WO2015137215A1 - Electrostatic input device - Google Patents

Electrostatic input device Download PDF

Info

Publication number
WO2015137215A1
WO2015137215A1 PCT/JP2015/056392 JP2015056392W WO2015137215A1 WO 2015137215 A1 WO2015137215 A1 WO 2015137215A1 JP 2015056392 W JP2015056392 W JP 2015056392W WO 2015137215 A1 WO2015137215 A1 WO 2015137215A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
input device
divided
portions
detection
Prior art date
Application number
PCT/JP2015/056392
Other languages
French (fr)
Japanese (ja)
Inventor
俊季 中村
尚 佐々木
高井 大輔
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Publication of WO2015137215A1 publication Critical patent/WO2015137215A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04108Touchless 2D- digitiser, i.e. digitiser detecting the X/Y position of the input means, finger or stylus, also when it does not touch, but is proximate to the digitiser's interaction surface without distance measurement in the Z direction

Definitions

  • the present invention relates to an electrostatic input device that can reduce the load on the circuit by reducing the number of terminals rather than the number of electrodes, and can increase the resolution of position detection.
  • capacitance is formed between a plurality of electrodes.
  • a capacitance is formed between the finger and the electrode, and the detection output from the electrode changes, thereby calculating which electrode the finger is approaching. .
  • the resolution for detecting the operation position is improved.
  • the electrode interval is shorter, the resolution for detecting the operation position is improved.
  • the electrode interval is shortened, the number of electrodes increases when the detection area is wide. The number of terminals connected to the electrodes increases. For this reason, the number of channels of the drive circuit and the detection circuit increases, and the circuit load increases.
  • Patent Document 1 discloses an invention related to a touch panel in which the number of terminals (number of channels) is smaller than the number of electrodes.
  • the touch panel described in Patent Document 1 is determined that the finger is located at the center of the electrode group when the two electrodes of one electrode group detect the finger, but the touch panel is located at the center of the electrode group. Since the two electrodes are connected to each other, it is impossible to detect which of the two electrodes is closer to the finger. Since the touch panel described in Patent Document 1 can detect the position only in units of two electrodes, there is a limit to increasing the resolution for detecting the operation position.
  • the present invention solves the above-described conventional problems, and an object of the present invention is to provide an electrostatic input device that can reduce the number of terminals with respect to the number of electrodes and can detect the operation position with the same resolution as the number of electrodes.
  • a first electrode group having a plurality of first electrode portions and a second electrode group having a plurality of electrode portions are provided, the first electrode portion constituting the first electrode group, and the second electrode group
  • the first electrode portions constituting the first electrode group are arranged at intervals in the first direction to form a conductive electrode set in which the plurality of first electrode portions are conductive, and the conductive electrode set is the first electrode portion.
  • Multiple sets are arranged along the direction
  • the second electrode group has a plurality of divided electrode portions arranged at intervals in the first direction, and each of the plurality of first electrode portions in the same conductive electrode set and the divided electrode portion.
  • the capacitance is formed individually, (A) A driving power is sequentially applied to the divided electrode portions of the second electrode group, and in the first electrode group, a detection output is obtained from each conductive electrode set.
  • a plurality of first electrode portions are conducted in the first electrode group to form a plurality of conducting electrode sets. Therefore, in the first electrode group, the number of first electrode portions is more than the number of first electrode portions. The number of terminals (number of channels) can be reduced.
  • an electrostatic capacitance is formed between each first electrode part and the electrode part of the second electrode group, so that the operation position is detected with the same resolution as the number of the first electrode parts. can do.
  • capacitance is formed in a one-to-one relationship between each divided electrode portion and each first electrode portion.
  • each of the divided electrode portions and each of the first electrode portions can be configured as intersecting via an insulating layer.
  • the separation part of the adjacent divided electrode parts is located at an intermediate point between the adjacent first electrode parts.
  • the number of divided electrode portions in which electrostatic capacitance is formed between the first electrode portions in one set of conductive electrode sets is N (N is 2 or more).
  • N is 2 or more.
  • the divided electrode portions in the conductive electrode set are numbered N1, N2,... In the first direction, the divided electrode portions of the same number in the different conductive electrode sets are the same terminal. It is preferable that it is connected to.
  • the number of terminals (number of channels) can be reduced in the second electrode group as compared with the number of electrodes.
  • the present invention can be configured such that the second electrode group is provided with a continuous electrode portion in which a capacitance is formed in common with the first electrode portions of a plurality of conductive electrode sets.
  • This electrostatic input device can be used when the continuous electrode portion is in the hover detection mode and used when the divided electrode portion is in the touch detection mode.
  • operation position information is detected only in the direction in which the first electrode portions are arranged.
  • the electrostatic input device of the present invention can reduce the circuit burden by reducing the number of terminals (number of channels) rather than the number of electrodes, and can increase the resolution for detecting the operation position.
  • the operation position can be detected with high resolution in both the touch detection mode and the hover detection mode.
  • FIG. 4 is a cross-sectional view taken along line VV in FIG. Block diagram showing the circuit configuration of the electrostatic input device, Waveform diagram (time chart) of drive power given to the electrostatic input device, Flow chart showing identification operation of electrostatic input device
  • FIG. 1 shows a portable information processing apparatus 1 as an example of information equipment.
  • the portable information processing device 1 has a main body 2 and a display 3.
  • the display unit 3 includes a liquid crystal display panel.
  • the electrostatic input device 10 according to the embodiment of the present invention is mounted on the main body 2 at a position along with the display unit 3.
  • the electrostatic input device 10 shown in FIG. 2 is a rectangle whose long side is oriented in the X direction, and the dimension in the longitudinal direction (X direction) is sufficiently larger than the dimension in the width direction (Y direction).
  • the electrostatic input device 10 detects the operation position in the longitudinal direction (X direction), and does not identify the operation position in the Y direction. Therefore, the width dimension W in the Y direction of the electrostatic input device 10 is such that the finger is in contact with the entire width, and is preferably about 5 to 30 mm.
  • the electrostatic input device 10 performs detection operation in two modes: a hover detection mode shown in FIG. 3A and a touch detection mode shown in FIG.
  • the hover detection mode is a mode for detecting the moving state when the hand H is opposed to the electrostatic input device 10 with an interval and the hand H is moved in the X direction.
  • the touch detection mode is a mode for detecting the coordinate position in the X direction of the contact position when the finger F touches the surface of the electrostatic input device 10.
  • the touch detection mode it is detected which part of the plurality of detection identification areas 10a spaced in the X direction touches the finger.
  • Each detection identification area 10a is assigned with input items necessary for the information processing apparatus to be mounted.
  • the touch detection mode when a finger touches the electrostatic input device 10, it is possible to recognize the contact position as a distance (coordinate point) on the X coordinate regardless of the detection identification area 10a. .
  • the electrostatic input device 10 includes an intermediate substrate 11, a lower substrate 12 stacked on the lower side of the intermediate substrate 11, and an upper substrate 14 stacked on the upper side of the intermediate substrate 11. have.
  • An electrode portion constituting the second electrode group 30 is formed on the upper surface of the intermediate substrate 11 or the lower surface of the upper substrate 14, and a plurality of first electrode portions constituting the first electrode group 20 are formed on the upper surface of the upper substrate 14. Yes.
  • the surface of the electrode part of the first electrode group 20 is covered with an insulating cover layer 13.
  • the surface of the cover layer 13 is an operation surface 13a.
  • a plurality of first electrode portions constituting the first electrode group 20 and an electrode portion constituting the second electrode group 30 are formed on the same surface of the insulating substrate, and the first electrode group 20 The intersection of the electrode parts of the second electrode group 30 may be insulated by an insulating layer.
  • FIG. 4 shows an electrode pattern constituting the electrostatic input device 10.
  • FIG. 4 shows only the part of the length L shown in FIG.
  • the electrode pattern shown in FIG. 4 is repeatedly formed over the entire length of the electrostatic input device 10 in the X direction.
  • the first electrode group 20 includes first electrode portions 21, 22, 23, 24, 25,.
  • the first electrode portions 21, 22, 23, 24, 25,... are arranged at a certain interval in the X direction.
  • the first electrode portion 21 extends in the Y direction, and a rectangular main detection portion 21a disposed at a constant interval in the Y direction and a connection portion 21b connecting the main detection portions 21a are continuously formed.
  • the other first electrode portions 22, 23, 24, 25,... Are also connected to the main detection portions 22a, 23a, 24a, 25a,...
  • the first electrode portion 21 at the left end in the drawing and the first electrode portion 22 adjacent thereto are electrically connected to form a first conductive electrode set, and the first conductive electrode set is the first conductive electrode set. It is connected to the detection terminal S1. Further, the first electrode portion 23 and the first electrode portion 24 are electrically connected to form a second conductive electrode set, and the second conductive electrode set is connected to the second detection terminal S2. In this way, in the first electrode group 20, the first electrode portions are electrically connected to each other to form a conductive electrode set, and this conductive electrode set is connected to the detection terminals S1, S2, S3,. Yes.
  • the second electrode group 30 has a first continuous electrode portion 31 and a second continuous electrode portion 32.
  • the first continuous electrode unit 31 is continuous in the X direction, and a rectangular main detection unit 31a disposed at a constant interval in the X direction and a connection unit 31b connecting the main detection units 31a are continuous. Is formed.
  • a rectangular main detection portion 32a disposed at a constant interval and a connection portion 32b connecting the main detection portions 32a are integrally formed.
  • connection part 31b of the first continuous electrode part 31 intersects with the connection parts 21b, 22b, 23b, 24b, 25b,... Of the first electrode parts 21, 22, 23, 24, 25,.
  • the first continuous electrode portion 31 and the first electrode portions 21, 22, 23, 24, 25,... Are insulated by the upper substrate 11 at the intersection.
  • connection part 32b of the second continuous electrode part 32 is also connected to the connection parts 21b, 22b, 23b, 24b, 25b,... Of the first electrode parts 21, 22, 23, 24, 25,. They cross each other while being insulated from each other.
  • the first continuous electrode portion 31 is connected to the first drive terminal D1
  • the second continuous electrode portion 32 is connected to the second drive terminal D2.
  • a first divided electrode portion 33 and a second divided electrode portion 34 are formed between the first continuous electrode portion 31 and the second continuous electrode portion 32.
  • the first divided electrode portions 33 and the second divided electrode portions 34 are arranged in a line in the X direction and are arranged alternately.
  • segmentation electrode part 33 a pair of triangular main detection part 33a and the connection part 33b which connects both the main detection parts 33a and 33a are integrally formed.
  • a pair of triangular main detection portions 34a and 34a and a connection portion 34b for connecting both the main detection portions 34a and 34a are integrally formed.
  • the connecting portion 33b of the first divided electrode portion 33 intersects with the connecting portions 21b, 23b, 25b,... Of the first electrode portions 21, 23, 25,. However, as shown in FIG. 5, the intersection is insulated by the insulating layer 14.
  • the connecting portion 34b of the second divided electrode portion 34 intersects the connecting portions 22b, 24b, 26b,... Of the first electrode portions 22, 24, 26,. As shown, the intersection is insulated by the upper substrate 14.
  • Capacitance is formed between the main detection parts 31a and 32a of the continuous electrode parts 31 and 32 adjacent to this. That is, the first continuous electrode portion 31 is formed with capacitance between all the first electrode portions 21, 22, 23, 24, 25,..., And the second continuous electrode portion 32 is also Capacitance is formed between all the first electrode portions 21, 22, 23, 24, 25,.
  • the main detection unit 33a of the first divided electrode unit 33 includes the main detection units 21a, 23a, 25a,... Of the first electrode units 21, 23, 25,. Is formed between the main detection units 34a of the first electrode units 22, 24, 26,..., Which are even-numbered. Capacitance is formed between 24a, 26a,.
  • first electrode 4 includes two first electrode units each including two first electrode units 21, 22, 23, 24, 25,... Connected in the first electrode group 20.
  • one conductive electrode set is configured.
  • a capacitance is formed between one of the two first electrode portions constituting one set of conductive electrode sets and the first divided electrode portion 33, and the other first electrode portion and the second Capacitance is formed between the divided electrode portions 34.
  • the main detection unit 33a of the first divided electrode unit 33 and the main detection unit 34a of the second divided electrode unit 34 adjacent thereto are opposed to each other with a gap in the separation unit 35,
  • the first divided electrode portion 33 and the second divided electrode portion 34 are insulated from each other.
  • Each separation portion 35 is located at an intermediate point between the adjacent first electrode portions 21, 22, 23, 24, 25,. Therefore, the capacitance coupled between one first electrode portion and the first divided electrode portion 33 constituting one set of conductive electrode sets, and the other first electrode portion and the second divided electrode portion. 34 and the electrostatic capacity between the two.
  • the first wiring layer 33 c is continuous with each first divided electrode portion 33, and the first wiring layer 33 c is drawn to the lower surface of the lower substrate 12.
  • a second wiring layer 34 c is continuous with each second divided electrode portion 34, and the second wiring layer 33 c is drawn to the lower surface of the lower substrate 12. Then, as shown in FIG. 4, the first divided electrode portion 33 is electrically connected to the third drive terminal D3, and the second divided electrode portion 34 is electrically connected to the fourth drive terminal D4. It is connected.
  • a shield electrode portion 15 having a ground potential is formed between the upper substrate 11 and the lower substrate 12.
  • the shield electrode portion 15 and the wiring layers 33c and 34c are insulated from each other.
  • the drive terminals in the second electrode group 30 are four channels D1, D2, D3, and D4, but the detection terminals S1, S2, S3, S4,.
  • the number of channels is more than 4 channels.
  • the drive terminals D1, D2, D3, D4 are selectively connected to the drive circuit 42 via the multiplexer 41, and the detection terminals S1, S2, S3, S4,. It is selectively connected to the detection circuit 43 via the multiplexer 41.
  • the first electrode portions 21, 22, 23, 24, 25,... are electrically connected two by two, and the two first electrodes are connected to one detection terminal S1,
  • One set of conducting electrodes is configured as one channel. Therefore, even if the length dimension of the electrostatic input device 10 in the X direction is large, it is possible to prevent the number of channels from becoming excessive, and the circuit burden can be reduced.
  • the drive circuit 42 and the detection circuit 43 are controlled by a main control unit 44 including a determination unit.
  • the main control unit 44 includes a CPU and a plurality of memories.
  • the flowchart of FIG. 8 means a control operation by the main control unit 44, and “ST” means “step”.
  • the electrostatic input device 10 is switched between the hover detection mode and the touch detection mode by the main control unit 44.
  • the second electrode group 30 only the first continuous electrode part 31 and the second continuous electrode part 32 are used as drive electrodes, and the hover detection mode can be executed.
  • the first divided electrode portion 33 and the second divided electrode portion 34 are used as drive electrodes, and the hover The detection mode is executed.
  • the first divided electrode portion 33 and the second divided electrode portion 34 are mainly used as drive electrodes.
  • the continuous electrode portions 31 and 32 may not be provided. Further, the number of columns of the continuous electrode portion may be one, or may be three or more. Further, the first divided electrode portion 33 and the second divided electrode portion 34 are not limited to one row in the X direction, and two or more rows can be provided.
  • step 1 when the electrostatic input device 10 is started, the process proceeds to ST2, from the drive circuit 42, the first drive terminal D1, the second drive terminal D2, and the third drive terminal D3.
  • drive power is supplied to all of the fourth drive terminals D4.
  • pulsed drive voltages V1, V2, V3, and V4 are applied to the drive terminals D1 to D4.
  • the drive voltage may be applied in a time division manner with one terminal of the drive terminals as a unit or with a plurality of terminals as a unit.
  • the detection circuit 43 monitors the detection outputs from all the detection terminals S1, S2, S3,. At this time, all the detection terminals S1, S2, S3,..., Sn may be continuously monitored by the switching function of all the multiplexers 41, or all the detection terminals S1, S2, S3,. Sn may be monitored in order.
  • the main detectors 31a and 32a of 31 and 32 and the main detectors 33a and 34a of the divided electrode units 33 and 34, that is, the main detectors of the second electrode group 30, have capacitance between adjacent ones. Is formed.
  • pulsed drive voltages V1, V2, V3, and V4 are applied to the main detection unit of the second electrode group, current flows through each main detection unit of the first electrode group 20 at the time of rising and falling of the pulse. .
  • the detection circuit 43 a current flowing through each main detection unit of the first electrode group 20 is detected, and a change in this current is given to the main control unit 44 as a detection output for each detection terminal S1, S2, S3,. It is done.
  • the signal is processed so that the detection output becomes higher as the hand H or the finger F approaches the electrostatic input device 10.
  • the main control unit (determination unit) 44 monitors whether or not the detection output exceeds a predetermined first threshold value. When the detection output exceeds the first threshold value, the hand H or finger F approaches. Judge that it is.
  • the process proceeds to ST4 and monitors whether the current detection output exceeds the second threshold value.
  • the second threshold value is set to an output higher than the first threshold value. If the detected output exceeds the first threshold value and exceeds the second threshold value in ST4, it is determined that the current operation is a touch operation shown in FIG. 3B, and the process proceeds to ST5, where main control is performed.
  • the touch detection mode is set in the unit 44.
  • drive voltages V3 and V4 are alternately applied from the drive circuit 42 to the first divided electrode portion 33 and the second divided electrode portion 34 of the second electrode group 30. It is done. Note that no driving voltage is applied to the first continuous electrode portion 31 and the second continuous electrode portion 32.
  • the detection outputs from the detection terminals S1, S2, S3,... are individually monitored.
  • the detection terminals S 1, S 2, S 3,... are selected in order by the multiplexer 41 shown in FIG.
  • the main control unit 44 monitors the detection output from which detection terminal is high so as to know the conductive electrode set with which the finger F touching the operation surface 13a is closest. be able to. Further, by knowing the timing of whether the first divided electrode portion 33 is energized or the second divided electrode portion 34 is energized, which of the two first electrode portions in one conductive electrode set is determined. It is possible to know whether the finger F is approaching.
  • the detection output from the detection terminal S2 is higher than the detection output from the other detection terminals, it can be seen that the finger F is approaching the first electrode part 23 or the first electrode part 24. Furthermore, if the detection output obtained from the detection terminal S2 when the first divided electrode portion 33 is energized is higher than the detection output obtained from the detection terminal S2 when the second divided electrode portion 34 is energized. It can be determined that the finger F is touching a position close to the left first electrode portion 23. On the contrary, if the detection output obtained from the detection terminal S2 when the second divided electrode portion 34 is energized is higher, it can be determined that the finger F is touching the position near the first electrode portion 24 on the right side. .
  • the detection output of the detection terminal S2 when the detection output of the detection terminal S2 is lower than the other detection terminals, it may be determined that the finger F is approaching the first electrode portion 23 or the first electrode portion 24. is there.
  • the detection output obtained from the detection terminal S2 when the first divided electrode portion 33 is energized is based on the detection output obtained from the detection terminal S2 when the second divided electrode portion 34 is energized. Is lower, it is determined that the finger F is touching a position close to the first electrode part 23 on the left side. In this way, whether the detection state is high or low is set to the detection state is arbitrarily set by setting the threshold value in the detection circuit, the polarity of the drive voltage, the signal inversion circuit, etc. Is possible.
  • the electrostatic input device 10 has an elongated shape with a large dimension in the X direction.
  • the first electrode group 20 is configured. It is necessary to shorten the pitch of the first electrode portions 21, 22, 23, 24, 25,..., And as a result, the number of the first electrode portions 21, 22, 23, 24, 25,. It is necessary to set as many as possible.
  • the first electrode portion is composed of two conductive electrode sets and the detection terminals S1, S2, S3, S4, S5,... Are provided for each conductive electrode set, the detection terminals S1, S2, The number of S3, S4, S5,... Can be half of the number of the first electrode portions 21, 22, 23, 24, 25,.
  • the number of drive terminals for the divided electrodes of the second electrode group 30 is equal to the number of first electrode portions in one set of conductive electrodes, and in the embodiment of FIG. 4, one set of conductive electrodes is configured. Since the number of first electrode portions to be performed is “2”, there are two sets of divided electrode portions, and the drive electrodes are two channels D3 and D4.
  • the total number of drive terminals and detection terminals can be reduced. Even so, since the capacitance is formed between each of the two first electrode portions and the divided electrode portion in one set of conductive electrodes, the detection capability of the operation position in the X direction is The resolution can be increased according to the number of first electrode portions 21, 22, 23, 24, 25,.
  • the drive voltages V1, V2, V3, and V4 are applied to all the drive terminals D1, D2, D3, and D4 as shown at time T1 in FIG.
  • a drive voltage is applied to all the drive terminals D1, D2, D3, and D4
  • a large electric field is generated in the space above the electrostatic input device 10, so that the hand H and the finger F are separated upward from the operation surface 13a.
  • the detection terminals S1, S2, S3, S4, can be detected by the detection terminals S1, S2, S3, S4,.
  • the detection output of the detection terminals S1, S2, S3, S4,..., Sn is sequentially scanned by the detection circuit 43 by the multiplexer 41, so that the hand H and the finger F are It is possible to identify which position on the operation surface 13a is being scanned.
  • the drive terminal and the detection terminal may be reversed, and the drive voltage may be applied to the terminals S1, S2, S3, S4,.
  • the touch detection mode in this case, detection outputs from the terminals D3 and D4 are monitored alternately or individually. Thereby, the coordinate on X of the operation location where the finger
  • the hover detection mode the sum of the detection outputs of the terminals D1, D2, D3, D4 is continuously monitored. In this case, by monitoring which terminal of the terminals S1, S2, S3, S4,..., Sn when the drive voltage is applied increases in the space on the operation surface 13a. The movement of H or finger F can be identified.
  • FIG. 9 shows an electrostatic input device 110 according to the second embodiment of the present invention.
  • this electrostatic input device 110 three first electrode portions 121, 122, 123, 124, 125,... Constituting the first electrode group 120 are electrically connected to each other, and one conductive electrode set is three. It consists of a number of first electrode portions. And each conduction electrode group is connected to terminal S1, S2, S3, ....
  • the second electrode group 130 includes a first continuous electrode portion 131 and a second continuous electrode portion 132, and further includes a first divided electrode portion 133, a second divided electrode portion 134, and a third divided electrode portion 135. Is formed.
  • the three divided electrode portions 133, 134, and 135 are individually formed with capacitance between the three first electrode portions constituting one conductive electrode set.
  • the number of terminals S1, S2, S3,... Is reduced to 1/3 with respect to the number of first electrode portions 121, 122, 123, 124, 125,.
  • the number of channels can be configured.
  • the detection resolution of the operation position in the X direction can be increased according to the number of first electrode portions 121, 122, 123, 124, 125,. .
  • the input detection device that detects the operation position only in the X direction
  • the first electrode portions, Capacitances are individually formed between the divided electrode portions, and different conductive electrodes when the divided electrode portions in one conductive electrode set are N1, N2,.
  • the pair of divided electrode portions N1 are electrically connected and connected to one terminal, and similarly, the divided electrode portions N2 and N3 are electrically connected to each other and connected to the terminal.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

[Problem] To provide an electrostatic input device capable of high-resolution detection of an operation position, even if the number of channels is less than the number of electrodes. [Solution] First electrode sections (21, 22, 23, 24, 25, …) constituting a first electrode group (20) are conductively connected in pairs and constitute conductively connected electrode sets. Each conductively connected electrode set is connected to a detection terminal (S1, S2, S3, …). A second electrode group (30) has a first split electrode section (33) and a second split electrode section (34) and capacitance is created between each split electrode section (33, 34) and a first electrode section constituting one conductively connected electrode set.

Description

静電入力装置Electrostatic input device
 本発明は、電極数よりも端子数を削減することで回路の負荷を軽減でき、しかも位置検知の分解能を高めることができる静電入力装置に関する。 The present invention relates to an electrostatic input device that can reduce the load on the circuit by reducing the number of terminals rather than the number of electrodes, and can increase the resolution of position detection.
 静電入力装置は、複数の電極間で静電容量が形成されている。操作しようとする指が電極に接近すると、指と電極との間に静電容量が形成されて、電極からの検知出力が変化し、これにより指がどの電極に接近しているかが算出される。 In the electrostatic input device, capacitance is formed between a plurality of electrodes. When the finger to be operated approaches the electrode, a capacitance is formed between the finger and the electrode, and the detection output from the electrode changes, thereby calculating which electrode the finger is approaching. .
 このような静電入力装置は、電極の間隔が短いほど、操作位置を検知するための分解能が向上するが、電極の間隔を短くすると、検知領域が広い場合に、電極数が多くなり、それぞれの電極に接続される端子数も多くなる。そのため駆動回路と検知回路のチャンネル数が多くなって回路負担が増大する。 In such an electrostatic input device, as the electrode interval is shorter, the resolution for detecting the operation position is improved. However, if the electrode interval is shortened, the number of electrodes increases when the detection area is wide. The number of terminals connected to the electrodes increases. For this reason, the number of channels of the drive circuit and the detection circuit increases, and the circuit load increases.
 以下の特許文献1には、電極数よりも端子数(チェンネル数)を少なくしたタッチパネルに関する発明が開示されている。 The following Patent Document 1 discloses an invention related to a touch panel in which the number of terminals (number of channels) is smaller than the number of electrodes.
 特許文献1に記載されたタッチパネルは、4個の電極が互いに導通されて1つの端子に接続されて1チャンネルの電極群となっており、隣り合う電極群では、両端部に位置する電極が互いに入れ替えられている。電極群の中央部に指が触れると、電極群の中央の2つの電極で指が検知され、隣り合う電極群の境界部に指が触れると、異なる電極群に属する2つの電極によって指が検知される。これにより、チャンネル数が少なくても、電極群内での指の接触位置を識別できるようにしている。 In the touch panel described in Patent Document 1, four electrodes are connected to each other and connected to one terminal to form a one-channel electrode group. In adjacent electrode groups, electrodes located at both ends are mutually connected. It has been replaced. When a finger touches the center of an electrode group, the finger is detected by the two electrodes in the center of the electrode group, and when a finger touches the boundary between adjacent electrode groups, the finger is detected by two electrodes belonging to different electrode groups Is done. Thereby, even if the number of channels is small, the contact position of the finger within the electrode group can be identified.
特開2010-39515号公報JP 2010-39515 A
 特許文献1に記載されたタッチパネルは、1つの電極群の2つの電極が指を検知したときに指が電極群の中央部に位置しているものと判別されるが、電極群の中央に位置する2つの電極は互いに接続されているため、この2つの電極のどちらに指が近いかを検知することはできない。特許文献1に記載されたタッチパネルは2つの電極単位でしか位置を検知できないので、操作位置を検知するための分解能を高くすることに限界がある。 The touch panel described in Patent Document 1 is determined that the finger is located at the center of the electrode group when the two electrodes of one electrode group detect the finger, but the touch panel is located at the center of the electrode group. Since the two electrodes are connected to each other, it is impossible to detect which of the two electrodes is closer to the finger. Since the touch panel described in Patent Document 1 can detect the position only in units of two electrodes, there is a limit to increasing the resolution for detecting the operation position.
 本発明は上記従来の課題を解決するものであり、電極数に対して端子数を少なくでき、しかも操作位置を電極数と同じ分解能で検知できる静電入力装置を提供することを目的としている。 The present invention solves the above-described conventional problems, and an object of the present invention is to provide an electrostatic input device that can reduce the number of terminals with respect to the number of electrodes and can detect the operation position with the same resolution as the number of electrodes.
 本発明は、複数の第1電極部を有する第1電極グループと、複数の電極部を有する第2電極グループとが設けられ、前記第1電極グループを構成する第1電極部と、前記第2電極グループを構成する電極部とが、互いに絶縁されている静電入力装置において、
 前記第1電極グループを構成する第1電極部は、第1の方向へ間隔を空けて配置され、複数の第1電極部が導通する導通電極組が形成され、この導通電極組が第1の方向に沿って複数組並べられ、
 前記第2電極グループは、第1の方向に間隔を空けて配置された複数の分割電極部を有し、同じ導通電極組内の複数の第1電極部のそれぞれと、分割電極部との間で、個別に静電容量が形成されており、
 (a)前記第2電極グループの分割電極部に順に駆動電力が与えられ、前記第1電極グループでは、それぞれの導通電極組から検知出力が得られることを特徴とするものである。
In the present invention, a first electrode group having a plurality of first electrode portions and a second electrode group having a plurality of electrode portions are provided, the first electrode portion constituting the first electrode group, and the second electrode group In the electrostatic input device in which the electrode parts constituting the electrode group are insulated from each other,
The first electrode portions constituting the first electrode group are arranged at intervals in the first direction to form a conductive electrode set in which the plurality of first electrode portions are conductive, and the conductive electrode set is the first electrode portion. Multiple sets are arranged along the direction,
The second electrode group has a plurality of divided electrode portions arranged at intervals in the first direction, and each of the plurality of first electrode portions in the same conductive electrode set and the divided electrode portion. And the capacitance is formed individually,
(A) A driving power is sequentially applied to the divided electrode portions of the second electrode group, and in the first electrode group, a detection output is obtained from each conductive electrode set.
 または、前記(a)に代えて、(b)前記第1電極グループで、導通電極組ごとに順に駆動電力が与えられ、前記第2電極グループでは、それぞれの分割電極部から検知出力が得られるものである。 Alternatively, instead of (a), (b) in the first electrode group, driving power is sequentially applied to each conductive electrode set, and in the second electrode group, detection outputs are obtained from the respective divided electrode portions. Is.
 本発明の静電入力装置は、第1電極グループで複数の第1電極部が導通されて複数組の導通電極組が形成されているため、第1電極グループでは、第1電極部の数よりも端子数(チャンネル数)を少なくできる。個々の導通電極組ではそれぞれの第1電極部と、第2電極グループの電極部との間で静電容量が形成されているため、第1電極部の数と同等の分解能で操作位置を検知することができる。 In the electrostatic input device of the present invention, a plurality of first electrode portions are conducted in the first electrode group to form a plurality of conducting electrode sets. Therefore, in the first electrode group, the number of first electrode portions is more than the number of first electrode portions. The number of terminals (number of channels) can be reduced. In each conductive electrode set, an electrostatic capacitance is formed between each first electrode part and the electrode part of the second electrode group, so that the operation position is detected with the same resolution as the number of the first electrode parts. can do.
 本発明の静電入力装置は、それぞれの分割電極部とそれぞれの第1電極部との間で、一対一の関係で静電容量が形成されていることが好ましい。 In the electrostatic input device of the present invention, it is preferable that capacitance is formed in a one-to-one relationship between each divided electrode portion and each first electrode portion.
 例えば、それぞれの分割電極部と、それぞれの第1電極部とが、絶縁層を介して交差しているものとして構成できる。 For example, each of the divided electrode portions and each of the first electrode portions can be configured as intersecting via an insulating layer.
 本発明は、隣り合う分割電極部の分離部は、隣り合う第1電極部の中間点に位置していることが好ましい。 In the present invention, it is preferable that the separation part of the adjacent divided electrode parts is located at an intermediate point between the adjacent first electrode parts.
 本発明の静電入力装置は、1組の導通電極組内の第1電極部との間で静電容量が形成される分割電極部の数をN個(Nは2以上)とし、1組の導通電極組内の分割電極部を、第1の方向に向けてN1番,N2番,・・・と番付けしたときに、異なる組の導通電極組の同じ番の分割電極部が同じ端子に接続されていることが好ましい。 In the electrostatic input device of the present invention, the number of divided electrode portions in which electrostatic capacitance is formed between the first electrode portions in one set of conductive electrode sets is N (N is 2 or more). When the divided electrode portions in the conductive electrode set are numbered N1, N2,... In the first direction, the divided electrode portions of the same number in the different conductive electrode sets are the same terminal. It is preferable that it is connected to.
 上記構成の静電入力装置では、第2電極グループにおいても電極数よりも端子数(チャンネル数)を少なくすることができる。 In the electrostatic input device having the above configuration, the number of terminals (number of channels) can be reduced in the second electrode group as compared with the number of electrodes.
 本発明は、前記第2電極グループには、複数組の導通電極組の第1電極部との間で共通に静電容量が形成される連続電極部が設けられているものとして構成できる。 The present invention can be configured such that the second electrode group is provided with a continuous electrode portion in which a capacitance is formed in common with the first electrode portions of a plurality of conductive electrode sets.
 この静電入力装置は、前記連続電極部がホバー検知モードのときに使用され、前記分割電極部がタッチ検知モードのときに使用されるものにできる。 This electrostatic input device can be used when the continuous electrode portion is in the hover detection mode and used when the divided electrode portion is in the touch detection mode.
 さらに、本発明は、前記第1電極部が並んでいる方向のみの操作位置情報が検知されるものである。 Furthermore, in the present invention, operation position information is detected only in the direction in which the first electrode portions are arranged.
 本発明の静電入力装置は、電極数よりも端子数(チャンネル数)を少なくして回路負担を軽減し、しかも操作位置を検知する分解能を高くすることが可能である。 The electrostatic input device of the present invention can reduce the circuit burden by reducing the number of terminals (number of channels) rather than the number of electrodes, and can increase the resolution for detecting the operation position.
 さらに、タッチ検知モードとホバー検知モードの双方において高い分解能で操作位置を検知することができる。 Furthermore, the operation position can be detected with high resolution in both the touch detection mode and the hover detection mode.
本発明の実施の形態の静電入力装置の実装例を示す説明図、Explanatory drawing which shows the example of mounting of the electrostatic input device of embodiment of this invention, 図1に示す実装例の静電入力装置を示す平面図、The top view which shows the electrostatic input device of the example of mounting shown in FIG. (A)はホバー検知モードを示し、(B)はタッチ検知モードを示す説明図、(A) shows the hover detection mode, (B) is an explanatory view showing the touch detection mode, 本発明の第1の実施の形態の静電入力装置の電極配置を示す部分拡大平面図、The partial enlarged plan view which shows the electrode arrangement | positioning of the electrostatic input device of the 1st Embodiment of this invention, 図4のV-V線での断面図、FIG. 4 is a cross-sectional view taken along line VV in FIG. 静電入力装置の回路構成を示すブロック図、Block diagram showing the circuit configuration of the electrostatic input device, 静電入力装置に与えられる駆動電力の波形図(タイムチャート)、Waveform diagram (time chart) of drive power given to the electrostatic input device, 静電入力装置の識別動作を示すフローチャートFlow chart showing identification operation of electrostatic input device 本発明の第2の実施の形態の静電入力装置の電極配置を示す部分拡大平面図、The partial expanded plan view which shows the electrode arrangement | positioning of the electrostatic input device of the 2nd Embodiment of this invention,
 図1に情報機器の一例として携帯用情報処理装置1が示されている。携帯用情報処理装置1は、本体部2と表示部3を有している。表示部3は液晶表示パネルなどで構成されている。本体部2には、表示部3と並ぶ位置に本発明の実施の形態の静電入力装置10が実装されている。 FIG. 1 shows a portable information processing apparatus 1 as an example of information equipment. The portable information processing device 1 has a main body 2 and a display 3. The display unit 3 includes a liquid crystal display panel. The electrostatic input device 10 according to the embodiment of the present invention is mounted on the main body 2 at a position along with the display unit 3.
 図2に示す静電入力装置10は、長辺がX方向に向けられた長方形であり、長手方向(X方向)の寸法が幅方向(Y方向)の寸法よりも十分に大きい。静電入力装置10は、長手方向(X方向)への操作位置を検知するものであり、Y方向の操作位置を識別するものではない。よって、静電入力装置10のY方向の幅寸法Wは、指が幅全域に接触する大きさであり、5~30mm程度が好ましい。 The electrostatic input device 10 shown in FIG. 2 is a rectangle whose long side is oriented in the X direction, and the dimension in the longitudinal direction (X direction) is sufficiently larger than the dimension in the width direction (Y direction). The electrostatic input device 10 detects the operation position in the longitudinal direction (X direction), and does not identify the operation position in the Y direction. Therefore, the width dimension W in the Y direction of the electrostatic input device 10 is such that the finger is in contact with the entire width, and is preferably about 5 to 30 mm.
 静電入力装置10は、図3(A)に示すホバー検知モードと、図3(B)に示すタッチ検知モードの2個のモードで検知動作を行う。 The electrostatic input device 10 performs detection operation in two modes: a hover detection mode shown in FIG. 3A and a touch detection mode shown in FIG.
 ホバー検知モードは、静電入力装置10の上方に間隔を空けて手Hを対向させ、手HをX方向へ沿って移動させたときに、その移動状態を検知するモードである。タッチ検知モードは、指Fが静電入力装置10の表面に触れたときに、その接触位置のX方向での座標位置を検知するモードである。 The hover detection mode is a mode for detecting the moving state when the hand H is opposed to the electrostatic input device 10 with an interval and the hand H is moved in the X direction. The touch detection mode is a mode for detecting the coordinate position in the X direction of the contact position when the finger F touches the surface of the electrostatic input device 10.
 タッチ検知モードでは、X方向に間隔を空けた複数の検知識別領域10aのどの部分に指が触れたかが検知される。それぞれの検知識別領域10aには、搭載される情報処理装置において必要となる入力項目が割り振られる。また、タッチ検知モードでは、静電入力装置10に指が触れたときに、検知識別領域10aとは無関係に、その接触位置をX座標上の距離(座標点)として認識することも可能である。 In the touch detection mode, it is detected which part of the plurality of detection identification areas 10a spaced in the X direction touches the finger. Each detection identification area 10a is assigned with input items necessary for the information processing apparatus to be mounted. In the touch detection mode, when a finger touches the electrostatic input device 10, it is possible to recognize the contact position as a distance (coordinate point) on the X coordinate regardless of the detection identification area 10a. .
 図5の断面図に示すように、静電入力装置10は、中間基板11と、中間基板11の下側に重ねられた下部基板12と、中間基板11の上側に重ねられた上部基板14とを有している。中間基板11の上面または上部基板14の下面に第2電極グループ30を構成する電極部が形成され、上部基板14の上面に第1電極グループ20を構成する複数の第1電極部が形成されている。第1の電極グループ20の電極部の表面が絶縁性のカバー層13で覆われており。カバー層13の表面が操作面13aとなっている。 As shown in the cross-sectional view of FIG. 5, the electrostatic input device 10 includes an intermediate substrate 11, a lower substrate 12 stacked on the lower side of the intermediate substrate 11, and an upper substrate 14 stacked on the upper side of the intermediate substrate 11. have. An electrode portion constituting the second electrode group 30 is formed on the upper surface of the intermediate substrate 11 or the lower surface of the upper substrate 14, and a plurality of first electrode portions constituting the first electrode group 20 are formed on the upper surface of the upper substrate 14. Yes. The surface of the electrode part of the first electrode group 20 is covered with an insulating cover layer 13. The surface of the cover layer 13 is an operation surface 13a.
 なお、本発明は、第1電極グループ20を構成する複数の第1電極部と、第2電極グループ30を構成する電極部とが、絶縁基板の同じ面に形成され、第1電極グループ20と第2電極グループ30の電極部どうしの交差部が絶縁層で絶縁されていてもよい。 In the present invention, a plurality of first electrode portions constituting the first electrode group 20 and an electrode portion constituting the second electrode group 30 are formed on the same surface of the insulating substrate, and the first electrode group 20 The intersection of the electrode parts of the second electrode group 30 may be insulated by an insulating layer.
 図4に、静電入力装置10を構成する電極パターンが示されている。図4は、静電入力装置10のうちの図2に示す長さLの部分のみを示している。静電入力装置10のX方向の全長にわたって、図4に示す電極パターンが繰り返して形成されている。 FIG. 4 shows an electrode pattern constituting the electrostatic input device 10. FIG. 4 shows only the part of the length L shown in FIG. The electrode pattern shown in FIG. 4 is repeatedly formed over the entire length of the electrostatic input device 10 in the X direction.
 図4に示すように、第1電極グループ20は、第1電極部21,22,23,24,25,・・・を有している。第1電極部21,22,23,24,25,・・・は、X方向に一定の間隔を空けて配列している。第1電極部21は、Y方向に延びており、Y方向へ一定の間隔で配置された四角形の主検知部21aと、主検知部21aの間を接続する接続部21bとが連続して形成されている。同様に、他の第1電極部22,23,24,25,・・・も、主検知部22a,23a,24a,25a,・・・と、接続部22b,23b,24b,25b,・・・とを有している。 As shown in FIG. 4, the first electrode group 20 includes first electrode portions 21, 22, 23, 24, 25,. The first electrode portions 21, 22, 23, 24, 25,... Are arranged at a certain interval in the X direction. The first electrode portion 21 extends in the Y direction, and a rectangular main detection portion 21a disposed at a constant interval in the Y direction and a connection portion 21b connecting the main detection portions 21a are continuously formed. Has been. Similarly, the other first electrode portions 22, 23, 24, 25,... Are also connected to the main detection portions 22a, 23a, 24a, 25a,... And the connection portions 22b, 23b, 24b, 25b,.・ Has
 第1電極グループ20では、図示左端の第1電極部21とこれに隣接する第1電極部22とが導通されて第1の導通電極組が形成され、第1の導通電極組が第1の検知端子S1に接続されている。また、第1電極部23と第1電極部24とが導通されて第2の導通電極組が形成され、第2の導通電極組が第2の検知端子S2に接続されている。このように、第1電極グループ20は、第1電極部が2個ずつ導通されて導通電極組が形成され、この導通電極組が、検知端子S1,S2,S3,・・・に接続されている。 In the first electrode group 20, the first electrode portion 21 at the left end in the drawing and the first electrode portion 22 adjacent thereto are electrically connected to form a first conductive electrode set, and the first conductive electrode set is the first conductive electrode set. It is connected to the detection terminal S1. Further, the first electrode portion 23 and the first electrode portion 24 are electrically connected to form a second conductive electrode set, and the second conductive electrode set is connected to the second detection terminal S2. In this way, in the first electrode group 20, the first electrode portions are electrically connected to each other to form a conductive electrode set, and this conductive electrode set is connected to the detection terminals S1, S2, S3,. Yes.
 第2電極グループ30は、第1の連続電極部31と第2の連続電極部32を有している。第1の連続電極部31は、X方向に連続しており、X方向へ一定の間隔で配置された四角形の主検知部31aと、主検知部31aの間を接続する接続部31bとが連続して形成されている。第2の連続電極部32も、同様に、一定の間隔で配置された四角形の主検知部32aと、主検知部32aの間を接続する接続部32bとが一体に形成されている。 The second electrode group 30 has a first continuous electrode portion 31 and a second continuous electrode portion 32. The first continuous electrode unit 31 is continuous in the X direction, and a rectangular main detection unit 31a disposed at a constant interval in the X direction and a connection unit 31b connecting the main detection units 31a are continuous. Is formed. Similarly, in the second continuous electrode portion 32, a rectangular main detection portion 32a disposed at a constant interval and a connection portion 32b connecting the main detection portions 32a are integrally formed.
 第1の連続電極部31の接続部31bは、第1電極部21,22,23,24,25,・・・の接続部21b,22b,23b,24b,25b,・・・と交差しており、交差部では、上部基板11によって第1の連続電極部31と、第1電極部21,22,23,24,25,・・・とが絶縁されている。同様に、第2の連続電極部32の接続部32bも、第1電極部21,22,23,24,25,・・・の接続部21b,22b,23b,24b,25b,・・・と互いに絶縁された状態で交差している。 The connection part 31b of the first continuous electrode part 31 intersects with the connection parts 21b, 22b, 23b, 24b, 25b,... Of the first electrode parts 21, 22, 23, 24, 25,. The first continuous electrode portion 31 and the first electrode portions 21, 22, 23, 24, 25,... Are insulated by the upper substrate 11 at the intersection. Similarly, the connection part 32b of the second continuous electrode part 32 is also connected to the connection parts 21b, 22b, 23b, 24b, 25b,... Of the first electrode parts 21, 22, 23, 24, 25,. They cross each other while being insulated from each other.
 図4に示すように、第1の連続電極部31は第1の駆動端子D1に接続され、第2の連続電極部32は第2の駆動端子D2に接続されている。 As shown in FIG. 4, the first continuous electrode portion 31 is connected to the first drive terminal D1, and the second continuous electrode portion 32 is connected to the second drive terminal D2.
 第2電極グループ30では、第1の連続電極部31と第2の連続電極部32との間に、第1の分割電極部33と第2の分割電極部34とが形成されている。第1の分割電極部33と第2の分割電極部34は、X方向へ向けて1列に配置され、且つ交互に配置されている。第1の分割電極部33は、一対の三角形の主検知部33aと、両主検知部33a,33aを接続する接続部33bとが一体に形成されている。第2の分割電極部34は、一対の三角形の主検知部34a,34aと、両主検知部34a,34aを接続する接続部34bとが一体に形成されている。 In the second electrode group 30, a first divided electrode portion 33 and a second divided electrode portion 34 are formed between the first continuous electrode portion 31 and the second continuous electrode portion 32. The first divided electrode portions 33 and the second divided electrode portions 34 are arranged in a line in the X direction and are arranged alternately. As for the 1st division | segmentation electrode part 33, a pair of triangular main detection part 33a and the connection part 33b which connects both the main detection parts 33a and 33a are integrally formed. In the second divided electrode portion 34, a pair of triangular main detection portions 34a and 34a and a connection portion 34b for connecting both the main detection portions 34a and 34a are integrally formed.
 第1の分割電極部33の接続部33bは、X方向に向けて奇数番目に位置する第1電極部21,23,25,・・・の接続部21b,23b,25b,・・・と交差し、図5に示すように、交差部は絶縁層14で絶縁されている。第2の分割電極部34の接続部34bは、偶数番目に位置する第1電極部22,24,26,・・・の接続部22b,24b,26b,・・・と交差し、図5に示すように、交差部は上部基板14で絶縁されている。 The connecting portion 33b of the first divided electrode portion 33 intersects with the connecting portions 21b, 23b, 25b,... Of the first electrode portions 21, 23, 25,. However, as shown in FIG. 5, the intersection is insulated by the insulating layer 14. The connecting portion 34b of the second divided electrode portion 34 intersects the connecting portions 22b, 24b, 26b,... Of the first electrode portions 22, 24, 26,. As shown, the intersection is insulated by the upper substrate 14.
 図4に示すように、静電入力装置10では、第1電極部21,22,23,24,25,・・・の主検知部21a,22a,23a,24a,25a,・・・と、これに隣接する連続電極部31,32の主検知部31a,32aとの間に静電容量が形成されている。すなわち、第1の連続電極部31は、全ての第1電極部21,22,23,24,25,・・・との間に静電容量が形成され、第2の連続電極部32も、全ての第1電極部21,22,23,24,25,・・・との間で静電容量が形成されている。 As shown in FIG. 4, in the electrostatic input device 10, the main detection parts 21a, 22a, 23a, 24a, 25a,... Of the first electrode parts 21, 22, 23, 24, 25,. Capacitance is formed between the main detection parts 31a and 32a of the continuous electrode parts 31 and 32 adjacent to this. That is, the first continuous electrode portion 31 is formed with capacitance between all the first electrode portions 21, 22, 23, 24, 25,..., And the second continuous electrode portion 32 is also Capacitance is formed between all the first electrode portions 21, 22, 23, 24, 25,.
 一方、第1の分割電極部33の主検知部33aは、奇数番目に位置している第1電極部21,23,25、・・・の主検知部21a,23a,25a,・・・との間に静電容量が形成され、第2の分割電極部34の主検知部34aは、偶数番目に位置している第1電極部22,24,26,・・・の主検知部22a,24a,26a,・・・との間に静電容量が形成されている。 On the other hand, the main detection unit 33a of the first divided electrode unit 33 includes the main detection units 21a, 23a, 25a,... Of the first electrode units 21, 23, 25,. Is formed between the main detection units 34a of the first electrode units 22, 24, 26,..., Which are even-numbered. Capacitance is formed between 24a, 26a,.
 図4に示す静電入力装置10は、第1電極グループ20において、第1電極部21,22,23,24,25,・・・が2個ずつ接続されて、2個の第1電極部で1組の導通電極組が構成されている。そして、1組の導通電極組を構成する2個の第1電極部のうちの一方と第1の分割電極部33との間に静電容量が形成され、他方の第1電極部と第2の分割電極部34との間に静電容量が形成されている。 4 includes two first electrode units each including two first electrode units 21, 22, 23, 24, 25,... Connected in the first electrode group 20. Thus, one conductive electrode set is configured. Then, a capacitance is formed between one of the two first electrode portions constituting one set of conductive electrode sets and the first divided electrode portion 33, and the other first electrode portion and the second Capacitance is formed between the divided electrode portions 34.
 図4に示すように、第1の分割電極部33の主検知部33aと、これに隣接する第2の分割電極部34の主検知部34aは、分離部35において隙間を空けて対向し、第1の分割電極部33と第2の分割電極部34は互いに絶縁されている。それぞれの分離部35は、隣り合う第1電極部21,22,23,24,25,・・・の中間点に位置している。よって、1組の導通電極組を構成する一方の第1電極部と第1の分割電極部33との間で結合される静電容量と、他方の第1電極部と第2の分割電極部34との間の静電容量とが一致している。 As shown in FIG. 4, the main detection unit 33a of the first divided electrode unit 33 and the main detection unit 34a of the second divided electrode unit 34 adjacent thereto are opposed to each other with a gap in the separation unit 35, The first divided electrode portion 33 and the second divided electrode portion 34 are insulated from each other. Each separation portion 35 is located at an intermediate point between the adjacent first electrode portions 21, 22, 23, 24, 25,. Therefore, the capacitance coupled between one first electrode portion and the first divided electrode portion 33 constituting one set of conductive electrode sets, and the other first electrode portion and the second divided electrode portion. 34 and the electrostatic capacity between the two.
 図5に示すように、それぞれの第1の分割電極部33に第1の配線層33cが連続しており、第1の配線層33cは、下部基板12の下面へ引き出されている。それぞれの第2の分割電極部34に第2の配線層34cが連続しており、第2の配線層33cは、下部基板12の下面へ引き出されている。そして、図4に示すように、第1の分割電極部33は互いに導通されて第3の駆動端子D3に接続され、第2の分割電極部34は互いに導通されて第4の駆動端子D4に接続されている。 As shown in FIG. 5, the first wiring layer 33 c is continuous with each first divided electrode portion 33, and the first wiring layer 33 c is drawn to the lower surface of the lower substrate 12. A second wiring layer 34 c is continuous with each second divided electrode portion 34, and the second wiring layer 33 c is drawn to the lower surface of the lower substrate 12. Then, as shown in FIG. 4, the first divided electrode portion 33 is electrically connected to the third drive terminal D3, and the second divided electrode portion 34 is electrically connected to the fourth drive terminal D4. It is connected.
 図5に示すように、上部基板11と下部基板12との間には接地電位とされたシールド電極部15が形成されている。シールド電極部15と、配線層33c,34cとは互いに絶縁されている。 As shown in FIG. 5, a shield electrode portion 15 having a ground potential is formed between the upper substrate 11 and the lower substrate 12. The shield electrode portion 15 and the wiring layers 33c and 34c are insulated from each other.
 静電入力装置10は、第2電極グループ30での駆動端子が、D1,D2,D3,D4の4チャンネルであるが、第1電極グループ20での検知端子S1,S2,S3,S4,・・・のチャンネル数は、4チャンネルを超える数である。 In the electrostatic input device 10, the drive terminals in the second electrode group 30 are four channels D1, D2, D3, and D4, but the detection terminals S1, S2, S3, S4,. The number of channels is more than 4 channels.
 図6に示すように、駆動端子D1,D2,D3,D4は、マルチプレクサ41を介して駆動回路42に選択的に接続され、検知端子S1,S2,S3,S4,・・・,Dnは、マルチプレクサ41を介して検知回路43に選択的に接続されている。 As shown in FIG. 6, the drive terminals D1, D2, D3, D4 are selectively connected to the drive circuit 42 via the multiplexer 41, and the detection terminals S1, S2, S3, S4,. It is selectively connected to the detection circuit 43 via the multiplexer 41.
 第1電極グループ20では、第1電極部21,22,23,24,25,・・・が2個ずつ導通され、2個の第1の電極が1個の検知端子S1に接続されて、1組の導通電極組が1チャンネルとして構成されている。そのため、静電入力装置10のX方向の長さ寸法が大きくてもチャンネル数が過大になるのを防止でき、回路負担を軽減できる。 In the first electrode group 20, the first electrode portions 21, 22, 23, 24, 25,... Are electrically connected two by two, and the two first electrodes are connected to one detection terminal S1, One set of conducting electrodes is configured as one channel. Therefore, even if the length dimension of the electrostatic input device 10 in the X direction is large, it is possible to prevent the number of channels from becoming excessive, and the circuit burden can be reduced.
 図6に示すように、駆動回路42と検知回路43は、判別部を含む主制御部44によって制御される。主制御部44はCPUと複数のメモリなどから構成されている。 As shown in FIG. 6, the drive circuit 42 and the detection circuit 43 are controlled by a main control unit 44 including a determination unit. The main control unit 44 includes a CPU and a plurality of memories.
 次に、静電入力装置10による検知動作を、図7に示すタイムチャートと図8に示すフローチャートを使用して説明する。図8のフローチャートは、主制御部44による制御動作を意味しており、「ST」は「ステップ」を意味している。 Next, the detection operation by the electrostatic input device 10 will be described using the time chart shown in FIG. 7 and the flowchart shown in FIG. The flowchart of FIG. 8 means a control operation by the main control unit 44, and “ST” means “step”.
 静電入力装置10は、主制御部44によって、ホバー検知モードとタッチ検知モードとに切換えられる。第2電極グループ30では、第1の連続電極部31と第2の連続電極部32だけを駆動電極として使用し、ホバー検知モードを実行できる。ただし、この実施の形態では、第1の連続電極部31と第2の連続電極部32に加えて第1の分割電極部33と第2の分割電極部34が駆動電極として使用されて、ホバー検知モードが実行される。 The electrostatic input device 10 is switched between the hover detection mode and the touch detection mode by the main control unit 44. In the second electrode group 30, only the first continuous electrode part 31 and the second continuous electrode part 32 are used as drive electrodes, and the hover detection mode can be executed. However, in this embodiment, in addition to the first continuous electrode portion 31 and the second continuous electrode portion 32, the first divided electrode portion 33 and the second divided electrode portion 34 are used as drive electrodes, and the hover The detection mode is executed.
 また、タッチ検知モードでは、主に第1の分割電極部33と第2の分割電極部34が駆動電極として使用される。 In the touch detection mode, the first divided electrode portion 33 and the second divided electrode portion 34 are mainly used as drive electrodes.
 したがって、タッチ検知モードだけで使用される場合には、連続電極部31,32を設けなくてもよい。また、連続電極部の列数は1列であってもよいし、3列以上であってもよい。さらに、第1の分割電極部33と第2の分割電極部34は、X方向へ向けて1列に限られず、2列以上設けることも可能である。 Therefore, when used only in the touch detection mode, the continuous electrode portions 31 and 32 may not be provided. Further, the number of columns of the continuous electrode portion may be one, or may be three or more. Further, the first divided electrode portion 33 and the second divided electrode portion 34 are not limited to one row in the X direction, and two or more rows can be provided.
 図8に示すST1(ステップ1)で、静電入力装置10が始動すると、ST2に移行し、駆動回路42から、第1の駆動端子D1、第2の駆動端子D2、第3の駆動端子D3ならびに第4の駆動端子D4の全てに対して駆動電力が供給される。このとき、図7の時間T1に示すように、駆動端子D1ないしD4に対してパルス状の駆動電圧V1,V2,V3,V4が与えられる。複数の駆動端子D1ないしD4に対して同時に駆動電圧を与えることにより、操作面13aの前方に大きな電界を形成して検知出力を大きくすることが可能である。ただし、駆動端子の数が多い場合などでは、駆動端子の1端子を単位としてあるいは複数個の端子を単位として時間分割で駆動電圧を与えてもよい。 In ST1 (step 1) shown in FIG. 8, when the electrostatic input device 10 is started, the process proceeds to ST2, from the drive circuit 42, the first drive terminal D1, the second drive terminal D2, and the third drive terminal D3. In addition, drive power is supplied to all of the fourth drive terminals D4. At this time, as shown at time T1 in FIG. 7, pulsed drive voltages V1, V2, V3, and V4 are applied to the drive terminals D1 to D4. By simultaneously applying a driving voltage to the plurality of driving terminals D1 to D4, it is possible to form a large electric field in front of the operation surface 13a and increase the detection output. However, when the number of drive terminals is large, the drive voltage may be applied in a time division manner with one terminal of the drive terminals as a unit or with a plurality of terminals as a unit.
 静電入力装置10が始動した後は、検知回路43によって、全ての検知端子S1,S2,S3,・・・,Snからの検知出力が監視される。このとき全てのマルチプレクサ41の切り替え機能によって、全ての検知端子S1,S2,S3,・・・,Snを同時に監視し続けてもよいし、全ての検知端子S1,S2,S3,・・・,Snを順番に監視してもよい。 After the electrostatic input device 10 is started, the detection circuit 43 monitors the detection outputs from all the detection terminals S1, S2, S3,. At this time, all the detection terminals S1, S2, S3,..., Sn may be continuously monitored by the switching function of all the multiplexers 41, or all the detection terminals S1, S2, S3,. Sn may be monitored in order.
 第1電極部21,22,23,24,25,・・・の主検知部21a,22a,23a,24a,25a,・・・すなわち第1電極グループ20の各主検知部と、連続電極部31,32の主検知部31a,32aならびに分割電極部33,34の主検知部33a,34a、すなわち第2電極グループ30の各主検知部とは、隣接するものどうしの間に静電容量が形成されている。第2電極グループの主検知部にパルス状の駆動電圧V1,V2,V3,V4が印加されると、パルスの立ち上がり時と立下り時に、第1電極グループ20の各主検知部に電流が流れる。ほぼ接地電位である人の手Hまたは指Fが静電入力装置10に接近すると、手Hまたは指Fとこれに対向する主検知部との間に静電容量が形成されるため、パルスの立ち上がり時と立下り時に各主電極部に流れる電流量が変化する。 Main detection units 21a, 22a, 23a, 24a, 25a, ... of the first electrode units 21, 22, 23, 24, 25, ..., that is, the main detection units of the first electrode group 20 and the continuous electrode units The main detectors 31a and 32a of 31 and 32 and the main detectors 33a and 34a of the divided electrode units 33 and 34, that is, the main detectors of the second electrode group 30, have capacitance between adjacent ones. Is formed. When pulsed drive voltages V1, V2, V3, and V4 are applied to the main detection unit of the second electrode group, current flows through each main detection unit of the first electrode group 20 at the time of rising and falling of the pulse. . When a person's hand H or finger F, which is substantially at ground potential, approaches the electrostatic input device 10, a capacitance is formed between the hand H or finger F and the main detection unit facing the hand H or finger F. The amount of current flowing through each main electrode changes at the time of rising and falling.
 検知回路43では、第1電極グループ20の各主検知部に流れる電流が検知され、この電流の変化が各検知端子S1,S2,S3,・・・ごとの検知出力として主制御部44に与えられる。主制御部44では、手Hまたは指Fが静電入力装置10に接近するにしたがって検知出力が高くなるように信号が処理される。 In the detection circuit 43, a current flowing through each main detection unit of the first electrode group 20 is detected, and a change in this current is given to the main control unit 44 as a detection output for each detection terminal S1, S2, S3,. It is done. In the main control unit 44, the signal is processed so that the detection output becomes higher as the hand H or the finger F approaches the electrostatic input device 10.
 駆動端子D1,D2,D3,D4にパルス状の駆動電圧V1,V2,V3,V4が印加された状態で、図8のST3で、全ての検知端子S1,S2,S3,・・・,Snからの検知出力が監視される。主制御部(判別部)44では、検知出力が所定の第1のしきい値を超えたか否かを監視し、検知出力が第1のしきい値を超えたら手Hまたは指Fが接近してきているものと判断する。 In a state where pulse-like drive voltages V1, V2, V3, V4 are applied to the drive terminals D1, D2, D3, D4, all the detection terminals S1, S2, S3,. The detection output from is monitored. The main control unit (determination unit) 44 monitors whether or not the detection output exceeds a predetermined first threshold value. When the detection output exceeds the first threshold value, the hand H or finger F approaches. Judge that it is.
 ST3で、検知出力が第1のしきい値を超えたらST4に移行し、現在の検知出力が第2のしきい値を超えたか否かを監視する。第2のしきい値は第1のしきい値よりも高い出力に設定されている。検知出力が第1のしきい値を超え、ST4において第2のしきい値を超えたら、現在の操作が図3(B)に示すタッチ操作であると判断し、ST5へ移行し、主制御部44でタッチ検知モードが設定される。 In ST3, if the detection output exceeds the first threshold value, the process proceeds to ST4 and monitors whether the current detection output exceeds the second threshold value. The second threshold value is set to an output higher than the first threshold value. If the detected output exceeds the first threshold value and exceeds the second threshold value in ST4, it is determined that the current operation is a touch operation shown in FIG. 3B, and the process proceeds to ST5, where main control is performed. The touch detection mode is set in the unit 44.
 タッチ検知モードでは、図7において時間T2で示すように、駆動回路42から第2電極グループ30の第1の分割電極部33と第2の分割電極部34に交互に駆動電圧V3,V4が与えられる。なお、第1の連続電極部31と第2の連続電極部32には駆動電圧が与えられない。 In the touch detection mode, as shown at time T2 in FIG. 7, drive voltages V3 and V4 are alternately applied from the drive circuit 42 to the first divided electrode portion 33 and the second divided electrode portion 34 of the second electrode group 30. It is done. Note that no driving voltage is applied to the first continuous electrode portion 31 and the second continuous electrode portion 32.
 検知回路43では、検知端子S1,S2,S3,・・・からの検知出力が個別に監視される。例えば、図6に示すマルチプレクサ41によって、検知端子S1,S2,S3,・・・が順番に選択されて検知回路43に接続される。 In the detection circuit 43, the detection outputs from the detection terminals S1, S2, S3,... Are individually monitored. For example, the detection terminals S 1, S 2, S 3,... Are selected in order by the multiplexer 41 shown in FIG.
 ST6のタッチ操作位置判別では、主制御部44が、どの検知端子からの検知出力が高いかを監視することで、操作面13aに触れている指Fが最も接近している導通電極組を知ることができる。さらに、第1の分割電極部33に通電されているか、第2の分割電極部34に通電されているかのタイミングを知ることによって、1つの導通電極組内の2つの第1電極部のどちらに指Fが接近しているかを知ることができる。 In ST6 touch operation position determination, the main control unit 44 monitors the detection output from which detection terminal is high so as to know the conductive electrode set with which the finger F touching the operation surface 13a is closest. be able to. Further, by knowing the timing of whether the first divided electrode portion 33 is energized or the second divided electrode portion 34 is energized, which of the two first electrode portions in one conductive electrode set is determined. It is possible to know whether the finger F is approaching.
 例えば、検知端子S2からの検知出力が他の検知端子からの検知出力よりも高いときには、指Fが第1電極部23または第1電極部24に接近していることが判る。さらに、第1の分割電極部33が通電されたときに検知端子S2から得られる検知出力が、第2の分割電極部34に通電されたときに検知端子S2から得られる検知出力よりも高ければ、指Fが左側の第1電極部23に近い位置に触れていると判断できる。逆に、第2の分割電極部34に通電されたときに検知端子S2から得られる検知出力の方が高ければ、指Fが右側の第1電極部24に近い位置に触れていると判断できる。 For example, when the detection output from the detection terminal S2 is higher than the detection output from the other detection terminals, it can be seen that the finger F is approaching the first electrode part 23 or the first electrode part 24. Furthermore, if the detection output obtained from the detection terminal S2 when the first divided electrode portion 33 is energized is higher than the detection output obtained from the detection terminal S2 when the second divided electrode portion 34 is energized. It can be determined that the finger F is touching a position close to the left first electrode portion 23. On the contrary, if the detection output obtained from the detection terminal S2 when the second divided electrode portion 34 is energized is higher, it can be determined that the finger F is touching the position near the first electrode portion 24 on the right side. .
 また、信号処理によっては、例えば検知端子S2の検知出力が他の検知端子よりも低いときに、指Fが第1電極部23または第1電極部24に接近していると判断されることもある。この場合には、第1の分割電極部33が通電されたときに検知端子S2から得られる検知出力が、第2の分割電極部34に通電されたときに検知端子S2から得られる検知出力よりも低いときに、指Fが左側の第1電極部23に近い位置に触れていると判断される。このように、検知出力が高いときを検知状態とするか低いときに検知状態とするかは、検知回路でのしきい値の設定と、駆動電圧の極性や信号の反転回路などによって任意に設定することが可能である。 Further, depending on the signal processing, for example, when the detection output of the detection terminal S2 is lower than the other detection terminals, it may be determined that the finger F is approaching the first electrode portion 23 or the first electrode portion 24. is there. In this case, the detection output obtained from the detection terminal S2 when the first divided electrode portion 33 is energized is based on the detection output obtained from the detection terminal S2 when the second divided electrode portion 34 is energized. Is lower, it is determined that the finger F is touching a position close to the first electrode part 23 on the left side. In this way, whether the detection state is high or low is set to the detection state is arbitrarily set by setting the threshold value in the detection circuit, the polarity of the drive voltage, the signal inversion circuit, etc. Is possible.
 実施の形態の静電入力装置10は、X方向への寸法が大きい細長形状であるが、X方向への操作位置を検知するための分解能を高めるためには、第1電極グループ20を構成する第1電極部21,22,23,24,25,・・・のピッチを短くすることが必要であり、その結果、第1電極部21,22,23,24,25,・・・の数も多く設定することが必要である。しかし、第1電極部を2個ずつの導通電極組とし、検知端子S1,S2,S3,S4,S5,・・・をそれぞれの導通電極組ごとに設けているため、検知端子S1,S2,S3,S4,S5,・・・の数を、第1電極部21,22,23,24,25,・・・の数の半分にすることができる。 The electrostatic input device 10 according to the embodiment has an elongated shape with a large dimension in the X direction. However, in order to increase the resolution for detecting the operation position in the X direction, the first electrode group 20 is configured. It is necessary to shorten the pitch of the first electrode portions 21, 22, 23, 24, 25,..., And as a result, the number of the first electrode portions 21, 22, 23, 24, 25,. It is necessary to set as many as possible. However, since the first electrode portion is composed of two conductive electrode sets and the detection terminals S1, S2, S3, S4, S5,... Are provided for each conductive electrode set, the detection terminals S1, S2, The number of S3, S4, S5,... Can be half of the number of the first electrode portions 21, 22, 23, 24, 25,.
 また、第2電極グループ30の分割電極に対する駆動端子の数は、1組の導通電極組での第1電極部の数と等しく、図4の実施の形態では、1組の導電電極組を構成する第1電極部の数が「2」であるため、分割電極部は2組であり、駆動電極はD3,D4の2チャンネルである。 Further, the number of drive terminals for the divided electrodes of the second electrode group 30 is equal to the number of first electrode portions in one set of conductive electrodes, and in the embodiment of FIG. 4, one set of conductive electrodes is configured. Since the number of first electrode portions to be performed is “2”, there are two sets of divided electrode portions, and the drive electrodes are two channels D3 and D4.
 よって、駆動端子と検知端子の総数を少なくできる。それであっても、1組の導通電極組内の2つの第1電極部のそれぞれと分割電極部との間に静電容量が形成されているため、X方向での操作位置の検知能力は、第1電極部21,22,23,24,25,・・・の数に応じて分解能を高くすることが可能である。 Therefore, the total number of drive terminals and detection terminals can be reduced. Even so, since the capacitance is formed between each of the two first electrode portions and the divided electrode portion in one set of conductive electrodes, the detection capability of the operation position in the X direction is The resolution can be increased according to the number of first electrode portions 21, 22, 23, 24, 25,.
 次に、ST3で検知出力が第1のしきい値よりも高くなったと判断された後に、ST4において、検知出力が第2のしきい値を超えることなく所定時間が経過したら、ホバー操作が行われていると判断して、ST7のホバー検知モードへ移行する。 Next, after it is determined in ST3 that the detection output has become higher than the first threshold value, in ST4, if a predetermined time elapses without the detection output exceeding the second threshold value, the hover operation is performed. And it moves to the hover detection mode of ST7.
 ホバー検知モードでは、図7の時間T1で示すように、全ての駆動端子D1,D2,D3,D4に駆動電圧V1,V2,V3,V4が印加される。全ての駆動端子D1,D2,D3,D4に駆動電圧が与えられると、静電入力装置10の上方の空間に大きな電界が発生するため、手Hや指Fが操作面13aから上方に離れた空間に位置していても、手Hや指Fの存在を、検知端子S1,S2,S3,S4,・・・,Snで検知することができる。ST8のホバー操作位置判別では、マルチプレクサ41により、検知端子S1,S2,S3,S4,・・・,Snの検知出力が検知回路43で順番に走査されることで、手Hや指Fが、操作面13a上のどの位置を走査しているのかを識別することができる。 In the hover detection mode, the drive voltages V1, V2, V3, and V4 are applied to all the drive terminals D1, D2, D3, and D4 as shown at time T1 in FIG. When a drive voltage is applied to all the drive terminals D1, D2, D3, and D4, a large electric field is generated in the space above the electrostatic input device 10, so that the hand H and the finger F are separated upward from the operation surface 13a. Even if it is located in the space, the presence of the hand H or the finger F can be detected by the detection terminals S1, S2, S3, S4,. In the hover operation position determination in ST8, the detection output of the detection terminals S1, S2, S3, S4,..., Sn is sequentially scanned by the detection circuit 43 by the multiplexer 41, so that the hand H and the finger F are It is possible to identify which position on the operation surface 13a is being scanned.
 なお、図4に示す静電入力装置10において、駆動端子と検知端子を逆にし、端子S1,S2,S3,S4,・・・,Snに順番に駆動電圧を印加してもよい。この場合のタッチ検知モードでは、端子D3,D4からの検知出力が交互にまたは個別に監視される。これにより、静電入力装置10において指がタッチされている操作箇所のX上の座標を認識できる。ホバー検知モードでは、端子D1,D2,D3,D4の検知出力の総和を連続して監視する。この場合に、端子S1,S2,S3,S4,・・・,Snのどの端子に駆動電圧を印加したときに検知出力が大きくなるかを監視することで、操作面13a上の空間での手Hまたは指Fの動きを識別できる。 In the electrostatic input device 10 shown in FIG. 4, the drive terminal and the detection terminal may be reversed, and the drive voltage may be applied to the terminals S1, S2, S3, S4,. In the touch detection mode in this case, detection outputs from the terminals D3 and D4 are monitored alternately or individually. Thereby, the coordinate on X of the operation location where the finger | toe is touched in the electrostatic input device 10 can be recognized. In the hover detection mode, the sum of the detection outputs of the terminals D1, D2, D3, D4 is continuously monitored. In this case, by monitoring which terminal of the terminals S1, S2, S3, S4,..., Sn when the drive voltage is applied increases in the space on the operation surface 13a. The movement of H or finger F can be identified.
 図9に、本発明の第2の実施の形態の静電入力装置110が示されている。この静電入力装置110は、第1電極グループ120を構成する第1電極部121,122,123,124,125,・・・が3個ずつ互い導通されて、1組の導通電極組が3個の第1電極部で構成されている。そして、それぞれの導通電極組が端子S1,S2,S3,・・・に接続されている。 FIG. 9 shows an electrostatic input device 110 according to the second embodiment of the present invention. In this electrostatic input device 110, three first electrode portions 121, 122, 123, 124, 125,... Constituting the first electrode group 120 are electrically connected to each other, and one conductive electrode set is three. It consists of a number of first electrode portions. And each conduction electrode group is connected to terminal S1, S2, S3, ....
 第2電極グループ130は、第1の連続電極部131と第2の連続電極部132が設けられ、さらに第1の分割電極部133と第2の分割電極部134および第3の分割電極部135が形成されている。3つの分割電極部133,134,135は、1つの導通電極組を構成する3個の第1電極部との間で個別に静電容量が形成されている。 The second electrode group 130 includes a first continuous electrode portion 131 and a second continuous electrode portion 132, and further includes a first divided electrode portion 133, a second divided electrode portion 134, and a third divided electrode portion 135. Is formed. The three divided electrode portions 133, 134, and 135 are individually formed with capacitance between the three first electrode portions constituting one conductive electrode set.
 この構成では、X方向に多数設けられている第1電極部121,122,123,124,125,・・・の数に対して、端子S1,S2,S3,・・・を、1/3のチャンネル数で構成できる。しかも、分割電極部を3組設けているため、X方向での操作位置の検知分解能を、第1電極部121,122,123,124,125,・・・の数に応じて高めることができる。 In this configuration, the number of terminals S1, S2, S3,... Is reduced to 1/3 with respect to the number of first electrode portions 121, 122, 123, 124, 125,. The number of channels can be configured. In addition, since three sets of divided electrode portions are provided, the detection resolution of the operation position in the X direction can be increased according to the number of first electrode portions 121, 122, 123, 124, 125,. .
 すなわち、本発明は、操作位置をX方向のみで検知する入力検知装置において、1組の導通電極組を構成する第1電極部の数がN個のときに、それぞれの第1電極部と、分割電極部との間に個別に静電容量が形成されており、1組の導通電極組内の分割電極部をX方向に向けてN1,N2,・・・としたときに、異なる導通電極組の分割電極部N1どうしが導通されて1個に端子に接続され、同様に、N2,N3の分割電極部どうしがそれぞれ導通されて端子に接続されているものとして構成できる。 That is, according to the present invention, in the input detection device that detects the operation position only in the X direction, when the number of first electrode portions constituting one set of conductive electrode sets is N, the first electrode portions, Capacitances are individually formed between the divided electrode portions, and different conductive electrodes when the divided electrode portions in one conductive electrode set are N1, N2,. The pair of divided electrode portions N1 are electrically connected and connected to one terminal, and similarly, the divided electrode portions N2 and N3 are electrically connected to each other and connected to the terminal.
10 静電入力装置
13a 操作面
20 第1電極グループ
21,22,23,24,25,・・・ 第1電極部
30 第2電極グループ
31 第1の連続電極部
32 第2の連続電極部
33 第1の分割電極部
34 第2の分割電極部
110 静電入力装置
120 第1電極グループ
121,122,123,・・・ 第1電極部
130 第2電極グループ
131 第1の連続電極部
132 第2の連続電極部
133 第1の分割電極部
134 第2の分割電極部
135 第3の分割電極部
F 指
H 手
D1,D2,D3,・・・ 駆動端子
S1,S2,S3,・・・ 検知端子
DESCRIPTION OF SYMBOLS 10 Electrostatic input device 13a Operation surface 20 1st electrode group 21, 22, 23, 24, 25, ... 1st electrode part 30 2nd electrode group 31 1st continuous electrode part 32 2nd continuous electrode part 33 First divided electrode unit 34 Second divided electrode unit 110 Electrostatic input device 120 First electrode group 121, 122, 123, ... First electrode unit 130 Second electrode group 131 First continuous electrode unit 132 First Second continuous electrode portion 133 First divided electrode portion 134 Second divided electrode portion 135 Third divided electrode portion F Finger H Hand D1, D2, D3,... Drive terminals S1, S2, S3,. Detection terminal

Claims (9)

  1.  複数の第1電極部を有する第1電極グループと、複数の電極部を有する第2電極グループとが設けられ、前記第1電極グループを構成する第1電極部と、前記第2電極グループを構成する電極部とが、互いに絶縁されている静電入力装置において、
     前記第1電極グループを構成する第1電極部は、第1の方向へ間隔を空けて配置され、複数の第1電極部が導通する導通電極組が形成され、この導通電極組が第1の方向に沿って複数組並べられ、
     前記第2電極グループは、第1の方向に間隔を空けて配置された複数の分割電極部を有し、同じ導通電極組内の複数の第1電極部のそれぞれと、分割電極部との間で、個別に静電容量が形成されており、
     (a)前記第2電極グループの分割電極部に順に駆動電力が与えられ、前記第1電極グループでは、それぞれの導通電極組から検知出力が得られることを特徴とする静電入力装置。
    A first electrode group having a plurality of first electrode portions and a second electrode group having a plurality of electrode portions are provided, and the first electrode portion constituting the first electrode group and the second electrode group are configured. In the electrostatic input device in which the electrode parts to be insulated from each other,
    The first electrode portions constituting the first electrode group are arranged at intervals in the first direction to form a conductive electrode set in which the plurality of first electrode portions are conductive, and the conductive electrode set is the first electrode portion. Multiple sets are arranged along the direction,
    The second electrode group has a plurality of divided electrode portions arranged at intervals in the first direction, and each of the plurality of first electrode portions in the same conductive electrode set and the divided electrode portion. And the capacitance is formed individually,
    (A) The electrostatic input device is characterized in that driving power is sequentially applied to the divided electrode portions of the second electrode group, and in the first electrode group, a detection output is obtained from each conductive electrode set.
  2.  前記(a)に代えて、
     (b)前記第1電極グループで、導通電極組ごとに順に駆動電力が与えられ、前記第2電極グループでは、それぞれの分割電極部から検知出力が得られる請求項1記載の静電入力装置。
    Instead of (a) above,
    (B) The electrostatic input device according to claim 1, wherein in the first electrode group, driving power is sequentially applied to each conductive electrode set, and in the second electrode group, a detection output is obtained from each divided electrode portion.
  3.  それぞれの分割電極部とそれぞれの第1電極部との間で、一対一の関係で静電容量が形成されている請求項1または2記載の静電入力装置。 The electrostatic input device according to claim 1, wherein electrostatic capacitance is formed in a one-to-one relationship between each divided electrode portion and each first electrode portion.
  4.  それぞれの分割電極部と、それぞれの第1電極部とが、絶縁層を介して交差している請求項3記載の静電入力装置。 The electrostatic input device according to claim 3, wherein each divided electrode portion and each first electrode portion intersect via an insulating layer.
  5.  隣り合う分割電極部の分離部は、隣り合う第1電極部の中間点に位置している請求項4記載の静電入力装置。 The electrostatic input device according to claim 4, wherein the separation portion of the adjacent divided electrode portions is located at an intermediate point between the adjacent first electrode portions.
  6.  1組の導通電極組内の第1電極部との間で静電容量が形成される分割電極部の数をN個(Nは2以上)とし、1組の導通電極組内の分割電極部を、第1の方向に向けてN1番,N2番,・・・と番付けしたときに、異なる組の導通電極組の同じ番の分割電極部が同じ端子に接続されている請求項1ないし5のいずれかに記載の静電入力装置。 The number of divided electrode portions in which electrostatic capacitance is formed between the first electrode portions in one set of conductive electrode sets is N (N is 2 or more), and the divided electrode portions in one set of conductive electrode sets Are numbered N1, N2,... In the first direction, divided electrode portions of the same number of different sets of conductive electrodes are connected to the same terminal. The electrostatic input device according to any one of 5.
  7.  前記第2電極グループには、複数組の導通電極組の第1電極部との間で共通に静電容量が形成される連続電極部が設けられている請求項1ないし6のいずれかに記載の静電入力装置。 The said 2nd electrode group is provided with the continuous electrode part in which an electrostatic capacitance is formed in common with the 1st electrode part of several sets of conduction electrode groups. Electrostatic input device.
  8.  前記連続電極部はホバー検知モードのときに使用され、前記分割電極部がタッチ検知モードのときに使用される請求項7記載の静電入力装置。 The electrostatic input device according to claim 7, wherein the continuous electrode portion is used when in a hover detection mode, and is used when the divided electrode portion is in a touch detection mode.
  9.  前記第1電極部が並んでいる方向のみの操作位置情報が検知されるものである請求項1ないし8のいずれかに記載の静電入力装置。 The electrostatic input device according to any one of claims 1 to 8, wherein operation position information only in a direction in which the first electrode portions are arranged is detected.
PCT/JP2015/056392 2014-03-14 2015-03-04 Electrostatic input device WO2015137215A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014052477 2014-03-14
JP2014-052477 2014-03-14

Publications (1)

Publication Number Publication Date
WO2015137215A1 true WO2015137215A1 (en) 2015-09-17

Family

ID=54071661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056392 WO2015137215A1 (en) 2014-03-14 2015-03-04 Electrostatic input device

Country Status (1)

Country Link
WO (1) WO2015137215A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013196326A (en) * 2012-03-19 2013-09-30 Rohm Co Ltd Control circuit for capacitive sensor and electronic apparatus employing the same
US20140009428A1 (en) * 2012-07-03 2014-01-09 Sharp Kabushiki Kaisha Capacitive touch panel with height determination function

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013196326A (en) * 2012-03-19 2013-09-30 Rohm Co Ltd Control circuit for capacitive sensor and electronic apparatus employing the same
US20140009428A1 (en) * 2012-07-03 2014-01-09 Sharp Kabushiki Kaisha Capacitive touch panel with height determination function

Similar Documents

Publication Publication Date Title
EP2921941B1 (en) Touch control device and driving method thereof
KR101684642B1 (en) Touch input sensing method using mutual capacitance with matrix-disposed electrode pads and device for the same
US9342201B2 (en) Capacitive touch input device
TWI606379B (en) Display device including integrated touch panel
JP6076866B2 (en) Capacitance type input device
US10514812B2 (en) Array substrate, display panel and driving method
US9454250B2 (en) Touch panel having scan electrodes with different widths
CN105912150B (en) Display device and driving method for display device
TWI472979B (en) Touch panel device with reconfigurable sensing points and its sensing method
JP2017524192A5 (en)
JP6284391B2 (en) Capacitive input device
JP2016099897A5 (en)
US20240045507A1 (en) Tactile presentation device and control method
US20160092019A1 (en) Scanning method and device of a single layer capacitive touch panel
US8248382B2 (en) Input device
CN107329622B (en) Touch panel, array substrate and display device
CN104063100A (en) Static capacitance type touchpad
KR102140236B1 (en) Touch panel
CN104360774A (en) Touch panel and method for performing touch detection
CN106997257B (en) Input device and display device
CN106775161B (en) Touch display panel, driving method and touch display device
WO2015137215A1 (en) Electrostatic input device
WO2014155608A1 (en) Touch detection module and touch detection method for contact body of touch detection module
TWI506521B (en) Display device
KR20150087758A (en) Bezeless touch screen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15760966

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15760966

Country of ref document: EP

Kind code of ref document: A1