WO2015137737A1 - 우분을 포함하는 제선용 미분탄 및 이를 이용한 선철 제조방법 - Google Patents

우분을 포함하는 제선용 미분탄 및 이를 이용한 선철 제조방법 Download PDF

Info

Publication number
WO2015137737A1
WO2015137737A1 PCT/KR2015/002377 KR2015002377W WO2015137737A1 WO 2015137737 A1 WO2015137737 A1 WO 2015137737A1 KR 2015002377 W KR2015002377 W KR 2015002377W WO 2015137737 A1 WO2015137737 A1 WO 2015137737A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulverized coal
powder
coal
blast furnace
less
Prior art date
Application number
PCT/KR2015/002377
Other languages
English (en)
French (fr)
Inventor
김병철
이홍석
최원석
Original Assignee
현대제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대제철 주식회사 filed Critical 현대제철 주식회사
Priority to EP15761078.3A priority Critical patent/EP3118283B1/en
Priority to CN201580013058.2A priority patent/CN106103666A/zh
Priority to JP2016573451A priority patent/JP6336628B2/ja
Priority to US15/124,784 priority patent/US20170211160A1/en
Priority claimed from KR1020150034093A external-priority patent/KR101581633B1/ko
Publication of WO2015137737A1 publication Critical patent/WO2015137737A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/42Solid fuels essentially based on materials of non-mineral origin on animal substances or products obtained therefrom, e.g. manure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/04Raw material of mineral origin to be used; Pretreatment thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/34Other details of the shaped fuels, e.g. briquettes
    • C10L5/36Shape
    • C10L5/366Powders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention relates to pulverized coal briquettes containing a powder and a method for producing pig iron using the same, more specifically, the pulverized coal for pulverized coal comprising a powder that can improve the combustibility and improve the efficiency and stability of blast furnace operation and pig iron using the same It relates to a manufacturing method.
  • Steelmaking is the process of melting iron ore to make pig iron. After charging iron ore, coke and limestone in a blast furnace or blast furnace, the hot air of 1100 ⁇ 1300 °C is blown to burn coke to melt and reduce iron ore to melt iron contained in iron ore. The iron coming out is called pig iron.
  • Coke is a raw material coal (coal) in a furnace and baked at a high temperature of about 1,000 ⁇ 1,300 °C, a heat source for melting iron ore, a compound of iron and oxygen in the blast furnace, as well as a reducing agent that separates iron from iron ore. Do it.
  • blast furnace operation for steelmaking has enabled significant cost reduction by injecting pulverized coal at the lower blast furnace level in an operation that used a large amount of coke, which is expensive to manufacture due to technology development.
  • the coke supports the reducing agent, the heat source and the charges in the blast furnace to ensure ventilation.
  • Pulverized coal blows very fine particles at the tuyere level and induces combustion early within a few milliseconds, acting as a reducing agent and a heat source.
  • Embodiments of the present invention to provide a pulverized coal for steelmaking comprising a powder.
  • embodiments of the present invention to provide a method for manufacturing pig iron using fine pulverized coal containing a powder.
  • a pulverized coal for grinding comprising less than 76 parts by weight of dried powder pulverized powder at 50mm or less and water content 20% or less with respect to 100 parts by weight of coal powder.
  • the first step of drying the milk powder A second step of crushing the dry milk powder in a crusher; A third step of mixing fine powder with coal powder to produce pulverized coal; And a fourth step of blowing the pulverized coal into a blast furnace or blast furnace.
  • the manure when utilizing the livestock waste, the manure is useful in terms of environment by recycling the livestock waste.
  • the generation of reducing gas is easy, it is possible to high-speed reduction of iron ore.
  • 1 is a view showing the results of comparing the combustibility of the pulverized coal according to the replacement ratio of the pulverized coal including the pulverized coal according to an embodiment of the present invention.
  • Figure 2 is a view comparing the burnability of each coal type of pulverized coal including the powder according to an embodiment of the present invention.
  • Figure 3 is a comparison of the calorific value of combustion according to the replacement ratio of the pulverized coal including the powder according to an embodiment of the present invention.
  • FIG 4 is a view showing a change in the Bosch gas volume (Bosh gas volume) according to the replacement ratio of the powdered pulverized coal including the powder according to an embodiment of the present invention.
  • FIG 5 is a view showing a change in the slag volume (slag volume) according to the replacement ratio of pulverized coal including the powder according to an embodiment of the present invention.
  • FIG. 6 is a view showing the blowing index of milk powder according to an embodiment of the present invention.
  • Figure 7a is a view showing the particle shape of the conventional pulverized coal
  • Figure 7b is a view showing the particle shape of the powder according to an embodiment of the present invention.
  • FIG. 8 is a view showing a method for producing pig iron using fine pulverized coal containing iron powder according to another embodiment of the present invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the present invention provides a pulverized pulverized coal comprising less than 76 parts by weight of dried crushed powder to 50 mm by weight and water content of 20% or less with respect to 100 parts by weight of coal powder.
  • the manure used as a substitute for coal basically contains a large amount of volatile matter, and thus shows a relatively low fixed carbon compared with coal, and the calorific value shows a level of 50% of the existing coal.
  • the volatilized milk powder has the characteristics of early pyrolysis and high concentration of oxygen compared to carbon, and thus it can be used as an additive to promote combustion of existing carbon (see Table 1). Further, as shown in Table 2, milk powder has an advantage that it can be used continuously in the blast furnace because the generation amount is remarkably large and easy to supply and receive.
  • the existing manure is mostly used for composting, etc., but the production amount is significantly higher than the amount used has been difficult to process in many livestock farms. Therefore, by applying the manure treated as livestock waste in the present invention in the blast furnace operation can be significantly contributed to not only environmental problems but also cost reduction.
  • the combustibility of the pulverized coal when the pulverized coal is utilized for pulverized coal, the combustibility of the pulverized coal can be remarkably improved. 1 is a comparison of the combustibility of the pulverized coal according to the replacement ratio of the powder, it can be seen that the combustion performance is improved up to 98.4% when combustion is performed by gradually replacing the pulverized coal with the powder (see FIG. 1). In particular, the present invention is very excellent in the combustibility improvement effect of the low quality pulverized coal.
  • Low quality pulverized coal has a low combustion efficiency, thus forming a large amount of unburned char, and accumulating omnidirectionally inside the blast furnace, thereby adversely affecting the blast furnace's air permeability and liquidity by blocking pores between the cokes.
  • coke differentiation is also significant at the level of the blast furnace.
  • the unburned char has a relatively wide reaction interface, so that combustion is relatively quicker than that of finely divided coke. Will be inhibited. Therefore, according to the present invention, it is possible to improve the combustion efficiency of low quality pulverized coal and solve the problem of using low quality pulverized coal and induce stable blast furnace operation.
  • the calorific value of the pulverized coal is also related to the accumulation of fines in the blast furnace, but the combustion efficiency has a significant effect on the initial heat generation effect of pulverized coal. Therefore, in order to more closely compare the combustibility improvement effect and the initial calorific value change due to such a manure, the calorific value change according to the manure ratio for each type of coal dust is shown in FIG. 3. As a result, in the case of pulverized coal containing burning powder, the initial calorific value was continuously increased up to 30% as the burning ratio increased due to the greatly improved burning property.
  • the pulverized coal preferably contains 76 parts by weight or less of powdered milk based on 100 parts by weight of coal powder.
  • a part of the pulverized coal is replaced with a powder, there may be a concern that the high volatility of the powder may increase the Bosch gas volume (BGV) and thereby increase the blast furnace pressure. If the blast furnace pressure rises, it may be difficult to ensure smooth breathability and stable blast furnace operation. Therefore, for stable blast furnace operation preferably contains less than 76 parts by weight of milk powder per 100 parts by weight of coal powder (see Fig. 4). When containing more than 76 parts by weight of milk powder per 100 parts by weight of coal powder as an example of the control gas volume, it is difficult to maintain less than about 10,800 N m3 / min.
  • the weight part of the milk powder is represented by converting the milk powder replacement ratio for the coal powder shown in FIG. That is, the replacement ratio of manure for coal powder is included as 43% or less (see Fig. 4).
  • the crushed powder is not limited thereto, but preferably has a particle size of 50 mm or less. If the particle size of the manure exceeds 50mm, it takes a lot of energy to dry the manure and there is difficulty in uniform mixing with coal powder.
  • the pulverized coal including the powder according to the present invention may further include various components added to ordinary pulverized coal in addition to coal powder and powder.
  • the person skilled in the art to which the present invention pertains does not have any difficulty in properly adding additional components according to the blast furnace operating conditions.
  • the powder is illustrated as a component to be blended in coal dust
  • the idea of the present invention can be extended to the manure of other livestock, such as dogs, pigs, goats, horses as well as milk powder.
  • the present invention comprises a first step of drying the milk powder; A second step of crushing the dry milk powder in a crusher; A third step of mixing fine powder with coal powder to produce pulverized coal; And it provides a pig iron manufacturing method comprising a fourth step of blowing the pulverized coal into a blast furnace or blast furnace.
  • the milk powder drying is the first natural drying in the yard so that the moisture content is 65% or less under the condition that the fermentation does not occur in the first step, and the crushed milk powder through the crusher of the second step It can be put into a drier and secondaryly dried to have a water content of 20% or less.
  • the cost of drying can be reduced.
  • the wet powder drying yard is sufficient to have a roofing equipment that can prevent the inflow of water in the rain, it is possible to reduce the cost of the dryer equipment, which is relatively expensive.
  • after the primary powder is pulverized in the crusher after the first drying may be added to the dryer can further improve the drying efficiency.
  • the milk powder having a particle size of 50 mm or less is transferred directly to a dryer by passing the particle size sorter before the crusher of the second stage is fed, and the milk powder has a particle size of 50 mm or less in the crusher of the second stage. Shred. As described above, if the milk powder having a particle size of 50 mm or less is directly transferred to the dryer through a particle size sorter before the crusher is introduced, the crushing efficiency can be improved.
  • the dryer may utilize waste heat of the steelmaking process including the existing blast furnace, or blast furnace gas, coke gas, converter gas, etc. may be heated by using the by-product gas. Therefore, according to the present invention, by using the waste heat or by-product gas generated in the pig iron manufacturing process can dry the powdered milk can reduce the amount of coal while minimizing additional costs.
  • Biomass which is considered as a substitute for coal, basically contains a large amount of volatile matter, which shows that the fixed carbon is considerably lower than that of coal. In particular, the calorific value represents 50% of existing coal.
  • the volatilization of biomass has the characteristics of early pyrolysis and a large amount of oxygen compared to carbon, and thus it may be used as an additive to promote the combustion of existing pulverized coal. Table 1 below shows the characteristics of the main biomass and pulverized coal (coal).
  • ad air-dried bases
  • daf dry ash free basis (percentage of elements excluding Ash)
  • IM inherent moisture
  • VM volatile matter
  • FC fixed carbon
  • H hydrogen
  • S sulfur
  • O oxygen
  • PKS palm kernel shell
  • YQ0 Yanquan
  • ZH0 Zhaozhuang
  • cow powder is preferable as a coal substitute.
  • the manure has an advantage that it can be used continuously in the blast furnace because the amount of generation is remarkably large and easy to obtain.
  • domestic production of manure is estimated at 23,291,745 tons per year.
  • About 85% of the manure contains moisture and is estimated to be 3,493,780 tons per year even after complete drying.
  • Table 2 below shows the domestic manure generation.
  • the existing manure is mostly used for composting, etc., but the production amount is significantly higher than the amount used has been difficult to process in many livestock farms. Therefore, by applying the manure treated as livestock waste in the present invention in the blast furnace operation can be significantly contributed to not only environmental problems but also cost reduction.
  • FIG. 1 compares the combustibility of pulverized coals according to the replacement ratio of crushed powder.
  • YQ0 shows a combustion rate of 65.1%
  • CUP of 51.3%
  • YQ0 shows relatively good combustibility.
  • ZH0 and CUP showed significantly lower combustion characteristics.
  • the combustibility of pulverized coal is also related to the accumulation of fines in the blast furnace, but the combustion efficiency has a significant effect on the initial heat generation effect of pulverized coal. For example, if the combustion rate of YQ0 pulverized coal having a calorific value of 7,665 Kcal / kg is 65.1%, the primary calorific value is only 4,990 Kcal / kg, which is disadvantageous for high efficiency operation. Therefore, in order to more closely compare the combustibility improvement effect and the initial calorific value change due to such a manure, the calorific value change according to the manure ratio for each type of coal dust is shown in FIG. 3.
  • ZH0 and CUP which had low combustibility, showed a steady increase in initial calorific value up to 30% as the milk ratio increased due to the significantly improved combustibility when replacing the manure.
  • the initial calorific value was steadily decreased to 25% of the cow's milk ratio despite the improvement of the cow's combustibility. This is because YQ0 had a certain level of initial calorific value compared to the other two types of pulverized coal and was affected by the low calorific value (3,742 Kcal / kg) of the manure as the manure was added.
  • BGV bovine gas volume
  • PCR pulverized coal ratio
  • Pulverized blast furnace slag according to the replacement of manure at the operating conditions of air volume 7,000Nm3 / min, humidity 25g / Nm3, oxygen load 32,100Nm3 / min and pulverized coal ratio (PCR) 165kg / thm Volume changes were compared and the results are shown in FIG. 5.
  • YQ0 showed 302kg / thm
  • ZHO showed 303kg / thm and CUP 300kg / thm
  • 310kg / thm even at 100% of cow's milk ratio. 5).
  • the management standard since the management standard is likely to be more strictly changed in the future, in order to stably operate the blast furnace, it is preferable to set the cow's milk ratio to 43% or less.
  • Blownability is an index indicating whether the pulverized coal can be easily blown into the blast furnace when transferring the pulverized pulverized coal to the blast furnace through a plurality of pipes. Blownability may be influenced by factors such as frictional force and resistance between the pulverized coal and the inner wall of the pipe. As shown in FIG. 6, the blowability index of the manure has a lower value of about 1/3 or less than that of pulverized coal such as YQ0, CUP, and YB0, and thus, in the case of manure, it exhibits relatively excellent transport characteristics. On the other hand, 0.35, which is a standard of the manageability of the index of inhalation shown, may vary depending on future operating conditions.
  • FIG. 7A illustrates a post-combustion particle shape of a conventional YQ0 coal
  • FIG. 7B illustrates a post-combustion particle shape of a milk powder according to an embodiment of the present invention.
  • the YQ0 coal has a relatively high combustion rate compared to other conventional pulverized coal, but the fine shape of the particles is shown as an irregular shape.
  • the manure In contrast, in the case of the manure, it has a relatively spherical particle shape compared to YQ0, which means that the spherical shape has a complete combustion characteristics.
  • This embodiment shows a method of applying the powder in the co-blowing method to the pulverized coal blowing process using the existing coal. According to this embodiment, there is an advantage that can be easily applied by adding a minimum of facilities to the pig iron manufacturing process for blowing the existing pulverized coal.
  • the first drying was performed to make the milk powder 110 at least 85% or less in the yard.
  • the dry powder yard is sufficient to have a roof that can prevent the inflow of water in the rain.
  • the naturally dried milk powder 110 was stored in the milk powder storage hopper 120 and then crushed to have a particle size of 50 mm or less through the rough crusher 140.
  • the particle size sorter 130 is installed in the lower portion of the milk powder storage hopper 120 so that the milk powder having a particle size of 50 mm or less can be transferred directly to the dryer 150 without passing through the crude crusher 140. The crushing efficiency can be increased.
  • the dryer 150 removes moisture by allowing the temperature to be at least 100 ° C.
  • the drying heat is an indirect heating method using waste heat of the existing blast furnace and other steelmaking processes or by-product gas such as blast furnace gas, coke gas, and converter gas. Was adopted.
  • the collected manure is 20% of the moisture level, the above-described process may be omitted and the existing coal-only process may be used directly.
  • the dried milk powder was first stored in a milk powder storage silo (silo, 160), quantitatively cut out according to a desired blending ratio from the bottom of the silo, and added to the mixed coal storage hopper 20.
  • the drying of the milk powder 110 may be performed at a water content of 20% or less in a natural state.
  • the naturally dried milk powder 110 at a moisture content of 20% or less may be crushed so as to have a particle size of 50 mm or less through the rough crusher 140 after being stored in the milk powder storage hopper 120.
  • the crushed milk powder 110 so as to have a particle size of 50 mm or less may be stored in the milk powder storage silo 160.
  • the particle size sorter 130 installed below the milk powder storage hopper 120 the milk powder determined to have a particle size of 50 mm may be transferred to the milk powder storage silo 160 without passing through the coarse crusher 140.
  • the fine powder 110 was blown at the blast furnace 80 airflow level through the pulverized coal blowing hopper 70 through the above-described fine coal blowing process.
  • the manure when utilizing the livestock waste, the manure is useful in terms of environment by recycling the livestock waste.
  • the generation of reducing gas is easy, it is possible to high-speed reduction of iron ore.
  • the powder is illustrated as a component to be blended in coal dust
  • the idea of the present invention can be extended to the manure of other livestock, such as dogs, pigs, goats, horses as well as milk powder.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Abstract

본 발명에는 우분을 포함하는 제선용 미분탄 및 이를 이용한 선철 제조방법이 개시된다. 상기 본 발명에 의하면, 미분탄의 연소성을 개선하고 고로 조업의 효율성과 안정성을 향상시킬 수 있는 이점이 있다.

Description

우분을 포함하는 제선용 미분탄 및 이를 이용한 선철 제조방법
본 발명은 우분을 포함하는 제선용 미분탄 및 이를 이용한 선철 제조방법에 관한 것으로, 보다 상세하게는 연소성을 개선하고 고로 조업의 효율성과 안정성을 향상시킬 수 있는 우분을 포함하는 제선용 미분탄 및 이를 이용한 선철 제조방법에 관한 것이다.
제선은 철광석을 녹여 선철을 만드는 과정으로, 용광로나 고로에 철광석, 코크스, 석회석을 장입한 후 1100 ~ 1300℃의 열풍을 불어넣어 코크스를 연소시켜 철광석을 용해, 환원시켜 철광석에 포함된 철을 녹이는데 이때 나오는 철을 선철이라고 한다.
코크스는 원료탄(석탄)을 노(Furnace)에 넣어 약 1,000 ~ 1,300℃의 고온으로 구운 것으로, 철과 산소의 화합물질인 철광석을 고로 내에서 녹이는 열원인 동시에, 철분을 철광석에서 분리시키는 환원제의 역할을 한다.
최근 제선을 위한 고로 조업은 기술발달에 힘입어 제조원가가 비싼 코크스를 다량 사용하던 조업에서 고로 하부 풍구 레벨에서 미분탄을 취입함으로써 상당한 원가 절감 도모가 가능하게 되었다. 코크스는 고로 내부에서 환원제, 열원 및 장입물을 지지하여 통기성을 확보하는 역할을 하고 있다. 반면에 미분탄은 아주 미세한 입자를 풍구 레벨에서 취입하여 수 밀리세컨드(millisecond) 내에 조기에 연소를 유도하여 환원제 및 열원으로써의 역할을 수행한다.
본 발명의 배경기술은 대한민국 등록특허공보 제10-1198619호(2011.11.11, 석탄 및 미분탄을 이용한 성형탄 및 그 제조방법)에 개시되어 있다.
본 발명의 실시예들은, 우분을 포함하는 제선용 미분탄을 제공하는 것이다.
또한 본 발명의 실시예들은, 우분을 포함하는 제선용 미분탄을 이용한 선철 제조방법을 제공하는 것이다.
본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 더욱 명확하게 된다.
본 발명의 일 측면에 따르면, 석탄가루 100 중량부에 대하여 크기 50mm 이하 및 함수율 20% 이하로 건조되어 파쇄된 우분을 76 중량부 이하로 포함하는 제선용 미분탄이 제공된다.
본 발명의 다른 측면에 의하면, 우분을 건조하는 제1단계; 상기 건조한 우분을 파쇄기에서 파쇄하는 제2단계; 상기 우분을 석탄 가루와 혼합하여 미분탄을 제조하는 제3단계; 및 상기 미분탄을 용광로 또는 고로에 취입하는 제4단계를 포함하는 선철 제조방법이 제공된다.
본 발명의 실시예들에 따르면, 우분을 포함하여 미분탄에 포함되는 석탄 사용량을 줄일 수 있어, 온실가스 저감 및 고로 조업 원가 절감이 가능하다.
또한, 기존 미분탄의 연소성을 대폭 개선하여 효율적인 고로 조업이 가능하다. 특히, 미분 코크스의 연소를 촉진하여 분 축척에 의해 2차로 고로의 통기성 및 통액성이 저해되는 것을 방지할 수 있어 안정적인 고로 조업이 가능하다.
본 발명의 실시예에 의해 농축산 폐기물인 우분을 활용하는 경우 농축산 폐기물을 자원화하여 환경적인 측면에서 유용하다. 또한, 환원가스의 생성이 용이하여 철광석의 고속환원이 가능하다.
도 1은 본 발명의 일 실시예에 따른 우분을 포함한 미분탄의 우분 대체비에 따른 미분탄의 연소성을 비교한 결과를 나타낸 도.
도 2는 본 발명의 일 실시예에 따른 우분을 포함한 미분탄의 탄종별 연소성을 비교한 도.
도 3은 본 발명의 일 실시예에 따른 우분을 포함한 미분탄의 우분 대체비에 따른 연소 발열량을 비교한 도.
도 4는 본 발명의 일 실시예에 따른 우분을 포함한 미분탄의 우분 대체비에 따른 보시가스 볼륨(Bosh gas volume)의 변화를 나타낸 도.
도 5는 본 발명의 일 실시예에 따른 우분을 포함한 미분탄의 우분 대체비에 따른 슬래그 볼륨(Slag volume)의 변화를 나타내는 도.
도 6은 본 발명의 일 실시예에 따른 우분의 취입성 지수를 나타내는 도.
도 7a는 종래의 미분탄의 입자 형상을 나타내는 도이고, 도 7b는 본 발명의 일 실시예에 따른 우분의 입자 형상을 나타내는 도.
도 8은 본 발명의 다른 실시예에 따른 우분을 포함하는 제선용 미분탄을 이용한 선철 제조방법을 나타내는 도.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하, 본 발명에 따른 우분을 포함하는 제선용 미분탄 및 이를 이용한 선철 제조방법의 실시예를 첨부도면을 참조하여 상세히 설명하기로 하며, 첨부 도면을 참조하여 설명함에 있어, 동일하거나 대응하는 구성 요소는 동일한 도면번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
본 발명의 일측면에 따르면, 본 발명은 석탄가루 100 중량부에 대하여 크기 50mm 및 함수율 20% 이하로 건조되어 파쇄된 우분을 76 중량부 이하로 포함하는 제선용 미분탄을 제공한다.
본 발명에 있어 석탄의 대체재로 사용되는 우분은 기본적으로 다량의 휘발분을 포함하고 있어 석탄에 비해 고정탄소가 상당히 낮은 특징을 보이고 있으며, 특히 발열량은 기존 석탄의 50% 수준을 나타내고 있다. 그러나 우분의 휘발분은 탄소에 비하여 조기 열분해 및 고농도의 산소를 함유하는 특성이 있어 기존 탄소의 연소를 촉진할 수 있는 첨가제로의 활용이 가능한 것으로 나타났다(표 1 참조). 나아가 우분은 표 2에 나타난 바와 같이 발생량이 현저하게 많고 수급이 용이하여 고로에서 연속적으로 사용될 수 있는 장점이 있다.
또한, 기존의 우분은 대부분 퇴비 등으로 활용되고 있으나, 사용량보다 발생량이 현저히 많아 많은 축산농가에서 처리에 곤란을 겪어 왔다. 따라서 본 발명에서 축산 폐기물로 취급되는 우분을 고로 조업에 적용함으로 인해 환경문제 개선뿐만 아니라 원가절감에도 상당히 기여할 수 있다.
본 발명에 의해 우분을 미분탄에 활용하는 경우 미분탄의 연소성을 현저하게 개선할 수 있다. 도 1은 우분 대체비에 따른 미분탄들의 연소성을 비교한 것으로, 미분탄을 점진적으로 우분으로 대체하여 연소를 실시할 경우 최대 98.4%까지 연소성이 개선됨을 확인할 수 있었다(도 1 참조). 특히 본 발명은 저품질의 미분탄의 연소성 개선효과가 매우 우수하다. 품질이 낮은 미분탄은 연소효율이 낮아 미연소 차(char)를 다량 형성하고, 고로 내부에 전방위로 축척되어 코크스 사이의 공극을 막아 고로의 통기성 및 통액성을 떨어뜨리는 악영향을 미치게 된다. 또한 풍구 레벨에서는 코크스의 분화도 상당한데, 통상 미연소 차(char)는 반응 계면적이 상당히 넓어서 미분의 코크스보다 연소가 상대적으로 빨라, 미분 코크스의 연소를 저해하여 분 축적에 의해 2차로 고로의 통기성을 저해하게 된다. 따라서 본 발명에 의하면 저품질의 미분탄의 연소효율을 개선시킬 수 있어 저품질의 미분탄 이용시의 문제점을 해결할 수 있고 안정적인 고로 조업을 유도할 수 있다.
또한, 본 발명에 의해 우분을 활용하는 경우 미분탄의 발열량을 개선할 수 있다. 미분탄의 연소성은 고로 내부의 미분 축적과도 관계가 있으나, 연소효율에 따라 미분탄 초기 발열효과에도 상당한 영향을 미친다. 따라서 이와 같은 우분에 의한 연소성 개선효과와 초기 발열량 변화를 보다 면밀하게 비교하기 위하여 미분탄 탄종별 우분비에 따른 발열량 변화를 조사하여 도 3에 나타내었다. 그 결과 연소성이 우분을 포함한 미분탄의 경우 대폭 개선된 연소성으로 인해 우분비가 증가함에 따라 최대 30% 수준까지는 꾸준히 초기 발열량 상승이 확인되었다.
한편, 제선 공정에서 고로의 보시 가스 볼륨(Bosh gas volume, BGV)이 관리기준 이하가 되도록 우분을 포함하는 것이 중요하다. 따라서 본 발명에 있어 미분탄은 석탄가루 100 중량부에 대하여 우분을 76 중량부 이하로 포함하는 것이 바람직하다.
미분탄의 일부를 우분으로 대체할 경우 우분의 높은 휘발성분에 의한 보시 가스 볼륨(Bosh gas volume, BGV) 상승 및 이로 인한 고로 압력 상승이 우려될 수 있다. 고로 압력이 상승할 경우 원활한 통기성 확보가 어렵고 안정적인 고로 조업이 불가능할 수 있다. 따라서 안정적인 고로 조업을 위해서는 바람직하게 석탄가루 100 중량부에 대하여 우분을 76 중량부 이하로 포함한다(도 4 참조). 석탄가루 100 중량부에 대하여 우분을 76 중량부 초과하여 포함할 경우 보시 가스 볼륨이 관리기준인 일 예로서, 약 10,800N㎥/min 이하로 유지하기가 어렵다. 상기 우분의 중량부는 도 4 등에 나타난 석탄가루에 대한 우분 대체비를 환산하여 나타낸 것이다. 즉, 석탄가루에 대한 우분 대체비는 43% 이하로 포함한다(도 4 참조)
또한, 우분의 경우 회분(Ash) 함량이 높으나 미분탄의 일부를 우분으로 대체할 경우 고로 슬래그 볼륨(slag volume)에는 큰 영향을 미치지 않는 것으로 나타났다(도 5 참조)
본 발명에 있어 상기 파쇄된 우분은 이에 한정되는 것은 아니나, 50mm 이하의 입도를 갖는 것이 바람직하다. 우분의 입도가 50mm를 초과하는 경우 우분 건조에 에너지가 많이 소요되며 석탄가루와의 균일한 혼합에 어려움이 있다.
본 발명에 의한 우분을 포함하는 미분탄은 석탄가루 및 우분 이외에 통상의 미분탄에 투입되는 다양한 성분이 추가로 포함될 수 있다. 본 발명이 속하는 기술 분야의 통상의 기술자는 고로 조업 조건에 따라 적절하게 추가성분을 투입함에 어려움이 없다.
한편, 본 발명의 실시예에 따르면, 미분탄에 배합되는 성분으로서 우분을 예시하고 있지만, 본 발명의 사상은 우분 뿐 아니라, 개, 돼지, 염소, 말 등 다른 가축의 분뇨로 확장될 수 있다.
본 발명의 다른 측면에 따르면, 본 발명은 우분을 건조하는 제1단계; 상기 건조한 우분을 파쇄기에서 파쇄하는 제2단계; 상기 우분을 석탄 가루와 혼합하여 미분탄을 제조하는 제3단계; 및 상기 미분탄을 용광로 또는 고로에 취입하는 제4단계를 포함하는 선철 제조방법을 제공한다.
본 발명의 구체적인 일 측면에 따르면, 우분 건조는 상기 제1단계에서 발효가 일어나지 않는 조건에서 함수율이 65% 이하가 되도록 야드에서 1차 자연 건조시키고, 상기 제2단계의 파쇄기를 거쳐 파쇄된 우분을 건조기에 투입하여 함수율 20% 이하가 되도록 2차 건조시킬 수 있다. 상기와 같이 우분을 야드에서 1차 자연 건조를 시킨 후 건조기에서 건조시키면 건조에 따른 비용을 절감할 수 있다. 즉, 우분 건조 야드는 우천시 수분의 유입을 막을 수 있는 지붕이 있는 설비로 충분하고, 상대적으로 설비 비용이 많이 드는 건조기 설비에 따른 비용을 절감할 수 있다. 또한, 우분을 1차 건조 후 파쇄기에서 파쇄한 후 건조기에 투입하면 건조 효율을 더욱 개선할 수 있다.
본 발명의 구체적인 다른 측면에 따르면, 상기 제2단계의 파쇄기 투입 전에 입도선별기를 거치도록 하여 입도가 50mm 이하인 우분은 건조기로 바로 이송하고, 상기 제2단계의 파쇄기에서는 우분이 50mm 이하의 입도를 갖도록 파쇄한다. 상기와 같이 파쇄기 투입 전 입도선별기를 거쳐 입도가 50mm 이하인 우분을 바로 건조기로 이송시키면 파쇄효율을 개선할 수 있다.
본 발명의 구체적인 또 다른 측면에 따르면, 상기 건조기는 기존 고로를 포함하는 제선 공정의 폐열을 활용하거나, 고로가스, 코크스가스, 또는 전로가스 등이 부생가스를 활용하여 가열할 수 있다. 따라서 본 발명에 의하면 선철 제조 공정에서 발생하는 폐열 또는 부생가스를 활용하여 우분을 건조할 수 있어 추가 비용을 최소화 하면서 석탄 사용량을 감축할 수 있다.
이하, 첨부된 도면을 참조하여 본 발명의 구체적인 실시예에 대해 상세하게 설명한다.
주요 우분 및 고로용 미분탄(석탄)의 특성 비교
본 발명에서는 미분탄의 연소성 개선을 위하여 다양한 대체 연료를 발굴하였으며, 그 주요 특성은 표 1에 나타난 바와 같이 기존 미분탄으로 사용되는 석탄과 함께 비교하였다.
석탄의 대체재로 고려되는 바이오매스는 기본적으로 다량의 휘발분을 포함하고 있어 석탄에 비해 고정탄소가 상당히 낮은 특징을 보이고 있으며, 특히 발열량은 기존 석탄의 50% 수준을 나타내고 있다. 그러나 바이오매스의 휘발분은 탄소에 비하여 조기 열분해 및 다량의 산소를 함유하는 특성이 있어 기존 미분탄의 연소를 촉진할 수 있는 첨가제로의 활용이 가능할 것으로 판단된다. 하기 표 1은 주요 바이오매스 및 고로용 미분탄(석탄)의 특성을 나타낸다.
표 1
구분 공업분석(ad, %) 원소분석(daf, %) 발열량(kcal/kg)
IM Ash VM FC C H N S O
바이오매스 우분 2.60 20.30 66.19 10.91 54.07 7.86 1.86 0.22 35.99 3742
왕겨 4.65 10.70 73.6 11.05 52.72 7.48 0.29 0.12 39.39 4093
볏짚 4.65 12.40 70.7 12.25 50.23 5.72 0.16 0.13 43.76 3711
PKS 2.45 1.70 79.35 16.50 55.98 6.23 0.13 0.41 37.25 4947
석탄 YQ0 1.02 9.97 10.08 78.93 93.44 4.01 1.26 0.47 14.03 7665
ZH0 0.97 10.45 9.36 79.21 92.16 3.81 1.52 0.46 16.04 7583
CUP 1.01 9.30 18.78 70.91 91.11 4.68 1.8 0.45 8.51 7701
* ad: air-dried bases, daf: dry ash free basis (Ash를 제외한 원소의 백분율)
IM: inherent moisture (고정수분), VM: volatile matter (휘발분), FC: fixed carbon (고정탄소) C: carbon (탄소), H: hydrogen (수소), S: sulfur (황),
O: oxygen (산소), PKS: palm kernel shell, YQ0: Yanquan, ZH0: Zhaozhuang,
CUP: Curragh PCI.
한편, 석탄 대체재로 우분이 바람직하다. 우분은 표 2에 나타난 바와 같이 발생량이 현저하게 많고 수급이 용이하여 고로에서 연속적으로 사용될 수 있는 장점이 있다. 우분의 국내 발생량은 연간 23,291,745톤으로 추정된다. 우분의 약 85%으로는 수분을 함유하여 완전 건조 후에도 연간 3,493,780톤으로 추정된다. 하기 표 2는 국내 우분 발생량을 나타낸다.
표 2
한우 젖소 일 발생량(t/d) 습식 총계(t/d) 건식 총계(t/d)
두수 축사수 두수 축사수 한우 젖소
3,058,601 146,930 420,113 6,00777 44,656 19,157 23,291,745 3,493,780
* 두당 일 우분 발생량 (습식 기준): 한우 14.6 kg, 젖소 45.6 kg
또한, 기존의 우분은 대부분 퇴비 등으로 활용되고 있으나, 사용량보다 발생량이 현저히 많아 많은 축산농가에서 처리에 곤란을 겪어 왔다. 따라서 본 발명에서 축산 폐기물로 취급되는 우분을 고로 조업에 적용함으로 인해 환경문제 개선뿐만 아니라 원가절감에도 상당히 기여할 수 있다.
우분 대체비에 따른 미분탄 연소성 변화
도 1은 우분 대체비에 따른 미분탄들의 연소성을 비교한 것으로, 미분탄을 단독으로 사용할 경우에는 YQ0가 65.1%, ZH0가 50.3% 및 CUP가 51.3%의 연소율을 나타내어, YQ0는 비교적 양호한 연소성을 보이나, ZH0와 CUP는 상당히 낮은 연소특성을 나타내었다. 그러나 미분탄을 점진적으로 우분으로 대체하여 연소를 실시할 경우 최대 98.4%까지 연소율이 개선됨을 확인할 수 있었다(도 1 참조).
미분탄 종별로 우분 대체에 따른 효과를 보다 면밀히 검토하기 위하여, 연소성이 직전적으로 개선되는 우분비 25%에서의 연소율을 비교하여 도 2에 나타내었다. 그 결과 YQ0이 69.7%, ZH0가 78.9% 및 CUP가 80.9%로 연소율이 개선됨을 확인할 수 있었다. 그러나 도 2에 나타난 바와 같이 미분탄을 우분으로 대체할 경우 연소성 개선효과는 확인되나 미분탄 탄종에 따라 그 효과는 차이를 보였다. 즉 기존의 연소성이 열악하였던 ZH0와 CUP의 경우 상대적으로 현저한 개선효과를 확인할 수 있었다.
우분 대체비에 따른 미분탄 발열량 변화
미분탄의 연소성은 고로 내부의 미분 축적과도 관계가 있으나, 연소효율에 따라 미분탄 초기 발열효과에도 상당한 영향을 미친다. 예를 들어 발열량이 7,665Kcal/kg인 YQ0 미분탄의 연소율이 65.1%일 경우 1차 발열량은 4,990Kcal/kg에 불과하기 때문에 고효율 조업에는 불리하게 된다. 따라서 이와 같은 우분에 의한 연소성 개선효과와 초기 발열량 변화를 보다 면밀하게 비교하기 위하여 미분탄 탄종별 우분비에 따른 발열량 변화를 조사하여 도 3에 나타내었다.
연소성이 낮았던 ZH0와 CUP는 우분 대체시 대폭 개선된 연소성으로 인해 우분비가 증가함에 따라 최대 30% 수준까지는 꾸준히 초기 발열량 상승이 확인되었다. 한편 YQ0의 경우 우분 연소성이 개선됨에도 불구하고 우분비 25% 수준까지 꾸준히 초기 발열량이 감소함을 확인하였다. 이는 YQ0의 경우 다른 2종의 미분탄에 비해 초기 발열량이 일정수준 우수하였으며, 우분 첨가에 따라 우분의 낮은 발열량(3,742Kcal/kg)의 영향을 받았기 때문으로 보인다.
우분 대체비에 따른 보시가스 볼륨(Bosh gas volume)의 변화
미분탄의 일부를 우분으로 대체할 경우 우분의 높은 휘발성분에 의한 보시가스 볼륨(Bosh gas volume, BGV) 상승 및 이로 인한 고로 압력 상승이 우려된다. 고로 압력이 상승할 경우 원활한 통기성 확보가 어렵고 안정적인 고로 조업이 불가능할 수 있다.
내용적이 5,250㎥인 고로에서 풍량 7,000N㎥/min, 조습량 25g/N㎥, 산소부하량 32,100N㎥/min 및 미분탄비(PCR) 165kg/thm의 조업 조건에서 우분 대체비에 따른 미분탄 종별 BGV 변화를 비교하였고, 그 결과를 도 4에 나타내었다. 미분탄 단독 사용시에는 YQ0가 10,473N㎥/min, ZH0가 10,482N㎥/min 및 CUP가 10,475N㎥/min로 관리기준인 10,800N㎥/min을 하회하나 우분비와 함께 꾸준히 증가하여 우분비 100%에서는 11,600N㎥/min로 직선적으로 증가함을 알 수 있다(도 4 참조). 다만, 상기 관리 기준은 보다 엄격하게 변동될 가능성이 있으므로, 안정적으로 고로 조업을 위해서는 바람직하게는 우분비를 43% 이하로 한다.
우분 대체비에 따른 슬래그 볼륨(Slag volume)의 변화
우분의 경우 회분(Ash) 함량이 높아 미분탄의 일부를 우분으로 대체할 경우 고로 슬래그 볼륨(slag volume)이 상승할 우려가 있다. 슬래그 볼륨이 상승할 경우 용선 출선 불량과 환원제비 상승이라는 문제가 동반될 수 있다. 따라서 원활한 고로 조업에 필요한 적정한 관리 수준을 살펴볼 필요가 있다.
내용적이 5,250㎥인 고로에서 풍량 7,000N㎥/min, 조습량 25g/N㎥, 산소부하량 32,100N㎥/min 및 미분탄비(PCR) 165kg/thm의 조업 조건에서 우분 대체비에 따른 미분탄 종별 고로 슬래그 볼륨 변화를 비교하였고, 그 결과를 도 5에 나타내었다. 우분을 첨가하지 않을 경우 YQ0가 302kg/thm, ZHO가 303kg/thm 및 CUP가 300kg/thm 수준을 보이며 우분비 100% 수준에서도 310kg/thm을 보이고 있어 슬래그 볼륨에는 큰 영향을 미치지 않는 것으로 나타났다(도 5 참조). 다만, 상기 관리 기준은 향후에 보다 엄격하게 변동될 가능성이 있으므로, 안정적으로 고로 조업을 위해서 바람직하게는 우분비를 43% 이하로 정할 수 있다.
우분 및 종래 미분탄의 취입성 지수 비교
취입성은 파쇄 완료된 미분탄을 복수의 파이프를 통해 고로로 이송할 때, 상기 미분탄이 상기 고로 내로 용이하게 취입될 수 있는 지를 나타내는 지표이다. 취입성은 상기 미분탄과 상기 파이프 내벽 사이의 마찰력, 저항력 등의 요인에 의해 영향을 받을 수 있다. 도 6에 도시된 바와 같이, 우분의 취입성 지수는 YQ0, CUP, YB0 와 같은 미분탄 대비 약 1/3 이하의 낮은 값을 가지며, 이에 따라, 우분의 경우, 상대적으로 우수한 운반 특성을 나타내고 있다. 한편, 도시되는 취입성 지수 관리 기준인 0.35는 향후 조업 조건에 따라 변동가능할 수 있다.
종래의 미분탄 및 우분의 연소 후 입자 형상 비교
도 7a는 종래의 YQ0 탄의 연소 후 입자 형상을 나타내고 있으며, 도 7b는 본 발명의 일 실시예에 따른 우분의 연소 후 입자 형상을 나타내고 있다. 도 1에서 도시된 바와 같이 YQ0탄은 다른 종래의 미분탄 대비 상대적으로 높은 연소율을 구비하고 있으나, 입자의 미세 형상은 부정형으로 나타나고 있다.
이와 대비하여, 우분의 경우, YQ0와 대비하여 상대적으로 구형의 입자 형상을 가지고 있으며, 이러한 구형의 형상은 완전 연소 특성을 가지고 있음을 의미한다.
본 발명의 일 실시예에 따른 우분을 포함하는 제선용 미분탄을 이용한 선철 제조방법
본 실시예는 기존의 석탄을 사용하는 미분탄 취입 공정에 우분을 동시 취입 방식으로 적용하는 방법을 나타낸다. 본 실시예에 의하면 기존의 미분탄을 취입하는 선철 제조공정에 최소의 설비를 추가하여 용이하게 적용이 가능한 이점이 있다.
이하, 도 8을 참조하여 본 발명의 구체적인 일 실시예에 따른 우분을 포함하는 제선용 미분탄을 이용한 선철 제조방법을 설명한다.
우선, 도 8의 A를 참조하면, 기존의 석탄만 단독으로 사용하는 미분탄 취입공정은 석탄 저장 사일로(silo, 10)에 2종 또는 3종의 원료탄을 1차적으로 저장하고 사일로 하부에서 원하는 배합비에 따라 정량 절출하여 혼합탄 저장 호퍼(20)에서 입도 선별기(30)를 거쳐 불순물 등을 제거한 후 미파쇄기(40)를 거쳐 75㎛ 이하의 입도가 70% 이상이 되도록 파쇄하고 저장빈(50)에서 2차 저장 후 컨베이어 호퍼(60)를 거쳐 18bar의 압력으로 N2와 함께 이송되어 미분탄 취입 호퍼(70)에 저장되고 최종적으로 10bar 이상의 공기압으로 고로(80) 풍구 레벨에서 취입이 이루어지는 공정이다.
다음 도 8의 B를 참조하면, 수분이 높은 우분 특히 우분을 미분탄에 활용하기 위해 1차적으로 우분(110)을 야드에서 수분이 최소 85% 이하가 되도록 자연 건조를 실시하였다. 이때 우분 건조 야드는 우천시 수분의 유입을 막을 수 있는 지붕이 있는 설비이면 충분하다.
다음 자연 건조된 우분(110)은 우분 저장 호퍼(120)에 저장된 후 조파쇄기(140)를 거쳐 입도가 50mm 이하가 되도록 파쇄되었다. 이때 우분 저장 호퍼(120) 하부에 입도 선별기(130)를 설치하여 입도가 50mm 이하가 되는 우분은 조파쇄기(140)를 거치지 않고 바로 건조기(150)로 이송이 가능하도록 하여 조파쇄기(140)의 파쇄 효율 상승을 도모할 수 있다.
다음 건조기(150)는 온도가 최소 100℃가 되도록 하여 수분을 제거하고 이때 건조열은 기존 고로 및 기타 제선 공정의 폐열 활용 또는 고로가스, 코크스가스, 전로가스 등의 부생가스를 활용한 간접 가열방식을 채용하였다. 그러나, 수집된 우분의 수분이 20% 수준일 경우 상기와 같은 공정은 생략하고 기존의 석탄 전용 공정을 바로 활용하는 것도 가능하다.
이렇게 건조된 우분은 우분 저장 사일로(silo, 160)에 1차적으로 저장하고 사일로 하부에서 원하는 배합비에 따라 정량 절출하여 혼합탄 저장 호퍼(20)에 투입되었다.
몇몇 다른 실시 예에 따르면, 상기 우분(110)의 건조는 자연 상태에서, 함수율 20% 이하로 진행될 수 있다. 함수율 20% 이하로 자연 건조된 우분(110)은 우분 저장 호퍼(120)에 저장된 후 조파쇄기(140)를 거쳐 입도 50mm 이하가 되도록 파쇄될 수 있다. 입도 50mm 이하가 되도록 파쇄된 우분(110)은 우분 저장 사일로(160)에 저장될 수 있다. 또한, 우분 저장 호퍼(120) 하부에 설처되는 입도 선별기(130)에 의해, 입도 50 mm로 판정되는 우분은 조파쇄기(140)를 거치지 않고, 우분 저장 사일로(160)로 이송될 수 있다.
이후에, 상기 우분(110)은 상술한 미분탄 취입공정을 거쳐 미분탄 취입호퍼(70)를 통해 고로(80) 풍기 레벨에서 취입되어 선철이 제조되었다.
상술한 바와 같이, 본 발명의 실시예들에 따르면, 우분을 포함하여 미분탄에 포함되는 석탄 사용량을 줄일 수 있어, 온실가스 저감 및 고로 조업 원가 절감이 가능하다.
또한, 기존 미분탄의 연소성을 대폭 개선하여 효율적인 고로 조업이 가능하다. 특히, 미분 코크스의 연소를 제어하여 분 축척에 의해 2차로 고로의 통기성 및 통액성이 저해되는 것을 방지할 수 있어 안정적인 고로 조업이 가능하다.
본 발명의 실시예에 의해 농축산 폐기물인 우분을 활용하는 경우 농축산 폐기물을 자원화하여 환경적인 측면에서 유용하다. 또한, 환원가스의 생성이 용이하여 철광석의 고속환원이 가능하다.
한편, 본 발명의 실시예에 따르면, 미분탄에 배합되는 성분으로서 우분을 예시하고 있지만, 본 발명의 사상은 우분 뿐 아니라, 개, 돼지, 염소, 말 등 다른 가축의 분뇨로 확장될 수 있다.
이상, 본 발명의 일 실시예에 대하여 설명하였으나, 해당 기술 분야에서 통상의 지식을 가진 자라면 특허청구범위에 기재된 본 발명의 사상으로부터 벗어나지 않는 범위 내에서, 구성 요소의 부가, 변경, 삭제 또는 추가 등에 의해 본 발명을 다양하게 수정 및 변경시킬 수 있을 것이며, 이 또한 본 발명의 권리범위 내에 포함된다고 할 것이다.

Claims (6)

  1. 석탄가루 100 중량부에 대하여, 함수율 20% 이하로 건조되어 파쇄된 우분을 76 중량부 이하로 포함하는 제선용 미분탄.
  2. 제1항에 있어서, 상기 파쇄된 우분은 50mm 이하의 입도를 갖는 제선용 미분탄.
  3. 우분을 건조하는 제1단계;
    상기 건조한 우분을 파쇄기에서 파쇄하는 제2단계;
    상기 우분을 석탄 가루와 혼합하여 미분탄을 제조하는 제3단계; 및
    상기 미분탄을 용광로 또는 고로에 취입하는 제4단계를 포함하는 선철 제조방법.
  4. 제3항에 있어서, 상기 미분탄은 석탄가루 100 중량부에 대하여 함수율 20% 이하로 건조되어 파쇄된 우분을 76 중량부 이하로 포함하는 선철 제조방법.
  5. 제3항에 있어서, 상기 우분은 함수율 20% 이하가 되도록 건조되는 선철 제조방법.
  6. 제5항에 있어서, 상기 제2단계의 파쇄기 투입 전에 입도선별기를 거치도록 하여 입도가 50mm 이하인 우분은 건조기로 바로 이송하고, 상기 제2단계의 파쇄기에서는 상기 우분이 50mm 이하의 입도를 갖도록 파쇄하는 선철 제조방법.
PCT/KR2015/002377 2014-03-11 2015-03-11 우분을 포함하는 제선용 미분탄 및 이를 이용한 선철 제조방법 WO2015137737A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15761078.3A EP3118283B1 (en) 2014-03-11 2015-03-11 Pulverized coal for pig-iron making comprising cow manure, and pig-iron production method using same
CN201580013058.2A CN106103666A (zh) 2014-03-11 2015-03-11 用于生铁炼制的包含牛粪的粉煤和使用该粉煤制备生铁的方法
JP2016573451A JP6336628B2 (ja) 2014-03-11 2015-03-11 牛糞を含む製銑用微粉炭およびこれを用いた銑鉄の製造方法
US15/124,784 US20170211160A1 (en) 2014-03-11 2015-03-11 Pulverized coal for pig-iron making comprising cow manure, and pig-iron production method using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0028554 2014-03-11
KR20140028554 2014-03-11
KR10-2015-0034093 2015-03-11
KR1020150034093A KR101581633B1 (ko) 2014-03-11 2015-03-11 우분을 포함하는 제선용 미분탄 및 이를 이용한 선철 제조방법

Publications (1)

Publication Number Publication Date
WO2015137737A1 true WO2015137737A1 (ko) 2015-09-17

Family

ID=54072098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/002377 WO2015137737A1 (ko) 2014-03-11 2015-03-11 우분을 포함하는 제선용 미분탄 및 이를 이용한 선철 제조방법

Country Status (1)

Country Link
WO (1) WO2015137737A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010037420A (ja) * 2008-08-04 2010-02-18 Nippon Steel Engineering Co Ltd 廃棄物溶融炉用コークスの製造方法およびその製造装置ならびに廃棄物溶融炉用コークスを利用した廃棄物溶融処理方法
KR20120069765A (ko) * 2009-10-29 2012-06-28 제이에프이 스틸 가부시키가이샤 바이오매스의 고로 이용 방법
KR20120069766A (ko) * 2009-10-29 2012-06-28 제이에프이 스틸 가부시키가이샤 고로 조업 방법
KR20130134275A (ko) * 2012-05-30 2013-12-10 (주)비케이 새로운 축분 또는 축분슬러지를 이용한 고열량의 축분탄 및 그 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010037420A (ja) * 2008-08-04 2010-02-18 Nippon Steel Engineering Co Ltd 廃棄物溶融炉用コークスの製造方法およびその製造装置ならびに廃棄物溶融炉用コークスを利用した廃棄物溶融処理方法
KR20120069765A (ko) * 2009-10-29 2012-06-28 제이에프이 스틸 가부시키가이샤 바이오매스의 고로 이용 방법
KR20120069766A (ko) * 2009-10-29 2012-06-28 제이에프이 스틸 가부시키가이샤 고로 조업 방법
KR20130134275A (ko) * 2012-05-30 2013-12-10 (주)비케이 새로운 축분 또는 축분슬러지를 이용한 고열량의 축분탄 및 그 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3118283A4 *

Similar Documents

Publication Publication Date Title
CN101893387B (zh) 一种烟气处理工艺
US8905336B2 (en) Method for comminution of mill feed
KR101198895B1 (ko) 코크스용 석탄 건조 장치 및 건조 방법
WO2014104624A1 (ko) 성형탄 제조 방법 및 성형탄 제조 장치
CN1940092A (zh) 转底炉熔融还原炼铁工艺
KR101667166B1 (ko) 고로 설비
US7198658B2 (en) Method for producing feed material for molten metal production and method for producing molten metal
WO2012086961A2 (ko) 부분 탄화 성형탄 제조 방법, 부분 탄화 성형탄 제조 장치 및 용철 제조 장치
JP4628773B2 (ja) 有機系汚泥の処理方法及び処理装置
WO2015137737A1 (ko) 우분을 포함하는 제선용 미분탄 및 이를 이용한 선철 제조방법
WO2016140428A1 (ko) 성형탄, 그 제조 방법, 제조 장치, 용철 제조 방법 및 용철 제조 장치
KR101262596B1 (ko) 저온 건류에 의한 페로코크스의 제조방법
EP1576197A1 (en) An apparatus for manufacturing molten irons to dry and convey iron ores and additives and manufacturing method using the same
WO2013094864A1 (ko) 용철제조장치 및 용철제조방법
KR20030014618A (ko) 용철제조설비의 부생슬러지 재활용장치
RU2471000C1 (ru) Способ получения восстановительных газов
EP3118283B1 (en) Pulverized coal for pig-iron making comprising cow manure, and pig-iron production method using same
KR101709204B1 (ko) 성형탄의 제조 방법 및 건조 장치
KR100868872B1 (ko) 함철 부산물을 이용한 smo 제조 방법 및 장치
CN216281426U (zh) 一种细灰处置系统
CN108165695A (zh) 利用corex炉处理污水处理厂沉淀污泥的方法
JPH0224898B2 (ko)
AU2013380646B2 (en) System for the treatment of pellet fines and/or lump ore and/or indurated pellets
CN116146992A (zh) 一种细灰处置系统以及细灰处置方法
JP2022110008A (ja) 製鉄装置の運転方法及び関連する運転装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15761078

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016573451

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015761078

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015761078

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15124784

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE