDCCH candidate 1 are used to extract the control channel. By ^^ ^. "^^ ^" calculates ^ or n 0 , n l5 , n 7 is: n 0 =0, n 1= l, n 2 = 2, n 3 = 3, n 4 = 4, n 5= 5, n 6 =6, n 7 =7. That is, the UE may extract the control channel on the CCEs whose CCE numbers are 0, 1, 2, 3, 4, 5, 6, and 7 in each of the four subframes, and perform a information combining detection control channel.
值得注意的是, 在应用例二中, UE的上述多种尝试方式之间的顺序可以任 意调换, 在此不作限定。  It should be noted that, in the application example 2, the sequence between the multiple attempts of the UE may be arbitrarily changed, which is not limited herein.
此外, UE在检测控制信道时, 一般情况下不知道基站进行控制信道重复传 输所用的重复次数,此时 UE需要根据控制信道重复传输的每种可能的重复次数 按照该重复次数下控制信道传输可用的聚合级别和控制信道候选对控制信道进 行检测。 如, 基站给 UE配置的控制信道重复传输次数是 N和M。 UE按照重复 次数 N在对应的多个子帧上按照该重复次数可支持的每种聚合级别和每种控制 信道候选, 尝试检测控制信道。 若控制信道没有检测成功, UE按照重复次数 M 在对应的多个子帧上按照该重复次数可支持的每种聚合级别和每种控制信道候 选, 尝试检测控制信道。 In addition, when detecting the control channel, the UE generally does not know the number of repetitions used by the base station to perform repeated transmission of the control channel. At this time, the UE needs to control the channel transmission according to the number of repetitions of the repeated transmission of the control channel according to the number of repetitions. The aggregation level and control channel candidates detect the control channel. For example, the number of repeated transmissions of the control channel configured by the base station to the UE is N and M. The UE attempts to detect the control channel according to the repetition number N for each aggregation level and each control channel candidate that can be supported by the repetition number in the corresponding plurality of subframes. If the control channel is not successfully detected, the UE repeats the number of times M At each of the corresponding multiple subframes, each control level and each control channel candidate that can be supported by the number of repetitions is attempted to detect the control channel.
上述针对 UE对控制信道的接收方法进行描述。图 5是本申请用户设备一实 施方式的模块框图, 本实施方式用户设备包括但不限于确定模块 51、 接收模块 52和处理模块 53。  The above describes a method for receiving a control channel by a UE. FIG. 5 is a block diagram of an embodiment of a user equipment of the present application. The user equipment of this embodiment includes but is not limited to the determining module 51, the receiving module 52, and the processing module 53.
其中,确定模块 51 ,用于确定控制信道增强传输的多个子帧。接收模块 52, 用于在确定模块 51所确定的多个子帧中接收增强传输的控制信道, 其中, 增强 传输是重复传输、 扩频传输、 传输时间间隔捆绑传输以及功率提升传输中的至 少一种。  The determining module 51 is configured to determine a plurality of subframes of the control channel enhanced transmission. The receiving module 52 is configured to receive, in a plurality of subframes determined by the determining module 51, a control channel for enhancing transmission, where the enhanced transmission is at least one of a repetitive transmission, a spread spectrum transmission, a transmission time interval bundling transmission, and a power boost transmission. .
需要说明的是, 本实施方式接收模块 52在多个子帧中的每个子帧上接收控 制信道, 且在多个子帧中的每个子帧上接收控制信道所用的第一参数都相同, 其中所述第一参数是起始控制信道元素的编号或控制信道元素的编号。  It should be noted that, in this embodiment, the receiving module 52 receives the control channel in each of the multiple subframes, and the first parameters used to receive the control channel in each of the multiple subframes are the same, where the The first parameter is the number of the starting control channel element or the number of the control channel element.
具体而言: 接收模块 52在多个子帧中的每个子帧上接收控制信道所用的第 一参数是预先规定的; 或者, 接收模块 52在多个子帧中的每个子帧上接收控制 信道所用的第一参数是根据预先规定的函数关系确定的。  Specifically, the first parameter used by the receiving module 52 to receive the control channel in each of the multiple subframes is predetermined; or, the receiving module 52 receives the control channel in each of the multiple subframes. The first parameter is determined according to a predetermined functional relationship.
处理模块 53用于根据预先规定的一个索引确定多个子帧中的每个子帧上接 收控制信道所用的第一参数; 或者, 根据预先规定的两个索引确定多个子帧中 的每个子帧上接收控制信道所用的第一参数; 或者, 根据预先规定的一个索引 和预先规定的总 CCE数确定多个子帧中的每个子帧上接收控制信道所用的第一 参数。  The processing module 53 is configured to determine, according to a predetermined index, a first parameter used by each of the plurality of subframes to receive the control channel, or determine, according to the two preset indexes, the receiving of each of the multiple subframes. And determining, by the first parameter used by the control channel, a first parameter used for receiving the control channel in each of the plurality of subframes according to a predetermined index and a predetermined total number of CCEs.
在具体的实现过程中, 预先规定的两个索引中的一个索引是第一预先规定 的一个子帧的索引, 其中第一预先规定的一个子帧是: 多个子帧中的第 p个子 帧, 其中 p是预先规定的整数; 或, 多个子帧中有最小的总 CCE数的子帧的子 帧索引; 或, 多个子帧中有最小的总 CCE数的子帧中的第 q个子帧, 其中 q是 预先规定的整数。 同理, 预先规定的两个索引中的另一个索引是第二预先规定 的一个子帧的索引,其中第二预先规定的一个子帧是:多个子帧中的第 r个子帧 , 其中 r是预先规定的整数; 或, 多个子帧中有最小的总 CCE数的子帧的子帧索 引; 或, 多个子帧中有最小的总 CCE数的子帧中的第 w个子帧, 其中 w是预先 规定的整数。  In a specific implementation process, one of the two preset indexes is an index of a first predetermined one subframe, where the first predetermined one subframe is: a p-th subframe in the multiple subframes, Wherein p is a predetermined integer; or, a subframe index of a subframe having a smallest total number of CCEs among the plurality of subframes; or, a qth subframe of the subframes having the smallest total number of CCEs among the plurality of subframes, Where q is a predetermined integer. Similarly, another index of the two predetermined indexes is an index of a second predetermined one subframe, wherein the second predetermined one subframe is: the rth subframe of the plurality of subframes, where r is a predetermined integer; or a subframe index of a subframe having a smallest total number of CCEs among the plurality of subframes; or, a w-th subframe of the subframe having the smallest total number of CCEs among the plurality of subframes, where w is A predetermined integer.
可选地,本实施方式预先规定的一个索引是预先规定的一个子帧的索引, 其 中预先规定的一个子帧是: 多个子帧中的第 p个子帧, 其中 p是预先规定的整 数;或,多个子帧中有最小的总 CCE数的子帧;或,多个子帧中有最小的总 CCE 数的子帧中的第 q个子帧,其中 q是预先规定的整数。其中,预先规定的总 CCE 数是多个子帧中的有最小或最大的总 CCE数的子帧中的总 CCE数。 Optionally, an index specified in advance in this embodiment is an index of a predetermined one subframe, where a predetermined one subframe is: a p-th subframe in multiple subframes, where p is a predetermined whole a number; or a subframe having a smallest total number of CCEs among the plurality of subframes; or a qth subframe of the subframes having the smallest total number of CCEs among the plurality of subframes, where q is a predetermined integer. The predetermined total number of CCEs is the total number of CCEs in the subframe having the smallest or largest total CCE number among the plurality of subframes.
需要说明的是, 接收模块 52在多个子帧中接收增强传输的控制信道中: 多 个子帧中的每个子帧内的接收控制信道所用的第一参数满足一个确定的范围, 以使调度专有数据的控制信道占用的控制信道元素与调度公共数据的控制信道 占用的控制信道元素没有资源交叠; 或者, 多个子帧中的每个子帧内的接收控 制信道所用的第一参数满足一个确定的范围, 以使调度专有数据的控制信道占 用的控制信道元素与公共搜索空间中的控制信道元素没有资源交叠。  It should be noted that the receiving module 52 receives the enhanced transmission control channel in multiple subframes: the first parameter used by the receiving control channel in each of the multiple subframes satisfies a certain range, so that the scheduling is exclusive. The control channel element occupied by the control channel of the data has no resource overlap with the control channel element occupied by the control channel for scheduling the common data; or, the first parameter used for receiving the control channel in each of the plurality of subframes satisfies a certain The range is such that the control channel elements occupied by the control channel scheduling the proprietary data do not have resource overlap with the control channel elements in the common search space.
特别地, 接收模块 52在多个子帧中接收增强传输的控制信道中: 多个子帧 中的每个子帧内的: 公共参考信号的天线端口数相同; 和 /或, 用于控制信道的 正交频分复用 OFDM符号的个数相同; 和 /或, 物理混合自动重发请求指示信道 的配置 PHICH-Config相同; 和 /或, 帧结构类型 2中用于确定 PHICH资源的 mi 因子相同; 和 /或, 釆用的循环前缀相同; 和 /或, PHICH-duration均为 normal。 这样 UE在多个子帧中进行控制信道的接收时,控制信道在每一个子帧内的所用 的资源和 /或资源位置是相同的。  In particular, the receiving module 52 receives the enhanced transmission in a plurality of subframes: in each of the plurality of subframes: the common reference signal has the same number of antenna ports; and/or is used for orthogonality of the control channel The number of frequency division multiplexed OFDM symbols is the same; and/or, the physical hybrid automatic repeat request indication channel is configured with the same PHICH-Config; and/or, the mi factor for determining the PHICH resource in frame structure type 2 is the same; / or, the cyclic prefix used is the same; and / or PHICH-duration is normal. Thus, when the UE performs reception of the control channel in a plurality of subframes, the used resources and/or resource locations of the control channel in each subframe are the same.
具体而言, 接收模块 52在多个子帧中接收增强传输的控制信道中: 多个子 帧中的每个子帧均不为多媒体组播单频网络 MBSFN子帧; 或,多个子帧中的每 个子帧均为 MBSFN 子帧; 或对于帧结构类型 2, 多个子帧中的每个子帧为 MBSFN子帧, 或子帧 1 , 或子帧 6。  Specifically, the receiving module 52 receives the enhanced transmission control channel in multiple subframes: each of the multiple subframes is not a multimedia multicast single frequency network MBSFN subframe; or, each of the multiple subframes The frames are all MBSFN subframes; or for frame structure type 2, each of the plurality of subframes is an MBSFN subframe, or a subframe 1, or a subframe 6.
特别地, 接收模块 52在多个子帧中接收增强传输的控制信道中: 多个子帧 中的子帧索引属于 {0,4,5,9}的子帧中有 CFI个 OFDM符号用于控制信道, 且多 个子帧中的子帧索引不属于 {0,4,5,9}的子帧中有两个 OFDM符号用于控制信道; 或, 对于帧结构类型 2, 多个子帧中的子帧索引属于 {0,5}的子帧中有 CFI 个 OFDM符号用于控制信道, 且多个子帧中的子帧索引不属于 {0,5}的子帧中有两 个 OFDM符号用于控制信道。 其中, CFI的值为 3或 4。  Specifically, the receiving module 52 receives the enhanced transmission in the control channel in multiple subframes: the subframe index in the plurality of subframes belongs to the {0, 4, 5, 9} subframe, and the CFI OFDM symbols are used in the control channel. And two subframes in the subframes that do not belong to {0, 4, 5, 9} have two OFDM symbols for the control channel; or, for frame structure type 2, subframes in the multiple subframes A subframe in which the index belongs to {0, 5} has CFI OFDM symbols for the control channel, and a subframe in which the subframe index in the plurality of subframes does not belong to {0, 5} has two OFDM symbols for the control channel. . Among them, the value of CFI is 3 or 4.
可选地 , 接收模块 52在带宽属于第一带宽范围的载波上接收增强传输的控 制信道时,多个子帧的每个子帧中有 u个 OFDM符号用于控制信道或数据信道; 而在带宽属于第二带宽范围的载波上接收增强传输的控制信道时, 多个子帧的 每个子帧中有 V个 OFDM符号用于控制信道或数据信道。 其中, 第一带宽范围 和第二带宽范围为预定的带宽范围, 且第一带宽范围和第二带宽范围互不相交, U和 V为自然数, 且 U不等于 V 应用例三: Optionally, when the receiving module 52 receives the enhanced transmission control channel on the carrier whose bandwidth belongs to the first bandwidth range, there are u OFDM symbols in each subframe of the multiple subframes for the control channel or the data channel; When a control channel for enhanced transmission is received on a carrier of the second bandwidth range, there are V OFDM symbols in each subframe of the plurality of subframes for the control channel or the data channel. The first bandwidth range and the second bandwidth range are predetermined bandwidth ranges, and the first bandwidth range and the second bandwidth range do not intersect each other. U and V are natural numbers, and U is not equal to V.
首先需要说明的是, 在基站侧, 用于控制信道重复传输的多个子帧的数目 或重复次数是确定的。 如控制信道在一个无线帧内的 4个子帧中进行 4次重复 传输, 4个子帧的子帧索引分别是 0,1,5,6。规定在 4个子帧中的每一个子帧上传 输控制信道釆用的聚合级别是 L,即在 4个子帧中的每一个子帧上传输控制信道 占用了 L个控制信道元素, L可以等于 4或 8。 而 4叚设在 4个子帧中的每个子帧 内的 CFI为 2, 天线端口为 4, 系统帧结构类型为 2, 上下行配置为 0, 载波带 宽是 20MHz, Ng=l。 记 4个子帧中的每个子帧的控制区域中总的 CCE数分别 为 WcCE'O , WcCE 'l , WcCE Ν CCE ,6 , 贝 'J才艮据上述参数设置 cCE'O =35 , ^CCE .l =39 , =35 WCCE,6 =39 First, it should be noted that, on the base station side, the number of the plurality of subframes or the number of repetitions for controlling the repeated transmission of the channel is determined. For example, if the control channel performs 4 repeated transmissions in 4 subframes within one radio frame, the subframe indices of the 4 subframes are 0, 1, 5, and 6, respectively. It is specified that the aggregation level used for transmitting the control channel on each of the four subframes is L, that is, the transmission control channel occupies L control channel elements in each of the four subframes, and L may be equal to 4 Or 8. The CFI is set to 2 in each of the 4 subframes, the antenna port is 4, the system frame structure type is 2, the uplink and downlink configuration is 0, the carrier bandwidth is 20 MHz, and Ng=l. The total number of CCEs in the control region of each of the four subframes is WcCE'O , WcCE 'l , WcCE Ν CCE , 6 , and B ' is set according to the above parameters cCE'O =35 , ^CCE .l =39 , =35 W CCE , 6 = 39
UE通过尝试可能的聚合级别及该聚合级别下的可能的控制信道候选来检 测控制信道。 UE需要确定每个聚合级别每个控制信道候选的 CCE在 4个子帧 中的每个子帧内的所有控制信道元素中的编号。 在本实施方式中, ^叚设 UE 的 The UE detects the control channel by attempting a possible aggregation level and possible control channel candidates under the aggregation level. The UE needs to determine the number of all control channel elements in each of the 4 subframes of the CCE for each control channel candidate for each aggregation level. In this embodiment, the setting of the UE
"RNTI=16, 并按照前面一个或多个实施方式中的方法确定 n。或 n。,n ,ηζ-1 , 另 外, 规定 k 是 4 个子帧中的第一个子帧的子帧编号, 因此 k=0 , 并且, =niin( ^CCE'° , N ccE , , Ν CCE ,5 35 " RNTI = 16, and determines n. or n., n, η ζ-1 according to the method in one or more of the previous embodiments. In addition, it is specified that k is the subframe number of the first subframe of the four subframes. , so k=0, and, =niin( ^ CCE '° , N ccE , , Ν CCE , 5 35
UE尝试检测控制信道: 在子帧 0中按照聚合级别 4和 PDCCH候选 0提取 控制信道。在子帧 1中釆用聚合级别 4和 PDCCH候选 0提取控制信道,在子帧 5中釆用聚合级别 4和 PDCCH候选 0提取控制信道, 在子帧 6中釆用聚合级别 4 和 PDCCH候选 0 提取控制信道。 根据式 9 计算方式进行计算, 如通过 =4>< { + 0) 1^ ^^ / 4」}"计算得到11。或11。,111, ...... 为: n=28, ni=29, n _30 ? n3=31。 此时, UE可在 4个子帧的每一个子帧的 CCE编号为 28, 29, 30, 31 的 CCE 上提取控制信道, 接着进行信息合并(譬如软信息合并或软解调合并) 来检测控制信道。 若控制信道没有检测成功: The UE attempts to detect the control channel: The control channel is extracted in the subframe 0 according to the aggregation level 4 and the PDCCH candidate 0. The control channel is extracted in the subframe 1 by using the aggregation level 4 and the PDCCH candidate 0, the control channel is extracted in the subframe 5 by using the aggregation level 4 and the PDCCH candidate 0, and the aggregation level 4 and the PDCCH candidate 0 are used in the subframe 6. Extract the control channel. Calculate according to the calculation method of Equation 9, such as by =4>< { + 0) 1 ^ ^^ / 4"}" to get 11 or 11. , 111 , ... as: n = = 28 Ni=29 , n _ 30 ? n 3 = 31. At this time, the UE may extract the control channel on the CCEs of CCE numbers 28, 29, 30, 31 of each of the four subframes, and then perform information combining ( For example, soft information combining or soft demodulation combining to detect the control channel. If the control channel is not detected successfully:
UE继续尝试检测控制信道: 在子帧 0中按照聚合级别 4和 PDCCH候选 1 提取控制信道,在子帧 1中釆用聚合级别 4和 PDCCH候选 1提取控制信道,在 子帧 5中釆用聚合级别 4和 PDCCH候选 1提取控制信道,在子帧 6中釆用聚合 级别 4和 PDCCH候选 1提取控制信道。 根据式 9计算方式进行计算, 如通过 { 0 i) m。d Lw∞E / 4」 计算 n。或 n。,ni, · .. · .. ,n3为: n=0, ni=1,n2=2, n3=3。此时, The UE continues to attempt to detect the control channel: the control channel is extracted according to the aggregation level 4 and the PDCCH candidate 1 in the subframe 0, the control channel is extracted in the subframe 1 using the aggregation level 4 and the PDCCH candidate 1, and the aggregation is used in the subframe 5. Level 4 and PDCCH candidate 1 extract the control channel, and in subframe 6, the control channel is extracted using aggregation level 4 and PDCCH candidate 1. Calculate according to the calculation method of Equation 9, as passed { 0 i) m. d Lw ∞E / 4" Calculate n . Or n . , ni , · .. · .. , n3 is: n . =0 , ni=1 , n2=2 , n3=3 . at this time,
UE可以在 4个子帧的每一个子帧的 CCE编号为 0, 1 , 2, 3的 CCE上提取控 制信道, 进行信息合并来检测控制信道。 若控制信道仍没有检测成功: The UE may extract the control channel on the CCEs with CCE numbers 0, 1, 2, 3 in each of the 4 subframes, and perform information combining to detect the control channel. If the control channel is still not detected successfully:
UE继续尝试检测控制信道: 在子帧 0中按照聚合级别 8和 PDCCH候选 0 提取控制信道,在子帧 1中釆用聚合级别 8和 PDCCH候选 0提取控制信道,在 子帧 5中釆用聚合级别 8和 PDCCH候选 0提取控制信道,在子帧 6中釆用聚合 级别 8和 PDCCH候选 0提取控制信道。 根据式 9计算方式进行计算, 如通过 ^ 画 ^^ ^计算^或^^…… A为: n=24, ni=25,n2=26, n3=27, n4=28, n5=29,n6=30, n7=31。 UE 可在 4 个子帧的每一个子帧的 CCE 编号为 24,25,26,27,28,29,30,31的 CCE上提取控制信道,进行信息合并来检测控制信道。 若控制信道仍没有检测成功: The UE continues to try to detect the control channel: the control channel is extracted according to the aggregation level 8 and the PDCCH candidate 0 in the subframe 0, the control channel is extracted in the subframe 1 using the aggregation level 8 and the PDCCH candidate 0, and the aggregation is used in the subframe 5. Level 8 and PDCCH candidate 0 extract the control channel, and in subframe 6, the control channel is extracted using aggregation level 8 and PDCCH candidate 0. 9 is calculated according to the formula calculation, such as by calculating ^ ^ ^ ^^ Videos or ^^ ...... A is: n. =24 , ni=25 , n2=26 , n3=27 , n 4 =28, n 5= 29, n 6 =30, n 7 =31. The UE may extract the control channel on the CCEs of CCE numbers 24, 25, 26, 27, 28, 29, 30, 31 of each of the 4 subframes, and perform information combining to detect the control channel. If the control channel is still not detected successfully:
UE继续尝试检测控制信道: 在子帧 0中按照聚合级别 8和 PDCCH候选 1 提取控制信道,在子帧 1中釆用聚合级别 8和 PDCCH候选 1提取控制信道,在 子帧 5中釆用聚合级别 8和 PDCCH候选 1提取控制信道,在子帧 6中釆用聚合 级别 8和 PDCCH候选 1提取控制信道。 而根据式 9计算方式进行计算,如通过
Figure imgf000068_0001
ηι=1,η2=2, η3=3, η4=4, η5=5,η6=6, η7=7。 此时, UE 可以在 4 个子帧的每一个子帧的 CCE 编号为 0,1,2,3,4,5,6,7的 CCE上提取控制信道, 进行信息合并检测控制信道。
The UE continues to try to detect the control channel: the control channel is extracted according to the aggregation level 8 and the PDCCH candidate 1 in the subframe 0, the control channel is extracted in the subframe 1 using the aggregation level 8 and the PDCCH candidate 1, and the aggregation is used in the subframe 5. Level 8 and PDCCH candidate 1 extract the control channel, and in subframe 6, the aggregation level 8 and PDCCH candidate 1 are used to extract the control channel. And according to the calculation method of Equation 9, the calculation is as follows.
Figure imgf000068_0001
Ιι=1, η 2 = 2, η 3 = 3, η 4 = 4, η 5 = 5, η 6 = 6, and η 7 = 7. At this time, the UE may extract the control channel on the CCEs whose CCE numbers are 0, 1, 2, 3, 4, 5, 6, and 7 in each of the four subframes, and perform a information combining detection control channel.
值得注意的是, 在应用例三中, 上述多种尝试方式之间的顺序可以任意调 换, 在此不作限定。  It should be noted that, in the third application example, the order between the above multiple attempts may be arbitrarily changed, which is not limited herein.
此外, UE在检测控制信道时, 一般情况下不知道基站进行控制信道重复传 输所用的重复次数,此时 UE需要根据控制信道重复传输的每种可能的重复次数 按照该重复次数下控制信道传输可用的聚合级别和控制信道候选对控制信道进 行检测。 如, 基站给 UE配置的控制信道重复传输次数是 N和M。 UE按照重复 次数 N在对应的多个子帧上按照该重复次数可支持的每种聚合级别和每种控制 信道候选, 尝试检测控制信道。 若控制信道没有检测成功, UE按照重复次数 M 在对应的多个子帧上按照该重复次数可支持的每种聚合级别和每种控制信道候 选, 尝试检测控制信道。  In addition, when detecting the control channel, the UE generally does not know the number of repetitions used by the base station to perform repeated transmission of the control channel. At this time, the UE needs to control the channel transmission according to the number of repetitions of the repeated transmission of the control channel according to the number of repetitions. The aggregation level and control channel candidates detect the control channel. For example, the number of repeated transmissions of the control channel configured by the base station to the UE is N and M. The UE attempts to detect the control channel according to the number of repetitions N in each of the corresponding multiple subframes according to each aggregation level and each control channel candidate that can be supported by the repetition number. If the control channel is not successfully detected, the UE attempts to detect the control channel according to the repetition number M in each corresponding subframe according to each aggregation level and each control channel candidate that can be supported by the repetition number.
上述方式 UE在多个子帧的每个子帧中得到的第一参数都是相同的。下面给 出一个应用例四, 根据该应用例, UE在多个子帧的每个子帧中得到的第一参数 和控制信道传输所用的资源位置都是相同的。 应用例四具体实现包括以下过程。 应用例四: In the foregoing manner, the first parameter obtained by the UE in each subframe of the multiple subframes is the same. An application example 4 is given below, according to the application example, the first parameter obtained by the UE in each subframe of multiple subframes The resource locations used for control channel transmission are the same. The specific implementation of the fourth application example includes the following process. Application example four:
帧结构类型为 2, TDD的上下行配置为 0。基站用于控制信道重复传输的多 个子帧的数目或重复次数是确定的, 如控制信道在一个无线帧内的 4个子帧中 进行 4次重复传输, 4个子帧的子帧索引分别是 0,5,0,5, 4个子帧中的 mi都相 同, 如 mi=2。 其中, 所述 4个子帧中的前 2个子帧可以位于一个无线帧内, 所 述 4个子帧中的后 2个子帧位于后一个无线帧内。 规定在 4个子帧中的每一个 子帧上传输控制信道釆用的聚合级别是 L,即在 4个子帧中的每一个子帧上传输 控制信道占用了 L个控制信道元素, 其中 L可以等于 4或 8。 4叚设在 4个子帧 中的每个子帧内的 CFI=3 , 天线端口为 4, 载波带宽是 20MHz, Ng=l。 记 4个子 帧中的每个子帧的控制区域中总的 CCE数分别为 NCC , WCCE,。, ^CCE ,5 , 则根据上述参数设置 Ν;。 = ^CCE , =68The frame structure type is 2, and the uplink and downlink configurations of TDD are 0. The number of times or the number of repetitions of the plurality of subframes used by the base station to control channel repetition transmission is determined. For example, the control channel performs four repetition transmissions in four subframes within one radio frame, and the subframe indexes of the four subframes are respectively 0. The mi in 5,0,5, 4 sub-frames are the same, such as mi=2. The first two subframes of the four subframes may be located in one radio frame, and the last two subframes of the four subframes are located in the next radio frame. It is specified that the aggregation level used for transmitting the control channel on each of the four subframes is L, that is, the transmission control channel occupies L control channel elements in each of the four subframes, where L may be equal to 4 or 8. 4, CFI=3 in each of the 4 subframes, 4 antenna ports, 20 MHz carrier bandwidth, Ng=l. The total number of CCEs in the control region of each of the four subframes is NCC , W CCE , respectively. , ^CCE , 5 , then set Ν according to the above parameters. = ^CCE , = 68 .
UE通过尝试可能的聚合级别及该聚合级别下的可能的控制信道候选来检 测控制信道。 UE需要确定每个聚合级别每个控制信道候选的 CCE在 4个子帧 中的每个子帧内的所有控制信道元素中的编号。 在本实施方式中, ^叚设 UE 的 The UE detects the control channel by attempting a possible aggregation level and possible control channel candidates under the aggregation level. The UE needs to determine the number of all control channel elements in each of the 4 subframes of the CCE for each control channel candidate for each aggregation level. In this embodiment, the setting of the UE
"RNTI =16, 并按照前面一个或多个实施方式的计算式子或其扩展来确定 n。或 n0,nl5...... ,η^。此夕卜,本实施方式规定 k是 4个子帧中的第一个子帧的子帧编号, 因 j¾ k=0。 并且, WccE'o , WCCE 5 , NCCE,0 , NCCE,5 )=68" RNTI = 16 and determines n or n 0 , n l5 ... , η ^ according to the calculation formula of one or more of the previous embodiments or its extension. In addition, this embodiment specifies k Is the subframe number of the first subframe of the 4 subframes, since j3⁄4 k=0. Also, WccE'o , W CCE 5 , N CCE , 0 , N CCE , 5 ) =68 .
Figure imgf000069_0001
Figure imgf000069_0001
UE尝试检测控制信道: 在子帧 0中按照聚合级别 4和 PDCCH候选 0提取 控制信道。在子帧 1中釆用聚合级别 4和 PDCCH候选 0提取控制信道,在子帧 5中釆用聚合级别 4和 PDCCH候选 0提取控制信道, 在子帧 6中釆用聚合级别 4 和 PDCCH候选 0提取控制信道。 而根据式 9计算方式进行计算, 如通过 { (y。+o) m。d LwCCE / 4」}"计算 η。或 η。,ηι,…… , 为: η=12, ηι=13,η2=14, η3=15The UE attempts to detect the control channel: The control channel is extracted in the subframe 0 according to the aggregation level 4 and the PDCCH candidate 0. The control channel is extracted in the subframe 1 by using the aggregation level 4 and the PDCCH candidate 0, the control channel is extracted in the subframe 5 by using the aggregation level 4 and the PDCCH candidate 0, and the aggregation level 4 and the PDCCH candidate 0 are used in the subframe 6. Extract the control channel. The calculation is performed according to the calculation method of Equation 9, such as by { (y.+o) m. d Lw CCE / 4"}" calculates η or η , ηι , ... , as: η . =12 , ηι=13 , η2=14 , η3=15 .
UE可在 4个子帧的每一个子帧的 CCE编号为 12,13,14,3115的 CCE上提取控制 信道, 进行信息合并来检测控制信道。 若控制信道没有检测成功: The UE may extract the control channel on the CCEs of the CCE numbers 12, 13, 14, 3115 of each of the 4 subframes, and perform information combining to detect the control channel. If the control channel is not detected successfully:
UE继续尝试检测控制信道: 在子帧 0中按照聚合级别 4和 PDCCH候选 1 提取控制信道,在子帧 1中釆用聚合级别 4和 PDCCH候选 1提取控制信道,在 子帧 5中釆用聚合级别 4和 PDCCH候选 1提取控制信道,在子帧 6中釆用聚合 级别 4和 PDCCH候选 1提取控制信道。 而根据式 9计算方式进行计算,如通过 1 9
Figure imgf000070_0001
The UE continues to attempt to detect the control channel: the control channel is extracted according to the aggregation level 4 and the PDCCH candidate 1 in the subframe 0, the control channel is extracted in the subframe 1 using the aggregation level 4 and the PDCCH candidate 1, and the aggregation is used in the subframe 5. Level 4 and PDCCH candidate 1 extract the control channel, and in subframe 6, the control channel is extracted using aggregation level 4 and PDCCH candidate 1. And according to the calculation method of Equation 9, the calculation is as follows. 1 9 .
Figure imgf000070_0001
此时, UE可以在 4个子帧的每一个子帧的 CCE编号为 16,17,18,19的 CCE上提 取控制信道, 进行信息合并来检测控制信道。 若控制信道没有检测成功: At this time, the UE may extract the control channel on the CCEs with the CCE numbers of 16, 17, 18, 19 in each of the four subframes, and perform information combining to detect the control channel. If the control channel is not detected successfully:
UE继续尝试检测控制信道: 在子帧 0中按照聚合级别 8和 PDCCH候选 0 提取控制信道,在子帧 1中釆用聚合级别 8和 PDCCH候选 0提取控制信道,在 子帧 5中釆用聚合级别 8和 PDCCH候选 0提取控制信道,在子帧 6中釆用聚合 级别 8和 PDCCH候选 0提取控制信道。 而根据式 9计算方式进行计算,如通过 ^ 画 ^^ ^计算^或^^…… A为: n=56, ni=57,n2=58, ¾=59, n4=60, n5=61,n6=62, n7=63。此时, UE可以在 4个子帧的每一个子帧的 CCE编号 为 56,57,58,59,60,61,62,63的 CCE上提取控制信道,进行信息合并来检测控制信 道。 若控制信道没有检测成功: The UE continues to try to detect the control channel: the control channel is extracted according to the aggregation level 8 and the PDCCH candidate 0 in the subframe 0, the control channel is extracted in the subframe 1 using the aggregation level 8 and the PDCCH candidate 0, and the aggregation is used in the subframe 5. Level 8 and PDCCH candidate 0 extract the control channel, and in subframe 6, the control channel is extracted using aggregation level 8 and PDCCH candidate 0. According to the calculation method of Equation 9, the calculation is performed, for example, by ^^^^^^^^^^ A is: n . =56 , ni=57 , n2=58 , 3⁄4 =5 9, n 4 =60, n 5 =61, n 6 =62, n 7 =63. At this time, the UE may extract the control channel on the CCEs of the CCE numbers 56, 57, 58, 59, 60, 61, 62, 63 of each of the four subframes, and perform information combining to detect the control channel. If the control channel is not detected successfully:
UE继续尝试检测控制信道: 在子帧 0中按照聚合级别 8和 PDCCH候选 1 提取控制信道,在子帧 1中釆用聚合级别 8和 PDCCH候选 1提取控制信道,在 子帧 5中釆用聚合级别 8和 PDCCH候选 1提取控制信道,在子帧 6中釆用聚合 级别 8和 PDCCH候选 1提取控制信道。 而根据式 9计算方式进行计算,如通过 ni= 8x { (y。+i) m。d |_wCCE / 8」}+ z计算 n。或 no,ni, ,n7为: n0=0, n1=l,n2=2, n3=3, n4=4, n5=5,n6=6, n7=7。 即 UE可在 4个子帧的每一个子帧的 CCE编号为 0,1,2,3,4,5,6,7 的 CCE上提取控制信道, 进行信息合并检测控制信道。 The UE continues to try to detect the control channel: the control channel is extracted according to the aggregation level 8 and the PDCCH candidate 1 in the subframe 0, the control channel is extracted in the subframe 1 using the aggregation level 8 and the PDCCH candidate 1, and the aggregation is used in the subframe 5. Level 8 and PDCCH candidate 1 extract the control channel, and in subframe 6, the aggregation level 8 and PDCCH candidate 1 are used to extract the control channel. The calculation is performed according to the calculation method of Equation 9, such as by n i = 8x { (y. + i) m. d |_w CCE / 8"}+ z calculates n . Or no , ni , , n 7 are: n 0 =0, n 1= l, n 2 = 2, n 3 = 3, n 4 = 4, n 5 = 5, n 6 = 6, n 7 = 7. That is, the UE may extract the control channel on the CCEs whose CCE numbers are 0, 1, 2, 3, 4, 5, 6, 7 in each of the four subframes, and perform a information combining detection control channel.
值得注意的是, 在应用例四中, UE的上述多种尝试方式之间的顺序可以任 意调换, 在此不作限定。  It should be noted that, in the fourth application example, the sequence between the multiple attempts of the UE may be arbitrarily changed, which is not limited herein.
此外, UE在检测控制信道时, 一般情况下不知道基站进行控制信道重复传 输所用的重复次数,此时 UE需要根据控制信道重复传输的每种可能的重复次数 按照该重复次数下控制信道传输可用的聚合级别和控制信道候选对控制信道进 行检测。 如, 基站给 UE配置的控制信道重复传输次数是 N和M。 UE按照重复 次数 N在对应的多个子帧上按照该重复次数可支持的每种聚合级别和每种控制 信道候选, 尝试检测控制信道。 若控制信道没有检测成功, UE按照重复次数 M 在对应的多个子帧上按照该重复次数可支持的每种聚合级别和每种控制信道候 选, 尝试检测控制信道。  In addition, when detecting the control channel, the UE generally does not know the number of repetitions used by the base station to perform repeated transmission of the control channel. At this time, the UE needs to control the channel transmission according to the number of repetitions of the repeated transmission of the control channel according to the number of repetitions. The aggregation level and control channel candidates detect the control channel. For example, the number of repeated transmissions of the control channel configured by the base station to the UE is N and M. The UE attempts to detect the control channel according to the number of repetitions N in each of the corresponding multiple subframes according to each aggregation level and each control channel candidate that can be supported by the repetition number. If the control channel is not successfully detected, the UE attempts to detect the control channel according to the repetition number M in each corresponding subframe according to each aggregation level and each control channel candidate that can be supported by the repetition number.
此外,本实施方式 UE的具体实现过程还请参阅前面实施方式关于控制信道 的接收方法的描述, 在本技术领域人员容易理解的范围内, 不作赘述。 图 6是本申请用户设备另一实施方式的模块框图, 本实施方式用户设备包 括但不限于处理器 61、接收器 62和发送器 63 , 其中处理器 61、 接收器 62和发 送器 63之间通过总线相连接。 In addition, for the specific implementation process of the UE in this embodiment, please refer to the description of the method for receiving the control channel in the foregoing embodiment, which is not described in the scope easily understood by those skilled in the art. 6 is a block diagram of another embodiment of a user equipment of the present application. The user equipment of the present embodiment includes but is not limited to a processor 61, a receiver 62, and a transmitter 63, wherein the processor 61, the receiver 62, and the transmitter 63 are between Connected via a bus.
在本实施方式中, 处理器 61 , 用于确定控制信道增强传输的多个子帧。 接 收器 62,用于在处理器 61所确定的多个子帧中接收增强传输的控制信道,其中, 增强传输是重复传输、 扩频传输、 传输时间间隔捆绑传输以及功率提升传输中 的至少一种。  In this embodiment, the processor 61 is configured to determine a plurality of subframes of the control channel enhanced transmission. The receiver 62 is configured to receive, in a plurality of subframes determined by the processor 61, an enhanced transmission control channel, where the enhanced transmission is at least one of a repetitive transmission, a spread spectrum transmission, a transmission time interval bundling transmission, and a power boost transmission. .
需要说明的是, 本实施方式接收器 62在多个子帧中的每个子帧上接收控制 信道, 且在多个子帧中的每个子帧上接收控制信道所用的第一参数都相同, 其 中所述第一参数是起始控制信道元素的编号或控制信道元素的编号。  It should be noted that, in this embodiment, the receiver 62 receives the control channel in each of the plurality of subframes, and the first parameters used to receive the control channel in each of the plurality of subframes are the same, wherein the first parameter is the same. The first parameter is the number of the starting control channel element or the number of the control channel element.
具体而言: 接收器 62在多个子帧中的每个子帧上接收控制信道所用的第一 参数是预先规定的; 或者, 接收器 62在多个子帧中的每个子帧上接收控制信道 所用的第一参数是根据预先规定的函数关系确定的。  Specifically, the first parameter used by the receiver 62 to receive the control channel in each of the plurality of subframes is predetermined; or, the receiver 62 receives the control channel for each of the plurality of subframes. The first parameter is determined according to a predetermined functional relationship.
处理器 61还用于根据预先规定的一个索引确定多个子帧中的每个子帧上接 收控制信道所用的第一参数; 或者, 根据预先规定的两个索引确定多个子帧中 的每个子帧上接收控制信道所用的第一参数; 或者, 根据预先规定的一个索引 和预先规定的总 CCE数确定多个子帧中的每个子帧上接收控制信道所用的第一 参数。  The processor 61 is further configured to determine, according to a predetermined index, a first parameter used by each of the plurality of subframes to receive the control channel, or determine, according to the two preset indexes, each subframe of the multiple subframes. And receiving, by the first parameter used by the control channel, the first parameter used for receiving the control channel in each of the plurality of subframes according to a predetermined index and a predetermined total number of CCEs.
在具体的实现过程中, 预先规定的两个索引中的一个索引是第一预先规定 的一个子帧的索引, 其中第一预先规定的一个子帧是: 多个子帧中的第 p个子 帧, 其中 p是预先规定的整数; 或, 多个子帧中有最小的总 CCE数的子帧的子 帧索引; 或, 多个子帧中有最小的总 CCE数的子帧中的第 q个子帧, 其中 q是 预先规定的整数。 同理, 预先规定的两个索引中的另一个索引是第二预先规定 的一个子帧的索引,其中第二预先规定的一个子帧是:多个子帧中的第 r个子帧 , 其中 r是预先规定的整数; 或, 多个子帧中有最小的总 CCE数的子帧的子帧索 引; 或, 多个子帧中有最小的总 CCE数的子帧中的第 w个子帧, 其中 w是预先 规定的整数。  In a specific implementation process, one of the two preset indexes is an index of a first predetermined one subframe, where the first predetermined one subframe is: a p-th subframe in the multiple subframes, Wherein p is a predetermined integer; or, a subframe index of a subframe having a smallest total number of CCEs among the plurality of subframes; or, a qth subframe of the subframes having the smallest total number of CCEs among the plurality of subframes, Where q is a predetermined integer. Similarly, another index of the two predetermined indexes is an index of a second predetermined one subframe, wherein the second predetermined one subframe is: the rth subframe of the plurality of subframes, where r is a predetermined integer; or a subframe index of a subframe having a smallest total number of CCEs among the plurality of subframes; or, a w-th subframe of the subframe having the smallest total number of CCEs among the plurality of subframes, where w is A predetermined integer.
可选地,本实施方式预先规定的一个索引是预先规定的一个子帧的索引, 其 中预先规定的一个子帧是: 多个子帧中的第 p个子帧, 其中 p是预先规定的整 数;或,多个子帧中有最小的总 CCE数的子帧;或,多个子帧中有最小的总 CCE 数的子帧中的第 q个子帧,其中 q是预先规定的整数。其中,预先规定的总 CCE 数是多个子帧中的有最小或最大的总 CCE数的子帧中的总 CCE数。 Optionally, an index specified in advance in this embodiment is an index of a predetermined one subframe, where a predetermined one subframe is: a p-th subframe in the plurality of subframes, where p is a predetermined integer; or a subframe having a smallest total number of CCEs among the plurality of subframes; or a qth subframe of the subframes having the smallest total number of CCEs among the plurality of subframes, where q is a predetermined integer. Among them, the predetermined total CCE The number is the total number of CCEs in a subframe having the smallest or largest total number of CCEs among the plurality of subframes.
需要说明的是, 接收器 62在多个子帧中接收增强传输的控制信道中: 多个 子帧中的每个子帧内的接收控制信道所用的第一参数满足一个确定的范围, 以 使调度专有数据的控制信道占用的控制信道元素与调度公共数据的控制信道占 用的控制信道元素没有资源交叠; 或者, 多个子帧中的每个子帧内的接收控制 信道所用的第一参数满足一个确定的范围, 以使调度专有数据的控制信道占用 的控制信道元素与公共搜索空间中的控制信道元素没有资源交叠。  It should be noted that the receiver 62 receives the enhanced transmission control channel in multiple subframes: the first parameter used by the receiving control channel in each of the multiple subframes satisfies a certain range, so that the scheduling is exclusive. The control channel element occupied by the control channel of the data has no resource overlap with the control channel element occupied by the control channel for scheduling the common data; or, the first parameter used for receiving the control channel in each of the plurality of subframes satisfies a certain The range is such that the control channel elements occupied by the control channel scheduling the proprietary data do not have resource overlap with the control channel elements in the common search space.
特别地, 接收器 62在多个子帧中接收增强传输的控制信道中: 多个子帧中 的每个子帧内的: 公共参考信号的天线端口数相同; 和 /或, 用于控制信道的正 交频分复用 OFDM符号的个数相同; 和 /或, 物理混合自动重发请求指示信道的 配置 PHICH-Config相同; 和 /或, 帧结构类型 2中用于确定 PHICH资源的 mi 因子相同; 和 /或, 釆用的循环前缀相同; 和 /或, PHICH-duration均为 normal。 这样 UE在多个子帧中进行控制信道的接收时,控制信道在每一个子帧内的所用 的资源和 /或资源位置是相同的。  In particular, the receiver 62 receives the enhanced transmission control channel in the plurality of subframes: within each of the plurality of subframes: the common reference signal has the same number of antenna ports; and/or is used for orthogonality of the control channel The number of frequency division multiplexed OFDM symbols is the same; and/or, the physical hybrid automatic repeat request indication channel is configured with the same PHICH-Config; and/or, the mi factor for determining the PHICH resource in frame structure type 2 is the same; / or, the cyclic prefix used is the same; and / or PHICH-duration is normal. Thus, when the UE performs reception of the control channel in a plurality of subframes, the used resources and/or resource locations of the control channel in each subframe are the same.
具体而言, 接收器 62在多个子帧中接收增强传输的控制信道中: 多个子帧 中的每个子帧均不为多媒体组播单频网络 MBSFN子帧;或,多个子帧中的每个 子帧均为 MBSFN子帧;或对于帧结构类型 2,多个子帧中的每个子帧为 MBSFN 子帧, 或子帧 1 , 或子帧 6。  Specifically, the receiver 62 receives the enhanced transmission control channel in multiple subframes: each of the multiple subframes is not a multimedia multicast single frequency network MBSFN subframe; or each of the multiple subframes The frames are all MBSFN subframes; or for frame structure type 2, each of the plurality of subframes is an MBSFN subframe, or a subframe 1, or a subframe 6.
特别地, 接收器 62在多个子帧中接收增强传输的控制信道中: 多个子帧中 的子帧索引属于 {0,4,5,9}的子帧中有 CFI个 OFDM符号用于控制信道, 且多个 子帧中的子帧索引不属于 {0,4,5,9}的子帧中有两个 OFDM符号用于控制信道; 或, 对于帧结构类型 2, 多个子帧中的子帧索引属于 {0,5}的子帧中有 CFI 个 OFDM符号用于控制信道, 且多个子帧中的子帧索引不属于 {0,5}的子帧中有两 个 OFDM符号用于控制信道。 其中, CFI的值为 3或 4。  Specifically, the receiver 62 receives the enhanced transmission in the control channel in the plurality of subframes: the subframe index in the plurality of subframes belongs to the {0, 4, 5, 9} subframe, and the CFI OFDM symbols are used in the control channel. And two subframes in the subframes that do not belong to {0, 4, 5, 9} have two OFDM symbols for the control channel; or, for frame structure type 2, subframes in the multiple subframes A subframe in which the index belongs to {0, 5} has CFI OFDM symbols for the control channel, and a subframe in which the subframe index in the plurality of subframes does not belong to {0, 5} has two OFDM symbols for the control channel. . Among them, the value of CFI is 3 or 4.
可选地, 接收器 62在带宽属于第一带宽范围的载波上接收增强传输的控制 信道时, 多个子帧的每个子帧中有 u个 OFDM符号用于控制信道或数据信道; 而在带宽属于第二带宽范围的载波上接收增强传输的控制信道时, 多个子帧的 每个子帧中有 V个 OFDM符号用于控制信道或数据信道。 其中, 第一带宽范围 和第二带宽范围为预定的带宽范围, 且第一带宽范围和第二带宽范围互不相交, u和 V为自然数, 且 u不等于 V。 应用例五, 首先需要说明的是, 在基站侧, 用于控制信道重复传输的多个 子帧的数目或重复次数是确定的。 如控制信道在一个无线帧内的 4个子帧中进 行 4次重复传输, 4个子帧的子帧索引分别是 0,1,5,6。规定在 4个子帧中的每一 个子帧上传输控制信道釆用的聚合级别是 L,即在 4个子帧中的每一个子帧上传 输控制信道占用了 L个控制信道元素, L可以等于 4或 8。 而 4叚设在 4个子帧中 的每个子帧内的 CFI为 2, 天线端口为 4, 系统帧结构类型为 2, 上下行配置为 0,载波带宽是 20MHz, Ng=l。记 4个子帧中的每个子帧的控制区域中总的 CCE
Figure imgf000073_0001
Optionally, when the receiver 62 receives the enhanced transmission control channel on the carrier whose bandwidth belongs to the first bandwidth range, there are u OFDM symbols in each subframe of the multiple subframes for the control channel or the data channel; When a control channel for enhanced transmission is received on a carrier of the second bandwidth range, there are V OFDM symbols in each subframe of the plurality of subframes for the control channel or the data channel. The first bandwidth range and the second bandwidth range are predetermined bandwidth ranges, and the first bandwidth range and the second bandwidth range do not intersect each other, u and V are natural numbers, and u is not equal to V. Application Example 5 First, it should be noted that, on the base station side, the number of multiple subframes or the number of repetitions for controlling channel repetition transmission is determined. For example, if the control channel performs 4 repeated transmissions in 4 subframes within one radio frame, the subframe indices of the 4 subframes are 0, 1, 5, and 6, respectively. It is specified that the aggregation level used for transmitting the control channel on each of the four subframes is L, that is, the transmission control channel occupies L control channel elements in each of the four subframes, and L may be equal to 4 Or 8. The CFI is set to 2 in each of the 4 subframes, the antenna port is 4, the system frame structure type is 2, the uplink and downlink configuration is 0, the carrier bandwidth is 20 MHz, and Ng=l. Record the total CCE in the control area of each of the 4 subframes
Figure imgf000073_0001
UE通过尝试可能的聚合级别及该聚合级别下的可能的控制信道候选来检 测控制信道。 UE需要确定每个聚合级别每个控制信道候选的 CCE在 4个子帧 中的每个子帧内的所有控制信道元素中的编号。 在本实施方式中, ^叚设 UE 的 The UE detects the control channel by attempting a possible aggregation level and possible control channel candidates under the aggregation level. The UE needs to determine the number of all control channel elements in each of the 4 subframes of the CCE for each control channel candidate for each aggregation level. In this embodiment, the setting of the UE
"RNTI=16, 并按照前面一个或多个实施方式中的方法确定 n。或 n。,ni, ,ηζ-1, 另 外, 规定 k 是 4 个子帧中的第一个子帧的子帧编号, 因此 k=0, 并且," RNTI=16 , and determine n or n, . , ni , , η ζ-1 according to the method in one or more of the previous embodiments, and specify that k is a subframe of the first subframe of the four subframes Number, so k=0, and,
^ CCE =Πΐίη( ^CCE'° , NCE ,\ , ^CCE,5 , ^CCE'6)二 35 ^ CCE =Πΐίη( ^ CCE '° , NCE , \ , ^CCE,5 , ^CCE'6) 2 35
UE尝试检测控制信道: 在子帧 0中按照聚合级别 4和 PDCCH候选 0提取 控制信道。在子帧 1中釆用聚合级别 4和 PDCCH候选 0提取控制信道,在子帧 5中釆用聚合级别 4和 PDCCH候选 0提取控制信道, 在子帧 6中釆用聚合级别 4 和 PDCCH候选 0提取控制信道。 而根据式 9计算方式进行计算, 如通过 111=4>< { +0)1^^^/4」}"计算得到11。或11。,111, ...... A为: n=28, ηι=29, n _30? n3=31。 此时, UE可在 4个子帧的每一个子帧的 CCE编号为 28, 29, 30, 31 的 CCE 上提取控制信道, 接着进行信息合并(譬如软信息合并或软解调合并) 来检测控制信道。 若控制信道没有检测成功: The UE attempts to detect the control channel: The control channel is extracted in the subframe 0 according to the aggregation level 4 and the PDCCH candidate 0. The control channel is extracted in the subframe 1 by using the aggregation level 4 and the PDCCH candidate 0, the control channel is extracted in the subframe 5 by using the aggregation level 4 and the PDCCH candidate 0, and the aggregation level 4 and the PDCCH candidate 0 are used in the subframe 6. Extract the control channel. Calculate according to the calculation method of Equation 9, such as by 111= 4>< { + 0) 1 ^^^/4"}" to obtain 11 or 11. , 111 , ... A is: n . = 28 , η ι=29 , n _ 30? n 3 = 31. At this time, the UE may extract the control channel on the CCEs of the CCE numbers 28, 29, 30, 31 of each of the four subframes, and then Perform information combining (such as soft information combining or soft demodulation combining) to detect the control channel. If the control channel is not detected successfully:
UE继续尝试检测控制信道: 在子帧 0中按照聚合级别 4和 PDCCH候选 1 提取控制信道,在子帧 1中釆用聚合级别 4和 PDCCH候选 1提取控制信道,在 子帧 5中釆用聚合级别 4和 PDCCH候选 1提取控制信道,在子帧 6中釆用聚合 级别 4和 PDCCH候选 1提取控制信道。 而根据式 9计算方式进行计算,如通过 {(y。+i)m。dLwCCE/4」}"计算 η。或 η。,ηι,…… ,η3为: η=0, ηι=1,η2=2, η3=3。此时, The UE continues to attempt to detect the control channel: the control channel is extracted according to the aggregation level 4 and the PDCCH candidate 1 in the subframe 0, the control channel is extracted in the subframe 1 using the aggregation level 4 and the PDCCH candidate 1, and the aggregation is used in the subframe 5. Level 4 and PDCCH candidate 1 extract the control channel, and in subframe 6, the control channel is extracted using aggregation level 4 and PDCCH candidate 1. The calculation is performed according to the calculation method of Equation 9, such as by {(y.+i)m. dLw CCE /4"}" calculates η or η , ηι , ... , η3 is: η =0 , ηι=1 , η2=2 , η3=3 .
UE可以在 4个子帧的每一个子帧的 CCE编号为 0, 1, 2, 3的 CCE上提取控 制信道, 进行信息合并来检测控制信道。 若控制信道仍没有检测成功:The UE may extract control on the CCEs with CCE numbers 0, 1, 2, 3 in each of the 4 subframes. Channels are combined to detect the control channel. If the control channel is still not detected successfully:
UE继续尝试检测控制信道: 在子帧 0中按照聚合级别 8和 PDCCH候选 0 提取控制信道,在子帧 1中釆用聚合级别 8和 PDCCH候选 0提取控制信道,在 子帧 5中釆用聚合级别 8和 PDCCH候选 0提取控制信道,在子帧 6中釆用聚合 级别 8和 PDCCH候选 0提取控制信道。 而根据式 9计算方式进行计算,如通过 ηι= 8χ { σ。+ο)画 d LwCCE /8」}+'计算 n。或 n。,ni,…… , 为: =24, n -25^ -2^ ¾=27, n4=28, n5=29,n6=30, n7=31。 UE 可在 4 个子帧的每一个子帧的 CCE 编号为 24,25,26,27,28,29,30,31的 CCE上提取控制信道,进行信息合并来检测控制信道。 若控制信道仍没有检测成功: The UE continues to try to detect the control channel: the control channel is extracted according to the aggregation level 8 and the PDCCH candidate 0 in the subframe 0, the control channel is extracted in the subframe 1 using the aggregation level 8 and the PDCCH candidate 0, and the aggregation is used in the subframe 5. Level 8 and PDCCH candidate 0 extract the control channel, and in subframe 6, the control channel is extracted using aggregation level 8 and PDCCH candidate 0. The calculation is performed according to the calculation method of Equation 9, such as by ηι = 8 χ { σ. +ο)Draw d Lc CCE /8”}+' to calculate n . Or n . , ni , ... , are: =24 , n - 25 ^ - 2 ^ 3⁄4 = 27 , n 4 =28, n 5= 29, n 6 =30, n 7 =31. The UE may extract the control channel on the CCEs of CCE numbers 24, 25, 26, 27, 28, 29, 30, 31 of each of the 4 subframes, and perform information combining to detect the control channel. If the control channel is still not detected successfully:
UE继续尝试检测控制信道: 在子帧 0中按照聚合级别 8和 PDCCH候选 1 提取控制信道,在子帧 1中釆用聚合级别 8和 PDCCH候选 1提取控制信道,在 子帧 5中釆用聚合级别 8和 PDCCH候选 1提取控制信道,在子帧 6中釆用聚合 级别 8和 PDCCH候选 1提取控制信道。 而根据式 9计算方式进行计算,如通过 η
Figure imgf000074_0001
The UE continues to try to detect the control channel: the control channel is extracted according to the aggregation level 8 and the PDCCH candidate 1 in the subframe 0, the control channel is extracted in the subframe 1 using the aggregation level 8 and the PDCCH candidate 1, and the aggregation is used in the subframe 5. Level 8 and PDCCH candidate 1 extract the control channel, and in subframe 6, the aggregation level 8 and PDCCH candidate 1 are used to extract the control channel. Calculate according to the calculation method of Equation 9, such as by η
Figure imgf000074_0001
η5=5,η6=6, η7=7。 此时, UE 可以在 4 个子帧的每一个子帧的 CCE 编号为 0,1,2,3,4,5,6,7的 CCE上提取控制信道, 进行信息合并检测控制信道。 η 5 = 5, η 6 = 6, and η 7 = 7. At this time, the UE may extract the control channel on the CCEs whose CCE numbers are 0, 1, 2, 3, 4, 5, 6, and 7 in each of the four subframes, and perform a information combining detection control channel.
值得注意的是, 在应用例五中, 上述多种尝试方式之间的顺序可以任意调 换, 在此不作限定。  It should be noted that, in the fifth application example, the order between the above multiple attempts may be arbitrarily changed, which is not limited herein.
此外, UE在检测控制信道时, 一般情况下不知道基站进行控制信道重复传 输所用的重复次数,此时 UE需要根据控制信道重复传输的每种可能的重复次数 按照该重复次数下控制信道传输可用的聚合级别和控制信道候选对控制信道进 行检测。 如, 基站给 UE配置的控制信道重复传输次数是 N和M。 UE按照重复 次数 N在对应的多个子帧上按照该重复次数可支持的每种聚合级别和每种控制 信道候选, 尝试检测控制信道。 若控制信道没有检测成功, UE按照重复次数 M 在对应的多个子帧上按照该重复次数可支持的每种聚合级别和每种控制信道候 选, 尝试检测控制信道。  In addition, when detecting the control channel, the UE generally does not know the number of repetitions used by the base station to perform repeated transmission of the control channel. At this time, the UE needs to control the channel transmission according to the number of repetitions of the repeated transmission of the control channel according to the number of repetitions. The aggregation level and control channel candidates detect the control channel. For example, the number of repeated transmissions of the control channel configured by the base station to the UE is N and M. The UE attempts to detect the control channel according to the number of repetitions N in each of the corresponding multiple subframes according to each aggregation level and each control channel candidate that can be supported by the repetition number. If the control channel is not successfully detected, the UE attempts to detect the control channel according to the repetition number M in each corresponding subframe according to each aggregation level and each control channel candidate that can be supported by the repetition number.
下述给出另一个应用例, 具体实现包括以下过程。  Another application example is given below, and the specific implementation includes the following process.
应用例七:  Application Example 7:
帧结构类型为 2, TDD的上下行配置为 0。基站用于控制信道重复传输的多 个子帧的数目或重复次数是确定的, 如控制信道在一个无线帧内的 4个子帧中 进行 4次重复传输, 4个子帧的子帧索引分别是 0,5,0,5, 4个子帧中的 mi都相 同, 如 mi=2。 其中, 所述 4个子帧中的前 2个子帧可以位于一个无线帧内, 所 述 4个子帧中的后 2个子帧位于后一个无线帧内。 规定在 4个子帧中的每一个 子帧上传输控制信道釆用的聚合级别是 L,即在 4个子帧中的每一个子帧上传输 控制信道占用了 L个控制信道元素, 其中 L可以等于 4或 8。 4叚设在 4个子帧 中的每个子帧内的 CFI=3 , 天线端口为 4, 载波带宽是 20MHz, Ng=l。 记 4个子 帧中的每个子帧的控制区域中总的 CCE数分别为 N , WCCE,。, ^CCE ,5 , 则根据上述参数设置 Ncc = Nccw =68。 The frame structure type is 2, and the uplink and downlink configurations of TDD are 0. The number of times or the number of repetitions of the plurality of subframes used by the base station to control channel repetition transmission is determined, such as the control channel being in 4 subframes within one radio frame Four repetitions are performed, and the sub-frame indexes of the four sub-frames are 0, 5, 0, and 5, respectively, and the mis in the four sub-frames are the same, such as mi=2. The first two subframes of the four subframes may be located in one radio frame, and the last two subframes of the four subframes are located in the next radio frame. It is specified that the aggregation level used for transmitting the control channel on each of the four subframes is L, that is, the transmission control channel occupies L control channel elements in each of the four subframes, where L may be equal to 4 or 8. 4, CFI=3 in each of the 4 subframes, 4 antenna ports, 20 MHz carrier bandwidth, Ng=l. The total number of CCEs in the control region of each of the four subframes is N , W CCE , respectively. , ^CCE , 5 , then set Ncc = N ccw = 68 according to the above parameters.
UE通过尝试可能的聚合级别及该聚合级别下的可能的控制信道候选来检 测控制信道。 UE需要确定每个聚合级别每个控制信道候选的 CCE在 4个子帧 中的每个子帧内的所有控制信道元素中的编号。 在本实施方式中, ^叚设 UE 的 The UE detects the control channel by attempting a possible aggregation level and possible control channel candidates under the aggregation level. The UE needs to determine the number of all control channel elements in each of the 4 subframes of the CCE for each control channel candidate for each aggregation level. In this embodiment, the setting of the UE
"RNTI =16, 并按照前面一个或多个实施方式的计算式子或其扩展来确定 n。或 n0,nl5...... ,η^。此夕卜,本实施方式规定 k是 4个子帧中的第一个子帧的子帧编号, " RNTI = 16 and determine n according to the calculation formula of one or more of the previous embodiments or its extension. or n 0 , n l5 ... , η ^. Further, this embodiment specifies k Is the subframe number of the first subframe of the 4 subframes,
UE尝试检测控制信道: 在子帧 0中按照聚合级别 4和 PDCCH候选 0提取 控制信道。在子帧 1中釆用聚合级别 4和 PDCCH候选 0提取控制信道,在子帧 5中釆用聚合级别 4和 PDCCH候选 0提取控制信道, 在子帧 6中釆用聚合级别 4 和 PDCCH候选 0提取控制信道。 而根据式 9计算方式进行计算, 如通过 ni= 4x { (y。+o) m。d LwCCE / 4」}"计算 η。或 η。,ηι,…… , 为: η=12, ηι=13,η2=14, =15The UE attempts to detect the control channel: The control channel is extracted in the subframe 0 according to the aggregation level 4 and the PDCCH candidate 0. The control channel is extracted in the subframe 1 by using the aggregation level 4 and the PDCCH candidate 0, the control channel is extracted in the subframe 5 by using the aggregation level 4 and the PDCCH candidate 0, and the aggregation level 4 and the PDCCH candidate 0 are used in the subframe 6. Extract the control channel. The calculation is performed according to the calculation method of Equation 9, such as by n i = 4x { (y. + o) m. d Lw CCE / 4"}" calculates η or η , ηι , ... , as: η . =12 , ηι=13 , η2=14 , =15 .
UE可在 4个子帧的每一个子帧的 CCE编号为 12,13,14,3115的 CCE上提取控制 信道, 进行信息合并来检测控制信道。 若控制信道没有检测成功: The UE may extract the control channel on the CCEs of the CCE numbers 12, 13, 14, 3115 of each of the 4 subframes, and perform information combining to detect the control channel. If the control channel is not detected successfully:
UE继续尝试检测控制信道: 在子帧 0中按照聚合级别 4和 PDCCH候选 1 提取控制信道,在子帧 1中釆用聚合级别 4和 PDCCH候选 1提取控制信道,在 子帧 5中釆用聚合级别 4和 PDCCH候选 1提取控制信道,在子帧 6中釆用聚合 级别 4和 PDCCH候选 1提取控制信道。 而根据式 9计算方式进行计算,如通过 ni= 4x { 0 ) m。d Lw∞E / 4」 计算 η。或 η。,ηι,…… , 为: = 1 6, η1 7, = 1 8, =1 9。 此时, UE可以在 4个子帧的每一个子帧的 CCE编号为 16,17,18,19的 CCE上提 取控制信道, 进行信息合并来检测控制信道。 若控制信道没有检测成功: The UE continues to attempt to detect the control channel: the control channel is extracted according to the aggregation level 4 and the PDCCH candidate 1 in the subframe 0, the control channel is extracted in the subframe 1 using the aggregation level 4 and the PDCCH candidate 1, and the aggregation is used in the subframe 5. Level 4 and PDCCH candidate 1 extract the control channel, and in subframe 6, the control channel is extracted using aggregation level 4 and PDCCH candidate 1. The calculation is performed according to the calculation method of Equation 9, such as by ni= 4x { 0 ) m. d Lw ∞E / 4" Calculates η . Or η . , ηι , ... , for: = 1 6 , η corpse 1 7 , = 1 8 , = 1 9 . At this time, the UE may extract the control channel on the CCEs of the CCE numbers 16, 17, 18, 19 of each of the four subframes, and perform information combining to detect the control channel. If the control channel is not detected successfully:
UE继续尝试检测控制信道: 在子帧 0中按照聚合级别 8和 PDCCH候选 0 提取控制信道,在子帧 1中釆用聚合级别 8和 PDCCH候选 0提取控制信道,在 子帧 5中釆用聚合级别 8和 PDCCH候选 0提取控制信道,在子帧 6中釆用聚合 级别 8和 PDCCH候选 0提取控制信道。 而根据式 9计算方式进行计算,如通过 ^ 画 ^^ ^计算^或^^…… A为: n=56, ni=57,n2=58, ¾=59, n4=60, n5=61,n6=62, n7=63。此时, UE可以在 4个子帧的每一个子帧的 CCE编号 为 56,57,58,59,60,61,62,63的 CCE上提取控制信道,进行信息合并来检测控制信 道。 若控制信道没有检测成功: The UE continues to try to detect the control channel: according to aggregation level 8 and PDCCH candidate 0 in subframe 0 The control channel is extracted, the control channel is extracted by using the aggregation level 8 and the PDCCH candidate 0 in the subframe 1, and the control channel is extracted by using the aggregation level 8 and the PDCCH candidate 0 in the subframe 5, and the aggregation level 8 is used in the subframe 6. The control channel is extracted with PDCCH candidate 0. According to the calculation method of Equation 9, the calculation is performed, for example, by ^^^^^^^^^^ A is: n . =56 , ni=57 , n2=58 , 3⁄4 =5 9, n 4 =60, n 5 =61, n 6 =62, n 7 =63. At this time, the UE may extract the control channel on the CCEs of the CCE numbers 56, 57, 58, 59, 60, 61, 62, 63 of each of the four subframes, and perform information combining to detect the control channel. If the control channel is not detected successfully:
UE继续尝试检测控制信道: 在子帧 0中按照聚合级别 8和 PDCCH候选 1 提取控制信道,在子帧 1中釆用聚合级别 8和 PDCCH候选 1提取控制信道,在 子帧 5中釆用聚合级别 8和 PDCCH候选 1提取控制信道,在子帧 6中釆用聚合 级别 8和 PDCCH候选 1提取控制信道。 而根据式 9计算方式进行计算,如通过
Figure imgf000076_0001
n1=l,n2=2, n3=3, n4=4, n5=5,n6=6, n7=7。 即 UE可在 4个子帧的每一个子帧的 CCE编号为 0,1,2,3,4,5,6,7 的 CCE上提取控制信道, 进行信息合并检测控制信道。
The UE continues to try to detect the control channel: the control channel is extracted according to the aggregation level 8 and the PDCCH candidate 1 in the subframe 0, the control channel is extracted in the subframe 1 using the aggregation level 8 and the PDCCH candidate 1, and the aggregation is used in the subframe 5. Level 8 and PDCCH candidate 1 extract the control channel, and in subframe 6, the aggregation level 8 and PDCCH candidate 1 are used to extract the control channel. And according to the calculation method of Equation 9, the calculation is as follows.
Figure imgf000076_0001
n 1 = l, n 2 = 2, n 3 = 3, n 4 = 4, n 5 = 5, n 6 = 6, and n 7 = 7. That is, the UE may extract the control channel on the CCEs whose CCE numbers are 0, 1, 2, 3, 4, 5, 6, 7 in each of the four subframes, and perform a information combining detection control channel.
值得注意的是, 在应用例七中, UE的上述多种尝试方式之间的顺序可以任 意调换, 在此不作限定。  It should be noted that, in the application example 7, the sequence between the multiple attempts of the UE may be arbitrarily changed, which is not limited herein.
此外, UE在检测控制信道时, 一般情况下不知道基站进行控制信道重复传 输所用的重复次数,此时 UE需要根据控制信道重复传输的每种可能的重复次数 按照该重复次数下控制信道传输可用的聚合级别和控制信道候选对控制信道进 行检测。 如, 基站给 UE配置的控制信道重复传输次数是 N和M。 UE按照重复 次数 N在对应的多个子帧上按照该重复次数可支持的每种聚合级别和每种控制 信道候选, 尝试检测控制信道。 若控制信道没有检测成功, UE按照重复次数 M 在对应的多个子帧上按照该重复次数可支持的每种聚合级别和每种控制信道候 选, 尝试检测控制信道。  In addition, when detecting the control channel, the UE generally does not know the number of repetitions used by the base station to perform repeated transmission of the control channel. At this time, the UE needs to control the channel transmission according to the number of repetitions of the repeated transmission of the control channel according to the number of repetitions. The aggregation level and control channel candidates detect the control channel. For example, the number of repeated transmissions of the control channel configured by the base station to the UE is N and M. The UE attempts to detect the control channel according to the number of repetitions N in each of the corresponding multiple subframes according to each aggregation level and each control channel candidate that can be supported by the repetition number. If the control channel is not successfully detected, the UE attempts to detect the control channel according to the repetition number M in each corresponding subframe according to each aggregation level and each control channel candidate that can be supported by the repetition number.
此外,本实施方式 UE的具体实现过程还请参阅前面实施方式关于控制信道 的接收方法的具体描述, 在本技术领域人员容易理解的范围内, 不作赘述。  In addition, for the specific implementation process of the UE in this embodiment, refer to the detailed description of the method for receiving the control channel in the foregoing embodiment, which is not described in the scope easily understood by those skilled in the art.
通过本申请的一个或多个实施方式, 不难理解的是, 本申请通过预先确定 多个子帧, 并在所述多个子帧中对控制信道进行重复传输、 扩频传输、 传输时 间间隔捆绑传输以及功率提升传输等增强传输的方式, 便于在确定的子帧上进 行映射和检测等, 降低了系统调度的复杂度和检测的复杂度。 在本申请所提供的几个实施方式中, 应该理解到, 所揭露的系统, 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施方式仅仅是示 意性的, 例如, 所述模块或单元的划分, 仅仅为一种逻辑功能划分, 实际实现 时可以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一 个系统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间 的耦合或直接耦合或通信连接可以是通过一些接口, 装置或单元的间接耦合或 通信连接, 可以是电性, 机械或其它的形式。 Through one or more implementations of the present application, it is not difficult to understand that the present application determines a plurality of subframes in advance, and performs repeated transmission, spread spectrum transmission, and transmission time interval bundling transmission on the control channel in the multiple subframes. And the enhanced transmission mode such as power boost transmission, which facilitates mapping and detection on the determined subframes, and reduces the complexity of the system scheduling and the complexity of the detection. In the several embodiments provided in the present application, it should be understood that the disclosed system, apparatus, and method may be implemented in other manners. For example, the device implementations described above are merely illustrative. For example, the division of the modules or units is only a logical function division. In actual implementation, there may be another division manner, for example, multiple units or components may be used. Combined or can be integrated into another system, or some features can be ignored, or not executed. In addition, the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的, 作为 单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者 也可以分布到多个网络单元上。 可以根据实际的需要选择其中的部分或者全部 单元来实现本实施方式方案的目的。  The units described as separate components may or may not be physically separate, and the components displayed as the units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present embodiment.
另外, 在本申请各个实施方式中的各功能单元可以集成在一个处理单元中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一个单元 中。 上述集成的单元既可以釆用硬件的形式实现, 也可以釆用软件功能单元的 形式实现。  In addition, each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit. The above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或 使用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本申请 的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或 部分可以以软件产品的形式体现出来, 该计算机软件产品存储在一个存储介质 中, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或 者网络设备等)或处理器(processor )执行本申请各个实施方式所述方法的全部 或部分步骤。 而前述的存储介质包括: U盘、 移动硬盘、 只读存储器(ROM, Read-Only Memory ), 随机存取存储器(RAM, Random Access Memory )、 磁碟 或者光盘等各种可以存储程序代码的介质。  The integrated unit, if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium. Based on such understanding, the technical solution of the present application, in essence or the contribution to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium. The instructions include a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present application. The foregoing storage medium includes: a U disk, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. .
以上所述仅为本申请的实施方式, 并非因此限制本申请的专利范围, 凡是 利用本申请说明书及附图内容所作的等效结构或等效流程变换, 或直接或间接 运用在其他相关的技术领域, 均同理包括在本申请的专利保护范围内。  The above description is only the embodiment of the present application, and thus does not limit the scope of the patent application, and the equivalent structure or equivalent process transformation made by using the specification and the drawings of the present application, or directly or indirectly applied to other related technologies. The scope of the invention is included in the scope of patent protection of this application.

Claims

权利 要求 Rights request
1. 一种控制信道的传输方法, 其特征在于, 所述传输方法包括: 确定对控制信道进行增强传输的多个子帧; A transmission method of a control channel, characterized in that: the transmission method comprises: determining a plurality of subframes for performing enhanced transmission on a control channel;
在所述多个子帧中对控制信道进行增强传输, 其中, 所述增强传输是重复 传输、 扩频传输、 传输时间间隔捆绑传输以及功率提升传输中的至少一种。  The enhanced transmission is performed on the control channel in the plurality of subframes, wherein the enhanced transmission is at least one of a repetitive transmission, a spread spectrum transmission, a transmission time interval bundling transmission, and a power boost transmission.
2. 根据权利要求 1所述的传输方法, 其特征在于, 所述在所述多个子帧中 对控制信道进行增强传输, 包括:  The transmission method according to claim 1, wherein the enhancing transmission of the control channel in the plurality of subframes comprises:
在所述多个子帧中的每个子帧上传输控制信道, 且在所述多个子帧中的每 个子帧上传输控制信道所用的第一参数都相同; 其中所述第一参数是起始控制 信道元素的编号或控制信道元素的编号。  Transmitting a control channel on each of the plurality of subframes, and using a first parameter for transmitting a control channel on each of the plurality of subframes; wherein the first parameter is an initial control The number of the channel element or the number of the control channel element.
3. 根据权利要求 2所述的传输方法, 其特征在于, 包括:  3. The transmission method according to claim 2, comprising:
所述在所述多个子帧中的每个子帧上传输控制信道所用的第一参数是预先 规定的; 或者,  Determining, by a predetermined parameter, a first parameter used for transmitting a control channel in each of the plurality of subframes; or
所述在所述多个子帧中的每个子帧上传输控制信道所用的第一参数是根据 预先规定的函数关系确定的。  The first parameter used to transmit the control channel on each of the plurality of subframes is determined according to a predetermined functional relationship.
4. 根据权利要求 2或 3所述的传输方法, 其特征在于:  4. The transmission method according to claim 2 or 3, characterized in that:
根据预先规定的一个索引确定所述多个子帧中的每个子帧上传输控制信道 所用的第一参数; 或者,  Determining, according to a predetermined index, a first parameter used for transmitting a control channel on each of the plurality of subframes; or
根据预先规定的两个索引确定所述多个子帧中的每个子帧上传输控制信道 所用的第一参数; 或者,  Determining, according to two predetermined indexes, a first parameter used for transmitting a control channel on each of the plurality of subframes; or
根据预先规定的一个索引和预先规定的总 CCE数确定所述多个子帧中的每 个子帧上传输控制信道所用的第一参数。  A first parameter used to transmit a control channel on each of the plurality of subframes is determined based on a predetermined index and a predetermined total number of CCEs.
5. 根据权利要求 4所述的传输方法, 其特征在于:  5. The transmission method according to claim 4, wherein:
所述预先规定的一个索引是预先规定的一个子帧的索引, 其中所述预先规 定的一个子帧是:  The predetermined one index is an index of a predetermined one subframe, wherein the predetermined one subframe is:
所述多个子帧中的第 p个子帧, 其中 p是预先规定的整数; 或,  a p-th subframe of the plurality of subframes, where p is a predetermined integer; or
所述多个子帧中有最小的总 CCE数的子帧; 或,  a subframe having the smallest total number of CCEs among the plurality of subframes; or
所述多个子帧中有最小的总 CCE数的子帧中的第 q个子帧, 其中 q是预先 规定的整数。 The qth subframe of the subframe having the smallest total number of CCEs among the plurality of subframes, where q is a predetermined integer.
6. 根据权利要求 4所述的传输方法, 其特征在于: 6. The transmission method according to claim 4, wherein:
所述预先规定的总 CCE数是所述多个子帧中的有最小或最大的总 CCE数的 子帧中的总 CCE数。  The predetermined total number of CCEs is the total number of CCEs in the subframe having the smallest or largest total number of CCEs among the plurality of subframes.
7. 根据权利要求 4所述的传输方法, 其特征在于:  7. The transmission method according to claim 4, wherein:
所述预先规定的两个索引中的一个索引是第一预先规定的一个子帧的索 引, 其中所述第一预先规定的一个子帧是:  One of the two predetermined indexes is an index of a first predetermined one subframe, wherein the first predetermined one subframe is:
所述多个子帧中的第 p个子帧, 其中 p是预先规定的整数; 或,  a p-th subframe of the plurality of subframes, where p is a predetermined integer; or
所述多个子帧中有最小的总 C C E数的子帧的子帧索引; 或,  a subframe index of a subframe having a smallest total C C E number among the plurality of subframes; or
所述多个子帧中有最小的总 CCE数的子帧中的第 q个子帧, 其中 q是预先 规定的整数。  The qth subframe of the subframe having the smallest total number of CCEs among the plurality of subframes, where q is a predetermined integer.
8. 根据权利要求 7所述的传输方法, 其特征在于:  8. The transmission method according to claim 7, wherein:
所述预先规定的两个索引中的另一个索引是第二预先规定的一个子帧的索 引, 其中所述第二预先规定的一个子帧是:  The other of the two predetermined indexes is a second predetermined one subframe index, wherein the second predetermined one subframe is:
所述多个子帧中的第 r个子帧, 其中 r是预先规定的整数; 或,  a rth subframe of the plurality of subframes, where r is a predetermined integer; or
所述多个子帧中有最小的总 C C E数的子帧的子帧索引; 或,  a subframe index of a subframe having a smallest total C C E number among the plurality of subframes; or
所述多个子帧中有最小的总 CCE数的子帧中的第 w个子帧,其中 w是预先 规定的整数。  The wth subframe in the subframe having the smallest total number of CCEs among the plurality of subframes, where w is a predetermined integer.
9. 根据权利要求 2-8任一项所述的传输方法, 其特征在于:  9. The transmission method according to any one of claims 2-8, characterized in that:
所述传输控制信道所用的第一参数满足一个确定的范围, 以使调度专有数 据的控制信道占用的控制信道元素与调度公共数据的控制信道占用的控制信道 元素没有资源交叠; 或者,  The first parameter used by the transmission control channel satisfies a certain range, so that the control channel element occupied by the control channel for scheduling the dedicated data has no resource overlap with the control channel element occupied by the control channel for scheduling the common data; or
所述传输控制信道所用的第一参数满足一个确定的范围, 以使调度专有数 据的控制信道占用的控制信道元素与公共搜索空间中的控制信道元素没有资源 交叠。  The first parameter used by the transmission control channel satisfies a determined range such that the control channel elements occupied by the control channel scheduling the proprietary data do not have resource overlap with the control channel elements in the common search space.
10. 根据权利要求 1 所述的传输方法, 其特征在于, 所述在所述多个子帧 中对控制信道进行增强传输, 所述多个子帧中的每个子帧内的:  10. The transmission method according to claim 1, wherein the enhanced transmission of the control channel in the plurality of subframes, in each of the plurality of subframes:
公共参考信号的天线端口数相同; 和 /或,  The number of antenna ports of the common reference signal is the same; and / or,
用于控制信道的正交频分复用 OFDM符号的个数相同; 和 /或,  The number of orthogonal frequency division multiplexing OFDM symbols used for the control channel is the same; and / or,
物理混合自动重发请求指示信道的配置 PHICH-Config相同; 和 /或, 帧结构类型 2中用于确定 PHICH资源的 mi因子相同; 和 /或,  The physical hybrid automatic repeat request indication channel configuration PHICH-Config is the same; and/or, the mi factor used to determine the PHICH resource in frame structure type 2 is the same; and/or,
釆用的循环前缀相同; 和 /或, PHICH-duration均为 normal。 The same cyclic prefix is used; and / or, PHICH-duration is normal.
11. 根据权利要求 1 所述的传输方法, 其特征在于, 所述在所述多个子帧 中对控制信道进行增强传输:  The transmission method according to claim 1, wherein the enhanced transmission of the control channel in the plurality of subframes:
所述多个子帧中的每个子帧均不为多媒体组播单频网络 MBSFN子帧; 或, 多个子帧中的每个子帧均为 MBSFN子帧; 或对于帧结构类型 2, 多个子帧中的 每个子帧为 MBSFN子帧, 或子帧 1 , 或子帧 6。  Each of the multiple subframes is not a multimedia multicast single frequency network MBSFN subframe; or, each of the multiple subframes is an MBSFN subframe; or for frame structure type 2, multiple subframes Each subframe is an MBSFN subframe, or a subframe 1, or a subframe 6.
12. 根据权利要求 1 所述的传输方法, 其特征在于, 所述在所述多个子帧 中对控制信道进行增强传输:  12. The transmission method according to claim 1, wherein the enhancing transmission of the control channel in the plurality of subframes:
所述多个子帧中的子帧索引属于 {0,4,5,9}的子帧中有 CFI个 OFDM符号用 于控制信道, 且所述多个子帧中的子帧索引不属于 {0,4,5,9}的子帧中有两个 OFDM符号用于控制信道;  A subframe in which the subframe index in the plurality of subframes belongs to {0, 4, 5, 9} has CFI OFDM symbols used for the control channel, and the subframe index in the multiple subframes does not belong to {0, There are two OFDM symbols in the subframe of 4, 5, 9} for the control channel;
或, 对于帧结构类型 2, 所述多个子帧中的子帧索引属于 {0,5}的子帧中有 CFI个 OFDM符号用于控制信道, 且所述多个子帧中的子帧索引不属于 {0,5}的 子帧中有两个 OFDM符号用于控制信道;  Or, for the frame structure type 2, the subframe index of the plurality of subframes belongs to {0, 5}, and the CFI OFDM symbols are used for the control channel, and the subframe index in the multiple subframes is not There are two OFDM symbols in the subframe belonging to {0, 5} for the control channel;
其中, CFI的值为 3或 4。  Among them, the value of CFI is 3 or 4.
13. 根据权利要求 1 所述的传输方法, 其特征在于, 所述在所述多个子帧 中对控制信道进行增强传输:  The transmission method according to claim 1, wherein the enhanced transmission of the control channel in the plurality of subframes:
当所述控制信道进行增强传输所釆用的载波的带宽属于第一带宽范围时, 所述多个子帧的每个子帧中有 u个 OFDM符号用于控制信道或数据信道;  When the bandwidth of the carrier used for the enhanced transmission of the control channel belongs to the first bandwidth range, there are u OFDM symbols in each subframe of the multiple subframes for the control channel or the data channel;
当所述控制信道进行增强传输所釆用的载波的带宽属于第二带宽范围时, 所述多个子帧的每个子帧中有 V个 OFDM符号用于控制信道或数据信道;  When the bandwidth of the carrier used for the enhanced transmission of the control channel belongs to the second bandwidth range, there are V OFDM symbols in each subframe of the multiple subframes for the control channel or the data channel;
其中, 所述第一带宽范围和所述第二带宽范围为预定的带宽范围, 且所述 第一带宽范围和所述第二带宽范围互不相交, u和 V为自然数, 且 u不等于 V。  The first bandwidth range and the second bandwidth range are predetermined bandwidth ranges, and the first bandwidth range and the second bandwidth range do not intersect each other, u and V are natural numbers, and u is not equal to V .
14. 一种基站, 其特征在于, 所述基站包括:  A base station, the base station includes:
确定模块, 用于确定对控制信道进行增强传输的多个子帧;  a determining module, configured to determine a plurality of subframes for performing enhanced transmission on the control channel;
发送模块, 用于在所述确定模块确定的所述多个子帧中对控制信道进行增 强传输, 其中, 所述增强传输是重复传输、 扩频传输、 传输时间间隔捆绑传输 以及功率提升传输中的至少一种。  And a sending module, configured to perform enhanced transmission on the control channel in the multiple subframes determined by the determining module, where the enhanced transmission is in a repetitive transmission, a spread spectrum transmission, a transmission time interval bundling transmission, and a power boost transmission. At least one.
15. 根据权利要求 14所述的基站, 其特征在于, 所述发送模块, 具体用于: 在所述多个子帧中的每个子帧上传输控制信道, 且在所述多个子帧中的每 个子帧上传输控制信道所用的第一参数都相同; 其中所述第一参数是起始控制 信道元素的编号或控制信道元素的编号。 The base station according to claim 14, wherein the sending module is configured to: transmit a control channel on each of the plurality of subframes, and each of the multiple subframes The first parameters used to transmit the control channel on all subframes are the same; wherein the first parameter is the initial control The number of the channel element or the number of the control channel element.
16. 根据权利要求 15所述的基站, 其特征在于, 包括:  The base station according to claim 15, comprising:
所述发送模块在所述多个子帧中的每个子帧上传输控制信道所用的第一参 数是预先规定的; 或者,  The first parameter used by the sending module to transmit the control channel in each of the multiple subframes is pre-defined; or
所述发送模块在所述多个子帧中的每个子帧上传输控制信道所用的第一参 数是根据预先规定的函数关系确定的。  The first parameter used by the transmitting module to transmit the control channel on each of the plurality of subframes is determined according to a predetermined functional relationship.
17. 根据权利要求 15或 16所述的基站, 其特征在于, 所述基站还包括处 理模块, 所述处理模块用于:  The base station according to claim 15 or 16, wherein the base station further includes a processing module, where the processing module is configured to:
根据预先规定的一个索引确定所述多个子帧中的每个子帧上传输控制信道 所用的第一参数; 或者,  Determining, according to a predetermined index, a first parameter used for transmitting a control channel on each of the plurality of subframes; or
根据预先规定的两个索引确定所述多个子帧中的每个子帧上传输控制信道 所用的第一参数; 或者,  Determining, according to two predetermined indexes, a first parameter used for transmitting a control channel on each of the plurality of subframes; or
根据预先规定的一个索引和预先规定的总 CCE数确定所述多个子帧中的每 个子帧上传输控制信道所用的第一参数。  A first parameter used to transmit a control channel on each of the plurality of subframes is determined based on a predetermined index and a predetermined total number of CCEs.
18. 根据权利要求 17所述的基站, 其特征在于:  18. The base station according to claim 17, wherein:
所述预先规定的一个索引是预先规定的一个子帧的索引, 其中所述预先规 定的一个子帧是:  The predetermined one index is an index of a predetermined one subframe, wherein the predetermined one subframe is:
所述多个子帧中的第 p个子帧, 其中 p是预先规定的整数; 或,  a p-th subframe of the plurality of subframes, where p is a predetermined integer; or
所述多个子帧中有最小的总 CCE数的子帧; 或,  a subframe having the smallest total number of CCEs among the plurality of subframes; or
所述多个子帧中有最小的总 CCE数的子帧中的第 q个子帧, 其中 q是预先 规定的整数。  The qth subframe of the subframe having the smallest total number of CCEs among the plurality of subframes, where q is a predetermined integer.
19. 根据权利要求 17所述的基站, 其特征在于:  19. The base station according to claim 17, wherein:
所述预先规定的总 CCE数是所述多个子帧中的有最小或最大的总 CCE数的 子帧中的总 CCE数。  The predetermined total number of CCEs is the total number of CCEs in the subframe having the smallest or largest total number of CCEs among the plurality of subframes.
20. 根据权利要求 17所述的基站, 其特征在于:  20. The base station according to claim 17, wherein:
所述预先规定的两个索引中的一个索引是第一预先规定的一个子帧的索 引, 其中所述第一预先规定的一个子帧是:  One of the two predetermined indexes is an index of a first predetermined one subframe, wherein the first predetermined one subframe is:
所述多个子帧中的第 p个子帧, 其中 p是预先规定的整数; 或,  a p-th subframe of the plurality of subframes, where p is a predetermined integer; or
所述多个子帧中有最小的总 CCE数的子帧的子帧索引; 或,  a subframe index of a subframe having a smallest total number of CCEs among the plurality of subframes; or
所述多个子帧中有最小的总 CCE数的子帧中的第 q个子帧, 其中 q是预先 规定的整数。 The qth subframe of the subframe having the smallest total number of CCEs among the plurality of subframes, where q is a predetermined integer.
21. 根据权利要求 20所述的基站, 其特征在于: 21. The base station according to claim 20, wherein:
所述预先规定的两个索引中的另一个索引是第二预先规定的一个子帧的索 引, 其中所述第二预先规定的一个子帧是:  The other of the two predetermined indexes is a second predetermined one subframe index, wherein the second predetermined one subframe is:
所述多个子帧中的第 r个子帧, 其中 r是预先规定的整数; 或,  a rth subframe of the plurality of subframes, where r is a predetermined integer; or
所述多个子帧中有最小的总 C C E数的子帧的子帧索引; 或,  a subframe index of a subframe having a smallest total C C E number among the plurality of subframes; or
所述多个子帧中有最小的总 CCE数的子帧中的第 w个子帧,其中 w是预先 规定的整数。  The wth subframe in the subframe having the smallest total number of CCEs among the plurality of subframes, where w is a predetermined integer.
22. 根据权利要求 15-21任一项所述的基站, 其特征在于:  The base station according to any one of claims 15 to 21, characterized in that:
所述发送模块传输控制信道所用的第一参数满足一个确定的范围, 以使调 度专有数据的控制信道占用的控制信道元素与调度公共数据的控制信道占用的 控制信道元素没有资源交叠; 或者,  The first parameter used by the sending module to transmit the control channel meets a certain range, so that the control channel element occupied by the control channel for scheduling the dedicated data does not overlap with the control channel element occupied by the control channel for scheduling the common data; or ,
所述发送模块传输控制信道所用的第一参数满足一个确定的范围, 以使调 度专有数据的控制信道占用的控制信道元素与公共搜索空间中的控制信道元素 没有资源交叠。  The first parameter used by the transmitting module to transmit the control channel satisfies a certain range, so that the control channel element occupied by the control channel of the scheduling dedicated data has no resource overlap with the control channel element in the common search space.
23. 根据权利要求 14所述的基站, 其特征在于, 所述发送模块在所述多个 子帧中对控制信道进行增强传输, 所述多个子帧中的每个子帧内的:  The base station according to claim 14, wherein the sending module performs enhanced transmission on the control channel in the multiple subframes, and in each of the multiple subframes:
公共参考信号的天线端口数相同; 和 /或,  The number of antenna ports of the common reference signal is the same; and / or,
用于控制信道的正交频分复用 OFDM符号的个数相同; 和 /或,  The number of orthogonal frequency division multiplexing OFDM symbols used for the control channel is the same; and / or,
物理混合自动重发请求指示信道的配置 PHICH-Config相同; 和 /或, 帧结构类型 2中用于确定 PHICH资源的 mi因子相同; 和 /或,  The physical hybrid automatic repeat request indication channel configuration PHICH-Config is the same; and/or, the mi factor used to determine the PHICH resource in frame structure type 2 is the same; and/or,
釆用的循环前缀相同; 和 /或,  The same cyclic prefix is used; and / or,
PHICH-duration均为 normal。  PHICH-duration is normal.
24. 根据权利要求 14所述的基站, 其特征在于, 所述发送模块在所述多个 子帧中对控制信道进行增强传输时, 所述多个子帧中的每个子帧均不为多媒体 组播单频网络 MBSFN子帧; 或, 多个子帧中的每个子帧均为 MBSFN子帧; 或 对于帧结构类型 2, 多个子帧中的每个子帧为 MBSFN子帧, 或子帧 1 , 或子帧 6。  The base station according to claim 14, wherein, when the transmitting module performs enhanced transmission on the control channel in the multiple subframes, each of the multiple subframes is not a multimedia multicast. Single frequency network MBSFN subframe; or, each of the multiple subframes is an MBSFN subframe; or for frame structure type 2, each of the multiple subframes is an MBSFN subframe, or a subframe 1, or a sub-frame Frame 6.
25. 根据权利要求 14所述的基站, 其特征在于, 所述发送模块在所述多个 子帧中对控制信道进行增强传输时:  The base station according to claim 14, wherein the transmitting module performs enhanced transmission on the control channel in the plurality of subframes:
所述多个子帧中的子帧索引属于 {0,4,5,9}的子帧中有 CFI个 OFDM符号用 于控制信道, 且所述多个子帧中的子帧索引不属于 {0,4,5,9}的子帧中有两个 OFDM符号用于控制信道; A subframe in which the subframe index in the plurality of subframes belongs to {0, 4, 5, 9} has CFI OFDM symbols used for the control channel, and the subframe index in the multiple subframes does not belong to {0, There are two sub-frames of 4, 5, 9} OFDM symbols are used for control channels;
或, 对于帧结构类型 2, 所述多个子帧中的子帧索引属于 {0,5}的子帧中有 CFI个 OFDM符号用于控制信道, 且所述多个子帧中的子帧索引不属于 {0,5}的 子帧中有两个 OFDM符号用于控制信道;  Or, for the frame structure type 2, the subframe index of the plurality of subframes belongs to {0, 5}, and the CFI OFDM symbols are used for the control channel, and the subframe index in the multiple subframes is not There are two OFDM symbols in the subframe belonging to {0, 5} for the control channel;
其中, CFI的值为 3或 4。  Among them, the value of CFI is 3 or 4.
26. 根据权利要求 14所述的基站, 其特征在于, 所述发送模块具体用于: 在所述控制信道进行增强传输所釆用的载波的带宽属于第一带宽范围时, 所述多个子帧的每个子帧中有 u个 OFDM符号用于控制信道或数据信道;  The base station according to claim 14, wherein the sending module is specifically configured to: when the bandwidth of a carrier used for performing enhanced transmission on the control channel belongs to a first bandwidth range, the multiple subframes There are u OFDM symbols in each subframe for the control channel or data channel;
在所述控制信道进行增强传输所釆用的载波的带宽属于第二带宽范围时, 所述多个子帧的每个子帧中有 V个 OFDM符号用于控制信道或数据信道;  When the bandwidth of the carrier used for the enhanced transmission of the control channel belongs to the second bandwidth range, there are V OFDM symbols in each subframe of the multiple subframes for the control channel or the data channel;
其中, 所述第一带宽范围和所述第二带宽范围为预定的带宽范围, 且所述 第一带宽范围和所述第二带宽范围互不相交, u和 V为自然数, 且 u不等于 V。  The first bandwidth range and the second bandwidth range are predetermined bandwidth ranges, and the first bandwidth range and the second bandwidth range do not intersect each other, u and V are natural numbers, and u is not equal to V .
27. 一种控制信道的接收方法, 其特征在于, 所述接收方法包括: 确定控制信道增强传输的多个子帧;  27. A method for receiving a control channel, wherein the receiving method comprises: determining a plurality of subframes of a control channel enhanced transmission;
在所述多个子帧中接收增强传输的控制信道, 其中, 所述增强传输是重复 传输、 扩频传输、 传输时间间隔捆绑传输以及功率提升传输中的至少一种。  And receiving, in the plurality of subframes, a control channel for enhancing transmission, wherein the enhanced transmission is at least one of a repetitive transmission, a spread spectrum transmission, a transmission time interval bundling transmission, and a power boost transmission.
28. 根据权利要求 27所述的接收方法, 其特征在于, 所述在所述多个子帧 中接收增强传输的控制信道, 包括:  The receiving method according to claim 27, wherein the receiving the enhanced control channel in the multiple subframes comprises:
在所述多个子帧中的每个子帧上接收控制信道, 且在所述多个子帧中的每 个子帧上接收控制信道所用的第一参数都相同; 其中所述第一参数^始控制 信道元素的编号或控制信道元素的编号。  Receiving a control channel on each of the plurality of subframes, and using a first parameter for receiving a control channel on each of the plurality of subframes; wherein the first parameter is a control channel The number of the element or the number of the control channel element.
29. 根据权利要求 28所述的接收方法, 其特征在于, 包括:  The receiving method according to claim 28, comprising:
所述在所述多个子帧中的每个子帧上接收控制信道所用的第一参数是预先 规定的; 或者,  The first parameter used to receive the control channel in each of the plurality of subframes is predetermined; or
所述在所述多个子帧中的每个子帧上接收控制信道所用的第一参数是根据 预先规定的函数关系确定的。  The first parameter used to receive the control channel on each of the plurality of subframes is determined based on a predetermined functional relationship.
30. 根据权利要求 28或 29所述的接收方法, 其特征在于:  30. The receiving method according to claim 28 or 29, wherein:
根据预先规定的一个索引确定所述多个子帧中的每个子帧上接收控制信道 所用的第一参数; 或者,  Determining, according to a predetermined index, a first parameter used by each of the plurality of subframes to receive a control channel; or
根据预先规定的两个索引确定所述多个子帧中的每个子帧上接收控制信道 所用的第一参数; 或者, 根据预先规定的一个索引和预先规定的总 CCE数确定所述多个子帧中的每 个子帧上接收控制信道所用的第一参数。 Determining, by using two predefined indexes, a first parameter used by each of the plurality of subframes to receive a control channel; or Determining, by a predetermined index and a predetermined total number of CCEs, a first parameter used for receiving a control channel in each of the plurality of subframes.
31. 根据权利要求 30所述的接收方法, 其特征在于:  31. The receiving method according to claim 30, wherein:
所述预先规定的一个索引是预先规定的一个子帧的索引, 其中所述预先规 定的一个子帧是:  The predetermined one index is an index of a predetermined one subframe, wherein the predetermined one subframe is:
所述多个子帧中的第 p个子帧, 其中 p是预先规定的整数; 或,  a p-th subframe of the plurality of subframes, where p is a predetermined integer; or
所述多个子帧中有最小的总 CCE数的子帧; 或,  a subframe having the smallest total number of CCEs among the plurality of subframes; or
所述多个子帧中有最小的总 CCE数的子帧中的第 q个子帧, 其中 q是预先 规定的整数。  The qth subframe of the subframe having the smallest total number of CCEs among the plurality of subframes, where q is a predetermined integer.
32. 根据权利要求 30所述的接收方法, 其特征在于:  32. The receiving method according to claim 30, wherein:
所述预先规定的总 CCE数是所述多个子帧中的有最小或最大的总 CCE数的 子帧中的总 CCE数。  The predetermined total number of CCEs is the total number of CCEs in the subframe having the smallest or largest total number of CCEs among the plurality of subframes.
33. 根据权利要求 30所述的接收方法, 其特征在于:  33. The receiving method according to claim 30, wherein:
所述预先规定的两个索引中的一个索引是第一预先规定的一个子帧的索 引, 其中所述第一预先规定的一个子帧是:  One of the two predetermined indexes is an index of a first predetermined one subframe, wherein the first predetermined one subframe is:
所述多个子帧中的第 p个子帧, 其中 p是预先规定的整数; 或,  a p-th subframe of the plurality of subframes, where p is a predetermined integer; or
所述多个子帧中有最小的总 C C E数的子帧的子帧索引; 或,  a subframe index of a subframe having a smallest total C C E number among the plurality of subframes; or
所述多个子帧中有最小的总 CCE数的子帧中的第 q个子帧, 其中 q是预先 规定的整数。  The qth subframe of the subframe having the smallest total number of CCEs among the plurality of subframes, where q is a predetermined integer.
34. 根据权利要求 33所述的接收方法, 其特征在于:  34. The receiving method according to claim 33, wherein:
所述预先规定的两个索引中的另一个索引是第二预先规定的一个子帧的索 引, 其中所述第二预先规定的一个子帧是:  The other of the two predetermined indexes is a second predetermined one subframe index, wherein the second predetermined one subframe is:
所述多个子帧中的第 r个子帧, 其中 r是预先规定的整数; 或,  a rth subframe of the plurality of subframes, where r is a predetermined integer; or
所述多个子帧中有最小的总 C C E数的子帧的子帧索引; 或,  a subframe index of a subframe having a smallest total C C E number among the plurality of subframes; or
所述多个子帧中有最小的总 CCE数的子帧中的第 w个子帧,其中 w是预先 规定的整数。  The wth subframe in the subframe having the smallest total number of CCEs among the plurality of subframes, where w is a predetermined integer.
35. 根据权利要求 28所述的接收方法, 其特征在于, 所述在所述多个子帧 中接收增强传输的控制信道中:  The receiving method according to claim 28, wherein the receiving the enhanced control channel in the plurality of subframes:
所述多个子帧中的每个子帧内的接收控制信道所用的第一参数满足一个确 定的范围, 以使调度专有数据的控制信道占用的控制信道元素与调度公共数据 的控制信道占用的控制信道元素没有资源交叠; 或者, 所述多个子帧中的每个子帧内的接收控制信道所用的第一参数满足一个确 定的范围, 以使调度专有数据的控制信道占用的控制信道元素与公共搜索空间 中的控制信道元素没有资源交叠。 The first parameter used by the receiving control channel in each of the plurality of subframes satisfies a certain range, so that the control channel element occupied by the control channel for scheduling the dedicated data and the control channel occupied by the scheduling common data are controlled. Channel elements have no resource overlap; or, The first parameter used by the control channel in each of the plurality of subframes satisfies a determined range such that the control channel elements occupied by the control channel scheduling the dedicated data and the control channel elements in the common search space are not Resources overlap.
36. 根据权利要求 27所述的接收方法, 其特征在于, 所述在所述多个子帧 中接收增强传输的控制信道中:  The receiving method according to claim 27, wherein the receiving the enhanced control channel in the plurality of subframes:
所述多个子帧中的每个子帧内的: 公共参考信号的天线端口数相同; 和 /或, 用于控制信道的正交频分复用 OFDM符号的个数相同; 和 /或, 物理混合自动重 发请求指示信道的配置 PHICH-Config相同; 和 /或, 帧结构类型 2中用于确定 PHICH资源的 mi因子相同;和 /或 ,釆用的循环前缀相同;和 /或 , PHICH-duration 均为 normal„  Within each of the plurality of subframes: the number of antenna ports of the common reference signal is the same; and/or the number of orthogonal frequency division multiplexing OFDM symbols used for the control channel is the same; and/or, physical mixing The automatic retransmission request indication channel is configured with the same PHICH-Config; and/or, the mi factor for determining the PHICH resource in the frame structure type 2 is the same; and/or the same cyclic prefix is used; and/or PHICH-duration Both are normal
37. 根据权利要求 27所述的接收方法, 其特征在于, 所述在所述多个子帧 中接收增强传输的控制信道中:  The receiving method according to claim 27, wherein the receiving the enhanced control channel in the plurality of subframes:
所述多个子帧中的每个子帧均不为多媒体组播单频网络 MBSFN子帧; 或, 多个子帧中的每个子帧均为 MBSFN子帧; 或对于帧结构类型 2, 多个子帧中的 每个子帧为 MBSFN子帧, 或子帧 1 , 或子帧 6。  Each of the multiple subframes is not a multimedia multicast single frequency network MBSFN subframe; or, each of the multiple subframes is an MBSFN subframe; or for frame structure type 2, multiple subframes Each subframe is an MBSFN subframe, or a subframe 1, or a subframe 6.
38. 根据权利要求 27所述的接收方法, 其特征在于, 所述在所述多个子帧 中接收增强传输的控制信道中:  The receiving method according to claim 27, wherein the receiving the enhanced control channel in the plurality of subframes:
所述多个子帧中的子帧索引属于 {0,4,5,9}的子帧中有 CFI个 OFDM符号用 于控制信道, 且所述多个子帧中的子帧索引不属于 {0,4,5,9}的子帧中有两个 OFDM符号用于控制信道;  A subframe in which the subframe index in the plurality of subframes belongs to {0, 4, 5, 9} has CFI OFDM symbols used for the control channel, and the subframe index in the multiple subframes does not belong to {0, There are two OFDM symbols in the subframe of 4, 5, 9} for the control channel;
或, 对于帧结构类型 2, 所述多个子帧中的子帧索引属于 {0,5}的子帧中有 CFI个 OFDM符号用于控制信道, 且所述多个子帧中的子帧索引不属于 {0,5}的 子帧中有两个 OFDM符号用于控制信道;  Or, for the frame structure type 2, the subframe index of the plurality of subframes belongs to {0, 5}, and the CFI OFDM symbols are used for the control channel, and the subframe index in the multiple subframes is not There are two OFDM symbols in the subframe belonging to {0, 5} for the control channel;
其中, CFI的值为 3或 4。  Among them, the value of CFI is 3 or 4.
39. 根据权利要求 27所述的传输方法, 其特征在于, 所述在所述多个子帧 中接收增强传输的控制信道, 还包括:  The transmission method according to claim 27, wherein the receiving the control channel for enhancing transmission in the multiple subframes further includes:
当在带宽属于第一带宽范围的载波上接收增强传输的所述控制信道时, 所 述多个子帧的每个子帧中有 u个 OFDM符号用于控制信道或数据信道;  When receiving the control channel of the enhanced transmission on a carrier whose bandwidth belongs to the first bandwidth range, there are u OFDM symbols in each subframe of the multiple subframes for the control channel or the data channel;
当在带宽属于第二带宽范围的载波上接收增强传输的所述控制信道时, 所 述多个子帧的每个子帧中有 V个 OFDM符号用于控制信道或数据信道;  When receiving the control channel of the enhanced transmission on a carrier whose bandwidth belongs to the second bandwidth range, there are V OFDM symbols in each subframe of the plurality of subframes for the control channel or the data channel;
其中, 所述第一带宽范围和所述第二带宽范围为预定的带宽范围, 且所述 第一带宽范围和所述第二带宽范围互不相交, U和 V为自然数, 且 U不等于 V。The first bandwidth range and the second bandwidth range are predetermined bandwidth ranges, and the The first bandwidth range and the second bandwidth range do not intersect each other, U and V are natural numbers, and U is not equal to V.
40. 一种用户设备, 其特征在于, 所述用户设备包括: 40. A user equipment, wherein the user equipment comprises:
确定模块, 用于确定控制信道增强传输的多个子帧;  a determining module, configured to determine a plurality of subframes of the control channel enhanced transmission;
接收模块, 用于在所述确定模块所确定的所述多个子帧中接收增强传输的 控制信道, 其中, 所述增强传输是重复传输、 扩频传输、 传输时间间隔捆绑传 输以及功率提升传输中的至少一种。  a receiving module, configured to receive, in the plurality of subframes determined by the determining module, a control channel for enhanced transmission, where the enhanced transmission is repeated transmission, spread spectrum transmission, transmission time interval bundling transmission, and power boost transmission At least one of them.
41. 根据权利要求 40所述的用户设备, 其特征在于, 所述接收模块, 具体 用于:  The user equipment according to claim 40, wherein the receiving module is specifically configured to:
在所述多个子帧中的每个子帧上接收控制信道, 且在所述多个子帧中的每 个子帧上接收控制信道所用的第一参数都相同; 其中所述第一参数是起始控制 信道元素的编号或控制信道元素的编号。  Receiving a control channel on each of the plurality of subframes, and using a first parameter for receiving a control channel on each of the plurality of subframes; wherein the first parameter is an initial control The number of the channel element or the number of the control channel element.
42. 根据权利要求 41所述的用户设备, 其特征在于, 包括:  The user equipment according to claim 41, comprising:
所述接收模块在所述多个子帧中的每个子帧上接收控制信道所用的第一参 数是预先规定的; 或者,  The first parameter used by the receiving module to receive the control channel in each of the multiple subframes is predetermined; or
所述接收模块在所述多个子帧中的每个子帧上接收控制信道所用的第一参 数是根据预先规定的函数关系确定的。  The first parameter used by the receiving module to receive the control channel in each of the plurality of subframes is determined according to a predetermined functional relationship.
43. 根据权利要求 41或 42所述的用户设备, 其特征在于, 所述用户设备 还包括处理模块, 所述处理模块用于:  The user equipment according to claim 41 or 42, wherein the user equipment further includes a processing module, where the processing module is configured to:
根据预先规定的一个索引确定所述多个子帧中的每个子帧上接收控制信道 所用的第一参数; 或者,  Determining, according to a predetermined index, a first parameter used by each of the plurality of subframes to receive a control channel; or
根据预先规定的两个索引确定所述多个子帧中的每个子帧上接收控制信道 所用的第一参数; 或者,  Determining, by using two predefined indexes, a first parameter used by each of the plurality of subframes to receive a control channel; or
根据预先规定的一个索引和预先规定的总 CCE数确定所述多个子帧中的每 个子帧上接收控制信道所用的第一参数。  The first parameter used to receive the control channel on each of the plurality of subframes is determined based on a predetermined index and a predetermined total number of CCEs.
44. 根据权利要求 43所述的用户设备, 其特征在于:  44. The user equipment of claim 43, wherein:
所述预先规定的一个索引是预先规定的一个子帧的索引, 其中所述预先规 定的一个子帧是:  The predetermined one index is an index of a predetermined one subframe, wherein the predetermined one subframe is:
所述多个子帧中的第 p个子帧, 其中 p是预先规定的整数; 或,  a p-th subframe of the plurality of subframes, where p is a predetermined integer; or
所述多个子帧中有最小的总 CCE数的子帧; 或,  a subframe having the smallest total number of CCEs among the plurality of subframes; or
所述多个子帧中有最小的总 CCE数的子帧中的第 q个子帧, 其中 q是预先 规定的整数。 The qth subframe of the subframe having the smallest total number of CCEs among the plurality of subframes, where q is a predetermined integer.
45. 根据权利要求 43所述的用户设备, 其特征在于: 45. The user equipment of claim 43, wherein:
所述预先规定的总 CCE数是所述多个子帧中的有最小或最大的总 CCE数的 子帧中的总 CCE数。  The predetermined total number of CCEs is the total number of CCEs in the subframe having the smallest or largest total number of CCEs among the plurality of subframes.
46. 根据权利要求 43所述的用户设备, 其特征在于:  46. The user equipment of claim 43, wherein:
所述预先规定的两个索引中的一个索引是第一预先规定的一个子帧的索 引, 其中所述第一预先规定的一个子帧是:  One of the two predetermined indexes is an index of a first predetermined one subframe, wherein the first predetermined one subframe is:
所述多个子帧中的第 p个子帧, 其中 p是预先规定的整数; 或,  a p-th subframe of the plurality of subframes, where p is a predetermined integer; or
所述多个子帧中有最小的总 C C E数的子帧的子帧索引; 或,  a subframe index of a subframe having a smallest total C C E number among the plurality of subframes; or
所述多个子帧中有最小的总 CCE数的子帧中的第 q个子帧, 其中 q是预先 规定的整数。  The qth subframe of the subframe having the smallest total number of CCEs among the plurality of subframes, where q is a predetermined integer.
47. 根据权利要求 46所述的用户设备, 其特征在于:  47. The user equipment of claim 46, wherein:
所述预先规定的两个索引中的另一个索引是第二预先规定的一个子帧的索 引, 其中所述第二预先规定的一个子帧是:  The other of the two predetermined indexes is a second predetermined one subframe index, wherein the second predetermined one subframe is:
所述多个子帧中的第 r个子帧, 其中 r是预先规定的整数; 或,  a rth subframe of the plurality of subframes, where r is a predetermined integer; or
所述多个子帧中有最小的总 C C E数的子帧的子帧索引; 或,  a subframe index of a subframe having a smallest total C C E number among the plurality of subframes; or
所述多个子帧中有最小的总 CCE数的子帧中的第 w个子帧,其中 w是预先 规定的整数。  The wth subframe in the subframe having the smallest total number of CCEs among the plurality of subframes, where w is a predetermined integer.
48. 根据权利要求 41所述的用户设备, 其特征在于, 所述接收模块在所述 多个子帧中接收增强传输的控制信道中:  The user equipment according to claim 41, wherein the receiving module receives the enhanced transmission control channel in the multiple subframes:
所述多个子帧中的每个子帧内的接收控制信道所用的第一参数满足一个确 定的范围, 以使调度专有数据的控制信道占用的控制信道元素与调度公共数据 的控制信道占用的控制信道元素没有资源交叠; 或者,  The first parameter used by the receiving control channel in each of the plurality of subframes satisfies a certain range, so that the control channel element occupied by the control channel for scheduling the dedicated data and the control channel occupied by the scheduling common data are controlled. Channel elements have no resource overlap; or,
所述多个子帧中的每个子帧内的接收控制信道所用的第一参数满足一个确 定的范围, 以使调度专有数据的控制信道占用的控制信道元素与公共搜索空间 中的控制信道元素没有资源交叠。  The first parameter used by the control channel in each of the plurality of subframes satisfies a determined range such that the control channel elements occupied by the control channel scheduling the dedicated data and the control channel elements in the common search space are not Resources overlap.
49. 根据权利要求 40所述的用户设备, 其特征在于, 所述接收模块在所述 多个子帧中接收增强传输的控制信道中:  49. The user equipment according to claim 40, wherein the receiving module receives the enhanced transmission control channel in the multiple subframes:
所述多个子帧中的每个子帧内的: 公共参考信号的天线端口数相同; 和 /或, 用于控制信道的正交频分复用 OFDM符号的个数相同; 和 /或, 物理混合自动重 发请求指示信道的配置 PHICH-Config相同; 和 /或, 帧结构类型 2中用于确定 PHICH资源的 mi因子相同;和 /或 ,釆用的循环前缀相同;和 /或 , PHICH-duration 均为 normal„ Within each of the plurality of subframes: the number of antenna ports of the common reference signal is the same; and/or the number of orthogonal frequency division multiplexing OFDM symbols used for the control channel is the same; and/or, physical mixing The automatic retransmission request indication channel is configured with the same PHICH-Config; and/or, the mi factor for determining the PHICH resource in the frame structure type 2 is the same; and/or the same cyclic prefix is used; and/or PHICH-duration Both are normal
50. 根据权利要求 40所述的用户设备, 其特征在于, 所述接收模块在所述 多个子帧中接收增强传输的控制信道中:  The user equipment according to claim 40, wherein the receiving module receives the enhanced transmission control channel in the plurality of subframes:
所述多个子帧中的每个子帧均不为多媒体组播单频网络 MBSFN子帧; 或, 多个子帧中的每个子帧均为 MBSFN子帧; 或对于帧结构类型 2, 多个子帧中的 每个子帧为 MBSFN子帧, 或子帧 1 , 或子帧 6。  Each of the multiple subframes is not a multimedia multicast single frequency network MBSFN subframe; or, each of the multiple subframes is an MBSFN subframe; or for frame structure type 2, multiple subframes Each subframe is an MBSFN subframe, or a subframe 1, or a subframe 6.
51. 根据权利要求 40所述的用户设备, 其特征在于, 所述接收模块在所述 多个子帧中接收增强传输的控制信道中:  The user equipment according to claim 40, wherein the receiving module receives the enhanced transmission control channel in the plurality of subframes:
所述多个子帧中的子帧索引属于 {0,4,5,9}的子帧中有 CFI个 OFDM符号用 于控制信道, 且所述多个子帧中的子帧索引不属于 {0,4,5,9}的子帧中有两个 OFDM符号用于控制信道;  A subframe in which the subframe index in the plurality of subframes belongs to {0, 4, 5, 9} has CFI OFDM symbols used for the control channel, and the subframe index in the multiple subframes does not belong to {0, There are two OFDM symbols in the subframe of 4, 5, 9} for the control channel;
或, 对于帧结构类型 2, 所述多个子帧中的子帧索引属于 {0,5}的子帧中有 CFI个 OFDM符号用于控制信道, 且所述多个子帧中的子帧索引不属于 {0,5}的 子帧中有两个 OFDM符号用于控制信道;  Or, for the frame structure type 2, the subframe index of the plurality of subframes belongs to {0, 5}, and the CFI OFDM symbols are used for the control channel, and the subframe index in the multiple subframes is not There are two OFDM symbols in the subframe belonging to {0, 5} for the control channel;
其中, CFI的值为 3或 4。  Among them, the value of CFI is 3 or 4.
52. 根据权利要求 40所述的用户设备, 其特征在于, 所述接收模块, 具体 用于:  The user equipment according to claim 40, wherein the receiving module is specifically configured to:
在带宽属于第一带宽范围的载波上接收增强传输的所述控制信道时, 所述 多个子帧的每个子帧中有 u个 OFDM符号用于控制信道或数据信道;  When receiving the control channel of the enhanced transmission on a carrier whose bandwidth belongs to the first bandwidth range, there are u OFDM symbols in each subframe of the multiple subframes for the control channel or the data channel;
在带宽属于第二带宽范围的载波上接收增强传输的所述控制信道时, 所述 多个子帧的每个子帧中有 V个 OFDM符号用于控制信道或数据信道;  When receiving the control channel of the enhanced transmission on a carrier whose bandwidth belongs to the second bandwidth range, there are V OFDM symbols in each subframe of the multiple subframes for the control channel or the data channel;
其中, 所述第一带宽范围和所述第二带宽范围为预定的带宽范围, 且所述 第一带宽范围和所述第二带宽范围互不相交, u和 V为自然数, 且 u不等于 V。  The first bandwidth range and the second bandwidth range are predetermined bandwidth ranges, and the first bandwidth range and the second bandwidth range do not intersect each other, u and V are natural numbers, and u is not equal to V .
53. 一种基站, 其特征在于, 所述基站包括:  A base station, the base station includes:
处理器, 用于确定对控制信道进行增强传输的多个子帧;  a processor, configured to determine a plurality of subframes for performing enhanced transmission on the control channel;
发送器, 用于在所述处理器确定的所述多个子帧中对控制信道进行增强传 输, 其中, 所述增强传输是重复传输、 扩频传输、 传输时间间隔捆绑传输以及 功率提升传输中的至少一种。  And a transmitter, configured to perform enhanced transmission on the control channel in the multiple subframes determined by the processor, where the enhanced transmission is in a repetitive transmission, a spread spectrum transmission, a transmission time interval bundling transmission, and a power boost transmission. At least one.
54. 根据权利要求 53所述的基站, 其特征在于, 所述发送器, 具体用于: 在所述多个子帧中的每个子帧上传输控制信道, 且在所述多个子帧中的每 个子帧上传输控制信道所用的第一参数都相同; 其中所述第一参数^始控制 信道元素的编号或控制信道元素的编号。 The base station according to claim 53, wherein the transmitter is specifically configured to: transmit a control channel on each of the plurality of subframes, and each of the multiple subframes The first parameters used for transmitting the control channel on the subframes are the same; wherein the first parameter is controlled The number of the channel element or the number of the control channel element.
55. 根据权利要求 54所述的基站, 其特征在于, 包括:  The base station according to claim 54, comprising:
所述发送器在所述多个子帧中的每个子帧上传输控制信道所用的第一参数 是预先规定的; 或者,  Determining, by the transmitter, a first parameter used for transmitting a control channel on each of the plurality of subframes; or
所述发送器在所述多个子帧中的每个子帧上传输控制信道所用的第一参数 是根据预先规定的函数关系确定的。  The first parameter used by the transmitter to transmit the control channel on each of the plurality of subframes is determined according to a predetermined functional relationship.
56. 根据权利要求 54或 55所述的基站, 其特征在于, 所述处理器, 还用 于:  The base station according to claim 54 or 55, wherein the processor is further configured to:
根据预先规定的一个索引确定所述多个子帧中的每个子帧上传输控制信道 所用的第一参数; 或者,  Determining, according to a predetermined index, a first parameter used for transmitting a control channel on each of the plurality of subframes; or
根据预先规定的两个索引确定所述多个子帧中的每个子帧上传输控制信道 所用的第一参数; 或者,  Determining, according to two predetermined indexes, a first parameter used for transmitting a control channel on each of the plurality of subframes; or
根据预先规定的一个索引和预先规定的总 CCE数确定所述多个子帧中的每 个子帧上传输控制信道所用的第一参数。  A first parameter used to transmit a control channel on each of the plurality of subframes is determined based on a predetermined index and a predetermined total number of CCEs.
57. 根据权利要求 56所述的基站, 其特征在于:  57. The base station of claim 56, wherein:
所述预先规定的一个索引是预先规定的一个子帧的索引, 其中所述预先规 定的一个子帧是:  The predetermined one index is an index of a predetermined one subframe, wherein the predetermined one subframe is:
所述多个子帧中的第 p个子帧, 其中 p是预先规定的整数; 或,  a p-th subframe of the plurality of subframes, where p is a predetermined integer; or
所述多个子帧中有最小的总 CCE数的子帧; 或,  a subframe having the smallest total number of CCEs among the plurality of subframes; or
所述多个子帧中有最小的总 CCE数的子帧中的第 q个子帧, 其中 q是预先 规定的整数。  The qth subframe of the subframe having the smallest total number of CCEs among the plurality of subframes, where q is a predetermined integer.
58. 根据权利要求 56所述的基站, 其特征在于:  58. The base station of claim 56, wherein:
所述预先规定的总 CCE数是所述多个子帧中的有最小或最大的总 CCE数的 子帧中的总 CCE数。  The predetermined total number of CCEs is the total number of CCEs in the subframe having the smallest or largest total number of CCEs among the plurality of subframes.
59. 根据权利要求 56所述的基站, 其特征在于:  59. The base station of claim 56, wherein:
所述预先规定的两个索引中的一个索引是第一预先规定的一个子帧的索 引, 其中所述第一预先规定的一个子帧是:  One of the two predetermined indexes is an index of a first predetermined one subframe, wherein the first predetermined one subframe is:
所述多个子帧中的第 p个子帧, 其中 p是预先规定的整数; 或,  a p-th subframe of the plurality of subframes, where p is a predetermined integer; or
所述多个子帧中有最小的总 CCE数的子帧的子帧索引; 或,  a subframe index of a subframe having a smallest total number of CCEs among the plurality of subframes; or
所述多个子帧中有最小的总 CCE数的子帧中的第 q个子帧, 其中 q是预先 规定的整数。 The qth subframe of the subframe having the smallest total number of CCEs among the plurality of subframes, where q is a predetermined integer.
60. 根据权利要求 59所述的基站, 其特征在于: 60. The base station of claim 59, wherein:
所述预先规定的两个索引中的另一个索引是第二预先规定的一个子帧的索 引, 其中所述第二预先规定的一个子帧是:  The other of the two predetermined indexes is a second predetermined one subframe index, wherein the second predetermined one subframe is:
所述多个子帧中的第 r个子帧, 其中 r是预先规定的整数; 或,  a rth subframe of the plurality of subframes, where r is a predetermined integer; or
所述多个子帧中有最小的总 C C E数的子帧的子帧索引; 或,  a subframe index of a subframe having a smallest total C C E number among the plurality of subframes; or
所述多个子帧中有最小的总 CCE数的子帧中的第 w个子帧,其中 w是预先 规定的整数。  The wth subframe in the subframe having the smallest total number of CCEs among the plurality of subframes, where w is a predetermined integer.
61. 根据权利要求 54-61任一项所述的基站, 其特征在于:  61. A base station according to any of claims 54-61, characterized in that:
所述发送器传输控制信道所用的第一参数满足一个确定的范围, 以使调度 专有数据的控制信道占用的控制信道元素与调度公共数据的控制信道占用的控 制信道元素没有资源交叠; 或者,  The first parameter used by the transmitter to transmit the control channel satisfies a certain range, so that the control channel element occupied by the control channel for scheduling the dedicated data does not overlap with the control channel element occupied by the control channel that schedules the common data; or ,
所述发送器传输控制信道所用的第一参数满足一个确定的范围, 以使调度 专有数据的控制信道占用的控制信道元素与公共搜索空间中的控制信道元素没 有资源交叠。  The first parameter used by the transmitter to transmit the control channel satisfies a determined range such that the control channel elements occupied by the control channel scheduling the proprietary data have no resource overlap with the control channel elements in the common search space.
62. 根据权利要求 53所述的基站, 其特征在于, 所述发送器在所述多个子 帧中对控制信道进行增强传输, 所述多个子帧中的每个子帧内的:  62. The base station according to claim 53, wherein the transmitter performs enhanced transmission on a control channel in the multiple subframes, and in each of the multiple subframes:
公共参考信号的天线端口数相同; 和 /或,  The number of antenna ports of the common reference signal is the same; and / or,
用于控制信道的正交频分复用 OFDM符号的个数相同; 和 /或,  The number of orthogonal frequency division multiplexing OFDM symbols used for the control channel is the same; and / or,
物理混合自动重发请求指示信道的配置 PHICH-Config相同; 和 /或, 帧结构类型 2中用于确定 PHICH资源的 mi因子相同; 和 /或,  The physical hybrid automatic repeat request indication channel configuration PHICH-Config is the same; and/or, the mi factor used to determine the PHICH resource in frame structure type 2 is the same; and/or,
釆用的循环前缀相同; 和 /或,  The same cyclic prefix is used; and / or,
PHICH-duration均为 normal。  PHICH-duration is normal.
63. 根据权利要求 53所述的基站, 其特征在于, 所述发送器在所述多个子 帧中对控制信道进行增强传输时, 所述多个子帧中的每个子帧均不为多媒体组 播单频网络 MBSFN子帧; 或, 多个子帧中的每个子帧均为 MBSFN子帧; 或对 于帧结构类型 2, 多个子帧中的每个子帧为 MBSFN子帧, 或子帧 1 , 或子帧 6。  The base station according to claim 53, wherein, when the transmitter performs enhanced transmission on the control channel in the multiple subframes, each of the multiple subframes is not multimedia multicast. Single frequency network MBSFN subframe; or, each of the multiple subframes is an MBSFN subframe; or for frame structure type 2, each of the multiple subframes is an MBSFN subframe, or a subframe 1, or a sub-frame Frame 6.
64. 根据权利要求 53所述的基站, 其特征在于, 所述发送器在所述多个子 帧中对控制信道进行增强传输时:  The base station according to claim 53, wherein the transmitter performs enhanced transmission on the control channel in the plurality of subframes:
所述多个子帧中的子帧索引属于 {0,4,5,9}的子帧中有 CFI个 OFDM符号用 于控制信道, 且所述多个子帧中的子帧索引不属于 {0,4,5,9}的子帧中有两个 OFDM符号用于控制信道; 或, 对于帧结构类型 2, 所述多个子帧中的子帧索引属于 {0,5}的子帧中有 CFI个 OFDM符号用于控制信道, 且所述多个子帧中的子帧索引不属于 {0,5}的 子帧中有两个 OFDM符号用于控制信道; A subframe in which the subframe index in the plurality of subframes belongs to {0, 4, 5, 9} has CFI OFDM symbols used for the control channel, and the subframe index in the multiple subframes does not belong to {0, There are two OFDM symbols in the subframe of 4, 5, 9} for the control channel; Or, for the frame structure type 2, the subframe index of the plurality of subframes belongs to {0, 5}, and the CFI OFDM symbols are used for the control channel, and the subframe index in the multiple subframes is not There are two OFDM symbols in the subframe belonging to {0, 5} for the control channel;
其中, CFI的值为 3或 4。  Among them, the value of CFI is 3 or 4.
65. 根据权利要求 53所述的基站, 其特征在于, 所述发送器具体用于: 在所述控制信道进行增强传输所釆用的载波的带宽属于第一带宽范围时, 所述多个子帧的每个子帧中有 u个 OFDM符号用于控制信道或数据信道;  The base station according to claim 53, wherein the transmitter is specifically configured to: when the bandwidth of a carrier used for performing enhanced transmission on the control channel belongs to a first bandwidth range, the multiple subframes There are u OFDM symbols in each subframe for the control channel or data channel;
在所述控制信道进行增强传输所釆用的载波的带宽属于第二带宽范围时, 所述多个子帧的每个子帧中有 V个 OFDM符号用于控制信道或数据信道;  When the bandwidth of the carrier used for the enhanced transmission of the control channel belongs to the second bandwidth range, there are V OFDM symbols in each subframe of the multiple subframes for the control channel or the data channel;
其中, 所述第一带宽范围和所述第二带宽范围为预定的带宽范围, 且所述 第一带宽范围和所述第二带宽范围互不相交, u和 V为自然数, 且 u不等于 V。  The first bandwidth range and the second bandwidth range are predetermined bandwidth ranges, and the first bandwidth range and the second bandwidth range do not intersect each other, u and V are natural numbers, and u is not equal to V .
66. 一种用户设备, 其特征在于, 所述用户设备包括:  66. A user equipment, the user equipment comprising:
处理器, 用于确定控制信道增强传输的多个子帧;  a processor, configured to determine a plurality of subframes of the control channel enhanced transmission;
接收器, 用于在所述处理器所确定的所述多个子帧中接收增强传输的控制 信道, 其中, 所述增强传输是重复传输、 扩频传输、 传输时间间隔捆绑传输以 及功率提升传输中的至少一种。  a receiver, configured to receive, in the plurality of subframes determined by the processor, a control channel for enhanced transmission, where the enhanced transmission is repeated transmission, spread spectrum transmission, transmission time interval bundling transmission, and power boost transmission At least one of them.
67. 根据权利要求 66所述的用户设备, 其特征在于, 所述接收器, 具体用 于:  The user equipment according to claim 66, wherein the receiver is specifically configured to:
在所述多个子帧中的每个子帧上接收控制信道, 且在所述多个子帧中的每 个子帧上接收控制信道所用的第一参数都相同; 其中所述第一参数是起始控制 信道元素的编号或控制信道元素的编号。  Receiving a control channel on each of the plurality of subframes, and using a first parameter for receiving a control channel on each of the plurality of subframes; wherein the first parameter is an initial control The number of the channel element or the number of the control channel element.
68. 根据权利要求 67所述的用户设备, 其特征在于, 包括:  68. The user equipment according to claim 67, comprising:
所述接收器在所述多个子帧中的每个子帧上接收控制信道所用的第一参数 是预先规定的; 或者,  The first parameter used by the receiver to receive the control channel in each of the plurality of subframes is predetermined; or
所述接收器在所述多个子帧中的每个子帧上接收控制信道所用的第一参数 是根据预先规定的函数关系确定的。  The first parameter used by the receiver to receive the control channel on each of the plurality of subframes is determined according to a predetermined functional relationship.
69. 根据权利要求 67或 68所述的用户设备, 其特征在于, 所述处理器用 于:  69. The user equipment according to claim 67 or 68, wherein the processor is used to:
根据预先规定的一个索引确定所述多个子帧中的每个子帧上接收控制信道 所用的第一参数; 或者,  Determining, according to a predetermined index, a first parameter used by each of the plurality of subframes to receive a control channel; or
根据预先规定的两个索引确定所述多个子帧中的每个子帧上接收控制信道 所用的第一参数; 或者, Determining a control channel on each of the plurality of subframes according to two predetermined indexes The first parameter used; or
根据预先规定的一个索引和预先规定的总 CCE数确定所述多个子帧中的每 个子帧上接收控制信道所用的第一参数。  The first parameter used to receive the control channel on each of the plurality of subframes is determined based on a predetermined index and a predetermined total number of CCEs.
70. 根据权利要求 69所述的用户设备, 其特征在于:  70. The user equipment of claim 69, wherein:
所述预先规定的一个索引是预先规定的一个子帧的索引, 其中所述预先规 定的一个子帧是:  The predetermined one index is an index of a predetermined one subframe, wherein the predetermined one subframe is:
所述多个子帧中的第 p个子帧, 其中 p是预先规定的整数; 或,  a p-th subframe of the plurality of subframes, where p is a predetermined integer; or
所述多个子帧中有最小的总 CCE数的子帧; 或,  a subframe having the smallest total number of CCEs among the plurality of subframes; or
所述多个子帧中有最小的总 CCE数的子帧中的第 q个子帧, 其中 q是预先 规定的整数。  The qth subframe of the subframe having the smallest total number of CCEs among the plurality of subframes, where q is a predetermined integer.
71. 根据权利要求 69所述的用户设备, 其特征在于:  71. The user equipment of claim 69, wherein:
所述预先规定的总 CCE数是所述多个子帧中的有最小或最大的总 CCE数的 子帧中的总 CCE数。  The predetermined total number of CCEs is the total number of CCEs in the subframe having the smallest or largest total number of CCEs among the plurality of subframes.
72. 根据权利要求 69所述的用户设备, 其特征在于:  72. The user equipment of claim 69, wherein:
所述预先规定的两个索引中的一个索引是第一预先规定的一个子帧的索 引, 其中所述第一预先规定的一个子帧是:  One of the two predetermined indexes is an index of a first predetermined one subframe, wherein the first predetermined one subframe is:
所述多个子帧中的第 p个子帧, 其中 p是预先规定的整数; 或,  a p-th subframe of the plurality of subframes, where p is a predetermined integer; or
所述多个子帧中有最小的总 C C E数的子帧的子帧索引; 或,  a subframe index of a subframe having a smallest total C C E number among the plurality of subframes; or
所述多个子帧中有最小的总 CCE数的子帧中的第 q个子帧, 其中 q是预先 规定的整数。  The qth subframe of the subframe having the smallest total number of CCEs among the plurality of subframes, where q is a predetermined integer.
73. 根据权利要求 72所述的用户设备, 其特征在于:  73. The user equipment of claim 72, wherein:
所述预先规定的两个索引中的另一个索引是第二预先规定的一个子帧的索 引, 其中所述第二预先规定的一个子帧是:  The other of the two predetermined indexes is a second predetermined one subframe index, wherein the second predetermined one subframe is:
所述多个子帧中的第 r个子帧, 其中 r是预先规定的整数; 或,  a rth subframe of the plurality of subframes, where r is a predetermined integer; or
所述多个子帧中有最小的总 CCE数的子帧的子帧索引; 或,  a subframe index of a subframe having a smallest total number of CCEs among the plurality of subframes; or
所述多个子帧中有最小的总 CCE数的子帧中的第 w个子帧,其中 w是预先 规定的整数。  The wth subframe in the subframe having the smallest total number of CCEs among the plurality of subframes, where w is a predetermined integer.
74. 根据权利要求 67所述的用户设备, 其特征在于, 所述接收器在所述多 个子帧中接收增强传输的控制信道中:  74. The user equipment according to claim 67, wherein the receiver receives a control channel for enhanced transmission in the plurality of subframes:
所述多个子帧中的每个子帧内的接收控制信道所用的第一参数满足一个确 定的范围, 以使调度专有数据的控制信道占用的控制信道元素与调度公共数据 的控制信道占用的控制信道元素没有资源交叠; 或者, The first parameter used by the control channel in each of the plurality of subframes satisfies a certain range, so that the control channel elements occupied by the control channel for scheduling the dedicated data and the scheduling common data The control channel elements occupied by the control channel have no resource overlap; or,
所述多个子帧中的每个子帧内的接收控制信道所用的第一参数满足一个确 定的范围, 以使调度专有数据的控制信道占用的控制信道元素与公共搜索空间 中的控制信道元素没有资源交叠。  The first parameter used by the control channel in each of the plurality of subframes satisfies a determined range such that the control channel elements occupied by the control channel scheduling the dedicated data and the control channel elements in the common search space are not Resources overlap.
75. 根据权利要求 66所述的用户设备, 其特征在于, 所述接收器在所述多 个子帧中接收增强传输的控制信道中:  75. The user equipment according to claim 66, wherein the receiver receives a control channel for enhanced transmission in the plurality of subframes:
所述多个子帧中的每个子帧内的: 公共参考信号的天线端口数相同; 和 /或, 用于控制信道的正交频分复用 OFDM符号的个数相同; 和 /或, 物理混合自动重 发请求指示信道的配置 PHICH-Config相同; 和 /或, 帧结构类型 2中用于确定 PHICH资源的 mi因子相同;和 /或 ,釆用的循环前缀相同;和 /或 , PHICH-duration 均为 normal„  Within each of the plurality of subframes: the number of antenna ports of the common reference signal is the same; and/or the number of orthogonal frequency division multiplexing OFDM symbols used for the control channel is the same; and/or, physical mixing The automatic retransmission request indication channel is configured with the same PHICH-Config; and/or, the mi factor for determining the PHICH resource in the frame structure type 2 is the same; and/or the same cyclic prefix is used; and/or PHICH-duration Both are normal
76. 根据权利要求 66所述的用户设备, 其特征在于, 所述接收器在所述多 个子帧中接收增强传输的控制信道中:  76. The user equipment according to claim 66, wherein the receiver receives the enhanced transmission control channel in the plurality of subframes:
所述多个子帧中的每个子帧均不为多媒体组播单频网络 MBSFN子帧; 或, 多个子帧中的每个子帧均为 MBSFN子帧; 或对于帧结构类型 2, 多个子帧中的 每个子帧为 MBSFN子帧, 或子帧 1 , 或子帧 6。  Each of the multiple subframes is not a multimedia multicast single frequency network MBSFN subframe; or, each of the multiple subframes is an MBSFN subframe; or for frame structure type 2, multiple subframes Each subframe is an MBSFN subframe, or a subframe 1, or a subframe 6.
77. 根据权利要求 66所述的用户设备, 其特征在于, 所述接收器在所述多 个子帧中接收增强传输的控制信道中:  77. The user equipment according to claim 66, wherein the receiver receives a control channel for enhanced transmission in the plurality of subframes:
所述多个子帧中的子帧索引属于 {0,4,5,9}的子帧中有 CFI个 OFDM符号用 于控制信道, 且所述多个子帧中的子帧索引不属于 {0,4,5,9}的子帧中有两个 OFDM符号用于控制信道;  A subframe in which the subframe index in the plurality of subframes belongs to {0, 4, 5, 9} has CFI OFDM symbols used for the control channel, and the subframe index in the multiple subframes does not belong to {0, There are two OFDM symbols in the subframe of 4, 5, 9} for the control channel;
或, 对于帧结构类型 2, 所述多个子帧中的子帧索引属于 {0,5}的子帧中有 CFI个 OFDM符号用于控制信道, 且所述多个子帧中的子帧索引不属于 {0,5}的 子帧中有两个 OFDM符号用于控制信道;  Or, for the frame structure type 2, the subframe index of the plurality of subframes belongs to {0, 5}, and the CFI OFDM symbols are used for the control channel, and the subframe index in the multiple subframes is not There are two OFDM symbols in the subframe belonging to {0, 5} for the control channel;
其中, CFI的值为 3或 4。  Among them, the value of CFI is 3 or 4.
78. 根据权利要求 66所述的用户设备, 其特征在于, 所述接收器, 具体用 于:  The user equipment according to claim 66, wherein the receiver is specifically configured to:
在带宽属于第一带宽范围的载波上接收增强传输的所述控制信道时, 所述 多个子帧的每个子帧中有 u个 OFDM符号用于控制信道或数据信道;  When receiving the control channel of the enhanced transmission on a carrier whose bandwidth belongs to the first bandwidth range, there are u OFDM symbols in each subframe of the multiple subframes for the control channel or the data channel;
在带宽属于第二带宽范围的载波上接收增强传输的所述控制信道时, 所述 多个子帧的每个子帧中有 V个 OFDM符号用于控制信道或数据信道; 其中, 所述第一带宽范围和所述第二带宽范围为预定的带宽范围, 且所述 第一带宽范围和所述第二带宽范围互不相交, U和 V为自然数, 且 U不等于 V。 When receiving the control channel of the enhanced transmission on a carrier whose bandwidth belongs to the second bandwidth range, there are V OFDM symbols in each subframe of the multiple subframes for the control channel or the data channel; The first bandwidth range and the second bandwidth range are predetermined bandwidth ranges, and the first bandwidth range and the second bandwidth range do not intersect each other, U and V are natural numbers, and U is not equal to V. .
PCT/CN2014/073900 2014-03-21 2014-03-21 Base station, user equipment, and control channel transmission and receiving method WO2015139322A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2014/073900 WO2015139322A1 (en) 2014-03-21 2014-03-21 Base station, user equipment, and control channel transmission and receiving method
CN201480000263.0A CN105122707B (en) 2014-03-21 2014-03-21 Base station, the transmission of user equipment and control channel, method of reseptance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/073900 WO2015139322A1 (en) 2014-03-21 2014-03-21 Base station, user equipment, and control channel transmission and receiving method

Publications (1)

Publication Number Publication Date
WO2015139322A1 true WO2015139322A1 (en) 2015-09-24

Family

ID=54143734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/073900 WO2015139322A1 (en) 2014-03-21 2014-03-21 Base station, user equipment, and control channel transmission and receiving method

Country Status (2)

Country Link
CN (1) CN105122707B (en)
WO (1) WO2015139322A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101814980A (en) * 2009-02-25 2010-08-25 大唐移动通信设备有限公司 Method and device for realizing repeat ACK/NACK transmission
CN103298090A (en) * 2012-03-02 2013-09-11 华为技术有限公司 Information transmission method, base station and user device
CN103427942A (en) * 2012-05-23 2013-12-04 中兴通讯股份有限公司 Method and device for data transmission

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103391626B (en) * 2012-05-10 2016-03-23 电信科学技术研究院 The transmission method of E-PDCCH, running time-frequency resource defining method and device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101814980A (en) * 2009-02-25 2010-08-25 大唐移动通信设备有限公司 Method and device for realizing repeat ACK/NACK transmission
CN103298090A (en) * 2012-03-02 2013-09-11 华为技术有限公司 Information transmission method, base station and user device
CN103427942A (en) * 2012-05-23 2013-12-04 中兴通讯股份有限公司 Method and device for data transmission

Also Published As

Publication number Publication date
CN105122707B (en) 2018-12-07
CN105122707A (en) 2015-12-02

Similar Documents

Publication Publication Date Title
EP3490325B1 (en) Terminal device, base station device, communication method, and integrated circuit
EP3352518B1 (en) Terminal device, base station device, communication method, and integrated circuit
WO2017041683A1 (en) Method, network apparatus and terminal apparatus for transmitting uplink data
US10588125B2 (en) Coverage enhancement for time division duplex and enhanced interference mitigation and traffic adaptation in long term evolution systems
EP3352517B1 (en) Terminal device, base station device and corresponding communication methods
JP6163554B2 (en) Terminal apparatus, base station apparatus, and communication method
US10779265B2 (en) Terminal, base station, integrated circuit, and communication method
EP3051908B1 (en) Terminal, base station, and communication method
EP3352516B1 (en) Terminal device and communication method
EP3316615B1 (en) Terminal device, base station, communication method, and integrated circuit
EP3439408B1 (en) Terminal apparatus, base station apparatus, communication method, and integrated circuit
EP3013092B1 (en) Terminal apparatus, base station apparatus, integrated circuit, and radio communication method
EP3352509B1 (en) Terminal device, base station device, communication method, and integrated circuit
EP2919401A1 (en) Terminal device, integrated circuit, radio communication method, and base station device
US10321469B2 (en) Terminal device, integrated circuit, and radio communication method
EP3024269B1 (en) Adaptive transmission of channel state information in the uplink of a tdd system
EP3734924A1 (en) Terminal equipment, base station device, and communication method
EP3783949A1 (en) Terminal device, base station device, and communication method
EP3113561A1 (en) Terminal device, integrated circuit, and wireless communication method
EP3448102A1 (en) Terminal device, base station device, communication method, and integrated cricuit
EP3113537A1 (en) Terminal device, integrated circuit, and radio communication method
EP3451769A1 (en) Terminal device, base station device, communication method, and integrated circuit
WO2014025871A1 (en) Code rate adaptation in wireless communication systems
WO2015139322A1 (en) Base station, user equipment, and control channel transmission and receiving method
KR20160134497A (en) Operation method of communication node in network supporting licensed and unlicensed band

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14886012

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14886012

Country of ref document: EP

Kind code of ref document: A1