WO2015137194A1 - Mononuclear ruthenium complex and organic synthesis reaction using same - Google Patents

Mononuclear ruthenium complex and organic synthesis reaction using same Download PDF

Info

Publication number
WO2015137194A1
WO2015137194A1 PCT/JP2015/056200 JP2015056200W WO2015137194A1 WO 2015137194 A1 WO2015137194 A1 WO 2015137194A1 JP 2015056200 W JP2015056200 W JP 2015056200W WO 2015137194 A1 WO2015137194 A1 WO 2015137194A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
added
mmol
compound
reaction
Prior art date
Application number
PCT/JP2015/056200
Other languages
French (fr)
Japanese (ja)
Inventor
永島 英夫
祐輔 砂田
元 大串
晃司 作田
Original Assignee
国立大学法人九州大学
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学, 信越化学工業株式会社 filed Critical 国立大学法人九州大学
Priority to KR1020167027947A priority Critical patent/KR102410256B1/en
Priority to JP2016507467A priority patent/JP6241966B2/en
Priority to US15/124,773 priority patent/US9884316B2/en
Priority to CN201580012923.1A priority patent/CN106103460B/en
Priority to EP15762299.4A priority patent/EP3118205B1/en
Publication of WO2015137194A1 publication Critical patent/WO2015137194A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1608Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes the ligands containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1616Coordination complexes, e.g. organometallic complexes, immobilised on an inorganic support, e.g. ship-in-a-bottle type catalysts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/44Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers
    • C07C209/50Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers by reduction of carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/62Preparation of compounds containing amino groups bound to a carbon skeleton by cleaving carbon-to-nitrogen, sulfur-to-nitrogen, or phosphorus-to-nitrogen bonds, e.g. hydrolysis of amides, N-dealkylation of amines or quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/03Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of non-aromatic carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/28Preparation of carboxylic acid esters by modifying the hydroxylic moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/283Preparation of carboxylic acid esters by modifying the hydroxylic moiety of the ester, such modification not being an introduction of an ester group by hydrogenation of unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/303Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by hydrogenation of unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • C07C67/62Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/20Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • C07F15/0053Ruthenium compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F19/00Metal compounds according to more than one of main groups C07F1/00 - C07F17/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/0825Preparations of compounds not comprising Si-Si or Si-cyano linkages
    • C07F7/0827Syntheses with formation of a Si-C bond
    • C07F7/0829Hydrosilylation reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0834Compounds having one or more O-Si linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0834Compounds having one or more O-Si linkage
    • C07F7/0838Compounds with one or more Si-O-Si sequences
    • C07F7/0872Preparation and treatment thereof
    • C07F7/0876Reactions involving the formation of bonds to a Si atom of a Si-O-Si sequence other than a bond of the Si-O-Si linkage
    • C07F7/0878Si-C bond
    • C07F7/0879Hydrosilylation reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/32Addition reactions to C=C or C-C triple bonds
    • B01J2231/323Hydrometalation, e.g. bor-, alumin-, silyl-, zirconation or analoguous reactions like carbometalation, hydrocarbation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • B01J2231/645Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes of C=C or C-C triple bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/821Ruthenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • C07C2531/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/02Systems containing two condensed rings the rings having only two atoms in common
    • C07C2602/04One of the condensed rings being a six-membered aromatic ring
    • C07C2602/08One of the condensed rings being a six-membered aromatic ring the other ring being five-membered, e.g. indane

Definitions

  • the present invention relates to a mononuclear ruthenium complex having a ruthenium-silicon bond. More specifically, the present invention has catalytic activity in at least one of industrially useful hydrosilylation reaction, hydrogenation reaction, and reduction reaction of a carbonyl compound. It relates to a mononuclear ruthenium complex.
  • Hydrosilylation reaction in which a Si-H functional compound is added to a compound having a carbon-carbon double bond or triple bond, is a useful means for synthesizing organosilicon compounds, and is also an industrially important synthesis. It is a reaction.
  • Pt, Pd, and Rh compounds are known. Among them, the most frequently used are Pt compounds represented by Speier catalyst and Karstedt catalyst.
  • a problem of the reaction using a Pt compound as a catalyst is that, when a Si—H functional compound is added to a terminal olefin, a side reaction occurs in which the olefin undergoes internal rearrangement. In this system, there is no addition reactivity with internal olefins, and unreacted olefins remain in the addition product. Excess olefin must be used. There is also a problem that the selectivity of the ⁇ adduct and the ⁇ adduct is inferior depending on the type of olefin.
  • the biggest problem is that the central metals Pt, Pd, and Rh are all extremely expensive noble metal elements, and a metal compound catalyst that can be used at a lower cost is desired. It is being advanced.
  • Ru belongs to a noble metal, it is a metal that can be obtained at a relatively low cost, so that a function as a substitute for Pt, Pd, and Rh is required.
  • Patent Document 1 a compound having an ⁇ 6 -arene group and having an organopolysiloxane bonded to a central metal Ru or a vinylsiloxane coordinated has been reported (Patent Document 1). Although this compound has been shown to be effective for the addition reaction of methylhydrogenpolysiloxane and methylvinylpolysiloxane, the yield is low in the reaction at 120 ° C, and 160 ° C in order to obtain a high yield. The reaction must be carried out at high temperatures. In addition, in Patent Document 1, many patents relating to Ru catalysts are cited as prior documents (Patent Documents 2 to 6). I can't say that.
  • Non-Patent Document 2 discloses a mononuclear ruthenium complex effective for the hydrogenation reaction of a tetrasubstituted olefin, which is said to have a low reaction yield, but it has a low turnover number and can be used under high pressure conditions. Reaction conditions are required.
  • a method of reducing the carbonyl compound there is a method of using hydrogen in the presence of a hydrogen compound of aluminum or boron or a noble metal catalyst.
  • a hydrogen compound of aluminum or boron or a noble metal catalyst there is a method of using hydrogen in the presence of a hydrogen compound of aluminum or boron or a noble metal catalyst.
  • ketones and aldehydes are known to be stable and easy-to-handle hydride reagents and precious metal catalysts for hydrogenation that can proceed under mild conditions.
  • carboxylic acid derivatives such as esters and amides are known.
  • a method using a strong reducing agent such as lithium aluminum hydride or borane is mainly used (Non-patent Document 3).
  • these reducing agents are ignitable and water-inhibiting substances, they are difficult to handle.
  • Non-patent Documents 8 and 9 As a mononuclear complex compound having a ⁇ bond between ruthenium and silicon, a bivalent complex having a six-electron ligand (Non-patent Documents 8 and 9), a tetravalent complex having a two-electron ligand (non-patent Documents 10 and 11), tetravalent complexes having a six-electron ligand (Non-Patent Documents 9 and 12), divalent complexes having a thiourea group on silicon (Non-Patent Document 13), two having a halogen on silicon Known are a valence complex (Non-Patent Document 14), an anion complex (Non-Patent Document 15), and a bivalent complex (Non-Patent Documents 15 and 16) having an agotic Si—H ligand as a dielectron ligand Yes.
  • Non-Patent Documents 16 and 17 bivalent complexes that have no ⁇ bond between ruthenium and silicon and have an aggressive Si—H ligand as a two-electron ligand. Furthermore, as a mononuclear complex compound having isonitrile as a two-electron ligand, a divalent complex having a ⁇ bond between two ruthenium and silicon, CO, and a halogen group on silicon (Non-patent Document 18), 2 Bivalent complex having a ⁇ bond between one ruthenium and silicon and CO (Non-patent Document 19), Bivalent complex having a ⁇ bond between one ruthenium and silicon and CO (Non-patent Document 20), 2 Divalent complex having one ⁇ bond between ruthenium and silicon and a halogen group on silicon (Non-patent Document 21), and divalent complex having only one ⁇ bond between ruthenium and silicon (Non-patent Document 22) In addition, a divalent complex having no ⁇ bond
  • the ruthenium complexes disclosed therein may have catalytic activity for hydrosilylation reaction, olefin hydrogen reaction, and / or carbonyl compound reduction reaction. It does not suggest any gender.
  • a reaction example using a ruthenium complex as a catalyst an addition reaction between ethylene and dimethylchlorosilane (Non-patent Document 23) has been reported, but its reactivity and selectivity are low.
  • an example of an addition reaction of disilane and ethylene (Non-patent Document 24) has been reported, and a disila metallacycle structure as an intermediate has been proposed as an estimated reaction mechanism.
  • the complex structure containing a ligand has not been clarified, and no suggestion of suggesting a dimetallacycle structure has been made.
  • the reaction examples reported here are low in reactivity and selectivity, and cannot be said to be complexes exhibiting sufficient catalytic activity.
  • the main product by the reaction mechanism is vinyl silane or cyclic silane by dehydrogenation silylation, and only a small amount of adduct is present.
  • the present invention has been made in view of such circumstances, and is capable of exhibiting excellent catalytic activity in at least one of the three reactions of hydrosilylation reaction, hydrogenation reaction, and reduction reaction of carbonyl compound.
  • An object is to provide a mononuclear ruthenium complex having a silicon bond, and a method for performing each reaction under mild conditions using this complex.
  • the present inventors have found that a predetermined neutral or cationic mononuclear ruthenium divalent complex having a ruthenium-silicon bond has been converted into a hydrosilylation reaction, a hydrogenation reaction, and a carbonyl compound.
  • the present inventors have found that the catalyst activity can be exhibited in at least one of the reduction reactions, and that each reaction proceeds under mild conditions, thereby completing the present invention.
  • X represents a halogen atom, an organooxy group, a monoorganoamino group, a diorganoamino group, or an organothio group
  • L represents a CO atom independently of each other.
  • L represents a two-electron ligand other than a thiourea ligand, and two L may be bonded to each other, and m represents an integer of 3 or 4.
  • L is molecular hydrogen, amine, imine, nitrogen-containing heterocycle, phosphine, phosphite, arsine, alcohol, thiol, ether, sulfide, nitrile, isonitrile, aldehyde, ketone, alkene having 2 to 30 carbon atoms, carbon number 1 neutral or cationic mononuclear ruthenium divalent complex which is at least one dielectron ligand selected from 2 to 30 alkynes and triorganohydrosilane, 3. 1 neutral or cationic mononuclear ruthenium divalent complex represented by the formula (2), (Wherein R 1 to R 6 represent the same meaning as described above.
  • L 1 represents at least one two-electron coordination selected from isonitrile, amine, imine, nitrogen-containing heterocycle, phosphine, phosphite, and sulfide.
  • L 1 represents CO, a thiourea ligand, and a two-electron ligand other than L 1.
  • m 1 represents an integer of 1 to 4
  • m 2 represents an integer of 0 to 3
  • L 1 represents at least one dielectron ligand selected from isonitrile, nitrogen-containing heterocycle and phosphite (provided that when a plurality of L 1 are present, two L 1 are bonded to each other). 3) neutral or cationic mononuclear ruthenium divalent complexes, 5. 3 or 4 neutral or cationic mononuclear ruthenium divalent complex wherein L 2 is triorganohydrosilane (provided that when two or more L 2 are present, two L 2 may be bonded to each other) , 6). The neutral or cationic mononuclear ruthenium divalent complex of any one of 3 to 5 wherein both m 1 and m 2 are 2, 7).
  • R 1 to R 6 are each independently an alkyl group, an aryl group or an aralkyl group (X represents the same meaning as described above), which may be substituted with X, and L 2 represents , H—SiR 7 R 8 R 9 and H—SiR 10 R 11 R 12 (wherein R 7 to R 12 are each independently an alkyl group, aryl group or aralkyl, optionally substituted with X) X represents the same meaning as described above), and is represented by any one of R 1 to R 3 and at least one of R 4 to R 6 or R 7 to R.
  • a process for producing an alkane compound characterized in that a compound having an aliphatic unsaturated bond is hydrogenated in the presence of 11 catalysts; 14 A method for producing an amine compound, wherein the amide compound is reduced with a silane or an organohydropolysiloxane having a Si—H bond in the presence of 11 catalysts; 15. An alcohol compound is produced by reducing an aldehyde compound, a ketone compound or an ester compound with a silane or an organohydropolysiloxane having a Si—H bond in the presence of 11 catalysts.
  • the addition is performed at room temperature to 100 ° C. or less.
  • the reaction becomes possible.
  • the addition reaction with industrially useful polysiloxane, trialkoxysilane and dialkoxysilane proceeds well.
  • the reaction in which an unsaturated group-containing compound is generated by dehydrogenation silylation proceeds in preference to the addition reaction to the unsaturated group.
  • the catalyst of the invention is used, the addition reaction to the unsaturated group proceeds preferentially.
  • the hydrogenation reaction can be carried out under mild conditions at room temperature and 1 atm of hydrogen gas, and is also effective for the hydrogenation of multi-substituted alkenes, which was difficult with conventional methods. Further, the catalyst is resistant to temperature and pressure, and exhibits activity even under heating and pressurization conditions such as 80 ° C. or 10 atm.
  • the target reduction compound can be obtained by reacting an amide compound, an aldehyde compound, a ketone compound or an ester compound with a silane or polysiloxane having an Si—H group which is easy to handle. .
  • FIG. 1 is a view showing a structure of a ruthenium complex A obtained in Example 1.
  • FIG. 1 is a 1 H-NMR spectrum diagram of a ruthenium complex A obtained in Example 1.
  • FIG. 4 is a view showing a structure of a ruthenium complex B obtained in Example 2.
  • FIG. 2 is a 1 H-NMR spectrum diagram of a ruthenium complex B obtained in Example 2.
  • FIG. 3 is a 1 H-NMR spectrum diagram of a ruthenium complex C obtained in Example 3.
  • FIG. 2 is a 1 H-NMR spectrum diagram of a ruthenium complex D obtained in Example 4.
  • FIG. 6 is a view showing a structure of a ruthenium complex E obtained in Example 5.
  • FIG. 1 is a view showing a structure of a ruthenium complex A obtained in Example 1.
  • FIG. 1 is a 1 H-NMR spectrum diagram of a ruthenium complex A obtained in Example 1.
  • FIG. 4 is a view showing a
  • FIG. 1 is a 1 H-NMR spectrum diagram of a ruthenium complex E obtained in Example 5.
  • FIG. 6 is a view showing a structure of a ruthenium complex F obtained in Example 6.
  • FIG. 2 is a 1 H-NMR spectrum diagram of a ruthenium complex F obtained in Example 6.
  • the mononuclear ruthenium complex according to the present invention has two Ru—Si bonds as represented by the formula (1), and Ru contains two carbon atoms other than carbon monoxide (CO) and a thiourea ligand. It is a neutral or cationic divalent complex in which three or four electronic ligands L are coordinated.
  • R 1 to R 6 are each independently a hydrogen atom, an alkyl group, an aryl group, an aralkyl group, an organooxy group, a monoorganoamino group, a diorgano, which may be substituted with X.
  • the alkyl group may be linear, branched or cyclic, and the carbon number thereof is not particularly limited, but is preferably an alkyl having 1 to 30 carbons, more preferably 1 to 10 carbons.
  • Specific examples thereof include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl, n-tridecyl, n-tetradecyl, n-pentadecyl, n-hexadecyl, n-heptadecyl, n-octadecyl, n-nonadecyl, n-eicosanyl group, etc.
  • Linear or branched alkyl group cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, Such as cycloalkyl groups such as Kurononiru group.
  • the number of carbon atoms of the aryl group is not particularly limited, but is preferably an aryl group having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms.
  • Specific examples thereof include phenyl, 1- Examples include naphthyl, 2-naphthyl, anthryl, phenanthryl, o-biphenylyl, m-biphenylyl, p-biphenylyl group and the like.
  • the number of carbon atoms of the aralkyl group is not particularly limited, but is preferably an aralkyl group having 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms. Specific examples thereof include benzyl and phenylethyl. , Phenylpropyl, naphthylmethyl, naphthylethyl, naphthylpropyl group and the like.
  • the organooxy group is not particularly limited, but RO (R is a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, aryl group having 6 to 30 carbon atoms, or 7 to 30 carbon atoms.
  • R is a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, aryl group having 6 to 30 carbon atoms, or 7 to 30 carbon atoms.
  • the alkoxy group is not particularly limited, but is preferably an alkoxy group having 1 to 30 carbon atoms, particularly 1 to 10 carbon atoms.
  • aryloxy group is not particularly limited, but is preferably an aryloxy group having 6 to 30 carbon atoms, particularly 6 to 20 carbon atoms. Specific examples thereof include phenoxy, 1-naphthyloxy and 2-naphthyl.
  • the aralkyloxy group is not particularly limited, but is preferably an aralkyloxy group having 7 to 30 carbon atoms, particularly 7 to 20 carbon atoms, and is preferably a benzyloxy group, phenylethyloxy, phenylpropyloxy, 1 or 2- Examples thereof include naphthylmethyloxy, 1 or 2-naphthylethyloxy, 1 or 2-naphthylpropyloxy group and the like.
  • the organothio group include groups in which the oxygen atom of the organooxy group is substituted with a sulfur atom.
  • the mono-organo groups include, but are not particularly limited, is preferably one represented by RNH 2 (R represents the same meaning as above.)
  • RNH 2 R represents the same meaning as above.
  • a linear or branched monoalkylamino group such as n-heptadecylamino, n-octadecylamino, n-nonadecylamin
  • the diorganoamino group is not particularly limited, but is preferably represented by R 2 NH (wherein R independently represents the same meaning as described above).
  • R 2 NH wherein R independently represents the same meaning as described above.
  • Aryloxy and aralkyloxy groups include dimethylamino, diethylamino, di-n-propylamino, diisopropylamino, di-n-butylamino, diisobutylamino, di-s-butylamino, di-t-butylamino, di-n-pentyl.
  • a dicycloalkylamino group an alkylarylamino group such as N-methylanilino, N-ethylanilino, Nn-propylanilino group; diphenylamino, 4,4'-bisnaphthylamino, N-phenyl-1 or 2- And diarylamino groups such as naphthylamino group; and diaralkylamino groups such as dibenzylamino, bis (phenylethyl) amino, bis (phenylpropyl) amino, and bis (1 or 2-naphthylmethyl) amino groups.
  • the monoorganophosphino group is not particularly limited, but is preferably RPH (where R represents the same meaning as described above), and the preferred carbon number in R is alkoxy, aryloxy, aralkyloxy. Same as the group. Specific examples thereof include methyl phosphino, ethyl phosphino, n-propyl phosphino, isopropyl phosphino, n-butyl phosphino, isobutyl phosphino, s-butyl phosphino, t-butyl phosphino, n-pentyl phosphino.
  • cyclopropylphosphine Monocycloalkyl phosphino groups such as ino, cyclobutyl phosphino, cyclopentyl phosphino, cyclohexyl phosphino, cycloheptyl phosphino, cyclooctyl phosphino, cyclononyl phosphino groups; phenyl phosphino, 1 or 2-naphthyl phosphino And monoarylphosphino groups such as fino groups; monoaralkylphosphino groups such as benzylphosphino groups and the like.
  • the diorganophosphino group is not particularly limited, but is preferably represented by R 2 P (wherein R independently represents the same meaning as described above), and the preferred carbon number in R is the alkoxy group described above. , Aryloxy and aralkyloxy groups.
  • dimethylphosphino diethylphosphino, di-n-propylphosphino, diisopropylphosphino, di-n-butylphosphino, diisobutylphosphino, di-s-butylphosphino, di-t- Butylphosphino, di-n-pentylphosphino, di-n-hexylphosphino, di-n-heptylphosphino, di-n-octylphosphino, di-n-nonylphosphino, di-n-decylphosphino, di- n-undecylphosphino, di-n-dodecylphosphino, di-n-tridecylphosphino, di-n-tetradecylphosphino, di-n-pentadecylphosphino, di-n-hexadecyl
  • Mono-organosilyl group but are not particularly limited, but is preferably one represented by the RSiH 2 (R has the same meaning as above.)
  • R has the same meaning as above.
  • the diorgano silyl group is not particularly limited, is preferably one represented by R 2 SiH (R independently of one another represent the same meaning as above.)
  • R 2 SiH R independently of one another represent the same meaning as above.
  • the preferred number of carbon atoms in R of the alkoxy The same as the aryloxy and aralkyloxy groups.
  • a branched dialkylsilyl group a dicycloalkylsilyl group such as dicyclopropylsilyl, dicyclobutylsilyl, dicyclopentylsilyl, dicyclohexylsilyl, dicycloheptylsilyl, dicyclooctylsilyl, dicyclononylsilyl, cyclopentylcyclohexylsilyl group, etc.
  • Alkylalkylsilyl groups such as (methyl) phenylsilyl, (ethyl) phenylsilyl, (n-propyl) phenylsilyl groups; diphenylsilyl, bis (1 or 2-naphthyl) silyl, phenyl-1 or 2-naphthylsilyl groups And diarylsilyl groups such as dibenzylsilyl, bis (phenylethyl) silyl, bis (phenylpropyl) silyl, and bis (1 or 2-naphthylmethyl) silyl groups.
  • R 3 Si (R represents. As defined above independently of each other) is preferably one represented by the preferable number of carbon atoms in R of the alkoxy, The same as the aryloxy and aralkyloxy groups. Specific examples thereof include trimethylsilyl, triethylsilyl, tri-n-propylsilyl, triisopropylsilyl, tri-n-butylsilyl, triisobutylsilyl, tri-s-butylsilyl, tri-t-butylsilyl, tri-n-pentylsilyl.
  • Each of the above substituents may have at least one hydrogen atom on R substituted with a substituent X, where X is a halogen atom, an organooxy group, a monoorganoamino group, a diorganoamino group, or Examples include organothio groups, and examples of the organooxy group, monoorganoamino group, diorganoamino group, and organothio group include the same groups as described above.
  • halogen atom examples include fluorine, chlorine, bromine and iodine atoms, but a fluorine atom is preferable, and examples of suitable fluorine-substituted alkyl groups include trifluoropropyl group, nonafluorohexyl group, heptadecylfluorodecyl group and the like. .
  • R 1 to R 6 are each independently an alkyl group having 1 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, or 7 to 7 carbon atoms that may be substituted with X.
  • a 30 aralkyl group is preferable, and an alkyl group having 1 to 10 carbon atoms and an aryl group having 6 to 10 carbon atoms are more preferable.
  • the crosslinking substituent in which at least one of R 1 to R 3 and any one of R 4 to R 6 is bonded is not particularly limited as long as it is a substituent capable of crosslinking two Si atoms.
  • —O—, —S—, —NH—, —NR— (R is the same as above), —PR— (R is the same as above), —NH— (CH 2 ) k —NH -(K represents an integer of 1 to 10), -NR- (CH 2 ) k -NR- (k is the same as above, R is the same as above independently), -PH- (CH 2 ) K -PH- (k is the same as above), -PR- (CH 2 ) k -PR- (k is the same as above, R is independently the same as above), -C C-, An alkylene group having 1 to 10 carbon atoms, an arylene group having 6 to 30 carbon atoms, an aralkylene group having 7 to 30 carbon atoms
  • alkylene group having 1 to 10 carbon atoms examples include methylene, ethylene, propylene, trimethylene, tetramethylene, pentamethylene and hexamethylene groups.
  • arylene group having 6 to 30 carbon atoms examples include o-phenylene (1,2-phenylene), 1,2-naphthylene, 1,8-naphthylene and 2,3-naphthylene groups.
  • aralkylene group having 7 to 30 carbon atoms As the aralkylene group having 7 to 30 carbon atoms, — (CH 2 ) k —Ar— (Ar represents an arylene group having 6 to 20 carbon atoms, k represents the same meaning as described above), —Ar— ( CH 2 ) k — (Ar and k are as defined above), — (CH 2 ) k —Ar— (CH 2 ) k — (Ar is as defined above, and k is independently of each other. The same meaning as above).
  • at least one of those hydrogen atoms may be substituted with a substituent X (X is the same as above).
  • bridging substituent Z When the bridging substituent is represented as Z, the number of Z connecting two silicon atoms is 1 to 3, and a mononuclear ruthenium complex having such a bridging substituent Z is represented by the following formula.
  • R 1 , R 2 , R 5 , R 6 , L and m represent the same meaning as described above, and Z represents a bridging substituent.
  • disila metallacycle structure having a crosslinking substituent include those represented by the following formula, but are not limited thereto.
  • R 1 , R 2 , R 4 and R 5 represent the same meaning as described above
  • R 17 to R 20 are each independently a hydrogen atom, a halogen atom, a carbon number of 1 to 10 represents an alkyl group or an alkoxy group having 1 to 10 carbon atoms
  • R 25 to R 30 each independently represent a hydrogen atom or an unsubstituted or substituted monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • R 17 to R 20 and R 25 to R 30 are hydrogen atoms.
  • the monovalent hydrocarbon group examples include an alkyl group, an aryl group, an aralkyl group, and the like, and specific examples thereof include those similar to the above.
  • Examples of the alkyl group, alkoxy group, and halogen atom are the same as those described above.
  • L is a two-electron ligand other than CO and a thiourea ligand in which two electrons contained in the ligand are coordinated to ruthenium.
  • the two-electron ligand is not particularly limited as long as it is other than CO and thiourea ligand, and any ligand conventionally used as the two-electron ligand of the metal complex may be used.
  • unshared electron pairs unpaired electrons
  • Compounds such as sulfides; Alkenes, alkynes containing ⁇ electrons; Compounds such as aldehydes, ketones, nitriles and isonitriles containing both unpaired and ⁇ electrons; Molecular hydrogen (H- ⁇ electrons contained in H bonds are coordinated), hydrosilane ( ⁇ electrons contained in Si—H bonds are coordinated), and the like.
  • the coordination number m of the two-electron ligand L is 3 or 4, but is preferably 4.
  • Examples of the amine include tertiary amines represented by R 3 N (wherein R independently represents the same meaning as described above).
  • Examples of the nitrogen-containing heterocycle include pyrrole, imidazole, pyridine, pyrimidine, oxazoline, isoxazoline and the like.
  • Examples of the phosphine include those represented by R 3 P (R represents the same meaning as described above independently of each other).
  • Examples of the phosphite include those represented by (RO) 3 P (R represents the same meaning as described above independently of each other).
  • Examples of the arsine include those represented by R 3 As (wherein R independently represents the same meaning as described above).
  • As alcohol what is shown by ROH (R represents the same meaning as the above.) Is mentioned, for example.
  • Examples of the thiol include those in which the oxygen atom of the alcohol is substituted with
  • Examples of the ether include those represented by ROR (wherein R independently represents the same meaning as described above).
  • Examples of the sulfide include those obtained by substituting the oxygen atom of the ether with a sulfur atom.
  • Examples of the ketone include those represented by RCOR (R represents the same meaning as described above independently of each other).
  • Examples of the isonitrile include those represented by RNC (R represents the same meaning as described above independently of each other).
  • Examples of the alkene include ethene, propene, 1-butene, 2-butene, 1-pentene, 2-pentene, cyclopentene, 1-hexene, cyclohexene, 1-heptene, 1-octene, 1-nonene, 1-decene and the like.
  • alkenes having 2 to 30 carbon atoms examples include, for example, ethyne, propyne, 1-butyne, 2-butyne, 1-pentyne, 2-pentyne, 1-hexyne, 1-heptin, 1-octyne, 1-nonine, 1-decyne, and the like.
  • alkyne examples include, for example, ethyne, propyne, 1-butyne, 2-butyne, 1-pentyne, 2-pentyne, 1-hexyne, 1-heptin, 1-octyne, 1-nonine, 1-decyne, and the like.
  • the hydrosilane examples include triorganohydrosilane, specifically, an organohydrosilane having 1 to 30 tricarbon atoms, and more specifically, R 1 R 2 R 3 SiH (where R 1 to R 3 are the above-mentioned). It
  • molecular hydrogen, amine, imine, nitrogen-containing heterocycle, phosphine, phosphite, arsine, alcohol, thiol, ether, sulfide, nitrile, isonitrile, aldehyde, ketone, carbon Alkenes having 2 to 30 carbon atoms, alkynes having 2 to 30 carbon atoms, and triorganohydrosilane are preferable.
  • two Ls may be bonded to each other to form a ligand containing two coordinating two-electron functional groups.
  • Representative examples include, but are not limited to, ethylenediamine, ethylene glycol dimethyl ether, 1,3-butadiene, and those represented by the following formula.
  • a ligand containing three coordinating two-electron functional groups by bonding three of them for example, ⁇ 6 ⁇ Does not have an arylene structure.
  • At least one of the two-electron ligand L is at least one selected from isonitrile, amine, imine, nitrogen-containing heterocycle, phosphine, phosphite and sulfide. It is preferable to be a seed, and when such a two-electron ligand is L 1 , a mononuclear ruthenium complex represented by the formula (2) is preferable.
  • L 1 represents at least one dielectron ligand selected from isonitrile, amine, imine, nitrogen-containing heterocycle, phosphine, phosphite and sulfide, and among them, isonitrile, nitrogen-containing More preferably, it is at least one selected from a heterocycle, a phosphine, and a phosphite, even more preferably at least one selected from an isonitrile, a nitrogen-containing heterocycle, and a phosphite. Isonitriles with the same electronic configuration are optimal.
  • m 1 represents an integer of 1 to 4, with 2 being preferred. When m 1 is 2 to 4, two L 1 may be bonded to each other.
  • isonitrile examples include those represented by RNC (wherein R represents the same meaning as described above) as described above.
  • R is a substituted or unsubstituted carbon number.
  • Preferred is an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms or an aralkyl group having 7 to 20 carbon atoms, more preferably an aryl group having 6 to 10 carbon atoms, and an alkyl group having 1 to 10 carbon atoms.
  • a phenyl group having a substituent such as a group is even more preferable.
  • Usable isonitriles include methyl isocyanide, ethyl isocyanide, n-propyl isocyanide, cyclopropyl isocyanide, n-butyl isocyanide, isobutyl isocyanide, sec-butyl isocyanide, t-butyl isocyanide, n-pentyl isocyanide, isopentyl isocyanide, neo Alkyl isocyanides such as pentyl isocyanide, n-hexyl isocyanide, cyclohexyl isocyanide, cycloheptyl isocyanide, 1,1-dimethylhexyl isocyanide, 1-adamantyl isocyanide, 2-adamantyl isocyanide; phenyl isocyanide, 2-methylphenyl isocyanide, 4-methylphenyl Isocyanide, 2,4-dimethylphenyl isocyanide, 2,5-d
  • a pyridine ring is preferable.
  • Pyridine ring-containing compounds that can be used include pyridines such as pyridine, 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, 2,6-dimethylpyridine, 2,2'-bipyridine, 4,4'- Dimethyl-2,2'-bipyridine, 5,5'-dimethyl-2,2'-bipyridine, 4,4'-diethyl-2,2'-bipyridine, 4,4'-ditert-butyl-2,2 Examples include, but are not limited to, bipyridines such as' -bipyridine.
  • Examples of the phosphite include those represented by (RO) 3 P (wherein R represents the same meaning as described above) as described above, and in particular, R is substituted or unsubstituted.
  • R represents the same meaning as described above
  • Usable phosphite compounds include trimethyl phosphite, triethyl phosphite, triisopropyl phosphite, tri n-butyl phosphite, tris (2-ethylhexyl) phosphite, tri n-decyl phosphite, 4-methyl-2 , 6,7-trioxa-1-phosphabicyclo [2.2.2] octane (trimethylolethane cyclic phosphite), 4-ethyl-2,6,7-trioxa-1-phosphabicyclo [2.
  • trialkyl phosphites such as octane (trimethylolpropane phosphite), alkylaryl phosphites such as methyldiphenyl phosphite, and triaryl phosphites such as triphenyl phosphite. It is not limited to.
  • L 2 represents a two-electron ligand other than CO, a thiourea ligand, and L 1 , and specific examples thereof are the same as those described above for L.
  • m 2 represents an integer of 0 to 3, and 2 is preferable. Further, m 1 + m 2 satisfies 3 or 4 similarly to the above m, but is preferably 4. When m 2 is 2 or 3, two L 2 may be bonded to each other.
  • the two-electron ligand L 2 that binds to ruthenium relatively weakly is advantageous from the viewpoint of catalytic activity, among L exemplified above, thiol, sulfide, triorganohydrosilane are particularly preferred.
  • SiHR 7 R 8 R 9 and SiHR 10 R 11 R 12 R 7 to R 12 independently of each other represent an alkyl group, an aryl group or an aralkyl group which may be substituted with X.
  • SR 13 R 14 and SR 15 R 16 are each independently a hydrogen atom, X It represents an alkyl group, an aryl group or an aralkyl group which may be substituted, and X represents the same meaning as described above.
  • alkyl group examples include the same groups as those exemplified above, but each of the alkyl group having 1 to 10 carbon atoms, the aryl group having 6 to 20 carbon atoms, Aralkyl groups having 7 to 20 carbon atoms are preferable, alkyl groups having 1 to 10 carbon atoms, and aryl groups having 6 to 20 carbon atoms are more preferable.
  • the mononuclear ruthenium complex of the formula (2) for example, when L 1 is 2 and L 2 is 2 (they are distinguished as L 2a and L 2b ), the arrangement as shown by the following formula is used. Although there are coordinated structural isomers, the mononuclear ruthenium complex of the present invention includes all of these coordinated structural isomers.
  • L 2 is a triorganohydrosilane represented by SiHR 7 R 8 R 9 and SiHR 10 R 11 R 12 (R 7 to R 12 have the same meaning as above), a mononuclear ruthenium complex is formed.
  • Two or more of the four silicon atoms may be connected by the above-described bridging substituent Z.
  • the combination of silicon atoms is silicon atoms having silicon-ruthenium covalent bonds, silicon atoms coordinated by Si—H, silicon-ruthenium covalent bonds, and silicon atoms coordinated by Si—H. Either of these may be used.
  • the number of Z connecting two silicon atoms is 1 to 3, while the total number of Z contained in the whole complex is 1 to 12.
  • a mononuclear ruthenium complex in which two L 1 are coordinated and Si—H of a triorganohydrosilane which is a two-electron ligand is agogotically coordinated is preferable.
  • a structure represented by the formula (3) can be given.
  • other coordination structure isomerism is used. It may be a body.
  • R 1 to R 12 represent the same meaning as described above, but R 1 to R 6 may be independently substituted with X (X represents the same meaning as described above).
  • Preferred are an alkyl group, an aryl group or an aralkyl group.
  • specific examples of the alkyl group, the aryl group, and the aralkyl group include the same groups as those exemplified above, but each of the alkyl group having 1 to 10 carbon atoms, the aryl group having 6 to 20 carbon atoms, Aralkyl groups having 7 to 20 carbon atoms are preferable, alkyl groups having 1 to 10 carbon atoms, and aryl groups having 6 to 20 carbon atoms are more preferable.
  • two or more of the four silicon atoms constituting the mononuclear ruthenium complex may be connected by a bridging substituent, specifically, any one of R 1 to R 3 and R At least one of any of 4 to R 6 or at least one of any of R 7 to R 9 together, or any of R 10 to R 12 and at least any of R 4 to R 6
  • One set or at least one of R 7 to R 9 may be combined together to form a bridging substituent such as an alkylene group, an arylene group or an aralkylene group, or any one of R 1 to R 3 ;
  • At least one group of any of R 4 to R 6 or at least one group of any of R 7 to R 9 together forms a bridging substituent such as an alkylene group, an arylene group or an aralkylene group, and R 10 one of the ⁇ R 12
  • bridging substituent such as an
  • alkylene group examples include the same groups as those exemplified above.
  • the alkylene group having 1 to 10 carbon atoms, the arylene group having 7 to 20 carbon atoms, Aralkylene groups having 7 to 20 carbon atoms are preferable, alkylene groups having 1 to 6 carbon atoms, and arylene groups having 7 to 20 carbon atoms are more preferable.
  • R 1 , R 2 , R 4 , R 5 , R 7 , R 8 , R 10 , R 11 , R 17 to R 20 and L 1 represent the same meaning as described above.
  • R 1 , R 2 , R 4 , R 5 , R 6 , R 7 , R 10 , R 11 and R 17 to R 20 have the same meaning as described above, and Me represents a methyl group.
  • the mononuclear ruthenium complex of the present invention can be produced by combining known organic synthesis reactions.
  • the ruthenium complexes A to F are ruthenium-olefin complexes having a cycloalkadienyl group such as a cyclohexadienyl group or a cyclooctadienyl group and an alkenyl group such as an allyl group or a 2-methylallyl group as a ligand.
  • the amount of the bissilyl compound to be used can be about 1 to 10 mol times, preferably 2 to 5 mol times based on the ruthenium-olefin complex.
  • the amount of the isonitrile compound, phosphite compound, and bipyridine compound used can be about 1 to 10 moles, preferably 2 to 5 moles, relative to the ruthenium-olefin complex.
  • organic solvent various solvents can be used as long as they do not affect the reaction.
  • aliphatic hydrocarbons such as pentane, hexane, heptane, octane, cyclohexane; diethyl ether, diisopropyl ether, dibutyl ether , Ethers such as cyclopentyl methyl ether, tetrahydrofuran and 1,4-dioxane; aromatic hydrocarbons such as benzene, toluene, xylene and mesitylene can be used.
  • the reaction temperature may be appropriately set within the range from the melting point to the boiling point of the organic solvent, but is preferably 10 to 100 ° C, more preferably 30 to 80 ° C.
  • the reaction time is usually about 1 to 48 hours.
  • the solvent can be distilled off, and then the desired product can be obtained by a known purification method such as recrystallization, but the prepared ruthenium complex can be used as a catalyst for the desired reaction without isolation. Also good.
  • the mononuclear ruthenium complex of the present invention exhibits catalytic activity in any one or more of hydrosilylation reaction, hydrogenation reaction, and reduction reaction of carbonyl compound, but has catalytic activity in two reactions. Some of them exhibit catalytic activity in all three reactions.
  • the amount of the catalyst used is not particularly limited, but the reaction is allowed to proceed under mild conditions of room temperature to about 100 ° C. with good yield. In consideration of obtaining the desired product, the amount of the catalyst used is preferably 0.005 mol% or more.
  • the amount of the catalyst used is particularly limited. However, considering that the desired product is obtained in good yield by proceeding the reaction at room temperature and under a mild condition where the hydrogen pressure is about 1 atm, the amount of the catalyst used is 0.05 mol% or more. It is preferable to do.
  • the amount of the catalyst used is not particularly limited. In consideration of obtaining the desired product in good yield by advancing the reaction, the amount of the catalyst used is preferably 0.1 mol% or more.
  • the carbonyl compound that can be subjected to the reduction reaction include compounds having an amide, aldehyde, ketone, ester, carboxylic acid, carboxylate (for example, sodium salt, potassium salt, etc.) group, etc., and these are the ruthenium complex of the present invention.
  • the upper limit of the amount of catalyst used is not particularly limited, but is about 5 mol% from an economical viewpoint.
  • FIG. 5 shows the measurement results of 1 H-NMR of the obtained ruthenium complex C.
  • Example 7 Hydrosilylation reaction using ruthenium complex A
  • a magnetic stirrer was added to a 20 mL Schlenk tube, and the mixture was heated and dried while reducing the pressure to 5 Pa. Then, the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex A (6.5 mg, 0.01 mmol) was added to the Schlenk tube as a catalyst. Styrene (104 mg, 1.0 mmol) was added thereto, and 1,1,1,3,3-pentamethyldisiloxane (163 mg.1.1 mmol) was further added, and the solution was stirred at 25 ° C. for 23 hours. After cooling, anisole (108 mg, 1.0 mmol) was added as an internal standard, and the 1 H-NMR spectrum was measured to determine the structure and yield of the product. These results are shown in Table 1 as entry 1.
  • Example 8 Hydrosilylation reaction using ruthenium complex B A magnetic stirrer was added to a 20 mL Schlenk tube and dried by heating while reducing the pressure to 5 Pa. Then, the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex B (2.4 mg, 0.003 mmol) was added to the Schlenk tube as a catalyst. Styrene (104 mg, 1.0 mmol) was added thereto, and 1,1,1,3,3-pentamethyldisiloxane (163 mg.1.1 mmol) was further added, and the solution was stirred at 25 ° C. for 23 hours. After cooling, anisole (108 mg, 1.0 mmol) was added as an internal standard, and the 1 H-NMR spectrum was measured to determine the structure and yield of the product. These results are shown in Table 1 as entry 2.
  • Example 11 Hydrosilylation reaction using ruthenium complex F
  • a magnetic stirrer was added to a 20 mL Schlenk tube and dried by heating while reducing the pressure to 5 Pa. Then, the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex F (2.3 mg, 0.003 mmol) was added to the Schlenk tube as a catalyst. Styrene (104 mg, 1.0 mmol) was added thereto, and 1,1,1,3,3-pentamethyldisiloxane (163 mg.1.1 mmol) was further added, and the solution was stirred at 25 ° C. for 23 hours. After cooling, anisole (108 mg, 1.0 mmol) was added as an internal standard, and the 1 H-NMR spectrum was measured to determine the structure and yield of the product. These results are shown in Table 1 as entry 5.
  • Example 12 Hydrosilylation reaction using ruthenium complex A
  • a magnetic stirrer was added to a 20 mL Schlenk tube, dried by heating while reducing the pressure to 5 Pa, and the inside of the Schlenk tube was replaced with an argon atmosphere.
  • Ruthenium complex A (3.2 mg, 0.005 mmol) was added to the Schlenk tube as a catalyst.
  • Styrene (1040 mg, 10 mmol) was added thereto, dimethylphenylsilane (1500 mg, 11 mmol) was further added, and the solution was stirred at 25 ° C. for 23 hours.
  • anisole (1080 mg, 10 mmol) was added as an internal standard, and a 1 H-NMR spectrum was measured to determine the structure and yield of the product.
  • Example 14 Hydrosilylation reaction using ruthenium complex D A magnetic stirrer was added to a 20 mL Schlenk tube and dried by heating while reducing the pressure to 5 Pa. Then, the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex D (0.9 mg, 0.001 mmol) was added to the Schlenk tube as a catalyst. Styrene (1040 mg, 10 mmol) was added thereto, dimethylphenylsilane (1500 mg, 11 mmol) was further added, and the solution was stirred at 25 ° C. for 23 hours. After cooling, anisole (1080 mg, 10 mmol) was added as an internal standard, and a 1 H-NMR spectrum was measured to determine the structure and yield of the product. These results are shown in Table 2 as entry 3.
  • Example 15 Hydrosilylation reaction using ruthenium complex E
  • a magnetic stirrer was added to a 20 mL Schlenk tube and heated and dried while reducing the pressure to 5 Pa. Then, the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex E (8.1 mg, 0.01 mmol) was added to the Schlenk tube as a catalyst. Styrene (104 mg, 1.0 mmol) was added thereto, dimethylphenylsilane (150 mg, 1.1 mmol) was further added, and the solution was stirred at 25 ° C. for 23 hours. After cooling, anisole (108 mg, 1.0 mmol) was added as an internal standard, and the 1 H-NMR spectrum was measured to determine the structure and yield of the product. These results are shown in Table 2 as entry 4.
  • Example 17 Hydrosilylation reaction using ruthenium complex B A magnetic stirrer was added to a 20 mL Schlenk tube and dried by heating while reducing the pressure to 5 Pa. Then, the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex B (2.4 mg, 0.003 mmol) was added to the Schlenk tube as a catalyst. 1-octene (112 mg, 1.0 mmol) was added thereto, and 1,1,1,3,3-pentamethyldisiloxane (163 mg, 1.1 mmol) was further added thereto, and then the solution was stirred at 25 ° C. for 23 hours. did. After cooling, anisole (108 mg, 1.0 mmol) was added as an internal standard, and the 1 H-NMR spectrum was measured to determine the structure and yield of the product. These results are shown in Table 3 as entry 2.
  • Example 20 Hydrosilylation reaction using ruthenium complex E
  • a magnetic stirrer was added to a 20 mL Schlenk tube and heated and dried while reducing the pressure to 5 Pa. Then, the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex E (24 mg, 0.03 mmol) was added to the Schlenk tube as a catalyst. 1-octene (112 mg, 1.0 mmol) was added thereto, and 1,1,1,3,3-pentamethyldisiloxane (163 mg, 1.1 mmol) was further added thereto, and then the solution was stirred at 80 ° C. for 23 hours. did. After cooling, anisole (108 mg, 1.0 mmol) was added as an internal standard, and the 1 H-NMR spectrum was measured to determine the structure and yield of the product. These results are shown in Table 3 as entry 5.
  • Example 22 Hydrogenation reaction using ruthenium complex A
  • a magnetic stirrer was added to a 20 mL Schlenk tube and dried by heating while reducing the pressure to 5 Pa. Then, the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex A (3.3 mg, 0.005 mmol) was added to the Schlenk tube as a catalyst, and dissolved in THF (2 mL). To this solution was added 1-octene (112 mg, 1.0 mmol). The resulting solution was freeze degassed and the inside of the Schlenk tube was replaced with a hydrogen atmosphere, and then the solution was stirred at room temperature for 3 hours.
  • Example 23 Hydrogenation reaction using ruthenium complex B A magnetic stirrer was added to a 20 mL Schlenk tube and dried while heating under reduced pressure to 5 Pa, and then the inside of the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex B (4.0 mg, 0.005 mmol) was added to the Schlenk tube as a catalyst, and dissolved in THF (2 mL). To this solution was added 1-octene (112 mg, 1.0 mmol). The resulting solution was freeze degassed and the inside of the Schlenk tube was replaced with a hydrogen atmosphere, and then the solution was stirred at room temperature for 3 hours.
  • Example 24 Hydrogenation reaction using ruthenium complex C
  • a magnetic stirrer was added to a 20 mL Schlenk tube and dried with heating while reducing the pressure to 5 Pa. Then, the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex C (3.9 mg, 0.005 mmol) was added to the Schlenk tube as a catalyst and dissolved in THF (2 mL). To this solution was added 1-octene (112 mg, 1.0 mmol). The resulting solution was freeze degassed and the inside of the Schlenk tube was replaced with a hydrogen atmosphere, and then the solution was stirred at room temperature for 3 hours.
  • Example 25 Hydrogenation reaction using ruthenium complex D After adding a magnetic stirrer to a 20 mL Schlenk tube and heating and drying while reducing the pressure to 5 Pa, the inside of the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex D (4.3 mg, 0.005 mmol) was added to the Schlenk tube as a catalyst, and dissolved in THF (2 mL). To this solution was added 1-octene (112 mg, 1.0 mmol). The resulting solution was freeze degassed and the inside of the Schlenk tube was replaced with a hydrogen atmosphere, and then the solution was stirred at room temperature for 6 hours.
  • Example 26 Hydrogenation reaction using ruthenium complex F
  • a magnetic stirrer was added to a 20 mL Schlenk tube and dried by heating while reducing the pressure to 5 Pa. Then, the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex F (3.8 mg, 0.005 mmol) was added to the Schlenk tube as a catalyst and dissolved in THF (2 mL). To this solution was added 1-octene (112 mg, 1.0 mmol). The resulting solution was freeze degassed and the inside of the Schlenk tube was replaced with a hydrogen atmosphere, and then the solution was stirred at room temperature for 3 hours.
  • Example 27 Hydrogenation reaction using ruthenium complex A
  • a magnetic stirrer was added to a 20 mL Schlenk tube and dried by heating while reducing the pressure to 5 Pa. Then, the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex A (0.65 mg, 0.001 mmol) was added to the Schlenk tube as a catalyst, and dissolved in THF (2 mL). To this solution was added styrene (104 mg, 1.0 mmol). The resulting solution was freeze degassed and the inside of the Schlenk tube was replaced with a hydrogen atmosphere, and then the solution was stirred at room temperature for 18 hours.
  • Example 28 Hydrogenation reaction using ruthenium complex B A magnetic stirrer was added to a 20 mL Schlenk tube and dried by heating while reducing the pressure to 5 Pa. Then, the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex B (0.8 mg, 0.001 mmol) was added to the Schlenk tube as a catalyst, and dissolved in THF (2 mL). To this solution was added styrene (104 mg, 1.0 mmol). The resulting solution was freeze degassed and the inside of the Schlenk tube was replaced with a hydrogen atmosphere, and then the solution was stirred at room temperature for 18 hours.
  • Example 29 Hydrogenation reaction using ruthenium complex C
  • a magnetic stirrer was added to a 20 mL Schlenk tube and dried by heating while reducing the pressure to 5 Pa. Then, the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex C (0.77 mg, 0.001 mmol) was added to the Schlenk tube as a catalyst, and dissolved in toluene (2 mL). To this solution was added styrene (104 mg, 1.0 mmol). The resulting solution was freeze degassed and the inside of the Schlenk tube was replaced with a hydrogen atmosphere, and then the solution was stirred at room temperature for 6 hours.
  • Example 30 Hydrogenation reaction using ruthenium complex D
  • a magnetic stirrer was added to a 20 mL Schlenk tube and dried by heating while reducing the pressure to 5 Pa. Then, the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex D (0.86 mg, 0.001 mmol) was added as a catalyst to the Schlenk tube and dissolved in THF (2 mL). To this solution was added styrene (104 mg, 1.0 mmol). The resulting solution was freeze degassed and the inside of the Schlenk tube was replaced with a hydrogen atmosphere, and then the solution was stirred at room temperature for 18 hours.
  • Example 31 Hydrogenation reaction using ruthenium complex E After adding a magnetic stirrer to a 20 mL Schlenk tube and heating and drying while reducing the pressure to 5 Pa, the inside of the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex E (2.44 mg, 0.003 mmol) was added to the Schlenk tube as a catalyst, and dissolved in THF (2 mL). To this solution was added styrene (104 mg, 1.0 mmol). The resulting solution was freeze degassed and the inside of the Schlenk tube was replaced with a hydrogen atmosphere, and then the solution was stirred at room temperature for 1.5 hours.
  • Example 32 Hydrogenation reaction using ruthenium complex F
  • a magnetic stirrer was added to a 20 mL Schlenk tube and dried by heating while reducing the pressure to 5 Pa. Then, the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex F (0.76 mg, 0.001 mmol) was added to the Schlenk tube as a catalyst, and dissolved in THF (2 mL). To this solution was added styrene (104 mg, 1.0 mmol). The resulting solution was freeze degassed and the inside of the Schlenk tube was replaced with a hydrogen atmosphere, and then the solution was stirred at room temperature for 6 hours.
  • Example 33 Hydrogenation of methyl-10-undecenoate A magnetic stirrer was added to a 20 mL Schlenk tube and dried by heating while reducing the pressure to 5 Pa. Then, the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex C (3.9 mg, 0.005 mmol) was added to the Schlenk tube as a catalyst and dissolved in toluene (2 mL). To this solution was added methyl-10-undecenoate (198 mg, 1.0 mmol). The resulting solution was freeze degassed and the inside of the Schlenk tube was replaced with a hydrogen atmosphere, and then the solution was stirred at room temperature for 1.5 hours.
  • Example 34 Hydrogenation of cyclohexene A magnetic stirrer was added to a 20 mL Schlenk tube and dried by heating while reducing the pressure to 5 Pa. Then, the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex C (2.3 mg, 0.003 mmol) was added to the Schlenk tube as a catalyst and dissolved in toluene (2 mL). To this solution was added cyclohexene (82 mg, 1.0 mmol). The resulting solution was freeze degassed and the inside of the Schlenk tube was replaced with a hydrogen atmosphere, and then the solution was stirred at room temperature for 4 hours.
  • Example 35 Hydrogenation of ethyl-2,3-dimethyl acrylate A magnetic stirrer was added to a 20 mL Schlenk tube and dried under reduced pressure to 5 Pa, and then the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex C (2.3 mg, 0.003 mmol) was added to the Schlenk tube as a catalyst and dissolved in toluene (2 mL). To this solution, ethyl-2,3-dimethylacrylate (128 mg, 1.0 mmol) was added. The resulting solution was freeze degassed and the inside of the Schlenk tube was replaced with a hydrogen atmosphere, and then the solution was stirred at room temperature for 6 hours.
  • Example 36 Hydrogenation of 2,3-dimethyl-2-butene A magnetic stirrer was added to a 20 mL Schlenk tube and dried under reduced pressure to 5 Pa, and then the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex C (3.9 mg, 0.005 mmol) was added to the Schlenk tube as a catalyst and dissolved in toluene (2 mL). To this solution was added 2,3-dimethyl-2-butene (84 mg, 1.0 mmol). The resulting solution was freeze degassed and the inside of the Schlenk tube was replaced with a hydrogen atmosphere, and then the solution was stirred at room temperature for 6 hours.
  • Example 37 Hydrogenation of trans-stilbene A magnetic stirrer was added to a 20 mL Schlenk tube and dried under reduced pressure to 5 Pa, and then the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex C (2.3 mg, 0.003 mmol) was added to the Schlenk tube as a catalyst and dissolved in toluene (2 mL). To this solution was added trans-stilbene (180 mg, 1.0 mmol). The resulting solution was freeze degassed and the inside of the Schlenk tube was replaced with a hydrogen atmosphere, and then the solution was stirred at room temperature for 6 hours. Anisole was added as an internal standard, and the 1 H-NMR spectrum was measured to determine the structure and yield of the product. The structure of the obtained compound was confirmed by 1 H, 13 C-NMR spectrum. These results are shown in Table 6 as entry 5.
  • Example 38 Hydrogenation of 1-methyl-1-cyclohexene A magnetic stirrer was added to a 20 mL Schlenk tube and dried by heating while reducing the pressure to 5 Pa. Then, the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex C (2.3 mg, 0.003 mmol) was added to the Schlenk tube as a catalyst and dissolved in toluene (2 mL). To this solution was added 1-methyl-1-cyclohexene (96 mg, 1.0 mmol). The resulting solution was freeze degassed and the inside of the Schlenk tube was replaced with a hydrogen atmosphere, and then the solution was stirred at room temperature for 3 hours. Anisole was added as an internal standard, and the 1 H-NMR spectrum was measured to determine the structure and yield of the product. The structure of the obtained compound was confirmed by 1 H, 13 C-NMR spectrum. These results are shown in Table 6 as entry 6.
  • Example 39 Hydrogenation of ( ⁇ ) -limonene A magnetic stirrer was added to a 20 mL Schlenk tube and dried by heating while reducing the pressure to 5 Pa. Then, the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex C (7.7 mg, 0.010 mmol) was added to the Schlenk tube as a catalyst, and dissolved in toluene (2 mL). To this solution, ( ⁇ ) -limonene (136 mg, 1.0 mmol) was added. The resulting solution was transferred into an autoclave and the autoclave was replaced with hydrogen. Thereafter, the solution was stirred at room temperature for 6 hours under a hydrogen atmosphere of 10 atm.
  • Example 40 Hydrogenation of diethyl isopropylidenemalonate A magnetic stirrer was added to a 20 mL Schlenk tube and dried under reduced pressure to 5 Pa, and then the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex C (7.7 mg, 0.010 mmol) was added to the Schlenk tube as a catalyst, and dissolved in toluene (2 mL). To this solution was added diethyl isopropylidenemalonate (200 mg, 1.0 mmol). The resulting solution was transferred into an autoclave and the autoclave was replaced with hydrogen. Thereafter, the solution was stirred at room temperature for 9 hours under a hydrogen atmosphere of 10 atm. Anisole was added as an internal standard, and the 1 H-NMR spectrum was measured to determine the structure and yield of the product. The structure of the obtained compound was confirmed by 1 H, 13 C-NMR spectrum. These results are shown in Table 6 as entry 8.
  • Example 43 Reaction using ruthenium complex C After drying the NMR tube under reduced pressure to 5 Pa, ruthenium complex C (39 mg, 0.05 mmol) was added as a catalyst, and 0.4 mL of heavy benzene was added by syringe. . Thereafter, dimethylphenylsilane (600 mg, 4.4 mmol) was added, and N, N-dimethylformamide (73 mg, 1.0 mmol, hereinafter referred to as DMF) was added, and then the NMR tube was burned off under vacuum and sealed in a vacuum. After the solution was stirred at 120 ° C. for 5 hours, formation of amine was confirmed by 1 H-NMR spectrum. These results are shown in Table 7 as entry 1.
  • Example 45 Reaction using ruthenium complex F After drying the NMR tube under reduced pressure to 5 Pa, ruthenium complex F (38 mg, 0.05 mmol) was added as a catalyst, and 0.4 mL of heavy benzene was added by syringe. . Thereafter, dimethylphenylsilane (600 mg, 4.4 mmol) was added, and DMF (73 mg, 1.0 mmol) was further added, and then the NMR tube was burned off under reduced pressure and vacuum sealed. After the solution was stirred at 120 ° C. for 5 hours, formation of amine was confirmed by 1 H-NMR spectrum. These results are shown in Table 7 as entry 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Pyridine Compounds (AREA)

Abstract

 A neutral or cationic mononuclear ruthenium divalent complex represented by formula (1) can actualize exceptional catalytic activity in at least one reaction among a hydrosilylation reaction, hydrogenation reaction, and carbonyl compound reduction reaction. (In the formula, R1-R6 each independently represent a hydrogen atom or an alkyl group, aryl group, aralkyl group, organooxy group, monoorganoamino group, diorganoamino group, monoorganophosphino group, diorganophosphino group, monoorganosilyl group, diorganosilyl group, triorganosilyl group, or organothio group optionally substituted by X; at least one pair comprising any of R1-R3 and any of R4-R6 together represents a crosslinkable substituent; X represents a halogen atom, organooxy group, monoorganoamino group, diorganoamino group, or organothio group; L each independently represent a two-electron ligand other than CO and thiourea ligands; two L may bond to each other; and m represents an integer of 3 or 4.)

Description

単核ルテニウム錯体およびそれを使用した有機合成反応Mononuclear ruthenium complex and organic synthesis reaction using it
 本発明は、ルテニウム-ケイ素結合を有する単核ルテニウム錯体に関し、さらに詳述すると、工業的に有用なヒドロシリル化反応、水素化反応、およびカルボニル化合物の還元反応の少なくとも1つの反応に触媒活性を有する単核ルテニウム錯体に関する。 The present invention relates to a mononuclear ruthenium complex having a ruthenium-silicon bond. More specifically, the present invention has catalytic activity in at least one of industrially useful hydrosilylation reaction, hydrogenation reaction, and reduction reaction of a carbonyl compound. It relates to a mononuclear ruthenium complex.
 炭素-炭素二重結合や同三重結合を有する化合物に対してSi-H官能性化合物を付加反応するヒドロシリル化反応は、有機ケイ素化合物を合成する有用な手段であり、工業的にも重要な合成反応である。
 このヒドロシリル化反応の触媒としては、Pt、Pd、Rh化合物が知られており、その中でも最も多く用いられているものはSpeier触媒、Karstedt触媒に代表されるPt化合物である。
Hydrosilylation reaction, in which a Si-H functional compound is added to a compound having a carbon-carbon double bond or triple bond, is a useful means for synthesizing organosilicon compounds, and is also an industrially important synthesis. It is a reaction.
As catalysts for this hydrosilylation reaction, Pt, Pd, and Rh compounds are known. Among them, the most frequently used are Pt compounds represented by Speier catalyst and Karstedt catalyst.
 Pt化合物を触媒とする反応の問題点としては、末端オレフィンにSi-H官能性化合物を付加する際、オレフィンが内部転位する副反応が生じることが挙げられる。この系では内部オレフィンに対しては付加反応性を示さず、未反応オレフィンが付加生成物中に残留してしまうことから、反応を完結させるためには、副反応で残留する分を見込んであらかじめ過剰のオレフィンを用いる必要がある。
 また、オレフィンの種類により、α付加体とβ付加体の選択性が劣るという問題もある。
A problem of the reaction using a Pt compound as a catalyst is that, when a Si—H functional compound is added to a terminal olefin, a side reaction occurs in which the olefin undergoes internal rearrangement. In this system, there is no addition reactivity with internal olefins, and unreacted olefins remain in the addition product. Excess olefin must be used.
There is also a problem that the selectivity of the α adduct and the β adduct is inferior depending on the type of olefin.
 最も大きな問題点は、中心金属であるPt,Pd,Rhはいずれも極めて高価な貴金属元素であるということであり、より安価に使用できる金属化合物触媒が望まれていることから、数多くの研究が進められている。特に、Ruは貴金属に属するものの、比較的安価に入手できる金属であることから、Pt,Pd,Rhの代替としての機能が求められている。 The biggest problem is that the central metals Pt, Pd, and Rh are all extremely expensive noble metal elements, and a metal compound catalyst that can be used at a lower cost is desired. It is being advanced. In particular, although Ru belongs to a noble metal, it is a metal that can be obtained at a relatively low cost, so that a function as a substitute for Pt, Pd, and Rh is required.
 このRu化合物について、η6-アレーン基を有し、かつ中心金属であるRuにオルガノポリシロキサンが結合、あるいはビニルシロキサンが配位した化合物が報告されている(特許文献1)。この化合物は、メチルハイドロジェンポリシロキサンとメチルビニルポリシロキサンとの付加反応に有効であることが示されているものの、120℃の反応では収率が低く、高収率を得るためには160℃の高温下で反応させなければならない。
 また、この特許文献1には先行文献としてRu触媒に関する多くの特許が引用されているが(特許文献2~6)、反応性、選択性、経済性の観点からいずれも貴金属元素系触媒に勝っているとは言えない。
As for this Ru compound, a compound having an η 6 -arene group and having an organopolysiloxane bonded to a central metal Ru or a vinylsiloxane coordinated has been reported (Patent Document 1). Although this compound has been shown to be effective for the addition reaction of methylhydrogenpolysiloxane and methylvinylpolysiloxane, the yield is low in the reaction at 120 ° C, and 160 ° C in order to obtain a high yield. The reaction must be carried out at high temperatures.
In addition, in Patent Document 1, many patents relating to Ru catalysts are cited as prior documents (Patent Documents 2 to 6). I can't say that.
 一方、オレフィンの水素化反応も工業的に重要な反応であるが、従来の触媒はPt、Pd、Rh等の貴金属が用いられており、貴金属の中でも安価なルテニウムの利用が望まれている。例えば、非特許文献1に示されるような3核ルテニウム錯体を用いたものなどがあるが、反応温度や収率等の観点から、さらに改良が望まれている。
 また、非特許文献2には反応収率が低いとされている4置換オレフィンの水素化反応に有効な単核ルテニウム錯体が開示されているが、ターンオーバー数が低く、また高圧条件下での反応条件が必要である。
On the other hand, the hydrogenation reaction of olefins is also an industrially important reaction. However, noble metals such as Pt, Pd, and Rh are used in conventional catalysts, and the use of inexpensive ruthenium is desired among the noble metals. For example, there are those using a trinuclear ruthenium complex as shown in Non-Patent Document 1, and further improvements are desired from the viewpoint of reaction temperature, yield and the like.
Non-Patent Document 2 discloses a mononuclear ruthenium complex effective for the hydrogenation reaction of a tetrasubstituted olefin, which is said to have a low reaction yield, but it has a low turnover number and can be used under high pressure conditions. Reaction conditions are required.
 カルボニル化合物を還元する方法としては、アルミニウムやホウ素の水素化合物や貴金属触媒存在下で水素を用いる方法がある。カルボニル化合物のうち、ケトンやアルデヒドについては温和な条件で反応を進行させ得る、安定で取り扱いやすいヒドリド反応剤や水素化用貴金属触媒が知られているが、エステルやアミドのようなカルボン酸誘導体の還元には、リチウムアルミニウムヒドリド、ボラン等の強力な還元剤を用いる方法が主に用いられている(非特許文献3)。しかし、これらの還元剤は発火性、禁水性物質であるため取り扱いに難がある。また、反応後のアルミニウム、あるいはホウ素化合物を目的物から除去する時にも取り扱いに注意が必要である。加えて、カルボン酸誘導体の還元には高温高圧の水素が必要である。
 空気中で安定かつ取り扱いが容易なヒドロシラン化合物、メチルハイドロジェンポリシロキサンを還元剤として使用する方法が数多く報告されているが、反応には強い酸またはルイス酸の添加や、高価な貴金属触媒を必要とする。最近、比較的安価なルテニウムを触媒とするカルボニル化合物の還元反応が報告されており、そのうちの一部は、従来法では過酷な条件を必要とするアミドの還元反応に適用した例も出ている。具体的なルテニウム触媒の例として非特許文献4~7が挙げられるが、より高いターンオーバー数を示す高活性触媒が望まれている。
As a method of reducing the carbonyl compound, there is a method of using hydrogen in the presence of a hydrogen compound of aluminum or boron or a noble metal catalyst. Among carbonyl compounds, ketones and aldehydes are known to be stable and easy-to-handle hydride reagents and precious metal catalysts for hydrogenation that can proceed under mild conditions. However, carboxylic acid derivatives such as esters and amides are known. For the reduction, a method using a strong reducing agent such as lithium aluminum hydride or borane is mainly used (Non-patent Document 3). However, since these reducing agents are ignitable and water-inhibiting substances, they are difficult to handle. Also, care should be taken when removing the reacted aluminum or boron compound from the target product. In addition, reduction of carboxylic acid derivatives requires high temperature and pressure hydrogen.
Many methods have been reported that use a hydrosilane compound, methyl hydrogen polysiloxane, which is stable in air and easy to handle, as a reducing agent, but the reaction requires the addition of a strong acid or Lewis acid, and an expensive noble metal catalyst. And Recently, relatively inexpensive ruthenium-catalyzed reduction reactions of carbonyl compounds have been reported, some of which have been applied to amide reduction reactions that require harsh conditions in the conventional method. . Specific examples of the ruthenium catalyst include Non-Patent Documents 4 to 7, and a highly active catalyst exhibiting a higher turnover number is desired.
 ルテニウムとケイ素間のσ結合を有している単核錯体化合物として、六電子配位子を有する二価錯体(非特許文献8、9)、二電子配位子を有する四価錯体(非特許文献10、11)、六電子配位子を有する四価錯体(非特許文献9、12)、ケイ素上にチオ尿素基を有する二価錯体(非特許文献13)、ケイ素上にハロゲンを有する二価錯体(非特許文献14)、アニオン錯体(非特許文献15)、二電子配位子としてアゴスティックなSi-H配位子を有する二価錯体(非特許文献15、16)が知られている。
 また、ルテニウムとケイ素間にσ結合を有さず、二電子配位子としてアゴスティックなSi-H配位子を有する二価錯体(非特許文献16,17)も知られている。
 さらに、二電子配位子としてイソニトリルを有する単核錯体化合物としては、2つのルテニウムおよびケイ素間のσ結合と、COと、ケイ素上にハロゲン基を有する二価錯体(非特許文献18)、2つのルテニウムおよびケイ素間のσ結合と、COとを有する二価錯体(非特許文献19)、1つのルテニウムおよびケイ素間のσ結合と、COとを有する二価錯体(非特許文献20)、2つのルテニウムおよびケイ素間のσ結合と、ケイ素上にハロゲン基とを有する二価錯体(非特許文献21)、ルテニウムおよびケイ素間のσ結合が1つのみである二価錯体(非特許文献22)、ルテニウムおよびケイ素間にσ結合を有しない二価錯体(非特許文献17)が知られている。
 しかしながら、上記の非特許文献8~22では、それらに開示されているルテニウム錯体が、ヒドロシリル化反応、オレフィンの水素反応、および/またはカルボニル化合物の還元反応に対して触媒活性を有している可能性をなんら示唆していない。
 一方、ルテニウム錯体を触媒に用いた反応例としては、エチレンとジメチルクロロシランとの付加反応(非特許文献23)が報告されているが、その反応性と選択性は低いものである。
 また、ジシランとエチレンの付加反応例(非特許文献24)が報告されており、推定される反応機構には中間体としてのジシラメタラサイクル構造が提案されている。しかしながら、配位子を含んだ錯体構造は明らかにされておらず、ジメタラサイクル構造を示唆することの同定もなされていない。さらに、ここで報告されている反応例も、反応性と選択性が低いものであり、十分な触媒活性を示す錯体であるとは言えない。しかも、同反応機構による主生成物は、脱水素シリル化によるビニルシランまたは環状シランであり、付加体は微量しか存在していない。
As a mononuclear complex compound having a σ bond between ruthenium and silicon, a bivalent complex having a six-electron ligand (Non-patent Documents 8 and 9), a tetravalent complex having a two-electron ligand (non-patent Documents 10 and 11), tetravalent complexes having a six-electron ligand (Non-Patent Documents 9 and 12), divalent complexes having a thiourea group on silicon (Non-Patent Document 13), two having a halogen on silicon Known are a valence complex (Non-Patent Document 14), an anion complex (Non-Patent Document 15), and a bivalent complex (Non-Patent Documents 15 and 16) having an agotic Si—H ligand as a dielectron ligand Yes.
Also known are bivalent complexes (Non-Patent Documents 16 and 17) that have no σ bond between ruthenium and silicon and have an aggressive Si—H ligand as a two-electron ligand.
Furthermore, as a mononuclear complex compound having isonitrile as a two-electron ligand, a divalent complex having a σ bond between two ruthenium and silicon, CO, and a halogen group on silicon (Non-patent Document 18), 2 Bivalent complex having a σ bond between one ruthenium and silicon and CO (Non-patent Document 19), Bivalent complex having a σ bond between one ruthenium and silicon and CO (Non-patent Document 20), 2 Divalent complex having one σ bond between ruthenium and silicon and a halogen group on silicon (Non-patent Document 21), and divalent complex having only one σ bond between ruthenium and silicon (Non-patent Document 22) In addition, a divalent complex having no σ bond between ruthenium and silicon (Non-patent Document 17) is known.
However, in the above Non-Patent Documents 8 to 22, the ruthenium complexes disclosed therein may have catalytic activity for hydrosilylation reaction, olefin hydrogen reaction, and / or carbonyl compound reduction reaction. It does not suggest any gender.
On the other hand, as a reaction example using a ruthenium complex as a catalyst, an addition reaction between ethylene and dimethylchlorosilane (Non-patent Document 23) has been reported, but its reactivity and selectivity are low.
In addition, an example of an addition reaction of disilane and ethylene (Non-patent Document 24) has been reported, and a disila metallacycle structure as an intermediate has been proposed as an estimated reaction mechanism. However, the complex structure containing a ligand has not been clarified, and no suggestion of suggesting a dimetallacycle structure has been made. Furthermore, the reaction examples reported here are low in reactivity and selectivity, and cannot be said to be complexes exhibiting sufficient catalytic activity. Moreover, the main product by the reaction mechanism is vinyl silane or cyclic silane by dehydrogenation silylation, and only a small amount of adduct is present.
特許第5032561号公報Japanese Patent No. 5032561 米国特許出願公開第2004/0092759号明細書US Patent Application Publication No. 2004/0092759 米国特許第5559264号明細書US Pat. No. 5,559,264 欧州特許出願公開0403706号明細書European Patent Application Publication No. 0403706 米国特許第5248802号明細書US Pat. No. 5,248,802 西独国特許出願公開第2810032号明細書West German Patent Application No. 2810032
 本発明は、このような事情に鑑みてなされたものであり、ヒドロシリル化反応、水素化反応、およびカルボニル化合物の還元反応の三反応の少なくとも1つの反応に優れた触媒活性を発揮し得る、ルテニウム-ケイ素結合を有する単核ルテニウム錯体、およびこの錯体を使用して温和な条件下で各反応を行う方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and is capable of exhibiting excellent catalytic activity in at least one of the three reactions of hydrosilylation reaction, hydrogenation reaction, and reduction reaction of carbonyl compound. An object is to provide a mononuclear ruthenium complex having a silicon bond, and a method for performing each reaction under mild conditions using this complex.
 本発明者らは、上記目的を達成するため鋭意検討を行った結果、ルテニウム-ケイ素結合を有する所定の中性またはカチオン性単核ルテニウム二価錯体が、ヒドロシリル化反応、水素化反応およびカルボニル化合物の還元反応の少なくとも1つの反応に優れた触媒活性を発揮し得、温和な条件下でそれぞれの反応が進行することを見出し、本発明を完成した。 As a result of intensive studies to achieve the above object, the present inventors have found that a predetermined neutral or cationic mononuclear ruthenium divalent complex having a ruthenium-silicon bond has been converted into a hydrosilylation reaction, a hydrogenation reaction, and a carbonyl compound. The present inventors have found that the catalyst activity can be exhibited in at least one of the reduction reactions, and that each reaction proceeds under mild conditions, thereby completing the present invention.
 すなわち、本発明は、
1. 式(1)で表されることを特徴とする中性またはカチオン性単核ルテニウム二価錯体、
Figure JPOXMLDOC01-appb-C000003
(式中、R1~R6は、互いに独立して、水素原子、Xで置換されていてもよい、アルキル基、アリール基、アラルキル基、オルガノオキシ基、モノオルガノアミノ基、ジオルガノアミノ基、モノオルガノホスフィノ基、ジオルガノホスフィノ基、モノオルガノシリル基、ジオルガノシリル基、トリオルガノシリル基、またはオルガノチオ基を表すか、R1~R3のいずれかとR4~R6のいずれかの少なくとも1組が一緒になった架橋置換基を表し、Xは、ハロゲン原子、オルガノオキシ基、モノオルガノアミノ基、ジオルガノアミノ基、またはオルガノチオ基を表し、Lは、互いに独立してCOおよびチオ尿素配位子以外の二電子配位子を表し、2個のLが互いに結合していてもよく、mは、3または4の整数を表す。)
2. 前記Lが、分子状水素、アミン、イミン、含窒素ヘテロ環、ホスフィン、ホスファイト、アルシン、アルコール、チオール、エーテル、スルフィド、ニトリル、イソニトリル、アルデヒド、ケトン、炭素数2~30のアルケン、炭素数2~30のアルキン、およびトリオルガノヒドロシランから選ばれる少なくとも1種の二電子配位子である1の中性またはカチオン性単核ルテニウム二価錯体、
3. 式(2)で表される1の中性またはカチオン性単核ルテニウム二価錯体、
Figure JPOXMLDOC01-appb-C000004
(式中、R1~R6は、前記と同じ意味を表す。L1は、イソニトリル、アミン、イミン、含窒素ヘテロ環、ホスフィン、ホスファイトおよびスルフィドから選ばれる少なくとも1種の二電子配位子を表し、L1が複数存在する場合、2個のL1が互いに結合していてもよく、L2は、CO、チオ尿素配位子および前記L1以外の二電子配位子を表し、L2が複数存在する場合、2個のL2が互いに結合していてもよく、m1は1~4の整数を表し、m2は0~3の整数を表すが、m1+m2は3または4を満たす。)
4. 前記L1が、イソニトリル、含窒素ヘテロ環およびホスファイトから選ばれる少なくとも1種の二電子配位子を表す(ただし、L1が複数存在する場合、2個のL1が互いに結合していてもよい)3の中性またはカチオン性単核ルテニウム二価錯体、
5. 前記L2が、トリオルガノヒドロシランである(ただし、L2が複数存在する場合、2個のL2が互いに結合していてもよい)3または4の中性またはカチオン性単核ルテニウム二価錯体、
6. 前記m1およびm2がいずれも2である3~5のいずれかの中性またはカチオン性単核ルテニウム二価錯体、
7. 前記R1~R6が、互いに独立して、Xで置換されていてもよい、アルキル基、アリール基またはアラルキル基(Xは前記と同じ意味を表す。)であり、かつ、前記L2が、H-SiR789およびH-SiR101112(式中、R7~R12は、互いに独立して、Xで置換されていてもよい、アルキル基、アリール基またはアラルキル基を表し、Xは前記と同じ意味を表す。)で表されるトリオルガノヒドロシランであり、R1~R3のいずれかと、R4~R6のいずれかの少なくとも1組もしくはR7~R9のいずれかの少なくとも1組が一緒になって、またはR10~R12のいずれかと、R4~R6のいずれかの少なくとも1組もしくはR7~R9のいずれかの少なくとも1組が一緒になって架橋置換基を形成していてもよく、R1~R3のいずれかと、R4~R6のいずれかの少なくとも1組またはR7~R9のいずれかの少なくとも1組が一緒になって架橋置換基を形成し、かつ、R10~R12のいずれかと、R4~R6のいずれかの少なくとも1組およびR7~R9のいずれかの少なくとも1組が一緒になって架橋置換基を形成していてもよい6の中性またはカチオン性単核ルテニウム二価錯体、
8. 前記R1~R3のいずれか1つと、R4~R6のいずれか1つとが一緒になって架橋置換基を形成している1~7のいずれかの中性またはカチオン性単核ルテニウム二価錯体、
9. 前記R1~R3のいずれか1つと、R4~R6のいずれか1つまたはR7~R9のいずれか1つとが一緒になって架橋置換基を形成し、かつ、R10~R12のいずれか1つと、R4~R6のいずれか1つおよびR7~R9のいずれか1つのうち前記架橋置換基の形成に関与してないSi上の置換基とが一緒になって架橋置換基を形成している7の中性またはカチオン性単核ルテニウム二価錯体、
10. 前記R1~R3のいずれか1つと、R4~R6のいずれか1つとが一緒になってYで置換されていてもよいo-フェニレン基を形成し(Yは、水素原子、ハロゲン原子、炭素数1~10のアルキル基、または炭素数1~10のアルコキシ基を表し、Yが複数存在する場合それらは互いに同一でも異なっていてもよい)、かつ、R10~R12のいずれか1つと、R7~R9のいずれか1つとが一緒になってYで置換されていてもよいo-フェニレン基(Yは前記と同じ意味を表す。)を形成している9の中性またはカチオン性単核ルテニウム二価錯体、
11. 1~10のいずれかの中性またはカチオン性単核ルテニウム二価錯体からなるヒドロシリル化反応、水素化反応およびカルボニル化合物の還元反応から選ばれる少なくとも1つの反応に活性を有する触媒、
12. 11の触媒の存在下、脂肪族不飽和結合を有する化合物と、Si-H結合を有するヒドロシランまたはオルガノヒドロポリシロキサンとをヒドロシリル化反応させることを特徴とする付加化合物の製造方法、
13. 11の触媒の存在下、脂肪族不飽和結合を有する化合物を水素化させることを特徴とするアルカン化合物の製造方法、
14. 11の触媒の存在下、アミド化合物をSi-H結合を有するシランまたはオルガノヒドロポリシロキサンで還元することを特徴とするアミン化合物の製造方法、
15. 11の触媒の存在下、アルデヒド化合物、ケトン化合物またはエステル化合物をSi-H結合を有するシランまたはオルガノヒドロポリシロキサンで還元することを特徴とするアルコール化合物の製造方法
を提供する。
That is, the present invention
1. A neutral or cationic mononuclear ruthenium divalent complex represented by the formula (1):
Figure JPOXMLDOC01-appb-C000003
(Wherein R 1 to R 6 are independently of each other a hydrogen atom, X may be substituted with alkyl group, aryl group, aralkyl group, organooxy group, monoorganoamino group, diorganoamino group. Represents a monoorganophosphino group, a diorganophosphino group, a monoorganosilyl group, a diorganosilyl group, a triorganosilyl group, or an organothio group, or any of R 1 to R 3 and any of R 4 to R 6 X represents a halogen atom, an organooxy group, a monoorganoamino group, a diorganoamino group, or an organothio group, and L represents a CO atom independently of each other. And represents a two-electron ligand other than a thiourea ligand, and two L may be bonded to each other, and m represents an integer of 3 or 4.)
2. L is molecular hydrogen, amine, imine, nitrogen-containing heterocycle, phosphine, phosphite, arsine, alcohol, thiol, ether, sulfide, nitrile, isonitrile, aldehyde, ketone, alkene having 2 to 30 carbon atoms, carbon number 1 neutral or cationic mononuclear ruthenium divalent complex which is at least one dielectron ligand selected from 2 to 30 alkynes and triorganohydrosilane,
3. 1 neutral or cationic mononuclear ruthenium divalent complex represented by the formula (2),
Figure JPOXMLDOC01-appb-C000004
(Wherein R 1 to R 6 represent the same meaning as described above. L 1 represents at least one two-electron coordination selected from isonitrile, amine, imine, nitrogen-containing heterocycle, phosphine, phosphite, and sulfide. When a plurality of L 1 are present, two L 1 may be bonded to each other, and L 2 represents CO, a thiourea ligand, and a two-electron ligand other than L 1. In the case where a plurality of L 2 are present, two L 2 may be bonded to each other, m 1 represents an integer of 1 to 4, m 2 represents an integer of 0 to 3, and m 1 + m 2 Satisfies 3 or 4.)
4). L 1 represents at least one dielectron ligand selected from isonitrile, nitrogen-containing heterocycle and phosphite (provided that when a plurality of L 1 are present, two L 1 are bonded to each other). 3) neutral or cationic mononuclear ruthenium divalent complexes,
5. 3 or 4 neutral or cationic mononuclear ruthenium divalent complex wherein L 2 is triorganohydrosilane (provided that when two or more L 2 are present, two L 2 may be bonded to each other) ,
6). The neutral or cationic mononuclear ruthenium divalent complex of any one of 3 to 5 wherein both m 1 and m 2 are 2,
7). R 1 to R 6 are each independently an alkyl group, an aryl group or an aralkyl group (X represents the same meaning as described above), which may be substituted with X, and L 2 represents , H—SiR 7 R 8 R 9 and H—SiR 10 R 11 R 12 (wherein R 7 to R 12 are each independently an alkyl group, aryl group or aralkyl, optionally substituted with X) X represents the same meaning as described above), and is represented by any one of R 1 to R 3 and at least one of R 4 to R 6 or R 7 to R. At least one set of any one of 9 or any of R 10 to R 12 and at least one set of any of R 4 to R 6 or at least one set of any of R 7 to R 9 Together, they may form a crosslinking substituent, and R 1 to R 3 Any one of R 4 to R 6 or at least one set of any of R 7 to R 9 together forms a bridging substituent, and any of R 10 to R 12 And at least one set of any of R 4 to R 6 and at least one set of any of R 7 to R 9 may be combined to form a bridging substituent. Nuclear ruthenium divalent complex,
8). The neutral or cationic mononuclear ruthenium according to any one of 1 to 7, wherein any one of R 1 to R 3 and any one of R 4 to R 6 are combined to form a bridging substituent. Divalent complexes,
9. Any one of R 1 to R 3 and any one of R 4 to R 6 or any one of R 7 to R 9 together form a bridging substituent, and R 10 to Any one of R 12 and any one of R 4 to R 6 and any one of R 7 to R 9 together with a substituent on Si that is not involved in the formation of the bridging substituent; 7 neutral or cationic mononuclear ruthenium divalent complexes forming a cross-linking substituent,
10. Any one of R 1 to R 3 and any one of R 4 to R 6 together form an o-phenylene group which may be substituted with Y (Y is a hydrogen atom, a halogen atom, An atom, an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms, and when there are a plurality of Y, they may be the same or different from each other), and any of R 10 to R 12 9 and any one of R 7 to R 9 together form an o-phenylene group (Y represents the same meaning as above) optionally substituted with Y. Or cationic mononuclear ruthenium divalent complex,
11. A catalyst having activity in at least one reaction selected from a hydrosilylation reaction comprising a neutral or cationic mononuclear ruthenium divalent complex of any one of 1 to 10, a hydrogenation reaction, and a reduction reaction of a carbonyl compound;
12 A process for producing an addition compound comprising hydrosilylation reaction of a compound having an aliphatic unsaturated bond with a hydrosilane or organohydropolysiloxane having a Si-H bond in the presence of 11 catalyst,
13. A process for producing an alkane compound, characterized in that a compound having an aliphatic unsaturated bond is hydrogenated in the presence of 11 catalysts;
14 A method for producing an amine compound, wherein the amide compound is reduced with a silane or an organohydropolysiloxane having a Si—H bond in the presence of 11 catalysts;
15. An alcohol compound is produced by reducing an aldehyde compound, a ketone compound or an ester compound with a silane or an organohydropolysiloxane having a Si—H bond in the presence of 11 catalysts.
 本発明の単核ルテニウム錯体を触媒として用い、脂肪族不飽和基含有化合物とSi-H基を有するシラン、あるいはポリシロキサンとのヒドロシリル化反応を行うと、室温~100℃以下の条件下で付加反応が可能になる。特に工業的に有用なポリシロキサン、並びにトリアルコキシシランおよびジアルコキシシランとの付加反応が良好に進行する。さらに、公知文献では同反応において、不飽和基への付加反応よりも、脱水素シリル化反応による不飽和基含有化合物が生成する反応が優先して進行することがたびたび示されているが、本発明の触媒を用いると不飽和基への付加反応が優先的に進行する。
 水素化反応は、室温および水素ガス1気圧の温和な条件下で行うことができ、しかも従来の方法では困難であった多置換アルケンの水素化にも有効である。また、触媒は温度や圧力に対して耐性を持ち、80℃、あるいは10気圧といった加温加圧条件でも活性を示す。
 カルボニル化合物の還元反応では、アミド化合物、アルデヒド化合物、ケトン化合物、エステル化合物を、取り扱いが容易なSi-H基を有するシラン、あるいはポリシロキサンと反応させることによって目的とする還元化合物を得ることができる。
When the mononuclear ruthenium complex of the present invention is used as a catalyst and a hydrosilylation reaction between an aliphatic unsaturated group-containing compound and a Si—H group-containing silane or polysiloxane is carried out, the addition is performed at room temperature to 100 ° C. or less. The reaction becomes possible. Particularly, the addition reaction with industrially useful polysiloxane, trialkoxysilane and dialkoxysilane proceeds well. Furthermore, in the known literature, it is often shown that the reaction in which an unsaturated group-containing compound is generated by dehydrogenation silylation proceeds in preference to the addition reaction to the unsaturated group. When the catalyst of the invention is used, the addition reaction to the unsaturated group proceeds preferentially.
The hydrogenation reaction can be carried out under mild conditions at room temperature and 1 atm of hydrogen gas, and is also effective for the hydrogenation of multi-substituted alkenes, which was difficult with conventional methods. Further, the catalyst is resistant to temperature and pressure, and exhibits activity even under heating and pressurization conditions such as 80 ° C. or 10 atm.
In the reduction reaction of a carbonyl compound, the target reduction compound can be obtained by reacting an amide compound, an aldehyde compound, a ketone compound or an ester compound with a silane or polysiloxane having an Si—H group which is easy to handle. .
実施例1で得られたルテニウム錯体Aの構造を示す図である。1 is a view showing a structure of a ruthenium complex A obtained in Example 1. FIG. 実施例1で得られたルテニウム錯体Aの1H-NMRスペクトル図である。1 is a 1 H-NMR spectrum diagram of a ruthenium complex A obtained in Example 1. FIG. 実施例2で得られたルテニウム錯体Bの構造を示す図である。4 is a view showing a structure of a ruthenium complex B obtained in Example 2. FIG. 実施例2で得られたルテニウム錯体Bの1H-NMRスペクトル図である。2 is a 1 H-NMR spectrum diagram of a ruthenium complex B obtained in Example 2. FIG. 実施例3で得られたルテニウム錯体Cの1H-NMRスペクトル図である。3 is a 1 H-NMR spectrum diagram of a ruthenium complex C obtained in Example 3. FIG. 実施例4で得られたルテニウム錯体Dの1H-NMRスペクトル図である。2 is a 1 H-NMR spectrum diagram of a ruthenium complex D obtained in Example 4. FIG. 実施例5で得られたルテニウム錯体Eの構造を示す図である。6 is a view showing a structure of a ruthenium complex E obtained in Example 5. FIG. 実施例5で得られたルテニウム錯体Eの1H-NMRスペクトル図である。 1 is a 1 H-NMR spectrum diagram of a ruthenium complex E obtained in Example 5. FIG. 実施例6で得られたルテニウム錯体Fの構造を示す図である。6 is a view showing a structure of a ruthenium complex F obtained in Example 6. FIG. 実施例6で得られたルテニウム錯体Fの1H-NMRスペクトル図である。2 is a 1 H-NMR spectrum diagram of a ruthenium complex F obtained in Example 6. FIG.
 以下、本発明についてさらに詳しく説明する。
 本発明に係る単核ルテニウム錯体は、式(1)で表されるように、2つのRu-Si結合を有し、かつ、Ruに一酸化炭素(CO)およびチオ尿素配位子以外の二電子配位子Lが3個または4個配位している中性またはカチオン性の二価錯体である。
Hereinafter, the present invention will be described in more detail.
The mononuclear ruthenium complex according to the present invention has two Ru—Si bonds as represented by the formula (1), and Ru contains two carbon atoms other than carbon monoxide (CO) and a thiourea ligand. It is a neutral or cationic divalent complex in which three or four electronic ligands L are coordinated.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(1)において、R1~R6は、互いに独立して、水素原子、Xで置換されていてもよい、アルキル基、アリール基、アラルキル基、オルガノオキシ基、モノオルガノアミノ基、ジオルガノアミノ基、モノオルガノホスフィノ基、ジオルガノホスフィノ基、モノオルガノシリル基、ジオルガノシリル基、トリオルガノシリル基、またはオルガノチオ基を表すか、R1~R3のいずれかとR4~R6のいずれかの少なくとも1組が一緒になった架橋置換基を表し、Xは、ハロゲン原子、オルガノオキシ基、モノオルガノアミノ基、ジオルガノアミノ基、またはオルガノチオ基を表す。
 アルキル基としては、直鎖、分岐鎖、環状のいずれでもよく、また、その炭素数も特に限定されるものではないが、好ましくは炭素数1~30、より好ましくは炭素数1~10のアルキル基であり、その具体例としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、n-ヘキシル、n-ヘプチル、n-オクチル、n-ノニル、n-デシル、n-ウンデシル、n-ドデシル、n-トリデシル、n-テトラデシル、n-ペンタデシル、n-ヘキサデシル、n-ヘプタデシル、n-オクタデシル、n-ノナデシル、n-エイコサニル基等の直鎖または分岐鎖アルキル基;シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、シクロノニル基等のシクロアルキル基などが挙げられる。
In the formula (1), R 1 to R 6 are each independently a hydrogen atom, an alkyl group, an aryl group, an aralkyl group, an organooxy group, a monoorganoamino group, a diorgano, which may be substituted with X. Represents an amino group, a monoorganophosphino group, a diorganophosphino group, a monoorganosilyl group, a diorganosilyl group, a triorganosilyl group, or an organothio group, or any one of R 1 to R 3 and R 4 to R 6 X represents a halogen atom, an organooxy group, a monoorganoamino group, a diorganoamino group, or an organothio group.
The alkyl group may be linear, branched or cyclic, and the carbon number thereof is not particularly limited, but is preferably an alkyl having 1 to 30 carbons, more preferably 1 to 10 carbons. Specific examples thereof include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl, n-tridecyl, n-tetradecyl, n-pentadecyl, n-hexadecyl, n-heptadecyl, n-octadecyl, n-nonadecyl, n-eicosanyl group, etc. Linear or branched alkyl group; cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, Such as cycloalkyl groups such as Kurononiru group.
 アリール基としても、その炭素数は特に限定されるものではないが、好ましくは炭素数6~30、より好ましくは炭素数6~20のアリール基であり、その具体例としては、フェニル、1-ナフチル、2-ナフチル、アントリル、フェナントリル、o-ビフェニリル、m-ビフェニリル、p-ビフェニリル基等が挙げられる。
 アラルキル基としても、その炭素数は特に限定されるものではないが、好ましくは炭素数7~30、より好ましくは炭素数7~20のアラルキル基であり、その具体例としては、ベンジル、フェニルエチル、フェニルプロピル、ナフチルメチル、ナフチルエチル、ナフチルプロピル基等が挙げられる。
The number of carbon atoms of the aryl group is not particularly limited, but is preferably an aryl group having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms. Specific examples thereof include phenyl, 1- Examples include naphthyl, 2-naphthyl, anthryl, phenanthryl, o-biphenylyl, m-biphenylyl, p-biphenylyl group and the like.
The number of carbon atoms of the aralkyl group is not particularly limited, but is preferably an aralkyl group having 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms. Specific examples thereof include benzyl and phenylethyl. , Phenylpropyl, naphthylmethyl, naphthylethyl, naphthylpropyl group and the like.
 オルガノオキシ基としては、特に限定されるものではないが、RO(Rは、置換もしくは非置換の、炭素数1~30のアルキル基、炭素数6~30のアリール基または炭素数7~30のアラルキル基を表す。)で示されるアルコキシ基、アリールオキシ基、アラルキルオキシ基等が挙げられる。
 アルコキシ基としては、特に限定されるものではないが、炭素数1~30、特に炭素数1~10のアルコキシ基が好ましく、その具体例としては、メトキシ、エトキシ、n-プロポキシ、i-プロポキシ、c-プロポキシ、n-ブトキシ、i-ブトキシ、s-ブトキシ、t-ブトキシ、n-ペントキシ、n-ヘキソキシ、n-ヘプチルオキシ、n-オクチルオキシ、n-ノニルオキシ、n-デシルオキシ基等が挙げられる。
 アリールオキシ基としては、特に限定されるものではないが、炭素数6~30、特に炭素数6~20のアリールオキシ基が好ましく、その具体例としては、フェノキシ、1-ナフチルオキシ、2-ナフチルオキシ、アントリルオキシ、フェナントリルオキシ基等が挙げられる。
 アラルキルオキシ基としては、特に限定されるものではないが、炭素数7~30、特に炭素数7~20のアラルキルオキシ基が好ましく、ベンジルオキシ基、フェニルエチルオキシ、フェニルプロピルオキシ、1または2-ナフチルメチルオキシ、1または2-ナフチルエチルオキシ、1または2-ナフチルプロピルオキシ基等が挙げられる。
 オルガノチオ基としては、上記オルガノオキシ基の酸素原子を硫黄原子で置換した基等が挙げられる。
The organooxy group is not particularly limited, but RO (R is a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, aryl group having 6 to 30 carbon atoms, or 7 to 30 carbon atoms. An alkoxy group, an aryloxy group, an aralkyloxy group, and the like represented by aralkyl group.
The alkoxy group is not particularly limited, but is preferably an alkoxy group having 1 to 30 carbon atoms, particularly 1 to 10 carbon atoms. Specific examples thereof include methoxy, ethoxy, n-propoxy, i-propoxy, c-propoxy, n-butoxy, i-butoxy, s-butoxy, t-butoxy, n-pentoxy, n-hexoxy, n-heptyloxy, n-octyloxy, n-nonyloxy, n-decyloxy group, etc. .
The aryloxy group is not particularly limited, but is preferably an aryloxy group having 6 to 30 carbon atoms, particularly 6 to 20 carbon atoms. Specific examples thereof include phenoxy, 1-naphthyloxy and 2-naphthyl. An oxy, anthryloxy, phenanthryloxy group, etc. are mentioned.
The aralkyloxy group is not particularly limited, but is preferably an aralkyloxy group having 7 to 30 carbon atoms, particularly 7 to 20 carbon atoms, and is preferably a benzyloxy group, phenylethyloxy, phenylpropyloxy, 1 or 2- Examples thereof include naphthylmethyloxy, 1 or 2-naphthylethyloxy, 1 or 2-naphthylpropyloxy group and the like.
Examples of the organothio group include groups in which the oxygen atom of the organooxy group is substituted with a sulfur atom.
 モノオルガノアミノ基としては、特に限定されるものではないが、RNH2(Rは上記と同じ意味を表す。)で示されるものが好ましく、Rにおける好ましい炭素数は上記アルコキシ、アリールオキシ、アラルキルオキシ基と同様である。その具体例としては、メチルアミノ、エチルアミノ、n-プロピルアミノ、イソプロピルアミノ、n-ブチルアミノ、イソブチルアミノ、s-ブチルアミノ、t-ブチルアミノ、n-ペンチルアミノ、n-ヘキシルアミノ、n-ヘプチルアミノ、n-オクチルアミノ、n-ノニルアミノ、n-デシルアミノ、n-ウンデシルアミノ、n-ドデシルアミノ、n-トリデシルアミノ、n-テトラデシルアミノ、n-ペンタデシルアミノ、n-ヘキサデシルアミノ、n-ヘプタデシルアミノ、n-オクタデシルアミノ、n-ノナデシルアミノ、n-エイコサニルアミノ基等の直鎖または分岐鎖モノアルキルアミノ基;シクロプロピルアミノ、シクロブチルアミノ、シクロペンチルアミノ、シクロヘキシルアミノ、シクロヘプチルアミノ、シクロオクチルアミノ、シクロノニルアミノ基等のモノシクロアルキルアミノ基;アニリノ、1または2-ナフチルアミノ基等のモノアリールアミノ基;ベンジルアミノ、フェニルエチルアミノ、フェニルプロピルアミノ、1または2-ナフチルメチルアミノ基等のモノアラルキルアミノ基などが挙げられる。 The mono-organo groups include, but are not particularly limited, is preferably one represented by RNH 2 (R represents the same meaning as above.) The preferred number of carbon atoms in R of the alkoxy, aryloxy, aralkyloxy Same as the group. Specific examples thereof include methylamino, ethylamino, n-propylamino, isopropylamino, n-butylamino, isobutylamino, s-butylamino, t-butylamino, n-pentylamino, n-hexylamino, n- Heptylamino, n-octylamino, n-nonylamino, n-decylamino, n-undecylamino, n-dodecylamino, n-tridecylamino, n-tetradecylamino, n-pentadecylamino, n-hexadecylamino A linear or branched monoalkylamino group such as n-heptadecylamino, n-octadecylamino, n-nonadecylamino, n-eicosanylamino group; cyclopropylamino, cyclobutylamino, cyclopentylamino, cyclohexylamino, cyclo Heptylamino, cyclooct Monocycloalkylamino groups such as ruamino and cyclononylamino groups; monoarylamino groups such as anilino, 1 or 2-naphthylamino groups; benzylamino, phenylethylamino, phenylpropylamino, 1 or 2-naphthylmethylamino groups, etc. And a monoaralkylamino group.
 ジオルガノアミノ基としては、特に限定されるものではないが、R2NH(Rは互いに独立して、上記と同じ意味を表す。)で示されるものが好ましく、Rにおける好ましい炭素数は上記アルコキシ、アリールオキシ、アラルキルオキシ基と同様である。その具体例としては、ジメチルアミノ、ジエチルアミノ、ジ-n-プロピルアミノ、ジイソプロピルアミノ、ジ-n-ブチルアミノ、ジイソブチルアミノ、ジ-s-ブチルアミノ、ジ-t-ブチルアミノ、ジ-n-ペンチルアミノ、ジ-n-ヘキシルアミノ、ジ-n-ヘプチルアミノ、ジ-n-オクチルアミノ、ジ-n-ノニルアミノ、ジ-n-デシルアミノ、ジ-n-ウンデシルアミノ、ジ-n-ドデシルアミノ、ジ-n-トリデシルアミノ、ジ-n-テトラデシルアミノ、ジ-n-ペンタデシルアミノ、ジ-n-ヘキサデシルアミノ、ジ-n-ヘプタデシルアミノ、ジ-n-オクタデシルアミノ、ジ-n-ノナデシルアミノ、ジ-n-エイコサニルアミノ、N-エチルメチルアミノ、N-イソプロピルメチルアミノ、N-ブチルメチルアミノ基等の直鎖または分岐鎖ジアルキルアミノ基;ジシクロプロピルアミノ、ジシクロブチルアミノ、ジシクロペンチルアミノ、ジシクロヘキシルアミノ、ジシクロヘプチルアミノ、ジシクロオクチルアミノ、ジシクロノニルアミノ、シクロペンチルシクロヘキシルアミノ基等のジシクロアルキルアミノ基;N-メチルアニリノ、N-エチルアニリノ、N-n-プロピルアニリノ基等のアルキルアリールアミノ基;ジフェニルアミノ、4,4′-ビスナフチルアミノ、N-フェニル-1または2-ナフチルアミノ基等のジアリールアミノ基;ジベンジルアミノ、ビス(フェニルエチル)アミノ、ビス(フェニルプロピル)アミノ、ビス(1または2-ナフチルメチル)アミノ基等のジアラルキルアミノ基などが挙げられる。 The diorganoamino group is not particularly limited, but is preferably represented by R 2 NH (wherein R independently represents the same meaning as described above). , Aryloxy and aralkyloxy groups. Specific examples thereof include dimethylamino, diethylamino, di-n-propylamino, diisopropylamino, di-n-butylamino, diisobutylamino, di-s-butylamino, di-t-butylamino, di-n-pentyl. Amino, di-n-hexylamino, di-n-heptylamino, di-n-octylamino, di-n-nonylamino, di-n-decylamino, di-n-undecylamino, di-n-dodecylamino, Di-n-tridecylamino, di-n-tetradecylamino, di-n-pentadecylamino, di-n-hexadecylamino, di-n-heptadecylamino, di-n-octadecylamino, di-n -Nonadecylamino, di-n-eicosanylamino, N-ethylmethylamino, N-isopropylmethylamino, N-butylmethylamino Linear or branched dialkylamino groups such as di-groups; dicyclopropylamino, dicyclobutylamino, dicyclopentylamino, dicyclohexylamino, dicycloheptylamino, dicyclooctylamino, dicyclononylamino, cyclopentylcyclohexylamino groups, etc. A dicycloalkylamino group, an alkylarylamino group such as N-methylanilino, N-ethylanilino, Nn-propylanilino group; diphenylamino, 4,4'-bisnaphthylamino, N-phenyl-1 or 2- And diarylamino groups such as naphthylamino group; and diaralkylamino groups such as dibenzylamino, bis (phenylethyl) amino, bis (phenylpropyl) amino, and bis (1 or 2-naphthylmethyl) amino groups.
 モノオルガノホスフィノ基としては、特に限定されるものではないが、RPH(Rは上記と同じ意味を表す。)で示されるものが好ましく、Rにおける好ましい炭素数は上記アルコキシ、アリールオキシ、アラルキルオキシ基と同様である。その具体例としては、メチルホスフィノ、エチルホスフィノ、n-プロピルホスフィノ、イソプロピルホスフィノ、n-ブチルホスフィノ、イソブチルホスフィノ、s-ブチルホスフィノ、t-ブチルホスフィノ、n-ペンチルホスフィノ、n-ヘキシルホスフィノ、n-ヘプチルホスフィノ、n-オクチルホスフィノ、n-ノニルホスフィノ、n-デシルホスフィノ、n-ウンデシルホスフィノ、n-ドデシルホスフィノ、n-トリデシルホスフィノ、n-テトラデシルホスフィノ、n-ペンタデシルホスフィノ、n-ヘキサデシルホスフィノ、n-ヘプタデシルホスフィノ、n-オクタデシルホスフィノ、n-ノナデシルホスフィノ、n-エイコサニルホスフィノ基等の直鎖または分岐鎖モノアルキルホスフィノ基;シクロプロピルホスフィノ、シクロブチルホスフィノ、シクロペンチルホスフィノ、シクロヘキシルホスフィノ、シクロヘプチルホスフィノ、シクロオクチルホスフィノ、シクロノニルホスフィノ基等のモノシクロアルキルホスフィノ基;フェニルホスフィノ、1または2-ナフチルホスフィノ基等のモノアリールホスフィノ基;ベンジルホスフィノ基等のモノアラルキルホスフィノ基などが挙げられる。 The monoorganophosphino group is not particularly limited, but is preferably RPH (where R represents the same meaning as described above), and the preferred carbon number in R is alkoxy, aryloxy, aralkyloxy. Same as the group. Specific examples thereof include methyl phosphino, ethyl phosphino, n-propyl phosphino, isopropyl phosphino, n-butyl phosphino, isobutyl phosphino, s-butyl phosphino, t-butyl phosphino, n-pentyl phosphino. Fino, n-hexylphosphino, n-heptylphosphino, n-octylphosphino, n-nonylphosphino, n-decylphosphino, n-undecylphosphino, n-dodecylphosphino, n-tridecylphosphino, n- Direct groups such as tetradecylphosphino, n-pentadecylphosphino, n-hexadecylphosphino, n-heptadecylphosphino, n-octadecylphosphino, n-nonadecylphosphino, n-eicosanylphosphino group, etc. Chain or branched monoalkylphosphino group; cyclopropylphosphine Monocycloalkyl phosphino groups such as ino, cyclobutyl phosphino, cyclopentyl phosphino, cyclohexyl phosphino, cycloheptyl phosphino, cyclooctyl phosphino, cyclononyl phosphino groups; phenyl phosphino, 1 or 2-naphthyl phosphino And monoarylphosphino groups such as fino groups; monoaralkylphosphino groups such as benzylphosphino groups and the like.
 ジオルガノホスフィノ基としては、特に限定されるものではないが、R2P(Rは互いに独立して上記と同じ意味を表す。)で示されるものが好ましく、Rにおける好ましい炭素数は上記アルコキシ、アリールオキシ、アラルキルオキシ基と同様である。その具体例としては、ジメチルホスフィノ、ジエチルホスフィノ、ジ-n-プロピルホスフィノ、ジイソプロピルホスフィノ、ジ-n-ブチルホスフィノ、ジイソブチルホスフィノ、ジ-s-ブチルホスフィノ、ジ-t-ブチルホスフィノ、ジ-n-ペンチルホスフィノ、ジ-n-ヘキシルホスフィノ、ジ-n-ヘプチルホスフィノ、ジ-n-オクチルホスフィノ、ジ-n-ノニルホスフィノ、ジ-n-デシルホスフィノ、ジ-n-ウンデシルホスフィノ、ジ-n-ドデシルホスフィノ、ジ-n-トリデシルホスフィノ、ジ-n-テトラデシルホスフィノ、ジ-n-ペンタデシルホスフィノ、ジ-n-ヘキサデシルホスフィノ、ジ-n-ヘプタデシルホスフィノ、ジ-n-オクタデシルホスフィノ、ジ-n-ノナデシルホスフィノ、ジ-n-エイコサニルホスフィノ基等の直鎖または分岐鎖ジアルキルホスフィノ基;ジシクロプロピルホスフィノ、ジシクロブチルホスフィノ、ジシクロペンチルホスフィノ、ジシクロヘキシルホスフィノ、ジシクロヘプチルホスフィノ、ジシクロオクチルホスフィノ、ジシクロノニルホスフィノ基等のジシクロアルキルホスフィノ基;シクロヘキシルフェニルホスフィノ基等のアルキルアリールホスフィノ基;ジフェニルホスフィノ、ビス(1または2-ナフチル)ホスフィノ基等のジアリールホスフィノ基;ジベンジルホスフィノ、ビス(フェニルエチル)ホスフィノ、ビス(1または2-ナフチルメチル)ホスフィノ基等のジアラルキルホスフィノ基などが挙げられる。 The diorganophosphino group is not particularly limited, but is preferably represented by R 2 P (wherein R independently represents the same meaning as described above), and the preferred carbon number in R is the alkoxy group described above. , Aryloxy and aralkyloxy groups. Specific examples thereof include dimethylphosphino, diethylphosphino, di-n-propylphosphino, diisopropylphosphino, di-n-butylphosphino, diisobutylphosphino, di-s-butylphosphino, di-t- Butylphosphino, di-n-pentylphosphino, di-n-hexylphosphino, di-n-heptylphosphino, di-n-octylphosphino, di-n-nonylphosphino, di-n-decylphosphino, di- n-undecylphosphino, di-n-dodecylphosphino, di-n-tridecylphosphino, di-n-tetradecylphosphino, di-n-pentadecylphosphino, di-n-hexadecylphosphino Di-n-heptadecylphosphino, di-n-octadecylphosphino, di-n-nonadecylphosphino, di-n- Linear or branched dialkylphosphino group such as icosanylphosphino group; dicyclopropylphosphino, dicyclobutylphosphino, dicyclopentylphosphino, dicyclohexylphosphino, dicycloheptylphosphino, dicyclooctylphosphino A dicycloalkylphosphino group such as a dicyclononylphosphino group; an alkylarylphosphino group such as a cyclohexylphenylphosphino group; a diarylphosphino group such as a diphenylphosphino or bis (1 or 2-naphthyl) phosphino group; And diaralkylphosphino groups such as dibenzylphosphino, bis (phenylethyl) phosphino and bis (1 or 2-naphthylmethyl) phosphino groups.
 モノオルガノシリル基としては、特に限定されるものではないが、RSiH2(Rは上記と同じ意味を表す。)で示されるものが好ましく、Rにおける好ましい炭素数は上記アルコキシ、アリールオキシ、アラルキルオキシ基と同様である。その具体例としては、メチルシリル、エチルシリル、n-プロピルシリル、イソプロピルシリル、n-ブチルシリル、イソブチルシリル、s-ブチルシリル、t-ブチルシリル、n-ペンチルシリル、n-ヘキシルシリル、n-ヘプチルシリル、n-オクチルシリル、n-ノニルシリル、n-デシルシリル、n-ウンデシルシリル、n-ドデシルシリル、n-トリデシルシリル、n-テトラデシルシリル、n-ペンタデシルシリル、n-ヘキサデシルシリル、n-ヘプタデシルシリル、n-オクタデシルシリル、n-ノナデシルシリル、n-エイコサニルシリル基等の直鎖または分岐鎖モノアルキルシリル基;シクロプロピルシリル、シクロブチルシリル、シクロペンチルシリル、シクロヘキシルシリル、シクロヘプチルシリル、シクロオクチルシリル、シクロノニルシリル基等のモノシクロアルキルシリル基;フェニルシリル、1または2-ナフチルシリル基等のモノアリールシリル基;ベンジルシリル、フェニルエチルシリル、フェニルプロピルシリル、1または2-ナフチルメチルシリル基等のモノアラルキルシリル基などが挙げられる。 Mono-organosilyl group, but are not particularly limited, but is preferably one represented by the RSiH 2 (R has the same meaning as above.) The preferred number of carbon atoms in R of the alkoxy, aryloxy, aralkyloxy Same as the group. Specific examples thereof include methylsilyl, ethylsilyl, n-propylsilyl, isopropylsilyl, n-butylsilyl, isobutylsilyl, s-butylsilyl, t-butylsilyl, n-pentylsilyl, n-hexylsilyl, n-heptylsilyl, n- Octylsilyl, n-nonylsilyl, n-decylsilyl, n-undecylsilyl, n-dodecylsilyl, n-tridecylsilyl, n-tetradecylsilyl, n-pentadecylsilyl, n-hexadecylsilyl, n-heptadecyl Linear or branched monoalkylsilyl groups such as silyl, n-octadecylsilyl, n-nonadecylsilyl, n-eicosanylsilyl; cyclopropylsilyl, cyclobutylsilyl, cyclopentylsilyl, cyclohexylsilyl, cycloheptylsilyl, cyclooctyl Monocycloalkylsilyl groups such as rusilyl and cyclononylsilyl groups; monoarylsilyl groups such as phenylsilyl, 1 or 2-naphthylsilyl groups; benzylsilyl, phenylethylsilyl, phenylpropylsilyl, 1 or 2-naphthylmethylsilyl groups And monoaralkylsilyl groups such as
 ジオルガノシリル基としては、特に限定されるものではないが、R2SiH(Rは互いに独立して上記と同じ意味を表す。)で示されるものが好ましく、Rにおける好ましい炭素数は上記アルコキシ、アリールオキシ、アラルキルオキシ基と同様である。その具体例としては、ジメチルシリル、ジエチルシリル、ジ-n-プロピルシリル、ジイソプロピルシリル、ジ-n-ブチルシリル、ジイソブチルシリル、ジ-s-ブチルシリル、ジ-t-ブチルシリル、ジ-n-ペンチルシリル、ジ-n-ヘキシルシリル、ジ-n-ヘプチルシリル、ジ-n-オクチルシリル、ジ-n-ノニルシリル、ジ-n-デシルシリル、ジ-n-ウンデシルシリル、ジ-n-ドデシルシリル、ジ-n-トリデシルシリル、ジ-n-テトラデシルシリル、ジ-n-ペンタデシルシリル、ジ-n-ヘキサデシルシリル、ジ-n-ヘプタデシルシリル、ジ-n-オクタデシルシリル、ジ-n-ノナデシルシリル、ジ-n-エイコサニルシリル、エチルメチルシリル、イソプロピルメチルシリル、ブチルメチルシリル基等の直鎖または分岐鎖ジアルキルシリル基;ジシクロプロピルシリル、ジシクロブチルシリル、ジシクロペンチルシリル、ジシクロヘキシルシリル、ジシクロヘプチルシリル、ジシクロオクチルシリル、ジシクロノニルシリル、シクロペンチルシクロヘキシルシリル基等のジシクロアルキルシリル基;(メチル)フェニルシリル、(エチル)フェニルシリル、(n-プロピル)フェニルシリル基等のアルキルアリールシリル基;ジフェニルシリル、ビス(1または2-ナフチル)シリル、フェニル-1または2-ナフチルシリル基等のジアリールシリル基;ジベンジルシリル、ビス(フェニルエチル)シリル、ビス(フェニルプロピル)シリル、ビス(1または2-ナフチルメチル)シリル基等のジアラルキルシリル基などが挙げられる。 The diorgano silyl group is not particularly limited, is preferably one represented by R 2 SiH (R independently of one another represent the same meaning as above.) The preferred number of carbon atoms in R of the alkoxy, The same as the aryloxy and aralkyloxy groups. Specific examples thereof include dimethylsilyl, diethylsilyl, di-n-propylsilyl, diisopropylsilyl, di-n-butylsilyl, diisobutylsilyl, di-s-butylsilyl, di-t-butylsilyl, di-n-pentylsilyl, Di-n-hexylsilyl, di-n-heptylsilyl, di-n-octylsilyl, di-n-nonylsilyl, di-n-decylsilyl, di-n-undecylsilyl, di-n-dodecylsilyl, di- n-tridecylsilyl, di-n-tetradecylsilyl, di-n-pentadecylsilyl, di-n-hexadecylsilyl, di-n-heptadecylsilyl, di-n-octadecylsilyl, di-n-nonadecylsilyl Di-n-eicosanylsilyl, ethylmethylsilyl, isopropylmethylsilyl, butylmethylsilyl groups, etc. Or a branched dialkylsilyl group; a dicycloalkylsilyl group such as dicyclopropylsilyl, dicyclobutylsilyl, dicyclopentylsilyl, dicyclohexylsilyl, dicycloheptylsilyl, dicyclooctylsilyl, dicyclononylsilyl, cyclopentylcyclohexylsilyl group, etc. Alkylalkylsilyl groups such as (methyl) phenylsilyl, (ethyl) phenylsilyl, (n-propyl) phenylsilyl groups; diphenylsilyl, bis (1 or 2-naphthyl) silyl, phenyl-1 or 2-naphthylsilyl groups And diarylsilyl groups such as dibenzylsilyl, bis (phenylethyl) silyl, bis (phenylpropyl) silyl, and bis (1 or 2-naphthylmethyl) silyl groups.
 トリオルガノシリル基としては、特に限定されるものではないが、R3Si(Rは互いに独立して上記と同じ意味を表す。)で示されるものが好ましく、Rにおける好ましい炭素数は上記アルコキシ、アリールオキシ、アラルキルオキシ基と同様である。その具体例としては、トリメチルシリル、トリエチルシリル、トリ-n-プロピルシリル、トリイソプロピルシリル、トリ-n-ブチルシリル、トリイソブチルシリル、トリ-s-ブチルシリル、トリ-t-ブチルシリル、トリ-n-ペンチルシリル、トリ-n-ヘキシルシリル、トリ-n-ヘプチルシリル、トリ-n-オクチルシリル、トリ-n-ノニルシリル、トリ-n-デシルシリル、トリ-n-ウンデシルシリル、トリ-n-ドデシルシリル、トリ-n-トリデシルシリル、トリ-n-テトラデシルシリル、トリ-n-ペンタデシルシリル、トリ-n-ヘキサデシルシリル、ジ-n-ヘプタデシルシリル、ジ-n-オクタデシルシリル、ジ-n-ノナデシルシリル、トリ-n-エイコサニルシリル、エチルジメチルシリル、ジイソプロピルメチルシリル、ジブチルメチルシリル基等の直鎖または分岐鎖トリアルキルシリル基;トリシクロプロピルシリル、トリシクロブチルシリル、トリシクロペンチルシリル、トリシクロヘキシルシリル、トリシクロヘプチルシリル、トリシクロオクチルシリル、トリシクロノニルシリル基等のトリシクロアルキルシリル基;(メチル)ジフェニルシリル、(エチル)ジフェニルシリル、(n-プロピル)ジフェニルシリル基等のアルキルアリールシリル基;トリフェニルシリル、トリ(1または2-ナフチル)シリル、ジフェニル-1または2-ナフチルシリル基等のトリアリールシリル基;トリベンジルシリル、トリ(フェニルエチル)シリル、トリ(フェニルプロピル)シリル、トリ(1または2-ナフチルメチル)シリル基等のトリアラルキルシリル基などが挙げられる。 The triorganosilyl group, is not particularly limited, R 3 Si (R represents. As defined above independently of each other) is preferably one represented by the preferable number of carbon atoms in R of the alkoxy, The same as the aryloxy and aralkyloxy groups. Specific examples thereof include trimethylsilyl, triethylsilyl, tri-n-propylsilyl, triisopropylsilyl, tri-n-butylsilyl, triisobutylsilyl, tri-s-butylsilyl, tri-t-butylsilyl, tri-n-pentylsilyl. , Tri-n-hexylsilyl, tri-n-heptylsilyl, tri-n-octylsilyl, tri-n-nonylsilyl, tri-n-decylsilyl, tri-n-undecylsilyl, tri-n-dodecylsilyl, tri -N-tridecylsilyl, tri-n-tetradecylsilyl, tri-n-pentadecylsilyl, tri-n-hexadecylsilyl, di-n-heptadecylsilyl, di-n-octadecylsilyl, di-n- Nonadecylsilyl, tri-n-eicosanylsilyl, ethyldimethylsilyl, diisopropyl Linear or branched trialkylsilyl groups such as pyrmethylsilyl and dibutylmethylsilyl groups; tricyclopropylsilyl, tricyclobutylsilyl, tricyclopentylsilyl, tricyclohexylsilyl, tricycloheptylsilyl, tricyclooctylsilyl, tricyclo Tricycloalkylsilyl groups such as nonylsilyl groups; alkylarylsilyl groups such as (methyl) diphenylsilyl, (ethyl) diphenylsilyl, (n-propyl) diphenylsilyl groups; triphenylsilyl, tri (1 or 2-naphthyl) Triarylsilyl groups such as silyl, diphenyl-1 or 2-naphthylsilyl groups; tribenzylsilyl, tri (phenylethyl) silyl, tri (phenylpropyl) silyl, tri (1 or 2-naphthylmethyl) silyl groups, etc. And aralkyl silyl group.
 なお、上記各置換基は、R上の少なくとも1つの水素原子が置換基Xで置換されていてもよく、Xとしては、ハロゲン原子、オルガノオキシ基、モノオルガノアミノ基、ジオルガノアミノ基、またはオルガノチオ基等が挙げられ、オルガノオキシ基、モノオルガノアミノ基、ジオルガノアミノ基、オルガノチオ基としては上記と同様のものが挙げられる。
 ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素原子が挙げられるが、フッ素原子が好ましく、好適なフッ素置換アルキル基として、トリフロロプロピル基、ノナフロロヘキシル基、ヘプタデシルフロロデシル基等が挙げられる。
Each of the above substituents may have at least one hydrogen atom on R substituted with a substituent X, where X is a halogen atom, an organooxy group, a monoorganoamino group, a diorganoamino group, or Examples include organothio groups, and examples of the organooxy group, monoorganoamino group, diorganoamino group, and organothio group include the same groups as described above.
Examples of the halogen atom include fluorine, chlorine, bromine and iodine atoms, but a fluorine atom is preferable, and examples of suitable fluorine-substituted alkyl groups include trifluoropropyl group, nonafluorohexyl group, heptadecylfluorodecyl group and the like. .
 上記各置換基の中でも、R1~R6は、互いに独立して、Xで置換されていてもよい、炭素数1~30のアルキル基、炭素数6~30のアリール基、炭素数7~30のアラルキル基が好ましく、炭素数1~10のアルキル基、炭素数6~10のアリール基がより好ましい。 Among the above substituents, R 1 to R 6 are each independently an alkyl group having 1 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, or 7 to 7 carbon atoms that may be substituted with X. A 30 aralkyl group is preferable, and an alkyl group having 1 to 10 carbon atoms and an aryl group having 6 to 10 carbon atoms are more preferable.
 また、R1~R3のいずれかとR4~R6のいずれかの少なくとも1組が結合した架橋置換基としては、二つのSi原子を架橋可能な置換基であれば特に限定されるものではなく、例えば、-O-、-S-、-NH-、-NR-(Rは上記と同じ。)、-PR-(Rは上記と同じ。)、-NH-(CH2k-NH-(kは1~10の整数を表す。)、-NR-(CH2k-NR-(kは上記と同じ。Rは互いに独立して上記と同じ。)、-PH-(CH2k-PH-(kは上記と同じ。)、-PR-(CH2k-PR-(kは上記と同じ。Rは互いに独立して上記と同じ。)、-C=C-、炭素数1~10のアルキレン基、炭素数6~30のアリーレン基、炭素数7~30のアラルキレン基、-(CH2O)k-(kは上記と同じ。)、-(CH2k-O-(CH2k-(kは互いに独立して上記と同じ。)、-O-(CH2k-O-(Rおよびkは上記と同じ。)、-R′-O-(CH2k-O-R′-(R′は、互いに独立して炭素数1~10のアルキレン基、炭素数6~30のアリーレン基、または炭素数7~30のアラルキレン基を表し、kは上記と同じ。)、-(CH2S)k-(kは上記と同じ。)、-(CH2k-S-(CH2k-(kは互いに独立して上記と同じ。)、-S-(CH2k-S-(kは上記と同じ。)、-R′-S-(CH2k-O-R′-(R′は、互いに独立して上記と同じ意味を表し、kは上記と同じ。)、-SiR2-(Rは互いに独立して上記と同じ意味を表す。)、-(CH2k-SiR2-(CH2k-(Rは互いに独立して上記と同じ意味を表し、kは互いに独立して上記と同じ意味を表す。)等が挙げられる。 The crosslinking substituent in which at least one of R 1 to R 3 and any one of R 4 to R 6 is bonded is not particularly limited as long as it is a substituent capable of crosslinking two Si atoms. For example, —O—, —S—, —NH—, —NR— (R is the same as above), —PR— (R is the same as above), —NH— (CH 2 ) k —NH -(K represents an integer of 1 to 10), -NR- (CH 2 ) k -NR- (k is the same as above, R is the same as above independently), -PH- (CH 2 ) K -PH- (k is the same as above), -PR- (CH 2 ) k -PR- (k is the same as above, R is independently the same as above), -C = C-, An alkylene group having 1 to 10 carbon atoms, an arylene group having 6 to 30 carbon atoms, an aralkylene group having 7 to 30 carbon atoms, — (CH 2 O) k — (k is the same as above). , — (CH 2 ) k —O— (CH 2 ) k — (k is the same as described above independently), —O— (CH 2 ) k —O— (R and k are the same as above) , —R′—O— (CH 2 ) k —O—R ′ — (R ′ is independently an alkylene group having 1 to 10 carbon atoms, an arylene group having 6 to 30 carbon atoms, or 7 to 7 carbon atoms. 30 represents an aralkylene group, k is the same as described above.), — (CH 2 S) k — (k is the same as described above), — (CH 2 ) k —S— (CH 2 ) k — (k is Independently of each other as described above), —S— (CH 2 ) k —S— (k is as defined above), —R′—S— (CH 2 ) k —O—R ′ — (R ′ represents the same meaning as above independently of one another, k are as defined above), -. SiR 2 - ( R independently of one another represent the same meaning as above), -. (CH 2) k -SiR 2 - (CH 2) k - R has the same meaning as above independently of each other, k is.) And the like represent the same meaning as above and the like independently of each other.
 炭素数1~10のアルキレン基としては、メチレン、エチレン、プロピレン、トリメチレン、テトラメチレン、ペンタメチレン、ヘキサメチレン基等が挙げられる。
 炭素数6~30のアリーレン基としては、o-フェニレン(1,2-フェニレン)、1,2-ナフチレン、1,8-ナフチレン、2,3-ナフチレン基等が挙げられる。
 炭素数7~30のアラルキレン基としては、-(CH2k-Ar-(Arは、炭素数6~20のアリーレン基を表し、kは上記と同じ意味を表す。)、-Ar-(CH2k-(Arおよびkは上記と同じ意味を表す。)、-(CH2k-Ar-(CH2k-(Arは上記と同じ意味を表し、kは互いに独立して上記と同じ意味を表す。)等が挙げられる。
 なお、上記アルキレン、アリーレン、アラルキレン基は、それらの水素原子の少なくとも1つが、置換基X(Xは上記と同じ。)で置換されていてもよい。
Examples of the alkylene group having 1 to 10 carbon atoms include methylene, ethylene, propylene, trimethylene, tetramethylene, pentamethylene and hexamethylene groups.
Examples of the arylene group having 6 to 30 carbon atoms include o-phenylene (1,2-phenylene), 1,2-naphthylene, 1,8-naphthylene and 2,3-naphthylene groups.
As the aralkylene group having 7 to 30 carbon atoms, — (CH 2 ) k —Ar— (Ar represents an arylene group having 6 to 20 carbon atoms, k represents the same meaning as described above), —Ar— ( CH 2 ) k — (Ar and k are as defined above), — (CH 2 ) k —Ar— (CH 2 ) k — (Ar is as defined above, and k is independently of each other. The same meaning as above).
In the alkylene, arylene, and aralkylene groups, at least one of those hydrogen atoms may be substituted with a substituent X (X is the same as above).
 架橋置換基をZとして表記すると、2つのケイ素原子をつなぐZの数は1~3であり、このような架橋置換基Zを有する単核ルテニウム錯体は下記式で示される。 When the bridging substituent is represented as Z, the number of Z connecting two silicon atoms is 1 to 3, and a mononuclear ruthenium complex having such a bridging substituent Z is represented by the following formula.
Figure JPOXMLDOC01-appb-C000006
(式中、R1,R2,R5,R6,Lおよびmは上記と同じ意味を表し、Zは架橋置換基を表す。)
Figure JPOXMLDOC01-appb-C000006
(In the formula, R 1 , R 2 , R 5 , R 6 , L and m represent the same meaning as described above, and Z represents a bridging substituent.)
 具体的な架橋置換基を有するジシラメタラサイクル構造としては下記式で示されるものが挙げられるが、これらに限定されるものではない。 Specific examples of the disila metallacycle structure having a crosslinking substituent include those represented by the following formula, but are not limited thereto.
Figure JPOXMLDOC01-appb-C000007
(式中、Meはメチル基を意味する。)
Figure JPOXMLDOC01-appb-C000007
(In the formula, Me means a methyl group.)
 式中、R1,R2,R4およびR5は、上記と同じ意味を表し、R17~R20(置換基Y)は、互いに独立して、水素原子、ハロゲン原子、炭素数1~10のアルキル基、または炭素数1~10のアルコキシ基を表し、R25~R30は、互いに独立して、水素原子または炭素数1~20の非置換もしくは置換の一価炭化水素基を表すが、R17~R20およびR25~R30が、水素原子のものが好適である。
 一価炭化水素基の具体例としては、アルキル基、アリール基、アラルキル基等が挙げられ、これらの具体例としては、上記と同様のものが挙げられる。
 なお、アルキル基、アルコキシ基、ハロゲン原子としては、上記と同様のものが挙げられる。
In the formula, R 1 , R 2 , R 4 and R 5 represent the same meaning as described above, and R 17 to R 20 (substituent Y) are each independently a hydrogen atom, a halogen atom, a carbon number of 1 to 10 represents an alkyl group or an alkoxy group having 1 to 10 carbon atoms, and R 25 to R 30 each independently represent a hydrogen atom or an unsubstituted or substituted monovalent hydrocarbon group having 1 to 20 carbon atoms. However, it is preferred that R 17 to R 20 and R 25 to R 30 are hydrogen atoms.
Specific examples of the monovalent hydrocarbon group include an alkyl group, an aryl group, an aralkyl group, and the like, and specific examples thereof include those similar to the above.
Examples of the alkyl group, alkoxy group, and halogen atom are the same as those described above.
 一方、Lは、配位子に含まれる2つの電子がルテニウムに配位する、COおよびチオ尿素配位子以外の二電子配位子である。
 二電子配位子としては、COおよびチオ尿素配位子以外であれば特に限定されるものではなく、金属錯体の二電子配位子として従来用いられている任意の配位子を用いることができるが、典型的には、窒素、酸素、イオウ、リン等の非共有電子対(不対電子)を含む、アミン、イミン、含窒素ヘテロ環、ホスフィン、ホスファイト、アルシン、アルコール、チオール、エーテル、スルフィド等の化合物;π電子を含む、アルケン、アルキン;不対電子とπ電子双方を含む、アルデヒド、ケトン、ニトリル、イソニトリル等の化合物;アゴスティック相互作用で結合する、分子状水素(H-H結合に含まれるσ電子が配位する)、ヒドロシラン(Si-H結合に含まれるσ電子が配位する)などが挙げられる。
 本発明において、二電子配位子Lの配位数mは、3または4であるが、好ましくは4である。
On the other hand, L is a two-electron ligand other than CO and a thiourea ligand in which two electrons contained in the ligand are coordinated to ruthenium.
The two-electron ligand is not particularly limited as long as it is other than CO and thiourea ligand, and any ligand conventionally used as the two-electron ligand of the metal complex may be used. Typically, amines, imines, nitrogen-containing heterocycles, phosphines, phosphites, arsines, alcohols, thiols, ethers, including unshared electron pairs (unpaired electrons) such as nitrogen, oxygen, sulfur, and phosphorus Compounds such as sulfides; Alkenes, alkynes containing π electrons; Compounds such as aldehydes, ketones, nitriles and isonitriles containing both unpaired and π electrons; Molecular hydrogen (H- Σ electrons contained in H bonds are coordinated), hydrosilane (σ electrons contained in Si—H bonds are coordinated), and the like.
In the present invention, the coordination number m of the two-electron ligand L is 3 or 4, but is preferably 4.
 アミンとしては、R3N(Rは互いに独立して上記と同じ意味を表す。)で示される3級アミンが挙げられる。
 イミンとしては、RC(=NR)R(Rは互いに独立して上記と同じ意味を表す。)で示されるものが挙げられる。
 含窒素へテロ環としては、例えば、ピロール、イミダゾール、ピリジン、ピリミジン、オキサゾリン、イソオキサゾリン等が挙げられる。
 ホスフィンとしては、例えば、R3P(Rは互いに独立して上記と同じ意味を表す。)で示されるものが挙げられる。
 ホスファイトとしては、例えば、(RO)3P(Rは互いに独立して上記と同じ意味を表す。)で示されるものが挙げられる。
 アルシンとしては、例えば、R3As(Rは互いに独立して上記と同じ意味を表す。)で示されるものが挙げられる。
 アルコールとしては、例えば、ROH(Rは上記と同じ意味を表す。)で示されるものが挙げられる。
 チオールとしては、上記アルコールの酸素原子を硫黄原子で置換したものが挙げられる。
Examples of the amine include tertiary amines represented by R 3 N (wherein R independently represents the same meaning as described above).
Examples of the imine include those represented by RC (= NR) R (wherein R independently represents the same meaning as described above).
Examples of the nitrogen-containing heterocycle include pyrrole, imidazole, pyridine, pyrimidine, oxazoline, isoxazoline and the like.
Examples of the phosphine include those represented by R 3 P (R represents the same meaning as described above independently of each other).
Examples of the phosphite include those represented by (RO) 3 P (R represents the same meaning as described above independently of each other).
Examples of the arsine include those represented by R 3 As (wherein R independently represents the same meaning as described above).
As alcohol, what is shown by ROH (R represents the same meaning as the above.) Is mentioned, for example.
Examples of the thiol include those in which the oxygen atom of the alcohol is substituted with a sulfur atom.
 エーテルとしては、例えば、ROR(Rは互いに独立して上記と同じ意味を表す。)で示されるものが挙げられる。
 スルフィドとしては、上記エーテルの酸素原子を硫黄原子で置換したものが挙げられる。
 ケトンとしては、例えば、RCOR(Rは互いに独立して上記と同じ意味を表す。)で示されるものが挙げられる。
 イソニトリルとしては、例えば、RNC(Rは互いに独立して上記と同じ意味を表す。)で示されるものが挙げられる。
 アルケンとしては、例えば、エテン、プロペン、1-ブテン、2-ブテン、1-ペンテン、2-ペンテン、シクロペンテン、1-ヘキセン、シクロヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン等の炭素数2~30のアルケンが挙げられる。
 アルキンとしては、例えば、エチン、プロピン、1-ブチン、2-ブチン、1-ペンチン、2-ペンチン、1-ヘキシン、1-ヘプチン、1-オクチン、1-ノニン、1-デシン等の炭素数2~30のアルケンが挙げられる。
 ヒドロシランとしては、例えば、トリオルガノヒドロシランが挙げられ、具体的にはトリ炭素数1~30オルガノヒドロシランが挙げられ、より具体的には、R123SiH(R1~R3は上記と同じ意味を表す。)で示されるものが挙げられる。
Examples of the ether include those represented by ROR (wherein R independently represents the same meaning as described above).
Examples of the sulfide include those obtained by substituting the oxygen atom of the ether with a sulfur atom.
Examples of the ketone include those represented by RCOR (R represents the same meaning as described above independently of each other).
Examples of the isonitrile include those represented by RNC (R represents the same meaning as described above independently of each other).
Examples of the alkene include ethene, propene, 1-butene, 2-butene, 1-pentene, 2-pentene, cyclopentene, 1-hexene, cyclohexene, 1-heptene, 1-octene, 1-nonene, 1-decene and the like. And alkenes having 2 to 30 carbon atoms.
Examples of the alkyne include, for example, ethyne, propyne, 1-butyne, 2-butyne, 1-pentyne, 2-pentyne, 1-hexyne, 1-heptin, 1-octyne, 1-nonine, 1-decyne, and the like. Up to 30 alkenes.
Examples of the hydrosilane include triorganohydrosilane, specifically, an organohydrosilane having 1 to 30 tricarbon atoms, and more specifically, R 1 R 2 R 3 SiH (where R 1 to R 3 are the above-mentioned). It represents the same meaning as).
 これらの中でも、二電子配位子Lとしては、分子状水素、アミン、イミン、含窒素ヘテロ環、ホスフィン、ホスファイト、アルシン、アルコール、チオール、エーテル、スルフィド、ニトリル、イソニトリル、アルデヒド、ケトン、炭素数2~30のアルケン、炭素数2~30のアルキン、トリオルガノヒドロシランが好ましい。 Among these, as the two-electron ligand L, molecular hydrogen, amine, imine, nitrogen-containing heterocycle, phosphine, phosphite, arsine, alcohol, thiol, ether, sulfide, nitrile, isonitrile, aldehyde, ketone, carbon Alkenes having 2 to 30 carbon atoms, alkynes having 2 to 30 carbon atoms, and triorganohydrosilane are preferable.
 なお、2個のLが互いに結合し、2つの配位性の二電子官能基を含む配位子を構成していてもよい。その代表例としては、エチレンジアミン、エチレングリコールジメチルエーテル、1,3-ブタジエンや、下記式で示されるようなものが挙げられるが、これらに限定されるものではない。
 ただし、本発明の単核ルテニウム錯体では、Lが3個以上存在する場合に、その中の3個が結合して3つの配位性2電子官能基を含む配位子、例えば、η6-アリーレン構造はとらない。
Note that two Ls may be bonded to each other to form a ligand containing two coordinating two-electron functional groups. Representative examples include, but are not limited to, ethylenediamine, ethylene glycol dimethyl ether, 1,3-butadiene, and those represented by the following formula.
However, in the mononuclear ruthenium complex of the present invention, when three or more L exist, a ligand containing three coordinating two-electron functional groups by bonding three of them, for example, η 6 − Does not have an arylene structure.
Figure JPOXMLDOC01-appb-C000008
(式中、Meはメチル基を、Phはフェニル基を意味する。R7、R9、R10、R11およびZは上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000008
(In the formula, Me represents a methyl group and Ph represents a phenyl group. R 7 , R 9 , R 10 , R 11 and Z have the same meaning as described above.)
 また、本発明の単核ルテニウム錯体では、触媒活性を考慮すると、二電子配位子Lの少なくとも1つが、イソニトリル、アミン、イミン、含窒素ヘテロ環、ホスフィン、ホスファイトおよびスルフィドから選ばれる少なくとも1種であることが好ましく、このような二電子配位子をL1とすると、式(2)で表される単核ルテニウム錯体が好ましい。 In the mononuclear ruthenium complex of the present invention, in view of catalytic activity, at least one of the two-electron ligand L is at least one selected from isonitrile, amine, imine, nitrogen-containing heterocycle, phosphine, phosphite and sulfide. It is preferable to be a seed, and when such a two-electron ligand is L 1 , a mononuclear ruthenium complex represented by the formula (2) is preferable.
Figure JPOXMLDOC01-appb-C000009
(R1~R6は、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000009
(R 1 to R 6 represent the same meaning as described above.)
 ここで、L1は、上述のとおり、イソニトリル、アミン、イミン、含窒素ヘテロ環、ホスフィン、ホスファイトおよびスルフィドから選ばれる少なくとも1種の二電子配位子を表すが、中でも、イソニトリル、含窒素ヘテロ環、ホスフィン、およびホスファイトから選ばれる少なくとも1種であることがより好ましく、イソニトリル、含窒素ヘテロ環およびホスファイトから選ばれる少なくとも1種であることがより一層好ましく、特に、一酸化炭素と同じ電子配置を有するイソニトリルが最適である。
 m1は、1~4の整数を表すが、2が好ましい。なお、m1が2~4の場合、2個のL1が、互いに結合していてもよい。
Here, as described above, L 1 represents at least one dielectron ligand selected from isonitrile, amine, imine, nitrogen-containing heterocycle, phosphine, phosphite and sulfide, and among them, isonitrile, nitrogen-containing More preferably, it is at least one selected from a heterocycle, a phosphine, and a phosphite, even more preferably at least one selected from an isonitrile, a nitrogen-containing heterocycle, and a phosphite. Isonitriles with the same electronic configuration are optimal.
m 1 represents an integer of 1 to 4, with 2 being preferred. When m 1 is 2 to 4, two L 1 may be bonded to each other.
 イソニトリルの具体例としては、上記のとおり、RNC(Rは互いに独立して上記と同じ意味を表す。)で表されるものが挙げられるが、特に、Rが、置換もしくは非置換の、炭素数1~10のアルキル基、炭素数6~20のアリール基または炭素数7~20のアラルキル基のものが好ましく、炭素数6~10のアリール基のものがより好ましく、炭素数1~10のアルキル基等の置換基を有するフェニル基のものがより一層好ましい。
 使用可能なイソニトリルとしては、メチルイソシアニド、エチルイソシアニド、n-プロピルイソシアニド、シクロプロピルイソシアニド、n-ブチルイソシアニド、イソブチルイソシアニド、sec-ブチルイソシアニド、t-ブチルイソシアニド、n-ペンチルイソシアニド、イソペンチルイソシアニド、ネオペンチルイソシアニド、n-ヘキシルイソシアニド、シクロヘキシルイソシアニド、シクロヘプチルイソシアニド、1,1-ジメチルヘキシルイソシアニド、1-アダマンチルイソシアニド、2-アダマンチルイソシアニド等のアルキルイソシアニド;フェニルイソシアニド、2-メチルフェニルイソシアニド、4-メチルフェニルイソシアニド、2,4-ジメチルフェニルイソシアニド、2,5-ジメチルフェニルイソシアニド、2,6-ジメチルフェニルイソシアニド、2,4,6-トリメチルフェニルイソシアニド、2,4,6-トリt-ブチルフェニルイソシアニド、2,6-ジイソプロピルフェニルイソシアニド、1-ナフチルイソシアニド、2-ナフチルイソシアニド、2-メチル-1-ナフチルイソシアニド等のアリールイソシアニド;ベンジルイソシアニド、フェニルエチルイソシアニド等のアラルキルイソシアニドなどが挙げられるが、これらに限定されるものではない。
Specific examples of isonitrile include those represented by RNC (wherein R represents the same meaning as described above) as described above. In particular, R is a substituted or unsubstituted carbon number. Preferred is an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms or an aralkyl group having 7 to 20 carbon atoms, more preferably an aryl group having 6 to 10 carbon atoms, and an alkyl group having 1 to 10 carbon atoms. A phenyl group having a substituent such as a group is even more preferable.
Usable isonitriles include methyl isocyanide, ethyl isocyanide, n-propyl isocyanide, cyclopropyl isocyanide, n-butyl isocyanide, isobutyl isocyanide, sec-butyl isocyanide, t-butyl isocyanide, n-pentyl isocyanide, isopentyl isocyanide, neo Alkyl isocyanides such as pentyl isocyanide, n-hexyl isocyanide, cyclohexyl isocyanide, cycloheptyl isocyanide, 1,1-dimethylhexyl isocyanide, 1-adamantyl isocyanide, 2-adamantyl isocyanide; phenyl isocyanide, 2-methylphenyl isocyanide, 4-methylphenyl Isocyanide, 2,4-dimethylphenyl isocyanide, 2,5-dimethylphenyl isocyanide 2,6-dimethylphenyl isocyanide, 2,4,6-trimethylphenyl isocyanide, 2,4,6-tri-t-butylphenyl isocyanide, 2,6-diisopropylphenyl isocyanide, 1-naphthyl isocyanide, 2-naphthyl isocyanide, Examples include aryl isocyanides such as 2-methyl-1-naphthyl isocyanide; aralkyl isocyanides such as benzyl isocyanide and phenylethyl isocyanide, but are not limited thereto.
 含窒素ヘテロ環の具体例としては、上記のとおりであるが、中でもピリジン環が好ましい。
 使用可能なピリジン環含有化合物としては、ピリジン、2-メチルピリジン、3-メチルピリジン、4-メチルピリジン、2,6-ジメチルピリジン等のピリジン類、2,2′-ビピリジン、4,4′-ジメチル-2,2′-ビピリジン、5,5′-ジメチル-2,2′-ビピリジン、4,4′-ジエチル-2,2′-ビピリジン、4,4′-ジtert-ブチル-2,2′-ビピリジン等のビピリジン類などが挙げられるが、これらに限定されるものではない。
Specific examples of the nitrogen-containing heterocycle are as described above, and among them, a pyridine ring is preferable.
Pyridine ring-containing compounds that can be used include pyridines such as pyridine, 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, 2,6-dimethylpyridine, 2,2'-bipyridine, 4,4'- Dimethyl-2,2'-bipyridine, 5,5'-dimethyl-2,2'-bipyridine, 4,4'-diethyl-2,2'-bipyridine, 4,4'-ditert-butyl-2,2 Examples include, but are not limited to, bipyridines such as' -bipyridine.
 ホスファイトとしては、上記のとおり、(RO)3P(Rは互いに独立して上記と同じ意味を表す。)で表されるものが挙げられるが、特に、Rが、置換もしくは非置換の、炭素数1~10のアルキル基、または炭素数6~20のアリール基のものが好ましく、炭素数1~10のアルキル基のものがより一層好ましい。
 使用可能なホスファイト化合物としては、トリメチルホスファイト、トリエチルホスファイト、トリイソプロピルホスファイト、トリn-ブチルホスファイト、トリス(2-エチルヘキシル)ホスファイト、トリn-デシルホスファイト、4-メチル-2,6,7-トリオキサ-1-ホスファビシクロ[2.2.2]オクタン(トリメチロールエタンサイクリックホスファイト),4-エチル-2,6,7-トリオキサ-1-ホスファビシクロ[2.2.2]オクタン(トリメチロールプロパンホスファイト)等のトリアルキルホスファイト類、メチルジフェニルホスファイト等のアルキルアリールホスファイト類、トリフェニルホスファイト等のトリアリールホスファイト類などが挙げられるが、これらに限定されるものではない。
Examples of the phosphite include those represented by (RO) 3 P (wherein R represents the same meaning as described above) as described above, and in particular, R is substituted or unsubstituted. An alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 20 carbon atoms is preferable, and an alkyl group having 1 to 10 carbon atoms is more preferable.
Usable phosphite compounds include trimethyl phosphite, triethyl phosphite, triisopropyl phosphite, tri n-butyl phosphite, tris (2-ethylhexyl) phosphite, tri n-decyl phosphite, 4-methyl-2 , 6,7-trioxa-1-phosphabicyclo [2.2.2] octane (trimethylolethane cyclic phosphite), 4-ethyl-2,6,7-trioxa-1-phosphabicyclo [2. 2.2] trialkyl phosphites such as octane (trimethylolpropane phosphite), alkylaryl phosphites such as methyldiphenyl phosphite, and triaryl phosphites such as triphenyl phosphite. It is not limited to.
 一方、L2は、CO、チオ尿素配位子およびL1以外の二電子配位子を表し、その具体例は上記Lと同様のものが挙げられる。m2は0~3の整数を表すが、2が好ましい。また、m1+m2は、上記mと同様に3または4を満たすが、好ましくは4である。なお、m2が2または3の場合、2個のL2が、互いに結合していてもよい。 On the other hand, L 2 represents a two-electron ligand other than CO, a thiourea ligand, and L 1 , and specific examples thereof are the same as those described above for L. m 2 represents an integer of 0 to 3, and 2 is preferable. Further, m 1 + m 2 satisfies 3 or 4 similarly to the above m, but is preferably 4. When m 2 is 2 or 3, two L 2 may be bonded to each other.
 本発明において、二電子配位子L2は、ルテニウムと比較的弱く結合するものが触媒活性という点から有利であることから、上記で例示したLの中でも、特に、チオール、スルフィド、トリオルガノヒドロシランがより好ましく、特に、SiHR789およびSiHR101112(R7~R12は、互いに独立して、Xで置換されていてもよい、アルキル基、アリール基またはアラルキル基を表し、Xは上記と同じ意味を表す。)で表される2つのトリオルガノヒドロシランや、SR1314およびSR1516(R13~R16は、互いに独立して、水素原子、Xで置換されていてもよい、アルキル基、アリール基またはアラルキル基を表し、Xは上記と同じ意味を表す。)で表される2つのスルフィドまたはチオールがより一層好ましい。
 ここで、アルキル基、アリール基、アラルキル基の具体例としては、先に例示した基と同様のものが挙げられるが、それぞれ炭素数1~10のアルキル基、炭素数6~20のアリール基、炭素数7~20のアラルキル基が好ましく、炭素数1~10のアルキル基、炭素数6~20のアリール基がより好ましい。
In the present invention, since the two-electron ligand L 2 that binds to ruthenium relatively weakly is advantageous from the viewpoint of catalytic activity, among L exemplified above, thiol, sulfide, triorganohydrosilane are particularly preferred. In particular, SiHR 7 R 8 R 9 and SiHR 10 R 11 R 12 (R 7 to R 12 independently of each other represent an alkyl group, an aryl group or an aralkyl group which may be substituted with X. X represents the same meaning as described above), SR 13 R 14 and SR 15 R 16 (R 13 to R 16 are each independently a hydrogen atom, X It represents an alkyl group, an aryl group or an aralkyl group which may be substituted, and X represents the same meaning as described above.
Here, specific examples of the alkyl group, the aryl group, and the aralkyl group include the same groups as those exemplified above, but each of the alkyl group having 1 to 10 carbon atoms, the aryl group having 6 to 20 carbon atoms, Aralkyl groups having 7 to 20 carbon atoms are preferable, alkyl groups having 1 to 10 carbon atoms, and aryl groups having 6 to 20 carbon atoms are more preferable.
 なお、式(2)の単核ルテニウム錯体には、例えば、L1が2個、L2が2個(それらをL2a,L2bとして区別する)の場合、下記式で示されるような配位構造異性体が存在するが、本発明の単核ルテニウム錯体はそれら全ての配位構造異性体を含む。 In the mononuclear ruthenium complex of the formula (2), for example, when L 1 is 2 and L 2 is 2 (they are distinguished as L 2a and L 2b ), the arrangement as shown by the following formula is used. Although there are coordinated structural isomers, the mononuclear ruthenium complex of the present invention includes all of these coordinated structural isomers.
Figure JPOXMLDOC01-appb-C000010
(式中、R1~R6およびL1は上記と同じ意味を表し、L2aおよびL2bは上記L2と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000010
(Wherein R 1 to R 6 and L 1 represent the same meaning as described above, and L 2a and L 2b represent the same meaning as L 2 described above.)
 なお、L2が、SiHR789およびSiHR101112(R7~R12は上記と同じ意味を表す。)で表されるトリオルガノヒドロシランの場合、単核ルテニウム錯体を構成する4つのケイ素原子の2つ以上は、上述した架橋置換基Zにより繋がれていてもよい。ケイ素原子の組み合わせは、ケイ素-ルテニウム共有結合をもつケイ素原子どうし、Si-Hで配位しているケイ素原子どうし、ケイ素-ルテニウム共有結合と、Si-Hで配位しているケイ素原子の組み合わせのいずれでもよい。この場合、2つのケイ素原子をつなぐZの数は1~3であり、一方、錯体全体に含まれるZの総数は、1~12である。
 このような架橋置換基Zを有する単核ルテニウム錯体を1つの配位構造を用いて表現した場合、下記式で示されるような構造が挙げられるが、これらに限定されるものではなく、また、上述のとおりこれ以外の配位構造異性体も存在し、その場合にも同様の架橋置換基Zを有する構造が存在する。
When L 2 is a triorganohydrosilane represented by SiHR 7 R 8 R 9 and SiHR 10 R 11 R 12 (R 7 to R 12 have the same meaning as above), a mononuclear ruthenium complex is formed. Two or more of the four silicon atoms may be connected by the above-described bridging substituent Z. The combination of silicon atoms is silicon atoms having silicon-ruthenium covalent bonds, silicon atoms coordinated by Si—H, silicon-ruthenium covalent bonds, and silicon atoms coordinated by Si—H. Either of these may be used. In this case, the number of Z connecting two silicon atoms is 1 to 3, while the total number of Z contained in the whole complex is 1 to 12.
When the mononuclear ruthenium complex having such a bridging substituent Z is expressed using one coordination structure, the structure shown by the following formula is exemplified, but is not limited thereto, As described above, there are other coordination structural isomers, and there are also structures having the same bridging substituent Z.
Figure JPOXMLDOC01-appb-C000011
(式中、R1~R12、L1およびZは上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000011
(In the formula, R 1 to R 12 , L 1 and Z have the same meaning as described above.)
 具体的なジシラメタラサイクル構造を有する単核ルテニウム錯体の構造としては下記式(L1を除いて表現している)で示されるものが挙げられるが、これらに限定されるものではない。 Specific examples of the structure of the mononuclear ruthenium complex having a disila metallacycle structure include those represented by the following formula (expressed excluding L 1 ), but are not limited thereto.
Figure JPOXMLDOC01-appb-C000012
(式中、Meはメチル基を意味する。)
Figure JPOXMLDOC01-appb-C000012
(In the formula, Me means a methyl group.)
 特に、本発明においては、L1が2つ配位するとともに、二電子配位子であるトリオルガノヒドロシランのSi-Hがアゴスティック配位している単核ルテニウム錯体が好ましい。このようなルテニウム錯体を、1つの配位構造を用いて便宜的に表現すると、式(3)で示されるような構造が挙げられるが、上述のとおり、本発明ではこれ以外の配位構造異性体であってもよい。 In particular, in the present invention, a mononuclear ruthenium complex in which two L 1 are coordinated and Si—H of a triorganohydrosilane which is a two-electron ligand is agogotically coordinated is preferable. When such a ruthenium complex is expressed conveniently using one coordination structure, a structure represented by the formula (3) can be given. As described above, in the present invention, other coordination structure isomerism is used. It may be a body.
Figure JPOXMLDOC01-appb-C000013
(式中、L1は上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000013
(In the formula, L 1 represents the same meaning as described above.)
 式(3)において、R1~R12は上記と同じ意味を表すが、R1~R6は、互いに独立して、X(Xは上記と同じ意味を表す。)で置換されていてもよい、アルキル基、アリール基またはアラルキル基が好ましい。
 ここで、アルキル基、アリール基、アラルキル基の具体例としては、先に例示した基と同様のものが挙げられるが、それぞれ炭素数1~10のアルキル基、炭素数6~20のアリール基、炭素数7~20のアラルキル基が好ましく、炭素数1~10のアルキル基、炭素数6~20のアリール基がより好ましい。
 上記式(3)においても、単核ルテニウム錯体を構成する4つのケイ素原子の2つ以上は架橋置換基により繋がれていてもよく、具体的には、R1~R3のいずれかと、R4~R6のいずれかの少なくとも1組もしくはR7~R9のいずれかの少なくとも1組が一緒になって、またはR10~R12のいずれかと、R4~R6のいずれかの少なくとも1組もしくはR7~R9のいずれかの少なくとも1組が一緒になってアルキレン基、アリーレン基やアラルキレン基といった架橋置換基を形成していてもよく、またはR1~R3のいずれかと、R4~R6のいずれかの少なくとも1組またはR7~R9のいずれかの少なくとも1組が一緒になってアルキレン基、アリーレン基やアラルキレン基といった架橋置換基を形成し、かつ、R10~R12のいずれかと、R4~R6のいずれかの少なくとも1組およびR7~R9のいずれかの少なくとも1組が一緒になってアルキレン基、アリーレン基やアラルキレン基といった架橋置換基を形成していてもよい。
 ここで、アルキレン基、アリーレン基、アラルキレン基の具体例としては、先に例示した基と同様のものが挙げられるが、それぞれ炭素数1~10のアルキレン基、炭素数7~20のアリーレン基、炭素数7~20のアラルキレン基が好ましく、炭素数1~6のアルキレン基、炭素数7~20のアリーレン基がより好ましい。
In formula (3), R 1 to R 12 represent the same meaning as described above, but R 1 to R 6 may be independently substituted with X (X represents the same meaning as described above). Preferred are an alkyl group, an aryl group or an aralkyl group.
Here, specific examples of the alkyl group, the aryl group, and the aralkyl group include the same groups as those exemplified above, but each of the alkyl group having 1 to 10 carbon atoms, the aryl group having 6 to 20 carbon atoms, Aralkyl groups having 7 to 20 carbon atoms are preferable, alkyl groups having 1 to 10 carbon atoms, and aryl groups having 6 to 20 carbon atoms are more preferable.
Also in the above formula (3), two or more of the four silicon atoms constituting the mononuclear ruthenium complex may be connected by a bridging substituent, specifically, any one of R 1 to R 3 and R At least one of any of 4 to R 6 or at least one of any of R 7 to R 9 together, or any of R 10 to R 12 and at least any of R 4 to R 6 One set or at least one of R 7 to R 9 may be combined together to form a bridging substituent such as an alkylene group, an arylene group or an aralkylene group, or any one of R 1 to R 3 ; At least one group of any of R 4 to R 6 or at least one group of any of R 7 to R 9 together forms a bridging substituent such as an alkylene group, an arylene group or an aralkylene group, and R 10 one of the ~ R 12 When, also form one of the at least one pair and R 7 ~ either at least one set alkylene group together, bridging substituent such as an arylene group or an aralkylene group R 9 in R 4 ~ R 6 Good.
Here, specific examples of the alkylene group, the arylene group, and the aralkylene group include the same groups as those exemplified above. However, the alkylene group having 1 to 10 carbon atoms, the arylene group having 7 to 20 carbon atoms, Aralkylene groups having 7 to 20 carbon atoms are preferable, alkylene groups having 1 to 6 carbon atoms, and arylene groups having 7 to 20 carbon atoms are more preferable.
 本発明で好適に用いることのできる単核ルテニウム錯体を典型的な配位構造を用いて表すと、式(4)または(5)で示されるものが挙げられ、具体的には式(6)~(11)で示されるものが挙げられ、より具体的にはA~Fで示されるものが挙げられるが、これらに限られるものではなく、また、上述のとおり、これらの配位構造異性体も好適に用いることができる。 When a mononuclear ruthenium complex that can be suitably used in the present invention is represented by using a typical coordination structure, one represented by the formula (4) or (5) can be mentioned, specifically, the formula (6) To those represented by (11), more specifically those represented by A to F, but are not limited thereto, and as described above, these coordination structure isomers. Can also be suitably used.
Figure JPOXMLDOC01-appb-C000014
(式中、R1、R2、R4、R5、R7、R8、R10、R11、R17~R20およびL1は、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000014
(In the formula, R 1 , R 2 , R 4 , R 5 , R 7 , R 8 , R 10 , R 11 , R 17 to R 20 and L 1 represent the same meaning as described above.)
Figure JPOXMLDOC01-appb-C000015
(式中、R1、R2、R4、R5、R6、R7、R10、R11およびR17~R20は、上記と同じ意味を表し、Meはメチル基を表す。)
Figure JPOXMLDOC01-appb-C000015
(In the formula, R 1 , R 2 , R 4 , R 5 , R 6 , R 7 , R 10 , R 11 and R 17 to R 20 have the same meaning as described above, and Me represents a methyl group.)
Figure JPOXMLDOC01-appb-C000016
(式中、Meはメチル基を意味する。)
Figure JPOXMLDOC01-appb-C000016
(In the formula, Me means a methyl group.)
 本発明の単核ルテニウム錯体は、公知の有機合成反応を組み合わせて製造できる。
 例えば、上記ルテニウム錯体A~Fは、シクロヘキサジエニル基やシクロオクタジエニル基等のシクロアルカジエニル基およびアリル基や2-メチルアリル基等のアルケニル基を配位子として有するルテニウム-オレフィン錯体と、1,2-ビス(ジメチルシリル)ベンゼン等のビスシリル化合物およびt-ブチルイソシアニド等のイソニトリル化合物、ホスファイト化合物、またはビピリジン化合物とを、アルゴンガス等の不活性ガス雰囲気下、有機溶媒中で反応させて得ることができる。
 この場合、ビスシリル化合物の使用量は、ルテニウム-オレフィン錯体に対して、1~10モル倍程度とすることができるが、2~5モル倍が好ましい。
 イソニトリル化合物、ホスファイト化合物、ビピリジン化合物の使用量は、ルテニウム-オレフィン錯体に対して、1~10モル倍程度とすることができるが、2~5モル倍が好ましい。
 また、有機溶媒としては、反応に影響を及ぼさない限りにおいて各種の溶媒類が使用でき、例えば、ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサン等の脂肪族炭化水素類;ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、シクロペンチルメチルエーテル、テトラヒドロフラン、1,4-ジオキサン等のエーテル類;ベンゼン、トルエン、キシレン、メシチレン等の芳香族炭化水素類などを用いることができる。
 反応温度は、有機溶媒の融点から沸点の範囲で適宜設定すればよいが、10~100℃が好ましく、30~80℃がより好ましい。
 反応時間は、通常、1~48時間程度である。
 反応終了後は、溶媒を留去した後、再結晶法等の公知の精製法にて目的物を得ることができるが、調製したルテニウム錯体を単離せずに目的とする反応の触媒として用いてもよい。
The mononuclear ruthenium complex of the present invention can be produced by combining known organic synthesis reactions.
For example, the ruthenium complexes A to F are ruthenium-olefin complexes having a cycloalkadienyl group such as a cyclohexadienyl group or a cyclooctadienyl group and an alkenyl group such as an allyl group or a 2-methylallyl group as a ligand. Reaction of bissilyl compounds such as 1,2-bis (dimethylsilyl) benzene and isonitrile compounds such as t-butylisocyanide, phosphite compounds, or bipyridine compounds in an organic solvent under an inert gas atmosphere such as argon gas Can be obtained.
In this case, the amount of the bissilyl compound to be used can be about 1 to 10 mol times, preferably 2 to 5 mol times based on the ruthenium-olefin complex.
The amount of the isonitrile compound, phosphite compound, and bipyridine compound used can be about 1 to 10 moles, preferably 2 to 5 moles, relative to the ruthenium-olefin complex.
As the organic solvent, various solvents can be used as long as they do not affect the reaction. For example, aliphatic hydrocarbons such as pentane, hexane, heptane, octane, cyclohexane; diethyl ether, diisopropyl ether, dibutyl ether , Ethers such as cyclopentyl methyl ether, tetrahydrofuran and 1,4-dioxane; aromatic hydrocarbons such as benzene, toluene, xylene and mesitylene can be used.
The reaction temperature may be appropriately set within the range from the melting point to the boiling point of the organic solvent, but is preferably 10 to 100 ° C, more preferably 30 to 80 ° C.
The reaction time is usually about 1 to 48 hours.
After completion of the reaction, the solvent can be distilled off, and then the desired product can be obtained by a known purification method such as recrystallization, but the prepared ruthenium complex can be used as a catalyst for the desired reaction without isolation. Also good.
 本発明の単核ルテニウム錯体は、既に述べたとおり、ヒドロシリル化反応、水素化反応、カルボニル化合物の還元反応のいずれか1つ以上の反応に触媒活性を発揮するが、2つの反応に触媒活性を発揮するものも、3つの反応すべてに触媒活性を発揮するものも存在する。
 本発明の単核ルテニウム錯体を触媒として使用し、脂肪族不飽和結合を含有する、オレフィン化合物、シラン化合物またはオルガノポリシロキサン化合物等の脂肪族不飽和結合を有する化合物と、Si-H結合を有する、シラン化合物またはオルガノポリシロキサン化合物とのヒドロシリル化反応を行う場合、触媒の使用量は特に限定されるものではないが、室温~100℃程度の温和な条件下で反応を進行させて収率よく目的物を得ることを考慮すると、触媒の使用量は0.005モル%以上とすることが好ましい。
 本発明の単核ルテニウム錯体を触媒として使用し、脂肪族不飽和結合を含有するオレフィン化合物を水素ガスによって還元し、飽和化合物を得る反応を行う場合も、触媒の使用量は特に限定されるものではないが、室温下、かつ、水素圧が1気圧程度の温和な条件下で反応を進行させて収率よく目的物を得ることを考慮すると、触媒の使用量は0.05モル%以上とすることが好ましい。
As described above, the mononuclear ruthenium complex of the present invention exhibits catalytic activity in any one or more of hydrosilylation reaction, hydrogenation reaction, and reduction reaction of carbonyl compound, but has catalytic activity in two reactions. Some of them exhibit catalytic activity in all three reactions.
Using the mononuclear ruthenium complex of the present invention as a catalyst and having an aliphatic unsaturated bond, such as an olefin compound, a silane compound or an organopolysiloxane compound, and a compound having an aliphatic unsaturated bond, and an Si—H bond In the hydrosilylation reaction with a silane compound or an organopolysiloxane compound, the amount of the catalyst used is not particularly limited, but the reaction is allowed to proceed under mild conditions of room temperature to about 100 ° C. with good yield. In consideration of obtaining the desired product, the amount of the catalyst used is preferably 0.005 mol% or more.
Even when the mononuclear ruthenium complex of the present invention is used as a catalyst and an olefinic compound containing an aliphatic unsaturated bond is reduced with hydrogen gas to obtain a saturated compound, the amount of the catalyst used is particularly limited. However, considering that the desired product is obtained in good yield by proceeding the reaction at room temperature and under a mild condition where the hydrogen pressure is about 1 atm, the amount of the catalyst used is 0.05 mol% or more. It is preferable to do.
 本発明の単核ルテニウム錯体を触媒として使用し、カルボニル化合物をSi-H基を含有するシランまたはシロキサンで還元する場合も、触媒の使用量は特に限定されるものではないが、温和な条件下で反応を進行させて収率よく目的物を得ることを考慮すると、触媒の使用量は0.1モル%以上とすることが好ましい。
 還元反応に供し得るカルボニル化合物としては、アミド、アルデヒド、ケトン、エステル、カルボン酸、カルボン酸塩(例えば、ナトリウム塩、カリウム塩等)基等を有する化合物が挙げられ、これらを本発明のルテニウム錯体触媒の存在下、Si-H基を含有するシランまたはシロキサンと反応させることによって、それぞれ対応するアミンやアルコール化合物へと導くことができる。
 なお、いずれの反応においても、触媒使用量の上限は特に制限はないが、経済的な観点から5モル%程度である。
Even when the mononuclear ruthenium complex of the present invention is used as a catalyst and the carbonyl compound is reduced with a silane or siloxane containing a Si—H group, the amount of the catalyst used is not particularly limited. In consideration of obtaining the desired product in good yield by advancing the reaction, the amount of the catalyst used is preferably 0.1 mol% or more.
Examples of the carbonyl compound that can be subjected to the reduction reaction include compounds having an amide, aldehyde, ketone, ester, carboxylic acid, carboxylate (for example, sodium salt, potassium salt, etc.) group, etc., and these are the ruthenium complex of the present invention. By reacting with a silane or siloxane containing a Si—H group in the presence of a catalyst, it can be led to the corresponding amine or alcohol compound, respectively.
In any reaction, the upper limit of the amount of catalyst used is not particularly limited, but is about 5 mol% from an economical viewpoint.
 以下、実施例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に制限されるものではない。
 ルテニウム錯体の合成は、シュレンクテクニックまたはグローブボックスを用いてすべての操作をアルゴン雰囲気下で行い、遷移金属化合物の調製に用いた溶媒は、全て公知の方法で脱酸素、脱水を行った後に用いた。
 アルケンのヒドロシリル化反応、水素化反応、およびアミドの還元反応および溶媒精製は、全て不活性ガス雰囲気下で行い、各種反応に用いた溶媒等は、全て予め公知の方法で精製、乾燥、脱酸素を行ったものを用いた。
 1H,13C,29Si-NMRの測定は日本電子(株)製JNM-ECA600,JNM-LA400を、IR測定は日本分光(株)製FT/IR-550を、元素分析はPerkin Elmer製2400II/CHNを、X線結晶構造解析は(株)リガク製VariMax、MoKα線0.71069オングストロームを用いてそれぞれ行った。
 なお、以下に示す化学構造式においては慣用的な表現法に従って水素原子を省略している。また、Meはメチル基を表す。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated more concretely, this invention is not restrict | limited to the following Example.
The synthesis of the ruthenium complex was carried out using an Schlenk technique or a glove box in an argon atmosphere, and all the solvents used for the preparation of the transition metal compounds were used after deoxygenation and dehydration by known methods. .
Alkyne hydrosilylation reaction, hydrogenation reaction, amide reduction reaction and solvent purification are all carried out in an inert gas atmosphere. What was performed was used.
Measurement of 1 H, 13 C, 29 Si-NMR was performed using JNM-ECA600 and JNM-LA400 manufactured by JEOL Ltd., IR measurement was performed using FT / IR-550 manufactured by JASCO Corporation, and elemental analysis was manufactured by Perkin Elmer. X-ray crystal structure analysis of 2400II / CHN was performed using Rigaku Co., Ltd. VariMax and MoKα radiation 0.71069 angstroms, respectively.
In the chemical structural formulas shown below, hydrogen atoms are omitted according to a conventional expression. Me represents a methyl group.
(1)ルテニウム錯体の合成
[実施例1]ルテニウム錯体Aの合成
Figure JPOXMLDOC01-appb-C000017
(1) Synthesis of ruthenium complex [Example 1] Synthesis of ruthenium complex A
Figure JPOXMLDOC01-appb-C000017
 アルゴン雰囲気下、100mLのシュレンク管に(η4-1,5-シクロオクタジエン)ルテニウム(II)ビス(η3-2-メチルアリル)錯体(200mg,0.63mmol)、1,2-ビス(ジメチルシリル)ベンゼン(243mg,1.26mmol)、およびt-ブチルイソシアニド(104mg,1.26mmol)を仕込み、ここへ脱気・脱水処理したヘキサン(30mL)を加え、55℃で18時間撹拌した。反応終了後、減圧乾燥し、得られた乾燥物をヘキサン(40mL)に溶解させ、遠心分離にて副生した少量の褐色不溶物を取り除いた。その後、ヘキサン溶液を減圧乾燥し、ヘキサメチルジシロキサン(10mL)で洗浄後、残った白色粉末をヘキサン10mLに溶解させ、-35℃で再結晶して上記式で代表的に表されるルテニウム錯体A(49mg/0.08mmol/12%)を得た。得られたルテニウム錯体Aの構造を図1に、1H-NMRの測定結果を図2にそれぞれ示す。 4 -1,5-cyclooctadiene) ruthenium (II) bis (η 3 -2-methylallyl) complex (200 mg, 0.63 mmol), 1,2-bis (dimethyl) was added to a 100 mL Schlenk tube under an argon atmosphere. Cyril) benzene (243 mg, 1.26 mmol) and t-butylisocyanide (104 mg, 1.26 mmol) were charged, and degassed / dehydrated hexane (30 mL) was added thereto, followed by stirring at 55 ° C. for 18 hours. After completion of the reaction, the reaction mixture was dried under reduced pressure, and the resulting dried product was dissolved in hexane (40 mL), and a small amount of brown insoluble matter by-produced by centrifugation was removed. Thereafter, the hexane solution is dried under reduced pressure, washed with hexamethyldisiloxane (10 mL), the remaining white powder is dissolved in 10 mL of hexane, and recrystallized at −35 ° C. to be representative of the ruthenium complex represented by the above formula. A (49 mg / 0.08 mmol / 12%) was obtained. The structure of the resulting ruthenium complex A is shown in FIG. 1, and the measurement result of 1 H-NMR is shown in FIG.
1H NMR(C66,600MHz)δ=-7.64(br s,2H,Si-H),0.59(s,18H,CMe3),0.94(s,24H,SiMe2),7.33-7.38(m,4H,C64),7.81-7.86(m,4H,C64).
13Si NMR(C66,119MHz)δ=27.2.
IR(KBr pellet):ν=1930(νSi-H),2116(νRu-CN)cm-1
Anal. Calcd. for C30522RuSi4:C,55.08;H,8.01;N,4.28 Found:C,55.21;H,7.89;N,4.01
1 H NMR (C 6 D 6 , 600 MHz) δ = −7.64 (br s, 2H, Si—H), 0.59 (s, 18H, CMe 3 ), 0.94 (s, 24H, SiMe 2 ), 7.33-7.38 (m, 4H, C 6 H 4 ), 7.81-7.86 (m, 4H, C 6 H 4 ).
13 Si NMR (C 6 D 6 , 119 MHz) δ = 27.2.
IR (KBr pellet): ν = 1930 (ν Si-H ), 2116 (ν Ru-CN ) cm −1
Anal. Calcd. for C 30 H 52 N 2 RuSi 4: C, 55.08; H, 8.01; N, 4.28 Found: C, 55.21; H, 7.89; N, 4.01
[実施例2]ルテニウム錯体Bの合成
Figure JPOXMLDOC01-appb-C000018
[Example 2] Synthesis of ruthenium complex B
Figure JPOXMLDOC01-appb-C000018
 アルゴン雰囲気下、100mLのシュレンク管に(η4-1,5-シクロオクタジエン)ルテニウム(II)ビス(η3-2-メチルアリル)錯体(200mg,0.63mmol)、1,2-ビス(ジメチルシリル)ベンゼン(243mg,1.26mmol)、および1-イソシアノアダマンタン(203mg,1.26mmol)を仕込み、ここへ脱気・脱水処理したヘキサン(30mL)を加え、55℃で18時間撹拌した。反応終了後、減圧乾燥し、得られた乾燥物をヘキサン(40mL)に溶解させ、遠心分離にて副生した少量の褐色不溶物を取り除いた。その後、ヘキサン溶液を減圧乾燥し、ヘキサメチルジシロキサン(10mL)で洗浄後、残った白色粉末をヘキサン10mLに溶解させ、-35℃で再結晶して上記式で代表的に表されるルテニウム錯体B(51mg/0.06mmol/10%)を得た。得られたルテニウム錯体Bの構造を図3に、1H-NMRの測定結果を図4にそれぞれ示す。 4 -1,5-cyclooctadiene) ruthenium (II) bis (η 3 -2-methylallyl) complex (200 mg, 0.63 mmol), 1,2-bis (dimethyl) was added to a 100 mL Schlenk tube under an argon atmosphere. Silyl) benzene (243 mg, 1.26 mmol) and 1-isocyanoadamantane (203 mg, 1.26 mmol) were charged, and degassed / dehydrated hexane (30 mL) was added thereto, followed by stirring at 55 ° C. for 18 hours. After completion of the reaction, the reaction mixture was dried under reduced pressure, and the resulting dried product was dissolved in hexane (40 mL), and a small amount of brown insoluble matter by-produced by centrifugation was removed. Thereafter, the hexane solution is dried under reduced pressure, washed with hexamethyldisiloxane (10 mL), the remaining white powder is dissolved in 10 mL of hexane, and recrystallized at −35 ° C. to be representative of the ruthenium complex represented by the above formula. B (51 mg / 0.06 mmol / 10%) was obtained. The structure of the obtained ruthenium complex B is shown in FIG. 3, and the measurement result of 1 H-NMR is shown in FIG.
1H NMR(C66,600MHz)δ=-7.62(br s,2H,Si-H),0.93-1.09(m,12H,CH2),1.04(s,24H,SiMe2),1.38-1.44(br s,18H,CH2 and CH of adamantyl)7.34-7.41(m,4H,C64),7.87-7.92(m,4H,C64).
13Si NMR(C66,119MHz)δ=21.1.
IR(KBr pellet):ν=1928(νSi-H),2118(νRu-CN)cm-1
Anal. Calcd. for C42642RuSi4:C,62.25;H,7.96;N,3.46 Found:C,62.53;H,8.24;N,3.22
1 H NMR (C 6 D 6 , 600 MHz) δ = −7.62 (br s, 2H, Si—H), 0.93-1.09 (m, 12H, CH 2 ), 1.04 (s, 24H, SiMe 2 ), 1.38-1.44 (brs, 18H, CH 2 and CH of adamantyl) 7.34-7.41 (m, 4H, C 6 H 4 ), 7.87-7. 92 (m, 4H, C 6 H 4 ).
13 Si NMR (C 6 D 6 , 119 MHz) δ = 21.1.
IR (KBr pellet): ν = 1927 (ν Si-H ), 2118 (ν Ru-CN ) cm −1
Anal. Calcd. for C 42 H 64 N 2 RuSi 4: C, 62.25; H, 7.96; N, 3.46 Found: C, 62.53; H, 8.24; N, 3.22
[実施例3]ルテニウム錯体Cの合成
Figure JPOXMLDOC01-appb-C000019
[Example 3] Synthesis of ruthenium complex C
Figure JPOXMLDOC01-appb-C000019
 アルゴン雰囲気下、100mLのシュレンク管に(η4-1,5-シクロオクタジエン)ルテニウム(II)ビス(η3-2-メチルアリル)錯体(200mg,0.63mmol)、1,2-ビス(ジメチルシリル)ベンゼン(243mg,1.26mmol)、および2,4,6-トリメチルフェニルイソシアニド(183mg,1.26mmol)を仕込み、ここへ脱気・脱水処理したヘキサン(30mL)を加え、55℃で18時間撹拌した。反応終了後、減圧乾燥し、得られた乾燥物をトルエン(40mL)に溶解させ、遠心分離にて副生した少量の褐色不溶物を取り除いた。その後、トルエン溶液を減圧乾燥し、ヘキサン(10mL)で洗浄後、残った白色粉末をトルエン5mLに溶解させ、-35℃で再結晶して上記式で代表的に表されるルテニウム錯体C(74mg/0.09mmol/10%)を得た。得られたルテニウム錯体Cの1H-NMRの測定結果を図5に示す。 4 -1,5-cyclooctadiene) ruthenium (II) bis (η 3 -2-methylallyl) complex (200 mg, 0.63 mmol), 1,2-bis (dimethyl) was added to a 100 mL Schlenk tube under an argon atmosphere. Silyl) benzene (243 mg, 1.26 mmol) and 2,4,6-trimethylphenyl isocyanide (183 mg, 1.26 mmol) were charged, and degassed / dehydrated hexane (30 mL) was added thereto. Stir for hours. After completion of the reaction, the reaction mixture was dried under reduced pressure, and the resulting dried product was dissolved in toluene (40 mL), and a small amount of brown insoluble material by-produced by centrifugation was removed. Thereafter, the toluene solution was dried under reduced pressure, washed with hexane (10 mL), the remaining white powder was dissolved in 5 mL of toluene, recrystallized at -35 ° C., and ruthenium complex C represented by the above formula (74 mg). /0.09 mmol / 10%). FIG. 5 shows the measurement results of 1 H-NMR of the obtained ruthenium complex C.
1H NMR(C66,600MHz)δ=-7.05(br s,2H,Si-H),1.02(s,24H,SiMe2),1.75(s,6H,para-Me of C62Me3),1.76(s,12H,ortho-Me of C62Me3),6.20(s,4H,C6 2 Me3),7.36-7.39(m,4H,C64),7.81-7.85(m,4H,C64).
IR(KBr pellet):ν=1917(νSi-H),2082(νRu-CN)cm-1
Anal. Calcd. for C40562RuSi4:C,61.73;H,7.25;N,3.60 Found:C,61.86;H,7.02;N,3.82
1 H NMR (C 6 D 6 , 600 MHz) δ = −7.05 (br s, 2H, Si—H), 1.02 (s, 24H, SiMe 2 ), 1.75 (s, 6H, para- Me of C 6 H 2 Me 3 ), 1.76 (s, 12H, ortho-Me of C 6 H 2 Me 3 ), 6.20 (s, 4H, C 6 H 2 Me 3 ), 7.36- 7.39 (m, 4H, C 6 H 4 ), 7.81-7.85 (m, 4H, C 6 H 4 ).
IR (KBr pellet): ν = 1919 (ν Si-H ), 2082 (ν Ru-CN ) cm −1
Anal. Calcd. for C 40 H 56 N 2 RuSi 4 : C, 61.73; H, 7.25; N, 3.60 Found: C, 61.86; H, 7.02; N, 3.82
[実施例4]ルテニウム錯体Dの合成
Figure JPOXMLDOC01-appb-C000020
[Example 4] Synthesis of ruthenium complex D
Figure JPOXMLDOC01-appb-C000020
 アルゴン雰囲気下、100mLのシュレンク管に(η4-1,5-シクロオクタジエン)ルテニウム(II)ビス(η3-2-メチルアリル)錯体(200mg,0.63mmol)、1,2-ビス(ジメチルシリル)ベンゼン(243mg,1.26mmol)、および2,6-ジイソプロピルフェニルイソシアニド(236mg,1.26mmol)を仕込み、ここへ脱気・脱水処理したヘキサン(30mL)を加え、55℃で18時間撹拌した。反応終了後、減圧乾燥し、得られた乾燥物をテトラヒドロフラン(40mL、以下、THF)に溶解させ、遠心分離にて副生した少量の褐色不溶物を取り除いた。その後、トルエン溶液を減圧乾燥し、ヘキサン(10mL)で洗浄後、残った白色粉末をTHF5mLに溶解させ、-35℃で再結晶して上記式で代表的に表されるルテニウム錯体D(60mg/0.07mmol/11%)を得た。得られたルテニウム錯体Dの1H-NMRの測定結果を図6に示す。 4 -1,5-cyclooctadiene) ruthenium (II) bis (η 3 -2-methylallyl) complex (200 mg, 0.63 mmol), 1,2-bis (dimethyl) was added to a 100 mL Schlenk tube under an argon atmosphere. Cyril) benzene (243 mg, 1.26 mmol) and 2,6-diisopropylphenyl isocyanide (236 mg, 1.26 mmol) are charged, and degassed / dehydrated hexane (30 mL) is added thereto, followed by stirring at 55 ° C. for 18 hours. did. After completion of the reaction, the reaction mixture was dried under reduced pressure, and the resulting dried product was dissolved in tetrahydrofuran (40 mL, hereinafter, THF) to remove a small amount of brown insoluble material by-produced by centrifugation. Thereafter, the toluene solution was dried under reduced pressure, washed with hexane (10 mL), the remaining white powder was dissolved in 5 mL of THF, recrystallized at -35 ° C., and ruthenium complex D (60 mg / kg) represented by the above formula. 0.07 mmol / 11%). The measurement result of 1 H-NMR of the obtained ruthenium complex D is shown in FIG.
1H NMR(C66,600MHz)δ=-7.09(br s,2H,Si-H),0.78(d,JH-H=6.9Hz,24H,CHMe 2 ),0.99(s,24H,SiMe2),2.92(sept,JH-H=6.9Hz,4H,CMe2),6.70(d,JH-H=6.9Hz,4H,meta-C63),6.82(t,JH-H=6.9Hz,2H,para-C63),7.32-7.36(m,4H,C64),7.78-7.83(m,4H,C64).
IR(KBr pellet):ν=1928(νSi-H),2081(νRu-CN)cm-1
Anal. Calcd. for C46682RuSi4:C,64.06;H,7.95;N,3.25Found:C,63.87;H,8.34;N,3.62
1 H NMR (C 6 D 6 , 600 MHz) δ = −7.09 (br s, 2H, Si—H), 0.78 (d, J HH = 6.9 Hz, 24H, CH Me 2 ), 0. 99 (s, 24H, SiMe 2 ), 2.92 (sept, J HH = 6.9 Hz, 4H, C H Me 2 ), 6.70 (d, J HH = 6.9 Hz, 4H, meta-C 6 H 3 ), 6.82 (t, J HH = 6.9 Hz, 2H, para-C 6 H 3 ), 7.32-7.36 (m, 4H, C 6 H 4 ), 7.78-7 .83 (m, 4H, C 6 H 4 ).
IR (KBr pellet): ν = 1927 (ν Si-H ), 2081 (ν Ru-CN ) cm −1
Anal. Calcd. for C 46 H 68 N 2 RuSi 4 : C, 64.06; H, 7.95; N, 3.25 Found: C, 63.87; H, 8.34; N, 3.62
[実施例5]ルテニウム錯体Eの合成
Figure JPOXMLDOC01-appb-C000021
[Example 5] Synthesis of ruthenium complex E
Figure JPOXMLDOC01-appb-C000021
 アルゴン雰囲気下、100mLのシュレンク管に(η4-1,5-シクロオクタジエン)ルテニウム(II)ビス(η3-2-メチルアリル)錯体(200mg,0.63mmol)、1,2-ビス(ジメチルシリル)ベンゼン(243mg,1.26mmol)、およびトリメチロールプロパンホスファイト(204mg,1.26mmol)を仕込み、ここへ脱気・脱水処理したヘキサン(30mL)を加え、55℃で18時間撹拌した。反応終了後、減圧乾燥し、得られた乾燥物をトルエン(40mL)に溶解させ、遠心分離にて副生した少量の褐色不溶物を取り除いた。その後、トルエン溶液を減圧乾燥し、ヘキサン(10mL)で洗浄後、残った白色粉末をトルエン10mLに溶解させ、-35℃で再結晶して上記式で代表的に表されるルテニウム錯体E(61mg/0.08mmol/12%)を得た。得られたルテニウム錯体Eの構造を図7に、1H-NMRの測定結果を図8にそれぞれ示す。 4 -1,5-cyclooctadiene) ruthenium (II) bis (η 3 -2-methylallyl) complex (200 mg, 0.63 mmol), 1,2-bis (dimethyl) was added to a 100 mL Schlenk tube under an argon atmosphere. Cyril) benzene (243 mg, 1.26 mmol) and trimethylolpropane phosphite (204 mg, 1.26 mmol) were charged, and degassed / dehydrated hexane (30 mL) was added thereto, followed by stirring at 55 ° C. for 18 hours. After completion of the reaction, the reaction mixture was dried under reduced pressure, and the resulting dried product was dissolved in toluene (40 mL), and a small amount of brown insoluble material by-produced by centrifugation was removed. Thereafter, the toluene solution was dried under reduced pressure, washed with hexane (10 mL), the remaining white powder was dissolved in 10 mL of toluene, recrystallized at -35 ° C., and ruthenium complex E (61 mg represented by the above formula). /0.08 mmol / 12%). FIG. 7 shows the structure of the obtained ruthenium complex E, and FIG. 8 shows the measurement result of 1 H-NMR.
1H NMR(C66,600MHz)δ=-8.52(t,JH-P=12.6Hz,2H,Si-H),-0.16(t,JH-H=6.9Hz,6H,CH2 3),0.06(q,JH-H=6.9Hz,4H,C 2 CH3),1.13(s,24H,SiMe2),3.03(s,12H,OCH2),7.28-7.34(m,4H,C64),7.81-7.86(m,4H,C64).
13Si NMR(C66,119MHz)δ=27.7
1 H NMR (C 6 D 6 , 600 MHz) δ = −8.52 (t, J HP = 12.6 Hz, 2H, Si—H), −0.16 (t, J HH = 6.9 Hz, 6H, CH 2 C H 3), 0.06 (q, J HH = 6.9Hz, 4H, C H 2 CH 3), 1.13 (s, 24H, SiMe 2), 3.03 (s, 12H, OCH 2 ), 7.28-7.34 (m, 4H, C 6 H 4 ), 7.81-7.86 (m, 4H, C 6 H 4 ).
13 Si NMR (C 6 D 6 , 119 MHz) δ = 27.7
[実施例6]ルテニウム錯体Fの合成
Figure JPOXMLDOC01-appb-C000022
[Example 6] Synthesis of ruthenium complex F
Figure JPOXMLDOC01-appb-C000022
 アルゴン雰囲気下、100mLのシュレンク管に(η4-1,5-シクロオクタジエン)ルテニウム(II)ビス(η3-2-メチルアリル)錯体(200mg,0.63mmol)、1,2-ビス(ジメチルシリル)ベンゼン(243mg,1.26mmol)、および4,4’-ジt-ブチル-2,2’―ビピリジン(169mg,0.63mmol)を仕込み、ここへ脱気・脱水処理したヘキサン(30mL)を加え、55℃で18時間撹拌した。反応終了後、減圧乾燥し、得られた乾燥物をトルエン(50mL)に溶解させ、遠心分離にて副生した少量の褐色不溶物を取り除いた。その後、トルエン溶液を減圧乾燥し、ヘキサン(10mL)で洗浄後、残った赤色粉末をトルエン30mLに溶解させ、-35℃で再結晶して上記式で代表的に表されるルテニウム錯体F(67mg/0.09mmol/14%)を得た。得られたルテニウム錯体Fの構造を図9に、1H-NMRの測定結果を図10にそれぞれ示す。 4 -1,5-cyclooctadiene) ruthenium (II) bis (η 3 -2-methylallyl) complex (200 mg, 0.63 mmol), 1,2-bis (dimethyl) was added to a 100 mL Schlenk tube under an argon atmosphere. Silyl) benzene (243 mg, 1.26 mmol) and 4,4′-di-t-butyl-2,2′-bipyridine (169 mg, 0.63 mmol) were charged, and degassed and dehydrated hexane (30 mL) And stirred at 55 ° C. for 18 hours. After completion of the reaction, the reaction mixture was dried under reduced pressure, and the resulting dried product was dissolved in toluene (50 mL), and a small amount of brown insoluble material by-produced by centrifugation was removed. Thereafter, the toluene solution was dried under reduced pressure, washed with hexane (10 mL), the remaining red powder was dissolved in 30 mL of toluene, recrystallized at −35 ° C., and ruthenium complex F represented by the above formula (67 mg). /0.09 mmol / 14%). The structure of the obtained ruthenium complex F is shown in FIG. 9, and the measurement result of 1 H-NMR is shown in FIG.
1H NMR(C66,600MHz)δ=-11.2(t,JH-Si=12.4Hz,2H,Si-H),-0.07-1.05(br s,24H,SiMe2),0.87(s,18H,C(CH33),6.45(d,JH-H=6.9Hz,2H,C53N),7.21-7.27(m,4H,C64),7.58-7.70(br s,4H,C64),8.00(s,2H,C53N),8.53(d,JH-H=6.9Hz,2H,C53N).
13Si NMR(C66,119MHz)δ=13.2.
IR(KBr pellet):ν=2028(νSi-H)cm-1
Anal. Calcd. for C38582RuSi4:C,60.35;H,7.73;N,3.70 Found:C,60.03;H,7.56;N,3.46
1 H NMR (C 6 D 6 , 600 MHz) δ = −11.2 (t, J H-Si = 12.4 Hz, 2H, Si—H), −0.07 to 1.05 (br s, 24H, SiMe 2 ), 0.87 (s, 18H, C (CH 3 ) 3 ), 6.45 (d, J HH = 6.9 Hz, 2H, C 5 H 3 N), 7.21-7.27 ( m, 4H, C 6 H 4 ), 7.58-7.70 (br s, 4H, C 6 H 4 ), 8.00 (s, 2H, C 5 H 3 N), 8.53 (d, J HH = 6.9 Hz, 2 H, C 5 H 3 N).
13 Si NMR (C 6 D 6 , 119 MHz) δ = 13.2.
IR (KBr pellet): ν = 2028 (ν Si-H ) cm -1
Anal. Calcd. for C 38 H 58 N 2 RuSi 4 : C, 60.35; H, 7.73; N, 3.70 Found: C, 60.03; H, 7.56; N, 3.46
(2)ルテニウム錯体を用いたスチレンの1,1,1,3,3-ペンタメチルジシロキサンによるヒドロシリル化
Figure JPOXMLDOC01-appb-C000023
(2) Hydrosilylation of styrene with 1,1,1,3,3-pentamethyldisiloxane using ruthenium complex
Figure JPOXMLDOC01-appb-C000023
[実施例7]ルテニウム錯体Aを用いたヒドロシリル化反応
 20mLのシュレンクチューブに磁気撹拌子を加え、5Paに減圧しながら加熱乾燥した後、シュレンクチューブ内をアルゴン雰囲気に置換した。そのシュレンクチューブに、触媒としてルテニウム錯体A(6.5mg,0.01mmol)を加えた。ここにスチレン(104mg,1.0mmol)を加え、さらに1,1,1,3,3-ペンタメチルジシロキサン(163mg.1.1mmol)を加えた後、溶液を25℃で23時間撹拌した。冷却後、内標としてアニソール(108mg,1.0mmol)を加え、1H-NMRスペクトルを測定し、生成物の構造および収率を決定した。これらの結果をエントリー1として表1に示す。
[Example 7] Hydrosilylation reaction using ruthenium complex A A magnetic stirrer was added to a 20 mL Schlenk tube, and the mixture was heated and dried while reducing the pressure to 5 Pa. Then, the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex A (6.5 mg, 0.01 mmol) was added to the Schlenk tube as a catalyst. Styrene (104 mg, 1.0 mmol) was added thereto, and 1,1,1,3,3-pentamethyldisiloxane (163 mg.1.1 mmol) was further added, and the solution was stirred at 25 ° C. for 23 hours. After cooling, anisole (108 mg, 1.0 mmol) was added as an internal standard, and the 1 H-NMR spectrum was measured to determine the structure and yield of the product. These results are shown in Table 1 as entry 1.
1,1,1,3,3-pentamethyl-3-(2-phenylethyl)-disiloxane(上記化合物(I))
1H NMR(400MHz,CDCl3)δ=-0.03(s,6H,Si(C 32),-0.02(s,9H,Si(C 33),0.775-0.81(m,2H,SiC 2),2.52-2.57(m,2H,C 2 65),7.09-7.13(m,2H,C65),7.17-7.22(m,3H,C65).
1,1,1,3,3-pentamethyl-3-[(1E)-2-phenylethenyl]-disiloxane(上記化合物(II))
1H NMR(400MHz,CDCl3)δ=0.11(s,6H,Si(CH32),0.22(s,9H,Si(CH33),6.42(d,JH-H=19.3Hz,1H,-CH=CH-),6.93(d,JH-H=19.3Hz,1H,-CH=CH-),7.24-7.29(m,1H,C65),7.31-7.39(m,2H,C65),7.43-7.47(m,2H,C65).
Ethylbenzene(上記化合物(III))
1H NMR(400MHz,CDCl3)δ=1.26(t,2H,JH-H=7.7Hz,CH3),2.67(q,2H,JH-H=7.7Hz,CH2),7.16-7.24(m,3H,C65),7.27-7.33(m,2H,C65).
1,1,1,3,3-pentamethyl-3- (2-phenylethyl) -disiloxane (the above compound (I))
1 H NMR (400 MHz, CDCl 3 ) δ = −0.03 (s, 6H, Si (C H 3 ) 2 ), −0.02 (s, 9H, Si (C H 3 ) 3 ), 0.775 −0.81 (m, 2H, SiC H 2 ), 2.52 to 2.57 (m, 2H, C H 2 C 6 H 5 ), 7.09-7.13 (m, 2H, C 6 H 5), 7.17-7.22 (m, 3H , C 6 H 5).
1,1,1,3,3-pentamethyl-3-[(1E) -2-phenylethylene] -disiloxane (compound (II) above)
1 H NMR (400 MHz, CDCl 3 ) δ = 0.11 (s, 6H, Si (CH 3 ) 2 ), 0.22 (s, 9H, Si (CH 3 ) 3 ), 6.42 (d, J HH = 19.3 Hz, 1H, -CH = CH-), 6.93 (d, J HH = 19.3 Hz, 1H, -CH = CH-), 7.24-7.29 (m, 1H, C 6 H 5), 7.31-7.39 (m , 2H, C 6 H 5), 7.43-7.47 (m, 2H, C 6 H 5).
Ethylbenzene (the above compound (III))
1 H NMR (400 MHz, CDCl 3 ) δ = 1.26 (t, 2H, J HH = 7.7 Hz, CH 3 ), 2.67 (q, 2H, J HH = 7.7 Hz, CH 2 ), 7 .16-7.24 (m, 3H, C 6 H 5 ), 7.27-7.33 (m, 2H, C 6 H 5 ).
[実施例8]ルテニウム錯体Bを用いたヒドロシリル化反応
 20mLのシュレンクチューブに磁気撹拌子を加え、5Paに減圧しながら加熱乾燥した後、シュレンクチューブ内をアルゴン雰囲気に置換した。そのシュレンクチューブに、触媒としてルテニウム錯体B(2.4mg,0.003mmol)を加えた。ここにスチレン(104mg,1.0mmol)を加え、さらに1,1,1,3,3-ペンタメチルジシロキサン(163mg.1.1mmol)を加えた後、溶液を25℃で23時間撹拌した。冷却後、内標としてアニソール(108mg,1.0mmol)を加え、1H-NMRスペクトルを測定し、生成物の構造および収率を決定した。これらの結果をエントリー2として表1に示す。
[Example 8] Hydrosilylation reaction using ruthenium complex B A magnetic stirrer was added to a 20 mL Schlenk tube and dried by heating while reducing the pressure to 5 Pa. Then, the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex B (2.4 mg, 0.003 mmol) was added to the Schlenk tube as a catalyst. Styrene (104 mg, 1.0 mmol) was added thereto, and 1,1,1,3,3-pentamethyldisiloxane (163 mg.1.1 mmol) was further added, and the solution was stirred at 25 ° C. for 23 hours. After cooling, anisole (108 mg, 1.0 mmol) was added as an internal standard, and the 1 H-NMR spectrum was measured to determine the structure and yield of the product. These results are shown in Table 1 as entry 2.
[実施例9]ルテニウム錯体Cを用いたヒドロシリル化反応
 20mLのシュレンクチューブに磁気撹拌子を加え、5Paに減圧しながら加熱乾燥した後、シュレンクチューブ内をアルゴン雰囲気に置換した。そのシュレンクチューブに、触媒としてルテニウム錯体C(2.3mg,0.003mmol)を加えた。ここにスチレン(104mg,1.0mmol)を加え、さらに1,1,1,3,3-ペンタメチルジシロキサン(163mg.1.1mmol)を加えた後、溶液を25℃で23時間撹拌した。冷却後、内標としてアニソール(108mg,1.0mmol)を加え、1H-NMRスペクトルを測定し、生成物の構造および収率を決定した。これらの結果をエントリー3として表1に示す。
[Example 9] Hydrosilylation reaction using ruthenium complex C A magnetic stirrer was added to a 20 mL Schlenk tube, dried by heating while reducing the pressure to 5 Pa, and the inside of the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex C (2.3 mg, 0.003 mmol) was added to the Schlenk tube as a catalyst. Styrene (104 mg, 1.0 mmol) was added thereto, and 1,1,1,3,3-pentamethyldisiloxane (163 mg.1.1 mmol) was further added, and the solution was stirred at 25 ° C. for 23 hours. After cooling, anisole (108 mg, 1.0 mmol) was added as an internal standard, and the 1 H-NMR spectrum was measured to determine the structure and yield of the product. These results are shown in Table 1 as entry 3.
[実施例10]ルテニウム錯体Dを用いたヒドロシリル化反応
 20mLのシュレンクチューブに磁気撹拌子を加え、5Paに減圧しながら加熱乾燥した後、シュレンクチューブ内をアルゴン雰囲気に置換した。そのシュレンクチューブに、触媒としてルテニウム錯体D(0.9mg,0.001mmol)を加えた。ここにスチレン(1040mg,10mmol)を加え、さらに1,1,1,3,3-ペンタメチルジシロキサン(1630mg,11mmol)を加えた後、溶液を25℃で23時間撹拌した。冷却後、内標としてアニソール(1080mg,10mmol)を加え、1H-NMRスペクトルを測定し、生成物の構造および収率を決定した。これらの結果をエントリー4として表1に示す。
[Example 10] Hydrosilylation reaction using ruthenium complex D A magnetic stirrer was added to a 20 mL Schlenk tube, dried by heating while reducing the pressure to 5 Pa, and the inside of the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex D (0.9 mg, 0.001 mmol) was added to the Schlenk tube as a catalyst. Styrene (1040 mg, 10 mmol) was added thereto, and 1,1,1,3,3-pentamethyldisiloxane (1630 mg, 11 mmol) was further added thereto, and then the solution was stirred at 25 ° C. for 23 hours. After cooling, anisole (1080 mg, 10 mmol) was added as an internal standard, and a 1 H-NMR spectrum was measured to determine the structure and yield of the product. These results are shown in Table 1 as entry 4.
[実施例11]ルテニウム錯体Fを用いたヒドロシリル化反応
 20mLのシュレンクチューブに磁気撹拌子を加え、5Paに減圧しながら加熱乾燥した後、シュレンクチューブ内をアルゴン雰囲気に置換した。そのシュレンクチューブに、触媒としてルテニウム錯体F(2.3mg,0.003mmol)を加えた。ここにスチレン(104mg,1.0mmol)を加え、さらに1,1,1,3,3-ペンタメチルジシロキサン(163mg.1.1mmol)を加えた後、溶液を25℃で23時間撹拌した。冷却後、内標としてアニソール(108mg,1.0mmol)を加え、1H-NMRスペクトルを測定し、生成物の構造および収率を決定した。これらの結果をエントリー5として表1に示す。
[Example 11] Hydrosilylation reaction using ruthenium complex F A magnetic stirrer was added to a 20 mL Schlenk tube and dried by heating while reducing the pressure to 5 Pa. Then, the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex F (2.3 mg, 0.003 mmol) was added to the Schlenk tube as a catalyst. Styrene (104 mg, 1.0 mmol) was added thereto, and 1,1,1,3,3-pentamethyldisiloxane (163 mg.1.1 mmol) was further added, and the solution was stirred at 25 ° C. for 23 hours. After cooling, anisole (108 mg, 1.0 mmol) was added as an internal standard, and the 1 H-NMR spectrum was measured to determine the structure and yield of the product. These results are shown in Table 1 as entry 5.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
(3)ルテニウム錯体を用いたスチレンのジメチルフェニルシランによるヒドロシリル化
Figure JPOXMLDOC01-appb-C000025
(3) Hydrosilylation of styrene with dimethylphenylsilane using ruthenium complex
Figure JPOXMLDOC01-appb-C000025
[実施例12]ルテニウム錯体Aを用いたヒドロシリル化反応
 20mLのシュレンクチューブに磁気撹拌子を加え、5Paに減圧しながら加熱乾燥した後、シュレンクチューブ内をアルゴン雰囲気に置換した。そのシュレンクチューブに、触媒としてルテニウム錯体A(3.2mg,0.005mmol)を加えた。ここにスチレン(1040mg,10mmol)を加え、さらにジメチルフェニルシラン(1500mg,11mmol)を加えた後、溶液を25℃で23時間撹拌した。冷却後、内標としてアニソール(1080mg,10mmol)を加え、1H-NMRスペクトルを測定し、生成物の構造および収率を決定した。これらの結果をエントリー1として表2に示す。
[Example 12] Hydrosilylation reaction using ruthenium complex A A magnetic stirrer was added to a 20 mL Schlenk tube, dried by heating while reducing the pressure to 5 Pa, and the inside of the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex A (3.2 mg, 0.005 mmol) was added to the Schlenk tube as a catalyst. Styrene (1040 mg, 10 mmol) was added thereto, dimethylphenylsilane (1500 mg, 11 mmol) was further added, and the solution was stirred at 25 ° C. for 23 hours. After cooling, anisole (1080 mg, 10 mmol) was added as an internal standard, and a 1 H-NMR spectrum was measured to determine the structure and yield of the product. These results are shown in Table 2 as entry 1.
[dimethyl(2-phenylethyl)silyl]-benzene(上記化合物(I))
1H NMR(400MHz,CDCl3)δ=0.19(s,6H,Si(C 32),0.98-1.07(m,2H,SiCH2),2.49-2.59(m,2H,C 265),7.02-7.11(m,3H,C65),7.12-7.16(m,2H,C65),7.24-7.31(m,3H,C65),7.39-7.47(m,2H,C65).
[dimethyl[(1E)-2-phenylethenyl]silyl]-benzene(上記化合物(II))
1H NMR(400MHz,CDCl3)δ=0.17(s,6H,Si(C 32),6.49(d,JH-H=19.3Hz,1H,SiC=CH-),7.01-7.09(m,3H,C65),7.12-7.15(m,3H,C65 and SiCH=C-),7.25-7.32(m,3H,C65),7.37-7.46(m,2H,C65).
[Dimethyl (2-phenylethyl) silyl] -benzene (the above compound (I))
1 H NMR (400 MHz, CDCl 3 ) δ = 0.19 (s, 6H, Si (C H 3 ) 2 ), 0.98-1.07 (m, 2H, SiCH 2 ), 2.49-2. 59 (m, 2H, C H 2 C 6 H 5 ), 7.02-7.11 (m, 3H, C 6 H 5 ), 7.12-7.16 (m, 2H, C 6 H 5 ) 7.24-7.31 (m, 3H, C 6 H 5 ), 7.39-7.47 (m, 2H, C 6 H 5 ).
[Dimethyl [(1E) -2-phenylethylene] silyl] -benzene (the above compound (II))
1 H NMR (400 MHz, CDCl 3 ) δ = 0.17 (s, 6H, Si (C H 3 ) 2 ), 6.49 (d, J HH = 19.3 Hz, 1 H, SiC H ═CH—), 7.01-7.09 (m, 3H, C 6 H 5 ), 7.12-7.15 (m, 3H, C 6 H 5 and SiCH = C H- ), 7.25-7.32 ( m, 3H, C 6 H 5 ), 7.37-7.46 (m, 2H, C 6 H 5).
[実施例13]ルテニウム錯体Cを用いたヒドロシリル化反応
 20mLのシュレンクチューブに磁気撹拌子を加え、5Paに減圧しながら加熱乾燥した後、シュレンクチューブ内をアルゴン雰囲気に置換した。そのシュレンクチューブに、触媒としてルテニウム錯体C(3.9mg,0.005mmol)を加えた。ここにスチレン(1040mg,10mmol)を加え、さらにジメチルフェニルシラン(1500mg,11mmol)を加えた後、溶液を25℃で23時間撹拌した。冷却後、内標としてアニソール(1080mg,10mmol)を加え、1H-NMRスペクトルを測定し、生成物の構造および収率を決定した。これらの結果をエントリー2として表2に示す。
[Example 13] Hydrosilylation reaction using ruthenium complex C A magnetic stirrer was added to a 20 mL Schlenk tube, dried by heating while reducing the pressure to 5 Pa, and the inside of the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex C (3.9 mg, 0.005 mmol) was added to the Schlenk tube as a catalyst. Styrene (1040 mg, 10 mmol) was added thereto, dimethylphenylsilane (1500 mg, 11 mmol) was further added, and the solution was stirred at 25 ° C. for 23 hours. After cooling, anisole (1080 mg, 10 mmol) was added as an internal standard, and a 1 H-NMR spectrum was measured to determine the structure and yield of the product. These results are shown in Table 2 as entry 2.
[実施例14]ルテニウム錯体Dを用いたヒドロシリル化反応
 20mLのシュレンクチューブに磁気撹拌子を加え、5Paに減圧しながら加熱乾燥した後、シュレンクチューブ内をアルゴン雰囲気に置換した。そのシュレンクチューブに、触媒としてルテニウム錯体D(0.9mg,0.001mmol)を加えた。ここにスチレン(1040mg,10mmol)を加え、さらにジメチルフェニルシラン(1500mg,11mmol)を加えた後、溶液を25℃で23時間撹拌した。冷却後、内標としてアニソール(1080mg,10mmol)を加え、1H-NMRスペクトルを測定し、生成物の構造および収率を決定した。これらの結果をエントリー3として表2に示す。
[Example 14] Hydrosilylation reaction using ruthenium complex D A magnetic stirrer was added to a 20 mL Schlenk tube and dried by heating while reducing the pressure to 5 Pa. Then, the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex D (0.9 mg, 0.001 mmol) was added to the Schlenk tube as a catalyst. Styrene (1040 mg, 10 mmol) was added thereto, dimethylphenylsilane (1500 mg, 11 mmol) was further added, and the solution was stirred at 25 ° C. for 23 hours. After cooling, anisole (1080 mg, 10 mmol) was added as an internal standard, and a 1 H-NMR spectrum was measured to determine the structure and yield of the product. These results are shown in Table 2 as entry 3.
[実施例15]ルテニウム錯体Eを用いたヒドロシリル化反応
 20mLのシュレンクチューブに磁気撹拌子を加え、5Paに減圧しながら加熱乾燥した後、シュレンクチューブ内をアルゴン雰囲気に置換した。そのシュレンクチューブに、触媒としてルテニウム錯体E(8.1mg,0.01mmol)を加えた。ここにスチレン(104mg,1.0mmol)を加え、さらにジメチルフェニルシラン(150mg,1.1mmol)を加えた後、溶液を25℃で23時間撹拌した。冷却後、内標としてアニソール(108mg,1.0mmol)を加え、1H-NMRスペクトルを測定し、生成物の構造および収率を決定した。これらの結果をエントリー4として表2に示す。
Figure JPOXMLDOC01-appb-T000026
[Example 15] Hydrosilylation reaction using ruthenium complex E A magnetic stirrer was added to a 20 mL Schlenk tube and heated and dried while reducing the pressure to 5 Pa. Then, the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex E (8.1 mg, 0.01 mmol) was added to the Schlenk tube as a catalyst. Styrene (104 mg, 1.0 mmol) was added thereto, dimethylphenylsilane (150 mg, 1.1 mmol) was further added, and the solution was stirred at 25 ° C. for 23 hours. After cooling, anisole (108 mg, 1.0 mmol) was added as an internal standard, and the 1 H-NMR spectrum was measured to determine the structure and yield of the product. These results are shown in Table 2 as entry 4.
Figure JPOXMLDOC01-appb-T000026
(4)ルテニウム錯体を用いた1-オクテンの1,1,1,3,3-ペンタメチルジシロキサンによるヒドロシリル化反応
Figure JPOXMLDOC01-appb-C000027
(4) Hydrosilylation of 1-octene with 1,1,1,3,3-pentamethyldisiloxane using ruthenium complex
Figure JPOXMLDOC01-appb-C000027
[実施例16]1-オクテンの1,1,1,3,3-ペンタメチルジシロキサンによるヒドロシリル化
 20mLのシュレンクチューブに磁気撹拌子を加え、5Paに減圧しながら加熱乾燥した後、シュレンクチューブ内をアルゴン雰囲気に置換した。そのシュレンクチューブに、触媒としてルテニウム錯体A(2.0mg,0.003mmol)を加えた。ここに1-オクテン(112mg,1.0mmol)を加え、さらに1,1,1,3,3-ペンタメチルジシロキサン(163mg,1.1mmol)を加えた後、溶液を80℃で23時間撹拌した。冷却後、内標としてアニソール(108mg,1.0mmol)を加え、1H-NMRスペクトルを測定し、生成物の構造および収率を決定した。これらの結果をエントリー1として表3に示す。
[Example 16] Hydrosilylation of 1-octene with 1,1,1,3,3-pentamethyldisiloxane A magnetic stirrer was added to a 20 mL Schlenk tube, and the mixture was heated and dried while reducing the pressure to 5 Pa. Was replaced with an argon atmosphere. Ruthenium complex A (2.0 mg, 0.003 mmol) was added to the Schlenk tube as a catalyst. 1-octene (112 mg, 1.0 mmol) was added thereto, and 1,1,1,3,3-pentamethyldisiloxane (163 mg, 1.1 mmol) was further added thereto, and then the solution was stirred at 80 ° C. for 23 hours. did. After cooling, anisole (108 mg, 1.0 mmol) was added as an internal standard, and the 1 H-NMR spectrum was measured to determine the structure and yield of the product. These results are shown in Table 3 as entry 1.
[実施例17]ルテニウム錯体Bを用いたヒドロシリル化反応
 20mLのシュレンクチューブに磁気撹拌子を加え、5Paに減圧しながら加熱乾燥した後、シュレンクチューブ内をアルゴン雰囲気に置換した。そのシュレンクチューブに、触媒としてルテニウム錯体B(2.4mg,0.003mmol)を加えた。ここに1-オクテン(112mg,1.0mmol)を加え、さらに1,1,1,3,3-ペンタメチルジシロキサン(163mg,1.1mmol)を加えた後、溶液を25℃で23時間撹拌した。冷却後、内標としてアニソール(108mg,1.0mmol)を加え、1H-NMRスペクトルを測定し、生成物の構造および収率を決定した。これらの結果をエントリー2として表3に示す。
[Example 17] Hydrosilylation reaction using ruthenium complex B A magnetic stirrer was added to a 20 mL Schlenk tube and dried by heating while reducing the pressure to 5 Pa. Then, the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex B (2.4 mg, 0.003 mmol) was added to the Schlenk tube as a catalyst. 1-octene (112 mg, 1.0 mmol) was added thereto, and 1,1,1,3,3-pentamethyldisiloxane (163 mg, 1.1 mmol) was further added thereto, and then the solution was stirred at 25 ° C. for 23 hours. did. After cooling, anisole (108 mg, 1.0 mmol) was added as an internal standard, and the 1 H-NMR spectrum was measured to determine the structure and yield of the product. These results are shown in Table 3 as entry 2.
[実施例18]ルテニウム錯体Cを用いたヒドロシリル化反応
 20mLのシュレンクチューブに磁気撹拌子を加え、5Paに減圧しながら加熱乾燥した後、シュレンクチューブ内をアルゴン雰囲気に置換した。そのシュレンクチューブに、触媒としてルテニウム錯体C(2.3mg,0.003mmol)を加えた。ここに1-オクテン(112mg,1.0mmol)を加え、さらに1,1,1,3,3-ペンタメチルジシロキサン(163mg,1.1mmol)を加えた後、溶液を25℃で23時間撹拌した。冷却後、内標としてアニソール(108mg,1.0mmol)を加え、1H-NMRスペクトルを測定し、生成物の構造および収率を決定した。これらの結果をエントリー3として表3に示す。
[Example 18] Hydrosilylation reaction using ruthenium complex C A magnetic stirrer was added to a 20 mL Schlenk tube, dried by heating while reducing the pressure to 5 Pa, and the inside of the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex C (2.3 mg, 0.003 mmol) was added to the Schlenk tube as a catalyst. 1-octene (112 mg, 1.0 mmol) was added thereto, and 1,1,1,3,3-pentamethyldisiloxane (163 mg, 1.1 mmol) was further added thereto, and then the solution was stirred at 25 ° C. for 23 hours. did. After cooling, anisole (108 mg, 1.0 mmol) was added as an internal standard, and the 1 H-NMR spectrum was measured to determine the structure and yield of the product. These results are shown in Table 3 as entry 3.
[実施例19]ルテニウム錯体Dを用いたヒドロシリル化反応
 20mLのシュレンクチューブに磁気撹拌子を加え、5Paに減圧しながら加熱乾燥した後、シュレンクチューブ内をアルゴン雰囲気に置換した。そのシュレンクチューブに、触媒としてルテニウム錯体D(4.3mg,0.005mmol)を加えた。ここに1-オクテン(112mg,1.0mmol)を加え、さらに1,1,1,3,3-ペンタメチルジシロキサン(163mg,1.1mmol)を加えた後、溶液を80℃で23時間撹拌した。冷却後、内標としてアニソール(108mg,1.0mmol)を加え、1H-NMRスペクトルを測定し、生成物の構造および収率を決定した。これらの結果をエントリー4として表3に示す。
[Example 19] Hydrosilylation reaction using ruthenium complex D A magnetic stirrer was added to a 20 mL Schlenk tube, dried by heating while reducing the pressure to 5 Pa, and the inside of the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex D (4.3 mg, 0.005 mmol) was added to the Schlenk tube as a catalyst. 1-octene (112 mg, 1.0 mmol) was added thereto, and 1,1,1,3,3-pentamethyldisiloxane (163 mg, 1.1 mmol) was further added thereto, and then the solution was stirred at 80 ° C. for 23 hours. did. After cooling, anisole (108 mg, 1.0 mmol) was added as an internal standard, and the 1 H-NMR spectrum was measured to determine the structure and yield of the product. These results are shown in Table 3 as entry 4.
1,1,1,3,3-pentamethyl-3-octyl-disiloxane(上記化合物(I))
1H NMR(400MHz,CDCl3)δ=0.03(s,6H,Si(C 32),0.06(s,9H,Si(C 33),0.45-0.55(m,2H,SiC 2),0.88(t,JHH=7.2Hz,3H,CH2 3),1.20-1.34(m,12H,(C 26).
1,1,1,3,3-pentamethyl-3-(1E)-1-octen-1-yl-disiloxane(上記化合物(II))
1H NMR(400MHz,CDCl3)δ=0.09(s,9H,Si(C 33),0.12(s,6H,Si(C 32),0.90(t,3H,JHH=7.6Hz),1.30-1.41(m,8H,C 2),2.11(q,2H,JHH=7.6Hz,C 2-CH=CH),5.6(d,1H,JHH=18.2Hz,Si-C=CH),6.11(dt,1H,JHH=18.2Hz,Si-CH=C
1,1,1,3,3-pentamethyl-(2E)-2-octen-1-yl-disiloxane(上記化合物(III))
1H NMR(400MHz,CDCl3)δ=0.08(s,9H,Si(C 33),0.14(s,6H,Si(C 32),0.88(t,3H,JHH=7.6Hz),1.28-1.42(m,8H,CH2),2.12(q,2H,JHH=7.6Hz,C 2-CH=CH),5.15-5.46(m,2H,Si-CH2-C=CH).
2-octene(上記化合物(IV))
1H NMR(400MHz,CDCl3)δ=0.90(t,JHH=7.2Hz,3H,CH3),1.11-1.51(m,4H,-(CH26-),1.54-1.62(m,5H,-(CH26- and C 3-CH=CH),2.03(m,2H,-C 2-CH=CH),5.19-5.66(m,2H,CH3-C=CH),
n-octane(上記化合物(V))
1H NMR(400MHz,CDCl3)δ=0.88(t,JHH=7.2Hz,6H,CH3),1.16-1.36(m,12H,-(CH26-).
1,1,1,3,3,5,5-heptamethyl-5-octyl-trisiloxane(上記化合物(VI))
1H NMR(400MHz,CDCl3)δ=-0.13(s,6H,-Si(C 32-),-0.13(s,6H,-Si(C 32-),0.01(s,6H,-Si(C 32-),0.31-0.38(m,2H,SiC 2),0.79(t,JHH=7.2Hz,3H,CH2 3),1.12-1.24(m,12H,(C 26).
1,1,1,3,3-pentamethyl-3-octyl-disiloxane (Compound (I) above)
1 H NMR (400 MHz, CDCl 3 ) δ = 0.03 (s, 6H, Si (C H 3 ) 2 ), 0.06 (s, 9H, Si (C H 3 ) 3 ), 0.45-0 .55 (m, 2H, SiC H 2), 0.88 (t, J HH = 7.2Hz, 3H, CH 2 C H 3), 1.20-1.34 (m, 12H, (C H 2 6 ).
1,1,1,3,3-pentamethyl-3- (1E) -1-octen-1-yl-disiloxane (compound (II) above)
1 H NMR (400 MHz, CDCl 3 ) δ = 0.09 (s, 9H, Si (C H 3 ) 3 ), 0.12 (s, 6H, Si (C H 3 ) 2 ), 0.90 (t , 3H, J HH = 7.6 Hz), 1.30-1.41 (m, 8H, C H 2 ), 2.11 (q, 2H, J HH = 7.6 Hz, C H 2 -CH = CH ), 5.6 (d, 1H, J HH = 18.2 Hz, Si—C H = CH), 6.11 (dt, 1 H, J HH = 18.2 Hz, Si—CH = C H )
1,1,1,3,3-pentamethyl- (2E) -2-octen-1-yl-disiloxane (compound (III) above)
1 H NMR (400 MHz, CDCl 3 ) δ = 0.08 (s, 9H, Si (C H 3 ) 3 ), 0.14 (s, 6H, Si (C H 3 ) 2 ), 0.88 (t , 3H, J HH = 7.6 Hz), 1.28-1.42 (m, 8H, CH 2 ), 2.12 (q, 2H, J HH = 7.6 Hz, C H 2 -CH = CH) , 5.15-5.46 (m, 2H, Si -CH 2 -C H = CH).
2-octene (compound (IV) above)
1 H NMR (400 MHz, CDCl 3 ) δ = 0.90 (t, J HH = 7.2 Hz, 3H, CH 3 ), 1.11-1.51 (m, 4H, — (CH 2 ) 6 —) , 1.54-1.62 (m, 5H, — (CH 2 ) 6 -and C H 3 —CH═CH), 2.03 (m, 2H, —C H 2 —CH═CH), 5. 19-5.66 (m, 2H, CH 3 -C H = CH),
n-octane (compound (V) above)
1 H NMR (400 MHz, CDCl 3 ) δ = 0.88 (t, J HH = 7.2 Hz, 6H, CH 3 ), 1.16-1.36 (m, 12H, — (CH 2 ) 6 —) .
1,1,1,3,3,5,5-heptamine-5-octyl-trisiloxane (the above compound (VI))
1 H NMR (400 MHz, CDCl 3 ) δ = −0.13 (s, 6H, —Si (C H 3 ) 2 —), −0.13 (s, 6H, —Si (C H 3 ) 2 —) , 0.01 (s, 6H, —Si (C H 3 ) 2 —), 0.31 to 0.38 (m, 2H, SiC H 2 ), 0.79 (t, J HH = 7.2 Hz, 3H, CH 2 C H 3) , 1.12-1.24 (m, 12H, (C H 2) 6).
[実施例20]ルテニウム錯体Eを用いたヒドロシリル化反応
 20mLのシュレンクチューブに磁気撹拌子を加え、5Paに減圧しながら加熱乾燥した後、シュレンクチューブ内をアルゴン雰囲気に置換した。そのシュレンクチューブに、触媒としてルテニウム錯体E(24mg,0.03mmol)を加えた。ここに1-オクテン(112mg,1.0mmol)を加え、さらに1,1,1,3,3-ペンタメチルジシロキサン(163mg,1.1mmol)を加えた後、溶液を80℃で23時間撹拌した。冷却後、内標としてアニソール(108mg,1.0mmol)を加え、1H-NMRスペクトルを測定し、生成物の構造および収率を決定した。これらの結果をエントリー5として表3に示す。
[Example 20] Hydrosilylation reaction using ruthenium complex E A magnetic stirrer was added to a 20 mL Schlenk tube and heated and dried while reducing the pressure to 5 Pa. Then, the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex E (24 mg, 0.03 mmol) was added to the Schlenk tube as a catalyst. 1-octene (112 mg, 1.0 mmol) was added thereto, and 1,1,1,3,3-pentamethyldisiloxane (163 mg, 1.1 mmol) was further added thereto, and then the solution was stirred at 80 ° C. for 23 hours. did. After cooling, anisole (108 mg, 1.0 mmol) was added as an internal standard, and the 1 H-NMR spectrum was measured to determine the structure and yield of the product. These results are shown in Table 3 as entry 5.
[実施例21]ルテニウム錯体Fを用いたヒドロシリル化反応
 20mLのシュレンクチューブに磁気撹拌子を加え、5Paに減圧しながら加熱乾燥した後、シュレンクチューブ内をアルゴン雰囲気に置換した。そのシュレンクチューブに、触媒としてルテニウム錯体F(2.3mg,0.003mmol)を加えた。ここに1-オクテン(112mg,1.0mmol)を加え、さらに1,1,1,3,3-ペンタメチルジシロキサン(163mg,1.1mmol)を加えた後、溶液を25℃で23時間撹拌した。冷却後、内標としてアニソール(108mg,1.0mmol)を加え、1H-NMRスペクトルを測定し、生成物の構造および収率を決定した。これらの結果をエントリー6として表3に示す。
[Example 21] Hydrosilylation reaction using ruthenium complex F A magnetic stirrer was added to a 20 mL Schlenk tube and dried by heating while reducing the pressure to 5 Pa. Then, the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex F (2.3 mg, 0.003 mmol) was added to the Schlenk tube as a catalyst. 1-octene (112 mg, 1.0 mmol) was added thereto, and 1,1,1,3,3-pentamethyldisiloxane (163 mg, 1.1 mmol) was further added thereto, and then the solution was stirred at 25 ° C. for 23 hours. did. After cooling, anisole (108 mg, 1.0 mmol) was added as an internal standard, and the 1 H-NMR spectrum was measured to determine the structure and yield of the product. These results are shown in Table 3 as entry 6.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
(5)ルテニウム錯体を用いた1-オクテンの水素化反応
Figure JPOXMLDOC01-appb-C000029
(5) 1-octene hydrogenation using ruthenium complex
Figure JPOXMLDOC01-appb-C000029
[実施例22]ルテニウム錯体Aを用いた水素化反応
 20mLのシュレンクチューブに磁気撹拌子を加えて5Paに減圧しながら加熱乾燥した後、シュレンクチューブ内をアルゴン雰囲気に置換した。そのシュレンクチューブに、触媒としてルテニウム錯体A(3.3mg,0.005mmol)を加え、THF(2mL)に溶解させた。この溶液に、1-オクテン(112mg,1.0mmol)を加えた。得られた溶液を凍結脱気し、シュレンクチューブ内を水素雰囲気に置換した後、溶液を室温で3時間撹拌した。内標としてアニソール(108mg,1.0mmol)を加え、1H-NMRスペクトルを測定し、生成物の構造および収率を決定した。得られた化合物は、1H,13C-NMRスペクトルによりその構造を確認した。これらの結果をエントリー1として表4に示す。
[Example 22] Hydrogenation reaction using ruthenium complex A A magnetic stirrer was added to a 20 mL Schlenk tube and dried by heating while reducing the pressure to 5 Pa. Then, the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex A (3.3 mg, 0.005 mmol) was added to the Schlenk tube as a catalyst, and dissolved in THF (2 mL). To this solution was added 1-octene (112 mg, 1.0 mmol). The resulting solution was freeze degassed and the inside of the Schlenk tube was replaced with a hydrogen atmosphere, and then the solution was stirred at room temperature for 3 hours. Anisole (108 mg, 1.0 mmol) was added as an internal standard, and the 1 H-NMR spectrum was measured to determine the structure and yield of the product. The structure of the obtained compound was confirmed by 1 H, 13 C-NMR spectrum. These results are shown in Table 4 as entry 1.
1H NMR(400MHz,CDCl3)δ=0.88(t,JHH=7.2Hz,6H,CH3),1.16-1.36(m,12H,-(CH26-).
13C NMR(100MHz,CDCl3)δ=14.27,22.86,29.48,32.10.
1 H NMR (400 MHz, CDCl 3 ) δ = 0.88 (t, J HH = 7.2 Hz, 6H, CH 3 ), 1.16-1.36 (m, 12H, — (CH 2 ) 6 —) .
13 C NMR (100 MHz, CDCl 3 ) δ = 14.27, 22.86, 29.48, 32.10.
[実施例23]ルテニウム錯体Bを用いた水素化反応
 20mLのシュレンクチューブに磁気撹拌子を加えて5Paに減圧しながら加熱乾燥した後、シュレンクチューブ内をアルゴン雰囲気に置換した。そのシュレンクチューブに、触媒としてルテニウム錯体B(4.0mg,0.005mmol)を加え、THF(2mL)に溶解させた。この溶液に、1-オクテン(112mg,1.0mmol)を加えた。得られた溶液を凍結脱気し、シュレンクチューブ内を水素雰囲気に置換した後、溶液を室温で3時間撹拌した。内標としてアニソール(108mg,1.0mmol)を加え、1H-NMRスペクトルを測定し、生成物の構造および収率を決定した。得られた化合物は、1H,13C-NMRスペクトルによりその構造を確認した。これらの結果をエントリー2として表4に示す。
[Example 23] Hydrogenation reaction using ruthenium complex B A magnetic stirrer was added to a 20 mL Schlenk tube and dried while heating under reduced pressure to 5 Pa, and then the inside of the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex B (4.0 mg, 0.005 mmol) was added to the Schlenk tube as a catalyst, and dissolved in THF (2 mL). To this solution was added 1-octene (112 mg, 1.0 mmol). The resulting solution was freeze degassed and the inside of the Schlenk tube was replaced with a hydrogen atmosphere, and then the solution was stirred at room temperature for 3 hours. Anisole (108 mg, 1.0 mmol) was added as an internal standard, and the 1 H-NMR spectrum was measured to determine the structure and yield of the product. The structure of the obtained compound was confirmed by 1 H, 13 C-NMR spectrum. These results are shown in Table 4 as entry 2.
[実施例24]ルテニウム錯体Cを用いた水素化反応
 20mLのシュレンクチューブに磁気撹拌子を加えて5Paに減圧しながら加熱乾燥した後、シュレンクチューブ内をアルゴン雰囲気に置換した。そのシュレンクチューブに、触媒としてルテニウム錯体C(3.9mg,0.005mmol)を加え、THF(2mL)に溶解させた。この溶液に、1-オクテン(112mg,1.0mmol)を加えた。得られた溶液を凍結脱気し、シュレンクチューブ内を水素雰囲気に置換した後、溶液を室温で3時間撹拌した。内標としてアニソール(108mg,1.0mmol)を加え、1H-NMRスペクトルを測定し、生成物の構造および収率を決定した。得られた化合物は、1H,13C-NMRスペクトルによりその構造を確認した。これらの結果をエントリー3として表4に示す。
[Example 24] Hydrogenation reaction using ruthenium complex C A magnetic stirrer was added to a 20 mL Schlenk tube and dried with heating while reducing the pressure to 5 Pa. Then, the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex C (3.9 mg, 0.005 mmol) was added to the Schlenk tube as a catalyst and dissolved in THF (2 mL). To this solution was added 1-octene (112 mg, 1.0 mmol). The resulting solution was freeze degassed and the inside of the Schlenk tube was replaced with a hydrogen atmosphere, and then the solution was stirred at room temperature for 3 hours. Anisole (108 mg, 1.0 mmol) was added as an internal standard, and the 1 H-NMR spectrum was measured to determine the structure and yield of the product. The structure of the obtained compound was confirmed by 1 H, 13 C-NMR spectrum. These results are shown in Table 4 as entry 3.
[実施例25]ルテニウム錯体Dを用いた水素化反応
 20mLのシュレンクチューブに磁気撹拌子を加えて5Paに減圧しながら加熱乾燥した後、シュレンクチューブ内をアルゴン雰囲気に置換した。そのシュレンクチューブに、触媒としてルテニウム錯体D(4.3mg,0.005mmol)を加え、THF(2mL)に溶解させた。この溶液に、1-オクテン(112mg,1.0mmol)を加えた。得られた溶液を凍結脱気し、シュレンクチューブ内を水素雰囲気に置換した後、溶液を室温で6時間撹拌した。内標としてアニソール(108mg,1.0mmol)を加え、1H-NMRスペクトルを測定し、生成物の構造および収率を決定した。得られた化合物は、1H,13C-NMRスペクトルによりその構造を確認した。これらの結果をエントリー4として表4に示す。
[Example 25] Hydrogenation reaction using ruthenium complex D After adding a magnetic stirrer to a 20 mL Schlenk tube and heating and drying while reducing the pressure to 5 Pa, the inside of the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex D (4.3 mg, 0.005 mmol) was added to the Schlenk tube as a catalyst, and dissolved in THF (2 mL). To this solution was added 1-octene (112 mg, 1.0 mmol). The resulting solution was freeze degassed and the inside of the Schlenk tube was replaced with a hydrogen atmosphere, and then the solution was stirred at room temperature for 6 hours. Anisole (108 mg, 1.0 mmol) was added as an internal standard, and the 1 H-NMR spectrum was measured to determine the structure and yield of the product. The structure of the obtained compound was confirmed by 1 H, 13 C-NMR spectrum. These results are shown in Table 4 as entry 4.
[実施例26]ルテニウム錯体Fを用いた水素化反応
 20mLのシュレンクチューブに磁気撹拌子を加えて5Paに減圧しながら加熱乾燥した後、シュレンクチューブ内をアルゴン雰囲気に置換した。そのシュレンクチューブに、触媒としてルテニウム錯体F(3.8mg,0.005mmol)を加え、THF(2mL)に溶解させた。この溶液に、1-オクテン(112mg,1.0mmol)を加えた。得られた溶液を凍結脱気し、シュレンクチューブ内を水素雰囲気に置換した後、溶液を室温で3時間撹拌した。内標としてアニソール(108mg,1.0mmol)を加え、1H-NMRスペクトルを測定し、生成物の構造および収率を決定した。得られた化合物は、1H,13C-NMRスペクトルによりその構造を確認した。これらの結果をエントリー5として表4に示す。
[Example 26] Hydrogenation reaction using ruthenium complex F A magnetic stirrer was added to a 20 mL Schlenk tube and dried by heating while reducing the pressure to 5 Pa. Then, the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex F (3.8 mg, 0.005 mmol) was added to the Schlenk tube as a catalyst and dissolved in THF (2 mL). To this solution was added 1-octene (112 mg, 1.0 mmol). The resulting solution was freeze degassed and the inside of the Schlenk tube was replaced with a hydrogen atmosphere, and then the solution was stirred at room temperature for 3 hours. Anisole (108 mg, 1.0 mmol) was added as an internal standard, and the 1 H-NMR spectrum was measured to determine the structure and yield of the product. The structure of the obtained compound was confirmed by 1 H, 13 C-NMR spectrum. These results are shown in Table 4 as entry 5.
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
(6)ルテニウム錯体を用いたスチレンの水素化
Figure JPOXMLDOC01-appb-C000031
(6) Hydrogenation of styrene using ruthenium complex
Figure JPOXMLDOC01-appb-C000031
[実施例27]ルテニウム錯体Aを用いた水素化反応
 20mLのシュレンクチューブに磁気撹拌子を加えて5Paに減圧しながら加熱乾燥した後、シュレンクチューブ内をアルゴン雰囲気に置換した。そのシュレンクチューブに、触媒としてルテニウム錯体A(0.65mg,0.001mmol)を加え、THF(2mL)に溶解させた。この溶液に、スチレン(104mg,1.0mmol)を加えた。得られた溶液を凍結脱気し、シュレンクチューブ内を水素雰囲気に置換した後、溶液を室温で18時間撹拌した。内標としてアニソール(108mg,1.0mmol)を加え、1H-NMRスペクトルを測定し、生成物の構造および収率を決定した。得られた化合物は、1H,13C-NMRスペクトルによりその構造を確認した。これらの結果をエントリー1として表5に示す。
[Example 27] Hydrogenation reaction using ruthenium complex A A magnetic stirrer was added to a 20 mL Schlenk tube and dried by heating while reducing the pressure to 5 Pa. Then, the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex A (0.65 mg, 0.001 mmol) was added to the Schlenk tube as a catalyst, and dissolved in THF (2 mL). To this solution was added styrene (104 mg, 1.0 mmol). The resulting solution was freeze degassed and the inside of the Schlenk tube was replaced with a hydrogen atmosphere, and then the solution was stirred at room temperature for 18 hours. Anisole (108 mg, 1.0 mmol) was added as an internal standard, and the 1 H-NMR spectrum was measured to determine the structure and yield of the product. The structure of the obtained compound was confirmed by 1 H, 13 C-NMR spectrum. These results are shown in Table 5 as entry 1.
1H NMR(400MHz,CDCl3)δ=1.13(t,JHH=7.2Hz,3H,CH2 3),2.54(q,JHH=7.2Hz,2H,C 2CH3),7.02-7.11(m,3H,C65),7.11-7.20(m,2H,C65).
13C NMR(100MHz,CDCl3)=15.6,28.8,125.6,127.8,128.3,144.3.
1 H NMR (400MHz, CDCl 3 ) δ = 1.13 (t, J HH = 7.2Hz, 3H, CH 2 C H 3), 2.54 (q, J HH = 7.2Hz, 2H, C H 2 CH 3 ), 7.02-7.11 (m, 3H, C 6 H 5 ), 7.11-7.20 (m, 2H, C 6 H 5 ).
13 C NMR (100 MHz, CDCl 3 ) = 15.6, 28.8, 125.6, 127.8, 128.3, 144.3.
[実施例28]ルテニウム錯体Bを用いた水素化反応
 20mLのシュレンクチューブに磁気撹拌子を加えて5Paに減圧しながら加熱乾燥した後、シュレンクチューブ内をアルゴン雰囲気に置換した。そのシュレンクチューブに、触媒としてルテニウム錯体B(0.8mg,0.001mmol)を加え、THF(2mL)に溶解させた。この溶液に、スチレン(104mg,1.0mmol)を加えた。得られた溶液を凍結脱気し、シュレンクチューブ内を水素雰囲気に置換した後、溶液を室温で18時間撹拌した。内標としてアニソール(108mg,1.0mmol)を加え、1H-NMRスペクトルを測定し、生成物の構造および収率を決定した。得られた化合物は、1H,13C-NMRスペクトルによりその構造を確認した。これらの結果をエントリー2として表5に示す。
[Example 28] Hydrogenation reaction using ruthenium complex B A magnetic stirrer was added to a 20 mL Schlenk tube and dried by heating while reducing the pressure to 5 Pa. Then, the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex B (0.8 mg, 0.001 mmol) was added to the Schlenk tube as a catalyst, and dissolved in THF (2 mL). To this solution was added styrene (104 mg, 1.0 mmol). The resulting solution was freeze degassed and the inside of the Schlenk tube was replaced with a hydrogen atmosphere, and then the solution was stirred at room temperature for 18 hours. Anisole (108 mg, 1.0 mmol) was added as an internal standard, and the 1 H-NMR spectrum was measured to determine the structure and yield of the product. The structure of the obtained compound was confirmed by 1 H, 13 C-NMR spectrum. These results are shown in Table 5 as entry 2.
[実施例29]ルテニウム錯体Cを用いた水素化反応
 20mLのシュレンクチューブに磁気撹拌子を加えて5Paに減圧しながら加熱乾燥した後、シュレンクチューブ内をアルゴン雰囲気に置換した。そのシュレンクチューブに、触媒としてルテニウム錯体C(0.77mg,0.001mmol)を加え、トルエン(2mL)に溶解させた。この溶液に、スチレン(104mg,1.0mmol)を加えた。得られた溶液を凍結脱気し、シュレンクチューブ内を水素雰囲気に置換した後、溶液を室温で6時間撹拌した。内標としてアニソール(108mg,1.0mmol)を加え、1H-NMRスペクトルを測定し、生成物の構造および収率を決定した。得られた化合物は、1H,13C-NMRスペクトルによりその構造を確認した。これらの結果をエントリー3として表5に示す。
[Example 29] Hydrogenation reaction using ruthenium complex C A magnetic stirrer was added to a 20 mL Schlenk tube and dried by heating while reducing the pressure to 5 Pa. Then, the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex C (0.77 mg, 0.001 mmol) was added to the Schlenk tube as a catalyst, and dissolved in toluene (2 mL). To this solution was added styrene (104 mg, 1.0 mmol). The resulting solution was freeze degassed and the inside of the Schlenk tube was replaced with a hydrogen atmosphere, and then the solution was stirred at room temperature for 6 hours. Anisole (108 mg, 1.0 mmol) was added as an internal standard, and the 1 H-NMR spectrum was measured to determine the structure and yield of the product. The structure of the obtained compound was confirmed by 1 H, 13 C-NMR spectrum. These results are shown in Table 5 as entry 3.
[実施例30]ルテニウム錯体Dを用いた水素化反応
 20mLのシュレンクチューブに磁気撹拌子を加えて5Paに減圧しながら加熱乾燥した後、シュレンクチューブ内をアルゴン雰囲気に置換した。そのシュレンクチューブに、触媒としてルテニウム錯体D(0.86mg,0.001mmol)を加え、THF(2mL)に溶解させた。この溶液に、スチレン(104mg,1.0mmol)を加えた。得られた溶液を凍結脱気し、シュレンクチューブ内を水素雰囲気に置換した後、溶液を室温で18時間撹拌した。内標としてアニソール(108mg,1.0mmol)を加え、1H-NMRスペクトルを測定し、生成物の構造および収率を決定した。得られた化合物は、1H,13C-NMRスペクトルによりその構造を確認した。これらの結果をエントリー4として表5に示す。
[Example 30] Hydrogenation reaction using ruthenium complex D A magnetic stirrer was added to a 20 mL Schlenk tube and dried by heating while reducing the pressure to 5 Pa. Then, the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex D (0.86 mg, 0.001 mmol) was added as a catalyst to the Schlenk tube and dissolved in THF (2 mL). To this solution was added styrene (104 mg, 1.0 mmol). The resulting solution was freeze degassed and the inside of the Schlenk tube was replaced with a hydrogen atmosphere, and then the solution was stirred at room temperature for 18 hours. Anisole (108 mg, 1.0 mmol) was added as an internal standard, and the 1 H-NMR spectrum was measured to determine the structure and yield of the product. The structure of the obtained compound was confirmed by 1 H, 13 C-NMR spectrum. These results are shown in Table 5 as entry 4.
[実施例31]ルテニウム錯体Eを用いた水素化反応
 20mLのシュレンクチューブに磁気撹拌子を加えて5Paに減圧しながら加熱乾燥した後、シュレンクチューブ内をアルゴン雰囲気に置換した。そのシュレンクチューブに、触媒としてルテニウム錯体E(2.44mg,0.003mmol)を加え、THF(2mL)に溶解させた。この溶液に、スチレン(104mg,1.0mmol)を加えた。得られた溶液を凍結脱気し、シュレンクチューブ内を水素雰囲気に置換した後、溶液を室温で1.5時間撹拌した。内標としてアニソール(108mg,1.0mmol)を加え、1H-NMRスペクトルを測定し、生成物の構造および収率を決定した。得られた化合物は、1H,13C-NMRスペクトルによりその構造を確認した。これらの結果をエントリー5として表5に示す。
[Example 31] Hydrogenation reaction using ruthenium complex E After adding a magnetic stirrer to a 20 mL Schlenk tube and heating and drying while reducing the pressure to 5 Pa, the inside of the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex E (2.44 mg, 0.003 mmol) was added to the Schlenk tube as a catalyst, and dissolved in THF (2 mL). To this solution was added styrene (104 mg, 1.0 mmol). The resulting solution was freeze degassed and the inside of the Schlenk tube was replaced with a hydrogen atmosphere, and then the solution was stirred at room temperature for 1.5 hours. Anisole (108 mg, 1.0 mmol) was added as an internal standard, and the 1 H-NMR spectrum was measured to determine the structure and yield of the product. The structure of the obtained compound was confirmed by 1 H, 13 C-NMR spectrum. These results are shown in Table 5 as entry 5.
[実施例32]ルテニウム錯体Fを用いた水素化反応
 20mLのシュレンクチューブに磁気撹拌子を加えて5Paに減圧しながら加熱乾燥した後、シュレンクチューブ内をアルゴン雰囲気に置換した。そのシュレンクチューブに、触媒としてルテニウム錯体F(0.76mg,0.001mmol)を加え、THF(2mL)に溶解させた。この溶液に、スチレン(104mg,1.0mmol)を加えた。得られた溶液を凍結脱気し、シュレンクチューブ内を水素雰囲気に置換した後、溶液を室温で6時間撹拌した。内標としてアニソール(108mg,1.0mmol)を加え、1H-NMRスペクトルを測定し、生成物の構造および収率を決定した。得られた化合物は、1H,13C-NMRスペクトルによりその構造を確認した。これらの結果をエントリー6として表5に示す。
[Example 32] Hydrogenation reaction using ruthenium complex F A magnetic stirrer was added to a 20 mL Schlenk tube and dried by heating while reducing the pressure to 5 Pa. Then, the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex F (0.76 mg, 0.001 mmol) was added to the Schlenk tube as a catalyst, and dissolved in THF (2 mL). To this solution was added styrene (104 mg, 1.0 mmol). The resulting solution was freeze degassed and the inside of the Schlenk tube was replaced with a hydrogen atmosphere, and then the solution was stirred at room temperature for 6 hours. Anisole (108 mg, 1.0 mmol) was added as an internal standard, and the 1 H-NMR spectrum was measured to determine the structure and yield of the product. The structure of the obtained compound was confirmed by 1 H, 13 C-NMR spectrum. These results are shown in Table 5 as entry 6.
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
(7)ルテニウム錯体Cを用いたオレフィンの水素化
Figure JPOXMLDOC01-appb-C000033
(7) Hydrogenation of olefins using ruthenium complex C
Figure JPOXMLDOC01-appb-C000033
[実施例33]メチル-10-ウンデセノエートの水素化
 20mLのシュレンクチューブに磁気撹拌子を加えて5Paに減圧しながら加熱乾燥した後、シュレンクチューブ内をアルゴン雰囲気に置換した。そのシュレンクチューブに、触媒としてルテニウム錯体C(3.9mg,0.005mmol)を加え、トルエン(2mL)に溶解させた。この溶液に、メチル-10-ウンデセノエート(198mg,1.0mmol)を加えた。得られた溶液を凍結脱気し、シュレンクチューブ内を水素雰囲気に置換した後、溶液を室温で1.5時間撹拌した。内標としてアニソール(108mg,1.0mmol)を加え、1H-NMRスペクトルを測定し、生成物の構造および収率を決定した。得られた化合物は、1H,13C-NMRスペクトルによりその構造を確認した。これらの結果をエントリー1として表6に示す。
[Example 33] Hydrogenation of methyl-10-undecenoate A magnetic stirrer was added to a 20 mL Schlenk tube and dried by heating while reducing the pressure to 5 Pa. Then, the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex C (3.9 mg, 0.005 mmol) was added to the Schlenk tube as a catalyst and dissolved in toluene (2 mL). To this solution was added methyl-10-undecenoate (198 mg, 1.0 mmol). The resulting solution was freeze degassed and the inside of the Schlenk tube was replaced with a hydrogen atmosphere, and then the solution was stirred at room temperature for 1.5 hours. Anisole (108 mg, 1.0 mmol) was added as an internal standard, and the 1 H-NMR spectrum was measured to determine the structure and yield of the product. The structure of the obtained compound was confirmed by 1 H, 13 C-NMR spectrum. These results are shown in Table 6 as entry 1.
1H NMR(400MHz,CDCl3)δ=0.88(t,3H,JH-H=7.4Hz,-CH3),1.17-1.35(m,14H,-CH2-),1.53-1.67(m,2H,-CH2-),2.30(t,2H,JH-H=7.7Hz,-CH2C(=O)-),3.66(s,3H,OMe).
13C NMR(100MHz,CDCl3)δ=14.25,22.83,25.12,29.31,29.40,29.45,29.60,29.70,32.04,34.28,51.57,174.50.
1 H NMR (400 MHz, CDCl 3 ) δ = 0.88 (t, 3H, J HH = 7.4 Hz, —CH 3 ), 1.17-1.35 (m, 14H, —CH 2 —), 1 .53-1.67 (m, 2H, —CH 2 —), 2.30 (t, 2H, J HH = 7.7 Hz, —CH 2 C (═O) —), 3.66 (s, 3H , OMe).
13 C NMR (100 MHz, CDCl 3 ) δ = 14.25, 22.83, 25.12, 29.31, 29.40, 29.45, 29.60, 29.70, 32.04, 34.28 , 51.57, 174.50.
[実施例34]シクロヘキセンの水素化
 20mLのシュレンクチューブに磁気撹拌子を加えて5Paに減圧しながら加熱乾燥した後、シュレンクチューブ内をアルゴン雰囲気に置換した。そのシュレンクチューブに、触媒としてルテニウム錯体C(2.3mg,0.003mmol)を加え、トルエン(2mL)に溶解させた。この溶液に、シクロヘキセン(82mg,1.0mmol)を加えた。得られた溶液を凍結脱気し、シュレンクチューブ内を水素雰囲気に置換した後、溶液を室温で4時間撹拌した。内標としてアニソール(108mg,1.0mmol)を加え、1H-NMRスペクトルを測定し、生成物の構造および収率を決定した。得られた化合物は、1H,13C-NMRスペクトルによりその構造を確認した。これらの結果をエントリー2として表6に示す。
[Example 34] Hydrogenation of cyclohexene A magnetic stirrer was added to a 20 mL Schlenk tube and dried by heating while reducing the pressure to 5 Pa. Then, the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex C (2.3 mg, 0.003 mmol) was added to the Schlenk tube as a catalyst and dissolved in toluene (2 mL). To this solution was added cyclohexene (82 mg, 1.0 mmol). The resulting solution was freeze degassed and the inside of the Schlenk tube was replaced with a hydrogen atmosphere, and then the solution was stirred at room temperature for 4 hours. Anisole (108 mg, 1.0 mmol) was added as an internal standard, and the 1 H-NMR spectrum was measured to determine the structure and yield of the product. The structure of the obtained compound was confirmed by 1 H, 13 C-NMR spectrum. These results are shown in Table 6 as entry 2.
1H NMR(400MHz,CDCl3,)δ=1.43(s,12H,CH2).
13C NMR(100MHz,CDCl3)δ=27.0.
1 H NMR (400 MHz, CDCl 3 ) δ = 1.43 (s, 12H, CH 2 ).
13 C NMR (100 MHz, CDCl 3 ) δ = 27.0.
[実施例35]エチル-2,3-ジメチルアクリレートの水素化
 20mLのシュレンクチューブに磁気撹拌子を加えて5Paに減圧しながら加熱乾燥した後、シュレンクチューブ内をアルゴン雰囲気に置換した。そのシュレンクチューブに、触媒としてルテニウム錯体C(2.3mg,0.003mmol)を加え、トルエン(2mL)に溶解させた。この溶液に、エチル-2,3-ジメチルアクリレート(128mg,1.0mmol)を加えた。得られた溶液を凍結脱気し、シュレンクチューブ内を水素雰囲気に置換した後、溶液を室温で6時間撹拌した。内標としてアニソール(108mg,1.0mmol)を加え、1H-NMRスペクトルを測定し、生成物の構造および収率を決定した。得られた化合物は、1H,13C-NMRスペクトルによりその構造を確認した。これらの結果をエントリー3として表6に示す。
[Example 35] Hydrogenation of ethyl-2,3-dimethyl acrylate A magnetic stirrer was added to a 20 mL Schlenk tube and dried under reduced pressure to 5 Pa, and then the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex C (2.3 mg, 0.003 mmol) was added to the Schlenk tube as a catalyst and dissolved in toluene (2 mL). To this solution, ethyl-2,3-dimethylacrylate (128 mg, 1.0 mmol) was added. The resulting solution was freeze degassed and the inside of the Schlenk tube was replaced with a hydrogen atmosphere, and then the solution was stirred at room temperature for 6 hours. Anisole (108 mg, 1.0 mmol) was added as an internal standard, and the 1 H-NMR spectrum was measured to determine the structure and yield of the product. The structure of the obtained compound was confirmed by 1 H, 13 C-NMR spectrum. These results are shown in Table 6 as entry 3.
1H NMR(400MHz,CDCl3)δ=0.93-0.96(m,6H,Me),1.28(t,3H,OCH2 3),2.00-2.04(m,1H,CHandCH2C(=O)),4.19(q,2H,OC 2CH3).
13C NMR(100MHz,CDCl3)δ=14.6,22.9,26.0,43.6,60.3,173.5.
1 H NMR (400MHz, CDCl 3 ) δ = 0.93-0.96 (m, 6H, Me), 1.28 (t, 3H, OCH 2 C H 3), 2.00-2.04 (m , 1H, ChandCH 2 C (═O)), 4.19 (q, 2H, OC H 2 CH 3 ).
13 C NMR (100 MHz, CDCl 3 ) δ = 14.6, 22.9, 26.0, 43.6, 60.3, 173.5.
[実施例36]2,3-ジメチル-2-ブテンの水素化
 20mLのシュレンクチューブに磁気撹拌子を加えて5Paに減圧しながら加熱乾燥した後、シュレンクチューブ内をアルゴン雰囲気に置換した。そのシュレンクチューブに、触媒としてルテニウム錯体C(3.9mg,0.005mmol)を加え、トルエン(2mL)に溶解させた。この溶液に、2,3-ジメチル-2-ブテン(84mg,1.0mmol)を加えた。得られた溶液を凍結脱気し、シュレンクチューブ内を水素雰囲気に置換した後、溶液を室温で6時間撹拌した。内標としてアニソール(108mg,1.0mmol)を加え、1H-NMRスペクトルを測定し、生成物の構造および収率を決定した。得られた化合物は、1H,13C-NMRスペクトルによりその構造を確認した。これらの結果をエントリー4として表6に示す。
[Example 36] Hydrogenation of 2,3-dimethyl-2-butene A magnetic stirrer was added to a 20 mL Schlenk tube and dried under reduced pressure to 5 Pa, and then the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex C (3.9 mg, 0.005 mmol) was added to the Schlenk tube as a catalyst and dissolved in toluene (2 mL). To this solution was added 2,3-dimethyl-2-butene (84 mg, 1.0 mmol). The resulting solution was freeze degassed and the inside of the Schlenk tube was replaced with a hydrogen atmosphere, and then the solution was stirred at room temperature for 6 hours. Anisole (108 mg, 1.0 mmol) was added as an internal standard, and the 1 H-NMR spectrum was measured to determine the structure and yield of the product. The structure of the obtained compound was confirmed by 1 H, 13 C-NMR spectrum. These results are shown in Table 6 as entry 4.
1H NMR(400MHz,CDCl3)δ=0.84(d,JH-H=6.7Hz,12H,CH3),1.40(septet,JH-H=6.7Hz,12H,CH).
13C NMR(100MHz,CDCl3)δ=19.4,33.7.
1 H NMR (400 MHz, CDCl 3 ) δ = 0.84 (d, J HH = 6.7 Hz, 12 H, CH 3 ), 1.40 (septet, J HH = 6.7 Hz, 12 H, CH).
13 C NMR (100 MHz, CDCl 3 ) δ = 19.4, 33.7.
[実施例37]トランス-スチルベンの水素化
 20mLのシュレンクチューブに磁気撹拌子を加えて5Paに減圧しながら加熱乾燥した後、シュレンクチューブ内をアルゴン雰囲気に置換した。そのシュレンクチューブに、触媒としてルテニウム錯体C(2.3mg,0.003mmol)を加え、トルエン(2mL)に溶解させた。この溶液に、トランス-スチルベン(180mg,1.0mmol)を加えた。得られた溶液を凍結脱気し、シュレンクチューブ内を水素雰囲気に置換した後、溶液を室温で6時間撹拌した。内標としてアニソールを加え、1H-NMRスペクトルを測定し、生成物の構造および収率を決定した。得られた化合物は、1H,13C-NMRスペクトルによりその構造を確認した。これらの結果をエントリー5として表6に示す。
[Example 37] Hydrogenation of trans-stilbene A magnetic stirrer was added to a 20 mL Schlenk tube and dried under reduced pressure to 5 Pa, and then the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex C (2.3 mg, 0.003 mmol) was added to the Schlenk tube as a catalyst and dissolved in toluene (2 mL). To this solution was added trans-stilbene (180 mg, 1.0 mmol). The resulting solution was freeze degassed and the inside of the Schlenk tube was replaced with a hydrogen atmosphere, and then the solution was stirred at room temperature for 6 hours. Anisole was added as an internal standard, and the 1 H-NMR spectrum was measured to determine the structure and yield of the product. The structure of the obtained compound was confirmed by 1 H, 13 C-NMR spectrum. These results are shown in Table 6 as entry 5.
1H NMR(400MHz,CDCl3)δ=2.93(s,4H,CH2),7.12-7.23(m,6H,C65),7.24-7.32(m,4H,C65).
13C NMR(100MHz,CDCl3)δ=37.9,125.9,128.3,128.5,141.8.
1 H NMR (400 MHz, CDCl 3 ) δ = 2.93 (s, 4H, CH 2 ), 7.12-7.23 (m, 6H, C 6 H 5 ), 7.24-7.32 (m , 4H, C 6 H 5 ).
13 C NMR (100 MHz, CDCl 3 ) δ = 37.9, 125.9, 128.3, 128.5, 141.8.
[実施例38]1-メチル-1-シクロヘキセンの水素化
 20mLのシュレンクチューブに磁気撹拌子を加えて5Paに減圧しながら加熱乾燥した後、シュレンクチューブ内をアルゴン雰囲気に置換した。そのシュレンクチューブに、触媒としてルテニウム錯体C(2.3mg,0.003mmol)を加え、トルエン(2mL)に溶解させた。この溶液に、1-メチル-1-シクロヘキセン(96mg,1.0mmol)を加えた。得られた溶液を凍結脱気し、シュレンクチューブ内を水素雰囲気に置換した後、溶液を室温で3時間撹拌した。内標としてアニソールを加え、1H-NMRスペクトルを測定し、生成物の構造および収率を決定した。得られた化合物は、1H,13C-NMRスペクトルによりその構造を確認した。これらの結果をエントリー6として表6に示す。
[Example 38] Hydrogenation of 1-methyl-1-cyclohexene A magnetic stirrer was added to a 20 mL Schlenk tube and dried by heating while reducing the pressure to 5 Pa. Then, the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex C (2.3 mg, 0.003 mmol) was added to the Schlenk tube as a catalyst and dissolved in toluene (2 mL). To this solution was added 1-methyl-1-cyclohexene (96 mg, 1.0 mmol). The resulting solution was freeze degassed and the inside of the Schlenk tube was replaced with a hydrogen atmosphere, and then the solution was stirred at room temperature for 3 hours. Anisole was added as an internal standard, and the 1 H-NMR spectrum was measured to determine the structure and yield of the product. The structure of the obtained compound was confirmed by 1 H, 13 C-NMR spectrum. These results are shown in Table 6 as entry 6.
1H NMR(400MHz,CDCl3)δ=0.86(d,JHH=5.8Hz,3H,CH3),1.04-1.28(m,4H,CH2),1.28-1.39(m,1H,CH),1.54-1.72(m,6H,CH2).
13C NMR(100MHz,CDCl3)δ=22.9,26.3,26.4,32.7,35.4.
1 H NMR (400 MHz, CDCl 3 ) δ = 0.86 (d, J HH = 5.8 Hz, 3H, CH 3 ), 1.04-1.28 (m, 4H, CH 2 ), 1.28- 1.39 (m, 1H, CH) , 1.54-1.72 (m, 6H, CH 2).
13 C NMR (100 MHz, CDCl 3 ) δ = 22.9, 26.3, 26.4, 32.7, 35.4.
[実施例39](±)-リモネンの水素化
 20mLのシュレンクチューブに磁気撹拌子を加えて5Paに減圧しながら加熱乾燥した後、シュレンクチューブ内をアルゴン雰囲気に置換した。そのシュレンクチューブに、触媒としてルテニウム錯体C(7.7mg,0.010mmol)を加え、トルエン(2mL)に溶解させた。この溶液に、(±)-リモネン(136mg,1.0mmol)を加えた。得られた溶液をオートクレーブ内に移し、オートクレーブ内を水素で置換した。その後、溶液を10気圧の水素雰囲気下、室温で6時間撹拌した。内標としてアニソールを加え、1H-NMRスペクトルを測定し、生成物の構造および収率を決定した。得られた化合物は、1H,13C-NMRスペクトルによりその構造を確認した(trans:cis=1:1)。これらの結果をエントリー7として表6に示す。
[Example 39] Hydrogenation of (±) -limonene A magnetic stirrer was added to a 20 mL Schlenk tube and dried by heating while reducing the pressure to 5 Pa. Then, the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex C (7.7 mg, 0.010 mmol) was added to the Schlenk tube as a catalyst, and dissolved in toluene (2 mL). To this solution, (±) -limonene (136 mg, 1.0 mmol) was added. The resulting solution was transferred into an autoclave and the autoclave was replaced with hydrogen. Thereafter, the solution was stirred at room temperature for 6 hours under a hydrogen atmosphere of 10 atm. Anisole was added as an internal standard, and the 1 H-NMR spectrum was measured to determine the structure and yield of the product. The structure of the obtained compound was confirmed by 1 H, 13 C-NMR spectrum (trans: cis = 1: 1). These results are shown in Table 6 as entry 7.
1H NMR(400MHz,CDCl3)δ=0.847(d,2H,JHH=6.8Hz,CH(CH32 of trans-isomer),0.859(d,3H,JHH=6.8Hz,CH3 of trans-isomer),0.860(d,2H,JHH=6.8Hz,CH(CH32 of cis-isomer),0.909(d,3H,JHH=6.8Hz,CH3 of cis-isomer),0.87-1.09(m,2H,CH and CH2),1.18-1.58(m,6H,CH and CH2),1.62-1.77(m,3H,CH2).
13C NMR(100MHz,CDCl3)δ=19.5,20.0,20.4,22.9,25.5,29.3,29.7,31.6,33.0,33.1,35.8,43.2,44.0.
1 H NMR (400 MHz, CDCl 3 ) δ = 0.847 (d, 2H, J HH = 6.8 Hz, CH (CH 3 ) 2 of trans-isomer), 0.859 (d, 3H, J HH = 6 .8 Hz, CH 3 of trans-isomer), 0.860 (d, 2H, J HH = 6.8 Hz, CH (CH 3 ) 2 of cis-isomer), 0.909 (d, 3H, J HH = 6 8 Hz, CH 3 of cis-isomer), 0.87-1.09 (m, 2H, CH and CH 2 ), 1.18-1.58 (m, 6H, CH and CH 2 ), 1.62 -1.77 (m, 3H, CH 2 ).
13 C NMR (100 MHz, CDCl 3 ) δ = 19.5, 20.0, 20.4, 22.9, 25.5, 29.3, 29.7, 31.6, 33.0, 33.1 , 35.8, 43.2, 44.0.
[実施例40]イソプロピリデンマロン酸ジエチルの水素化
 20mLのシュレンクチューブに磁気撹拌子を加えて5Paに減圧しながら加熱乾燥した後、シュレンクチューブ内をアルゴン雰囲気に置換した。そのシュレンクチューブに、触媒としてルテニウム錯体C(7.7mg,0.010mmol)を加え、トルエン(2mL)に溶解させた。この溶液に、イソプロピリデンマロン酸ジエチル(200mg,1.0mmol)を加えた。得られた溶液をオートクレーブ内に移し、オートクレーブ内を水素で置換した。その後、溶液を10気圧の水素雰囲気下、室温で9時間撹拌した。内標としてアニソールを加え、1H-NMRスペクトルを測定し、生成物の構造および収率を決定した。得られた化合物は、1H,13C-NMRスペクトルによりその構造を確認した。これらの結果をエントリー8として表6に示す。
[Example 40] Hydrogenation of diethyl isopropylidenemalonate A magnetic stirrer was added to a 20 mL Schlenk tube and dried under reduced pressure to 5 Pa, and then the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex C (7.7 mg, 0.010 mmol) was added to the Schlenk tube as a catalyst, and dissolved in toluene (2 mL). To this solution was added diethyl isopropylidenemalonate (200 mg, 1.0 mmol). The resulting solution was transferred into an autoclave and the autoclave was replaced with hydrogen. Thereafter, the solution was stirred at room temperature for 9 hours under a hydrogen atmosphere of 10 atm. Anisole was added as an internal standard, and the 1 H-NMR spectrum was measured to determine the structure and yield of the product. The structure of the obtained compound was confirmed by 1 H, 13 C-NMR spectrum. These results are shown in Table 6 as entry 8.
1H NMR(400MHz,CDCl3)δ=0.99(d,JHH=6.3Hz,3H,CH3),1.26(t,JHH=7.3Hz,3H,CH3),2.38(doublet of septet,JHH=6.3,8.7Hz,1H,CHMe2),3.10(d,JHH=8.7Hz,1H,Me2CH-CH-),4.82(q,JHH=7.3Hz,2H,CH2).
13C NMR(100MHz,CDCl3)δ=14.3,20.5,28.9,59.3,61.3,169.0.
1 H NMR (400 MHz, CDCl 3 ) δ = 0.99 (d, J HH = 6.3 Hz, 3H, CH 3 ), 1.26 (t, J HH = 7.3 Hz, 3H, CH 3 ), 2 .38 (double of septet, J HH = 6.3, 8.7 Hz, 1H, CHMe 2 ), 3.10 (d, J HH = 8.7 Hz, 1H, Me 2 CH—CH—), 4.82 (Q, J HH = 7.3 Hz, 2H, CH 2 ).
13 C NMR (100 MHz, CDCl 3 ) δ = 14.3, 20.5, 28.9, 59.3, 61.3, 169.0.
[実施例41]2,3-ジメチル-1H-インデンの水素化
 20mLのシュレンクチューブに磁気撹拌子を加えて5Paに減圧しながら加熱乾燥した後、シュレンクチューブ内をアルゴン雰囲気に置換した。そのシュレンクチューブに、触媒としてルテニウム錯体C(7.7mg,0.010mmol)を加え、トルエン(2mL)に溶解させた。この溶液に、2,3-ジメチル-1H-インデン(144mg,1.0mmol)を加えた。得られた溶液をオートクレーブ内に移し、オートクレーブ内を水素で置換した。その後、溶液を10気圧の水素雰囲気下、80℃で6時間撹拌した。内標としてアニソールを加え、1H-NMRスペクトルを測定し、生成物の構造および収率を決定した。得られた化合物は、1H,13C-NMRスペクトルによりその構造を確認した。これらの結果をエントリー9として表6に示す。
[Example 41] Hydrogenation of 2,3-dimethyl-1H-indene A magnetic stirrer was added to a 20 mL Schlenk tube and dried under reduced pressure to 5 Pa, and then the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex C (7.7 mg, 0.010 mmol) was added to the Schlenk tube as a catalyst, and dissolved in toluene (2 mL). To this solution was added 2,3-dimethyl-1H-indene (144 mg, 1.0 mmol). The resulting solution was transferred into an autoclave and the autoclave was replaced with hydrogen. Thereafter, the solution was stirred at 80 ° C. for 6 hours under a hydrogen atmosphere of 10 atm. Anisole was added as an internal standard, and the 1 H-NMR spectrum was measured to determine the structure and yield of the product. The structure of the obtained compound was confirmed by 1 H, 13 C-NMR spectrum. These results are shown in Table 6 as entry 9.
1H NMR(400MHz,CDCl3)δ=0.94(d,3H,J=6.9Hz,CH3CHCH2),1.14(d,3H,J=7.2Hz,CH3CH),2.49-2.61(m,2H),2.94(m,1H),3.17,(quintet,1H,J=6.9Hz,CH3CH),7.06-7.24(m,4H,C64).
13C NMR(100MHz,CDCl3)δ=14.5,15.0,37.8,39.2,42.6,123.5,124.3,126.0,126.1,142.8,149.0.
1 H NMR (400 MHz, CDCl 3 ) δ = 0.94 (d, 3H, J = 6.9 Hz, CH 3 CHCH 2 ), 1.14 (d, 3H, J = 7.2 Hz, CH 3 CH), 2.49-2.61 (m, 2H), 2.94 (m, 1H), 3.17, (quintet, 1H, J = 6.9 Hz, CH 3 CH), 7.06-7.24 ( m, 4H, C 6 H 4 ).
13 C NMR (100 MHz, CDCl 3 ) δ = 14.5, 15.0, 37.8, 39.2, 42.6, 123.5, 124.3, 126.0, 126.1, 142.8 , 149.0.
[実施例42]酢酸シンナミルの水素化
 20mLのシュレンクチューブに磁気撹拌子を加えて5Paに減圧しながら加熱乾燥した後、シュレンクチューブ内をアルゴン雰囲気に置換した。そのシュレンクチューブに、触媒としてルテニウム錯体C(7.7mg,0.010mmol)を加え、トルエン(2mL)に溶解させた。この溶液に、酢酸シンナミル(176mg,1.0mmol)を加えた。得られた溶液をオートクレーブ内に移し、オートクレーブ内を水素で置換した。その後、溶液を10気圧の水素雰囲気下、室温で6時間撹拌した。内標としてアニソールを加え、1H-NMRスペクトルを測定し、生成物の構造および収率を決定した。得られた化合物は、1H,13C-NMRスペクトルによりその構造を確認した。これらの結果をエントリー10として表6に示す。
[Example 42] Hydrogenation of cinnamyl acetate A magnetic stirrer was added to a 20 mL Schlenk tube and dried under reduced pressure to 5 Pa, and then the inside of the Schlenk tube was replaced with an argon atmosphere. Ruthenium complex C (7.7 mg, 0.010 mmol) was added to the Schlenk tube as a catalyst, and dissolved in toluene (2 mL). To this solution was added cinnamyl acetate (176 mg, 1.0 mmol). The resulting solution was transferred into an autoclave and the autoclave was replaced with hydrogen. Thereafter, the solution was stirred at room temperature for 6 hours under a hydrogen atmosphere of 10 atm. Anisole was added as an internal standard, and the 1 H-NMR spectrum was measured to determine the structure and yield of the product. The structure of the obtained compound was confirmed by 1 H, 13 C-NMR spectrum. These results are shown in Table 6 as entry 10.
1H NMR(400MHz,CDCl3)δ=1.96(m,2H,PhCH2CH2CH2-),2.06(s,3H,Me),2.70(m,2H,2H,PhCH2CH2CH2-),4.09(t,2H,J=6.8Hz,PhCH2CH2CH2-),7.17-7.23(m,3H,Ph),7.27-7.32(m,2H,Ph).
13C NMR(100MHz,CDCl3)δ=21.1,30.3,32.3,64.0,126.2,128.5,128.6,141.3,171.3.
1 H NMR (400 MHz, CDCl 3 ) δ = 1.96 (m, 2H, PhCH 2 CH 2 CH 2- ), 2.06 (s, 3H, Me), 2.70 (m, 2H, 2H, PhCH 2 CH 2 CH 2- ), 4.09 (t, 2H, J = 6.8 Hz, PhCH 2 CH 2 CH 2- ), 7.17-7.23 (m, 3H, Ph), 7.27- 7.32 (m, 2H, Ph).
13 C NMR (100 MHz, CDCl 3 ) δ = 21.1, 30.3, 32.3, 64.0, 126.2, 128.5, 128.6, 141.3, 171.3.
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
(8)ルテニウム錯体を用いたN,N-ジメチルホルムアミドの還元
Figure JPOXMLDOC01-appb-C000035
(8) Reduction of N, N-dimethylformamide using ruthenium complex
Figure JPOXMLDOC01-appb-C000035
[実施例43]ルテニウム錯体Cを用いた反応
 NMRチューブを5Paに減圧しながら加熱乾燥した後、触媒としてルテニウム錯体C(39mg,0.05mmol)を加え、重ベンゼン0.4mLをシリンジで加えた。その後、ジメチルフェニルシラン(600mg,4.4mmol)を加え、さらにN,N-ジメチルホルムアミド(73mg,1.0mmol、以下、DMF)を加えた後、減圧下でNMRチューブを焼き切り真空封管した。溶液を120℃で5時間撹拌した後、1H-NMRスペクトルによりアミンの生成を確認した。これらの結果をエントリー1として表7に示す。
[Example 43] Reaction using ruthenium complex C After drying the NMR tube under reduced pressure to 5 Pa, ruthenium complex C (39 mg, 0.05 mmol) was added as a catalyst, and 0.4 mL of heavy benzene was added by syringe. . Thereafter, dimethylphenylsilane (600 mg, 4.4 mmol) was added, and N, N-dimethylformamide (73 mg, 1.0 mmol, hereinafter referred to as DMF) was added, and then the NMR tube was burned off under vacuum and sealed in a vacuum. After the solution was stirred at 120 ° C. for 5 hours, formation of amine was confirmed by 1 H-NMR spectrum. These results are shown in Table 7 as entry 1.
1H NMR(400MHz,CDCl3)δ=2.12(s,9H,NMe2). 1 H NMR (400 MHz, CDCl 3 ) δ = 2.12 (s, 9H, NMe 2 ).
[実施例44]ルテニウム錯体Eを用いた反応
 NMRチューブを5Paに減圧しながら加熱乾燥した後、触媒としてルテニウム錯体E(4.1mg,0.005mmol)を加え、重ベンゼン0.4mLをシリンジで加えた。その後、ジメチルフェニルシラン(600mg,4.4mmol)を加え、さらにDMF(73mg,1.0mmol)を加えた後、減圧下でNMRチューブを焼き切り真空封管した。溶液を120℃で5時間撹拌した後、1H-NMRスペクトルによりアミンの生成を確認した。これらの結果をエントリー2として表7に示す。
[Example 44] Reaction using ruthenium complex E After heating and drying the NMR tube at 5 Pa under reduced pressure, ruthenium complex E (4.1 mg, 0.005 mmol) was added as a catalyst, and 0.4 mL of heavy benzene was added with a syringe. added. Thereafter, dimethylphenylsilane (600 mg, 4.4 mmol) was added, and DMF (73 mg, 1.0 mmol) was further added, and then the NMR tube was burned off under reduced pressure and vacuum sealed. After the solution was stirred at 120 ° C. for 5 hours, formation of amine was confirmed by 1 H-NMR spectrum. These results are shown in Table 7 as entry 2.
[実施例45]ルテニウム錯体Fを用いた反応
 NMRチューブを5Paに減圧しながら加熱乾燥した後、触媒としてルテニウム錯体F(38mg,0.05mmol)を加え、重ベンゼン0.4mLをシリンジで加えた。その後、ジメチルフェニルシラン(600mg,4.4mmol)を加え、さらにDMF(73mg,1.0mmol)を加えた後、減圧下でNMRチューブを焼き切り真空封管した。溶液を120℃で5時間撹拌した後、1H-NMRスペクトルによりアミンの生成を確認した。これらの結果をエントリー3として表7に示す。
[Example 45] Reaction using ruthenium complex F After drying the NMR tube under reduced pressure to 5 Pa, ruthenium complex F (38 mg, 0.05 mmol) was added as a catalyst, and 0.4 mL of heavy benzene was added by syringe. . Thereafter, dimethylphenylsilane (600 mg, 4.4 mmol) was added, and DMF (73 mg, 1.0 mmol) was further added, and then the NMR tube was burned off under reduced pressure and vacuum sealed. After the solution was stirred at 120 ° C. for 5 hours, formation of amine was confirmed by 1 H-NMR spectrum. These results are shown in Table 7 as entry 3.
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036

Claims (15)

  1.  式(1)で表されることを特徴とする中性またはカチオン性単核ルテニウム二価錯体。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1~R6は、互いに独立して、水素原子、Xで置換されていてもよい、アルキル基、アリール基、アラルキル基、オルガノオキシ基、モノオルガノアミノ基、ジオルガノアミノ基、モノオルガノホスフィノ基、ジオルガノホスフィノ基、モノオルガノシリル基、ジオルガノシリル基、トリオルガノシリル基、またはオルガノチオ基を表すか、R1~R3のいずれかとR4~R6のいずれかの少なくとも1組が一緒になった架橋置換基を表し、
     Xは、ハロゲン原子、オルガノオキシ基、モノオルガノアミノ基、ジオルガノアミノ基、またはオルガノチオ基を表し、
     Lは、互いに独立してCOおよびチオ尿素配位子以外の二電子配位子を表し、2個のLが互いに結合していてもよく、
     mは、3または4の整数を表す。)
    A neutral or cationic mononuclear ruthenium divalent complex represented by the formula (1):
    Figure JPOXMLDOC01-appb-C000001
    (Wherein R 1 to R 6 are independently of each other a hydrogen atom, X may be substituted with alkyl group, aryl group, aralkyl group, organooxy group, monoorganoamino group, diorganoamino group. Represents a monoorganophosphino group, a diorganophosphino group, a monoorganosilyl group, a diorganosilyl group, a triorganosilyl group, or an organothio group, or any of R 1 to R 3 and any of R 4 to R 6 A bridged substituent in which at least one pair of
    X represents a halogen atom, an organooxy group, a monoorganoamino group, a diorganoamino group, or an organothio group,
    L represents a two-electron ligand other than CO and a thiourea ligand independently of each other, and two L may be bonded to each other;
    m represents an integer of 3 or 4. )
  2.  前記Lが、分子状水素、アミン、イミン、含窒素ヘテロ環、ホスフィン、ホスファイト、アルシン、アルコール、チオール、エーテル、スルフィド、ニトリル、イソニトリル、アルデヒド、ケトン、炭素数2~30のアルケン、炭素数2~30のアルキン、およびトリオルガノヒドロシランから選ばれる少なくとも1種の二電子配位子である請求項1記載の中性またはカチオン性単核ルテニウム二価錯体。 L is molecular hydrogen, amine, imine, nitrogen-containing heterocycle, phosphine, phosphite, arsine, alcohol, thiol, ether, sulfide, nitrile, isonitrile, aldehyde, ketone, alkene having 2 to 30 carbon atoms, carbon number The neutral or cationic mononuclear ruthenium divalent complex according to claim 1, which is at least one dielectron ligand selected from 2 to 30 alkynes and triorganohydrosilane.
  3.  式(2)で表される請求項1記載の中性またはカチオン性単核ルテニウム二価錯体。
    Figure JPOXMLDOC01-appb-C000002
    (式中、R1~R6は、前記と同じ意味を表す。
     L1は、イソニトリル、アミン、イミン、含窒素ヘテロ環、ホスフィン、ホスファイトおよびスルフィドから選ばれる少なくとも1種の二電子配位子を表し、L1が複数存在する場合、2個のL1が互いに結合していてもよく、
     L2は、CO、チオ尿素配位子および前記L1以外の二電子配位子を表し、L2が複数存在する場合、2個のL2が互いに結合していてもよく、
     m1は1~4の整数を表し、m2は0~3の整数を表すが、m1+m2は3または4を満たす。)
    The neutral or cationic mononuclear ruthenium bivalent complex of Claim 1 represented by Formula (2).
    Figure JPOXMLDOC01-appb-C000002
    (Wherein R 1 to R 6 represent the same meaning as described above).
    L 1 represents at least one dielectron ligand selected from isonitrile, amine, imine, nitrogen-containing heterocycle, phosphine, phosphite and sulfide. When a plurality of L 1 are present, two L 1 are May be joined together,
    L 2 represents CO, a thiourea ligand, and a two-electron ligand other than L 1. When a plurality of L 2 are present, two L 2 may be bonded to each other,
    m 1 represents an integer of 1 to 4, m 2 represents an integer of 0 to 3, and m 1 + m 2 satisfies 3 or 4. )
  4.  前記L1が、イソニトリル、含窒素ヘテロ環およびホスファイトから選ばれる少なくとも1種の二電子配位子を表す(ただし、L1が複数存在する場合、2個のL1が互いに結合していてもよい)請求項3記載の中性またはカチオン性単核ルテニウム二価錯体。 L 1 represents at least one dielectron ligand selected from isonitrile, nitrogen-containing heterocycle and phosphite (provided that when a plurality of L 1 are present, two L 1 are bonded to each other). The neutral or cationic mononuclear ruthenium divalent complex according to claim 3.
  5.  前記L2が、トリオルガノヒドロシランである(ただし、L2が複数存在する場合、2個のL2が互いに結合していてもよい)請求項3または4記載の中性またはカチオン性単核ルテニウム二価錯体。 Wherein L 2 is a tri-organo-hydrosilane (when L 2 there are a plurality, two L 2 may also be bonded to each other) according to claim 3 or 4, wherein a neutral or cationic mononuclear ruthenium Bivalent complex.
  6.  前記m1およびm2がいずれも2である請求項3~5のいずれか1項記載の中性またはカチオン性単核ルテニウム二価錯体。 The neutral or cationic mononuclear ruthenium divalent complex according to any one of claims 3 to 5, wherein both m 1 and m 2 are 2.
  7.  前記R1~R6が、互いに独立して、Xで置換されていてもよい、アルキル基、アリール基またはアラルキル基(Xは前記と同じ意味を表す。)であり、かつ、
     前記L2が、H-SiR789およびH-SiR101112(式中、R7~R12は、互いに独立して、Xで置換されていてもよい、アルキル基、アリール基またはアラルキル基を表し、Xは前記と同じ意味を表す。)で表されるトリオルガノヒドロシランであり、
     R1~R3のいずれかと、R4~R6のいずれかの少なくとも1組もしくはR7~R9のいずれかの少なくとも1組が一緒になって、またはR10~R12のいずれかと、R4~R6のいずれかの少なくとも1組もしくはR7~R9のいずれかの少なくとも1組が一緒になって架橋置換基を形成していてもよく、
     R1~R3のいずれかと、R4~R6のいずれかの少なくとも1組またはR7~R9のいずれかの少なくとも1組が一緒になって架橋置換基を形成し、かつ、R10~R12のいずれかと、R4~R6のいずれかの少なくとも1組およびR7~R9のいずれかの少なくとも1組が一緒になって架橋置換基を形成していてもよい請求項6記載の中性またはカチオン性単核ルテニウム二価錯体。
    R 1 to R 6 are each independently an alkyl group, aryl group or aralkyl group (X represents the same meaning as described above), which may be substituted with X, and
    L 2 is H-SiR 7 R 8 R 9 and H-SiR 10 R 11 R 12 (wherein R 7 to R 12 are each independently an alkyl group optionally substituted with X, Represents an aryl group or an aralkyl group, and X represents the same meaning as described above.)
    Any one of R 1 to R 3 and at least one set of any of R 4 to R 6 or at least one set of any of R 7 to R 9 , or any of R 10 to R 12 ; At least one set of any of R 4 to R 6 or at least one set of any of R 7 to R 9 may be combined to form a bridging substituent,
    Any one of R 1 to R 3 and at least one set of any of R 4 to R 6 or at least one set of any of R 7 to R 9 together form a bridging substituent, and R 10 Any one of -R 12 may be combined with at least one set of any of R 4 -R 6 and at least one set of any of R 7 -R 9 together to form a bridging substituent. Neutral or cationic mononuclear ruthenium divalent complex as described.
  8.  前記R1~R3のいずれか1つと、R4~R6のいずれか1つとが一緒になって架橋置換基を形成している請求項1~7のいずれか1項記載の中性またはカチオン性単核ルテニウム二価錯体。 The neutral or any one of claims 1 to 7, wherein any one of R 1 to R 3 and any one of R 4 to R 6 are combined together to form a bridging substituent. Cationic mononuclear ruthenium divalent complex.
  9.  前記R1~R3のいずれか1つと、R4~R6のいずれか1つまたはR7~R9のいずれか1つとが一緒になって架橋置換基を形成し、かつ、R10~R12のいずれか1つと、R4~R6のいずれか1つおよびR7~R9のいずれか1つのうち前記架橋置換基の形成に関与してないSi上の置換基とが一緒になって架橋置換基を形成している請求項7記載の中性またはカチオン性単核ルテニウム二価錯体。 Any one of R 1 to R 3 and any one of R 4 to R 6 or any one of R 7 to R 9 together form a bridging substituent, and R 10 to Any one of R 12 and any one of R 4 to R 6 and any one of R 7 to R 9 together with a substituent on Si that is not involved in the formation of the bridging substituent; The neutral or cationic mononuclear ruthenium divalent complex according to claim 7, which forms a crosslinking substituent.
  10.  前記R1~R3のいずれか1つと、R4~R6のいずれか1つとが一緒になってYで置換されていてもよいo-フェニレン基を形成し(Yは、水素原子、ハロゲン原子、炭素数1~10のアルキル基、または炭素数1~10のアルコキシ基を表し、Yが複数存在する場合それらは互いに同一でも異なっていてもよい)、かつ、R10~R12のいずれか1つと、R7~R9のいずれか1つとが一緒になってYで置換されていてもよいo-フェニレン基(Yは前記と同じ意味を表す。)を形成している請求項9記載の中性またはカチオン性単核ルテニウム二価錯体。 Any one of R 1 to R 3 and any one of R 4 to R 6 together form an o-phenylene group which may be substituted with Y (Y is a hydrogen atom, a halogen atom, An atom, an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms, and when there are a plurality of Y, they may be the same or different from each other), and any of R 10 to R 12 And any one of R 7 to R 9 together form an o-phenylene group optionally substituted with Y (Y is as defined above). Neutral or cationic mononuclear ruthenium divalent complex as described.
  11.  請求項1~10のいずれか1項記載の中性またはカチオン性単核ルテニウム二価錯体からなるヒドロシリル化反応、水素化反応およびカルボニル化合物の還元反応から選ばれる少なくとも1つの反応に活性を有する触媒。 A catalyst having activity in at least one reaction selected from a hydrosilylation reaction, a hydrogenation reaction, and a reduction reaction of a carbonyl compound, comprising a neutral or cationic mononuclear ruthenium divalent complex according to any one of claims 1 to 10. .
  12.  請求項11記載の触媒の存在下、脂肪族不飽和結合を有する化合物と、Si-H結合を有するヒドロシランまたはオルガノヒドロポリシロキサンとをヒドロシリル化反応させることを特徴とする付加化合物の製造方法。 12. A process for producing an addition compound, comprising subjecting a compound having an aliphatic unsaturated bond and a hydrosilane or organohydropolysiloxane having a Si—H bond to a hydrosilylation reaction in the presence of the catalyst according to claim 11.
  13.  請求項11記載の触媒の存在下、脂肪族不飽和結合を有する化合物を水素化させることを特徴とするアルカン化合物の製造方法。 A method for producing an alkane compound, comprising hydrogenating a compound having an aliphatic unsaturated bond in the presence of the catalyst according to claim 11.
  14.  請求項11記載の触媒の存在下、アミド化合物をSi-H結合を有するシランまたはオルガノヒドロポリシロキサンで還元することを特徴とするアミン化合物の製造方法。 A method for producing an amine compound, comprising reducing an amide compound with a silane or an organohydropolysiloxane having a Si-H bond in the presence of the catalyst according to claim 11.
  15.  請求項11記載の触媒の存在下、アルデヒド化合物、ケトン化合物またはエステル化合物をSi-H結合を有するシランまたはオルガノヒドロポリシロキサンで還元することを特徴とするアルコール化合物の製造方法。 12. A method for producing an alcohol compound, comprising reducing an aldehyde compound, a ketone compound or an ester compound with a silane or organohydropolysiloxane having a Si—H bond in the presence of the catalyst according to claim 11.
PCT/JP2015/056200 2014-03-10 2015-03-03 Mononuclear ruthenium complex and organic synthesis reaction using same WO2015137194A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020167027947A KR102410256B1 (en) 2014-03-10 2015-03-03 Mononuclear ruthenium complex and organic synthesis reaction using same
JP2016507467A JP6241966B2 (en) 2014-03-10 2015-03-03 Mononuclear ruthenium complex and organic synthesis reaction using it
US15/124,773 US9884316B2 (en) 2014-03-10 2015-03-03 Mononuclear ruthenium complex and organic synthesis reaction using same
CN201580012923.1A CN106103460B (en) 2014-03-10 2015-03-03 Monokaryon ruthenium complex and the organic synthesis for having used it
EP15762299.4A EP3118205B1 (en) 2014-03-10 2015-03-03 Mononuclear ruthenium complex and organic synthesis reaction using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-046121 2014-03-10
JP2014046121 2014-03-10

Publications (1)

Publication Number Publication Date
WO2015137194A1 true WO2015137194A1 (en) 2015-09-17

Family

ID=54071642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056200 WO2015137194A1 (en) 2014-03-10 2015-03-03 Mononuclear ruthenium complex and organic synthesis reaction using same

Country Status (6)

Country Link
US (1) US9884316B2 (en)
EP (1) EP3118205B1 (en)
JP (1) JP6241966B2 (en)
KR (1) KR102410256B1 (en)
CN (1) CN106103460B (en)
WO (1) WO2015137194A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108250009A (en) * 2016-12-29 2018-07-06 湖南长岭石化科技开发有限公司 To the preparation method of Meng's alkane
CN108473514A (en) * 2016-01-22 2018-08-31 信越化学工业株式会社 Novel carbomethoxyisopropyl isonitrate and hydrosilylation reaction catalyst

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180200703A1 (en) * 2015-07-14 2018-07-19 Kyushu University, National University Corporation Hydrosilylation reaction catalyst
US20200001285A1 (en) * 2017-02-28 2020-01-02 Kyushu University, National University Corporation Catalyst for hydrosilylation reaction, hydrogenation reaction, and hydrosilane reduction reaction

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996005207A1 (en) * 1994-08-15 1996-02-22 The Trustees Of The University Of Pennsylvania Method of synthesizing arylsilanes
JP2013178968A (en) * 2012-02-28 2013-09-09 Fujifilm Corp Photoelectric conversion element, metal complex dye, dye adsorption liquid composition for dye-sensitized solar cell, dye-sensitized solar cell and manufacturing method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2810032A (en) 1956-09-04 1957-10-15 Kahn And Company Inc Thermally compensated governor with switch control
JPS5032561B1 (en) 1969-01-24 1975-10-22
DE2810032C2 (en) 1977-03-23 1983-03-24 Chisso Corp., Osaka Process for the preparation of monosubstituted dichlorosilanes
JP2606924B2 (en) 1989-05-31 1997-05-07 東燃株式会社 Method for producing aminopropylsilane compound
US5248802A (en) 1993-02-16 1993-09-28 Dow Corning Corporation Ruthenim catalyzed process for preparation of β-cyanoalkylsilanes
US5559264A (en) 1994-02-24 1996-09-24 Osi Specialities, Inc. Process for making chloroorganosilicon compounds
US20040092759A1 (en) 2002-11-12 2004-05-13 Westmeyer Mark D. Process for making haloalkylalkoxysilanes
DE102006017594A1 (en) 2006-04-13 2007-10-18 Wacker Chemie Ag Novel Ru complexes, their preparation and use

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996005207A1 (en) * 1994-08-15 1996-02-22 The Trustees Of The University Of Pennsylvania Method of synthesizing arylsilanes
JP2013178968A (en) * 2012-02-28 2013-09-09 Fujifilm Corp Photoelectric conversion element, metal complex dye, dye adsorption liquid composition for dye-sensitized solar cell, dye-sensitized solar cell and manufacturing method thereof

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ATHEAUX, ISABELLE ET AL.: "Exchange Processes in Complexes with Two Ruthenium (eta2-Silane) Linkages: Role of the Secondary Interactions between Silicon and Hydrogen Atoms", ORGANOMETALLICS, vol. 21, no. 24, 2002, pages 5347 - 5357, XP055224497, ISSN: 0276-7333 *
DEMONCEAU, A. ET AL.: "Cyclopropanation of activated olefins catalyzed by Ru-phosphine complexes", TETRAHEDRON LETTERS, vol. 36, no. 20, 1995, pages 3519 - 3522, XP004028095, ISSN: 0040-4039 *
HILL, ANTHONY F. ET AL.: "Bis(methimazolyl)silyl Complexes of Ruthenium", ORGANOMETALLICS, vol. 29, no. 4, 2010, pages 1026 - 1031, XP055224488, ISSN: 0276-7333 *
HOSSAIN, DELWAR ET AL.: "Endohedral and Exohedral Complexes of T8-Polyhedral Oligomeric Silsesquioxane (POSS) with Transition Metal Atoms and Ions", JOURNAL OF PHYSICAL CHEMISTRY C, vol. 112, no. 41, 2008, pages 16070 - 16077, XP055224492, ISSN: 1932-7447 *
MONTIEL-PALMA, VIRGINIA ET AL.: "Agostic Si-H bond coordination assists C-H bond activation at ruthenium in bis(phosphinobenzylsilane) complexes", CHEMICAL COMMUNICATIONS, no. 38, 2007, pages 3963 - 3965, XP055224495, ISSN: 1359-7345 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108473514A (en) * 2016-01-22 2018-08-31 信越化学工业株式会社 Novel carbomethoxyisopropyl isonitrate and hydrosilylation reaction catalyst
EP3406616A4 (en) * 2016-01-22 2019-09-25 Shin-Etsu Chemical Co., Ltd. Novel isocyanide compound and hydrosilylation reaction catalyst
CN108473514B (en) * 2016-01-22 2021-08-31 信越化学工业株式会社 Novel isonitrile compound and hydrosilylation catalyst
CN108250009A (en) * 2016-12-29 2018-07-06 湖南长岭石化科技开发有限公司 To the preparation method of Meng's alkane
CN108250009B (en) * 2016-12-29 2020-08-07 湖南长岭石化科技开发有限公司 Preparation method of p-menthane

Also Published As

Publication number Publication date
CN106103460A (en) 2016-11-09
EP3118205B1 (en) 2020-04-22
US9884316B2 (en) 2018-02-06
KR102410256B1 (en) 2022-06-17
CN106103460B (en) 2019-07-23
JPWO2015137194A1 (en) 2017-04-06
US20170056872A1 (en) 2017-03-02
EP3118205A4 (en) 2017-10-18
KR20160133488A (en) 2016-11-22
EP3118205A1 (en) 2017-01-18
JP6241966B2 (en) 2017-12-06

Similar Documents

Publication Publication Date Title
EP3071584B1 (en) Cobalt catalysts and their use for hydrosilylation and dehydrogenative silylation
JP6327426B2 (en) Hydrosilylation catalyst
JP6241966B2 (en) Mononuclear ruthenium complex and organic synthesis reaction using it
JP6620823B2 (en) Novel isocyanide compounds and hydrosilylation reaction catalysts
JP6085892B2 (en) Mononuclear iron complexes and organic synthesis reactions using them
JPWO2018159595A1 (en) Catalyst for hydrosilylation reaction, hydrogenation reaction and hydrosilane reduction reaction
JP6089286B2 (en) Mononuclear ruthenium complex and organic synthesis reaction using it
WO2016024611A1 (en) Hydrosilylation reaction catalyst
JP6617264B2 (en) Mononuclear iron complexes and organic synthesis reactions using them

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15762299

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016507467

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015762299

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015762299

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15124773

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167027947

Country of ref document: KR

Kind code of ref document: A