WO2015137411A1 - Stirring device - Google Patents

Stirring device Download PDF

Info

Publication number
WO2015137411A1
WO2015137411A1 PCT/JP2015/057183 JP2015057183W WO2015137411A1 WO 2015137411 A1 WO2015137411 A1 WO 2015137411A1 JP 2015057183 W JP2015057183 W JP 2015057183W WO 2015137411 A1 WO2015137411 A1 WO 2015137411A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow
resistor
stirring
suction port
discharge port
Prior art date
Application number
PCT/JP2015/057183
Other languages
French (fr)
Japanese (ja)
Inventor
村田 和久
Original Assignee
株式会社アクアテックス
株式会社エディプラス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アクアテックス, 株式会社エディプラス filed Critical 株式会社アクアテックス
Publication of WO2015137411A1 publication Critical patent/WO2015137411A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/19Stirrers with two or more mixing elements mounted in sequence on the same axis
    • B01F27/192Stirrers with two or more mixing elements mounted in sequence on the same axis with dissimilar elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/19Stirrers with two or more mixing elements mounted in sequence on the same axis
    • B01F27/191Stirrers with two or more mixing elements mounted in sequence on the same axis with similar elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/81Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis the stirrers having central axial inflow and substantially radial outflow
    • B01F27/811Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis the stirrers having central axial inflow and substantially radial outflow with the inflow from one side only, e.g. stirrers placed on the bottom of the receptacle, or used as a bottom discharge pump
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/55Baffles; Flow breakers

Definitions

  • the present invention relates to a stirring device for stirring, mixing, dispersing, and the like of liquid and other various fluids.
  • a stirring device that rotates an impeller in the fluid is used.
  • This impeller is generally provided with a propeller blade and a turbine blade, and agitation is performed by flowing a fluid by rotating.
  • a propeller blade or a turbine blade is not used, and an agitator or the like having a plurality of holes on the side surface is also proposed (see, for example, Patent Documents). 1).
  • the present invention intends to provide a stirring device capable of performing efficient stirring regardless of the state of an object to be stirred.
  • the present invention includes a stirring rotator and a flow resistor that are disposed adjacent to each other, and the stirring rotator includes a main body that rotates about a rotation axis, and a suction port that is provided on a surface of the main body.
  • a discharge port provided at a position on the outer surface of the main body in a centrifugal direction from the rotation shaft with respect to the suction port; and a flow passage connecting the suction port and the discharge port.
  • the stirring device is configured to have a shape or a size different from that of the rotating body for rotation, or is arranged in a posture different from that of the rotating body for stirring.
  • the present invention is also characterized in that, in the stirring device of the above means, the rotating body for stirring and the flow resistor are arranged side by side in the rotational axis direction.
  • the present invention is also characterized in that, in the stirring device of the above means, the suction port is provided toward the flow resistor side.
  • the present invention is also characterized in that, in the stirring device of the above means, the flow resistor rotates about the resistor rotation axis.
  • the present invention also provides the stirrer according to the above means, wherein the flow resistor includes a resistor body that rotates about the resistor rotating shaft, a resistor inlet provided on a surface of the resistor body, and the resistor.
  • a resistor discharge port provided at a position on the outer side in the centrifugal direction from the resistor rotation axis with respect to the resistor suction port on the surface of the body main body; a resistor flow passage connecting the resistor suction port and the resistor discharge port; It is characterized by providing.
  • the flow resistor is configured such that the flow velocity or flow rate of the flow passing through the resistor discharge port is lower than the flow velocity or flow rate of the flow passing through the discharge port. It is characterized by being configured.
  • the flow resistor is configured such that the flow velocity or flow rate of the flow passing through the resistor suction port is lower than the flow velocity or flow rate of the flow passing through the suction port. It is characterized by being configured.
  • the present invention is also characterized in that, in the stirring device of the above means, the resistor suction port is provided toward the stirring rotor.
  • the present invention is also characterized in that, in the stirring device of the above means, the flow resistor is configured such that a maximum dimension in a direction orthogonal to the resistor rotation axis is smaller than that of the stirring rotor.
  • the flow resistor is configured in a shape having an inclined surface that gradually moves away from the resistor rotating shaft as it approaches the stirring rotor along the resistor rotating shaft direction. It is characterized by being.
  • the stirrer according to the present invention can provide an excellent effect that it is possible to perform efficient stirring regardless of the state of the object to be stirred.
  • FIGS. 1 to (c) are diagrams showing examples of other arrangement configurations of the rotating body for stirring and the flow resistor.
  • FIGS. 1 to (c) are diagrams showing an example in which the flow resistor is not provided with a suction port, a discharge port and a flow passage.
  • FIG. 1 to (c) is a view showing an example in which a plurality of flow resistors are provided in the stirring device.
  • FIG. 1 to (c) are diagrams showing an example in which the stirring force of the flow resistor is not made lower than that of the stirring rotor.
  • FIG. 1 is a front view (side view) showing an example of a stirring device 1.
  • the stirrer 1 includes a stirring rotator 10 that generates stirring force by rotating in an object to be stirred, and a flow resistance toward the stirring rotator 10 in the object to be stirred.
  • the flow resistance body 20 is provided.
  • the stirring rotating body 10 and the flow resistor 20 are coaxially connected to a driving shaft 30 that transmits a driving force of a driving device (not shown) such as a motor, with a predetermined distance therebetween.
  • a driving device not shown
  • the rotating body for stirring 10 and the flow resistor 20 of the present embodiment are configured to rotate around the central axis C by one drive device.
  • the driving device may be arranged on either the stirring rotor 10 side or the flow resistor 20 side.
  • either the stirring rotator 10 or the flow resistor 20 may be disposed on the drive device side, and can be used properly according to the application.
  • FIG. 2A is a plan view of the rotating body 10 for stirring
  • FIG. 2B is a front view (side view) of the rotating body 10 for stirring
  • the main body 11 of the rotating body for stirring 10 is configured in a substantially cylindrical shape (disc shape), and the surface of the main body 11 is configured by a substantially circular upper surface 11a and a bottom surface 11b, and a side surface 11c which is an outer peripheral surface.
  • the material which comprises the main body 11 is not specifically limited, For example, a suitable material according to use conditions, such as a metal, ceramics, resin, rubber
  • a plurality of suction ports 12 and a plurality of discharge ports 14 are provided on the surface of the main body 11, and a flow passage 16 formed so as to connect the suction ports 12 and the discharge ports 14 is provided inside the main body 11. Yes.
  • a connecting portion 18 to which the drive shaft 30 is connected is provided at the center of the main body 11.
  • the connecting portion 18 is a through-hole penetrating between the upper surface 11a and the bottom surface 11b, and is configured so that the main body 11 can be fixed to an arbitrary position of the drive shaft 30 by an appropriate fixing mechanism (not shown).
  • the fixing mechanism may use any known method such as a set screw, engagement, clamp, or the like.
  • the suction port 12 is provided on the surface on the flow resistor 20 side, that is, the upper surface 11a.
  • the four suction ports 12 are arranged at equal intervals on a circumference centered on the central axis C.
  • the suction port 12 is formed in substantially the same direction as the central axis C.
  • the discharge port 14 is provided slightly on the bottom surface 11b side of the side surface 11c.
  • the four discharge ports 14 are positioned at positions outside the main body 11 in the radial direction (centrifugal direction) with respect to the suction ports 12 (positions separated from the central axis C in a direction perpendicular to the central axis C). Each is arranged.
  • the discharge ports 14 are formed in a direction substantially orthogonal to the central axis C.
  • the flow passage 16 is formed as a tunnel-like passage connecting one suction port 12 and one discharge port 14. Accordingly, four flow passages 16 are formed inside the main body 11. In the present embodiment, each of the flow passages 16 is formed so as to travel straight along the direction of the central axis C from the suction port 12 and then bend at a right angle, and travel straight in the centrifugal direction of the main body 11 to reach the discharge port 14. ing.
  • the stirring rotating body 10 stirs the object to be stirred by rotating around the central axis C in the object to be stirred that is a fluid.
  • the stirring rotator 10 When the stirring rotator 10 is immersed in the fluid and rotated, the fluid that has entered the flow passage 16 also rotates together with the stirring rotator 10. Then, a centrifugal force acts on the fluid in the flow passage 16, and the fluid in the flow passage 16 flows toward the outside in the radial direction of the stirring rotor 10 as shown in FIGS. 2 (a) and 2 (b). To do.
  • the discharge port 14 Since the discharge port 14 is provided on the radially outer side of the agitating rotator 10 with respect to the suction port 12, a centrifugal force stronger than that of the suction port 12 acts on the discharge port 14. Accordingly, the fluid flows from the suction port 12 toward the discharge port 14 as long as the stirring rotator 10 rotates. That is, the fluid in the flow passage 16 is ejected from the discharge port 14, and the external fluid is sucked into the flow passage 16 from the suction port 12. As a result, in the fluid around the stirring rotator 10, a flow radiating from the side surface 11 c of the stirring rotator 10 having the discharge port 14 and a flow toward the suction port 12 are generated. The flow toward the suction port 12 becomes a swirl flow by the rotation of the suction port 12.
  • the fluid rotates together with the stirring rotator 10 due to the influence of viscosity.
  • the fluid around the stirring rotator 10 also flows so as to spread radially from the central axis C by the centrifugal force.
  • the stirring rotator 10 has a complicated flow (i.e., a flow of fluid in the vicinity of the surface due to the rotation of the fluid in the vicinity of the surface due to the viscosity in addition to the inflow of the fluid to the suction port 12 and the outflow of the fluid from the discharge port 14). Turbulent flow) is generated, and an unprecedented stirring ability can be obtained.
  • the shape of the main body 11 is not limited to this, For example, other arbitrary shapes, such as spherical shape, a hemispherical shape, and a polygonal column shape, are used. Can be adopted. Further, the shape (cross-sectional shape) of the suction port 12 and the discharge port 14 is not limited to a circular shape, and may be other shapes such as an elliptical shape and a polygonal shape. In addition, the cross-sectional shape of the flow passage 16 is not particularly limited, and can be configured in an appropriate shape according to the shape and position of the suction port 12 and the discharge port 14 or the processing method.
  • the flow passage 16 is configured in an L shape that bends at a substantially right angle for ease of processing, but the flow passage 16 is configured as a smoothly curved curved passage.
  • the suction port 12 and the discharge port 14 may be connected linearly.
  • the strength of the main body 11 is increased by configuring the portion other than the flow passage 16 of the main body 11 to be solid, but the portion other than the flow passage 16 of the main body 11 is configured to be hollow. You may make it do.
  • FIG. 3 (a) is a plan view of the flow resistor 20, and FIG. 3 (b) is a front view (side view) of the flow resistor 20.
  • FIG. The main body 21 (resistor main body) of the flow resistor 20 is formed in a substantially truncated cone shape, and the surface of the main body 21 is formed from a substantially circular upper surface 21a and a bottom surface 21b, and a side surface 21c which is an inclined outer peripheral surface. It is configured.
  • the material which comprises the main body 21 is not specifically limited like the rotating body 10 for stirring, The appropriate material according to use conditions can be employ
  • the main body 21 of the flow resistor 20 is provided with a plurality of suction ports 22 (resistor suction ports) and a plurality of discharge ports 24 (resistor discharge ports) on the surface, similarly to the rotating body 10 for stirring.
  • a flow passage 26 (resistor flow passage) that connects the suction port 22 and the discharge port 24 is provided.
  • the flow resistor 20 is configured to eject the fluid from the discharge port 24 and suck the fluid to the suction port 22 by rotating in the fluid, similarly to the rotating body 10 for stirring.
  • a connecting portion 28 having a structure similar to that of the stirring rotator 10 is provided at the center of the main body 21, whereby the flow resistor 20 is connected to an arbitrary position of the drive shaft 30.
  • the suction ports 22 are provided on the surface on the agitating rotator 10 side, that is, the bottom surface 21b, and four suction ports 22 are arranged on the circumference centered on the central axis C at equal intervals.
  • the discharge port 24 is provided on the side surface 21c, and is positioned on the outer side in the radial direction (centrifugal direction) of the main body 21 with respect to each suction port 22 (a position separated from the central axis C in a direction perpendicular to the central axis C).
  • Four discharge ports 24 are respectively arranged.
  • the flow passage 26 is formed as a tunnel-like passage connecting one suction port 22 and one discharge port 24.
  • each of the flow passages 26 is formed so as to travel straight along the direction of the central axis C from the suction port 22, bend at a right angle, and travel straight in the centrifugal direction of the main body 21 to reach the discharge port 24. ing.
  • the flow resistor 20 changes the flow by becoming a resistance to flow toward the agitating rotating body 10 in the object to be stirred which is a fluid. In other words, the flow resistor 20 improves the stirring force by appropriately disturbing the flow toward the stirring rotor 10.
  • the stirring force of the flow resistor 20 is set to be lower than the stirring force of the stirring rotor 10. In other words, in the present embodiment, of the two rotating members, the higher stirring force is the rotating body 10 for stirring, and the lower stirring force is the flow resistor 20.
  • the stirring force of the stirring rotor 10 and the flow resistor 20 is mainly determined by the flow velocity or flow rate of the flow passing through the suction ports 12 and 22 and the flow velocity or flow rate of the flow passing through the discharge ports 14 and 24. Therefore, in this embodiment, the radial direction (centrifugal direction) dimension of the main body 21 of the flow resistor 20 is configured to be smaller than that of the main body 11 of the stirring rotor 10, and the distance A from the central axis C to the discharge port 24 is set. This shortens the action of the centrifugal force so that the flow velocity of the flow passing through the suction port 22 and the flow velocity of the flow passing through the discharge port 24 are lower than that of the rotating body 10 for stirring.
  • the inner diameters (cross-sectional areas) of the suction port 22, the discharge port 24 and the flow passage 26 of the flow resistor 20 are configured to be smaller than the suction port 12, the discharge port 14 and the flow passage 16 of the stirring rotor 10.
  • the flow rate of the flow passing through the suction port 22 and the flow rate of the flow passing through the discharge port 24 are made lower than that of the rotating body 10 for stirring.
  • FIG. 4A and 4B are diagrams showing an example of the operation of the stirring device 1.
  • FIG. FIG. 4A shows a case where only the rotating body for stirring 10 is immersed in the liquid to-be-stirred object 50 accommodated in the container 40 and is rotated by the driving device 60 disposed above.
  • FIG. 4B shows a state in which the stirring rotating body 10 and the flow resistance body 20 are immersed in the liquid to-be-stirred object 50 accommodated in the container 40 and rotated by the driving device 60 disposed above. Shows the case.
  • a complicated circulation flow is generated in the stirred object 50 by rotating the stirring rotating body 10 in the stirred object 50. That is, the flow that radially spreads in the centrifugal direction from the agitating rotator 10 due to the ejection from the discharge port 14, etc., is divided into upper and lower parts after being spread to some extent, and one is compared from the upper side to the upper surface 11 a by the suction force of the suction port 12. Is a relatively strong swirl flow, and the other is a relatively weak swirl flow from below toward the bottom surface 11b.
  • a stirring force can be exerted on substantially the entire object to be stirred 50, so that the object to be stirred 50 can be efficiently stirred.
  • directing the suction port 12 upward, that is, toward the liquid level 52 for example, powder agglomerates floating on the liquid level 52 are submerged in the liquid by a relatively strong swirling flow, It is also possible to uniformly disperse the object to be stirred 50 by the circulating flow.
  • the flow resistor 20 is disposed on the suction port 12 side (upper) of the stirring rotator 10 so as to be relatively directed toward the upper surface 11a. It is possible to change the strong swirl flow so that it is once spread. That is, the flow resistance body 20 blocks the flow in the vicinity of the central axis C, and a relatively strong swirling flow toward the upper surface 11a of the stirring rotating body 10 due to the centrifugal force caused by the ejection from the discharge port 24 and viscosity. Can be disturbed by spreading outward. Furthermore, a relatively strong swirling flow once spread outward can be drawn to the central axis C side by the negative pressure generated behind (lower side) the flow resistor 20 and suction by the suction port 22.
  • the stirring device 1 of the present embodiment it is possible to stir extremely efficiently even with the object to be stirred 50 that was difficult to stir efficiently with the conventional stirring device. ing. Furthermore, in the stirring device 1 of the present embodiment, the position of the flow resistor 20 can be appropriately set so that the liquid level 52 is not disturbed more than necessary. Since it is not necessary to increase the flow rate by increasing the number of revolutions of the rotating body 10, bubbles are mixed into the object to be stirred 50 due to disturbance of the liquid surface 52, foaming, and leakage of the object 50 to be stirred due to the rise of the liquid surface 52. It is possible to increase the stirring efficiency without causing such problems.
  • the stirring force of the flow resistor 20 is reduced by making the maximum dimension in the radial direction of the flow resistor 20, that is, the maximum dimension in the direction orthogonal to the central axis C smaller than that of the stirring rotor 10. Is appropriately reduced, and the flow toward the stirring rotator 10 is not blocked more than necessary, thereby making it possible to effectively generate a complex flow.
  • the shape of the main body 21 of the flow resistor 20 is a truncated cone, more specifically, an inclined surface that gradually moves away from the central axis C as it approaches the agitating rotator 10 along the direction of the central axis C.
  • a shape having (side surface 21c) it is possible to smoothly and effectively guide the flow toward the flow resistor 20 from above.
  • the discharge port 24 on the inclined surface (side surface 21c) thus configured, the jet flow from the discharge port 24 is disturbed by the difference in peripheral speed, and this jet flow is directly collided with the flow from above. It is possible to generate more complex flows.
  • FIGS. 5A and 5B are diagrams showing another example of the operation of the stirring device 1. Similar to FIGS. 4A and 4B, FIG. 5A shows a case where only the stirring rotator 10 is immersed in the liquid to-be-stirred object 50 and is rotated. (B) has shown the case where the rotating body 10 for stirring and the flow resistance body 20 are immersed in the liquid to-be-stirred object 50, and it rotates. Further, in this example, contrary to the example of FIGS. 4A and 4B, the rotating body for stirring 10 is disposed in a posture in which the upper surface 11a and the suction port 12 are directed downward, that is, toward the bottom 42 of the container 40. Like to do.
  • the agitation rotating body 10 is appropriately brought close to the bottom 42 in a state where the suction port 12 faces downward, so that the sediment settled on the bottom 42 is seen from below to the top. It is possible to wind up properly by the relatively strong swirl flow toward 11a and suck up at the suction port 12. Then, the sediment sucked at the suction port 12 is ejected from the discharge port 14, whereby the sediment can be appropriately dispersed in the stirred object 50 by the circulating flow.
  • the flow resistor 20 is arranged on the suction port 12 side (downward) of the stirring rotator 10, thereby making the structure shown in FIG. Similar to the example shown, it is possible to generate a very complicated flow in a relatively strong swirling flow from below to the upper surface 11a. Therefore, by making the flow resistor 20 appropriately close to the bottom portion 42, the sediment can be wound up more efficiently and more efficiently dispersed by this complicated flow.
  • the stirring device 1 of the present embodiment by combining the flow resistor 20 having a low stirring force with the rotating body 10 for stirring, the flow generated by both can be made to act synergistically. It is possible to improve the stirring efficiency more than before, and is particularly suitable for the case where suspended matters, sediments, and the like are uniformly dispersed in the object to be stirred 50. Furthermore, in this embodiment, the shape of the main body 21 of the flow resistor 20 is a substantially truncated cone shape, thereby further improving the stirring efficiency.
  • FIGS. 6A to 6C are diagrams showing examples of other shapes of the flow resistor 20.
  • the shape (outer shape) of the main body 21 of the flow resistor 20 is not limited to the above-mentioned substantially truncated cone shape.
  • it may be configured in a columnar shape and is not illustrated, any other shape such as a spherical shape, a hemispherical shape, or a polygonal column shape can be employed.
  • the flow resistor 20 has the same outer shape of the main body 21 as the shape of the main body 11 of the stirring rotating body 10, but the suction port 22, the discharge port 24, and the flow.
  • the stirring force may be reduced by reducing the inner diameter (cross-sectional area) of the passage 26 and reducing the flow rate of the flow passing through the passage 26.
  • the flow resistor 20 has only the outer diameter of the cylindrical main body 21 smaller than the outer diameter of the rotating body 10 for stirring, and the flow velocity of the flow passing through them is increased.
  • the stirring force may be lowered by lowering.
  • the flow resistor 20 may have a lower stirring force by reducing the number of suction ports 22 or discharge ports 24.
  • the flow resistor 20 has a lower stirring force by making the outer shape of the main body 21 or the presence or absence of uneven shapes provided on the surface of the main body 21 different from the rotating body 10 for stirring. It may be. That is, the flow resistor is not based on the flow velocity or flow rate of the flow passing through the suction port 22 or the discharge port 24 but due to a difference in the revolving action in the vicinity of the surfaces of the main bodies 11 and 21 and the stir action by the outer shape of the main bodies 11 and 21 You may make it make 20 stirring power low.
  • FIG. 7 (a) to 7 (c) are diagrams showing examples of other arrangement configurations of the rotating body for stirring 10 and the flow resistance body 20.
  • FIG. 7A the flow resistor 20 may be arranged with the suction port 22 facing the opposite side of the stirring rotator 10. For example, when it is desired to more actively mix bubbles into the liquid, it is effective to arrange the flow resistor 20 in such a posture.
  • FIG. 7B the flow resistor 20 may be disposed on the bottom surface 11 b side (opposite side of the suction port 12) of the stirring rotating body 10. In this case, a complicated flow can be generated in a relatively weak swirling flow toward the bottom surface 11b.
  • the stirring rotator 10 may be provided with suction ports 12 on both the upper surface 11a and the bottom surface 11b, and although not shown, the flow resistance Also in the body 20, the suction ports 22 may be provided on both the upper surface 21a and the bottom surface 21b.
  • the postures of the agitating rotating body 10 and the flow resistor 20 and the relative positions of the two are not particularly limited, and can be appropriately set according to the use of the agitating device 1 or the like.
  • the configurations and arrangements of the suction ports 12 and 22, the discharge ports 14 and 24, and the flow passages 16 and 26 in the rotating body 10 and the flow resistor 20 are not particularly limited, and the use of the stirring device 1 It can set suitably according to etc.
  • the number of the suction ports 12 and 22 and the discharge ports 14 and 24 may be a number other than four, or a plurality of the discharge ports 14 and 24 for one suction port 12 and 22.
  • the flow passages 16 and 26 may be configured to connect the two.
  • the suction ports 12 and 22 and the discharge ports 14 and 24 may be oriented obliquely with respect to the central axis C.
  • FIG. 8 (a) to 8 (c) are diagrams showing an example in which the flow resistor 20 is not provided with the suction port 22, the discharge port 24, and the flow passage 26.
  • FIG. The flow resistor 20 only needs to change the flow toward the stirring rotator 10 in some form.
  • the flow resistor 20 may include the suction port 22, the discharge port 24, and the flow path. 26 may be omitted. That is, the flow resistor 20 may be configured to change the flow toward the stirring rotating body 10 only by the outer shape of the main body 21.
  • the flow resistor 20 may be connected to the drive shaft 30 for rotation as shown in FIG. 8A, or other flow resistor 20 as shown in FIG. 8B. It may be supported by the support member 70 and not connected to the drive shaft 30 and may not rotate. Further, as shown in FIG. 8C, the flow resistor 20 may be divided into a plurality of parts. In this case, it goes without saying that the flow resistor 20 can be configured in an arbitrary shape according to the use of the stirring device 1 or the like.
  • FIG. 9 (a) to 9 (c) are diagrams showing an example in which a plurality of flow resistors 20 are provided in the stirring device 1.
  • FIG. The number of the flow resistors 20 provided in the stirring device 1 is not particularly limited, and two or more flow resistors 20 may be provided in the stirring device 1 depending on the use of the stirring device 1 or the like.
  • the flow resistor 20 may be arranged on both sides in the direction of the central axis C with respect to the stirring rotating body 10, or as shown in FIG. 9B. As described above, a plurality of flow resistors 20 may be arranged on either side of the central axis C direction. Further, the plurality of flow resistors 20 may be the same as shown in FIGS. 9A and 9B, or may be different from each other as shown in FIG. 9C. The flow resistor 20 may be provided. Needless to say, the posture of each flow resistor 20 is not particularly limited.
  • the stirring device 1 may be provided with a plurality of rotating bodies 10 for stirring.
  • one or a plurality of flow resistors 20 may be provided for each stirring rotor 10, or a stirring rotor 10 that does not have the corresponding flow resistor 20 may be included. Good.
  • FIGS. 10A to 10C are diagrams showing an example in which the stirring force of the flow resistor 20 is not made lower than that of the stirring rotor 10. As described above, making the stirring force of the flow resistor 20 lower than that of the stirring rotor 10 is particularly effective in the case of dispersing suspended matter, sediment, etc. In some cases, it is preferable that the stirring force of the flow resistor 20 is not lower than that of the rotating body 10 for stirring.
  • the flow resistor 20 is formed in a shape different from that of the agitating rotor 10, or for example, FIG. ),
  • the flow resistor 20 is configured to have a size different from that of the stirring rotator 10, thereby synergistically generating the flow generated by the stirring rotator 10 and the flow generated by the flow resistor 20. This makes it possible to improve the stirring efficiency.
  • one of the two stirring rotors 10a and 10b is made to have a different posture, and the stirring rotor 10b is made a flow resistor. Even when it is set to 20, the flow generated by the stirring rotating body 10 and the flow generated by the flow resistor 20 can act synergistically to improve the stirring efficiency.
  • the flow resistor 20 is not limited to one having a lower stirring force than the stirring rotator 10, and is configured to have a shape or a size different from that of the stirring rotator 10, or May be arranged in different postures.
  • the flow resistor 20 having a reduced stirring force is included in either a shape different from the stirring rotor 10 or a size different from the stirring rotor 10. Needless to say.
  • what is configured in a shape different from that of the stirring rotator 10 is different from the stirring rotator 10 only in the suction port 22, the discharge port 24, or the flow passage 26, and the stirring rotator. Needless to say, the suction port 12, the discharge port 14, and the flow passage 16 are only deleted from 10.
  • the rotating body for stirring 10 and the flow resistor 20 may be connected to different drive shafts 30 and rotate.
  • the number of rotations of the agitating rotator 10 and the flow resistor 20 may be varied, or the rotation directions may be varied.
  • the rotating shafts (center axis C) of the stirring rotator 10 and the flow resistor 20 may be shifted.
  • the stirring device 1 includes the rotating body for stirring 10 and the flow resistor 20 that are disposed adjacent to each other, and the rotating body for stirring 10 has a rotating shaft (central axis C).
  • a suction port 12 provided on the surface of the main body 11, and a discharge port 14 provided on the surface of the main body 11 at a position on the outer side in the centrifugal direction from the rotation axis (center axis C) than the suction port 12.
  • the flow passage 16 connecting the suction port 12 and the discharge port 14, and the flow resistor 20 is configured in a shape or a size different from that of the stirring rotator 10, or the stirring rotator 10. It is arranged in a different posture.
  • the stirring rotating body 10 and the flow resistor 20 are arranged side by side in the direction of the rotation axis (center axis C). By doing in this way, since the flow which goes to the rotating body 10 for stirring can be effectively disturbed by the flow resistance body 20, a more complicated flow can be generated in a to-be-stirred object.
  • suction port 12 may be provided toward the flow resistor 20 side. By doing so, it becomes possible to effectively disturb the relatively strong swirling flow toward the suction port 12 by the flow resistor 20, so that a more complicated flow can be generated in the stirring object.
  • the flow resistor 20 may rotate about the resistor rotation axis (center axis C). By doing in this way, since the flow which the rotating body 10 for stirring can generate
  • the flow resistor 20 includes a resistor main body 21 that rotates about a resistor rotation axis (center axis C), a resistor inlet 22 provided on the surface of the resistor main body 21, and a surface of the resistor main body 21. 2, a resistor discharge port 24 provided at a position on the outer side in the centrifugal direction from the resistor rotation axis (center axis C) with respect to the resistor suction port 22, and a resistor flow path connecting the resistor suction port 22 and the resistor discharge port 24. 26 may be provided.
  • the flow generated by the stirring rotating body 10 and the flow generated by the flow resistor 20 can be made to act synergistically, so that a more complicated flow is generated in the object to be stirred. Can do.
  • the flow resistor 20 may be configured such that the flow velocity or flow rate of the flow passing through the resistor discharge port 24 is lower than the flow velocity or flow rate of the flow passing through the discharge port 14. By doing in this way, it becomes possible to make the flow which the flow resistance body 20 acts effectively with respect to the flow which the rotating body 10 for stirring stirs, for example, suspended matter, sediment, etc. It is particularly suitable for the case of dispersing in the above.
  • the flow resistor 20 may be configured such that the flow velocity or flow rate of the flow passing through the resistor suction port 22 is lower than the flow velocity or flow rate of the flow passing through the suction port 12. By doing in this way, it becomes possible to make the flow which the flow resistance body 20 acts effectively with respect to the flow which the rotating body 10 for stirring stirs, for example, suspended matter, sediment, etc. It is particularly suitable for the case of dispersing in the above.
  • the resistor suction port 22 may be provided toward the stirring rotor 10 side.
  • the flow generated by the flow resistor 20 can be effectively acted on the flow generated by the rotating body 10 for stirring, so that a more complicated flow is generated in the object to be stirred. Can be made.
  • the flow resistor 20 even when it is necessary to arrange the flow resistor 20 on the liquid surface side, it is possible to achieve both the prevention of bubble mixing and foaming and the improvement of the stirring efficiency.
  • the flow resistor 20 may be configured such that the maximum dimension in the direction orthogonal to the resistor rotation axis (center axis C) is smaller than that of the agitating rotor 10. By doing so, the flow generated by the flow resistor 20 can be effectively acted on the flow generated by the rotating body 10 for stirring, so that a more complicated flow is generated in the object to be stirred. Can be made.
  • the flow resistor 20 is configured in a shape having an inclined surface that gradually goes away from the resistor rotation axis (center axis C) as it approaches the stirring rotor 10 along the resistor rotation axis direction (center axis C direction). It may be a thing. By doing so, it is possible to appropriately induce the flow toward the flow resistor 20 and to effectively cause the flow generated by the flow resistor 20 to act on the flow generated by the stirring rotating body 10. Therefore, more complicated flow can be generated in the object to be stirred.
  • the stirring apparatus of this invention is not limited to above-described embodiment, In the range which does not deviate from the summary of this invention, it can add various changes.
  • the functions and effects shown in the above embodiment are merely a list of the most preferable functions and effects resulting from the present invention, and the functions and effects of the present invention are not limited to these.
  • the stirring device of the present invention can be used in the fields of stirring, dispersion and mixing of various fluids.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Abstract

 This stirring device (1) is provided with a stirring rotor (10) and a flow resistor (20) which are arranged adjacently to one another. The stirring rotor (10) is provided with a main unit (11) that rotates about a rotation axis (C), intake ports (12) located on the surface of the main unit (11), discharge ports (14) located on the surface of the main unit (11) at positions farther towards the outside from the rotation axis (C) in the centrifugal direction than are the intake ports (12), and flow passages (16) connecting the intake ports (12) and the discharge ports (14). The flow resistor (20) is made to a different shape or different size than the stirring rotor (10), or is arranged at a different orientation than the stirring rotor (10). As a result, there is provided a stirring device with which it is possible to carry out stirring efficiently, regardless of the condition of the stirred material.

Description

攪拌装置Stirrer
 本発明は、液体その他の各種流体を攪拌し、混合、分散等を行うための攪拌装置に関する。 The present invention relates to a stirring device for stirring, mixing, dispersing, and the like of liquid and other various fluids.
 従来、例えば2種類以上の流体を混合したり、流体中に添加した各種粉末等を均一に分散させたりする場合には、流体中で羽根車を回転させる攪拌装置が使用されている。この羽根車には一般的にプロペラ翼やタービン翼が設けられており、回転することで流体を流動させて攪拌を行う。また、プロペラ翼やタービン翼を使用するのではなく、外形が六角柱状の筒体から羽根車を構成すると共に、側面に複数の孔を設けた攪拌装置等も提案されている(例えば、特許文献1参照)。 Conventionally, when, for example, two or more kinds of fluids are mixed or various powders added to the fluid are uniformly dispersed, a stirring device that rotates an impeller in the fluid is used. This impeller is generally provided with a propeller blade and a turbine blade, and agitation is performed by flowing a fluid by rotating. In addition, a propeller blade or a turbine blade is not used, and an agitator or the like having a plurality of holes on the side surface is also proposed (see, for example, Patent Documents). 1).
特開平5-154368号公報JP-A-5-154368
 しかしながら、従来の攪拌装置は、軸方向または遠心方向等の画一的な流動しか発生させられないものが多く、一般に攪拌効率が低いという問題があった。例えば、比重の小さい粉末等を液体中に投入して均一に分散させるような場合、粉末等が凝集物(所謂ダマ)となって液面上に浮いた状態となりやすいところ、従来の攪拌装置では、この凝集物を液中に沈めると共に適宜に破砕して粉末を均一に分散させることが困難であった。 However, many conventional stirring devices can generate only uniform flow in the axial direction or the centrifugal direction, and generally have a problem of low stirring efficiency. For example, when powder with a low specific gravity is introduced into a liquid and uniformly dispersed, the powder tends to float on the liquid surface as an aggregate (so-called lumps). It was difficult to disperse the powder uniformly by submerging the aggregate in the liquid and crushing it appropriately.
 特に、羽根車の回転数を上げて、流動を強くすることにより粉末等を液中に沈めようとした場合、周囲の空気等までも液中に巻き込んでしまう結果となるため、本来回避すべき気泡の混入や発泡等といった別の問題が新たに生じることとなっていた。さらに、従来の攪拌装置では、液面上の浮遊物のみならず、容器等の底の沈降物を適宜に巻き上げて(または、吸い上げて)液体中や気体中に分散させるといったことも、滞留物の性質等によっては困難な場合があった。 In particular, if you try to submerge powder etc. in the liquid by increasing the rotation speed of the impeller and strengthening the flow, it will result in even surrounding air etc. being caught in the liquid, so it should be avoided originally Another problem such as bubble mixing and foaming was newly generated. Furthermore, in the conventional stirring apparatus, not only suspended matter on the liquid surface but also sediment in the bottom of a container or the like is appropriately rolled up (or sucked up) and dispersed in liquid or gas. Depending on the nature of the case, it may be difficult.
 本発明は、斯かる実情に鑑み、被攪拌物の状態によらず効率的な攪拌を行うことが可能な攪拌装置を提供しようとするものである。 In view of such circumstances, the present invention intends to provide a stirring device capable of performing efficient stirring regardless of the state of an object to be stirred.
 本発明は、互いに隣接して配置される攪拌用回転体および流動抵抗体を備え、前記攪拌用回転体は、回転軸を中心に回転する本体と、前記本体の表面に設けられる吸入口と、前記本体の表面において前記吸入口よりも前記回転軸から遠心方向外側の位置に設けられる吐出口と、前記吸入口と前記吐出口を繋ぐ流通路と、を備え、前記流動抵抗体は、前記攪拌用回転体とは異なる形状もしくは異なる大きさに構成される、または前記攪拌用回転体とは異なる姿勢に配置されることを特徴とする、攪拌装置である。 The present invention includes a stirring rotator and a flow resistor that are disposed adjacent to each other, and the stirring rotator includes a main body that rotates about a rotation axis, and a suction port that is provided on a surface of the main body. A discharge port provided at a position on the outer surface of the main body in a centrifugal direction from the rotation shaft with respect to the suction port; and a flow passage connecting the suction port and the discharge port. The stirring device is configured to have a shape or a size different from that of the rotating body for rotation, or is arranged in a posture different from that of the rotating body for stirring.
 本発明はまた、上記手段の攪拌装置において、前記攪拌用回転体および前記流動抵抗体は、前記回転軸方向に並べて配置されることを特徴とする。 The present invention is also characterized in that, in the stirring device of the above means, the rotating body for stirring and the flow resistor are arranged side by side in the rotational axis direction.
 本発明はまた、上記手段の攪拌装置において、前記吸入口は、前記流動抵抗体側に向けて設けられることを特徴とする。 The present invention is also characterized in that, in the stirring device of the above means, the suction port is provided toward the flow resistor side.
 本発明はまた、上記手段の攪拌装置において、前記流動抵抗体は、前記抵抗体回転軸を中心に回転することを特徴とする。 The present invention is also characterized in that, in the stirring device of the above means, the flow resistor rotates about the resistor rotation axis.
 本発明はまた、上記手段の攪拌装置において、前記流動抵抗体は、前記抵抗体回転軸を中心に回転する抵抗体本体と、前記抵抗体本体の表面に設けられる抵抗体吸入口と、前記抵抗体本体の表面において前記抵抗体吸入口よりも前記抵抗体回転軸から遠心方向外側の位置に設けられる抵抗体吐出口と、前記抵抗体吸入口と前記抵抗体吐出口を繋ぐ抵抗体流通路と、を備えることを特徴とする。 The present invention also provides the stirrer according to the above means, wherein the flow resistor includes a resistor body that rotates about the resistor rotating shaft, a resistor inlet provided on a surface of the resistor body, and the resistor. A resistor discharge port provided at a position on the outer side in the centrifugal direction from the resistor rotation axis with respect to the resistor suction port on the surface of the body main body; a resistor flow passage connecting the resistor suction port and the resistor discharge port; It is characterized by providing.
 本発明はまた、上記手段の攪拌装置において、前記流動抵抗体は、前記抵抗体吐出口を通過する流動の流速または流量が、前記吐出口を通過する流動の流速または流量よりも低くなるように構成されることを特徴とする。 According to the present invention, in the stirring device of the above means, the flow resistor is configured such that the flow velocity or flow rate of the flow passing through the resistor discharge port is lower than the flow velocity or flow rate of the flow passing through the discharge port. It is characterized by being configured.
 本発明はまた、上記手段の攪拌装置において、前記流動抵抗体は、前記抵抗体吸入口を通過する流動の流速または流量が、前記吸入口を通過する流動の流速または流量よりも低くなるように構成されることを特徴とする。 According to the present invention, in the stirring device of the above means, the flow resistor is configured such that the flow velocity or flow rate of the flow passing through the resistor suction port is lower than the flow velocity or flow rate of the flow passing through the suction port. It is characterized by being configured.
 本発明はまた、上記手段の攪拌装置において、前記抵抗体吸入口は、前記攪拌用回転体側に向けて設けられることを特徴とする。 The present invention is also characterized in that, in the stirring device of the above means, the resistor suction port is provided toward the stirring rotor.
 本発明はまた、上記手段の攪拌装置において、前記流動抵抗体は、前記抵抗体回転軸に直交する方向の最大寸法が、前記攪拌用回転体よりも小さく構成されることを特徴とする。 The present invention is also characterized in that, in the stirring device of the above means, the flow resistor is configured such that a maximum dimension in a direction orthogonal to the resistor rotation axis is smaller than that of the stirring rotor.
 本発明はまた、上記手段の攪拌装置において、前記流動抵抗体は、前記抵抗体回転軸方向に沿って前記攪拌用回転体に近づくにつれて漸次前記抵抗体回転軸から遠ざかる傾斜面を有する形状に構成されることを特徴とする。 According to the present invention, in the stirring device of the above means, the flow resistor is configured in a shape having an inclined surface that gradually moves away from the resistor rotating shaft as it approaches the stirring rotor along the resistor rotating shaft direction. It is characterized by being.
 本発明に係る攪拌装置によれば、被攪拌物の状態によらず効率的な攪拌を行うことが可能という優れた効果を奏し得る。 The stirrer according to the present invention can provide an excellent effect that it is possible to perform efficient stirring regardless of the state of the object to be stirred.
本発明の実施の形態に係る攪拌装置の一例を示した正面図(側面図)である。It is the front view (side view) which showed an example of the stirring apparatus which concerns on embodiment of this invention. (a)攪拌用回転体の平面図である。(b)攪拌用回転体の正面図(側面図)である。(A) It is a top view of the rotary body for stirring. (B) It is a front view (side view) of the rotating body for stirring. (a)流動抵抗体の平面図である。(b)流動抵抗体の正面図(側面図)である。(A) It is a top view of a flow resistor. (B) It is a front view (side view) of a flow resistor. (a)および(b)攪拌装置の作用の一例を示した図である。It is the figure which showed an example of the effect | action of (a) and (b) stirring apparatus. (a)および(b)攪拌装置の作用の他の例を示した図である。It is the figure which showed the other example of the effect | action of (a) and (b) stirring apparatus. (a)~(c)流動抵抗体のその他の形状の例を示した図である。(A) to (c) are diagrams showing examples of other shapes of the flow resistor. (a)~(c)攪拌用回転体および流動抵抗体のその他の配置構成の例を示した図である。(A) to (c) are diagrams showing examples of other arrangement configurations of the rotating body for stirring and the flow resistor. (a)~(c)流動抵抗体に吸入口、吐出口および流通路を設けないようにした場合の例を示した図である。(A) to (c) are diagrams showing an example in which the flow resistor is not provided with a suction port, a discharge port and a flow passage. (a)~(c)攪拌装置に流動抵抗体を複数備えるようにした場合の例を示した図である。(A) to (c) is a view showing an example in which a plurality of flow resistors are provided in the stirring device. (a)~(c)流動抵抗体の攪拌力を攪拌用回転体よりも低くしないようにした場合の例を示した図である。(A) to (c) are diagrams showing an example in which the stirring force of the flow resistor is not made lower than that of the stirring rotor.
 以下、本発明の実施の形態を、添付図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
 まず、本実施形態に係る攪拌装置1の構造について説明する。図1は、攪拌装置1の一例を示した正面図(側面図)である。同図に示されるように、攪拌装置1は、被攪拌物中で回転することにより攪拌力を発生させる攪拌用回転体10と、被攪拌物中で攪拌用回転体10に向かう流動の抵抗となる流動抵抗体20と、を備えている。この攪拌用回転体10および流動抵抗体20は、モータ等の駆動装置(図示省略)の駆動力を伝達する駆動軸30に、所定の距離だけ離隔させた状態で同軸的に接続されている。 First, the structure of the stirring device 1 according to this embodiment will be described. FIG. 1 is a front view (side view) showing an example of a stirring device 1. As shown in the figure, the stirrer 1 includes a stirring rotator 10 that generates stirring force by rotating in an object to be stirred, and a flow resistance toward the stirring rotator 10 in the object to be stirred. The flow resistance body 20 is provided. The stirring rotating body 10 and the flow resistor 20 are coaxially connected to a driving shaft 30 that transmits a driving force of a driving device (not shown) such as a motor, with a predetermined distance therebetween.
 すなわち、本実施形態の攪拌用回転体10および流動抵抗体20は、1つの駆動装置によって共に中心軸C周りに回転するように構成されている。なお、駆動装置は、攪拌用回転体10側および流動抵抗体20側のいずれに配置するようにしてもよい。換言すれば、攪拌装置1では、攪拌用回転体10および流動抵抗体20のいずれを駆動装置側に配置してもよく、用途に応じて使い分けることが可能となっている。 That is, the rotating body for stirring 10 and the flow resistor 20 of the present embodiment are configured to rotate around the central axis C by one drive device. The driving device may be arranged on either the stirring rotor 10 side or the flow resistor 20 side. In other words, in the stirring device 1, either the stirring rotator 10 or the flow resistor 20 may be disposed on the drive device side, and can be used properly according to the application.
 図2(a)は、攪拌用回転体10の平面図であり、同図(b)は、攪拌用回転体10の正面図(側面図)である。攪拌用回転体10の本体11は、略円柱状(円盤状)に構成されており、本体11の表面は、略円形状の上面11aおよび底面11b、ならびに外周面である側面11cから構成されている。本体11を構成する材質は、特に限定されるものではなく、例えば金属やセラミックス、樹脂、ゴム、木材等、使用条件に応じた適宜の材質を採用することができる。 FIG. 2A is a plan view of the rotating body 10 for stirring, and FIG. 2B is a front view (side view) of the rotating body 10 for stirring. The main body 11 of the rotating body for stirring 10 is configured in a substantially cylindrical shape (disc shape), and the surface of the main body 11 is configured by a substantially circular upper surface 11a and a bottom surface 11b, and a side surface 11c which is an outer peripheral surface. Yes. The material which comprises the main body 11 is not specifically limited, For example, a suitable material according to use conditions, such as a metal, ceramics, resin, rubber | gum, wood, etc., is employable.
 本体11の表面には、複数の吸入口12および複数の吐出口14が設けられ、本体11の内部には、吸入口12と吐出口14を繋ぐように形成された流通路16が設けられている。また、本体11の中心部には、駆動軸30が接続される接続部18が設けられている。この接続部18は、上面11aと底面11bの間で貫通する貫通孔となっており、適宜の固定機構(図示省略)によって本体11を駆動軸30の任意の位置に固定可能に構成されている。なお、固定機構は、例えば止めネジや係合、クランプ等、既知のいずれの手法を使用するものであってもよい。 A plurality of suction ports 12 and a plurality of discharge ports 14 are provided on the surface of the main body 11, and a flow passage 16 formed so as to connect the suction ports 12 and the discharge ports 14 is provided inside the main body 11. Yes. A connecting portion 18 to which the drive shaft 30 is connected is provided at the center of the main body 11. The connecting portion 18 is a through-hole penetrating between the upper surface 11a and the bottom surface 11b, and is configured so that the main body 11 can be fixed to an arbitrary position of the drive shaft 30 by an appropriate fixing mechanism (not shown). . The fixing mechanism may use any known method such as a set screw, engagement, clamp, or the like.
 吸入口12は、流動抵抗体20側の面、すなわち上面11aに設けられている。本実施形態では、4つの吸入口12を、中心軸Cを中心とする円周上に等間隔に並べて配置している。また、本実施形態では、中心軸Cと略同一方向に吸入口12を形成している。吐出口14は、側面11cのやや底面11b側に設けられている。本実施形態では、4つの吐出口14を、各吸入口12に対して本体11の半径方向(遠心方向)外側となる位置(中心軸Cから中心軸Cに垂直な方向に離れた位置)にそれぞれ配置している。また、本実施形態では、中心軸Cに対して略直交する方向に吐出口14を形成している。 The suction port 12 is provided on the surface on the flow resistor 20 side, that is, the upper surface 11a. In the present embodiment, the four suction ports 12 are arranged at equal intervals on a circumference centered on the central axis C. In the present embodiment, the suction port 12 is formed in substantially the same direction as the central axis C. The discharge port 14 is provided slightly on the bottom surface 11b side of the side surface 11c. In the present embodiment, the four discharge ports 14 are positioned at positions outside the main body 11 in the radial direction (centrifugal direction) with respect to the suction ports 12 (positions separated from the central axis C in a direction perpendicular to the central axis C). Each is arranged. In the present embodiment, the discharge ports 14 are formed in a direction substantially orthogonal to the central axis C.
 流通路16は、1つの吸入口12と1つの吐出口14を繋ぐトンネル状の通路として形成されている。従って、本体11の内部には、4つの流通路16が形成されている。本実施形態では、各流通路16は、吸入口12から中心軸C方向に沿って直進した後に直角に曲がり、本体11の遠心方向に向けて直進して吐出口14に到達するように形成されている。 The flow passage 16 is formed as a tunnel-like passage connecting one suction port 12 and one discharge port 14. Accordingly, four flow passages 16 are formed inside the main body 11. In the present embodiment, each of the flow passages 16 is formed so as to travel straight along the direction of the central axis C from the suction port 12 and then bend at a right angle, and travel straight in the centrifugal direction of the main body 11 to reach the discharge port 14. ing.
 攪拌用回転体10は、流体である被攪拌物内において中心軸Cを中心に回転することにより、被攪拌物を攪拌するものである。流体中に攪拌用回転体10を浸漬して回転させると、流通路16内に進入した流体も攪拌用回転体10と共に回転することとなる。すると、流通路16内の流体に遠心力が作用し、図2(a)および(b)に示されるように、流通路16内の流体は攪拌用回転体10の半径方向外側に向けて流動する。 The stirring rotating body 10 stirs the object to be stirred by rotating around the central axis C in the object to be stirred that is a fluid. When the stirring rotator 10 is immersed in the fluid and rotated, the fluid that has entered the flow passage 16 also rotates together with the stirring rotator 10. Then, a centrifugal force acts on the fluid in the flow passage 16, and the fluid in the flow passage 16 flows toward the outside in the radial direction of the stirring rotor 10 as shown in FIGS. 2 (a) and 2 (b). To do.
 吐出口14は、吸入口12よりも攪拌用回転体10の半径方向外側に設けられているため、吐出口14では吸入口12よりも強い遠心力が働くこととなる。従って、流体は、攪拌用回転体10が回転している限り吸入口12から吐出口14に向けて流動する。すなわち、流通路16内の流体が吐出口14から噴出すると共に、外部の流体が吸入口12から流通路16内に吸引される。これにより、攪拌用回転体10の周囲の流体には、吐出口14のある攪拌用回転体10の側面11cから放射状に広がる流動と、吸入口12に向かう流動が発生することとなる。なお、吸入口12に向かう流動は、吸入口12の回転により旋回流となる。 Since the discharge port 14 is provided on the radially outer side of the agitating rotator 10 with respect to the suction port 12, a centrifugal force stronger than that of the suction port 12 acts on the discharge port 14. Accordingly, the fluid flows from the suction port 12 toward the discharge port 14 as long as the stirring rotator 10 rotates. That is, the fluid in the flow passage 16 is ejected from the discharge port 14, and the external fluid is sucked into the flow passage 16 from the suction port 12. As a result, in the fluid around the stirring rotator 10, a flow radiating from the side surface 11 c of the stirring rotator 10 having the discharge port 14 and a flow toward the suction port 12 are generated. The flow toward the suction port 12 becomes a swirl flow by the rotation of the suction port 12.
 また、攪拌用回転体10の表面(すなわち、本体11の表面である上面11a、底面11bおよび側面11c)近傍では、粘性の影響により流体が攪拌用回転体10と共に回転することとなるため、この遠心力によっても攪拌用回転体10の周囲の流体は、中心軸Cから放射状に広がるように流動することとなる。このように、攪拌用回転体10は、吸入口12への流体の流入および吐出口14からの流体の流出に加え、粘性による表面近傍の流体の連れ回りにより、周囲の流体に複雑な流動(乱流)を発生させ、従来にない攪拌能力を得ることが可能となっている。 Further, in the vicinity of the surface of the stirring rotator 10 (that is, the upper surface 11a, the bottom surface 11b, and the side surface 11c, which are the surfaces of the main body 11), the fluid rotates together with the stirring rotator 10 due to the influence of viscosity. The fluid around the stirring rotator 10 also flows so as to spread radially from the central axis C by the centrifugal force. In this manner, the stirring rotator 10 has a complicated flow (i.e., a flow of fluid in the vicinity of the surface due to the rotation of the fluid in the vicinity of the surface due to the viscosity in addition to the inflow of the fluid to the suction port 12 and the outflow of the fluid from the discharge port 14). Turbulent flow) is generated, and an unprecedented stirring ability can be obtained.
 なお、本実施形態では、本体11を略円柱状に構成しているが、本体11の形状はこれに限定されるものではなく、例えば球状や半球状、多角柱状等、その他の任意の形状を採用することができる。また、吸入口12および吐出口14の形状(断面形状)は円形状に限定されるものではなく、例えば楕円形状や多角形状等、その他の形状であってもよい。また、流通路16の断面形状は、特に限定されるものではなく、吸入口12および吐出口14の形状や位置、または加工方法等に応じて適宜の形状に構成することができる。 In addition, in this embodiment, although the main body 11 is comprised in the substantially cylindrical shape, the shape of the main body 11 is not limited to this, For example, other arbitrary shapes, such as spherical shape, a hemispherical shape, and a polygonal column shape, are used. Can be adopted. Further, the shape (cross-sectional shape) of the suction port 12 and the discharge port 14 is not limited to a circular shape, and may be other shapes such as an elliptical shape and a polygonal shape. In addition, the cross-sectional shape of the flow passage 16 is not particularly limited, and can be configured in an appropriate shape according to the shape and position of the suction port 12 and the discharge port 14 or the processing method.
 また、本実施形態では、加工のしやすさから流通路16を略直角に曲折するL字状に構成しているが、滑らかに湾曲した曲線状の通路として流通路16を構成するようにしてもよいし、吸入口12と吐出口14を直線的に繋ぐようにしてもよい。また、本実施形態では、本体11の流通路16以外の部分を中実に構成することで、本体11の強度を高めるようにしているが、本体11の流通路16以外の部分を中空状に構成するようにしてもよい。 Further, in the present embodiment, the flow passage 16 is configured in an L shape that bends at a substantially right angle for ease of processing, but the flow passage 16 is configured as a smoothly curved curved passage. Alternatively, the suction port 12 and the discharge port 14 may be connected linearly. Further, in this embodiment, the strength of the main body 11 is increased by configuring the portion other than the flow passage 16 of the main body 11 to be solid, but the portion other than the flow passage 16 of the main body 11 is configured to be hollow. You may make it do.
 図3(a)は、流動抵抗体20の平面図であり、同図(b)は、流動抵抗体20の正面図(側面図)である。流動抵抗体20の本体21(抵抗体本体)は、略円錐台状に構成されており、本体21の表面は、略円形状の上面21aおよび底面21b、ならびに傾斜した外周面である側面21cから構成されている。本体21を構成する材質は、攪拌用回転体10と同様、特に限定されるものではなく、使用条件に応じた適宜の材質を採用することができる。 3 (a) is a plan view of the flow resistor 20, and FIG. 3 (b) is a front view (side view) of the flow resistor 20. FIG. The main body 21 (resistor main body) of the flow resistor 20 is formed in a substantially truncated cone shape, and the surface of the main body 21 is formed from a substantially circular upper surface 21a and a bottom surface 21b, and a side surface 21c which is an inclined outer peripheral surface. It is configured. The material which comprises the main body 21 is not specifically limited like the rotating body 10 for stirring, The appropriate material according to use conditions can be employ | adopted.
 流動抵抗体20の本体21には、攪拌用回転体10と同様に、表面に複数の吸入口22(抵抗体吸入口)および複数の吐出口24(抵抗体吐出口)が設けられ、内部に吸入口22と吐出口24を繋ぐ流通路26(抵抗体流通路)が設けられている。すなわち、流動抵抗体20は、攪拌用回転体10と同様に、流体中で回転することにより、吐出口24から流体を噴出すると共に吸入口22へ流体を吸引するように構成されている。また、本体21の中心部には、攪拌用回転体10と同様の構造の接続部28が設けられており、これにより、流動抵抗体20は駆動軸30の任意の位置に接続される。 The main body 21 of the flow resistor 20 is provided with a plurality of suction ports 22 (resistor suction ports) and a plurality of discharge ports 24 (resistor discharge ports) on the surface, similarly to the rotating body 10 for stirring. A flow passage 26 (resistor flow passage) that connects the suction port 22 and the discharge port 24 is provided. In other words, the flow resistor 20 is configured to eject the fluid from the discharge port 24 and suck the fluid to the suction port 22 by rotating in the fluid, similarly to the rotating body 10 for stirring. Further, a connecting portion 28 having a structure similar to that of the stirring rotator 10 is provided at the center of the main body 21, whereby the flow resistor 20 is connected to an arbitrary position of the drive shaft 30.
 吸入口22は、攪拌用回転体10側の面、すなわち底面21bに設けられており、中心軸Cを中心とする円周上に4つの吸入口22が等間隔に並べて配置されている。吐出口24は、側面21cに設けられ、各吸入口22に対して本体21の半径方向(遠心方向)外側となる位置(中心軸Cから中心軸Cに垂直な方向に離れた位置)に、4つの吐出口24がそれぞれ配置されている。 The suction ports 22 are provided on the surface on the agitating rotator 10 side, that is, the bottom surface 21b, and four suction ports 22 are arranged on the circumference centered on the central axis C at equal intervals. The discharge port 24 is provided on the side surface 21c, and is positioned on the outer side in the radial direction (centrifugal direction) of the main body 21 with respect to each suction port 22 (a position separated from the central axis C in a direction perpendicular to the central axis C). Four discharge ports 24 are respectively arranged.
 流通路26は、1つの吸入口22と1つの吐出口24を繋ぐトンネル状の通路として形成されている。本実施形態では、各流通路26は、吸入口22から中心軸C方向に沿って直進した後に直角に曲がり、本体21の遠心方向に向けて直進して吐出口24に到達するように形成されている。 The flow passage 26 is formed as a tunnel-like passage connecting one suction port 22 and one discharge port 24. In the present embodiment, each of the flow passages 26 is formed so as to travel straight along the direction of the central axis C from the suction port 22, bend at a right angle, and travel straight in the centrifugal direction of the main body 21 to reach the discharge port 24. ing.
 流動抵抗体20は、流体である被攪拌物内において攪拌用回転体10に向かう流動の抵抗となることで、この流動を変化させるものである。すなわち、流動抵抗体20は、攪拌用回転体10に向かう流動を適宜に乱すことによって攪拌力を向上させるものである。本実施形態では、流動抵抗体20の攪拌力が、攪拌用回転体10の攪拌力よりも低くなるように設定している。換言すれば、本実施形態では、回転する2つの部材のうち、攪拌力の高い方を攪拌用回転体10とし、攪拌力の低い方を流動抵抗体20としている。 The flow resistor 20 changes the flow by becoming a resistance to flow toward the agitating rotating body 10 in the object to be stirred which is a fluid. In other words, the flow resistor 20 improves the stirring force by appropriately disturbing the flow toward the stirring rotor 10. In the present embodiment, the stirring force of the flow resistor 20 is set to be lower than the stirring force of the stirring rotor 10. In other words, in the present embodiment, of the two rotating members, the higher stirring force is the rotating body 10 for stirring, and the lower stirring force is the flow resistor 20.
 攪拌用回転体10および流動抵抗体20の攪拌力は、主に吸入口12、22を通過する流動の流速または流量、および吐出口14、24を通過する流動の流速または流量によって決まる。従って、本実施形態では、流動抵抗体20の本体21の半径方向(遠心方向)の寸法を攪拌用回転体10の本体11よりも小さく構成すると共に、中心軸Cから吐出口24までの距離Aを短くすることで、遠心力の作用を低減し、吸入口22を通過する流動の流速および吐出口24を通過する流動の流速が攪拌用回転体10のそれよりも低くなるようにしている。また、流動抵抗体20の吸入口22、吐出口24および流通路26の内径(断面積)を攪拌用回転体10の吸入口12、吐出口14および流通路16よりも小さく構成することで、吸入口22を通過する流動の流量および吐出口24を通過する流動の流量が攪拌用回転体10のそれよりも低くなるようにしている。 The stirring force of the stirring rotor 10 and the flow resistor 20 is mainly determined by the flow velocity or flow rate of the flow passing through the suction ports 12 and 22 and the flow velocity or flow rate of the flow passing through the discharge ports 14 and 24. Therefore, in this embodiment, the radial direction (centrifugal direction) dimension of the main body 21 of the flow resistor 20 is configured to be smaller than that of the main body 11 of the stirring rotor 10, and the distance A from the central axis C to the discharge port 24 is set. This shortens the action of the centrifugal force so that the flow velocity of the flow passing through the suction port 22 and the flow velocity of the flow passing through the discharge port 24 are lower than that of the rotating body 10 for stirring. Further, by configuring the inner diameters (cross-sectional areas) of the suction port 22, the discharge port 24 and the flow passage 26 of the flow resistor 20 to be smaller than the suction port 12, the discharge port 14 and the flow passage 16 of the stirring rotor 10, The flow rate of the flow passing through the suction port 22 and the flow rate of the flow passing through the discharge port 24 are made lower than that of the rotating body 10 for stirring.
 次に、攪拌装置1の作用について説明する。図4(a)および(b)は、攪拌装置1の作用の一例を示した図である。図4(a)は、容器40内に収容した液体の被攪拌物50内に攪拌用回転体10のみを浸漬させた状態で、上方に配置した駆動装置60により回転させる場合を示している。また、図4(b)は、容器40内に収容した液体の被攪拌物50内に攪拌用回転体10および流動抵抗体20を浸漬させた状態で、上方に配置した駆動装置60によって回転させる場合を示している。 Next, the operation of the stirring device 1 will be described. 4A and 4B are diagrams showing an example of the operation of the stirring device 1. FIG. FIG. 4A shows a case where only the rotating body for stirring 10 is immersed in the liquid to-be-stirred object 50 accommodated in the container 40 and is rotated by the driving device 60 disposed above. FIG. 4B shows a state in which the stirring rotating body 10 and the flow resistance body 20 are immersed in the liquid to-be-stirred object 50 accommodated in the container 40 and rotated by the driving device 60 disposed above. Shows the case.
 図4(a)に示されるように、被攪拌物50内で攪拌用回転体10を回転させることにより、被攪拌物50内には複雑な循環流が発生することとなる。すなわち、吐出口14からの噴出等によって攪拌用回転体10から遠心方向に放射状に広がる流動は、ある程度広がった後に上下に分かれ、一方が吸入口12の吸引力等によって上方から上面11aに向かう比較的強い旋回流となり、他方が下方から底面11bに向かう比較的弱い旋回流となる。 As shown in FIG. 4A, a complicated circulation flow is generated in the stirred object 50 by rotating the stirring rotating body 10 in the stirred object 50. That is, the flow that radially spreads in the centrifugal direction from the agitating rotator 10 due to the ejection from the discharge port 14, etc., is divided into upper and lower parts after being spread to some extent, and one is compared from the upper side to the upper surface 11 a by the suction force of the suction port 12. Is a relatively strong swirl flow, and the other is a relatively weak swirl flow from below toward the bottom surface 11b.
 そして、このような循環流を発生させることによって、被攪拌物50の略全体に攪拌力を及ぼすことができるため、被攪拌物50を効率的に攪拌することが可能となる。また、この例のように、吸入口12を上方、すなわち液面52側に向けることにより、例えば液面52上に浮遊する粉末の凝集物等を、比較的強い旋回流によって液中に沈め、循環流によって被攪拌物50中に均一に分散させるといったことも可能となる。 Further, by generating such a circulating flow, a stirring force can be exerted on substantially the entire object to be stirred 50, so that the object to be stirred 50 can be efficiently stirred. Further, as in this example, by directing the suction port 12 upward, that is, toward the liquid level 52, for example, powder agglomerates floating on the liquid level 52 are submerged in the liquid by a relatively strong swirling flow, It is also possible to uniformly disperse the object to be stirred 50 by the circulating flow.
 図4(b)に示されるように、攪拌用回転体10に加えて、流動抵抗体20を攪拌用回転体10の吸入口12側(上方)に配置することにより、上面11aに向かう比較的強い旋回流を一旦押し広げるように変化させて乱すことが可能となる。すなわち、流動抵抗体20の存在によって中心軸C近傍の流動を遮ると共に、吐出口24からの噴出および粘性による連れ回りの遠心力により、攪拌用回転体10の上面11aに向かう比較的強い旋回流を外側に広げるようにして乱すことができる。さらに、流動抵抗体20の背後(下側)に生じる負圧および吸入口22による吸引によって、一旦外側に広がった比較的強い旋回流を中心軸C側に引き込むことができる。 As shown in FIG. 4B, in addition to the stirring rotator 10, the flow resistor 20 is disposed on the suction port 12 side (upper) of the stirring rotator 10 so as to be relatively directed toward the upper surface 11a. It is possible to change the strong swirl flow so that it is once spread. That is, the flow resistance body 20 blocks the flow in the vicinity of the central axis C, and a relatively strong swirling flow toward the upper surface 11a of the stirring rotating body 10 due to the centrifugal force caused by the ejection from the discharge port 24 and viscosity. Can be disturbed by spreading outward. Furthermore, a relatively strong swirling flow once spread outward can be drawn to the central axis C side by the negative pressure generated behind (lower side) the flow resistor 20 and suction by the suction port 22.
 この結果、上方の液面52から攪拌用回転体10の上面11aに向かう比較的強い旋回流において、きわめて複雑な流動を発生させることが可能となる。これにより、液面52上に粉末の凝集物等が大量に浮遊しているような場合にも、この複雑な流動によってこれらの凝集物等をきわめて短時間のうちに液中に沈めると共に適宜に破砕することができる。また、流動抵抗体20によるきわめて複雑な流動は、周囲の循環流にも影響を及ぼすこととなるため、被攪拌物50内の略全域に亘ってより複雑な流動を発生させ、より均一な攪拌、分散を行うことが可能となる。 As a result, it is possible to generate a very complicated flow in a relatively strong swirling flow from the upper liquid level 52 toward the upper surface 11a of the stirring rotator 10. As a result, even when a large amount of powder agglomerates are floating on the liquid surface 52, the agglomerates are submerged in the liquid in a very short time due to this complicated flow. Can be crushed. In addition, the extremely complicated flow caused by the flow resistor 20 also affects the surrounding circulation flow, so that a more complicated flow is generated over almost the entire area of the object to be stirred 50 and more uniform stirring is performed. It is possible to perform dispersion.
 すなわち、本実施形態の攪拌装置1によれば、従来の攪拌装置では効率的に攪拌することが困難であった被攪拌物50であっても、きわめて効率的に攪拌を行うことが可能となっている。さらに、本実施形態の攪拌装置1では、流動抵抗体20の位置を適宜に設定することで液面52を必要以上に乱さないようにすることができ、また、攪拌効率を高めるために攪拌用回転体10の回転数を上げる等して流速を高める必要もないため、液面52の乱れによる被攪拌物50内への気泡の混入や発泡、液面52の盛り上がりによる被攪拌物50の漏出といった問題を生じることなく、攪拌効率を高めることが可能となっている。 That is, according to the stirring device 1 of the present embodiment, it is possible to stir extremely efficiently even with the object to be stirred 50 that was difficult to stir efficiently with the conventional stirring device. ing. Furthermore, in the stirring device 1 of the present embodiment, the position of the flow resistor 20 can be appropriately set so that the liquid level 52 is not disturbed more than necessary. Since it is not necessary to increase the flow rate by increasing the number of revolutions of the rotating body 10, bubbles are mixed into the object to be stirred 50 due to disturbance of the liquid surface 52, foaming, and leakage of the object 50 to be stirred due to the rise of the liquid surface 52. It is possible to increase the stirring efficiency without causing such problems.
 また、本実施形態では、流動抵抗体20の半径方向の最大寸法、すなわち、中心軸Cに直交する方向の最大寸法を攪拌用回転体10よりも小さくすることで、流動抵抗体20の攪拌力を適宜に低くすると共に、攪拌用回転体10に向かう流動を必要以上に遮らないようにしており、これにより、複雑な流動を効果的に発生させることを可能としている。 Further, in this embodiment, the stirring force of the flow resistor 20 is reduced by making the maximum dimension in the radial direction of the flow resistor 20, that is, the maximum dimension in the direction orthogonal to the central axis C smaller than that of the stirring rotor 10. Is appropriately reduced, and the flow toward the stirring rotator 10 is not blocked more than necessary, thereby making it possible to effectively generate a complex flow.
 さらに、本実施形態では、流動抵抗体20の本体21の形状を、円錐台状、より詳細には、中心軸C方向に沿って攪拌用回転体10に近づくにつれて漸次中心軸Cから遠ざかる傾斜面(側面21c)を有する形状に構成することで、上方から流動抵抗体20に向かう流動をスムーズ且つ効果的に外側に誘導することを可能としている。また、このように構成した傾斜面(側面21c)に吐出口24を設けることで、周速の差によって吐出口24からの噴流を乱すと共に、この噴流を直接的に上方からの流動に衝突させ、より複雑な流動を発生させることを可能としている。 Furthermore, in this embodiment, the shape of the main body 21 of the flow resistor 20 is a truncated cone, more specifically, an inclined surface that gradually moves away from the central axis C as it approaches the agitating rotator 10 along the direction of the central axis C. By configuring in a shape having (side surface 21c), it is possible to smoothly and effectively guide the flow toward the flow resistor 20 from above. Further, by providing the discharge port 24 on the inclined surface (side surface 21c) thus configured, the jet flow from the discharge port 24 is disturbed by the difference in peripheral speed, and this jet flow is directly collided with the flow from above. It is possible to generate more complex flows.
 図5(a)および(b)は、攪拌装置1の作用の他の例を示した図である。図4(a)および(b)と同様に、図5(a)は、液体の被攪拌物50内に攪拌用回転体10のみを浸漬させた状態で回転させる場合を示しており、図5(b)は、液体の被攪拌物50内に攪拌用回転体10および流動抵抗体20を浸漬させた状態で回転させる場合を示している。また、この例では、図4(a)および(b)の例とは逆に、攪拌用回転体10を、上面11aおよび吸入口12を下方、すなわち容器40の底部42に向けた姿勢に配置するようにしている。 FIGS. 5A and 5B are diagrams showing another example of the operation of the stirring device 1. Similar to FIGS. 4A and 4B, FIG. 5A shows a case where only the stirring rotator 10 is immersed in the liquid to-be-stirred object 50 and is rotated. (B) has shown the case where the rotating body 10 for stirring and the flow resistance body 20 are immersed in the liquid to-be-stirred object 50, and it rotates. Further, in this example, contrary to the example of FIGS. 4A and 4B, the rotating body for stirring 10 is disposed in a posture in which the upper surface 11a and the suction port 12 are directed downward, that is, toward the bottom 42 of the container 40. Like to do.
 図5(a)に示されるように、吸入口12を下方に向けた状態で、攪拌用回転体10を適宜に底部42に近接させることで、底部42上に沈降した沈降物を下方から上面11aに向かう比較的強い旋回流によって適宜に巻き上げると共に、吸入口12で吸い上げることが可能となる。そして、吸入口12で吸引した沈降物を吐出口14から噴出させることで、循環流によって沈降物を被攪拌物50内に適宜に分散させることができる。 As shown in FIG. 5 (a), the agitation rotating body 10 is appropriately brought close to the bottom 42 in a state where the suction port 12 faces downward, so that the sediment settled on the bottom 42 is seen from below to the top. It is possible to wind up properly by the relatively strong swirl flow toward 11a and suck up at the suction port 12. Then, the sediment sucked at the suction port 12 is ejected from the discharge port 14, whereby the sediment can be appropriately dispersed in the stirred object 50 by the circulating flow.
 図5(b)に示されるように、攪拌用回転体10に加えて、流動抵抗体20を攪拌用回転体10の吸入口12側(下方)に配置することにより、図4(b)に示した例と同様に、下方から上面11aに向かう比較的強い旋回流において、きわめて複雑な流動を発生させることが可能となる。従って、流動抵抗体20を底部42に適宜に近接させることで、この複雑な流動によって沈降物をより効率的に巻き上げ、より効率的に分散させることができる。 As shown in FIG. 5B, in addition to the stirring rotator 10, the flow resistor 20 is arranged on the suction port 12 side (downward) of the stirring rotator 10, thereby making the structure shown in FIG. Similar to the example shown, it is possible to generate a very complicated flow in a relatively strong swirling flow from below to the upper surface 11a. Therefore, by making the flow resistor 20 appropriately close to the bottom portion 42, the sediment can be wound up more efficiently and more efficiently dispersed by this complicated flow.
 このように、本実施形態の攪拌装置1によれば、攪拌力の低い流動抵抗体20を攪拌用回転体10と組み合わせることにより、両者が発生させる流動を相乗的に作用させることができるため、従来以上に攪拌効率を向上させることが可能であり、特に、浮遊物や沈降物等を被攪拌物50中に均一に分散させるような場合に好適となっている。さらに、本実施形態では、流動抵抗体20の本体21の形状を略円錐台状とすることで、より一層の攪拌効率の向上を実現している。 Thus, according to the stirring device 1 of the present embodiment, by combining the flow resistor 20 having a low stirring force with the rotating body 10 for stirring, the flow generated by both can be made to act synergistically. It is possible to improve the stirring efficiency more than before, and is particularly suitable for the case where suspended matters, sediments, and the like are uniformly dispersed in the object to be stirred 50. Furthermore, in this embodiment, the shape of the main body 21 of the flow resistor 20 is a substantially truncated cone shape, thereby further improving the stirring efficiency.
 次に、攪拌装置1のその他の形態について説明する。まず、図6(a)~(c)は、流動抵抗体20のその他の形状の例を示した図である。流動抵抗体20の本体21の形状(外形状)は、上述の略円錐台状に限定されるものではなく、例えば図6(a)に示されるように、攪拌用回転体10と同様に円柱状に構成するようにしてもよいし、図示は省略するが、その他にも例えば球状や半球状、多角柱状等、任意の形状を採用することができる。 Next, other forms of the stirring device 1 will be described. First, FIGS. 6A to 6C are diagrams showing examples of other shapes of the flow resistor 20. The shape (outer shape) of the main body 21 of the flow resistor 20 is not limited to the above-mentioned substantially truncated cone shape. For example, as shown in FIG. Although it may be configured in a columnar shape and is not illustrated, any other shape such as a spherical shape, a hemispherical shape, or a polygonal column shape can be employed.
 また、流動抵抗体20は、図6(b)に示されるように、本体21の外形状が攪拌用回転体10の本体11の形状と同一であるが、吸入口22、吐出口24および流通路26の内径(断面積)を小さくし、これらを通過する流動の流量を絞ることで、攪拌力を低くしたものであってもよい。また、流動抵抗体20は、図6(c)に示されるように、円筒状の本体21の外径のみを攪拌用回転体10の外径よりも小さくし、これらを通過する流動の流速を低下させることで、攪拌力を低くしたものであってもよい。さらに、図示は省略するが、流動抵抗体20は、吸入口22または吐出口24の個数を減らすことによって、攪拌力を低くしたものであってもよい。 Further, as shown in FIG. 6B, the flow resistor 20 has the same outer shape of the main body 21 as the shape of the main body 11 of the stirring rotating body 10, but the suction port 22, the discharge port 24, and the flow. The stirring force may be reduced by reducing the inner diameter (cross-sectional area) of the passage 26 and reducing the flow rate of the flow passing through the passage 26. In addition, as shown in FIG. 6C, the flow resistor 20 has only the outer diameter of the cylindrical main body 21 smaller than the outer diameter of the rotating body 10 for stirring, and the flow velocity of the flow passing through them is increased. The stirring force may be lowered by lowering. Further, although not shown, the flow resistor 20 may have a lower stirring force by reducing the number of suction ports 22 or discharge ports 24.
 また、図示は省略するが、流動抵抗体20は、本体21の外形状または本体21の表面に設けた凹凸形状の有無等を攪拌用回転体10と異ならせることで、攪拌力を低くしたものであってもよい。すなわち、吸入口22や吐出口24を通過する流動の流速または流量ではなく、本体11、21の表面近傍における連れ回り作用や、本体11、21の外形状による掻き回し作用等の違いによって流動抵抗体20の攪拌力を低くするようにしてもよい。 Although not shown, the flow resistor 20 has a lower stirring force by making the outer shape of the main body 21 or the presence or absence of uneven shapes provided on the surface of the main body 21 different from the rotating body 10 for stirring. It may be. That is, the flow resistor is not based on the flow velocity or flow rate of the flow passing through the suction port 22 or the discharge port 24 but due to a difference in the revolving action in the vicinity of the surfaces of the main bodies 11 and 21 and the stir action by the outer shape of the main bodies 11 and 21 You may make it make 20 stirring power low.
 図7(a)~(c)は、攪拌用回転体10および流動抵抗体20のその他の配置構成の例を示した図である。流動抵抗体20は、図7(a)に示されるように、攪拌用回転体10の反対側に吸入口22を向けた状態で配置されるものであってもよい。例えば、より積極的に気泡を液体中に混入したいような場合には、流動抵抗体20をこのような姿勢で配置することが効果的である。また、流動抵抗体20は、図7(b)に示されるように、攪拌用回転体10の底面11b側(吸入口12の反対側)に配置されるものであってもよい。この場合、底面11bに向かう比較的弱い旋回流において複雑な流動を発生させることができる。 7 (a) to 7 (c) are diagrams showing examples of other arrangement configurations of the rotating body for stirring 10 and the flow resistance body 20. FIG. As shown in FIG. 7A, the flow resistor 20 may be arranged with the suction port 22 facing the opposite side of the stirring rotator 10. For example, when it is desired to more actively mix bubbles into the liquid, it is effective to arrange the flow resistor 20 in such a posture. Further, as shown in FIG. 7B, the flow resistor 20 may be disposed on the bottom surface 11 b side (opposite side of the suction port 12) of the stirring rotating body 10. In this case, a complicated flow can be generated in a relatively weak swirling flow toward the bottom surface 11b.
 さらに、図7(c)に示されるように、攪拌用回転体10は、上面11aおよび底面11bの両方に吸入口12が設けられたものであってもよく、図示は省略するが、流動抵抗体20においても、上面21aおよび底面21bの両方に吸入口22を設けるようにしてもよい。 Further, as shown in FIG. 7C, the stirring rotator 10 may be provided with suction ports 12 on both the upper surface 11a and the bottom surface 11b, and although not shown, the flow resistance Also in the body 20, the suction ports 22 may be provided on both the upper surface 21a and the bottom surface 21b.
 このように、攪拌用回転体10および流動抵抗体20の姿勢や、両者の相対的な位置は、特に限定されるものではなく、攪拌装置1の用途等に応じて適宜に設定することができる。また、攪拌用回転体10および流動抵抗体20における吸入口12、22、吐出口14、24および流通路16、26の構成や配置等は、特に限定されるものではなく、攪拌装置1の用途等に応じて適宜に設定することができる。 As described above, the postures of the agitating rotating body 10 and the flow resistor 20 and the relative positions of the two are not particularly limited, and can be appropriately set according to the use of the agitating device 1 or the like. . Further, the configurations and arrangements of the suction ports 12 and 22, the discharge ports 14 and 24, and the flow passages 16 and 26 in the rotating body 10 and the flow resistor 20 are not particularly limited, and the use of the stirring device 1 It can set suitably according to etc.
 例えば、図示は省略するが、吸入口12、22および吐出口14、24の個数は4以外の数であってもよいし、1つの吸入口12、22に対して複数の吐出口14、24を繋ぐように流通路16、26を構成するようにしてもよい。また、吸入口12、22および吐出口14、24は、中心軸Cに対して斜め方向に向けられるものであってもよい。 For example, although not shown, the number of the suction ports 12 and 22 and the discharge ports 14 and 24 may be a number other than four, or a plurality of the discharge ports 14 and 24 for one suction port 12 and 22. The flow passages 16 and 26 may be configured to connect the two. In addition, the suction ports 12 and 22 and the discharge ports 14 and 24 may be oriented obliquely with respect to the central axis C.
 図8(a)~(c)は、流動抵抗体20に吸入口22、吐出口24および流通路26を設けないようにした場合の例を示した図である。流動抵抗体20は、攪拌用回転体10に向かう流動を何らかの形で変化させるものであればよく、攪拌装置1の用途等によっては、流動抵抗体20に吸入口22、吐出口24および流通路26を設けないようにしてもよい。すなわち、流動抵抗体20は、本体21の外形状のみによって攪拌用回転体10に向かう流動を変化させるように構成されるものであってもよい。 8 (a) to 8 (c) are diagrams showing an example in which the flow resistor 20 is not provided with the suction port 22, the discharge port 24, and the flow passage 26. FIG. The flow resistor 20 only needs to change the flow toward the stirring rotator 10 in some form. Depending on the application of the stirrer 1 or the like, the flow resistor 20 may include the suction port 22, the discharge port 24, and the flow path. 26 may be omitted. That is, the flow resistor 20 may be configured to change the flow toward the stirring rotating body 10 only by the outer shape of the main body 21.
 この場合、流動抵抗体20は、図8(a)に示されるように、駆動軸30に接続されて回転するものであってもよいし、図8(b)に示されるように、他の支持部材70に支持されて駆動軸30には接続されず、回転しないものであってもよい。また、図8(c)に示されるように、流動抵抗体20を複数に分割して配置するようにしてもよい。なお、この場合においても、攪拌装置1の用途等に応じて流動抵抗体20を任意の形状に構成できることは言うまでもない。 In this case, the flow resistor 20 may be connected to the drive shaft 30 for rotation as shown in FIG. 8A, or other flow resistor 20 as shown in FIG. 8B. It may be supported by the support member 70 and not connected to the drive shaft 30 and may not rotate. Further, as shown in FIG. 8C, the flow resistor 20 may be divided into a plurality of parts. In this case, it goes without saying that the flow resistor 20 can be configured in an arbitrary shape according to the use of the stirring device 1 or the like.
 図9(a)~(c)は、攪拌装置1に流動抵抗体20を複数備えるようにした場合の例を示した図である。攪拌装置1が備える流動抵抗体20の数は、特に限定されるものではなく、攪拌装置1の用途等によっては、2個以上の流動抵抗体20を攪拌装置1に備えるようにしてもよい。 9 (a) to 9 (c) are diagrams showing an example in which a plurality of flow resistors 20 are provided in the stirring device 1. FIG. The number of the flow resistors 20 provided in the stirring device 1 is not particularly limited, and two or more flow resistors 20 may be provided in the stirring device 1 depending on the use of the stirring device 1 or the like.
 この場合、図9(a)に示されるように、攪拌用回転体10に対して中心軸C方向の両側に流動抵抗体20を配置するようにしてもよいし、図9(b)に示されるように、中心軸C方向のいずれか一側に複数の流動抵抗体20を配置するようにしてもよい。また、複数の流動抵抗体20は、図9(a)および(b)に示されるように、全て同一のものであってもよいし、図9(c)に示されるように、互いに異なる複数の流動抵抗体20を設けるようにしてもよい。なお、各流動抵抗体20の姿勢が特に限定されないことは言うまでもない。 In this case, as shown in FIG. 9A, the flow resistor 20 may be arranged on both sides in the direction of the central axis C with respect to the stirring rotating body 10, or as shown in FIG. 9B. As described above, a plurality of flow resistors 20 may be arranged on either side of the central axis C direction. Further, the plurality of flow resistors 20 may be the same as shown in FIGS. 9A and 9B, or may be different from each other as shown in FIG. 9C. The flow resistor 20 may be provided. Needless to say, the posture of each flow resistor 20 is not particularly limited.
 また、図示は省略するが、攪拌装置1に複数の攪拌用回転体10を備えるようにしてもよい。この場合、攪拌用回転体10ごとに1つまたは複数の流動抵抗体20を設けるようにしてもよいし、対応する流動抵抗体20を有さない攪拌用回転体10を含ませるようにしてもよい。 Although not shown, the stirring device 1 may be provided with a plurality of rotating bodies 10 for stirring. In this case, one or a plurality of flow resistors 20 may be provided for each stirring rotor 10, or a stirring rotor 10 that does not have the corresponding flow resistor 20 may be included. Good.
 図10(a)~(c)は、流動抵抗体20の攪拌力を攪拌用回転体10よりも低くしないようにした場合の例を示した図である。上述のように、流動抵抗体20の攪拌力を攪拌用回転体10よりも低くすることは、浮遊物や沈降物等を分散させるような場合に特に効果的であるが、その他の用途においては、流動抵抗体20の攪拌力を攪拌用回転体10よりも低くしないことが好ましい場合も存在する。 FIGS. 10A to 10C are diagrams showing an example in which the stirring force of the flow resistor 20 is not made lower than that of the stirring rotor 10. As described above, making the stirring force of the flow resistor 20 lower than that of the stirring rotor 10 is particularly effective in the case of dispersing suspended matter, sediment, etc. In some cases, it is preferable that the stirring force of the flow resistor 20 is not lower than that of the rotating body 10 for stirring.
 本願発明者の研究によれば、この場合においても、例えば図10(a)に示されるように、流動抵抗体20を攪拌用回転体10とは異なる形状に構成する、または例えば図10(b)に示されるように、流動抵抗体20を攪拌用回転体10とは異なる大きさに構成することで、攪拌用回転体10の発生する流動と流動抵抗体20の発生する流動を相乗的に作用させ、攪拌効率を向上させることが可能となる。 According to the inventor's research, in this case as well, as shown in FIG. 10A, for example, the flow resistor 20 is formed in a shape different from that of the agitating rotor 10, or for example, FIG. ), The flow resistor 20 is configured to have a size different from that of the stirring rotator 10, thereby synergistically generating the flow generated by the stirring rotator 10 and the flow generated by the flow resistor 20. This makes it possible to improve the stirring efficiency.
 また、図10(c)に示されるように、2つの同一の攪拌用回転体10a、10bのうち、一方の攪拌用回転体10bの姿勢を異ならせ、この攪拌用回転体10bを流動抵抗体20とするようにした場合にも、攪拌用回転体10の発生する流動と流動抵抗体20の発生する流動を相乗的に作用させ、攪拌効率を向上させることができる。 Further, as shown in FIG. 10 (c), one of the two stirring rotors 10a and 10b is made to have a different posture, and the stirring rotor 10b is made a flow resistor. Even when it is set to 20, the flow generated by the stirring rotating body 10 and the flow generated by the flow resistor 20 can act synergistically to improve the stirring efficiency.
 すなわち、流動抵抗体20は、攪拌用回転体10よりも攪拌力が低いものに限定されず、攪拌用回転体10とは異なる形状もしくは異なる大きさに構成される、または攪拌用回転体10とは異なる姿勢に配置されるものであればよい。なお、攪拌力を低くした流動抵抗体20は、攪拌用回転体10とは異なる形状に構成されるもの、または攪拌用回転体10とは異なる大きさに構成されるもののいずれかに含まれることは言うまでもない。また、攪拌用回転体10とは異なる形状に構成されるものには、吸入口22、吐出口24または流通路26のみを攪拌用回転体10に対して異ならせたもの、および攪拌用回転体10から吸入口12、吐出口14および流通路16を削除のみしたものが含まれることは言うまでもない。 In other words, the flow resistor 20 is not limited to one having a lower stirring force than the stirring rotator 10, and is configured to have a shape or a size different from that of the stirring rotator 10, or May be arranged in different postures. The flow resistor 20 having a reduced stirring force is included in either a shape different from the stirring rotor 10 or a size different from the stirring rotor 10. Needless to say. In addition, what is configured in a shape different from that of the stirring rotator 10 is different from the stirring rotator 10 only in the suction port 22, the discharge port 24, or the flow passage 26, and the stirring rotator. Needless to say, the suction port 12, the discharge port 14, and the flow passage 16 are only deleted from 10.
 その他、図示は省略するが、攪拌用回転体10および流動抵抗体20は、それぞれ異なる駆動軸30に接続されて回転するものであってもよい。この場合、攪拌用回転体10および流動抵抗体20の回転数を異ならせるようにしてもよいし、回転方向を異ならせるようにしてもよい。また、この場合、攪拌用回転体10および流動抵抗体20の回転軸(中心軸C)をずらすようにしてもよい。 In addition, although illustration is omitted, the rotating body for stirring 10 and the flow resistor 20 may be connected to different drive shafts 30 and rotate. In this case, the number of rotations of the agitating rotator 10 and the flow resistor 20 may be varied, or the rotation directions may be varied. In this case, the rotating shafts (center axis C) of the stirring rotator 10 and the flow resistor 20 may be shifted.
 以上説明したように、本実施形態に係る攪拌装置1は、互いに隣接して配置される攪拌用回転体10および流動抵抗体20を備え、攪拌用回転体10は、回転軸(中心軸C)を中心に回転する本体11と、本体11の表面に設けられる吸入口12と、本体11の表面において吸入口12よりも回転軸(中心軸C)から遠心方向外側の位置に設けられる吐出口14と、吸入口12と吐出口14を繋ぐ流通路16と、を備え、流動抵抗体20は、攪拌用回転体10とは異なる形状もしくは異なる大きさに構成されている、または攪拌用回転体10とは異なる姿勢に配置されている。 As described above, the stirring device 1 according to the present embodiment includes the rotating body for stirring 10 and the flow resistor 20 that are disposed adjacent to each other, and the rotating body for stirring 10 has a rotating shaft (central axis C). , A suction port 12 provided on the surface of the main body 11, and a discharge port 14 provided on the surface of the main body 11 at a position on the outer side in the centrifugal direction from the rotation axis (center axis C) than the suction port 12. And the flow passage 16 connecting the suction port 12 and the discharge port 14, and the flow resistor 20 is configured in a shape or a size different from that of the stirring rotator 10, or the stirring rotator 10. It is arranged in a different posture.
 このような構成とすることで、被攪拌物の状態によらず効率的な攪拌を行うことができる。すなわち、攪拌用回転体10の発生する流動を流動抵抗体20によって適宜に乱すことが可能となるため、被攪拌物中により複雑な流動を発生させ、攪拌効率を向上させることができる。 With such a configuration, efficient stirring can be performed regardless of the state of the object to be stirred. That is, since the flow generated by the rotating body for stirring 10 can be appropriately disturbed by the flow resistor 20, a more complicated flow can be generated in the object to be stirred, and the stirring efficiency can be improved.
 また、攪拌用回転体10および流動抵抗体20は、回転軸(中心軸C)方向に並べて配置されている。このようにすることで、攪拌用回転体10に向かう流動を流動抵抗体20によって効果的に乱すことが可能となるため、被攪拌物中により複雑な流動を発生させることができる。 Further, the stirring rotating body 10 and the flow resistor 20 are arranged side by side in the direction of the rotation axis (center axis C). By doing in this way, since the flow which goes to the rotating body 10 for stirring can be effectively disturbed by the flow resistance body 20, a more complicated flow can be generated in a to-be-stirred object.
 また、吸入口12は、流動抵抗体20側に向けて設けられるものであってもよい。このようにすることで、吸入口12へ向かう比較的強い旋回流を流動抵抗体20によって効果的に乱すことが可能となるため、被攪拌物中により複雑な流動を発生させることができる。 Further, the suction port 12 may be provided toward the flow resistor 20 side. By doing so, it becomes possible to effectively disturb the relatively strong swirling flow toward the suction port 12 by the flow resistor 20, so that a more complicated flow can be generated in the stirring object.
 また、流動抵抗体20は、抵抗体回転軸(中心軸C)を中心に回転するものであってもよい。このようにすることで、攪拌用回転体10の発生する流動を流動抵抗体20によって効果的に乱すことが可能となるため、被攪拌物中により複雑な流動を発生させることができる。 Further, the flow resistor 20 may rotate about the resistor rotation axis (center axis C). By doing in this way, since the flow which the rotating body 10 for stirring can generate | occur | produce can be effectively disturbed by the flow resistance body 20, a more complicated flow can be generated in a to-be-stirred object.
 また、流動抵抗体20は、抵抗体回転軸(中心軸C)を中心に回転する抵抗体本体21と、抵抗体本体21の表面に設けられる抵抗体吸入口22と、抵抗体本体21の表面において抵抗体吸入口22よりも抵抗体回転軸(中心軸C)から遠心方向外側の位置に設けられる抵抗体吐出口24と、抵抗体吸入口22と抵抗体吐出口24を繋ぐ抵抗体流通路26と、を備えるものであってもよい。このようにすることで、攪拌用回転体10の発生する流動と流動抵抗体20の発生する流動を相乗的に作用させることが可能となるため、被攪拌物中により複雑な流動を発生させることができる。 The flow resistor 20 includes a resistor main body 21 that rotates about a resistor rotation axis (center axis C), a resistor inlet 22 provided on the surface of the resistor main body 21, and a surface of the resistor main body 21. 2, a resistor discharge port 24 provided at a position on the outer side in the centrifugal direction from the resistor rotation axis (center axis C) with respect to the resistor suction port 22, and a resistor flow path connecting the resistor suction port 22 and the resistor discharge port 24. 26 may be provided. By doing so, the flow generated by the stirring rotating body 10 and the flow generated by the flow resistor 20 can be made to act synergistically, so that a more complicated flow is generated in the object to be stirred. Can do.
 また、流動抵抗体20は、抵抗体吐出口24を通過する流動の流速または流量が、吐出口14を通過する流動の流速または流量よりも低くなるように構成されるものであってもよい。このようにすることで、攪拌用回転体10の発生する流動に対し、流動抵抗体20の発生する流動を効果的に作用させることが可能となり、例えば浮遊物や沈降物等を被攪拌物中に分散させるような場合に特に好適となる。 Further, the flow resistor 20 may be configured such that the flow velocity or flow rate of the flow passing through the resistor discharge port 24 is lower than the flow velocity or flow rate of the flow passing through the discharge port 14. By doing in this way, it becomes possible to make the flow which the flow resistance body 20 acts effectively with respect to the flow which the rotating body 10 for stirring stirs, for example, suspended matter, sediment, etc. It is particularly suitable for the case of dispersing in the above.
 また、流動抵抗体20は、抵抗体吸入口22を通過する流動の流速または流量が、吸入口12通過する流動の流速または流量よりも低くなるように構成されるものであってもよい。このようにすることで、攪拌用回転体10の発生する流動に対し、流動抵抗体20の発生する流動を効果的に作用させることが可能となり、例えば浮遊物や沈降物等を被攪拌物中に分散させるような場合に特に好適となる。 Further, the flow resistor 20 may be configured such that the flow velocity or flow rate of the flow passing through the resistor suction port 22 is lower than the flow velocity or flow rate of the flow passing through the suction port 12. By doing in this way, it becomes possible to make the flow which the flow resistance body 20 acts effectively with respect to the flow which the rotating body 10 for stirring stirs, for example, suspended matter, sediment, etc. It is particularly suitable for the case of dispersing in the above.
 また、抵抗体吸入口22は、攪拌用回転体10側に向けて設けられるものであってもよい。このようにすることで、攪拌用回転体10の発生する流動に対し、流動抵抗体20の発生する流動を効果的に作用させることが可能となるため、被攪拌物中により複雑な流動を発生させることができる。また、流動抵抗体20を液面側に配置する必要がある場合においても、気泡の混入や発泡の防止と攪拌効率の向上を両立させることができる。 Further, the resistor suction port 22 may be provided toward the stirring rotor 10 side. By doing so, the flow generated by the flow resistor 20 can be effectively acted on the flow generated by the rotating body 10 for stirring, so that a more complicated flow is generated in the object to be stirred. Can be made. Moreover, even when it is necessary to arrange the flow resistor 20 on the liquid surface side, it is possible to achieve both the prevention of bubble mixing and foaming and the improvement of the stirring efficiency.
 また、流動抵抗体20は、抵抗体回転軸(中心軸C)に直交する方向の最大寸法が、攪拌用回転体10よりも小さく構成されるものであってもよい。このようにすることで、攪拌用回転体10の発生する流動に対し、流動抵抗体20の発生する流動を効果的に作用させることが可能となるため、被攪拌物中により複雑な流動を発生させることができる。 Further, the flow resistor 20 may be configured such that the maximum dimension in the direction orthogonal to the resistor rotation axis (center axis C) is smaller than that of the agitating rotor 10. By doing so, the flow generated by the flow resistor 20 can be effectively acted on the flow generated by the rotating body 10 for stirring, so that a more complicated flow is generated in the object to be stirred. Can be made.
 また、流動抵抗体20は、抵抗体回転軸方向(中心軸C方向)に沿って攪拌用回転体10に近づくにつれて漸次抵抗体回転軸(中心軸C)から遠ざかる傾斜面を有する形状に構成されるものであってもよい。このようにすることで、流動抵抗体20に向かう流動を適宜に誘導すると共に、攪拌用回転体10の発生する流動に対し、流動抵抗体20の発生する流動を効果的に作用させることが可能となるため、被攪拌物中により複雑な流動を発生させることができる。 Further, the flow resistor 20 is configured in a shape having an inclined surface that gradually goes away from the resistor rotation axis (center axis C) as it approaches the stirring rotor 10 along the resistor rotation axis direction (center axis C direction). It may be a thing. By doing so, it is possible to appropriately induce the flow toward the flow resistor 20 and to effectively cause the flow generated by the flow resistor 20 to act on the flow generated by the stirring rotating body 10. Therefore, more complicated flow can be generated in the object to be stirred.
 以上、本発明の実施の形態について説明したが、本発明の攪拌装置は、上記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。また、上記実施形態において示した作用および効果は、本発明から生じる最も好適な作用および効果を列挙したものに過ぎず、本発明による作用および効果は、これらに限定されるものではない。 As mentioned above, although embodiment of this invention was described, the stirring apparatus of this invention is not limited to above-described embodiment, In the range which does not deviate from the summary of this invention, it can add various changes. Of course. In addition, the functions and effects shown in the above embodiment are merely a list of the most preferable functions and effects resulting from the present invention, and the functions and effects of the present invention are not limited to these.
 本発明の攪拌装置は、各種流体の攪拌や分散・混合等の分野で利用することができる。 The stirring device of the present invention can be used in the fields of stirring, dispersion and mixing of various fluids.
 1 攪拌装置
 10 攪拌用回転体
 11 攪拌用回転体の本体
 12 攪拌用回転体の吸入口
 14 攪拌用回転体の吐出口
 16 攪拌用回転体の流通路
 20 流動抵抗体
 21 流動抵抗体の本体
 22 流動抵抗体の吸入口
 24 流動抵抗体の吐出口
 26 流動抵抗体の流通路
 C 中心軸
DESCRIPTION OF SYMBOLS 1 Stirring apparatus 10 Rotating body for stirring 11 Main body of rotating body for stirring 12 Inlet port of rotating body for stirring 14 Discharge port of rotating body for stirring 16 Flow path of rotating body for stirring 20 Flow resistor 21 Main body of flow resistor 22 Flow resistor suction port 24 Flow resistor discharge port 26 Flow resistor flow path C Center axis

Claims (10)

  1.  互いに隣接して配置される攪拌用回転体および流動抵抗体を備え、
     前記攪拌用回転体は、
     回転軸を中心に回転する本体と、
     前記本体の表面に設けられる吸入口と、
     前記本体の表面において前記吸入口よりも前記回転軸から遠心方向外側の位置に設けられる吐出口と、
     前記吸入口と前記吐出口を繋ぐ流通路と、を備え、
     前記流動抵抗体は、前記攪拌用回転体とは異なる形状もしくは異なる大きさに構成される、または前記攪拌用回転体とは異なる姿勢に配置されることを特徴とする、
     攪拌装置。
    Comprising a rotating body for stirring and a flow resistor disposed adjacent to each other;
    The stirring rotating body includes:
    A main body that rotates about a rotation axis;
    An inlet provided on the surface of the body;
    A discharge port provided at a position on the outer surface of the main body in the centrifugal direction from the rotation shaft with respect to the suction port;
    A flow path connecting the suction port and the discharge port,
    The flow resistor is configured in a shape or a size different from that of the stirring rotor, or is arranged in a posture different from that of the stirring rotor,
    Stirring device.
  2.  前記攪拌用回転体および前記流動抵抗体は、前記回転軸方向に並べて配置されることを特徴とする、
     請求の範囲1に記載の攪拌装置。
    The stirring rotating body and the flow resistor are arranged side by side in the rotation axis direction,
    The stirrer according to claim 1.
  3.  前記吸入口は、前記流動抵抗体側に向けて設けられることを特徴とする、
     請求の範囲1または2に記載の攪拌装置。
    The suction port is provided toward the flow resistor side,
    The stirrer according to claim 1 or 2.
  4.  前記流動抵抗体は、抵抗体回転軸を中心に回転することを特徴とする、
     請求の範囲1乃至3のいずれかに記載の攪拌装置。
    The flow resistor rotates about a resistor rotation axis,
    The stirrer according to any one of claims 1 to 3.
  5.  前記流動抵抗体は、
     前記抵抗体回転軸を中心に回転する抵抗体本体と、
     前記抵抗体本体の表面に設けられる抵抗体吸入口と、
     前記抵抗体本体の表面において前記抵抗体吸入口よりも前記抵抗体回転軸から遠心方向外側の位置に設けられる抵抗体吐出口と、
     前記抵抗体吸入口と前記抵抗体吐出口を繋ぐ抵抗体流通路と、を備えることを特徴とする、
     請求の範囲4に記載の攪拌装置。
    The flow resistor is
    A resistor body that rotates about the resistor rotation axis;
    A resistor inlet provided on the surface of the resistor body;
    A resistor discharge port provided at a position on the outer surface of the resistor main body in the centrifugal direction from the resistor rotation shaft with respect to the resistor suction port;
    A resistor flow path connecting the resistor suction port and the resistor discharge port,
    The stirrer according to claim 4.
  6.  前記流動抵抗体は、前記抵抗体吐出口を通過する流動の流速または流量が、前記吐出口を通過する流動の流速または流量よりも低くなるように構成されることを特徴とする、
     請求の範囲5に記載の攪拌装置。
    The flow resistor is configured such that the flow rate or flow rate of the flow passing through the resistor discharge port is lower than the flow rate or flow rate of the flow passing through the discharge port,
    The stirring device according to claim 5.
  7.  前記流動抵抗体は、前記抵抗体吸入口を通過する流動の流速または流量が、前記吸入口を通過する流動の流速または流量よりも低くなるように構成されることを特徴とする、
     請求の範囲5または6に記載の攪拌装置。
    The flow resistor is configured such that the flow velocity or flow rate of the flow passing through the resistor suction port is lower than the flow velocity or flow rate of the flow passing through the suction port.
    The stirrer according to claim 5 or 6.
  8.  前記抵抗体吸入口は、前記攪拌用回転体側に向けて設けられることを特徴とする、
     請求の範囲5乃至7のいずれかに記載の攪拌装置。
    The resistor suction port is provided toward the stirring rotor,
    The stirrer according to any one of claims 5 to 7.
  9.  前記流動抵抗体は、前記抵抗体回転軸に直交する方向の最大寸法が、前記攪拌用回転体よりも小さく構成されることを特徴とする、
     請求の範囲4乃至8のいずれかに記載の攪拌装置。
    The flow resistor is configured such that a maximum dimension in a direction perpendicular to the resistor rotation axis is smaller than that of the stirring rotor.
    The stirrer according to any one of claims 4 to 8.
  10.  前記流動抵抗体は、前記抵抗体回転軸方向に沿って前記攪拌用回転体に近づくにつれて漸次前記抵抗体回転軸から遠ざかる傾斜面を有する形状に構成されることを特徴とする、
     請求の範囲4乃至9のいずれかに記載の攪拌装置。
    The flow resistor is configured in a shape having an inclined surface that gradually moves away from the resistor rotation axis as it approaches the stirring rotor along the resistor rotation axis direction.
    The stirrer according to any one of claims 4 to 9.
PCT/JP2015/057183 2014-03-12 2015-03-11 Stirring device WO2015137411A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014049032A JP5597315B1 (en) 2014-03-12 2014-03-12 Stirrer
JP2014-049032 2014-03-12

Publications (1)

Publication Number Publication Date
WO2015137411A1 true WO2015137411A1 (en) 2015-09-17

Family

ID=51840272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057183 WO2015137411A1 (en) 2014-03-12 2015-03-11 Stirring device

Country Status (2)

Country Link
JP (1) JP5597315B1 (en)
WO (1) WO2015137411A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11084846B2 (en) 2017-03-31 2021-08-10 Hamari Chemicals, Ltd. Method for producing peptide
EP3962638A4 (en) * 2019-05-03 2023-01-11 Philadelphia Mixing Solutions, LLC Reaction mixer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017164012A1 (en) * 2016-03-23 2017-09-28 日立化成株式会社 Reaction device, resin particle, electrically conductive particle, anisotropically conductive material, and connection structure body production method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS518669A (en) * 1974-06-13 1976-01-23 Erufuegu Deiuisu Junia Fuiripu Ryutaikongosochi
JPH05154368A (en) * 1991-12-11 1993-06-22 Teraru Kyokuto:Kk Mixer for high-viscosity liquid
JPH08192038A (en) * 1995-01-13 1996-07-30 Aoshima Jidosha Kojo:Kk Fluid agitation device and agitation method of fluid
US20040234435A1 (en) * 2003-05-22 2004-11-25 Bickham David Robert Apparatus for and method of producing aromatic carboxylic acids
EP1925358A1 (en) * 2006-11-21 2008-05-28 Basf Se Stirring device and use of the same
WO2010150656A1 (en) * 2009-06-23 2010-12-29 株式会社エディプラス Stirring rotating body and stir device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4418019B1 (en) * 2009-06-23 2010-02-17 和久 村田 Rotating body for stirring and stirring device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS518669A (en) * 1974-06-13 1976-01-23 Erufuegu Deiuisu Junia Fuiripu Ryutaikongosochi
JPH05154368A (en) * 1991-12-11 1993-06-22 Teraru Kyokuto:Kk Mixer for high-viscosity liquid
JPH08192038A (en) * 1995-01-13 1996-07-30 Aoshima Jidosha Kojo:Kk Fluid agitation device and agitation method of fluid
US20040234435A1 (en) * 2003-05-22 2004-11-25 Bickham David Robert Apparatus for and method of producing aromatic carboxylic acids
EP1925358A1 (en) * 2006-11-21 2008-05-28 Basf Se Stirring device and use of the same
WO2010150656A1 (en) * 2009-06-23 2010-12-29 株式会社エディプラス Stirring rotating body and stir device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11084846B2 (en) 2017-03-31 2021-08-10 Hamari Chemicals, Ltd. Method for producing peptide
EP3962638A4 (en) * 2019-05-03 2023-01-11 Philadelphia Mixing Solutions, LLC Reaction mixer

Also Published As

Publication number Publication date
JP2015171695A (en) 2015-10-01
JP5597315B1 (en) 2014-10-01

Similar Documents

Publication Publication Date Title
JP4418019B1 (en) Rotating body for stirring and stirring device
KR101184556B1 (en) Stirring rotating body and stir device
WO2015137411A1 (en) Stirring device
JP2015066503A (en) Agitating device and agitating method
JP5302265B2 (en) Rotating body for stirring and stirring device
KR20180044516A (en) Impeller
JP2001321651A (en) Agitating device
JP6159577B2 (en) Gas-liquid stirring blade
JP4902770B2 (en) Rotating body for stirring and stirring device
JP5385480B2 (en) Rotating body for stirring and stirring device
JP5760205B2 (en) Mixing method, mixing apparatus, and mixed fluid
JP5794564B2 (en) Stirrer
JP2022107704A (en) Stirring blade and stirring device
JP6074647B2 (en) Stirring method and stirrer
JP2010099574A (en) Mixing device and mixing system
JP2019188267A (en) Agitating blade, agitator, and agitation method
JP6418745B2 (en) Rotating body for stirring and stirring device
JP2017051924A (en) Agitation device
JP5702598B2 (en) Rotating body for stirring and stirring device
JP6621276B2 (en) Rotating body for stirring and stirring device
JP6074646B2 (en) Stirrer
KR102666608B1 (en) A device that accelerates the reaction of substances to be stirred
JP5207487B2 (en) Rotating body for stirring and stirring device
JP2012139632A (en) Stirring rotor and stirring device
Dickey Fundamentals of High-Shear Dispersers.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15761660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15761660

Country of ref document: EP

Kind code of ref document: A1