WO2015137691A1 - Micro mixer using taylor-gortler vortex and method for manufacturing same - Google Patents

Micro mixer using taylor-gortler vortex and method for manufacturing same Download PDF

Info

Publication number
WO2015137691A1
WO2015137691A1 PCT/KR2015/002285 KR2015002285W WO2015137691A1 WO 2015137691 A1 WO2015137691 A1 WO 2015137691A1 KR 2015002285 W KR2015002285 W KR 2015002285W WO 2015137691 A1 WO2015137691 A1 WO 2015137691A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixing
fluid
passage
flow path
channel
Prior art date
Application number
PCT/KR2015/002285
Other languages
French (fr)
Korean (ko)
Inventor
조형희
김범석
최지홍
송지운
김태환
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Publication of WO2015137691A1 publication Critical patent/WO2015137691A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4314Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor with helical baffles
    • B01F25/43141Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor with helical baffles composed of consecutive sections of helical formed elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • B01F25/4331Mixers with bended, curved, coiled, wounded mixing tubes or comprising elements for bending the flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2215/00Auxiliary or complementary information in relation with mixing
    • B01F2215/04Technical information in relation with mixing
    • B01F2215/0413Numerical information
    • B01F2215/0418Geometrical information
    • B01F2215/0431Numerical size values, e.g. diameter of a hole or conduit, area, volume, length, width, or ratios thereof

Definitions

  • the present invention relates to a micromixer and a method of manufacturing the same, and more particularly, by generating a Taylor-Gotrler Vortex inside a flow path, a micro-molecule capable of improving the mixing efficiency of heterogeneous fluids.
  • a mixer and a method of manufacturing the same are particularly, by generating a Taylor-Gotrler Vortex inside a flow path, a micro-molecule capable of improving the mixing efficiency of heterogeneous fluids.
  • Nano-Bio technologies such as Bio MEMS or Bio Nano Information Technology (BINT) are the mainstream.
  • biomolecules can have a great effect on the human body even with a very small amount, sensing technology capable of detecting them will be the core of the next-generation nanobiotechnology. .
  • Micro-fluidic devices micro valves, micro pumps, micro channels, micro filters, mixers, etc.
  • the reactor and sensor for analyzing and detecting the sample, the actuator for driving the microfluidic device, the peripheral circuit part, etc. are integrated by using the MEMS process It is a small chemical / biological microprocessor. That is, the pretreatment, transportation, control, analysis, etc. of the biological sample are all performed on one chip of several cm 2 .
  • the LOC concept which can be carried out at hand by miniaturizing and integrating complex chemical processes, can reduce the amount of expensive samples used, minimize the waste, and provide excellent mobility and field adaptability for miniaturization. It's a revolution.
  • Miniature devices such as LOCs and micro integrated analysis systems, contain multiple channels or microstructures so that all the processes required for analysis can be performed on a single chip.
  • effective mixing of reagents with samples carried by microchannels for analytical or biochemical reactions will be essential.
  • minimizing the amount of sample consumed is very important in terms of the design of the instrument and the cost in consideration of sampling. This requires a technique for minimizing the reaction time between chemicals in the LOC chip, which requires a mixing technique to mix the chemical reaction between samples. That is, there is a need for a mixing technique for smoothly reacting samples within the shortest flow path length.
  • microfluidic fluid flow shows unique characteristics that are different from existing large-scale systems, and fluid flow control and mixing to solve this problem have a profound effect on product performance.
  • the Reynolds number is expressed as a dimensionless number that can be represented in consideration of the size and flow characteristics of the system and the viscous effect by turning the propeller in the fluid. It is possible to induce turbulent flow by sufficiently increasing (the characteristic length of the system-fluid density-fluid velocity / viscosity), thereby obtaining a mixture of fluids.
  • the reaction of LOC-based biosamples requires minimizing the consumption of the sample.
  • the number of Reynolds is increased to more than several hundreds by increasing the injection rate of the sample, it causes a rapid increase in pressure in the flow path. Will occur.
  • increasing the number of Reynolds to hundreds or more for mixing in real LOC applications is not a realistic approach.
  • the mixing performance is improved through the active mixing method using a flow generating means inside the microchannel.
  • a flow generating means inside the microchannel.
  • FIG. 1 is a perspective view showing a micromixer according to the prior art.
  • the mixing performance may be lower than the above active mixing method, but many problems of the active mixing method may be solved, in particular, the manufacturing cost may be greatly reduced, and the integration with other micro devices may be easy, and the mixing ( It may have the advantage that no additional power source (e.g., current, electric field, magnetic field, etc.) required to effect mixing takes place.
  • the manufacturing cost may be greatly reduced, and the integration with other micro devices may be easy, and the mixing ( It may have the advantage that no additional power source (e.g., current, electric field, magnetic field, etc.) required to effect mixing takes place.
  • a micromixer having a fine flow path for receiving a heterogeneous fluid and mixing the heterogeneous fluid
  • a straight supply passage having a first supply passage through which a first fluid flows into one end and a second supply passage through which a second fluid flows into the other end;
  • a mixing flow passage communicating with a central portion of the supply flow passage, the mixing flow passage having a plurality of flow path bent portions disposed spaced apart by a predetermined distance and bent at a predetermined angle;
  • the first fluid and the second fluid may be configured to form a Taylor-Gortler Vortex while passing through the flow path bent portion.
  • the pressure for supplying the first fluid to the first supply channel may be the same as the pressure for supplying the second fluid to the second supply channel.
  • a straight inflow passage 200 may be formed having one end vertically communicating with the central portion of the supply flow passage and the other end communicating with the mixing flow passage.
  • angles a1 and a2 formed by the mixed flow passages bent by the flow path bending portion may be 20 degrees to 120 degrees.
  • the ratio aspect ratio of the vertical heights H1 and H2 of the side surfaces of the mixing channel to the planar widths W1 and W2 of the mixing channel may be 1.0 to 10.0.
  • the planar length (L1, L2) ratio (L1 / W1, L2 / W2) between the planar width (W1, W2) of the mixing flow path between the passage bends of the mixing flow path 1.0 to 10.0 Can be.
  • a micromixer having a fine flow path for receiving a heterogeneous fluid and mixing the heterogeneous fluid
  • a first supply passage that supplies the first fluid is formed in a direction opposite to the formation direction of the second supply passage, and communicates with one end of the mixing passage;
  • a second supply passage which supplies a second fluid is formed in a direction opposite to the forming direction of the first supply passage, and is in communication with one end of the mixing passage;
  • a mixing passage communicating with one end of the first supply passage and the second supply passage, the mixing passage having a plurality of passage bends disposed at a predetermined distance and bent at a predetermined angle;
  • the first fluid and the second fluid may be configured to form a Taylor-Gortler Vortex inside the mixing flow path while passing through the flow path bent portion.
  • first supply passage and the second supply passage may have a structure forming an angle a0 of 120 degrees to 180 degrees.
  • the pressure for supplying the first fluid to the first supply passage may be the same as the pressure for supplying the second fluid to the second supply passage.
  • a straight inflow passage may be formed having one end portion communicating with the first supply passage and the second supply passage, and the other end portion communicating with the mixing passage.
  • angles a3 and a4 formed by the mixed flow passages bent by the flow path bending portion may be 20 degrees to 120 degrees.
  • the ratio (Duct aspect ratio, H3 / W3, H4 / W4) of the planar widths (W3, W4) of the mixing channel to the lateral vertical heights (H3, H4) of the mixing channel, 1.0 to 10.0 Can be.
  • the planar length (L3, L4) ratio (L3 / W3, L4 / W4) between the planar width (W3, W4) of the mixing flow path of each flow path bent portion of the mixing flow path 1.0 to 10.0 Can be.
  • the present invention can provide a method for manufacturing the micro mixer, the method for manufacturing a micro mixer according to an aspect of the present invention
  • a substrate preparation step of preparing a substrate comprising a material constituting the micromixer and having a thickness corresponding to the side height of the micromixer
  • It may be a configuration including an imprinting method using a polymer material.
  • the present invention can provide an analysis system comprising the micro mixer.
  • FIG. 1 is a perspective view showing a micromixer according to the prior art.
  • FIG. 2 is a perspective view showing a micro mixer according to a first embodiment of the present invention.
  • FIG. 3 is a plan view of the micromixer shown in FIG. 2.
  • FIG. 4 is a schematic diagram for explaining a Taylor-Gortler Vortex occurring inside a curved flow path.
  • FIG. 5 is a cross-sectional view taken along line AA ′ of FIG. 3.
  • FIG. 6 is a perspective view showing a micro mixer according to a second embodiment of the present invention.
  • FIG. 7 is a plan view of the micro mixer shown in FIG. 6.
  • FIG. 8 is a perspective view illustrating a micromixer according to a third embodiment of the present invention.
  • FIG. 9 is a plan view of the micromixer shown in FIG. 6.
  • FIG. 10 is a perspective view showing a micro mixer according to a fourth embodiment of the present invention.
  • FIG. 11 is a plan view of the micro mixer shown in FIG. 10.
  • FIG. 12 is a diagram illustrating a Taylor-Gortler Vortex generated inside a mixing passage among heterogeneous fluid mixing performances of a micromixer according to an embodiment of the present invention.
  • FIG. 13 is a diagram showing the degree of mixing among the results of experimenting heterogeneous fluid mixing performance for the micromixer according to an embodiment of the present invention.
  • FIG. 14 is a graph illustrating results of experiments on heterogeneous fluid mixing performance of a micromixer according to various embodiments of the present disclosure.
  • 15 is a flowchart illustrating a method of manufacturing a micromixer according to an embodiment of the present invention.
  • 16 is a flowchart illustrating a method of manufacturing a micromixer according to still another embodiment of the present invention.
  • FIG. 2 is a perspective view showing a micromixer according to a first embodiment of the present invention
  • FIG. 3 is a plan view of the micromixer shown in FIG. 2.
  • FIG. 4 is a schematic diagram for explaining a Taylor-Gortler Vortex occurring inside a curved flow path
  • FIG. 5 is a cross-sectional view taken along line AA ′ of FIG. 3. .
  • the micromixer 500A is a micromixer having a microchannel for receiving heterogeneous fluid and mixing the heterogeneous fluid.
  • the micromixer 500A includes a supply channel 100 and a mixing channel ( 300) and the discharge passage 400 may be configured.
  • the supply passage 100 may have a straight shape including a first supply passage 110 through which the first fluid flows in one end and a second supply passage 120 through which the second fluid flows in the other end.
  • the pressure for supplying the first fluid to the first supply passage 110 is preferably the same as the pressure for supplying the second fluid to the second supply passage 120.
  • the discharge passage 400 is formed at the other end of the mixing passage 300 and may have a structure in which the mixed fluid of the first fluid and the second fluid is discharged.
  • one end portion perpendicularly communicating with the central portion of the supply passage 100, and communicating with the mixing passage 300.
  • a straight inflow passage 200 having the other end may be formed.
  • the mixing passage 300 may have a structure in communication with the central portion of the supply passage 100 and provided with a plurality of passage bending portions 310 spaced apart by a predetermined distance and bent at a predetermined angle.
  • the first fluid and the second fluid may form a Taylor-Gortler Vortex while passing through the flow path bent portion 310.
  • Taylor-Gortler Vortex refers to a vortex generated due to flow instability inside the bent flow path 4, in which two or more fluids flow from each other. Form counter-rotating vortex structures facing each other. This vortex structure allows the flow of two or more fluids to mix with each other.
  • a vortex in which a first fluid 10 and a second fluid 20 rotate to face each other by a Taylor-Gortler Vortex A counter-rotating vortex structure can be formed.
  • the vortex structure By the vortex structure, the mixing efficiency of the first fluid 10 and the second fluid 20 can be improved.
  • the width, the length, the height of the mixing flow path 300, and the respective mixing flow paths 300 are formed.
  • the angle should be limited within a certain range.
  • the angle a1 formed by each mixing passage 300 bent by the passage bending portion 310 may be 20 degrees to 120 degrees.
  • the ratio (Duct aspect ratio, H1 / W1) of the vertical height H1 on the side of the mixing channel 300 to the planar width W1 of the mixing channel 300 may be 1.0 to 10.0.
  • planar length L1 ratio L1 / W1 between the planar width W1 of the mixing channel 300 and the respective channel bends 310 of the mixing channel 300 may be 1.0 to 10.0. .
  • micromixer of the present invention by generating a pair of counter-rotating vortex structure to face each other inside the flow path to improve the mixing efficiency of heterogeneous fluids You can.
  • FIG. 6 is a perspective view showing a micromixer according to a second embodiment of the present invention
  • FIG. 7 is a plan view of the micromixer shown in FIG. 6.
  • the micro mixer 500B according to the present embodiment has a structure in which the inflow passage 200 is omitted, unlike the micro mixer 500A according to the first embodiment mentioned above.
  • the micro mixer 500B may have a structure in which the first fluid and the second fluid supplied to the supply channel 100 directly enter the mixing channel 300.
  • FIG. 8 is a perspective view showing a micromixer according to a third embodiment of the present invention
  • FIG. 9 is a plan view of the micromixer shown in FIG. 8.
  • the micromixer 500C is a micromixer having a microchannel for receiving heterogeneous fluids and mixing the heterogeneous fluids.
  • 2 may be configured to include a supply passage 120, the mixing passage 300 and the discharge passage (400).
  • the first supply passage 110 is configured to supply a first fluid, and is formed in a direction opposite to the formation direction of the second supply passage 120, and communicate with one end of the mixing passage 300.
  • the second supply passage 120 may supply a second fluid, may be formed in a direction opposite to the formation direction of the first supply passage 110, and may be in communication with one end of the mixing passage 300.
  • the first supply channel 110 and the second supply channel 120 may have a structure that forms an angle a0 of 90 degrees to 180 degrees.
  • the pressure for supplying the first fluid to the first supply passage 110 is preferably the same as the pressure for supplying the second fluid to the second supply passage 120.
  • the discharge passage 400 may be formed at the other end of the mixing passage 300 and may have a structure in which the mixed fluid of the first fluid and the second fluid is discharged.
  • a straight line having one end portion communicating with the first supply passage 110 and the second supply passage 120 and the other end portion communicating with the mixing passage.
  • An inflow passage 200 may be formed.
  • the mixing channel 300 communicates with one end of the first supply channel 110 and the second supply channel 120, and is disposed to be spaced apart by a predetermined distance and bent at a predetermined angle. It may be a structure having a.
  • the first fluid and the second fluid may form a Taylor-Gortler Vortex while passing through the flow path bent portion 310 (see FIG. 4).
  • a vortex in which the first fluid 10 and the second fluid 20 rotate to face each other by a Taylor-Gortler Vortex A counter-rotating vortex structure can be formed.
  • the mixing efficiency of the first fluid 10 and the second fluid 20 can be improved.
  • the width, the length, the height of the mixing flow path 300 and the respective mixing flow paths 300 are formed.
  • the angle should be limited within a certain range.
  • the angle a3 formed by each mixing channel 300 bent by the channel bending unit 310 may be 20 degrees to 120 degrees.
  • the ratio (Duct aspect ratio, H3 / W3) of the vertical height H3 on the side surface of the mixing channel 300 to the planar width W3 of the mixing channel 300 may be 1.0 to 10.0.
  • planar length L3 ratio L3 / W3 between the planar width W3 of the mixed channel 300 and the respective channel bends 310 of the mixed channel 300 may be 1.0 to 10.0. .
  • micromixer of the present invention by generating a pair of counter-rotating vortex structure to face each other inside the flow path to improve the mixing efficiency of heterogeneous fluids You can.
  • FIG. 10 is a perspective view showing a micromixer according to a fourth embodiment of the present invention
  • FIG. 11 is a plan view of the micromixer shown in FIG. 10.
  • the micro mixer 500D according to the present embodiment has a structure in which the inflow passage 200 is omitted, unlike the micro mixer 500C according to the third embodiment.
  • the micro mixer 500D may have a structure in which the first fluid and the second fluid supplied to the supply channel 100 directly enter the mixing channel 300.
  • FIG. 12 is a diagram showing a Taylor-Gortler Vortex generated inside a mixing flow path among heterogeneous fluid mixing performances of a micromixer according to an embodiment of the present invention.
  • 13 is a diagram showing the degree of mixing among the results of experiments on heterogeneous fluid mixing performance of the micromixer according to the embodiment of the present invention.
  • the color shown in FIG. 12 shows the vortex pattern generated inside the flow path of the micromixer as a helicity value.
  • # 1-# 15 is a number which shows each flow path bending part, and is written sequentially from a supply flow path to a discharge flow path.
  • one or two counter-rotating vortex structures are generated, and from the third cross section, three counter-rotating vortex structures are generated. It can be seen that a rotating vortex structure is generated.
  • the color shown in FIG. 13 shows the degree of mixing of heterogeneous fluid generated inside the flow path of the micromixer as a helicity value. That is, the helicity value shown in FIG. 13 is a value representing the degree of mixing while passing through the mixing channel after the first fluid having a mass fraction of 1 and the two fluids having a mass fraction of 0 are injected into the supply channel.
  • FIG. 14 is a graph showing a result of experimenting with heterogeneous fluid mixing performance for a micromixer according to various embodiments of the present invention.
  • the angle a1 formed by each mixing channel 300 bent by the channel bending unit 310 is set to 30 degrees, 45 degrees, 60 degrees, 90 degrees, or 120 degrees.
  • Heterogeneous fluids can be injected into five different micromixers to determine the degree of mixing of heterogeneous fluids along the length of the mixing channel.
  • the height (H1), length (L1), and width (W1) of the mixing channel of each micromixer used in the experiment were limited to specific values.
  • the ratio (Duct aspect ratio, H1 / W1) of the vertical height H1 on the side of the mixing channel 300 to the planar width W1 of the mixing channel 300 is limited to 5.0.
  • the planar length (L1) ratio (L1 / W1) between the planar width W1 of the mixing channel 300 and each channel bent portion 310 of the mixing channel 300 was limited to 4.0.
  • the X axis of the graph shown in FIG. 14 represents the length of the mixing channel, and the Y axis of the graph represents the mixing ratio. Specifically, 0% of the Y axis means that the heterogeneous fluid is not mixed at all, and 100% of the Y axis means the heterogeneous fluid is completely mixed.
  • each of the mixing passages 300 bent by the passage bending portion 310 is 45 degrees, it is sufficient that the length of the mixing passage is only about 600 ⁇ m in order to obtain a mixing ratio of 95% or more. You can see that.
  • 15 is a flowchart illustrating a method of manufacturing a micromixer according to an embodiment of the present invention.
  • a mold preparation step (S110) of preparing a mold insert having a shape of a supply flow path, a mixing flow path, and a discharge flow path may include a polymer in the mold insert.
  • Molding step (S120) for molding and may include a configuration including a take-out step (S130) for taking out the polymer molded in the molding step.
  • 16 is a flowchart illustrating a method of manufacturing a micromixer according to still another embodiment of the present invention.
  • the method for manufacturing a micromixer according to the present embodiment includes a substrate preparation step of preparing a substrate having a thickness corresponding to the side height of the micromixer, which is made of a material forming the micromixer. And a flow path forming step (S220) of directly etching the surface of the substrate to directly form a flow path of the micromixer.
  • the micromixer of the present invention by generating a pair of counter-rotating vortex structure to face each other inside the flow path to improve the mixing efficiency of heterogeneous fluids You can. Further, according to the micromixer of the present invention, in laminar conditions, the mixing efficiency between heterogeneous fluids can be improved by causing advective motion without inserting a structure for generating additional vortex. have. In addition, according to the micromixer of the present invention, since it is a structure that does not need any protrusions or protrusions formed in the flow path or recessed, it can be manufactured by a simple manufacturing process.
  • the micromixer of the present invention by generating a pair of counter-rotating vortex structure in the flow path to improve the mixing efficiency of heterogeneous fluids Can be.
  • the mixing efficiency between heterogeneous fluids can be improved by causing advective motion without inserting a structure for generating additional vortex. have.
  • micromixer of the present invention since it is a structure that does not need any protrusions or protrusions formed in the flow path or recessed, it can be manufactured by a simple manufacturing process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Micromachines (AREA)

Abstract

Disclosed are a micro mixer using a Taylor-Gortler vortex and a method for manufacturing the same. The micro mixer according to an embodiment of the present invention, as a micro mixer (500A, 500B) which is supplied with different kinds of fluids and has a micro channel for mixing the different kinds of fluids, comprises: a supply channel (100) which is of a straight line shape and has a first supply channel (110) on one end into which a first fluid flows and a second supply channel (120) on the other end into which a second fluid flows; a mixing channel (300) which is in communication with the central part of the supply channel (100), and has a plurality of bent channel parts (310) which are separately arranged at a predetermined distance and are curved at a predetermined angle; and a discharge channel (400) which is formed on the other end of the mixing channel (300), and discharges the mixed fluid of the first fluid and the second fluid, wherein the first fluid and the second fluid form a Taylor-Gortler vortex while passing through the bent channel parts (310).

Description

테일러 괴틀러 와류를 이용한 마이크로 믹서 및 그 제작방법 Micro Mixer Using Taylor Gotler Vortex and Its Manufacturing Method
본 발명은 마이크로 믹서 및 그 제작방법에 관한 것으로, 보다 상세하게는 유로 내부에 테일러-괴틀러 와류(Taylor-Gotrler Vortex)를 생성시켜 줌으로써, 이종(異種)유체의 혼합 효율을 향상시킬 수 있는 마이크로 믹서 및 그 제작방법에 관한 것이다.The present invention relates to a micromixer and a method of manufacturing the same, and more particularly, by generating a Taylor-Gotrler Vortex inside a flow path, a micro-molecule capable of improving the mixing efficiency of heterogeneous fluids. A mixer and a method of manufacturing the same.
최근 현장검진(point-of-care diagnostics), 병원균검출, 환경감시 및 신약개발 등의 생의학 연구를 위하여 집적화된 생물학적 분석시스템의 개발에 대한 연구가 활발하게 이루어지고 있다.Recently, researches on the development of integrated biological analysis systems for biomedical research such as point-of-care diagnostics, pathogen detection, environmental monitoring and new drug development have been actively conducted.
그 중에서도 바이오 멤스(Bio MEMS) 또는 바이오나노정보기술(Bio Nano Information Technology, BINT) 등의 나노 바이오(Nano-Bio)기술이 주류를 이루고 있다.Among them, Nano-Bio technologies such as Bio MEMS or Bio Nano Information Technology (BINT) are the mainstream.
특히, 생체분자 등의 검출에 대한 관심이 지극히 높은 상태인데, 생체분자는 아주 적은 양으로도 인체에 큰 영향을 미칠 수 있기 때문에 이를 검출할 수 있는 센싱 기술은 차세대 나노 바이오 기술의 핵심이라고 할 것이다.In particular, the interest in the detection of biomolecules is extremely high, but since biomolecules can have a great effect on the human body even with a very small amount, sensing technology capable of detecting them will be the core of the next-generation nanobiotechnology. .
이를 위하여 새로운 형태의 바이오 센서 및 이를 채용한 랩 온어 칩(Lab On a Chip, 이하 LOC)과 마이크로 통합분석 시스템(Micro-Total-Analysis-System)의 개발이 활발하다.To this end, the development of new types of biosensors, lab-on-a-chip (LOC) and micro-total-analysis-system using them are active.
LOC는 말 그대로 생물학, 화학 실험실의 구성 요소를 미세화(scale down)하여 하나의 칩에 구현함으로써 기존의 실험을 하나의 칩에서 수행할 수 있도록 하는 것을 의미하는 것으로, 미소한 하나의 칩 위에 분석을 위해서, 미량의 생체 시료의 채취, 운반, 처리, 측정을 위한 마이크로 유체소자(마이크로 밸브, 마이크로 펌프, 마이크로 채널, 마이크로 필터, 혼합기 등), 항원이나 유전자와 같은 생물분자를 이동 조작하기 위한 바이오 필터, 시료를 분석 감지하기 위한 반응기 및 센서(면역센서, 생화학센서 등), 마이크로 유체 소자를 구동시키기 위한 엑츄에이터, 주변 회로부 등의 소자를 멤스(Micro Electro Mechanical Systems, 이하 MEMS)공정을 이용하여 집적화시킨 작은 화학/생물 마이크로 프로세서이다. 즉, 수 cm2 정도 되는 하나의 칩 위에서 생체 시료의 전처리 과정, 운송, 제어, 분석 등을 모두 일어나게 하는 것이다.LOC literally scales down the components of biological and chemical laboratories and implements them on one chip, allowing existing experiments to be performed on one chip. Micro-fluidic devices (micro valves, micro pumps, micro channels, micro filters, mixers, etc.) for collecting, transporting, processing, and measuring trace amounts of biological samples; , The reactor and sensor (immune sensor, biochemical sensor, etc.) for analyzing and detecting the sample, the actuator for driving the microfluidic device, the peripheral circuit part, etc. are integrated by using the MEMS process It is a small chemical / biological microprocessor. That is, the pretreatment, transportation, control, analysis, etc. of the biological sample are all performed on one chip of several cm 2 .
복잡한 화학공정을 소형화 및 집적화하여 손 위에서 수행할 수 있는 LOC 개념은 사용되는 값비싼 시료의 양을 줄일 수 있고, 폐기물의 최소화, 소형화에 따른 이동성 및 현장 적응성이 뛰어나다는 점 등에 있어서 현대기술의 커다란 혁명이다.The LOC concept, which can be carried out at hand by miniaturizing and integrating complex chemical processes, can reduce the amount of expensive samples used, minimize the waste, and provide excellent mobility and field adaptability for miniaturization. It's a revolution.
LOC와 마이크로 통합분석 시스템 등의 초소형 장치는 분석에 필요한 모든 과정들이 하나의 작은 칩 위에서 수행될 수 있도록, 여러 개의 채널이나 미세구조물들을 포함한다. 이와 같은 초소형 장치에서 분석 혹은 생화학 반응을 위해 마이크로 채널에 의해 운반되는 시료와 시약 등의 효과적인 혼합은 필수적이라 할 것이다. 특히 이와 같은 바이오 응용 LOC 분야에서는 소모되는 시료의 양을 최소화시키는 것이 기구의 설계 및 시료의 채취를 고려한 비용 측면에서 매우 중요하다. 이를 위해서는 LOC 칩 내에서 화학물 간의 반응 시간을 최소화 시키는 기술이 필요하며, 이는 시료간 화학 반응이 활발히 일어날 수 있도록 섞어주기 위한 혼합(mixing) 기술이 요구된다. 즉, 최대한 짧은 유로 길이 내에서 시료 간의 반응이 원활히 일어날 수 있도록 하는 혼합(mixing) 기술이 필요하다.Miniature devices, such as LOCs and micro integrated analysis systems, contain multiple channels or microstructures so that all the processes required for analysis can be performed on a single chip. In such an ultra-compact device, effective mixing of reagents with samples carried by microchannels for analytical or biochemical reactions will be essential. In particular, in the field of bio-applied LOC, minimizing the amount of sample consumed is very important in terms of the design of the instrument and the cost in consideration of sampling. This requires a technique for minimizing the reaction time between chemicals in the LOC chip, which requires a mixing technique to mix the chemical reaction between samples. That is, there is a need for a mixing technique for smoothly reacting samples within the shortest flow path length.
하지만, 마이크로 단위에서 일어나는 유체 유동은 기존의 대규모 시스템과는 다른 독특한 특성을 보여주며, 이를 해결하기 위한 유체 유동 제어 및 혼합이 제품 성능에 지대한 영향을 주고 있는 실정이다.However, microfluidic fluid flow shows unique characteristics that are different from existing large-scale systems, and fluid flow control and mixing to solve this problem have a profound effect on product performance.
기존의 대규모 시스템의 경우, 유체 내에서 프로펠러를 돌리는 등의 방법으로 레이놀드 수(Reynolds number, 시스템의 크기와 유동특성, 점성효과를 고려하여 나타낼 수 있는 무차원 수로써 다음과 같이 표현된다. Re=(시스템의 특성길이ㅧ유체 밀도ㅧ유체 속도/점성))를 충분히 키워서 난류(turbulent flow)를 유발하는 것이 가능하여, 이에 의한 유체의 혼합을 얻을 수 있었다.In the existing large-scale system, the Reynolds number is expressed as a dimensionless number that can be represented in consideration of the size and flow characteristics of the system and the viscous effect by turning the propeller in the fluid. It is possible to induce turbulent flow by sufficiently increasing (the characteristic length of the system-fluid density-fluid velocity / viscosity), thereby obtaining a mixture of fluids.
그러나, 미세 유체공학 시스템의 경우, 레이놀드 수가 작아서 난류가 형성되지 않고 층류(laminar flow)만 이루어지므로 확산(diffusion)에 의한 혼합 밖에 기대할 수 없게 되어, 결과적으로 균일한 유체의 혼합물을 얻기가 힘들어진다. 유동간의 대류(convection or advection)에 의한 섞임에 비하여 확산에 의한 섞임은 시간 scale이 매우 느리며 확산 현상이 일어나는 영역도 서로 다른 유체가 맞닿아 있는 계면(interface)에서만 발생하기 때문에 매우 제한적이고 비효율적이다. 이에 채널 내부에서 와류의 생성을 통한 혼합(mixing)을 유도하는 기술이 요구된다. 일반적으로는 시료의 유입 속도를 증가(Reynolds 수 증가)를 통해 시료간의 혼합(mixing)을 촉진시킬 수 있으나, 이는 곧 사용하게 될 시료의 소모량이 증가한다는 것을 의미한다. 언급한 바와 같이 LOC 기반의 바이오 시료의 반응에서는 시료의 소모량을 최소화 시키는 것이 요구된다. 또한 시료의 주입 속도 증가를 통해 Reynolds 수를 수백 이상으로 증가시키게 되면 유로 내 급격한 압력의 상승을 유발하므로, 시료의 유입 자체가 어려워 지거나(주입을 위한 특수한 기구의 사용이 불가피) 액체 시료의 leakage가 발생하게 된다. 이러한 점에서 실제 LOC 응용에서는 혼합(mixing)을 위해 Reynolds 수를 수백 이상으로 증가시키는 것이 현실적인 방법은 되지 못한다. 실제 사용되는 환경과 조건을 고려하였을 때, 실제 LOC 적용 가능한 적절한 Reynolds 수의 영역을 최대 수백 이하(≤200)로 설정해 볼 수 있다.However, in the case of microfluidic systems, since the Reynolds number is small, no turbulence is formed and only laminar flow is achieved, only mixing by diffusion can be expected, resulting in difficulty in obtaining a uniform mixture of fluids. Lose. Compared to mixing by convection (convection or advection) between flows, mixing by diffusion is very slow and inefficient because the diffusion occurs only at the interface where different fluids are in contact. This requires a technique for inducing mixing through the generation of vortex inside the channel. In general, increasing the inflow rate of the sample (increasing the number of Reynolds) can promote mixing between the samples, but this means that the consumption of the sample to be used soon increases. As mentioned, the reaction of LOC-based biosamples requires minimizing the consumption of the sample. In addition, if the number of Reynolds is increased to more than several hundreds by increasing the injection rate of the sample, it causes a rapid increase in pressure in the flow path. Will occur. In this regard, increasing the number of Reynolds to hundreds or more for mixing in real LOC applications is not a realistic approach. Considering the actual environment and conditions used, it is possible to set the area of the appropriate number of Reynolds applicable to the actual LOC to a maximum of several hundreds (≤ 200).
이러한 저속의 low Reynolds 수 영역에서의 혼합(mixing)을 위한 대책으로 마이크로 채널 내부에 유동발생 수단을 도입한 능동 혼합(active 혼합(mixing)) 방법을 통해 혼합 성능의 향상을 가져오기도 하지만, 이 경우 마이크로 채널 내부의 미세 소량 유체의 누출 가능성과 함께 제조원가의 상승 및 다른 마이크로 장치들과의 통합에 따른 문제점이 따르게 된다.As a countermeasure for mixing in the low-speed low Reynolds number region, the mixing performance is improved through the active mixing method using a flow generating means inside the microchannel. Along with the possibility of leaking small amounts of fluid inside the microchannel, there is a problem of increased manufacturing cost and integration with other micro devices.
도 1에는 종래 기술에 따른 마이크로 믹서를 나타내는 사시도가 도시되어 있다.1 is a perspective view showing a micromixer according to the prior art.
상기 언급한 마이크로 장치들과는 달리, 도 1에 도시된 바와 같이, 마이크로 채널 내부에 정적인 여러 미세 구조를 도입함으로써 유체가 섞일 수 있게 유도하는 수동 혼합(passive 혼합(mixing)) 방법도 있다.Unlike the aforementioned microdevices, as shown in FIG. 1, there is also a passive mixing method in which fluids are mixed by introducing various static microstructures inside the microchannel.
이 경우, 위의 능동 혼합 방법보다 혼합 성능은 떨어질 수 있으나, 능동 혼합 방법의 많은 문제점들을 해결할 수 있으며, 특히 제조 원가를 크게 낮출 수 있고, 다른 마이크로 장치들과의 통합을 용이하게 하며, 혼합(mixing)을 일어나게 하기 위해 요구되는 추가적인 동력원(power source, 예를 들어, 전류, 전기장, 자기장 등)이 필요 없다는 장점을 가질 수 있다.In this case, the mixing performance may be lower than the above active mixing method, but many problems of the active mixing method may be solved, in particular, the manufacturing cost may be greatly reduced, and the integration with other micro devices may be easy, and the mixing ( It may have the advantage that no additional power source (e.g., current, electric field, magnetic field, etc.) required to effect mixing takes place.
이러한 요구에 발맞추어 여러 가지 수동 혼합 방법을 이용한 마이크로 믹서들이 보고되고 있다.In response to these needs, micromixers using various manual mixing methods have been reported.
하지만 기존 기술의 수동 혼합 방법들의 경우, 마이크로 채널 내부에 많은 장애물 또는 분리벽 등을 설치하여 혼합이 이루어지게 하는 방법으로, 큰 압력 손실을 유발하게 되는 단점을 안고 있으며 게다가 점점 복잡한 장애물들을 삽입함에 따라 제조 공정이 복잡하여 지고, 제조 원가가 상승되는 단점을 가지고 있다.However, in the case of the manual mixing methods of the existing technology, the mixing is performed by installing a lot of obstacles or partition walls in the microchannel, which causes a large pressure loss, and as more complex obstacles are inserted, The manufacturing process is complicated and the manufacturing cost is increased.
본 발명의 목적은, 층류(laminar) 조건에서, 추가적인 와류 생성을 위한 구조물의 삽입 없이 이류(移流) 움직임(advective motion)을 유발시킴으로써 이종(異種) 유체간의 혼합 효율을 개선시킬 수 있는 구조의 마이크로 믹서를 제공하는 것을 목적으로 한다.It is an object of the present invention to provide a microstructure having a structure capable of improving the mixing efficiency between heterogeneous fluids by causing advective motion in laminar conditions without inserting a structure for additional vortex generation. It is an object to provide a mixer.
이러한 목적을 달성하기 위한 본 발명의 일 측면에 따른 마이크로 믹서는,Micro mixer according to an aspect of the present invention for achieving this object,
이종(異種)유체를 공급받아 상기 이종유체를 혼합하는 미세 유로를 구비하는 마이크로 믹서로서,A micromixer having a fine flow path for receiving a heterogeneous fluid and mixing the heterogeneous fluid,
일단부에 제 1 유체가 유입되는 제 1 공급유로 및 타단부에 제 2 유체가 유입되는 제 2 공급유로를 구비하는 일직선 형태의 공급유로;A straight supply passage having a first supply passage through which a first fluid flows into one end and a second supply passage through which a second fluid flows into the other end;
상기 공급유로의 중앙부와 연통되고, 소정의 거리만큼 이격되어 배치되어 소정의 각도로 꺽인 다수의 유로 절곡부를 구비하는 혼합유로; 및A mixing flow passage communicating with a central portion of the supply flow passage, the mixing flow passage having a plurality of flow path bent portions disposed spaced apart by a predetermined distance and bent at a predetermined angle; And
상기 혼합유로의 타단부에 형성되고, 제 1 유체와 제 2 유체의 혼합 유체가 배출되는 배출유로;A discharge flow path formed at the other end of the mixing flow path, through which the mixed fluid of the first fluid and the second fluid is discharged;
를 포함하되,Including,
상기 제 1 유체와 제 2 유체는 유로 절곡부를 지나면서 테일러-괴틀러 와류(Taylor-Gortler Vortex)를 형성하는 구성일 수 있다.The first fluid and the second fluid may be configured to form a Taylor-Gortler Vortex while passing through the flow path bent portion.
이 경우, 상기 제 1 공급유로로 제 1 유체를 공급하는 압력은, 제 2 공급유로로 제 2 유체를 공급하는 압력과 동일할 수 있다.In this case, the pressure for supplying the first fluid to the first supply channel may be the same as the pressure for supplying the second fluid to the second supply channel.
또한, 상기 공급유로와 혼합유로 사이에는,In addition, between the supply passage and the mixed passage,
상기 공급유로의 중앙부에 수직으로 연통되는 일단부, 및 상기 혼합유로와 연통되는 타단부를 구비하는 일직선 형태의 유입유로(200)가 형성될 수 있다.A straight inflow passage 200 may be formed having one end vertically communicating with the central portion of the supply flow passage and the other end communicating with the mixing flow passage.
일 실시예에서, 상기 유로 절곡부에 의해 절곡된 각 혼합유로가 이루는 사이각(a1, a2)은, 20 도 내지 120 도일 수 있다.In an embodiment, the angles a1 and a2 formed by the mixed flow passages bent by the flow path bending portion may be 20 degrees to 120 degrees.
일 실시예에서, 상기 혼합유로의 평면상 폭(W1, W2) 대비 혼합유로의 측면상 수직 높이(H1, H2)의 비율(Duct aspect ratio)은, 1.0 내지 10.0 일 수 있다.In one embodiment, the ratio aspect ratio of the vertical heights H1 and H2 of the side surfaces of the mixing channel to the planar widths W1 and W2 of the mixing channel may be 1.0 to 10.0.
일 실시예에서, 상기 혼합유로의 평면상 폭(W1, W2) 대비 혼합유로의 각 유로 절곡부 사이의 평면상 길이(L1, L2) 비율(L1/W1, L2/W2)은, 1.0 내지 10.0 일 수 있다.In one embodiment, the planar length (L1, L2) ratio (L1 / W1, L2 / W2) between the planar width (W1, W2) of the mixing flow path between the passage bends of the mixing flow path, 1.0 to 10.0 Can be.
본 발명의 또 다른 측면에 따른 마이크로 믹서는,Micro mixer according to another aspect of the present invention,
이종(異種)유체를 공급받아 상기 이종유체를 혼합하는 미세 유로를 구비하는 마이크로 믹서로서,A micromixer having a fine flow path for receiving a heterogeneous fluid and mixing the heterogeneous fluid,
제 1 유체를 공급하고, 제 2 공급유로의 형성방향과 대향하는 방향으로 형성되고, 혼합유로의 일단부와 연통되는 제 1 공급유로;A first supply passage that supplies the first fluid, is formed in a direction opposite to the formation direction of the second supply passage, and communicates with one end of the mixing passage;
제 2 유체를 공급하고, 상기 제 1 공급유로의 형성방향과 대향하는 방향으로 형성되고, 혼합유로의 일단부와 연통되는 제 2 공급유로;A second supply passage which supplies a second fluid, is formed in a direction opposite to the forming direction of the first supply passage, and is in communication with one end of the mixing passage;
상기 제 1 공급유로 및 제 2 공급유로와 일단부에서 연통되고, 소정의 거리만큼 이격되어 배치되고 소정의 각도로 꺽인 다수의 유로 절곡부를 구비하는 혼합유로; 및A mixing passage communicating with one end of the first supply passage and the second supply passage, the mixing passage having a plurality of passage bends disposed at a predetermined distance and bent at a predetermined angle; And
상기 혼합유로의 타단부에 형성되고, 제 1 유체와 제 2 유체의 혼합 유체가 배출되는 배출유로;A discharge flow path formed at the other end of the mixing flow path, through which the mixed fluid of the first fluid and the second fluid is discharged;
를 포함하되,Including,
상기 제 1 유체와 제 2 유체는 유로 절곡부를 지나면서 혼합유로 내부에서 테일러-괴틀러 와류(Taylor-Gortler Vortex)를 형성하는 구성일 수 있다.The first fluid and the second fluid may be configured to form a Taylor-Gortler Vortex inside the mixing flow path while passing through the flow path bent portion.
이 경우, 상기 제 1 공급유로와 제 2 공급유로는 120 도 내지 180 도의 각도(a0)를 형성하는 구조일 수 있다.In this case, the first supply passage and the second supply passage may have a structure forming an angle a0 of 120 degrees to 180 degrees.
또한, 상기 제 1 공급유로로 제 1 유체를 공급하는 압력은, 제 2 공급유로로 제 2 유체를 공급하는 압력과 동일할 수 있다.In addition, the pressure for supplying the first fluid to the first supply passage may be the same as the pressure for supplying the second fluid to the second supply passage.
일 실시예에서, 상기 공급유로와 혼합유로 사이에는,In one embodiment, between the supply channel and the mixed channel,
상기 제 1 공급유로 및 제 2 공급유로와 연통되는 일단부, 및 상기 혼합유로와 연통되는 타단부를 구비하는 일직선 형태의 유입유로가 형성될 수 있다.A straight inflow passage may be formed having one end portion communicating with the first supply passage and the second supply passage, and the other end portion communicating with the mixing passage.
일 실시예에서, 상기 유로 절곡부에 의해 절곡된 각 혼합유로가 이루는 사이각(a3, a4)은, 20 도 내지 120 도 일 수 있다.In an embodiment, the angles a3 and a4 formed by the mixed flow passages bent by the flow path bending portion may be 20 degrees to 120 degrees.
일 실시예에서, 상기 혼합유로의 평면상 폭(W3, W4) 대비 혼합유로의 측면상 수직 높이(H3, H4)의 비율(Duct aspect ratio, H3/W3, H4/W4)은, 1.0 내지 10.0 일 수 있다.In one embodiment, the ratio (Duct aspect ratio, H3 / W3, H4 / W4) of the planar widths (W3, W4) of the mixing channel to the lateral vertical heights (H3, H4) of the mixing channel, 1.0 to 10.0 Can be.
일 실시예에서, 상기 혼합유로의 평면상 폭(W3, W4) 대비 혼합유로의 각 유로 절곡부 사이의 평면상 길이(L3, L4) 비율(L3/W3, L4/W4)은, 1.0 내지 10.0 일 수 있다.In one embodiment, the planar length (L3, L4) ratio (L3 / W3, L4 / W4) between the planar width (W3, W4) of the mixing flow path of each flow path bent portion of the mixing flow path, 1.0 to 10.0 Can be.
본 발명은 상기 마이크로 믹서를 제작하는 방법을 제공할 수 있는 바, 본 발명의 일 측면에 따른 마이크로 믹서 제작방법은,The present invention can provide a method for manufacturing the micro mixer, the method for manufacturing a micro mixer according to an aspect of the present invention,
a) 공급유로, 혼합유로 및 배출유로의 형상을 갖는 금형인서트를 준비하는 금형준비단계;a) a mold preparation step of preparing a mold insert having a shape of a supply passage, a mixing passage and a discharge passage;
b) 상기 금형인서트에 폴리머를 몰딩하는 몰딩단계;b) a molding step of molding a polymer on the mold insert;
c) 상기 몰딩단계에서 몰딩한 폴리머를 취출하는 취출단계;c) a takeout step of taking out the polymer molded in the molding step;
를 포함하는 구성일 수 있다.It may be a configuration including a.
본 발명의 또 다른 측면에 따른 마이크로 믹서 제작방법은,Micro mixer manufacturing method according to another aspect of the present invention,
a) 마이크로 믹서를 이루는 소재로 구성되고, 마이크로 믹서의 측면 높이와 대응되는 두께를 가지는 기판을 준비하는 기판준비단계; 및a) a substrate preparation step of preparing a substrate comprising a material constituting the micromixer and having a thickness corresponding to the side height of the micromixer; And
b) 기판의 표면을 바로 식각하여, 마이크로 믹서의 유로를 직접 형성하는 유로형성단계;b) a flow path forming step of directly etching the surface of the substrate to directly form a flow path of the micromixer;
를 포함하는 구성일 수 있다.It may be a configuration including a.
본 발명의 또 다른 측면에 따른 마이크로 믹서 제작방법은,Micro mixer manufacturing method according to another aspect of the present invention,
폴리머 물질(Polymer material)을 이용한 임프린팅(imprinting) 방법을 포함하는 구성일 수 있다.It may be a configuration including an imprinting method using a polymer material.
본 발명은 상기 마이크로 믹서를 포함하는 것을 특징으로 하는 분석시스템을 제공할 수 있다.The present invention can provide an analysis system comprising the micro mixer.
도 1은 종래 기술에 따른 마이크로 믹서를 나타내는 사시도이다.1 is a perspective view showing a micromixer according to the prior art.
도 2는 본 발명의 제 1 실시예에 따른 마이크로 믹서를 나타내는 사시도이다.2 is a perspective view showing a micro mixer according to a first embodiment of the present invention.
도 3은 도 2에 도시된 마이크로 믹서의 평면도이다.3 is a plan view of the micromixer shown in FIG. 2.
도 4는 꺾어진 형상의 유로 내부에서 발생하는 테일러-괴틀러 와류(Taylor-Gortler Vortex)를 설명하기 위한 모식도이다.FIG. 4 is a schematic diagram for explaining a Taylor-Gortler Vortex occurring inside a curved flow path.
도 5는 도 3의 A - A' 절단면도이다.5 is a cross-sectional view taken along line AA ′ of FIG. 3.
도 6은 본 발명의 제 2 실시예에 따른 마이크로 믹서를 나타내는 사시도이다.6 is a perspective view showing a micro mixer according to a second embodiment of the present invention.
도 7은 도 6에 도시된 마이크로 믹서의 평면도이다.FIG. 7 is a plan view of the micro mixer shown in FIG. 6.
도 8은 본 발명의 제 3 실시예에 따른 마이크로 믹서를 나타내는 사시도이다.8 is a perspective view illustrating a micromixer according to a third embodiment of the present invention.
도 9는 도 6에 도시된 마이크로 믹서의 평면도이다.9 is a plan view of the micromixer shown in FIG. 6.
도 10은 본 발명의 제 4 실시예에 따른 마이크로 믹서를 나타내는 사시도이다.10 is a perspective view showing a micro mixer according to a fourth embodiment of the present invention.
도 11은 도 10에 도시된 마이크로 믹서의 평면도이다.FIG. 11 is a plan view of the micro mixer shown in FIG. 10.
도 12는 본 발명의 일 실시예에 따른 마이크로 믹서에 대한 이종(異種) 유체 혼합 성능을 실험한 결과값 중 혼합 유로 내부에서 발생된 테일러-괴틀러 와류(Taylor-Gortler Vortex)를 나타내는 그림이다.FIG. 12 is a diagram illustrating a Taylor-Gortler Vortex generated inside a mixing passage among heterogeneous fluid mixing performances of a micromixer according to an embodiment of the present invention.
도 13은 본 발명의 일 실시예에 따른 마이크로 믹서에 대한 이종(異種) 유체 혼합 성능을 실험한 결과값 중 혼합 정도를 나타내는 그림이다.13 is a diagram showing the degree of mixing among the results of experimenting heterogeneous fluid mixing performance for the micromixer according to an embodiment of the present invention.
도 14는 본 발명의 여러 실시예에 따른 마이크로 믹서에 대한 이종(異種) 유체 혼합 성능을 실험한 결과값을 나타내는 그래프이다.14 is a graph illustrating results of experiments on heterogeneous fluid mixing performance of a micromixer according to various embodiments of the present disclosure.
도 15는 본 발명의 일 실시예에 따른 마이크로 믹서의 제작방법을 나타내는 흐름도이다.15 is a flowchart illustrating a method of manufacturing a micromixer according to an embodiment of the present invention.
도 16은 본 발명의 또 다른 실시예에 따른 마이크로 믹서의 제작방법을 나타내는 흐름도이다.16 is a flowchart illustrating a method of manufacturing a micromixer according to still another embodiment of the present invention.
이하, 첨부도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하지만 본 발명의 범주가 그것에 한정되는 것은 아니다. 본 발명을 설명함에 있어 공지된 구성에 대해서는 그 상세한 설명을 생략하며, 또한 발명의 요지를 불필요하게 흐릴 소지가 있는 구성에 대해서도 그 상세한 설명은 생략하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings, but the scope of the present invention is not limited thereto. In the description of the present invention, a detailed description of known configurations will be omitted, and a detailed description thereof will be omitted for configurations that may unnecessarily obscure the subject matter of the present invention.
도 2에는 본 발명의 제 1 실시예에 따른 마이크로 믹서를 나타내는 사시도가 도시되어 있고, 도 3에는 도 2에 도시된 마이크로 믹서의 평면도가 도시되어 있다. 또한, 도 4에는 꺾어진 형상의 유로 내부에서 발생하는 테일러-괴틀러 와류(Taylor-Gortler Vortex)를 설명하기 위한 모식도가 도시되어 있고, 도 5에는 도 3의 A - A' 절단면도가 도시되어있다.2 is a perspective view showing a micromixer according to a first embodiment of the present invention, and FIG. 3 is a plan view of the micromixer shown in FIG. 2. In addition, FIG. 4 is a schematic diagram for explaining a Taylor-Gortler Vortex occurring inside a curved flow path, and FIG. 5 is a cross-sectional view taken along line AA ′ of FIG. 3. .
이들 도면을 참조하면, 본 실시예에 따른 마이크로 믹서(500A)는, 이종(異種)유체를 공급받아 상기 이종유체를 혼합하는 미세 유로를 구비하는 마이크로 믹서로서, 공급유로(100), 혼합유로(300) 및 배출유로(400)를 포함하는 구성일 수 있다.Referring to these drawings, the micromixer 500A according to the present embodiment is a micromixer having a microchannel for receiving heterogeneous fluid and mixing the heterogeneous fluid. The micromixer 500A includes a supply channel 100 and a mixing channel ( 300) and the discharge passage 400 may be configured.
구체적으로, 공급유로(100)는 일단부에 제 1 유체가 유입되는 제 1 공급유로(110) 및 타단부에 제 2 유체가 유입되는 제 2 공급유로(120)를 구비하는 일직선 형태일 수 있다. 이때, 제 1 공급유로(110)로 제 1 유체를 공급하는 압력은, 제 2 공급유로(120)로 제 2 유체를 공급하는 압력과 동일한 것이 바람직하다.Specifically, the supply passage 100 may have a straight shape including a first supply passage 110 through which the first fluid flows in one end and a second supply passage 120 through which the second fluid flows in the other end. . At this time, the pressure for supplying the first fluid to the first supply passage 110 is preferably the same as the pressure for supplying the second fluid to the second supply passage 120.
배출유로(400)는, 혼합유로(300)의 타단부에 형성되고, 제 1 유체와 제 2 유체의 혼합 유체가 배출되는 구조일 수 있다.The discharge passage 400 is formed at the other end of the mixing passage 300 and may have a structure in which the mixed fluid of the first fluid and the second fluid is discharged.
경우에 따라서, 도 1에 도시된 바와 같이, 공급유로(100)와 혼합유로(300) 사이에는, 공급유로(100)의 중앙부에 수직으로 연통되는 일단부, 및 상기 혼합유로(300)와 연통되는 타단부를 구비하는 일직선 형태의 유입유로(200)가 형성될 수 있다.In some cases, as shown in FIG. 1, between the supply passage 100 and the mixing passage 300, one end portion perpendicularly communicating with the central portion of the supply passage 100, and communicating with the mixing passage 300. A straight inflow passage 200 having the other end may be formed.
혼합유로(300)는, 공급유로(100)의 중앙부와 연통되고, 소정의 거리만큼 이격되어 배치되어 소정의 각도로 꺽인 다수의 유로 절곡부(310)를 구비하는 구조일 수 있다.The mixing passage 300 may have a structure in communication with the central portion of the supply passage 100 and provided with a plurality of passage bending portions 310 spaced apart by a predetermined distance and bent at a predetermined angle.
이때, 제 1 유체와 제 2 유체는, 도 5에 도시된 바와 같이, 유로 절곡부(310)를 지나면서 테일러-괴틀러 와류(Taylor-Gortler Vortex)를 형성할 수 있다.At this time, the first fluid and the second fluid, as shown in FIG. 5, may form a Taylor-Gortler Vortex while passing through the flow path bent portion 310.
테일러-괴틀러 와류(Taylor-Gortler Vortex)란, 도 4에 도시된 바와 같이, 꺾어진 형상의 유로(4) 내부에서 유동 불안정에 기인하여 발생하는 와류를 의미하는 것으로서, 둘 이상의 유체의 흐름이 서로 마주보며 회전하는 와류 구조(counter-rotating vortex structure)를 형성한다. 이러한 와류 구조에 의해 둘 이상의 유체의 흐름은 서로 혼합될 수 있다.Taylor-Gortler Vortex, as shown in FIG. 4, refers to a vortex generated due to flow instability inside the bent flow path 4, in which two or more fluids flow from each other. Form counter-rotating vortex structures facing each other. This vortex structure allows the flow of two or more fluids to mix with each other.
도 5에 도시된 바와 같이, 본 실시예에 따른 유로 내부에서는, 테일러-괴틀러 와류(Taylor-Gortler Vortex)에 의해 제 1 유체(10)와 제 2 유체(20)가 서로 마주보며 회전하는 와류 구조(counter-rotating vortex structure)가 형성될 수 있다. 이러한 와류 구조에 의해 제 1 유체(10)와 제 2 유체(20)의 혼합 효율이 향상될 수 있다.As shown in FIG. 5, in the flow path according to the present embodiment, a vortex in which a first fluid 10 and a second fluid 20 rotate to face each other by a Taylor-Gortler Vortex A counter-rotating vortex structure can be formed. By the vortex structure, the mixing efficiency of the first fluid 10 and the second fluid 20 can be improved.
유로 내부에 테일러-괴틀러 와류(Taylor-Gortler Vortex)를 형성하기 위해서는, 도 1 및 도 2에 도시된 바와 같이, 혼합유로(300)의 폭, 길이, 높이 및 각 혼합유로(300) 들이 이루는 각도는 특정 범위 이내로 한정되어야 한다.In order to form a Taylor-Gortler Vortex inside the flow path, as shown in FIGS. 1 and 2, the width, the length, the height of the mixing flow path 300, and the respective mixing flow paths 300 are formed. The angle should be limited within a certain range.
예를 들어, 유로 절곡부(310)에 의해 절곡된 각 혼합유로(300)가 이루는 사이각(a1)은, 20 도 내지 120 도 일 수 있다.For example, the angle a1 formed by each mixing passage 300 bent by the passage bending portion 310 may be 20 degrees to 120 degrees.
또한, 혼합유로(300)의 평면상 폭(W1) 대비 혼합유로(300)의 측면상 수직 높이(H1)의 비율(Duct aspect ratio, H1/W1)은, 1.0 내지 10.0 일 수 있다.In addition, the ratio (Duct aspect ratio, H1 / W1) of the vertical height H1 on the side of the mixing channel 300 to the planar width W1 of the mixing channel 300 may be 1.0 to 10.0.
또한, 혼합유로(300)의 평면상 폭(W1) 대비 혼합유로(300)의 각 유로 절곡부(310) 사이의 평면상 길이(L1) 비율(L1/W1)은, 1.0 내지 10.0 일 수 있다.In addition, the planar length L1 ratio L1 / W1 between the planar width W1 of the mixing channel 300 and the respective channel bends 310 of the mixing channel 300 may be 1.0 to 10.0. .
따라서, 본 실시예에 따른 본 발명의 마이크로 믹서에 따르면, 유로 내부에 여러 쌍의 서로 마주보며 회전하는 와류 구조(counter-rotating vortex structure)를 생성시켜 줌으로써, 이종(異種) 유체의 혼합 효율을 향상시킬 수 있다.Therefore, according to the micromixer of the present invention according to the present embodiment, by generating a pair of counter-rotating vortex structure to face each other inside the flow path to improve the mixing efficiency of heterogeneous fluids You can.
도 6에는 본 발명의 제 2 실시예에 따른 마이크로 믹서를 나타내는 사시도가 도시되어 있고, 도 7에는 도 6에 도시된 마이크로 믹서의 평면도가 도시되어 있다.6 is a perspective view showing a micromixer according to a second embodiment of the present invention, and FIG. 7 is a plan view of the micromixer shown in FIG. 6.
이들 도면을 참조하면, 본 실시예에 따른 마이크로 믹서(500B)는, 상기 언급한 제 1 실시예에 따른 마이크로 믹서(500A)와는 달리 유입유로(200)가 생략된 구조이다.Referring to these drawings, the micro mixer 500B according to the present embodiment has a structure in which the inflow passage 200 is omitted, unlike the micro mixer 500A according to the first embodiment mentioned above.
구체적으로, 본 실시예에 따른 마이크로 믹서(500B)는, 공급유로(100)로 공급된 제 1 유체와 제 2 유체가 바로 혼합유로(300) 내부로 진입하는 구조일 수 있다.In detail, the micro mixer 500B according to the present exemplary embodiment may have a structure in which the first fluid and the second fluid supplied to the supply channel 100 directly enter the mixing channel 300.
다른 구성에 대한 구체적인 설명은 상기 제 1 실시예에 따른 마이크로 믹서(500A)의 설명과 동일하므로 생략하기로 한다.Detailed description of the other configuration is the same as the description of the micromixer 500A according to the first embodiment will be omitted.
도 8에는 본 발명의 제 3 실시예에 따른 마이크로 믹서를 나타내는 사시도가 도시되어 있고, 도 9에는 도 8에 도시된 마이크로 믹서의 평면도가 도시되어 있다.8 is a perspective view showing a micromixer according to a third embodiment of the present invention, and FIG. 9 is a plan view of the micromixer shown in FIG. 8.
이들 도면을 참조하면, 본 실시예에 따른 마이크로 믹서(500C)는, 이종(異種)유체를 공급받아 상기 이종유체를 혼합하는 미세 유로를 구비하는 마이크로 믹서로서, 제 1 공급유로(110), 제 2 공급유로(120), 혼합유로(300) 및 배출유로(400)를 포함하는 구성일 수 있다.Referring to these drawings, the micromixer 500C according to the present embodiment is a micromixer having a microchannel for receiving heterogeneous fluids and mixing the heterogeneous fluids. 2 may be configured to include a supply passage 120, the mixing passage 300 and the discharge passage (400).
구체적으로, 제 1 공급유로(110)는 제 1 유체를 공급하고, 제 2 공급유로(120)의 형성방향과 대향하는 방향으로 형성되고, 혼합유로(300)의 일단부와 연통되는 구조이고, 제 2 공급유로(120)는 제 2 유체를 공급하고, 상기 제 1 공급유로(110)의 형성방향과 대향하는 방향으로 형성되고, 혼합유로(300)의 일단부와 연통되는 구조일 수 있다. 이때, 도 8에 도시된 바와 같이, 제 1 공급유로(110)와 제 2 공급유로(120)는 90 도 내지 180 도의 각도(a0)를 형성하는 구조일 수 있다. 또한, 제 1 공급유로(110)로 제 1 유체를 공급하는 압력은, 제 2 공급유로(120)로 제 2 유체를 공급하는 압력과 동일함이 바람직하다.Specifically, the first supply passage 110 is configured to supply a first fluid, and is formed in a direction opposite to the formation direction of the second supply passage 120, and communicate with one end of the mixing passage 300. The second supply passage 120 may supply a second fluid, may be formed in a direction opposite to the formation direction of the first supply passage 110, and may be in communication with one end of the mixing passage 300. In this case, as shown in FIG. 8, the first supply channel 110 and the second supply channel 120 may have a structure that forms an angle a0 of 90 degrees to 180 degrees. In addition, the pressure for supplying the first fluid to the first supply passage 110 is preferably the same as the pressure for supplying the second fluid to the second supply passage 120.
배출유로(400)는 혼합유로(300)의 타단부에 형성되고, 제 1 유체와 제 2 유체의 혼합 유체가 배출되는 구조일 수 있다.The discharge passage 400 may be formed at the other end of the mixing passage 300 and may have a structure in which the mixed fluid of the first fluid and the second fluid is discharged.
경우에 따라서, 도 7 및 도 8에 도시된 바와 같이, 제 1 공급유로(110) 및 제 2 공급유로(120)와 연통되는 일단부, 및 상기 혼합유로와 연통되는 타단부를 구비하는 일직선 형태의 유입유로(200)가 형성될 수 있다.In some cases, as illustrated in FIGS. 7 and 8, a straight line having one end portion communicating with the first supply passage 110 and the second supply passage 120 and the other end portion communicating with the mixing passage. An inflow passage 200 may be formed.
혼합유로(300)는, 제 1 공급유로(110) 및 제 2 공급유로(120)와 일단부에서 연통되고, 소정의 거리만큼 이격되어 배치되고 소정의 각도로 꺽인 다수의 유로 절곡부(310)를 구비하는 구조일 수 있다.The mixing channel 300 communicates with one end of the first supply channel 110 and the second supply channel 120, and is disposed to be spaced apart by a predetermined distance and bent at a predetermined angle. It may be a structure having a.
이때, 제 1 유체와 제 2 유체는, 유로 절곡부(310)를 지나면서 테일러-괴틀러 와류(Taylor-Gortler Vortex)를 형성할 수 있다(도 4 참조). 도 4에 도시된 바와 같이, 본 실시예에 따른 유로 내부에서는, 테일러-괴틀러 와류(Taylor-Gortler Vortex)에 의해 제 1 유체(10)와 제 2 유체(20)가 서로 마주보며 회전하는 와류 구조(counter-rotating vortex structure)가 형성될 수 있다. 이러한 와류 구조에 의해 제 1 유체(10)와 제 2 유체(20)의 혼합 효율이 향상될 수 있다.In this case, the first fluid and the second fluid may form a Taylor-Gortler Vortex while passing through the flow path bent portion 310 (see FIG. 4). As shown in FIG. 4, in the flow path according to the present embodiment, a vortex in which the first fluid 10 and the second fluid 20 rotate to face each other by a Taylor-Gortler Vortex A counter-rotating vortex structure can be formed. By the vortex structure, the mixing efficiency of the first fluid 10 and the second fluid 20 can be improved.
유로 내부에 테일러-괴틀러 와류(Taylor-Gortler Vortex)를 형성하기 위해서는, 도 8 및 도 9에 도시된 바와 같이, 혼합유로(300)의 폭, 길이, 높이 및 각 혼합유로(300) 들이 이루는 각도는 특정 범위 이내로 한정되어야 한다.In order to form a Taylor-Gortler Vortex inside the flow path, as shown in FIGS. 8 and 9, the width, the length, the height of the mixing flow path 300 and the respective mixing flow paths 300 are formed. The angle should be limited within a certain range.
예를 들어, 유로 절곡부(310)에 의해 절곡된 각 혼합유로(300)가 이루는 사이각(a3)은, 20 도 내지 120 도 일 수 있다.For example, the angle a3 formed by each mixing channel 300 bent by the channel bending unit 310 may be 20 degrees to 120 degrees.
또한, 혼합유로(300)의 평면상 폭(W3) 대비 혼합유로(300)의 측면상 수직 높이(H3)의 비율(Duct aspect ratio, H3/W3)은, 1.0 내지 10.0 일 수 있다.In addition, the ratio (Duct aspect ratio, H3 / W3) of the vertical height H3 on the side surface of the mixing channel 300 to the planar width W3 of the mixing channel 300 may be 1.0 to 10.0.
또한, 혼합유로(300)의 평면상 폭(W3) 대비 혼합유로(300)의 각 유로 절곡부(310) 사이의 평면상 길이(L3) 비율(L3/W3)은, 1.0 내지 10.0 일 수 있다.In addition, the planar length L3 ratio L3 / W3 between the planar width W3 of the mixed channel 300 and the respective channel bends 310 of the mixed channel 300 may be 1.0 to 10.0. .
따라서, 본 실시예에 따른 본 발명의 마이크로 믹서에 따르면, 유로 내부에 여러 쌍의 서로 마주보며 회전하는 와류 구조(counter-rotating vortex structure)를 생성시켜 줌으로써, 이종(異種) 유체의 혼합 효율을 향상시킬 수 있다.Therefore, according to the micromixer of the present invention according to the present embodiment, by generating a pair of counter-rotating vortex structure to face each other inside the flow path to improve the mixing efficiency of heterogeneous fluids You can.
도 10에는 본 발명의 제 4 실시예에 따른 마이크로 믹서를 나타내는 사시도가 도시되어 있고, 도 11에는 도 10에 도시된 마이크로 믹서의 평면도가 도시되어 있다.10 is a perspective view showing a micromixer according to a fourth embodiment of the present invention, and FIG. 11 is a plan view of the micromixer shown in FIG. 10.
이들 도면을 참조하면, 본 실시예에 따른 마이크로 믹서(500D)는, 상기 언급한 제 3 실시예에 따른 마이크로 믹서(500C)와는 달리 유입유로(200)가 생략된 구조이다.Referring to these drawings, the micro mixer 500D according to the present embodiment has a structure in which the inflow passage 200 is omitted, unlike the micro mixer 500C according to the third embodiment.
구체적으로, 본 실시예에 따른 마이크로 믹서(500D)는, 공급유로(100)로 공급된 제 1 유체와 제 2 유체가 바로 혼합유로(300) 내부로 진입하는 구조일 수 있다.In detail, the micro mixer 500D according to the present exemplary embodiment may have a structure in which the first fluid and the second fluid supplied to the supply channel 100 directly enter the mixing channel 300.
다른 구성에 대한 구체적인 설명은 상기 제 3 실시예에 따른 마이크로 믹서(500C)의 설명과 동일하므로 생략하기로 한다.Detailed description of the other configuration is the same as the description of the micromixer 500C according to the third embodiment will be omitted.
도 12에는 본 발명의 일 실시예에 따른 마이크로 믹서에 대한 이종(異種) 유체 혼합 성능을 실험한 결과값 중 혼합 유로 내부에서 발생된 테일러-괴틀러 와류(Taylor-Gortler Vortex)를 나타내는 그림이 도시되어 있고, 도 13에는 본 발명의 일 실시예에 따른 마이크로 믹서에 대한 이종(異種) 유체 혼합 성능을 실험한 결과값 중 혼합 정도를 나타내는 그림이다.FIG. 12 is a diagram showing a Taylor-Gortler Vortex generated inside a mixing flow path among heterogeneous fluid mixing performances of a micromixer according to an embodiment of the present invention. 13 is a diagram showing the degree of mixing among the results of experiments on heterogeneous fluid mixing performance of the micromixer according to the embodiment of the present invention.
우선 도 12를 참조하면, 총 30개(15개 쌍)의 유로 절곡부로 구성된 마이크로 믹서에 이종유체를 공급할 때, 마이크로 믹서의 혼합유로 내부에서 발생되는 테일러-괴틀러 와류(Taylor-Gortler Vortex)를 확인할 수 있다.First, referring to FIG. 12, when supplying heterogeneous fluid to a micromixer composed of a total of 30 (15 pairs) of channel bends, a Taylor-Gortler Vortex generated inside the mixing channel of the micromixer is used. You can check it.
도 12에 도시된 색상은 마이크로 믹서의 유로 내부에서 생성되는 와류 패턴을 헬리시티(helicity) 값으로 산출하여 도시한 것이다.The color shown in FIG. 12 shows the vortex pattern generated inside the flow path of the micromixer as a helicity value.
또한, #1 내지 #15의 표기는 각 유로 절곡부를 나타내는 번호로서, 공급유로에서부터 배출유로까지 순차적으로 표기한 것이다.In addition, the notation of # 1-# 15 is a number which shows each flow path bending part, and is written sequentially from a supply flow path to a discharge flow path.
도 12에 도시된 바와 같이, #1 단면에서 #15 단면으로 갈수록 여러 쌍의 서로 마주보며 회전하는 와류 구조(counter-rotating vortex structure)가 명확히 생성되는 것을 확인할 수 있다.As shown in FIG. 12, it can be seen that a counter-rotating vortex structure is clearly generated as the pairs face each other and rotate from the cross section # 1 to the cross section # 15.
구체적으로, #1 단면에서 #2 단면까지는 1 내지 2 개의 서로 마주보며 회전하는 와류 구조(counter-rotating vortex structure)가 생성되고, #3번째 단면부터는 3개의 서로 마주보며 회전하는 와류 구조(counter-rotating vortex structure)가 생성됨을 확인할 수 있다.Specifically, from the cross section # 1 to the cross section # 2, one or two counter-rotating vortex structures are generated, and from the third cross section, three counter-rotating vortex structures are generated. It can be seen that a rotating vortex structure is generated.
다음으로 도 13을 참조하면, 총 30개(15개 쌍)의 유로 절곡부로 구성된 마이크로 믹서에 이종유체를 공급할 때, 마이크로 믹서의 혼합유로 내부에서 발생되는 이종유체의 혼합정도를 확인할 수 있다.Next, referring to FIG. 13, when supplying heterogeneous fluid to a micromixer composed of a total of 30 (15 pairs) flow path bends, it is possible to check the degree of mixing of heterogeneous fluids generated inside the mixing channel of the micromixer.
도 13에 도시된 색상은 마이크로 믹서의 유로 내부에서 발생되는 이종유체의 혼합정도를 헬리시티(helicity) 값으로 산출하여 도시한 것이다. 즉, 도 13에 표기된 헬리시티(helicity) 값은, Mass fraction이 1인 제 1 유체와 Mass fraction이 0인 두 유체가 공급유로로 주입된 후, 혼합유로를 지나면서 섞임 정도를 나타낸 값이다.The color shown in FIG. 13 shows the degree of mixing of heterogeneous fluid generated inside the flow path of the micromixer as a helicity value. That is, the helicity value shown in FIG. 13 is a value representing the degree of mixing while passing through the mixing channel after the first fluid having a mass fraction of 1 and the two fluids having a mass fraction of 0 are injected into the supply channel.
도 13에 도시된 바와 같이, #1 단면에서 #15 단면으로 갈수록 이종유체의 섞임 현상이 뚜렷해지는 것을 확인할 수 있다.As shown in FIG. 13, it can be seen that mixing of heterogeneous fluid becomes more apparent from the cross section # 1 to # 15.
도 14에는 본 발명의 여러 실시예에 따른 마이크로 믹서에 대한 이종(異種) 유체 혼합 성능을 실험한 결과값을 나타내는 그래프가 도시되어 있다.14 is a graph showing a result of experimenting with heterogeneous fluid mixing performance for a micromixer according to various embodiments of the present invention.
도 14를 도 2와 함께 참조하면, 유로 절곡부(310)에 의해 절곡된 각 혼합유로(300)가 이루는 사이각(a1)을 30도, 45도, 60도, 90도, 120도로 설정한 다섯 가지의 마이크로 믹서에 이종유체를 주입하여 혼합유로의 길이에 따른 이종유체의 혼합정도를 확인할 수 있다.Referring to FIG. 14 together with FIG. 2, the angle a1 formed by each mixing channel 300 bent by the channel bending unit 310 is set to 30 degrees, 45 degrees, 60 degrees, 90 degrees, or 120 degrees. Heterogeneous fluids can be injected into five different micromixers to determine the degree of mixing of heterogeneous fluids along the length of the mixing channel.
실험에 사용된 각 마이크로 믹서의 혼합유로의 높이(H1), 길이(L1), 폭(W1)은 특정한 값으로 한정하였다. 여기에서는, 혼합유로(300)의 평면상 폭(W1) 대비 혼합유로(300)의 측면상 수직 높이(H1)의 비율(Duct aspect ratio, H1/W1)을 5.0으로 한정하였다. 또한, 혼합유로(300)의 평면상 폭(W1) 대비 혼합유로(300)의 각 유로 절곡부(310) 사이의 평면상 길이(L1) 비율(L1/W1)을 4.0으로 한정하였다.The height (H1), length (L1), and width (W1) of the mixing channel of each micromixer used in the experiment were limited to specific values. Here, the ratio (Duct aspect ratio, H1 / W1) of the vertical height H1 on the side of the mixing channel 300 to the planar width W1 of the mixing channel 300 is limited to 5.0. In addition, the planar length (L1) ratio (L1 / W1) between the planar width W1 of the mixing channel 300 and each channel bent portion 310 of the mixing channel 300 was limited to 4.0.
도 14에 도시된 그래프의 X축은 혼합유로의 길이를 나타내고, 그래프의 Y축은 혼합율을 나타낸다. 구체적으로, Y축의 0 % 라 함은 이종유체가 전혀 섞이지 않은 상태를 의미하고, Y축의 100 % 라 함은 이종유체가 완전히 섞인 상태를 의미하는 것이다.The X axis of the graph shown in FIG. 14 represents the length of the mixing channel, and the Y axis of the graph represents the mixing ratio. Specifically, 0% of the Y axis means that the heterogeneous fluid is not mixed at all, and 100% of the Y axis means the heterogeneous fluid is completely mixed.
도 14에 도시된 그래프에서 보는 바와 같이, 유로 절곡부(310)에 의해 절곡된 각 혼합유로(300)가 이루는 사이각(a1)이 120도 인 경우에는 테일러-괴틀러 와류(Taylor-Gortler Vortex)가 생성되지 않아 혼합 효율이 매우 저하된 것을 확인할 수 있다.As shown in the graph shown in FIG. 14, in the case where the angle a1 formed by each mixing channel 300 bent by the channel bending unit 310 is 120 degrees, a Taylor-Gortler Vortex ) Is not generated, so that the mixing efficiency is very low.
또한, 유로 절곡부(310)에 의해 절곡된 각 혼합유로(300)가 이루는 사이각(a1)이 45도 인 경우에는, 95 % 이상의 혼합율을 얻기 위해서는 혼합유로의 길이가 600 ㎛ 정도만 되어도 충분하다는 것을 확인할 수 있다.In addition, when the angle a1 formed by each of the mixing passages 300 bent by the passage bending portion 310 is 45 degrees, it is sufficient that the length of the mixing passage is only about 600 μm in order to obtain a mixing ratio of 95% or more. You can see that.
도 15에는 본 발명의 일 실시예에 따른 마이크로 믹서의 제작방법을 나타내는 흐름도가 도시되어 있다.15 is a flowchart illustrating a method of manufacturing a micromixer according to an embodiment of the present invention.
도 15를 참조하면, 본 실시예에 따른 마이크로 믹서의 제작방법(S100)은, 공급유로, 혼합유로 및 배출유로의 형상을 갖는 금형인서트를 준비하는 금형준비단계(S110), 상기 금형인서트에 폴리머를 몰딩하는 몰딩단계(S120), 및 상기 몰딩단계에서 몰딩한 폴리머를 취출하는 취출단계(S130)를 포함하는 구성일 수 있다.Referring to FIG. 15, in the method of manufacturing a micromixer according to the present embodiment (S100), a mold preparation step (S110) of preparing a mold insert having a shape of a supply flow path, a mixing flow path, and a discharge flow path may include a polymer in the mold insert. Molding step (S120) for molding, and may include a configuration including a take-out step (S130) for taking out the polymer molded in the molding step.
도 16에는 본 발명의 또 다른 실시예에 따른 마이크로 믹서의 제작방법을 나타내는 흐름도가 도시되어 있다.16 is a flowchart illustrating a method of manufacturing a micromixer according to still another embodiment of the present invention.
도 16을 참조하면, 본 실시예에 따른 마이크로 믹서의 제작방법(S200)은, 마이크로 믹서를 이루는 소재로 구성되고, 마이크로 믹서의 측면 높이와 대응되는 두께를 가지는 기판을 준비하는 기판준비단계(S210), 및 기판의 표면을 바로 식각하여, 마이크로 믹서의 유로를 직접 형성하는 유로형성단계(S220)를 포함하는 구성일 수 있다.Referring to FIG. 16, the method for manufacturing a micromixer according to the present embodiment (S200) includes a substrate preparation step of preparing a substrate having a thickness corresponding to the side height of the micromixer, which is made of a material forming the micromixer. And a flow path forming step (S220) of directly etching the surface of the substrate to directly form a flow path of the micromixer.
따라서, 본 실시예에 따른 본 발명의 마이크로 믹서에 따르면, 유로 내부에 여러 쌍의 서로 마주보며 회전하는 와류 구조(counter-rotating vortex structure)를 생성시켜 줌으로써, 이종(異種) 유체의 혼합 효율을 향상시킬 수 있다. 또한, 본 발명의 마이크로 믹서에 따르면, 층류(laminar) 조건에서, 추가적인 와류 생성을 위한 구조물의 삽입 없이 이류(移流) 움직임(advective motion)을 유발시킴으로써 이종(異種) 유체간의 혼합 효율을 향상시킬 수 있다. 또한, 본 발명의 마이크로 믹서에 따르면, 유로 내부에 돌출 또는 함몰 형성된 요철물이나 추가적인 부재가 필요하지 않은 구조이므로, 간단한 제작 공정으로 제작될 수 있다.Therefore, according to the micromixer of the present invention according to the present embodiment, by generating a pair of counter-rotating vortex structure to face each other inside the flow path to improve the mixing efficiency of heterogeneous fluids You can. Further, according to the micromixer of the present invention, in laminar conditions, the mixing efficiency between heterogeneous fluids can be improved by causing advective motion without inserting a structure for generating additional vortex. have. In addition, according to the micromixer of the present invention, since it is a structure that does not need any protrusions or protrusions formed in the flow path or recessed, it can be manufactured by a simple manufacturing process.
이상의 본 발명의 상세한 설명에서는 그에 따른 특별한 실시예에 대해서만 기술하였다. 하지만 본 발명은 상세한 설명에서 언급되는 특별한 형태로 한정되는 것이 아닌 것으로 이해되어야 하며, 오히려 첨부된 청구범위에 의해 정의되는 본 발명의 정신과 범위 내에 있는 모든 변형물과 균등물 및 대체물을 포함하는 것으로 이해되어야 한다.In the foregoing detailed description of the invention, only specific embodiments thereof have been described. It is to be understood, however, that the present invention is not limited to the specific forms referred to in the description, but rather includes all modifications, equivalents, and substitutions within the spirit and scope of the invention as defined by the appended claims. Should be.
이상에서 설명한 바와 같이, 본 발명의 마이크로 믹서에 따르면, 유로 내부에 여러 쌍의 서로 마주보며 회전하는 와류 구조(counter-rotating vortex structure)를 생성시켜 줌으로써, 이종(異種) 유체의 혼합 효율을 향상시킬 수 있다.As described above, according to the micromixer of the present invention, by generating a pair of counter-rotating vortex structure in the flow path to improve the mixing efficiency of heterogeneous fluids Can be.
또한, 본 발명의 마이크로 믹서에 따르면, 층류(laminar) 조건에서, 추가적인 와류 생성을 위한 구조물의 삽입 없이 이류(移流) 움직임(advective motion)을 유발시킴으로써 이종(異種) 유체간의 혼합 효율을 향상시킬 수 있다.Further, according to the micromixer of the present invention, in laminar conditions, the mixing efficiency between heterogeneous fluids can be improved by causing advective motion without inserting a structure for generating additional vortex. have.
또한, 본 발명의 마이크로 믹서에 따르면, 유로 내부에 돌출 또는 함몰 형성된 요철물이나 추가적인 부재가 필요하지 않은 구조이므로, 간단한 제작 공정으로 제작될 수 있다.In addition, according to the micromixer of the present invention, since it is a structure that does not need any protrusions or protrusions formed in the flow path or recessed, it can be manufactured by a simple manufacturing process.

Claims (17)

  1. 이종(異種)유체를 공급받아 상기 이종유체를 혼합하는 미세 유로를 구비하는 마이크로 믹서(500A, 500B)로서,As a micro mixer (500A, 500B) having a fine flow path for receiving a heterogeneous fluid and mixing the heterogeneous fluid,
    일단부에 제 1 유체가 유입되는 제 1 공급유로(110) 및 타단부에 제 2 유체가 유입되는 제 2 공급유로(120)를 구비하는 일직선 형태의 공급유로(100);A first supply passage 100 having a first supply passage 110 through which the first fluid flows in one end and a second supply passage 120 through which the second fluid flows in the other end;
    상기 공급유로(100)의 중앙부와 연통되고, 소정의 거리만큼 이격되어 배치되어 소정의 각도로 꺽인 다수의 유로 절곡부(310)를 구비하는 혼합유로(300); 및A mixing passage 300 communicating with a central portion of the supply passage 100 and having a plurality of passage bending portions 310 disposed to be spaced apart by a predetermined distance and bent at a predetermined angle; And
    상기 혼합유로(300)의 타단부에 형성되고, 제 1 유체와 제 2 유체의 혼합 유체가 배출되는 배출유로(400);A discharge passage 400 formed at the other end of the mixing passage 300 and for discharging the mixed fluid of the first fluid and the second fluid;
    를 포함하되,Including,
    상기 제 1 유체와 제 2 유체는 유로 절곡부(310)를 지나면서 테일러-괴틀러 와류(Taylor-Gortler Vortex)를 형성하는 것을 특징으로 하는 마이크로 믹서.And the first fluid and the second fluid form a Taylor-Gortler Vortex while passing through the flow path bends (310).
  2. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 공급유로(110)로 제 1 유체를 공급하는 압력은, 제 2 공급유로(120)로 제 2 유체를 공급하는 압력과 동일한 것을 특징으로 하는 마이크로 믹서.The pressure for supplying the first fluid to the first supply channel (110) is the same as the pressure for supplying the second fluid to the second supply channel (120).
  3. 제 1 항에 있어서,The method of claim 1,
    상기 공급유로(100)와 혼합유로(300) 사이에는,Between the supply passage 100 and the mixing passage 300,
    상기 공급유로(100)의 중앙부에 수직으로 연통되는 일단부, 및 상기 혼합유로(300)와 연통되는 타단부를 구비하는 일직선 형태의 유입유로(200)가 형성된 것을 특징으로 하는 마이크로 믹서. Micro-mixer, characterized in that the inlet flow passage of the straight form having a one end portion vertically communicated to the central portion of the supply passageway (100) and the other end communicated with the mixing passageway (300) is formed.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 유로 절곡부(310)에 의해 절곡된 각 혼합유로(300)가 이루는 사이각(a1, a2)은, 20 도 내지 120 도 인 것을 특징으로 하는 마이크로 믹서.Micro-mixer, characterized in that the angle (a1, a2) formed by each mixing flow path 300 bent by the flow path bending portion 310 is 20 degrees to 120 degrees.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 혼합유로(300)의 평면상 폭(W1, W2) 대비 혼합유로(300)의 측면상 수직 높이(H1, H2)의 비율(Duct aspect ratio, H1/W1, H2/W2)은, 1.0 내지 10.0 인 것을 특징으로 하는 마이크로 믹서.The ratio (Duct aspect ratio, H1 / W1, H2 / W2) of the vertical heights H1, H2 on the side of the mixing channel 300 with respect to the planar widths W1, W2 of the mixing channel 300 is 1.0 to 10.0, characterized in that the micromixer.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 혼합유로(300)의 평면상 폭(W1, W2) 대비 혼합유로(300)의 각 유로 절곡부(310) 사이의 평면상 길이(L1) 비율(L1/W1, L2/W2)은, 1.0 내지 10.0 인 것을 특징으로 하는 마이크로 믹서.The ratio of the planar length L1 (L1 / W1, L2 / W2) between the planar widths W1 and W2 of the mixing channel 300 and the passage bends 310 of the mixing channel 300 is 1.0. To 10.0, characterized in that the micromixer.
  7. 이종(異種)유체를 공급받아 상기 이종유체를 혼합하는 미세 유로를 구비하는 마이크로 믹서(500C, 500D)로서,As a micro mixer (500C, 500D) having a fine flow path for receiving a heterogeneous fluid and mixing the heterogeneous fluid,
    제 1 유체를 공급하고, 제 2 공급유로(120)의 형성방향과 대향하는 방향으로 형성되고, 혼합유로(300)의 일단부와 연통되는 제 1 공급유로(110);A first supply passage 110 which supplies a first fluid and is formed in a direction opposite to the formation direction of the second supply passage 120 and communicates with one end of the mixing passage 300;
    제 2 유체를 공급하고, 상기 제 1 공급유로(110)의 형성방향과 대향하는 방향으로 형성되고, 혼합유로(300)의 일단부와 연통되는 제 2 공급유로(120);A second supply passage 120 which supplies a second fluid, is formed in a direction opposite to the formation direction of the first supply passage 110, and is in communication with one end of the mixing passage 300;
    상기 제 1 공급유로(110) 및 제 2 공급유로(120)와 일단부에서 연통되고, 소정의 거리만큼 이격되어 배치되고 소정의 각도로 꺽인 다수의 유로 절곡부(310)를 구비하는 혼합유로(300); 및The mixing passage having a plurality of flow path bent portion 310 communicated at one end with the first supply passage 110 and the second supply passage 120, spaced by a predetermined distance, and bent at a predetermined angle ( 300); And
    상기 혼합유로(300)의 타단부에 형성되고, 제 1 유체와 제 2 유체의 혼합 유체가 배출되는 배출유로(400);A discharge passage 400 formed at the other end of the mixing passage 300 and for discharging the mixed fluid of the first fluid and the second fluid;
    를 포함하되,Including,
    상기 제 1 유체와 제 2 유체는 유로 절곡부(310)를 지나면서 혼합유로(300) 내부에서 테일러-괴틀러 와류(Taylor-Gortler Vortex)를 형성하는 것을 특징으로 하는 마이크로 믹서.And the first fluid and the second fluid form a Taylor-Gortler Vortex inside the mixing flow path (300) while passing through the flow path bend (310).
  8. 제 7 항에 있어서,The method of claim 7, wherein
    상기 제 1 공급유로(110)와 제 2 공급유로(120)는 90 도 내지 180 도의 각도(a0)를 형성하는 것을 특징으로 하는 마이크로 믹서.And the first supply passageway (110) and the second supply passageway (120) form an angle a0 of 90 degrees to 180 degrees.
  9. 제 7 항에 있어서,The method of claim 7, wherein
    상기 제 1 공급유로(110)로 제 1 유체를 공급하는 압력은, 제 2 공급유로(120)로 제 2 유체를 공급하는 압력과 동일한 것을 특징으로 하는 마이크로 믹서.The pressure for supplying the first fluid to the first supply channel (110) is the same as the pressure for supplying the second fluid to the second supply channel (120).
  10. 제 7 항에 있어서,The method of claim 7, wherein
    상기 공급유로(100)와 혼합유로(300) 사이에는,Between the supply passage 100 and the mixing passage 300,
    상기 제 1 공급유로(110) 및 제 2 공급유로(120)와 연통되는 일단부, 및 상기 혼합유로와 연통되는 타단부를 구비하는 일직선 형태의 유입유로(200)가 형성된 것을 특징으로 하는 마이크로 믹서.The micro mixer, characterized in that the inlet flow path 200 of the straight form having one end portion communicating with the first supply passage 110 and the second supply passage 120, and the other end communicating with the mixing passage is formed. .
  11. 제 7 항에 있어서,The method of claim 7, wherein
    상기 유로 절곡부(310)에 의해 절곡된 각 혼합유로(300)가 이루는 사이각(a3, a4)은, 20 도 내지 120 도 인 것을 특징으로 하는 마이크로 믹서.Micro-mixer, characterized in that the angle (a3, a4) formed by each mixing flow path 300 bent by the flow path bending portion 310 is 20 degrees to 120 degrees.
  12. 제 7 항에 있어서,The method of claim 7, wherein
    상기 혼합유로(300)의 평면상 폭(W3, W4) 대비 혼합유로(300)의 측면상 수직 높이(H3, H4)의 비율(Duct aspect ratio, H3/W3, H4/W4)은, 1.0 내지 10.0 인 것을 특징으로 하는 마이크로 믹서.Duct aspect ratio (H3 / W3, H4 / W4) of the vertical height (H3, H4) on the side of the mixing channel 300 to the planar width (W3, W4) of the mixing channel 300 is 1.0 to 10.0, characterized in that the micromixer.
  13. 제 7 항에 있어서,The method of claim 7, wherein
    상기 혼합유로(300)의 평면상 폭(W3, W4) 대비 혼합유로(300)의 각 유로 절곡부(310) 사이의 평면상 길이(L3, L4) 비율(L3/W3, L4/W4)은, 1.0 내지 10.0 인 것을 특징으로 하는 마이크로 믹서.The ratio (L3 / W3, L4 / W4) of the planar lengths (L3, L4) between the planar widths (W3, W4) of the mixing channel (300) between each channel bent portion 310 of the mixing channel (300) is , 1.0 to 10.0, characterized in that the micromixer.
  14. 제 1 항 내지 제 13 항 중 어느 한 항에 따른 마이크로 믹서를 제작하는 방법(S100)으로서,A method (S100) of manufacturing a micromixer according to any one of claims 1 to 13,
    a) 공급유로, 혼합유로 및 배출유로의 형상을 갖는 금형인서트를 준비하는 금형준비단계;a) a mold preparation step of preparing a mold insert having a shape of a supply passage, a mixing passage and a discharge passage;
    b) 상기 금형인서트에 폴리머를 몰딩하는 몰딩단계;b) a molding step of molding a polymer on the mold insert;
    c) 상기 몰딩단계에서 몰딩한 폴리머를 취출하는 취출단계;c) a takeout step of taking out the polymer molded in the molding step;
    를 포함하는 것을 특징으로 하는 마이크로 믹서 제작방법.Micro mixer manufacturing method comprising a.
  15. 제 1 항 내지 제 13 항 중 어느 한 항에 따른 마이크로 믹서를 제작하는 방법(S200)으로서,A method (S200) of manufacturing a micromixer according to any one of claims 1 to 13,
    a) 마이크로 믹서를 이루는 소재로 구성되고, 마이크로 믹서의 측면 높이와 대응되는 두께를 가지는 기판을 준비하는 기판준비단계; 및a) a substrate preparation step of preparing a substrate comprising a material constituting the micromixer and having a thickness corresponding to the side height of the micromixer; And
    b) 기판의 표면을 바로 식각하여, 마이크로 믹서의 유로를 직접 형성하는 유로형성단계;b) a flow path forming step of directly etching the surface of the substrate to directly form a flow path of the micromixer;
    를 포함하는 것을 특징으로 하는 마이크로 믹서 제작방법.Micro mixer manufacturing method comprising a.
  16. 제 1 항 내지 제 13 항 중 어느 한 항에 따른 마이크로 믹서를 제작하는 방법(S300)으로서,As a method (S300) of manufacturing a micromixer according to any one of claims 1 to 13,
    폴리머 물질(Polymer material)을 이용한 임프린팅(imprinting) 방법을 포함하는 것을 특징으로 하는 마이크로 믹서 제작방법.A micromixer manufacturing method comprising an imprinting method using a polymer material.
  17. 제 1 항 내지 제 13 항 중 어느 한 항에 따른 마이크로 믹서를 포함하는 것을 특징으로 하는 분석시스템.An analysis system comprising the micromixer according to any one of claims 1 to 13.
PCT/KR2015/002285 2014-03-10 2015-03-10 Micro mixer using taylor-gortler vortex and method for manufacturing same WO2015137691A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0027937 2014-03-10
KR1020140027937A KR20150105856A (en) 2014-03-10 2014-03-10 Micro Mixer Using Taylor Gortler Vortex and Manufacturing Method Thereof

Publications (1)

Publication Number Publication Date
WO2015137691A1 true WO2015137691A1 (en) 2015-09-17

Family

ID=54072064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/002285 WO2015137691A1 (en) 2014-03-10 2015-03-10 Micro mixer using taylor-gortler vortex and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR20150105856A (en)
WO (1) WO2015137691A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105771765A (en) * 2016-03-30 2016-07-20 江苏大学 Passive micromixer with built-in periodical stop blocks and baffle plates
CN106669512A (en) * 2016-12-27 2017-05-17 齐鲁工业大学 Passive type micro-channel
US11192084B2 (en) 2017-07-31 2021-12-07 Corning Incorporated Process-intensified flow reactor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101993751B1 (en) * 2017-07-05 2019-10-01 서울대학교치과병원 Mixing device using microfluidic channel
CN109139267B (en) * 2018-09-11 2019-10-29 中国人民解放军国防科技大学 supersonic flow mixing device
CN110947329A (en) * 2019-11-29 2020-04-03 南昌航空大学 Sawtooth type passive micro mixer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006234536A (en) * 2005-02-24 2006-09-07 Tosoh Corp Micro fluid mixer
KR20090089065A (en) * 2008-02-18 2009-08-21 주식회사 올메디쿠스 Vertical lamination micromixer
KR20120129679A (en) * 2011-05-20 2012-11-28 한국과학기술원 Method for manufacturing polymer microfluidic channel, polymer microfluidic channel manufactured by the same and bio-chip comprising the same
KR20130043777A (en) * 2011-10-21 2013-05-02 인하대학교 산학협력단 Passive micromixer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006234536A (en) * 2005-02-24 2006-09-07 Tosoh Corp Micro fluid mixer
KR20090089065A (en) * 2008-02-18 2009-08-21 주식회사 올메디쿠스 Vertical lamination micromixer
KR20120129679A (en) * 2011-05-20 2012-11-28 한국과학기술원 Method for manufacturing polymer microfluidic channel, polymer microfluidic channel manufactured by the same and bio-chip comprising the same
KR20130043777A (en) * 2011-10-21 2013-05-02 인하대학교 산학협력단 Passive micromixer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KWON, HYEON GOO ET AL.: "Two Dimensional Flow and Heat/Mass Ttransfer Characteristics in Rectangular Wavy Duct with Corrugation Angle", SPRING CONFERENCE OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS, 30 May 2007 (2007-05-30) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105771765A (en) * 2016-03-30 2016-07-20 江苏大学 Passive micromixer with built-in periodical stop blocks and baffle plates
CN106669512A (en) * 2016-12-27 2017-05-17 齐鲁工业大学 Passive type micro-channel
US11192084B2 (en) 2017-07-31 2021-12-07 Corning Incorporated Process-intensified flow reactor
US11679368B2 (en) 2017-07-31 2023-06-20 Corning Incorporated Process-intensified flow reactor

Also Published As

Publication number Publication date
KR20150105856A (en) 2015-09-18

Similar Documents

Publication Publication Date Title
WO2015137691A1 (en) Micro mixer using taylor-gortler vortex and method for manufacturing same
Yamada et al. Nanoliter-sized liquid dispenser array for multiple biochemical analysis in microfluidic devices
US6743636B2 (en) Microfluid driving device
WO2011005050A2 (en) Multifunctional microfluidic flow control device and multifunctional microfluidic flow control method
US20030012697A1 (en) Assembly microchip using microfluidic breadboard
WO2017131452A1 (en) Particle separation apparatus and particle separation method
JP2002357616A (en) Trace liquid control mechanism
Chia et al. Chemistry in microfluidic channels
Brouzes Droplet microfluidics for single-cell analysis
CN109847817A (en) A kind of micro-fluidic chip and preparation method thereof
US20030086333A1 (en) Electrohydrodynamic mixing on microfabricated devices
KR101113727B1 (en) Vertical lamination micromixer
KR100788458B1 (en) Microfluidic chip for cell separation based on hydrophoresis and its separation method of blood cells
KR101515403B1 (en) Microfluidic Channel Using Hook-Shaped Structures, Manufacturing Method Thereof, and Analysis System Having the Same
KR100523983B1 (en) Kenics micromixer embedded barrier
KR20200024392A (en) Micromixer
Thanh et al. A combination of 3D printing and PCB technologies in microfluidic sensing device fabrication
JP2004157097A (en) Liquid control mechanism
Kassanos et al. Development and characterization of a PCB-based microfluidic Y-channel
KR100485317B1 (en) Micro mixer and method of manufacturing the same
KR100413536B1 (en) Micromixer for mixing reactants and method for mixing reactants by using the same
Kim et al. A novel micro-mixer with a quasi-active rotor: fabrication and design improvement
Lin et al. A PDMS self-vortical micromixer without obstructions
TW200534916A (en) A microfluidic mixer utilizing electroosmotic flow
WO2012124579A1 (en) Fluid path device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15761350

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15761350

Country of ref document: EP

Kind code of ref document: A1