WO2015137103A1 - Method for producing polymer - Google Patents

Method for producing polymer Download PDF

Info

Publication number
WO2015137103A1
WO2015137103A1 PCT/JP2015/055024 JP2015055024W WO2015137103A1 WO 2015137103 A1 WO2015137103 A1 WO 2015137103A1 JP 2015055024 W JP2015055024 W JP 2015055024W WO 2015137103 A1 WO2015137103 A1 WO 2015137103A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
polymerizable monomer
catalyst
polymer
opening polymerizable
Prior art date
Application number
PCT/JP2015/055024
Other languages
French (fr)
Japanese (ja)
Inventor
竜也 森田
田中 千秋
之弘 今永
晋 千葉
陽子 新井
Original Assignee
株式会社リコー
竜也 森田
田中 千秋
之弘 今永
晋 千葉
陽子 新井
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社リコー, 竜也 森田, 田中 千秋, 之弘 今永, 晋 千葉, 陽子 新井 filed Critical 株式会社リコー
Publication of WO2015137103A1 publication Critical patent/WO2015137103A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/823Preparation processes characterised by the catalyst used for the preparation of polylactones or polylactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable

Definitions

  • the present invention relates to a polymer production method for producing a polymer by ring-opening polymerization of a ring-opening polymerizable monomer.
  • a method for producing a polymer by ring-opening polymerization of a ring-opening polymerizable monomer using a metal catalyst is known.
  • a method for producing polylactic acid by reacting a polymerization raw material mainly containing lactide as a ring-opening polymerization monomer in a molten state to produce polylactic acid is disclosed (for example, see Patent Document 1).
  • tin octylate is used as the metal catalyst, the reaction temperature is set to 195 ° C., and lactide is reacted and polymerized in a molten state.
  • a method for ring-opening polymerization of the ring-opening polymerizable monomer at a low temperature for example, a method of ring-opening polymerization of the ring-opening polymerizable monomer using a compressed gas solvent of hydrochlorofluorocarbon (HCFC-22) is disclosed.
  • HCFC-22 hydrochlorofluorocarbon
  • polylactide is obtained by using tin octoate as a catalyst, carrying out a polymerization at a reaction temperature of 100 ° C. and a pressure of 270 bar in a high pressure reactor for 2 hours.
  • This invention makes it a subject to solve the said various problems in the past and to achieve the following objectives. That is, according to the present invention, a monomer residual ratio is small, a sufficiently high molecular weight polymer can be obtained even at a low temperature for a short time, and the metal atom content can be reduced by reducing the amount of catalyst used. And it aims at providing the manufacturing method of the polymer which can obtain the polymer without coloring.
  • the polymer production method of the present invention includes a ring-opening polymerization step of bringing a ring-opening polymerizable monomer into contact with a raw material containing a ring-opening polymerizable monomer and a compressive fluid, and ring-opening polymerization of the ring-opening polymerizable monomer.
  • a ring-opening polymerization step an organic catalyst containing no metal atom and a catalyst containing a metal atom are used.
  • the present invention it is possible to solve the conventional problems and achieve the object, and to obtain a polymer having a sufficiently high molecular weight even with a low monomer residual rate and a low temperature, short time reaction. Further, it is possible to provide a method for producing a polymer that can reduce the content of metal atoms by reducing the amount of the catalyst used and obtain a polymer without coloring.
  • FIG. 1 is a general phase diagram showing the state of a substance with respect to temperature and pressure.
  • FIG. 2 is a phase diagram for defining the range of the compressible fluid in the present embodiment.
  • FIG. 3 is a system diagram showing an example of the polymerization process.
  • FIG. 4 is a system diagram showing an example of the polymerization process.
  • FIG. 5 is a system diagram showing an example of the polymerization process.
  • FIG. 6A is a schematic diagram illustrating an example of a complex production system.
  • FIG. 6B is a schematic diagram illustrating an example of a complex production system.
  • FIG. 7 is a schematic diagram showing an example of a complex production system.
  • the method for producing a polymer of the present invention includes at least a ring-opening polymerization step, and includes other steps as necessary.
  • the ring-opening polymerization step is a step of bringing the ring-opening polymerizable monomer into ring-opening polymerization by bringing a raw material containing the ring-opening polymerizable monomer into contact with a compressive fluid.
  • the ring-opening polymerizable monomer is subjected to ring-opening polymerization using an organic catalyst containing no metal atom and a catalyst containing a metal atom.
  • an organic catalyst that does not contain the metal atom and a catalyst that contains the metal atom are used.
  • a catalyst that contains the metal atom are used.
  • research is being conducted to reduce the amount of catalyst used. In the situation, it is extremely rare to use both catalysts.
  • the present inventors in the ring-opening polymerization step of bringing the ring-opening polymerizable monomer into contact with the raw material containing the ring-opening polymerizable monomer and melting the ring-opening polymerizable monomer to perform ring-opening polymerization,
  • the organic catalyst containing no metal atom and the catalyst containing the metal atom are used in combination, the amount of use of both catalysts can be extremely suppressed, and even when these are added together, several steps from the amount of normal catalyst used. It has been found that a polymer having a sufficiently high molecular weight can be produced in a short time with a small amount.
  • the raw material refers to a material from which a polymer is produced and is a material constituting a polymer component.
  • the raw material includes the ring-opening polymerizable monomer and, if necessary, polymerization initiation. Contains additives and additives.
  • -Ring-opening polymerizable monomer- There is no restriction
  • ring-opening polymerizable monomers include cyclic esters, cyclic carbonates, and cyclic amides.
  • Examples of the compound represented by the general formula (1) include an enantiomer of lactic acid, an enantiomer of 2-hydroxybutanoic acid, an enantiomer of 2-hydroxypentanoic acid, and an enantiomer of 2-hydroxyhexanoic acid. , 2-hydroxyheptanoic acid enantiomer, 2-hydroxyoctanoic acid enantiomer, 2-hydroxynonanoic acid enantiomer, 2-hydroxydecanoic acid enantiomer, 2-hydroxyundecanoic acid enantiomer And enantiomers of 2-hydroxydodecanoic acid.
  • enantiomers of lactic acid are particularly preferable from the viewpoint of reactivity or availability.
  • These cyclic dimers can be used alone or in admixture of several kinds.
  • examples of the cyclic ester include aliphatic lactones.
  • examples of the aliphatic lactone include ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -butyrolactone, ⁇ -hexanolactone, ⁇ -octanolactone, ⁇ eta-valerolactone, ⁇ -hexalanolactone, ⁇ - Examples include octanolactone, ⁇ -caprolactone, ⁇ -dodecanolactone, ⁇ -methyl- ⁇ -butyrolactone, ⁇ -methyl- ⁇ -valerolactone, glycolide, lactide, and p-dioxanone.
  • ⁇ -caprolactone is particularly preferable from the viewpoints of reactivity and availability.
  • the cyclic carbonate is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include ethylene carbonate and propylene carbonate.
  • the cyclic amide is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include ⁇ -caprolactam and lauryl lactam. These ring-opening polymerizable monomers may be used alone or in combination of two or more.
  • the raw material may contain a polymerization initiator (hereinafter also referred to as an initiator) as necessary.
  • the polymerization initiator is not particularly limited as long as it is an initiator that gives a branched structure to the polymer product, and can be appropriately selected according to the purpose.
  • any of monoalcohol, dialcohol, and polyhydric alcohol can be used. It may be either saturated alcohol or unsaturated alcohol.
  • Examples of the monoalcohol include methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, nonanol, decanol, lauryl alcohol, myristyl alcohol, cetyl alcohol, and stearyl alcohol.
  • Examples of the dialcohol include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, hexanediol, nonanediol, tetramethylene glycol, and polyethylene glycol. Etc.
  • polyhydric alcohol examples include glycerol, sorbitol, xylitol, ribitol, erythritol, triethanolamine, and the like.
  • unsaturated alcohol examples include methyl lactate and ethyl lactate.
  • a polymer having an alcohol residue at the terminal such as polycaprolactone diol or polytetramethylene glycol, may be used as the polymerization initiator.
  • a diblock or triblock copolymer is synthesized.
  • the amount of the polymerization initiator used is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.05 mol% or more and 5 mol% or less with respect to the ring-opening polymerizable monomer. In order to prevent the polymerization from starting unevenly, it is desirable that the initiator is well mixed with the monomer in advance before the monomer contacts the polymerization catalyst.
  • the said raw material may contain an additive as needed.
  • the additive include surfactants, antioxidants, stabilizers, antifogging agents, ultraviolet absorbers, pigments, colorants, inorganic particles, various fillers, thermal stabilizers, flame retardants, crystal nucleating agents, and charging agents.
  • limiting in particular as the usage-amount of the said additive Although it can select suitably according to the objective and the kind of additive, 0 to 5 mass parts is preferable with respect to 100 mass parts of polymer compositions.
  • the surfactant those that melt into the compressive fluid and have affinity for both the compressive fluid and the ring-opening polymerizable monomer are preferably used. By using such a surfactant, the polymerization reaction can be progressed uniformly, and a product having a narrow molecular weight distribution can be obtained, and effects such as easy to obtain a particulate polymer can be expected.
  • a surfactant it may be added to the compressive fluid or to the ring-opening polymerizable monomer.
  • a surfactant having a parent carbon dioxide group and a parent monomer group in the molecule is used. Examples of such surfactants include fluorine-based surfactants and silicon-based surfactants.
  • the stabilizer for example, epoxidized soybean oil, carbodiimide and the like are used.
  • the antioxidant for example, 2,6-di-t-butyl-4-methylphenol, butylhydroxyanisole and the like are used.
  • the antifogging agent include glycerin fatty acid ester and monostearyl citrate.
  • the filler for example, an ultraviolet absorber, a heat stabilizer, a flame retardant, an internal mold release agent, clay having an effect as a crystal nucleating agent, talc, silica, or the like is used.
  • the pigment for example, titanium oxide, carbon black, ultramarine blue and the like are used.
  • FIG. 1 is a phase diagram showing the state of a substance with respect to temperature and pressure.
  • FIG. 2 is a phase diagram for defining the range of the compressible fluid in the present embodiment.
  • the compressible fluid means a fluid in a state existing in one of the regions (1), (2), and (3) shown in FIG. 2 in the phase diagram shown in FIG. .
  • a supercritical fluid is a fluid that exists as a non-condensable high-density fluid in a temperature and pressure region that exceeds the limit (critical point) at which gas and liquid can coexist, and does not condense even when compressed.
  • the substance when the substance is present in the region (2), it becomes a liquid, but in this embodiment, it is obtained by compressing a substance that is in a gaseous state at normal temperature (25 ° C.) and normal pressure (1 atm). Represents liquefied gas.
  • the substance is present in the region (3), it is in a gaseous state, but in the present embodiment, it represents a high pressure gas whose pressure is 1/2 (1/2 Pc) or more of the critical pressure (Pc).
  • the substance constituting the compressive fluid examples include carbon monoxide, carbon dioxide, dinitrogen monoxide, nitrogen, methane, ethane, propane, 2,3-dimethylbutane, and ethylene.
  • carbon dioxide is preferable in that it has a critical pressure of about 7.4 MPa and a critical temperature of about 31 ° C., can easily create a supercritical state, and is nonflammable and easy to handle.
  • These compressive fluids may be used alone or in combination of two or more.
  • Organic catalyst not containing metal atoms The organic catalyst not containing a metal atom (hereinafter also referred to as an organic catalyst) is not particularly limited and may be appropriately selected depending on the purpose.
  • the organic catalyst does not contain a metal atom and What contributes to the ring-opening polymerization reaction and forms an active intermediate with the ring-opening polymerizable monomer and then desorbs and regenerates by reaction with an alcohol is preferable.
  • the organic catalyst when polymerizing a ring-opening polymerizable monomer having an ester bond, is preferably a (nucleophilic) compound that functions as a basic nucleophile, and more preferably a compound containing a nitrogen atom.
  • a cyclic compound containing a nitrogen atom is particularly preferred.
  • Examples thereof include a compound, a heterocyclic aromatic organic compound containing a nitrogen atom, and N-heterocyclic carbene.
  • a cationic organic catalyst is used for ring-opening polymerization. In this case, hydrogen is extracted from the polymer main chain (back-biting), so that the molecular weight distribution becomes wide and it is difficult to obtain a high molecular weight product.
  • Examples of the cyclic monoamine include quinuclidine.
  • Examples of the cyclic diamine include 1,4-diazabicyclo- [2.2.2] octane (DABCO), 1,5-diazabicyclo (4,3,0) -5-nonene.
  • Examples of the cyclic diamine compound having an amidine skeleton include 1,8-diazabicyclo [5.4.0] undec-7-ene (DBU) and diazabicyclononene.
  • Examples of the cyclic triamine compound having a guanidine skeleton include 1,5,7-triazabicyclo [4.4.0] dec-5-ene (TBD), diphenylguanidine (DPG), and the like.
  • heterocyclic aromatic organic compound containing a nitrogen atom examples include N, N-dimethyl-4-aminopyridine (DMAP), 4-pyrrolidinopyridine (PPY), pyrocholine, imidazole, pyrimidine, purine and the like. Can be mentioned.
  • N-heterocyclic carbene examples include 1,3-di-tert-butylimidazol-2-ylidene (ITBU).
  • DABCO, DBU, DPG, TBD, DMAP, PPY, and ITBU are preferable because they are less affected by steric hindrance and have high nucleophilicity or have a boiling point that can be removed under reduced pressure.
  • organic catalysts for example, DBU is liquid at room temperature and has a boiling point.
  • the organic catalyst can be almost quantitatively removed from the polymer product by subjecting the obtained polymer product to a reduced pressure treatment.
  • the kind of organic catalyst and the presence or absence of a removal process are determined according to the use purpose of a product, etc.
  • the type and amount of the organic catalyst vary depending on the combination of the compressive fluid and the ring-opening polymerizable monomer, and thus cannot be specified unconditionally.
  • the amount of the organic catalyst used is 45 ppm to 500 ppm is preferable, 45 ppm to 500 ppm is more preferable, and 50 ppm to 200 ppm is particularly preferable with respect to 1 part by mass of the ring-opening polymerizable monomer.
  • the catalyst containing the metal atom (hereinafter also referred to as a metal catalyst) is not particularly limited and may be appropriately selected depending on the intended purpose.
  • a tin compound, an aluminum compound, a titanium compound, a zirconium compound examples thereof include compounds and antimony compounds.
  • the tin compound include tin octylate, tin dibutyrate, and di (2-ethylhexanoic acid) tin.
  • the aluminum compound include aluminum acetylacetonate and aluminum acetate.
  • the titanium compound include tetraisopropyl titanate and tetrabutyl titanate.
  • the zirconium-based compound include zirconium isoprooxide.
  • the antimony compound include antimony trioxide.
  • the type and amount of the metal catalyst vary depending on the combination of the compressive fluid and the ring-opening polymerizable monomer, and thus cannot be specified unconditionally. However, in terms of stability and coloring, the amount of the metal catalyst used depends on the amount of the metal catalyst. 1 ppm to 200 ppm is preferable, 50 ppm to 200 ppm is more preferable, and 50 ppm to 100 ppm is particularly preferable with respect to 1 part by mass of the ring polymerizable monomer.
  • the combination of the organic catalyst and the metal catalyst is appropriately selected according to the purpose.
  • a plurality of the organic catalyst and the metal catalyst may be mixed.
  • the mass ratio of the amount used of the organic catalyst and the metal catalyst is appropriately selected depending on the nature of the catalyst to be mixed, but in terms of safety, 50:50 to 99: 1 70:30 to 99: 1 are more preferable.
  • the total amount used of the organic catalyst and the metal catalyst cannot be generally specified because it varies depending on the compressive fluid used in the production, the ring-opening polymerizable monomer, or the combination of catalysts to be mixed. In terms of coloring, 50 ppm to 500 ppm is preferable with respect to 1 part by mass of the ring-opening polymerizable monomer, and 50 ppm to 200 ppm is more preferable.
  • FIGS. 3 to 5 are system diagrams showing an example of the polymerization process.
  • the continuous polymerization reaction apparatus 100 shown in FIG. 3 includes a supply unit 100 a that supplies a raw material such as a ring-opening polymerizable monomer and a compressive fluid, and a continuous polymerization that polymerizes the ring-opening polymerizable monomer supplied by the supply unit 100 a. And a polymerization reaction apparatus main body 100b as an example of the apparatus.
  • the supply unit 100a has a tank (1, 3, 5, 7, 11), a measuring feeder (2, 4), and a measuring pump (6, 8, 12).
  • the polymerization reaction device main body 100b includes a melt mixing device 9, a liquid feed pump 10, a reaction vessel 13, a metering pump 14, and the other end of the polymerization reaction device main body 100b provided at one end of the polymerization reaction device main body 100b. And an extrusion die 15 provided on the surface.
  • melting means a state in which a raw material or a produced polymer comes into contact with a compressive fluid and is plasticized or liquefied while swelling.
  • the “melt mixing device” is a device that melts raw materials by bringing the compressive fluid into contact with the raw materials.
  • the tank 1 of the supply unit 100a stores a ring-opening polymerizable monomer.
  • the ring-opening polymerizable monomer to be stored may be a powder or a molten state.
  • the tank 3 stores a solid (powder or granular) one of the initiator and the additive.
  • the tank 5 stores a liquid one of the initiator and the additive.
  • the tank 7 stores a compressible fluid.
  • the tank 7 may store a gas (gas) or a solid that becomes a compressible fluid in a process of being supplied to the melt mixing device 9 or heated or pressurized in the melt mixing device 9. . In this case, the gas or solid stored in the tank 7 is heated or pressurized, and the state of (1), (2), or (3) in the phase diagram of FIG. Become.
  • the measuring feeder 2 measures the ring-opening polymerizable monomer stored in the tank 1 and continuously supplies it to the melt mixing device 9.
  • the weighing feeder 4 measures the solid stored in the tank 3 and continuously supplies it to the melt mixing device 9.
  • the metering pump 6 measures the liquid stored in the tank 5 and continuously supplies it to the melt mixing device 9.
  • the metering pump 8 continuously supplies the compressive fluid stored in the tank 7 to the melt mixing device 9 at a constant pressure and flow rate.
  • supplying continuously is a concept with respect to the method of supplying for every batch, and means supplying so that the polymer which carried out ring-opening polymerization may be obtained continuously. In other words, each material may be supplied intermittently or intermittently as long as the ring-opened polymer is continuously obtained.
  • the polymerization reaction apparatus 100 may not include the tank 5 and the metering pump 6. Similarly, when both the initiator and the additive are liquid, the polymerization reaction apparatus 100 may not include the tank 3 and the metering feeder 4.
  • each apparatus of the polymerization reaction apparatus main body 100b is connected as shown in FIG. 3 by a pressure-resistant piping 30 that transports raw materials, a compressive fluid, or a generated polymer.
  • each of the melt mixing device 9, the liquid feeding pump 10, and the reaction vessel 13 of the polymerization reaction device has a tubular member through which the above raw materials and the like pass.
  • the melt mixing device 9 of the polymerization reaction device main body 100b includes raw materials such as ring-opening polymerizable monomers, initiators and additives supplied from the tanks (1, 3, 5), and a compressive fluid supplied from the tank 7. Is a device having a pressure-resistant container for melting the raw materials.
  • the raw material such as the ring-opening polymerizable monomer and the compressive fluid can be continuously contacted at a constant concentration ratio, the raw material can be efficiently melted into the compressive fluid. it can.
  • the shape of the container of the melt mixing device 9 may be a tank type or a cylindrical type, but a cylindrical type in which raw materials are supplied from one end and the mixture is taken out from the other end is preferable.
  • an inlet 9 a for introducing the compressive fluid supplied from the tank 7 by the metering pump 8 and an inlet for introducing the ring-opening polymerizable monomer supplied from the tank 1 by the metering feeder 2 are introduced.
  • 9b, an inlet 9c for introducing the powder supplied from the tank 3 by the measuring feeder 4, and an inlet 9d for introducing the liquid supplied from the tank 5 by the measuring pump 6 are provided.
  • each inlet (9a, 9b, 9c, 9d) is comprised by the coupling which connects the container of the melt mixing apparatus 9, and each piping which conveys each raw material or compressive fluid.
  • This joint is not particularly limited, and known joints such as reducers, couplings, Y-type joints, T-type joints, and outlets are used.
  • the melt mixing apparatus 9 has a heater for heating each supplied raw material and compressive fluid.
  • the melt mixing device 9 may have a stirring device for stirring raw materials, compressive fluids, and the like.
  • the stirrer When the melt mixing device 9 has a stirrer, the stirrer includes a uniaxial screw, a biaxial screw meshing with each other, a biaxial mixer having a large number of meshing elements meshing with or overlapping each other, and a helical stirring element meshing with each other.
  • a kneader, a static mixer or the like having the above is preferably used.
  • a biaxial or multiaxial agitation device that meshes with each other is preferable because there is little adhesion of reactants to the agitation device or the container and there is a self-cleaning action.
  • a pressure resistant pipe is preferably used as the melt mixing device 9.
  • the melt mixing apparatus 9 does not have a stirring apparatus, in order to mix each material in the melt mixing apparatus 9 reliably, the ring-opening polymerizable monomer supplied to the melt mixing apparatus 9 is in a molten state. It is preferable.
  • the liquid feed pump 10 sends each raw material melted by the melt mixing device 9 to the reaction vessel 13.
  • the tank 11 stores a catalyst.
  • the metering pump 12 measures the catalyst stored in the tank 11 and supplies it to the reaction vessel 13.
  • FIG. 3 shows an example in which one tank 11 is used.
  • two types of catalyst ie, an organic catalyst and a metal catalyst are used. Therefore, after using an organic catalyst in the tank 11, the metal catalyst is inserted again.
  • the number of tanks 11 may be one.
  • two or more tanks 11 can be used. In that case, piping for supplying the catalyst to the reaction vessel 13 via the metering pump 12 and the inlet 13b is provided for each number of tanks 11.
  • the reaction container 13 is a pressure-resistant container for mixing the melted raw materials fed by the liquid feed pump 10 and the catalyst supplied by the metering pump 12 to cause the ring-opening polymerizable monomer to undergo ring-opening polymerization. It is.
  • the shape of the reaction vessel 13 may be a tank type or a cylindrical type, but a cylindrical type with little dead space is preferable.
  • the reaction vessel 13 has an introduction port 13a for introducing each material mixed by the melt mixing device 9 into the vessel, and an introduction port 13b for introducing the catalyst supplied from the tank 11 by the metering pump 12 into the vessel.
  • each inlet (13a, 13b) is comprised by the coupling which connects the reaction container 13 and each piping which conveys each raw material.
  • This joint is not particularly limited, and known joints such as reducers, couplings, Y-type joints, T-type joints, and outlets are used.
  • the reaction vessel 13 may be provided with a gas outlet for removing the evaporated material.
  • the reaction vessel 13 has a heater for heating the fed raw material.
  • the reaction vessel 13 may have a stirring device that stirs the raw materials, the compressive fluid, and the like.
  • the reaction vessel 13 has a stirrer, the polymer particles can be prevented from settling due to the difference in density between the raw material and the produced polymer, so that the polymerization reaction can proceed more uniformly and quantitatively.
  • a stirring device for the reaction vessel 13 a twin shaft having a screw which meshes with each other, a stirring element such as a 2-flight (oval) or a 3-flight (triangular shape), a disc or a multi-leaf type (clover-shaped) stirring blade. Or the thing of a multi-axis is preferable from a viewpoint of self-cleaning.
  • a static mixer that performs multi-stage division and combination (merging) of the flow with a guide device can also be applied to the stirring device.
  • static mixers those disclosed in Japanese Patent Publication Nos. 47-15526, 47-15527, 47-15528, 47-15533, etc. (multilayer mixer), and disclosed in JP-A-47-33166. And the like (Kenix type) and similar mixing devices without moving parts.
  • pressure-resistant piping is preferably used as the reaction vessel 13.
  • FIG. 3 shows an example in which the number of reaction vessels 13 is one, but two or more reaction vessels 13 can also be used.
  • the reaction (polymerization) conditions for each reaction vessel 13, that is, temperature, catalyst concentration, pressure, average residence time, stirring speed, etc. may be the same. It is preferable to select the optimum conditions.
  • the number of stages is preferably 1 or more and 4 or less, particularly preferably 1 or more and 3 or less.
  • the degree of polymerization of the polymer obtained and the amount of residual monomer are unstable and easily fluctuate, and are not suitable for industrial production. This is considered to be caused by instability due to mixing of a polymerization raw material having a melt viscosity of several poise to several tens of poise and a polymerized polymer having a melt viscosity of about 1,000 poise in the same container. .
  • the raw material and the produced polymer are melted (liquefied), it becomes possible to reduce the difference in viscosity in the reaction vessel 13 (also referred to as a polymerization system), so that the conventional polymerization Even if the number of stages is reduced as compared with the reactor, the polymer can be produced stably.
  • the metering pump 14 sends the polymer product P polymerized in the reaction vessel 13 out of the reaction vessel 13 from an extrusion die 15 as an example of a polymer discharge port.
  • the polymer product P can be sent out from the reaction vessel 13 without using the metering pump 14 by utilizing the pressure difference between the inside and outside of the reaction vessel 13.
  • the pressure adjusting valve 16 can be used as shown in FIG.
  • the polymerization reaction apparatus 400 includes a tank 407, a metering pump 408, an addition pot 411, a reaction vessel 413, and valves (421, 422, 423, 424, 425). .
  • Each of the above devices is connected by a pressure resistant pipe 430 as shown in FIG.
  • the pipe 430 is provided with joints (430a, 430b).
  • the tank 407 stores a compressible fluid.
  • the tank 407 may store a gas (gas) or solid that is heated and pressurized in the supply path supplied to the reaction vessel 413 or the reaction vessel 413 to become a compressible fluid.
  • the gas or solid stored in the tank 407 is heated or pressurized to be in the state (1), (2), or (3) in the phase diagram of FIG. .
  • the metering pump 408 supplies the compressive fluid stored in the tank 407 to the reaction vessel 413 at a constant pressure and flow rate.
  • the addition pot 411 stores a catalyst added to the raw material in the reaction vessel 413.
  • the valves (421, 422, 423, 424) open and close each, thereby supplying a compressive fluid stored in the tank 407 to the reaction vessel 413 via the addition pot 411, and the addition pot 411.
  • the route for supplying to the reaction vessel 413 without switching through is switched.
  • FIG. 5 shows an example in which the addition pot 411 is one. However, in this embodiment, since two types of catalyst, an organic catalyst and a metal catalyst, are used, if an organic catalyst is put in the addition pot 411, then a metal catalyst is added.
  • the number of addition pots 411 may be one. However, when both catalysts are used simultaneously or when both catalysts are stored in a tank, two or more addition pots 411 can be used. In that case, piping for supplying the catalyst to the reactor 413 is provided for each number of the addition pots 411 through the joints (430a, 430b) and the valves (423, 424).
  • the reaction vessel 413 contains a ring-opening polymerizable monomer and an initiator in advance before starting the polymerization. As a result, the reaction vessel 413 is brought into contact with the ring-opening polymerizable monomer and initiator stored in advance, the compressive fluid supplied from the tank 407, and the catalyst supplied from the addition pot 411. It is a pressure-resistant container for ring-opening polymerization of a functional monomer. Note that the reaction vessel 413 may be provided with a gas outlet for removing evaporated substances.
  • the reaction vessel 413 has a heater for heating the raw materials and the compressive fluid. Furthermore, the reaction vessel 413 includes a stirring device that stirs the raw materials and the compressive fluid.
  • the valve 425 is opened after the completion of the polymerization reaction to discharge the compressive fluid and the product (polymer) in the reaction vessel 413.
  • the reaction vessel 413 may have a valve 432 for taking out the compressive fluid out of the reaction vessel in the middle of the polymerization process.
  • Continuous polymerization method and batch polymerization method >> About the continuous polymerization method of the ring-opening polymerizable monomer in the present embodiment using the polymerization reactor 100, and the batch type polymerization method of the ring-opening polymerizable monomer in the present embodiment using the polymerization reactor 400, respectively. Will be described in detail.
  • each inlet (9a, 9b, 9c, 9d) are continuously introduced into the container of the melt mixing device 9 from each inlet (9a, 9b, 9c, 9d).
  • solid (powder or granular) raw materials may have lower measurement accuracy than liquid raw materials.
  • the solid raw material may be previously melted and stored in the tank 5 in a liquid state, and introduced into the container of the melt mixing device 9 by the metering pump 6.
  • the order in which each metering feeder (2, 4), metering pump 6 and metering pump 8 are operated is not particularly limited, but when the initial raw material is sent to the reaction vessel 13 without contacting the compressed fluid, it solidifies due to a decrease in temperature. Therefore, it is preferable to operate the metering pump 8 first.
  • Each feed rate of each raw material by the metering feeders (2, 4) and the metering pump 6 is adjusted to be a constant ratio based on a predetermined ratio of the ring-opening polymerizable monomer, the initiator, and the additive.
  • the total mass of raw materials supplied per unit time by the metering feeders (2, 4) and the metering pump 6 is the desired polymer properties and reaction time. It is adjusted based on etc.
  • the mass of the compressible fluid supplied per unit time by the metering pump 8 (supply rate of the compressible fluid (feed amount), (g / min)) is based on desired polymer physical properties, reaction time, and the like. Adjusted.
  • the ratio of the feed rate of the raw material and the feed rate of the compressible fluid represented by the following inequality is preferably 0.50 or more and less than 1.00, and is 0.65 or more and 0.99. Or less, more preferably 0.80 or more and 0.95 or less.
  • the feed ratio is less than 0.5, the amount of the compressive fluid used is not economical, and the density of the ring-opening polymerizable monomer is lowered, so that the polymerization rate may decrease. Further, when the feed ratio is less than 0.5, the mass of the compressive fluid becomes larger than the mass of the raw material, so that the melt phase in which the ring-opening polymerizable monomer is melted and the ring-opening polymerizable monomer is in the compressive fluid The fluid phase dissolved in the coexistence may coexist and the reaction may not easily proceed.
  • the reaction is performed in a state where the concentration of the raw material and the generated polymer (so-called solid content concentration) is high. proceed.
  • the solid content concentration in the polymerization system at this time is the solid content concentration of the polymerization system when polymerizing by dissolving a small amount of ring-opening polymerizable monomer in an overwhelming amount of compressive fluid in the conventional production method.
  • the polymerization reaction proceeds efficiently and stably even in a polymerization system having a high solid content concentration.
  • the feed ratio exceeds 0.99, the ability of the compressive fluid to melt the ring-opening polymerizable monomer may be insufficient, and the target reaction may not proceed uniformly.
  • each raw material and compressive fluid are continuously introduced into the container of the melt mixing device 9, they are in continuous contact with each other. As a result, the raw materials such as the ring-opening polymerizable monomer, the initiator, and the additive are melted in the melt mixing device 9.
  • the melt mixing device 9 has a stirring device, the raw materials and the compressive fluid may be stirred.
  • the temperature and pressure in the container of the reaction vessel 13 are controlled to a temperature and pressure at least above the triple point of the compressive fluid. This control is performed by adjusting the output of the heater of the melt mixing device 9 or the supply amount of the compressive fluid.
  • the temperature at which the ring-opening polymerizable monomer is melted may be a temperature equal to or lower than the melting point at normal pressure of the ring-opening polymerizable monomer. This is considered to be due to the high pressure in the melt mixing device 9 in the presence of the compressive fluid, and the melting point of the ring-opening polymerizable monomer being lower than the melting point at normal pressure. For this reason, even when the amount of the compressive fluid with respect to the ring-opening polymerizable monomer is small, the ring-opening polymerizable monomer is melted in the melt mixing device 9.
  • the timing of applying heat and stirring to each raw material and compressive fluid may be adjusted by the melt mixing device 9 so that each raw material is efficiently melted.
  • heat or stirring may be applied, or heat or stirring may be applied while bringing each raw material into contact with the compressive fluid.
  • the ring-opening polymerizable monomer and the compressive fluid may be brought into contact with each other after the ring-opening polymerizable monomer is previously melted by applying heat equal to or higher than the melting point.
  • the melt mixing device 9 is a biaxial mixing device
  • the above-described embodiments are arranged in an arrangement of screws, the arrangement of the inlets (9a, 9b, 9c, 9d), the temperature of the heater of the melt mixing device 9 This is realized by setting as appropriate.
  • the additive is supplied to the melt mixing device 9 separately from the ring-opening polymerizable monomer, but the additive may be supplied together with the ring-opening polymerizable monomer. Moreover, you may supply an additive after a polymerization reaction. In this case, after taking out the polymer product obtained from the reaction vessel 13, the additive can be added while melt-kneading.
  • each material melted by the melt mixing device 9 is fed by the feed pump 10 and supplied to the reaction vessel 13 from the inlet 13a.
  • the catalyst in the tank 11 is measured by the metering pump 12 and supplied to the reaction vessel 13 through the introduction port 13b.
  • the catalyst is added after the raw material is melted in the compressive fluid because the catalyst can act at room temperature.
  • the catalyst may be added before or after contacting the ring-opening polymerizable monomer with the compressive fluid.
  • the contact of the catalyst and the compressive fluid may be before or after the addition to the ring-opening polymerizable monomer.
  • two types of organic catalyst and metal catalyst are used. Even if the polymer intermediate is first produced using the organic catalyst and then the polymer product is produced using the metal catalyst, the metal catalyst is first produced.
  • the catalyst may be used to produce a polymer intermediate followed by an organic catalyst to produce a polymer product, or simultaneously an organic catalyst and a metal catalyst to produce a polymer product.
  • the order of addition of the catalyst is appropriately selected according to the purpose, but the raw material containing the ring-opening polymerizable monomer and the compressive fluid are brought into contact with each other in the presence of the organic catalyst not containing the metal atom.
  • a method in which the ring-opening polymerizable monomer is subjected to ring-opening polymerization and then further polymerized in the presence of the metal atom-containing catalyst is more preferable from the viewpoint of improving the conversion rate.
  • the materials fed by the feed pump 10 and the catalyst supplied by the metering pump 12 are sufficiently stirred by the stirring device of the reaction vessel 13 as necessary, and heated to a predetermined temperature by the heater. Thereby, the ring-opening polymerizable monomer undergoes ring-opening polymerization in the presence of the catalyst in the reaction vessel 13 (polymerization step).
  • the lower limit of the temperature (polymerization reaction temperature) for ring-opening polymerization of the ring-opening polymerizable monomer is not particularly limited, but is preferably 40 ° C, more preferably 50 ° C, and particularly preferably 60 ° C.
  • the polymerization reaction temperature is less than 40 ° C., depending on the ring-opening polymerizable monomer species, it takes a long time to melt by the compressive fluid, the melting is insufficient, or the activity of the catalyst is lowered. As a result, the reaction rate tends to decrease during polymerization, and the polymerization reaction may not proceed quantitatively.
  • the upper limit of the polymerization reaction temperature is not particularly limited, but is 100 ° C. or 30 ° C. higher than the melting point of the ring-opening polymerizable monomer, whichever is higher.
  • the upper limit of the polymerization reaction temperature is preferably 90 ° C. or the higher melting point of the ring-opening polymerizable monomer, and preferably 80 ° C. or 20 ° C. lower than the melting point of the ring-opening polymerizable monomer. Temperature is more preferred. When the polymerization reaction temperature exceeds 30 ° C.
  • the depolymerization reaction which is the reverse reaction of the ring-opening polymerization, tends to occur in equilibrium, and the polymerization reaction is difficult to proceed quantitatively.
  • the polymerization reaction temperature may be 30 ° C. higher than the melting point in order to increase the activity of the catalyst. Even in this case, the polymerization reaction temperature is preferably 100 ° C. or lower.
  • the polymerization reaction temperature is controlled by a heater provided in the reaction vessel 13 or heating from the outside of the reaction vessel 13. Moreover, when measuring polymerization reaction temperature, you may use the polymer product obtained by polymerization reaction.
  • ring-opening polymerizable monomers were polymerized using a large amount of supercritical carbon dioxide.
  • the ring-opening polymerizable monomer is subjected to ring-opening polymerization at an unprecedented high concentration.
  • the pressure in the reaction vessel 13 becomes high in the presence of the compressive fluid, and the glass transition temperature (Tg) of the produced polymer is lowered.
  • Tg glass transition temperature
  • the polymerization reaction time (average residence time in the reaction vessel 13) is set according to the target molecular weight, but is usually preferably within 1 hour, more preferably within 45 minutes, and within 30 minutes. Is particularly preferred. According to the production method of the present embodiment, the polymerization reaction time can be set to 20 minutes or less. This is a short time that is unprecedented in the polymerization of ring-opening polymerizable monomers in a compressible fluid.
  • the pressure at the time of polymerization that is, the pressure of the compressive fluid is such that the compressive fluid supplied from the tank 7 is a liquefied gas ((2) in the phase diagram of FIG. 2) or a high-pressure gas ((3) in the phase diagram of FIG. 2).
  • the pressure that becomes the supercritical fluid (1) in the phase diagram of FIG. 2) is preferable.
  • the pressure is preferably 3.7 MPa or more, more preferably 5 MPa or more, and a critical pressure of 7.4 MPa or more, considering efficiency of the reaction, polymer conversion rate, and the like. Particularly preferred.
  • the temperature is 25 degreeC or more for the same reason.
  • the water content in the reaction vessel 13 is preferably 4 mol% or less, more preferably 1 mol% or less, and particularly preferably 0.5 mol% or less with respect to the ring-opening polymerizable monomer.
  • the amount of water exceeds 4 mol%, the water itself contributes as an initiator, so that it may be difficult to control the molecular weight.
  • an operation for removing water contained in the ring-opening polymerizable monomer and other raw materials may be added as a pretreatment as necessary.
  • the polymer product P that has completed the ring-opening polymerization reaction in the reaction vessel 13 is sent out of the reaction vessel 13 by the metering pump 14.
  • the rate at which the metering pump 14 delivers the polymer product P is preferably constant in order to obtain a uniform polymerized product by operating at a constant pressure in the polymerization system filled with the compressive fluid. Therefore, the liquid feeding mechanism inside the reaction vessel 13 and the liquid feeding amount of the liquid feeding pump 10 are controlled so that the back pressure of the metering pump 14 is constant. Similarly, the feeding speed of the liquid feeding mechanism, the metering feeders (2, 4), and the metering pumps (6, 8) in the melt mixing device 9 are controlled so that the back pressure of the liquid pump 10 is constant. .
  • the control method may be an ON-OFF type, that is, an intermittent feed type, but a continuous or step method in which the rotational speed of a pump or the like is gradually increased or decreased is often more preferable. In any case, a uniform polymer product can be stably obtained by such control.
  • a batch polymerization method for ring-opening polymerizable monomers using the polymerization reaction apparatus 400 will be described.
  • a raw material containing a ring-opening polymerizable monomer and a compressive fluid are brought into contact with each other at a predetermined mixing ratio, and the ring-opening polymerizable monomer is subjected to ring-opening polymerization in the presence of a catalyst.
  • the metering pump 408 is operated and the valves (421, 422) are opened, whereby the compressive fluid stored in the tank 407 is supplied to the reaction vessel 413 without going through the addition pot 411.
  • the ring-opening polymerizable monomer and initiator stored in advance in the reaction vessel 413 come into contact with the compressive fluid supplied from the tank 407, and are stirred by the stirring device to be ring-opening polymerizable monomer. And other raw materials melt.
  • the ring-opening polymerizable monomer is preferably melted by bringing a raw material containing the ring-opening polymerizable monomer into contact with a compressive fluid.
  • the mass ratio between the raw material and the compressive fluid in the reaction vessel 413 (hereinafter also referred to as a mixing ratio) is not particularly limited, but is more preferably in the range of the following inequality.
  • the raw material in the above formula includes a ring-opening polymerizable monomer and an initiator.
  • limiting in particular as said mixing ratio Although it can select suitably according to the objective, 0.5 or more are preferable, 0.7 or more are more preferable, 0.85 or more are especially preferable.
  • the upper limit of the mixing ratio is preferably less than 1, and if the mixing ratio is less than 0.5, it is not economical because the amount of compressive fluid used increases, Since the density decreases, the polymerization rate may decrease.
  • the mixing ratio is less than 0.5, the mass of the compressive fluid becomes larger than the mass of the raw material, so that the melt phase in which the ring-opening polymerizable monomer is melted and the ring-opening polymerizable monomer is in the compressive fluid
  • the fluid phase dissolved in the coexistence may coexist and the reaction may not easily proceed.
  • the temperature and pressure at which the ring-opening polymerizable monomer is melted in the reaction vessel 413 is set to a temperature and pressure at least equal to or higher than the triple point of the compressive fluid in order to prevent the supplied compressive fluid from turning into a gas. Be controlled. This control is performed by adjusting the output of the heater of the reaction vessel 413 or the opening / closing degree of the valves (421, 422).
  • the temperature at which the ring-opening polymerizable monomer is melted may be a temperature equal to or lower than the melting point at normal pressure of the ring-opening polymerizable monomer.
  • each raw material and compressive fluid in the reaction vessel 413 may be adjusted so that each raw material is efficiently melted.
  • heat or stirring may be applied, or heat or stirring may be applied while bringing each raw material into contact with the compressive fluid.
  • the ring-opening polymerizable monomer may be brought into contact with the compressive fluid after previously melting the ring-opening polymerizable monomer by applying heat equal to or higher than the melting point.
  • the valves (423 and 424) are opened, and the catalyst in the addition pot 411 is supplied into the reaction vessel 413.
  • the catalyst supplied to the reaction vessel 413 is sufficiently stirred by a stirring device of the reaction vessel 413 as necessary, and heated to a predetermined temperature by a heater.
  • the ring-opening polymerizable monomer is subjected to ring-opening polymerization in the presence of a catalyst to produce a polymer.
  • two types of organic catalyst and metal catalyst are used. Even if the polymer intermediate is first produced using the organic catalyst and then the polymer product is produced using the metal catalyst, the metal catalyst is first produced.
  • the catalyst may be used to produce a polymer intermediate followed by an organic catalyst to produce a polymer product, or simultaneously an organic catalyst and a metal catalyst to produce a polymer product.
  • the order of addition of the catalyst is appropriately selected according to the purpose, but the raw material containing the ring-opening polymerizable monomer and the compressive fluid are brought into contact with each other in the presence of the organic catalyst not containing the metal atom.
  • a method of further polymerizing the ring-opening polymerizable monomer in the presence of the metal catalyst after ring-opening polymerization of the ring-opening polymerizable monomer is more preferable in terms of improving the conversion.
  • the lower limit of the temperature (polymerization reaction temperature) for ring-opening polymerization of the ring-opening polymerizable monomer is preferably 50 ° C. lower than the melting point of the ring-opening polymerizable monomer, and 40 ° C. lower than the melting point. Is more preferable.
  • the upper limit is preferably a temperature that is 50 ° C. higher than the melting point of the ring-opening polymerizable monomer, and more preferably a temperature that is 40 ° C. higher than the melting point. If the polymerization reaction temperature is less than 50 ° C. lower than the melting point of the ring-opening polymerizable monomer, the reaction rate tends to decrease, and the polymerization reaction may not proceed quantitatively.
  • the ring-opening polymerizable monomer may be subjected to ring-opening polymerization at a temperature other than the above range.
  • the temperature may be higher than the above range in order to increase the activity of the catalyst.
  • the polymerization reaction temperature is preferably 150 ° C. or lower, and more preferably 100 ° C. or lower.
  • ring-opening polymerizable monomers were polymerized using a large amount of supercritical carbon dioxide.
  • the ring-opening polymerizable monomer is subjected to ring-opening polymerization at a high mixing ratio that has not been conventionally obtained.
  • the inside of the reaction vessel 413 becomes a high pressure in the presence of the compressive fluid, and the glass transition temperature (Tg) of the produced polymer is lowered.
  • Tg glass transition temperature
  • the polymerization reaction time is set according to the target molecular weight.
  • the target weight average molecular weight is 3,000 to 500,000, the polymerization reaction time is completed within 2 hours.
  • the pressure at the time of polymerization is such that the compressive fluid supplied from the tank 407 is a liquefied gas ((2) in the phase diagram of FIG. 2) or a high-pressure gas ((3 in the phase diagram of FIG. 2). )) May be used, but a pressure which becomes a supercritical fluid ((1) in the phase diagram of FIG. 2) is preferable.
  • the pressure is preferably 3.7 MPa or more, more preferably 5 MPa or more, and a critical pressure of 7.4 PMa or more in consideration of efficiency of the reaction, polymer conversion rate, and the like. Particularly preferred.
  • the temperature is 25 degreeC or more for the same reason.
  • the amount of water in the reaction vessel 413 is preferably 4 mol% or less, more preferably 1 mol% or less, and particularly preferably 0.5 mol% or less with respect to the ring-opening polymerizable monomer.
  • the amount of water exceeds 4 mol%, the water itself contributes as an initiator, so that it may be difficult to control the molecular weight.
  • an operation for removing water contained in the ring-opening polymerizable monomer and other raw materials may be added as a pretreatment as necessary.
  • urethane bond or an ether bond can be introduced by adding an isocyanate compound or a glycidyl compound and carrying out a polyaddition reaction in a compressive fluid, like the ring-opening polymerizable monomer.
  • a method in which the compound is added and reacted after completion of the polymerization reaction of the ring-opening polymerizable monomer is more preferable.
  • the isocyanate compound used in the polyaddition reaction is not particularly limited, and examples thereof include polyfunctional isocyanate compounds such as isophorone diisocyanate, hexamethylene diisocyanate, lysine diisocyanate, xylene diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, and cyclohexane diisocyanate.
  • polyfunctional isocyanate compounds such as isophorone diisocyanate, hexamethylene diisocyanate, lysine diisocyanate, xylene diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, and cyclohexane diisocyanate.
  • the glycidyl compound is not particularly limited, and examples thereof include polyfunctional glycidyl compounds such as diethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, and diglycidyl terephthalate. .
  • the polymer P that has completed the ring-opening polymerization reaction in the reaction vessel 413 is discharged from the valve 425 and sent out of the reaction vessel 413.
  • the following treatment may be added.
  • the ring-opening polymerizable monomer is subjected to ring-opening polymerization
  • at least one of an organic catalyst not containing the metal atom and a catalyst containing the metal atom may be held in the reaction vessel in advance. That is, a reaction in which at least one of the organic catalyst containing no metal atom and the catalyst containing the metal atom is retained by bringing the raw material containing the ring-opening polymerizable monomer into contact with the compressive fluid.
  • the ring-opening polymerizable monomer may be subjected to ring-opening polymerization in a container.
  • each raw material after melting in a reaction vessel in which a solid metal catalyst is applied in advance each raw material after melting in a reaction vessel in which a solid metal catalyst is applied in advance.
  • An organic catalyst may be supplied to cause the ring-opening polymerizable monomer to undergo ring-opening polymerization.
  • the ring-opening polymerization step may further include a treatment for removing at least one of the organic catalyst containing no metal atom and the catalyst containing the metal atom. Good.
  • the catalyst remaining in the polymer product obtained by the polymer production method is removed if necessary.
  • the removal method is not particularly limited.For example, if it is a compound having a boiling point, it is distilled off under reduced pressure, or a method of removing the catalyst by using a substance that dissolves the catalyst as an entrainer, For example, a method of adsorbing and removing a catalyst by a column may be used.
  • the method for removing the catalyst may be a batch method in which the polymer product is removed after being taken out from the reaction vessel, or a method in which the polymer product is continuously treated without being taken out.
  • the reduced pressure condition is set based on the boiling point of the catalyst.
  • the temperature during decompression is 100 ° C. or higher and 120 ° C. or lower, and the catalyst can be removed at a temperature lower than the temperature at which the polymer product is depolymerized.
  • a step for removing the organic solvent after extraction of the catalyst may be required. For this reason, it is preferable to use a compressed fluid as a solvent also in extraction operation.
  • a known technique such as extraction of a fragrance can be diverted. More specifically, the raw material containing the ring-opening polymerizable monomer is brought into contact with the compressive fluid to open the ring-opening polymerizable monomer in the presence of the organic catalyst not containing the metal atom. After the polymerization, the organic catalyst not containing the metal atom remaining in the produced polymer intermediate is removed, and then further polymerized in the presence of the catalyst containing the metal atom to obtain a polymer product. From the viewpoint of improving the conversion rate.
  • the use of a compressive fluid enables a polymerization reaction at a low temperature as described above, so that the depolymerization reaction is greatly suppressed as compared with conventional melt polymerization. it can.
  • the polymer conversion rate can be 97 mol% or more, preferably 98 mol% or more.
  • the thermal characteristics as the polymer product may be insufficient, and an operation for separately removing the ring-opening polymerizable monomer may be required.
  • the polymer conversion rate means the ratio of the ring-opening polymerizable monomer that has contributed to the formation of the polymer with respect to the ring-opening polymerizable monomer as a raw material.
  • the amount of the ring-opening polymerizable monomer that contributed to the production of the polymer can be obtained by subtracting the amount of the unreacted ring-opening polymerizable monomer (residual ring-opening polymerizable monomer) from the amount of the produced polymer.
  • the number average molecular weight of the polymer obtained by this embodiment can be adjusted by the amount of the initiator.
  • the number average molecular weight is generally from 12,000 to 200,000. When the number average molecular weight is larger than 200,000, it may not be economical due to a deterioration in productivity accompanying an increase in viscosity. When the number average molecular weight is less than 12,000, the strength as a polymer may be insufficient, which may not be preferable.
  • the value obtained by dividing the weight average molecular weight of the polymer obtained by this embodiment by the number average molecular weight is preferably in the range of 1.0 to 2.5, and more preferably in the range of 1.0 to 2.0. When this value is larger than 2.0, there is a high possibility that the polymerization reaction is performed non-uniformly, and it is difficult to control the physical properties of the polymer.
  • the organic product obtained by this embodiment is produced by a production method that does not use an organic solvent, the organic product is substantially free of an organic solvent, and the content of metal atoms can be reduced by using a very small amount of a metal catalyst. Since the amount of residual monomer is as low as 1000 ppm or less, it is excellent in safety and stability. Moreover, as a result of carrying out the polymerization reaction by reducing the amount of the catalyst used at a low temperature for a short time, a polymer product having no coloration is obtained, which is excellent in practicality. Therefore, the polymer product of the present embodiment is widely applied for uses such as daily necessities, pharmaceuticals, cosmetics, and electrophotographic toners.
  • the organic solvent is an organic solvent used for ring-opening polymerization.
  • substantially free of organic solvent means that the content of the organic solvent in the polymer product measured by the following measurement method is below the detection limit.
  • the polymer product obtained by the method for producing a polymer of the present invention is excellent in safety and stability because it has a small metal content and a small amount of residual monomer. Therefore, the polymer product obtained by the production method of the present embodiment is widely applied to various uses such as an electrophotographic developer, printing ink, architectural paint, cosmetics, and medical materials. At that time, various additives may be used for the purpose of improving moldability, secondary processability, decomposability, tensile strength, heat resistance, storage stability, crystallinity, weather resistance and the like.
  • the organic solvent means a liquid organic compound used for dissolving the ring-opening polymerizable monomer.
  • a composite is synthesized by appropriately setting the timing of adding several types of ring-opening polymerizable monomers using the polymer product produced by the production method of the first embodiment.
  • the composite is obtained by polymerizing a copolymer or monomer having two or more polymer segments obtained by polymerizing monomers in a plurality of series. It means a mixture of two or more polymers.
  • two methods for synthesizing a stereo complex will be described.
  • FIGS. 6A and 6B are schematic views showing a complex production system used in the first method.
  • a polymer is produced by the production method of the first embodiment in series 1 in the complex production system 200 of FIG. 6A, and the obtained polymer product P and the newly introduced second product are used.
  • a composite product PP (final polymer product) is produced by contacting the ring-opening polymerizable monomer in series 2 and mixing continuously in the presence of a compressive fluid.
  • the complex product PP which has a 3 or more types of segment can also be obtained by repeating the series similar to the series 2 in the complex manufacturing system 200 of FIG. 6A in series.
  • the complex production system 200 includes a polymerization reaction device 100, tanks (21, 27), a metering feeder 22, a metering pump 28, a melt mixing device 29, and a reaction similar to those used in the first embodiment.
  • a container 33 and a pressure adjusting valve 34 are provided.
  • the polymer introduction port 33 a of the reaction vessel 33 is connected to the discharge port of the polymerization reaction apparatus 100 via the pressure resistant pipe 31.
  • the outlet of the polymerization reaction apparatus 100 means the outlet of the reaction vessel 13, the metering pump 14 (FIG. 3), or the pressure regulating valve 16 (FIG. 4).
  • the polymer product P generated in each polymerization reaction apparatus 100 can be supplied to the reaction vessel 33 in a molten state without returning to normal pressure.
  • Tank 21 stores the second ring-opening polymerizable monomer.
  • the second ring-opening polymerizable monomer is an optical isomer of the ring-opening polymerizable monomer stored in the tank 1.
  • the tank 27 stores a compressible fluid.
  • the compressive fluid stored in the tank 27 is not particularly limited, but is preferably the same type as the compressive fluid stored in the tank 7 in order to advance the polymerization reaction uniformly.
  • the tank 27 may store a gas (gas) or a solid that is a compressible fluid in the course of being supplied to the melt mixing device 29, or heated or pressurized in the melt mixing device 29. . In this case, the gas or solid stored in the tank 27 is heated or pressurized to be in the state of (1), (2), or (3) in the phase diagram of FIG. Become.
  • the metering feeder 22 measures the second ring-opening polymerizable monomer stored in the tank 21 and continuously supplies it to the melt mixing device 29.
  • the metering pump 28 continuously supplies the compressive fluid stored in the tank 27 to the melt mixing device 29 at a constant pressure and flow rate.
  • the melt mixing device 29 is a pressure-resistant container for continuously bringing the second ring-opening polymerizable monomer supplied from the tank 21 and the compressive fluid supplied from the tank 27 into contact with each other to melt the raw materials. It is a device that has.
  • the introduction port 29 a for introducing the compressive fluid supplied from the tank 27 by the metering pump 28 and the second ring-opening polymerizable monomer supplied from the tank 21 by the metering feeder 22 are introduced. And an introduction port 29b.
  • the melt mixing device 29 the same one as the melt mixing device 9 is used.
  • the reaction vessel 33 is obtained by polymerization in the polymerization reactor 100, and the polymer product P as an intermediate melted in the compressive fluid, and a second opening that is melted in the compressive fluid by the melt mixing device 29. It is a pressure-resistant container for polymerizing a ring polymerizable monomer.
  • the inlet 33a for introducing the molten polymer product P as an intermediate into the vessel and the molten second ring-opening polymerizable monomer are introduced into the vessel.
  • An introduction port 33b is provided.
  • the same reaction vessel 33 as the reaction vessel 13 is used.
  • the pressure adjusting valve 34 sends out the complex product PP polymerized in the reaction vessel 33 to the outside of the reaction vessel 33 by utilizing the pressure difference between the inside and outside of the reaction vessel 33.
  • a ring-opening polymerizable monomer for example, L-lactide
  • an optical isomer as an example of the second ring-opening polymerizable monomer.
  • the ring-opening polymerizable monomer for example, D-lactide
  • This method is very useful because the reaction can proceed at a temperature below the melting point of the ring-opening polymerizable monomer with a small amount of residual monomer, so that racemization hardly occurs and the reaction is obtained in a one-step reaction.
  • FIG. 7 is a schematic diagram showing a complex production system used in the second method.
  • a composite product PP is produced by continuously mixing a plurality of polymer products produced by the production method of the first embodiment in the presence of a compressive fluid.
  • the plurality of polymer products are obtained by polymerizing ring-opening polymerizable monomers of optical isomers to each other.
  • the complex manufacturing system 300 includes a plurality of polymerization reaction devices 100, a mixing device 41, and a pressure adjustment valve 42.
  • the polymer inlet 41 a of the mixing device 41 is connected to the outlet of each polymerization reaction device 100 via the pressure resistant pipe 31.
  • the outlet of the polymerization reaction apparatus 100 means the outlet of the reaction vessel 13, the metering pump 14 (FIG. 3), or the pressure regulating valve 16 (FIG. 4).
  • the polymer product P generated in each polymerization reaction device 100 can be supplied to the mixing device 41 in a molten state without returning to normal pressure.
  • each polymer product P has a reduced viscosity in the presence of the compressed fluid, so that the mixing device 41 can mix two or more types of polymer products P at a lower temperature.
  • FIG. 7 shows an example in which the piping 31 has one joint 31a so that two polymerization reaction apparatuses 100 are provided in parallel. However, by providing a plurality of joints, the polymerization reaction apparatus 100 can be connected in three in parallel. You may have more than one.
  • the mixing device 41 is not limited as long as it can mix a plurality of polymer products supplied from the respective polymerization reaction devices 100, and includes a stirring device.
  • a stirring device As the agitation device, a uniaxial screw, a biaxial screw meshing with each other, a biaxial mixer having a large number of meshing elements meshing with each other or overlapping, a kneader having helical stirring elements meshing with each other, a static mixer, etc. are preferably used.
  • the temperature (mixing temperature) at which each polymer product is mixed by the mixing device 41 can be set similarly to the polymerization reaction temperature in the reaction vessel 13.
  • the mixing device 41 may have a mechanism for supplying a compressive fluid separately to the polymer product to be mixed.
  • the pressure adjusting valve 42 is a device for adjusting the flow rate of the composite product PP obtained by mixing the polymer product with the mixing device 41.
  • L-type and D-type monomers are polymerized in advance in the compressive fluid in the polymerization reaction apparatus 100 in advance. Furthermore, the polymer product obtained by polymerization is blended in a compressive fluid to obtain a stereoblock copolymer.
  • polymers such as polylactic acid often decompose when heated and dissolved again, even when the residual monomer is extremely small.
  • the second method is useful because, by blending low-viscosity polylactic acid melted with a compressive fluid at a melting point or lower, racemization and thermal degradation can be suppressed as in the first method.
  • the first method and the second method a case where a stereocomplex is produced by polymerizing ring-opening polymerizable monomers that are optical isomers to each other has been described.
  • the ring-opening polymerizable monomers used in this embodiment do not need to be optical isomers.
  • Ppm in each table indicates a mass fraction.
  • the molecular weight, polymer conversion rate, YI value, and residual catalyst amount of the polymer products obtained in Examples and Comparative Examples were determined as follows.
  • ⁇ Conversion rate of polymers other than lactide Polymers other than lactide were measured in the same manner as described above, and the ratio of the quadruple peak area on the low magnetic field side from the monomer to the quadruple peak area on the high magnetic field side from the polymer was calculated. Then, 100 times this was taken as the amount of unreacted monomer (mol%).
  • the polymer conversion rate is a value obtained by subtracting the amount of unreacted monomer calculated from 100.
  • ⁇ Remaining catalyst amount The amount of organic catalyst remaining in the polymer product (polylactic acid) is determined by uniformly dissolving the polymer product such as polylactic acid in dichloromethane and adding an acetone / cyclohexane mixed solution (mass ratio 1/1). The supernatant obtained by re-precipitation was subjected to a gas chromatograph (GC) with a hydrogen flame detector (FID), the remaining catalyst was separated, and the amount of the remaining catalyst in the polymer product was measured by quantifying by an internal standard method. . Gas chromatography (GC) measurement was performed under the following conditions.
  • the metal catalyst was measured under the following conditions by ICP emission spectroscopy (high frequency inductively coupled plasma emission spectroscopy), and the amount of residual catalyst was determined based on the measurement results.
  • ICP emission spectroscopic analyzer ICP-OES / ICP-AES
  • a sample (polymer product) made by SPS5100, SII Nanotechnology was decomposed by heating with sulfuric acid and nitric acid (heating temperature is 230 ° C.), and then the volume was measured with ultrapure water to prepare a test solution. Quantitative analysis of Sn in the test solution was performed by ICP-AES method.
  • Example 1 Ring-opening polymerization of L-lactide (purity 99.5 wt%) was performed using the polymerization reactor 100 of FIG. The structure of the polymerization reaction apparatus 100 is shown.
  • Tank 1 weighing feeder 2: Plunger pump NP-S462 made by Nippon Seimitsu Tank 1 was filled with molten lactide as a ring-opening polymerizable monomer.
  • Tank 3 weighing feeder 4: Intelligent spectrometer pump (PU-2080) manufactured by JASCO Tank 3 was filled with lauryl alcohol as an initiator.
  • Tank 5 metering pump 6: Not used in this example.
  • Tank 7 Carbon dioxide cylinder tank 11, metering pump 12: Intelligent spectrometer pump (PU-2080) manufactured by JASCO
  • the tank 11 was filled with DBU (organic catalyst).
  • Melt mixing device 9 biaxial stirring device with screws that mesh with each other Cylinder inner diameter 30 mm Cylinder set temperature 100 °C Two shafts rotating in the same direction Rotating speed 30rpm
  • Reaction vessel 13 Biaxial kneader Cylinder inner diameter 40mm Cylinder set temperature Raw material supply part 100 °C Tip part 80 °C Two shafts rotating in the same direction Rotation speed 60rpm
  • the melt mixing device 9 and the reaction vessel 13 were operated under the above set conditions.
  • the weighing feeder 2 quantitatively supplied the molten lactide in the tank 1 into the container of the melt mixing device 9.
  • the measuring feeder 4 has 0.07 mol of lauryl alcohol in the tank 3 such that the amount of initiator relative to the ring-opening polymerizable monomer is 0.07 mol%, that is, 1 mol of lactide is supplied.
  • a fixed amount was supplied into the container of the melt mixing apparatus 9.
  • the metering pump 8 is placed in the pipe of the melt mixing device 9 so that the carbon dioxide (carbon dioxide) as a compressive fluid from the tank 7 becomes 10 parts by mass with respect to 90 parts by mass of the raw material supplied per unit time. Continuously fed.
  • the raw materials are lactide which is a ring-opening polymerizable monomer and lauryl alcohol added as an initiator.
  • the feed amount of the raw material was 10 g / min. It supplied so that the pressure in the container of the melt mixing apparatus 9 might be set to 15 MPa. As a result, the melt mixing device 9 continuously brings the raw materials of lactide and lauryl alcohol supplied from the tanks (1, 3, 7) and the compressive fluid into contact with each other and mixes them with a screw. Was melted.
  • Each material melted by the melt mixing device 9 was sent to the reaction vessel 13 by the liquid feed pump 10.
  • the metering pump 12 supplied the organic catalyst (DBU) in the tank 11 to the raw material supply hole of the biaxial kneader as the reaction vessel 13 so as to be 200 ppm with respect to 1 part by mass of lactide.
  • DBU organic catalyst
  • each material fed by the liquid feed pump 10 and DBU supplied by the metering pump 12 were mixed, and lactide was subjected to ring-opening polymerization.
  • the tank 11 is filled with a metal catalyst (bis (2-ethylhexanoic acid) tin (II)), and the metering pump 12 is charged with metal catalyst (bis ( 2-Ethylhexanoic acid) tin (II)) was supplied to the raw material supply hole of the twin-screw kneader as the reaction vessel 13 so as to be 200 ppm.
  • a metal catalyst bis (2-ethylhexanoic acid) tin (II)
  • metal catalyst bis ( 2-Ethylhexanoic acid) tin (II)
  • Example 2 Ring-opening polymerization of L-lactide (purity 99.5 wt%) was performed using the polymerization reactor 100 of FIG.
  • the structure of the polymerization reaction apparatus 100 is shown.
  • Tank 1, weighing feeder 2: Plunger pump NP-S462 made by Nippon Seimitsu Tank 1 was filled with molten lactide as a ring-opening polymerizable monomer.
  • Tank 5 metering pump 6: Not used in this example.
  • Tank 7 Carbon dioxide cylinder tank 11
  • metering pump 12 Intelligent spectrometer pump (PU-2080) manufactured by JASCO Tank 11 was filled with metal catalyst bis (2-ethylhexanoate) tin.
  • Melt mixing device 9 biaxial stirring device with screws that mesh with each other Cylinder inner diameter 30 mm Cylinder set temperature 150 °C Two shafts rotating in the same direction Rotating speed 30rpm
  • Reaction vessel 13 Biaxial kneader Cylinder inner diameter 40mm Cylinder set temperature Raw material supply part 150 ° C Tip part 80 ° C Two shafts rotating in the same direction Rotation speed 60rpm
  • the melt mixing device 9 and the reaction vessel 13 were operated under the above set conditions.
  • the weighing feeder 2 quantitatively supplied the molten lactide in the tank 1 into the container of the melt mixing device 9.
  • the measuring feeder 4 quantitatively supplied the lauryl alcohol in the tank 3 into the container of the melt mixing device 9 so as to be 0.07 mol per mol of lactide supplied.
  • the metering pump 8 is placed in the pipe of the melt mixing device 9 so that the carbon dioxide (carbon dioxide) as a compressive fluid from the tank 7 becomes 10 parts by mass with respect to 90 parts by mass of the raw material supplied per unit time. Continuously fed.
  • the raw materials are lactide which is a ring-opening polymerizable monomer and lauryl alcohol added as an initiator.
  • the feed amount of the raw material was 10 g / min. It supplied so that the pressure in the container of the melt mixing apparatus 9 might be set to 15 MPa. As a result, the melt mixing device 9 continuously brings the raw materials of lactide and lauryl alcohol supplied from the tanks (1, 3, 7) and the compressive fluid into contact with each other and mixes them with a screw. Was melted.
  • Each material melted by the melt mixing device 9 was sent to the reaction vessel 13 by the liquid feed pump 10.
  • the metering pump 12 supplied the metal catalyst (bis (2-ethylhexanoic acid) tin) in the tank 11 to the raw material supply hole of the twin-screw kneader as the reaction vessel 13 so as to be 200 ppm with respect to 1 part by mass of lactide. .
  • each material fed by the liquid feeding pump 10 and bis (2-ethylhexanoic acid) tin supplied by the metering pump 12 were mixed to perform ring-opening polymerization of lactide.
  • the tank 11 is filled with DBU (organic catalyst), and the feed pump of the biaxial kneader as the reaction vessel 13 so that the metering pump 12 becomes 200 ppm of DBU with respect to 1 part by mass of lactide. Supplied.
  • DBU organic catalyst
  • Example 3 Experiments were conducted in the same manner as in (Example 1) except that the catalyst type used in Example 1 was changed to the material shown in Table 1 instead of DBU.
  • physical property values Mn, Mw, polymer conversion rate, YI value, catalyst residual amount
  • Example 6 Example 6 to (Example 8)
  • Example 2 the experiment was performed in the same manner as in (Example 2) except that the catalyst type used was changed to the material shown in Table 1 instead of DBU.
  • physical property values Mn, Mw, polymer conversion rate, YI value, catalyst residual amount
  • Example 9 Experiments were conducted in the same manner as in (Example 1) except that the amount of lauryl alcohol added in Example 1 was changed as shown in Table 1. With respect to the obtained polymer product, physical property values (Mn, Mw, polymer conversion rate, YI value, catalyst residual amount) were determined by the above method. The results are shown in Table 1.
  • Example 10 Experiments were conducted in the same manner as in (Example 1) except that the types of monomers used in Example 1 were changed as shown in Tables 1 to 3.
  • Example 16 For the combinations of the two types of monomers (Example 16) to (Example 23), each of the monomers was synthesized one by one and charged into the reaction vessel 100 of FIG. went.
  • physical property values Mn, Mw, polymer conversion rate, YI value, catalyst residual amount
  • Example 24 The experiment was performed in the same manner as in (Example 1) except that the order of the catalyst to be added was changed so as to be mixed at the same time in Example 1. With respect to the obtained polymer product, physical property values (Mn, Mw, polymer conversion rate, YI value, catalyst residual amount) were determined by the above method. The results are shown in Table 3.
  • Example 25 In Example 1, the experiment was performed in the same manner as in (Example 1) except that the amount of the initiator to be added was 0.01 mol with respect to 1 mol of lactide. With respect to the obtained polymer product, physical property values (Mn, Mw, polymer conversion rate, YI value, catalyst residual amount) were determined by the above method. The results are shown in Table 3.
  • Example 26 In Example 1, tin oxide (manufacturer name: Aldrich cat, no24, 464-3. Tin (ii)) which was previously sieved on the wall of the tube of the reaction vessel 13 in FIG. Oxide, 99-%) was applied uniformly to 1 g, and the same experiment as in Example 1 was conducted except that the metal catalyst (bis (2-ethylhexanoic acid) tin (II)) was not used. Went. With respect to the obtained polymer product, physical property values (Mn, Mw, polymer conversion rate, YI value, catalyst residual amount) were determined by the above method. The results are shown in Table 3.
  • Example 27 Ring-opening polymerization of L-lactide was performed using the polymerization reaction apparatus 400 of FIG. The structure of the polymerization reaction apparatus 400 is shown.
  • Tank 407 Carbon dioxide cylinder addition pot 411: A 1/4 inch SUS316 pipe was sandwiched between valves 423 and 424 and used as an addition pot. DBU was previously filled to 200 ppm with respect to 1 part by mass of lactide.
  • Reaction vessel 413 100 mL pressure vessel made of SUS316 Preliminarily lactide in a liquid state as a ring-opening polymerizable monomer, Mixture with lauryl alcohol as initiator (molar ratio 100/3) 108 g was charged.
  • the carbon dioxide stored in the tank 407 was supplied to the reaction vessel 413 without going through the addition pot 411.
  • carbon dioxide was charged until the pressure in the reaction vessel 413 reached 15 MPa.
  • the valve (423, 424) was opened, and the DBU in the addition pot 411 was supplied into the reaction vessel 413.
  • a polymerization reaction of lactide was performed in the reaction vessel 413 for 1 hour.
  • a metal catalyst bis (2-ethylhexanoic acid) tin (II)
  • the metering pump 408 was operated and the valves (421, 422) were opened to supply the carbon dioxide stored in the tank 407 to the reaction vessel 413 without going through the addition pot 411.
  • carbon dioxide was charged until the pressure in the reaction vessel 413 reached 15 MPa.
  • the valve (423, 424) is opened, and the metal catalyst (bis (2-ethylhexanoic acid) tin (II)) in the addition pot 411 is placed in the reaction vessel 413. Supplied. Thereafter, a polymerization reaction of lactide was performed in the reaction vessel 413 for 1 hour.
  • the valve 425 was opened, the temperature and pressure in the reaction vessel 413 were gradually returned to room temperature and normal pressure, and after 3 hours, the polymer product (polylactic acid) in the reaction vessel 413 was taken out.
  • Example 28 Ring-opening polymerization of L-lactide was performed using the polymerization reaction apparatus 400 of FIG. The structure of the polymerization reaction apparatus 400 is shown.
  • Tank 407 Carbon dioxide cylinder addition pot 411: A 1/4 inch SUS316 pipe was sandwiched between valves 423 and 424 and used as an addition pot.
  • a metal catalyst bis (2-ethylhexanoic acid) tin (II)
  • Reaction vessel 413 100 ml pressure vessel made of SUS316 Preliminarily liquid lactide as a ring-opening polymerizable monomer, Mixture with lauryl alcohol as initiator (molar ratio 100/3) 108 g was charged.
  • the carbon dioxide stored in the tank 407 was supplied to the reaction vessel 413 without going through the addition pot 411 by operating the metering pump 408 and opening the valves (421, 422). After replacing the space in the reaction vessel 413 with carbon dioxide, carbon dioxide was charged until the pressure in the reaction vessel 413 reached 15 MPa. After raising the temperature in the reaction vessel 413 to 150 ° C., the valve (423, 424) is opened, and the metal catalyst (bis (2-ethylhexanoic acid) tin (II)) in the addition pot 411 is placed in the reaction vessel 413. Supplied to. Thereafter, a polymerization reaction of lactide was performed in the reaction vessel 413 for 1 hour.
  • Example 29 In Example 27, an experiment was performed in the same manner as in (Example 27) except that the following catalyst extraction operation was performed after the addition of the catalyst.
  • ⁇ Catalyst extraction process> In the reaction apparatus 413 of FIG. 5, supercritical carbon dioxide (100 ° C., 10 MPa, 332 kg / m 3 ) and 2 mL for 30 minutes with a metering pump 408 while the obtained polymer intermediate is kept at 100 ° C. And was discharged from the valve 432, and the operation was performed so as to keep the system at 10 MPa. The polymer intermediate comes into contact with the compressive fluid, and unreacted monomer and catalyst contained in the polymer intermediate are dissolved in the compressible fluid and removed through valve 432.
  • the temperature in the reaction vessel is increased to 150 ° C., and the reaction is performed again by adding a metal catalyst in the same manner as in (Example 27).
  • the pressure was restored, and the polymer product (polylactic acid) in the reaction vessel was taken out from the valve 425 to obtain a polymer product.
  • Example 30 In Example 29, the experiment was performed in the same manner as in (Example 29) except that the time for circulating supercritical carbon dioxide was 60 minutes in the extraction step. With respect to the obtained polymer product, physical property values (Mn, Mw, polymer conversion rate, YI value, catalyst residual amount) were determined by the above method. The results are shown in Table 4.
  • ⁇ 1> comprising a ring-opening polymerization step of bringing the ring-opening polymerizable monomer into contact with a raw material containing a ring-opening polymerizable monomer and a compressive fluid;
  • a ring-opening polymerization step an organic catalyst containing no metal atom and a catalyst containing a metal atom are used.
  • ⁇ 2> The method for producing a polymer according to ⁇ 1>, wherein the raw material containing the ring-opening polymerizable monomer is brought into contact with the compressive fluid at a mixing ratio of the following formula.
  • ⁇ 3> The method for producing a polymer according to ⁇ 1>, wherein the raw material containing the ring-opening polymerizable monomer is continuously brought into contact with the compressive fluid.
  • ⁇ 4> The method for producing a polymer according to ⁇ 3>, wherein the raw material containing the ring-opening polymerizable monomer and the compressive fluid are continuously supplied and contacted under the following conditions.
  • ⁇ 5> Any one of ⁇ 1> to ⁇ 4>, wherein the total amount of the organic catalyst containing no metal atom and the catalyst containing the metal atom is 50 ppm to 500 ppm based on the ring-opening polymerizable monomer This is a method for producing the polymer.
  • ⁇ 6> From the above ⁇ 1> to ⁇ 5>, wherein the mass ratio (organic catalyst: metal catalyst) of the organic catalyst containing no metal atom and the catalyst containing the metal atom is 50:50 to 99: 1 It is a manufacturing method of the polymer in any one.
  • the ring-opening polymerization step the ring-opening polymerizable monomer is subjected to ring-opening polymerization in the presence of an organic catalyst not containing a metal atom, and then further polymerized in the presence of a catalyst containing a metal atom.
  • ⁇ 8> Any one of ⁇ 1> to ⁇ 7>, wherein the ring-opening polymerization step is performed in a reaction vessel in which at least one of an organic catalyst containing no metal atom and a catalyst containing a metal atom is held.
  • ⁇ 9> The method for producing a polymer according to any one of ⁇ 1> to ⁇ 8>, wherein the compressive fluid contains carbon dioxide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

A method for producing a polymer, which comprises a ring-opening polymerization step for ring-opening polymerizing a ring-opening polymerizable monomer by bringing a starting material that contains the ring-opening polymerizable monomer into contact with a compressed fluid. An organic catalyst containing no metal atoms and a catalyst containing metal atoms are used in the ring-opening polymerization step.

Description

ポリマーの製造方法Polymer production method
 本発明は、開環重合性モノマーを開環重合させてポリマーを製造するポリマーの製造方法に関する。 The present invention relates to a polymer production method for producing a polymer by ring-opening polymerization of a ring-opening polymerizable monomer.
 従来、金属触媒を用いて開環重合性モノマーを開環重合させることによりポリマーを製造する方法が知られている。例えば、前記開環重合モノマーとしてラクチドを主成分とする重合原料を溶融状態で反応させて重合し、ポリ乳酸を製造する方法が開示されている(例えば、特許文献1参照)。開示された方法によると前記金属触媒としてオクチル酸錫を用い、反応温度を195℃として、溶融状態でラクチドを反応させ重合させている。 Conventionally, a method for producing a polymer by ring-opening polymerization of a ring-opening polymerizable monomer using a metal catalyst is known. For example, a method for producing polylactic acid by reacting a polymerization raw material mainly containing lactide as a ring-opening polymerization monomer in a molten state to produce polylactic acid is disclosed (for example, see Patent Document 1). According to the disclosed method, tin octylate is used as the metal catalyst, the reaction temperature is set to 195 ° C., and lactide is reacted and polymerized in a molten state.
 しかし、この製造方法によりポリ乳酸を製造した場合、2重量%を超えるラクチドが生成物に残留する。これは、ラクチド等の開環重合の反応系においては開環重合性モノマーとポリマーとの平衡関係が成立し、上記の反応温度のような高温で開環重合性モノマーを開環重合した場合には、解重合反応によって開環重合性モノマーが生じやすくなることによる。残留したラクチドは、生成物の加水分解触媒として機能したり、耐熱性を低下させたりする。 However, when polylactic acid is produced by this production method, more than 2% by weight of lactide remains in the product. This is because in a ring-opening polymerization reaction system such as lactide, an equilibrium relationship between the ring-opening polymerizable monomer and the polymer is established, and the ring-opening polymerizable monomer is subjected to ring-opening polymerization at a high temperature such as the above reaction temperature. This is because a ring-opening polymerizable monomer is easily generated by a depolymerization reaction. Residual lactide functions as a hydrolysis catalyst for the product or reduces heat resistance.
 低温で前記開環重合性モノマーを開環重合させる方法として、例えば、ヒドロクロロフルオロカーボン(HCFC-22)の圧縮気体溶媒を用い、前記開環重合性モノマーを開環重合させる方法が開示されている(例えば、特許文献2参照)。開示された方法によると、触媒としてオクタン酸スズを用い、反応温度を100℃、圧力を270barとし、高圧反応器で2時間重合させることで、ポリラクチドを得ている。 As a method for ring-opening polymerization of the ring-opening polymerizable monomer at a low temperature, for example, a method of ring-opening polymerization of the ring-opening polymerizable monomer using a compressed gas solvent of hydrochlorofluorocarbon (HCFC-22) is disclosed. (For example, refer to Patent Document 2). According to the disclosed method, polylactide is obtained by using tin octoate as a catalyst, carrying out a polymerization at a reaction temperature of 100 ° C. and a pressure of 270 bar in a high pressure reactor for 2 hours.
 しかし、この製造方法によりポリラクチドを製造した場合、触媒のオクタン酸スズが、多く生成物に残留する。これは、触媒が金属原子を含むため生成物から容易に除去されないためである。残留したオクタン酸スズは、生成物の耐熱性及び安全性を低下させる。 However, when polylactide is produced by this production method, a large amount of catalyst tin octoate remains in the product. This is because the catalyst contains metal atoms and is not easily removed from the product. Residual tin octoate reduces the heat resistance and safety of the product.
 金属原子を含有しない有機触媒を用いてラクチドを重合する方法として、例えば、溶媒として超臨界二酸化炭素を用い、触媒として1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(DBU)を用いて前記開環重合性モノマーを開環重合する方法が開示されている(例えば、特許文献3参照)。 As a method for polymerizing lactide using an organic catalyst containing no metal atom, for example, supercritical carbon dioxide is used as a solvent, and 1,8-diazabicyclo [5.4.0] undec-7-ene (DBU) is used as a catalyst. Has disclosed a method for ring-opening polymerization of the ring-opening polymerizable monomer by using (see, for example, Patent Document 3).
 しかし、この方法では、数平均分子量が2万程度のポリマーしか得られておらず、実用上満足のいくものとはいえず、改良の余地があった。 However, in this method, only a polymer having a number average molecular weight of about 20,000 was obtained, which was not satisfactory in practical use, and there was room for improvement.
 また、反応温度、反応時間などの反応条件、及び触媒の種類、触媒の使用量によっては、ポリマーが着色されるという問題が生じる。
 そこで、黄変などの着色のないポリマーを得ることが望まれていた。
Further, depending on the reaction conditions such as reaction temperature and reaction time, the type of catalyst, and the amount of catalyst used, there arises a problem that the polymer is colored.
Therefore, it has been desired to obtain a polymer that is not colored such as yellowing.
特開平8-259676号公報JP-A-8-259676 特開2004-277698号公報JP 2004-277698 A 特許5182439号公報Japanese Patent No. 5182439
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、モノマー残存率が少なく、低温、短時間の反応であっても十分に分子量の高いポリマーを得ることができ、かつ触媒の使用量を減らすことで金属原子の含有量を少なくし、着色のないポリマーを得ることができるポリマーの製造方法を提供することを目的とする。 This invention makes it a subject to solve the said various problems in the past and to achieve the following objectives. That is, according to the present invention, a monomer residual ratio is small, a sufficiently high molecular weight polymer can be obtained even at a low temperature for a short time, and the metal atom content can be reduced by reducing the amount of catalyst used. And it aims at providing the manufacturing method of the polymer which can obtain the polymer without coloring.
 前記課題を解決するための手段としては、以下の通りである。即ち、本発明のポリマー製造方法は、開環重合性モノマーを含有する原材料と、圧縮性流体とを接触させて、前記開環重合性モノマーを開環重合させる開環重合工程を含み、
 前記開環重合工程において、金属原子を含有しない有機触媒と、金属原子を含有する触媒とを用いることを特徴とする。
Means for solving the problems are as follows. That is, the polymer production method of the present invention includes a ring-opening polymerization step of bringing a ring-opening polymerizable monomer into contact with a raw material containing a ring-opening polymerizable monomer and a compressive fluid, and ring-opening polymerization of the ring-opening polymerizable monomer.
In the ring-opening polymerization step, an organic catalyst containing no metal atom and a catalyst containing a metal atom are used.
 本発明によれば、従来における前記諸問題を解決し、前記目的を達成することができ、モノマー残存率が少なく、低温、短時間の反応であっても十分に分子量の高いポリマーを得ることができ、かつ触媒の使用量を減らすことで金属原子の含有量を少なくし、着色のないポリマーを得ることができるポリマーの製造方法を提供することができる。 According to the present invention, it is possible to solve the conventional problems and achieve the object, and to obtain a polymer having a sufficiently high molecular weight even with a low monomer residual rate and a low temperature, short time reaction. Further, it is possible to provide a method for producing a polymer that can reduce the content of metal atoms by reducing the amount of the catalyst used and obtain a polymer without coloring.
図1は温度と圧力に対する物質の状態を示す一般的な相図である。FIG. 1 is a general phase diagram showing the state of a substance with respect to temperature and pressure. 図2は本実施形態において圧縮性流体の範囲を定義するための相図である。FIG. 2 is a phase diagram for defining the range of the compressible fluid in the present embodiment. 図3は重合工程の一例を示す系統図である。FIG. 3 is a system diagram showing an example of the polymerization process. 図4は重合工程の一例を示す系統図である。FIG. 4 is a system diagram showing an example of the polymerization process. 図5は重合工程の一例を示す系統図である。FIG. 5 is a system diagram showing an example of the polymerization process. 図6Aは複合体製造システムの一例を示す模式図である。FIG. 6A is a schematic diagram illustrating an example of a complex production system. 図6Bは複合体製造システムの一例を示す模式図である。FIG. 6B is a schematic diagram illustrating an example of a complex production system. 図7は複合体製造システムの一例を示す模式図である。FIG. 7 is a schematic diagram showing an example of a complex production system.
(ポリマーの製造方法)
 本発明のポリマーの製造方法は、少なくとも開環重合工程を含み、必要に応じてその他の工程を含む。
(Method for producing polymer)
The method for producing a polymer of the present invention includes at least a ring-opening polymerization step, and includes other steps as necessary.
<開環重合工程>
 前記開環重合工程は、開環重合性モノマーを含有する原材料と、圧縮性流体とを接触させて、前記開環重合性モノマーを開環重合させる工程である。
 前記開環重合工程において、金属原子を含有しない有機触媒と、金属原子を含有する触媒とを用いて前記開環重合性モノマーを開環重合させる。
<Ring-opening polymerization process>
The ring-opening polymerization step is a step of bringing the ring-opening polymerizable monomer into ring-opening polymerization by bringing a raw material containing the ring-opening polymerizable monomer into contact with a compressive fluid.
In the ring-opening polymerization step, the ring-opening polymerizable monomer is subjected to ring-opening polymerization using an organic catalyst containing no metal atom and a catalyst containing a metal atom.
 前記触媒として、前記金属原子を含有しない有機触媒も、前記金属原子を含有する触媒も使用しているが、より質のよいポリマーを得るため、触媒の使用量を抑える方向で研究がされている状況においては、両者の触媒を使用するというのは極めてまれなことである。
 しかし、本発明者らは、前記開環重合性モノマーを含有する原材料と、前記圧縮性流体とを接触させ、前記開環重合性モノマーを溶融させて開環重合を行う開環重合工程において、前記金属原子を含有しない有機触媒と、前記金属原子を含有する触媒とを併用させると、両触媒の使用量を極端に抑えることができ、これらを足しあわせても通常の触媒使用量より数段少ない量で、十分に分子量の高いポリマーを短時間で製造することができることを見出した。
 理由は明らかではないが、前記開環重合性モノマーを溶融させて開環重合を行う際、両触媒を使用すると、前記金属原子を含有しない有機触媒の相乗効果により前記金属原子を含有する触媒の活性が高まるためではないかと推測している。
 また、前記開環重合工程において、前記金属原子を含有しない有機触媒及び前記金属原子を含有する触媒の少なくともいずれかの触媒を除去する処理を行ってもよく、この場合には、より触媒残量の少ないポリマーを得ることができる。
As the catalyst, an organic catalyst that does not contain the metal atom and a catalyst that contains the metal atom are used. However, in order to obtain a higher quality polymer, research is being conducted to reduce the amount of catalyst used. In the situation, it is extremely rare to use both catalysts.
However, the present inventors in the ring-opening polymerization step of bringing the ring-opening polymerizable monomer into contact with the raw material containing the ring-opening polymerizable monomer and melting the ring-opening polymerizable monomer to perform ring-opening polymerization, When the organic catalyst containing no metal atom and the catalyst containing the metal atom are used in combination, the amount of use of both catalysts can be extremely suppressed, and even when these are added together, several steps from the amount of normal catalyst used. It has been found that a polymer having a sufficiently high molecular weight can be produced in a short time with a small amount.
Although the reason is not clear, when performing the ring-opening polymerization by melting the ring-opening polymerizable monomer, when both catalysts are used, the synergistic effect of the organic catalyst not containing the metal atom results in the catalyst containing the metal atom. It is speculated that this may be due to increased activity.
Further, in the ring-opening polymerization step, a treatment for removing at least one of the organic catalyst containing no metal atom and the catalyst containing the metal atom may be performed. Can be obtained.
<<原材料>>
 本発明において、原材料とは、ポリマーを製造するもとになる材料であって、ポリマー構成成分となる材料をいい、前記原材料としては、前記開環重合性モノマーと、更に必要に応じて重合開始剤、添加剤を含有する。
<< Raw materials >>
In the present invention, the raw material refers to a material from which a polymer is produced and is a material constituting a polymer component. The raw material includes the ring-opening polymerizable monomer and, if necessary, polymerization initiation. Contains additives and additives.
-開環重合性モノマー-
 前記開環重合性モノマーとしては、特に制限はなく、目的に応じて適宜選択することができるが、エステル結合を環内に有するものが好ましい。このような、開環重合性モノマーとしては、例えば、環状エステル、環状カーボネート、環状アミドなどが挙げられる。
-Ring-opening polymerizable monomer-
There is no restriction | limiting in particular as said ring-opening polymerizable monomer, Although it can select suitably according to the objective, What has an ester bond in a ring is preferable. Examples of such ring-opening polymerizable monomers include cyclic esters, cyclic carbonates, and cyclic amides.
 前記環状エステルとしては、特に制限はなく、目的に応じて適宜選択することができるが、下記一般式(1)で表される化合物のL体及び/又はD体を脱水縮合して得られる環状二量体が好ましい。
 R-C*-H(-OH)(-COOH) 一般式(1)
 ただし、前記一般式(I)中、Rは炭素数1~10のアルキル基を表し、「C*」は、不斉炭素を表す。
There is no restriction | limiting in particular as said cyclic ester, Although it can select suitably according to the objective, The cyclic | annular form obtained by carrying out dehydration condensation of the L-form and / or D-form of the compound represented by following General formula (1) Dimers are preferred.
R—C * —H (—OH) (— COOH) General formula (1)
In the general formula (I), R represents an alkyl group having 1 to 10 carbon atoms, and “C *” represents an asymmetric carbon.
 前記一般式(1)で表される化合物としては、例えば、乳酸の鏡像異性体、2-ヒドロキシブタン酸の鏡像異性体、2-ヒドロキシペンタン酸の鏡像異性体、2-ヒドロキシヘキサン酸の鏡像異性体、2-ヒドロキシヘプタン酸の鏡像異性体、2-ヒドロキシオクタン酸の鏡像異性体、2-ヒドロキシノナン酸の鏡像異性体、2-ヒドロキシデカン酸の鏡像異性体、2-ヒドロキシウンデカン酸の鏡像異性体、2-ヒドロキシドデカン酸の鏡像異性体などが挙げられる。これらの中でも、乳酸の鏡像異性体が反応性、又は入手容易性の点から特に好ましい。
 これら環状二量体は単独で、あるいは数種を混合して使用することも可能である。
Examples of the compound represented by the general formula (1) include an enantiomer of lactic acid, an enantiomer of 2-hydroxybutanoic acid, an enantiomer of 2-hydroxypentanoic acid, and an enantiomer of 2-hydroxyhexanoic acid. , 2-hydroxyheptanoic acid enantiomer, 2-hydroxyoctanoic acid enantiomer, 2-hydroxynonanoic acid enantiomer, 2-hydroxydecanoic acid enantiomer, 2-hydroxyundecanoic acid enantiomer And enantiomers of 2-hydroxydodecanoic acid. Among these, enantiomers of lactic acid are particularly preferable from the viewpoint of reactivity or availability.
These cyclic dimers can be used alone or in admixture of several kinds.
 また、前記環状エステルとしては、例えば、脂肪族のラクトンなどが挙げられる。前記脂肪族のラクトンとしては、例えば、β-プロピオラクトン、β-ブチロラクトン、γ-ブチロラクトン、γ-ヘキサノラクトン、γ-オクタノラクトン、δイータ-バレロラクトン、δ-ヘキサラノラクトン、δ-オクタノラクトン、ε-カプロラクトン、δ-ドデカノラクトン、α-メチル-γ-ブチロラクトン、β-メチル-δ-バレロラクトン、グリコリド、ラクタイド、p-ジオキサノンなどが挙げられる。これらの中でも、ε-カプロラクトンが、反応性及び入手性の観点から特に好ましい。 In addition, examples of the cyclic ester include aliphatic lactones. Examples of the aliphatic lactone include β-propiolactone, β-butyrolactone, γ-butyrolactone, γ-hexanolactone, γ-octanolactone, δ eta-valerolactone, δ-hexalanolactone, δ- Examples include octanolactone, ε-caprolactone, δ-dodecanolactone, α-methyl-γ-butyrolactone, β-methyl-δ-valerolactone, glycolide, lactide, and p-dioxanone. Among these, ε-caprolactone is particularly preferable from the viewpoints of reactivity and availability.
 また、前記環状カーボネートとしては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、エチレンカーボネート、プロピレンカーボネートなどが挙げられる。 The cyclic carbonate is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include ethylene carbonate and propylene carbonate.
 また、前記環状アミドとしては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、ε-カプロラクタム、ラウリルラクタムなどが挙げられる。
 これらの開環重合性モノマーは、1種単独で使用してもよく、2種以上を併用してもよい。
The cyclic amide is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include ε-caprolactam and lauryl lactam.
These ring-opening polymerizable monomers may be used alone or in combination of two or more.
-重合開始剤-
 前記原材料には、必要に応じて重合開始剤(以下、開始剤ともいう)を含有させてもよい。前記重合開始剤としては、ポリマー生成物に分岐構造を付与する開始剤であれば特に制限はなく、目的に応じて適宜選択することができ、例えばモノアルコール、ジアルコール、多価アルコールのいずれでもよく、また飽和アルコール、不飽和アルコールのいずれであってもよい。
-Polymerization initiator-
The raw material may contain a polymerization initiator (hereinafter also referred to as an initiator) as necessary. The polymerization initiator is not particularly limited as long as it is an initiator that gives a branched structure to the polymer product, and can be appropriately selected according to the purpose. For example, any of monoalcohol, dialcohol, and polyhydric alcohol can be used. It may be either saturated alcohol or unsaturated alcohol.
 前記モノアルコールとしては、例えばメタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、ノナノール、デカノール、ラウリルアルコール、ミリスチルアルコール、セチルアルコール、ステアリルアルコールなどが挙げられる。
 前記ジアルコールとしては、例えばエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ヘキサンジオール、ノナンジオール、テトラメチレングリコール、ポリエチレングリコールなどが挙げられる。
 前記多価アルコールとしては、例えばグリセロール、ソルビトール、キシリトール、リビトール、エリスリトール、トリエタノールアミンなどが挙げられる。
 前記不飽和アルコールとしては、例えば乳酸メチル、乳酸エチルなどが挙げられる。
Examples of the monoalcohol include methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, nonanol, decanol, lauryl alcohol, myristyl alcohol, cetyl alcohol, and stearyl alcohol.
Examples of the dialcohol include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, hexanediol, nonanediol, tetramethylene glycol, and polyethylene glycol. Etc.
Examples of the polyhydric alcohol include glycerol, sorbitol, xylitol, ribitol, erythritol, triethanolamine, and the like.
Examples of the unsaturated alcohol include methyl lactate and ethyl lactate.
 また、ポリカプロラクトンジオールやポリテトラメチレングリコールのような末端にアルコール残基を有するポリマーを前記重合開始剤に使用してもよい。これにより、ジブロック、又はトリブロック共重合体が合成される。 Further, a polymer having an alcohol residue at the terminal, such as polycaprolactone diol or polytetramethylene glycol, may be used as the polymerization initiator. Thereby, a diblock or triblock copolymer is synthesized.
 前記重合開始剤の使用量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記開環重合性モノマーに対して、0.05モル%以上5モル%以下が好ましい。不均一に重合が開始されるのを防ぐために、前記開始剤は、モノマーが重合触媒に触れる前にあらかじめモノマーとよく混合しておくことが望ましい。 The amount of the polymerization initiator used is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.05 mol% or more and 5 mol% or less with respect to the ring-opening polymerizable monomer. In order to prevent the polymerization from starting unevenly, it is desirable that the initiator is well mixed with the monomer in advance before the monomer contacts the polymerization catalyst.
-添加剤-
 前記原材料には、必要に応じて添加剤を含有させてもよい。前記添加剤としては、例えば、界面活性剤、酸化防止剤、安定剤、防曇剤、紫外線吸収剤、顔料、着色剤、無機粒子、各種フィラー、熱安定剤、難燃剤、結晶核剤、帯電防止剤、表面ぬれ改善剤、焼却補助剤、滑剤、天然物、離型剤、可塑剤、その他類似のものなどが挙げられる。
 前記添加剤の使用量としては、特に制限はなく目的や添加剤の種類に応じて適宜選択することができるが、ポリマー組成物100質量部に対して0質量部以上5質量部以下が好ましい。
-Additive-
You may make the said raw material contain an additive as needed. Examples of the additive include surfactants, antioxidants, stabilizers, antifogging agents, ultraviolet absorbers, pigments, colorants, inorganic particles, various fillers, thermal stabilizers, flame retardants, crystal nucleating agents, and charging agents. Inhibitors, surface wetting improvers, incineration aids, lubricants, natural products, mold release agents, plasticizers, and the like.
There is no restriction | limiting in particular as the usage-amount of the said additive, Although it can select suitably according to the objective and the kind of additive, 0 to 5 mass parts is preferable with respect to 100 mass parts of polymer compositions.
 前記界面活性剤としては、前記圧縮性流体に溶融し、かつ前記圧縮性流体と前記開環重合性モノマーの双方に親和性を有するものが好適に用いられる。このような界面活性剤を使用することで、重合反応を均一に進めることができ、分子量分布の狭い生成物が得られるとともに、粒子状のポリマーを得やすくなる等の効果を期待できる。界面活性剤を用いる場合、圧縮性流体に加えても、開環重合性モノマーに加えてもよい。例えば、圧縮性流体として二酸化炭素を用いた場合には、親二酸化炭素基と親モノマー基を分子内に持つ界面活性剤が使用される。このような界面活性剤としては、例えば、フッ素系界面活性剤やシリコン系界面活性剤が挙げられる。 As the surfactant, those that melt into the compressive fluid and have affinity for both the compressive fluid and the ring-opening polymerizable monomer are preferably used. By using such a surfactant, the polymerization reaction can be progressed uniformly, and a product having a narrow molecular weight distribution can be obtained, and effects such as easy to obtain a particulate polymer can be expected. When using a surfactant, it may be added to the compressive fluid or to the ring-opening polymerizable monomer. For example, when carbon dioxide is used as the compressive fluid, a surfactant having a parent carbon dioxide group and a parent monomer group in the molecule is used. Examples of such surfactants include fluorine-based surfactants and silicon-based surfactants.
 前記安定剤としては、例えば、エポキシ化大豆油、カルボジイミドなどが用いられる。酸化防止剤としては、例えば、2,6-ジ-t-ブチル-4-メチルフェノール、ブチルヒドロキシアニソールなどが用いられる。防曇剤としては、例えば、グリセリン脂肪酸エステル、クエン酸モノステアリルなどが用いられる。フィラーとしては、例えば、紫外線吸収剤、熱安定剤、難燃剤、内部離型剤、結晶核剤としての効果を持つクレイ、タルク、シリカなどが用いられる。顔料としては、例えば、酸化チタン、カーボンブラック、群青などが用いられる。 As the stabilizer, for example, epoxidized soybean oil, carbodiimide and the like are used. As the antioxidant, for example, 2,6-di-t-butyl-4-methylphenol, butylhydroxyanisole and the like are used. Examples of the antifogging agent include glycerin fatty acid ester and monostearyl citrate. As the filler, for example, an ultraviolet absorber, a heat stabilizer, a flame retardant, an internal mold release agent, clay having an effect as a crystal nucleating agent, talc, silica, or the like is used. As the pigment, for example, titanium oxide, carbon black, ultramarine blue and the like are used.
<<圧縮性流体>>
 前記圧縮性流体について、図1及び図2を用いて説明する。図1は、温度と圧力に対する物質の状態を示す相図である。図2は、本実施形態において圧縮性流体の範囲を定義するための相図である。
 前記圧縮性流体とは、図1で表される相図の中で、図2に示す(1)、(2)、(3)のいずれかの領域に存在する状態のときの流体を意味する。
<< Compressive fluid >>
The compressive fluid will be described with reference to FIGS. 1 and 2. FIG. 1 is a phase diagram showing the state of a substance with respect to temperature and pressure. FIG. 2 is a phase diagram for defining the range of the compressible fluid in the present embodiment.
The compressible fluid means a fluid in a state existing in one of the regions (1), (2), and (3) shown in FIG. 2 in the phase diagram shown in FIG. .
 このような領域においては、物質はその密度が非常に高い状態となり、常温常圧時とは異なる挙動を示すことが知られている。なお、物質が(1)の領域に存在する場合には超臨界流体となる。超臨界流体とは、気体と液体とが共存できる限界(臨界点)を超えた温度・圧力領域において非凝縮性高密度流体として存在し、圧縮しても凝縮しない流体のことである。また、物質が(2)の領域に存在する場合には液体となるが、本実施形態においては、常温(25℃)、常圧(1気圧)において気体状態である物質を圧縮して得られた液化ガスを表す。また、物質が(3)の領域に存在する場合には気体状態であるが、本実施形態においては、圧力が臨界圧力(Pc)の1/2(1/2Pc)以上の高圧ガスを表す。 In such a region, it is known that the substance has a very high density and behaves differently from that at normal temperature and pressure. In addition, when a substance exists in the area | region of (1), it becomes a supercritical fluid. A supercritical fluid is a fluid that exists as a non-condensable high-density fluid in a temperature and pressure region that exceeds the limit (critical point) at which gas and liquid can coexist, and does not condense even when compressed. Further, when the substance is present in the region (2), it becomes a liquid, but in this embodiment, it is obtained by compressing a substance that is in a gaseous state at normal temperature (25 ° C.) and normal pressure (1 atm). Represents liquefied gas. Further, when the substance is present in the region (3), it is in a gaseous state, but in the present embodiment, it represents a high pressure gas whose pressure is 1/2 (1/2 Pc) or more of the critical pressure (Pc).
 前記圧縮性流体を構成する物質としては、例えば、一酸化炭素、二酸化炭素、一酸化二窒素、窒素、メタン、エタン、プロパン、2,3-ジメチルブタン、エチレンなどが挙げられる。これらの中でも二酸化炭素は、臨界圧力が約7.4MPa、臨界温度が約31℃であって、容易に超臨界状態を作り出せること、不燃性で取扱いが容易であることなどの点で好ましい。これらの圧縮性流体は、一種を単独で使用しても、二種以上を併用してもよい。 Examples of the substance constituting the compressive fluid include carbon monoxide, carbon dioxide, dinitrogen monoxide, nitrogen, methane, ethane, propane, 2,3-dimethylbutane, and ethylene. Among these, carbon dioxide is preferable in that it has a critical pressure of about 7.4 MPa and a critical temperature of about 31 ° C., can easily create a supercritical state, and is nonflammable and easy to handle. These compressive fluids may be used alone or in combination of two or more.
 二酸化炭素は、塩基性、求核性を有する物質と反応することから、従来、超臨界二酸化炭素を溶媒とする場合、リビングアニオン重合には適用できないとされていた(「超臨界流体の最新応用技術」、第173頁、2004年3月15日、株式会社エヌ・ティー・エス発行)。しかし、本発明者らは、従来の知見を覆し、超臨界二酸化炭素中でも、塩基性、求核性を有する有機触媒が安定的に開環性モノマーに配位し、これを開環させることで、短時間で定量的に重合反応が進行し、結果的に重合反応がリビング的に進行することを見出した。ここでいうリビング的とは、移動反応や停止反応などの副反応を伴わず、定量的に反応が進行し、得られたポリマーの分子量分布が比較的狭く単分散であることを意味する。 Since carbon dioxide reacts with basic and nucleophilic substances, it has traditionally been considered that it cannot be applied to living anion polymerization when supercritical carbon dioxide is used as a solvent ("Latest application of supercritical fluids" Technology ", page 173, March 15, 2004, issued by NTS Corporation). However, the present inventors overturned the conventional knowledge, and even in supercritical carbon dioxide, the organic catalyst having basicity and nucleophilicity is stably coordinated to the ring-opening monomer, and the ring-opening monomer is allowed to open the ring. The inventors have found that the polymerization reaction proceeds quantitatively in a short time, and as a result, the polymerization reaction proceeds in a living manner. Living as used herein means that the reaction proceeds quantitatively without side reactions such as transfer reaction and termination reaction, and the molecular weight distribution of the obtained polymer is relatively narrow and monodisperse.
<<金属原子を含有しない有機触媒>>
 前記金属原子を含有しない有機触媒(以下、有機触媒ともいう)としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、金属原子を含まず、前記開環重合性モノマーの開環重合反応に寄与し、前記開環重合性モノマーとの活性中間体を形成した後、アルコールとの反応で脱離、再生するものが好ましい。
<< Organic catalyst not containing metal atoms >>
The organic catalyst not containing a metal atom (hereinafter also referred to as an organic catalyst) is not particularly limited and may be appropriately selected depending on the purpose. For example, the organic catalyst does not contain a metal atom and What contributes to the ring-opening polymerization reaction and forms an active intermediate with the ring-opening polymerizable monomer and then desorbs and regenerates by reaction with an alcohol is preferable.
 例えば、エステル結合を有する開環重合性モノマーを重合する場合、前記有機触媒としては、塩基性を有する求核剤として働く(求核性の)化合物が好ましく、窒素原子を含有する化合物がより好ましく、窒素原子を含有する環状化合物が特に好ましい。前記のような化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、環状モノアミン、環状ジアミン(例えば、アミジン骨格を有する環状ジアミン化合物など)、グアニジン骨格を有する環状トリアミン化合物、窒素原子を含有する複素環式芳香族有機化合物、N-ヘテロサイクリックカルベンなどが挙げられる。なお、カチオン系の有機触媒は、開環重合に用いられるが、この場合、ポリマー主鎖から水素を引き抜く(バック-バイティング)ため、分子量分布が広くなり高分子量の生成物を得にくい。 For example, when polymerizing a ring-opening polymerizable monomer having an ester bond, the organic catalyst is preferably a (nucleophilic) compound that functions as a basic nucleophile, and more preferably a compound containing a nitrogen atom. A cyclic compound containing a nitrogen atom is particularly preferred. There is no restriction | limiting in particular as said compounds, According to the objective, it can select suitably, For example, cyclic | annular monoamine, cyclic diamine (For example, cyclic diamine compound etc. which have amidine skeleton), cyclic triamine which has guanidine skeleton. Examples thereof include a compound, a heterocyclic aromatic organic compound containing a nitrogen atom, and N-heterocyclic carbene. A cationic organic catalyst is used for ring-opening polymerization. In this case, hydrogen is extracted from the polymer main chain (back-biting), so that the molecular weight distribution becomes wide and it is difficult to obtain a high molecular weight product.
 前記環状モノアミンとしては、例えば、キヌクリジンなどが挙げられる。
 前記環状ジアミンとしては、例えば、1,4-ジアザビシクロ-[2.2.2]オクタン(DABCO)、1,5-ジアザビシクロ(4,3,0)-5-ノネンなどが挙げられる。
 前記アミジン骨格を有する環状ジアミン化合物としては、例えば、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(DBU)、ジアザビシクロノネンなどが挙げられる。
 前記グアニジン骨格を有する環状トリアミン化合物としては、例えば、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン(TBD)、ジフェニルグアニジン(DPG)などが挙げられる。
 前記窒素原子を含有する複素環式芳香族有機化合物としては、例えば、N,N-ジメチル-4-アミノピリジン(DMAP)、4-ピロリジノピリジン(PPY)、ピロコリン、イミダゾール、ピリミジン、プリンなどが挙げられる。
 前記N-ヘテロサイクリックカルベンとしては、例えば、1,3-ジ-tert-ブチルイミダゾール-2-イリデン(ITBU)などが挙げられる。
 これらの中でも、立体障害による影響が少なく求核性が高い、或いは、減圧除去可能な沸点を有するという理由により、DABCO、DBU、DPG、TBD、DMAP、PPY、ITBUが好ましい。
Examples of the cyclic monoamine include quinuclidine.
Examples of the cyclic diamine include 1,4-diazabicyclo- [2.2.2] octane (DABCO), 1,5-diazabicyclo (4,3,0) -5-nonene.
Examples of the cyclic diamine compound having an amidine skeleton include 1,8-diazabicyclo [5.4.0] undec-7-ene (DBU) and diazabicyclononene.
Examples of the cyclic triamine compound having a guanidine skeleton include 1,5,7-triazabicyclo [4.4.0] dec-5-ene (TBD), diphenylguanidine (DPG), and the like.
Examples of the heterocyclic aromatic organic compound containing a nitrogen atom include N, N-dimethyl-4-aminopyridine (DMAP), 4-pyrrolidinopyridine (PPY), pyrocholine, imidazole, pyrimidine, purine and the like. Can be mentioned.
Examples of the N-heterocyclic carbene include 1,3-di-tert-butylimidazol-2-ylidene (ITBU).
Among these, DABCO, DBU, DPG, TBD, DMAP, PPY, and ITBU are preferable because they are less affected by steric hindrance and have high nucleophilicity or have a boiling point that can be removed under reduced pressure.
 これらの有機触媒のうち、例えば、DBUは、室温で液状であって沸点を有する。このような有機触媒を選択した場合、得られたポリマー生成物を減圧処理することで、ポリマー生成物中から有機触媒をほぼ定量的に取り除くことができる。なお、有機触媒の種類や除去処理の有無は、生成物の使用目的等に応じて決定される。 Among these organic catalysts, for example, DBU is liquid at room temperature and has a boiling point. When such an organic catalyst is selected, the organic catalyst can be almost quantitatively removed from the polymer product by subjecting the obtained polymer product to a reduced pressure treatment. In addition, the kind of organic catalyst and the presence or absence of a removal process are determined according to the use purpose of a product, etc.
 前記有機触媒の種類及び使用量は、前記圧縮性流体と前記開環重合性モノマーの組合せによって変わるので一概には特定できないが、安定性および着色の点において、前記有機触媒の使用量は、前記開環重合性モノマー1質量部に対して、45ppm~500ppmが好ましく、45ppm~500ppmがより好ましく、50ppm~200ppmが特に好ましい。 The type and amount of the organic catalyst vary depending on the combination of the compressive fluid and the ring-opening polymerizable monomer, and thus cannot be specified unconditionally. However, in terms of stability and coloring, the amount of the organic catalyst used is 45 ppm to 500 ppm is preferable, 45 ppm to 500 ppm is more preferable, and 50 ppm to 200 ppm is particularly preferable with respect to 1 part by mass of the ring-opening polymerizable monomer.
<<金属原子を含有する触媒>>
 前記金属原子を含有する触媒(以下、金属触媒ともいう)としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、スズ系化合物、アルミ系化合物、チタン系化合物、ジルコニウム系化合物、アンチモン系化合物などが挙げられる。
 前記スズ系化合物としては、例えば、オクチル酸錫、ジブチル酸錫、ジ(2-エチルヘキサン酸)スズなどが挙げられる。
 前記アルミ系化合物としては、例えば、アルミニウムアセチルアセトナート、酢酸アルミニウムなどが挙げられる。
 前記チタン系化合物としては、例えば、テトライソプロピルチタネート、テトラブチルチタネートなどが挙げられる。
 前記ジルコニウム系化合物としては、例えば、ジルコニウムイソプロオイキシドなどが挙げられる。
 前記アンチモン系化合物としては、例えば、三酸化アンチモンなどが挙げられる。
<< Catalyst Containing Metal Atom >>
The catalyst containing the metal atom (hereinafter also referred to as a metal catalyst) is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a tin compound, an aluminum compound, a titanium compound, a zirconium compound Examples thereof include compounds and antimony compounds.
Examples of the tin compound include tin octylate, tin dibutyrate, and di (2-ethylhexanoic acid) tin.
Examples of the aluminum compound include aluminum acetylacetonate and aluminum acetate.
Examples of the titanium compound include tetraisopropyl titanate and tetrabutyl titanate.
Examples of the zirconium-based compound include zirconium isoprooxide.
Examples of the antimony compound include antimony trioxide.
 前記金属触媒の種類及び使用量は、前記圧縮性流体と前記開環重合性モノマーの組合せによって変わるので一概に特定できないが、安定性および着色の点において、前記金属触媒の使用量は、前記開環重合性モノマー1質量部に対して、1ppm~200ppmが好ましく、50ppm~200ppmがより好ましく、50ppm~100ppmが特に好ましい。 The type and amount of the metal catalyst vary depending on the combination of the compressive fluid and the ring-opening polymerizable monomer, and thus cannot be specified unconditionally. However, in terms of stability and coloring, the amount of the metal catalyst used depends on the amount of the metal catalyst. 1 ppm to 200 ppm is preferable, 50 ppm to 200 ppm is more preferable, and 50 ppm to 100 ppm is particularly preferable with respect to 1 part by mass of the ring polymerizable monomer.
 前記有機触媒と、前記金属触媒との組合せは、目的に応じて適宜選択される。なお、前記有機触媒と、前記金属触媒とはそれぞれ複数混合してもよい。
 また、前記有機触媒、及び前記金属触媒の少なくともいずれかが塩基性を有することが好ましい。塩基性を有することで反応性が高まる場合がある。
The combination of the organic catalyst and the metal catalyst is appropriately selected according to the purpose. A plurality of the organic catalyst and the metal catalyst may be mixed.
Moreover, it is preferable that at least one of the organic catalyst and the metal catalyst has basicity. The reactivity may be increased by having basicity.
 前記有機触媒と、前記金属触媒との使用量の質量比率(有機触媒:金属触媒)は、混合する触媒の性質によって適宜選択されるが、安全性の点において、50:50~99:1が好ましく、70:30~99:1がより好ましい。前記有機触媒と、前記金属触媒との合計使用量は、製造に用いられる前記圧縮性流体、前記開環重合性モノマー、あるいは、混合する触媒の組合せによって変わるので一概には特定できないが、安定性および着色の点において、前記開環重合性モノマー1質量部に対して、50ppm~500ppmが好ましく、50ppm~200ppmがより好ましい。 The mass ratio of the amount used of the organic catalyst and the metal catalyst (organic catalyst: metal catalyst) is appropriately selected depending on the nature of the catalyst to be mixed, but in terms of safety, 50:50 to 99: 1 70:30 to 99: 1 are more preferable. The total amount used of the organic catalyst and the metal catalyst cannot be generally specified because it varies depending on the compressive fluid used in the production, the ring-opening polymerizable monomer, or the combination of catalysts to be mixed. In terms of coloring, 50 ppm to 500 ppm is preferable with respect to 1 part by mass of the ring-opening polymerizable monomer, and 50 ppm to 200 ppm is more preferable.
<<重合反応装置>>
 続いて、図3~図5を用いて、本発明のポリマーの製造方法に用いられる重合反応装置の一例について説明する。図3~図5は、重合工程の一例を示す系統図である。
<< Polymerization reactor >>
Subsequently, an example of a polymerization reaction apparatus used in the method for producing a polymer of the present invention will be described with reference to FIGS. 3 to 5 are system diagrams showing an example of the polymerization process.
-連続式の重合反応装置-
 まず、図3に示された連続式の重合反応装置100について説明する。図3の系統図において、重合反応装置100は、開環重合性モノマーなどの原材料及び圧縮性流体を供給する供給ユニット100aと、供給ユニット100aによって供給された開環重合性モノマーを重合させる連続重合装置の一例としての重合反応装置本体100bとを有する。供給ユニット100aは、タンク(1,3,5,7,11)と、計量フィーダー(2,4)と、計量ポンプ(6,8,12)と、を有する。重合反応装置本体100bは、重合反応装置本体100bの一端部に設けられた溶融混合装置9と、送液ポンプ10と、反応容器13と、計量ポンプ14と、重合反応装置本体100bの他端部に設けられた押出口金15と、を有する。なお、本発明において、「溶融」とは、原材料あるいは生成したポリマーが圧縮性流体と接触することで、膨潤しつつ可塑化、液状化した状態を意味する。また、「溶融混合装置」とは、圧縮性流体と原材料を接触させて、原材料を溶融させる装置である。
-Continuous polymerization reactor-
First, the continuous polymerization reaction apparatus 100 shown in FIG. 3 will be described. In the system diagram of FIG. 3, the polymerization reaction apparatus 100 includes a supply unit 100 a that supplies a raw material such as a ring-opening polymerizable monomer and a compressive fluid, and a continuous polymerization that polymerizes the ring-opening polymerizable monomer supplied by the supply unit 100 a. And a polymerization reaction apparatus main body 100b as an example of the apparatus. The supply unit 100a has a tank (1, 3, 5, 7, 11), a measuring feeder (2, 4), and a measuring pump (6, 8, 12). The polymerization reaction device main body 100b includes a melt mixing device 9, a liquid feed pump 10, a reaction vessel 13, a metering pump 14, and the other end of the polymerization reaction device main body 100b provided at one end of the polymerization reaction device main body 100b. And an extrusion die 15 provided on the surface. In the present invention, “melting” means a state in which a raw material or a produced polymer comes into contact with a compressive fluid and is plasticized or liquefied while swelling. In addition, the “melt mixing device” is a device that melts raw materials by bringing the compressive fluid into contact with the raw materials.
 供給ユニット100aのタンク1は、開環重合性モノマーを貯蔵する。貯蔵される開環重合性モノマーは粉末であっても溶融状態であってもよい。タンク3は、開始剤及び添加剤のうち固体(粉末又は粒状)のものを貯蔵する。タンク5は、開始剤及び添加剤のうち液体のものを貯蔵する。タンク7は、圧縮性流体を貯蔵する。なお、タンク7は、溶融混合装置9に供給される過程で、あるいは、溶融混合装置9内で加熱又は加圧されて圧縮性流体となる気体(ガス)、又は、固体を貯蔵してもよい。この場合、タンク7に貯蔵される気体又は固体は、加熱又は加圧されることにより、溶融混合装置9内で図2の相図における(1)、(2)、又は(3)の状態となる。 The tank 1 of the supply unit 100a stores a ring-opening polymerizable monomer. The ring-opening polymerizable monomer to be stored may be a powder or a molten state. The tank 3 stores a solid (powder or granular) one of the initiator and the additive. The tank 5 stores a liquid one of the initiator and the additive. The tank 7 stores a compressible fluid. In addition, the tank 7 may store a gas (gas) or a solid that becomes a compressible fluid in a process of being supplied to the melt mixing device 9 or heated or pressurized in the melt mixing device 9. . In this case, the gas or solid stored in the tank 7 is heated or pressurized, and the state of (1), (2), or (3) in the phase diagram of FIG. Become.
 計量フィーダー2は、タンク1に貯蔵された開環重合性モノマーを計量して溶融混合装置9に連続的に供給する。計量フィーダー4は、タンク3に貯蔵された固体を計量して溶融混合装置9に連続的に供給する。計量ポンプ6は、タンク5に貯蔵された液体を計量して溶融混合装置9に連続的に供給する。計量ポンプ8は、タンク7に貯蔵された圧縮性流体を一定の圧力及び流量で溶融混合装置9に連続的に供給する。なお、本実施形態において連続的に供給するとは、バッチ毎に供給する方法に対する概念であって、開環重合させたポリマーが連続的に得られるよう供給することを意味する。即ち、開環重合させたポリマーが連続的に得られる限り、各材料は、断続的、或いは、間欠的に供給されてもよい。また、開始剤及び添加剤がいずれも固体の場合には、重合反応装置100は、タンク5及び計量ポンプ6を有していなくてもよい。同様に、開始剤及び添加剤がいずれも液体の場合には、重合反応装置100は、タンク3及び計量フィーダー4を有していなくてもよい。 The measuring feeder 2 measures the ring-opening polymerizable monomer stored in the tank 1 and continuously supplies it to the melt mixing device 9. The weighing feeder 4 measures the solid stored in the tank 3 and continuously supplies it to the melt mixing device 9. The metering pump 6 measures the liquid stored in the tank 5 and continuously supplies it to the melt mixing device 9. The metering pump 8 continuously supplies the compressive fluid stored in the tank 7 to the melt mixing device 9 at a constant pressure and flow rate. In addition, in this embodiment, supplying continuously is a concept with respect to the method of supplying for every batch, and means supplying so that the polymer which carried out ring-opening polymerization may be obtained continuously. In other words, each material may be supplied intermittently or intermittently as long as the ring-opened polymer is continuously obtained. In addition, when both the initiator and the additive are solid, the polymerization reaction apparatus 100 may not include the tank 5 and the metering pump 6. Similarly, when both the initiator and the additive are liquid, the polymerization reaction apparatus 100 may not include the tank 3 and the metering feeder 4.
 本実施形態において、重合反応装置本体100bの各装置は、原材料、圧縮性流体、あるいは生成したポリマーを輸送する耐圧性の配管30によって、図3に示されたように接続されている。また、重合反応装置の溶融混合装置9、送液ポンプ10、及び反応容器13の各装置は、上記の原材料等を通過させる管状の部材を有している。 In this embodiment, each apparatus of the polymerization reaction apparatus main body 100b is connected as shown in FIG. 3 by a pressure-resistant piping 30 that transports raw materials, a compressive fluid, or a generated polymer. In addition, each of the melt mixing device 9, the liquid feeding pump 10, and the reaction vessel 13 of the polymerization reaction device has a tubular member through which the above raw materials and the like pass.
 重合反応装置本体100bの溶融混合装置9は、各タンク(1,3,5)から供給された開環重合性モノマー、開始剤、添加物などの原材料と、タンク7から供給された圧縮性流体とを連続的に接触させ、原材料を溶融させるための耐圧性の容器を有した装置である。なお、本実施形態では、開環重合性モノマーなどの原材料と圧縮性流体とを一定の濃度の比率で連続的に接触させることができるので、原材料を圧縮性流体に効率的に溶融させることができる。 The melt mixing device 9 of the polymerization reaction device main body 100b includes raw materials such as ring-opening polymerizable monomers, initiators and additives supplied from the tanks (1, 3, 5), and a compressive fluid supplied from the tank 7. Is a device having a pressure-resistant container for melting the raw materials. In this embodiment, since the raw material such as the ring-opening polymerizable monomer and the compressive fluid can be continuously contacted at a constant concentration ratio, the raw material can be efficiently melted into the compressive fluid. it can.
 溶融混合装置9の容器の形は、タンク型でも筒型でもよいが、一端から原材料を供給し、他端から混合物を取り出す筒型が好ましい。溶融混合装置9の容器には、計量ポンプ8によってタンク7から供給された圧縮性流体を導入する導入口9aと、計量フィーダー2によってタンク1から供給された開環重合性モノマーを導入する導入口9bと、計量フィーダー4によってタンク3から供給された粉末を導入する導入口9cと、計量ポンプ6によってタンク5から供給された液体を導入する導入口9dとが設けられている。本実施形態において各導入口(9a,9b,9c,9d)は、溶融混合装置9の容器と、各原材料又は圧縮性流体を輸送する各配管とを接続する継手によって構成される。この継手としては、特に制限されず、レデューサー、カップリング、Y型継手、T型継手、アウトレットなどの公知のものが用いられる。また、溶融混合装置9は、供給された各原材料及び圧縮性流体を加熱するためのヒータを有している。更に、溶融混合装置9は、原材料、圧縮性流体などを攪拌する攪拌装置を有していてもよい。溶融混合装置9が攪拌装置を有する場合、攪拌装置としては、一軸のスクリュウ、互いに噛み合う二軸のスクリュウ、互いに噛み合う又は重なり合う多数の攪拌素子をもつ二軸の混合機、互いに噛み合うらせん形の攪拌素子を有するニーダー、スタティックミキサーなどが好ましく用いられる。特に、互いに噛み合う二軸又は多軸攪拌装置は、攪拌装置や容器への反応物の付着が少なく、セルフクリーニング作用があるので好ましい。溶融混合装置9が攪拌装置を有していない場合、溶融混合装置9としては、耐圧配管が好適に用いられる。なお、溶融混合装置9が攪拌装置を有していない場合、溶融混合装置9内での各材料を確実に混合するため、溶融混合装置9に供給される開環重合性モノマーは溶融状態であることが好ましい。 The shape of the container of the melt mixing device 9 may be a tank type or a cylindrical type, but a cylindrical type in which raw materials are supplied from one end and the mixture is taken out from the other end is preferable. In the container of the melt mixing device 9, an inlet 9 a for introducing the compressive fluid supplied from the tank 7 by the metering pump 8 and an inlet for introducing the ring-opening polymerizable monomer supplied from the tank 1 by the metering feeder 2 are introduced. 9b, an inlet 9c for introducing the powder supplied from the tank 3 by the measuring feeder 4, and an inlet 9d for introducing the liquid supplied from the tank 5 by the measuring pump 6 are provided. In this embodiment, each inlet (9a, 9b, 9c, 9d) is comprised by the coupling which connects the container of the melt mixing apparatus 9, and each piping which conveys each raw material or compressive fluid. This joint is not particularly limited, and known joints such as reducers, couplings, Y-type joints, T-type joints, and outlets are used. Moreover, the melt mixing apparatus 9 has a heater for heating each supplied raw material and compressive fluid. Furthermore, the melt mixing device 9 may have a stirring device for stirring raw materials, compressive fluids, and the like. When the melt mixing device 9 has a stirrer, the stirrer includes a uniaxial screw, a biaxial screw meshing with each other, a biaxial mixer having a large number of meshing elements meshing with or overlapping each other, and a helical stirring element meshing with each other. A kneader, a static mixer or the like having the above is preferably used. In particular, a biaxial or multiaxial agitation device that meshes with each other is preferable because there is little adhesion of reactants to the agitation device or the container and there is a self-cleaning action. In the case where the melt mixing device 9 does not have a stirrer, a pressure resistant pipe is preferably used as the melt mixing device 9. In addition, when the melt mixing apparatus 9 does not have a stirring apparatus, in order to mix each material in the melt mixing apparatus 9 reliably, the ring-opening polymerizable monomer supplied to the melt mixing apparatus 9 is in a molten state. It is preferable.
 送液ポンプ10は、溶融混合装置9で溶融した各原材料を反応容器13に送液する。タンク11は、触媒を貯蔵する。計量ポンプ12は、タンク11に貯蔵された触媒を計量して反応容器13に供給する。なお図3では、タンク11が1個の例を示したが、本実施形態では触媒として有機触媒と金属触媒の2種類使用するため、タンク11に有機触媒を入れ使ったらその後金属触媒を入れなおす、あるいは金属触媒を入れ使ったらその後有機触媒を入れなおす場合には、タンク11は1個でもよい。しかし、同時に両触媒を使用する場合やあるいは両触媒をタンクに貯蔵しておく場合には2個以上のタンク11を用いることができる。その場合には、タンク11の数毎に計量ポンプ12及び導入口13bを介して反応容器13に触媒を供給する配管が設けられている。 The liquid feed pump 10 sends each raw material melted by the melt mixing device 9 to the reaction vessel 13. The tank 11 stores a catalyst. The metering pump 12 measures the catalyst stored in the tank 11 and supplies it to the reaction vessel 13. FIG. 3 shows an example in which one tank 11 is used. However, in this embodiment, two types of catalyst, ie, an organic catalyst and a metal catalyst are used. Therefore, after using an organic catalyst in the tank 11, the metal catalyst is inserted again. Alternatively, if a metal catalyst is used and then the organic catalyst is reinserted, the number of tanks 11 may be one. However, when both catalysts are used simultaneously or when both catalysts are stored in a tank, two or more tanks 11 can be used. In that case, piping for supplying the catalyst to the reaction vessel 13 via the metering pump 12 and the inlet 13b is provided for each number of tanks 11.
 反応容器13は、送液ポンプ10によって送液された溶融した各原材料と、計量ポンプ12によって供給された触媒とを混合して、開環重合性モノマーを開環重合させるための耐圧性の容器である。反応容器13の形状としては、タンク型でも筒型でもよいが、デッドスペースが少ない筒型が好ましい。 The reaction container 13 is a pressure-resistant container for mixing the melted raw materials fed by the liquid feed pump 10 and the catalyst supplied by the metering pump 12 to cause the ring-opening polymerizable monomer to undergo ring-opening polymerization. It is. The shape of the reaction vessel 13 may be a tank type or a cylindrical type, but a cylindrical type with little dead space is preferable.
 反応容器13には、溶融混合装置9によって混合された各材料を容器内に導入するための導入口13aと、計量ポンプ12によってタンク11から供給された触媒を容器内に導入する導入口13bとが設けられている。本実施形態において各導入口(13a,13b)は、反応容器13と、各原材料を輸送する各配管とを接続する継手によって構成される。この継手としては、特に制限されず、レデューサー、カップリング、Y型継手、T型継手、アウトレットなどの公知のものが用いられる。なお、反応容器13には、蒸発物を除去するための気体出口が設けられていてもよい。また、反応容器13は、送液された原材料を加熱するためのヒータを有している。
 更に、反応容器13は、原材料、圧縮性流体などを攪拌する攪拌装置を有していてもよい。反応容器13が攪拌装置を有する場合、原材料と生成されたポリマーの密度差によって、ポリマー粒子が沈降することを抑制できるので、重合反応をより均一かつ定量的に進められる。反応容器13の攪拌装置としては、互いに噛み合うスクリュウや、2フライト(長円形)や3フライト(三角形様)などの攪拌素子、円板又は多葉形(クローバー形など)の攪拌翼をもつ二軸又は多軸のものがセルフクリーニングの観点から好ましい。あらかじめ触媒を含有する原料が充分に混合されている場合には、案内装置により流れの分割と複合(合流)を多段的に行う静止混合器も攪拌装置に応用出来る。静止型混合器としては、特公昭47-15526、同47-15527、同47-15528、同47-15533などで開示されたもの(多層化混合器)、及び特開昭47-33166に開示されたもの(ケニックス型)、及びそれらに類似する可動部のない混合装置が挙げられる。反応容器13が攪拌装置を有していない場合、反応容器13としては、耐圧配管が好適に用いられる。
The reaction vessel 13 has an introduction port 13a for introducing each material mixed by the melt mixing device 9 into the vessel, and an introduction port 13b for introducing the catalyst supplied from the tank 11 by the metering pump 12 into the vessel. Is provided. In this embodiment, each inlet (13a, 13b) is comprised by the coupling which connects the reaction container 13 and each piping which conveys each raw material. This joint is not particularly limited, and known joints such as reducers, couplings, Y-type joints, T-type joints, and outlets are used. The reaction vessel 13 may be provided with a gas outlet for removing the evaporated material. The reaction vessel 13 has a heater for heating the fed raw material.
Furthermore, the reaction vessel 13 may have a stirring device that stirs the raw materials, the compressive fluid, and the like. When the reaction vessel 13 has a stirrer, the polymer particles can be prevented from settling due to the difference in density between the raw material and the produced polymer, so that the polymerization reaction can proceed more uniformly and quantitatively. As a stirring device for the reaction vessel 13, a twin shaft having a screw which meshes with each other, a stirring element such as a 2-flight (oval) or a 3-flight (triangular shape), a disc or a multi-leaf type (clover-shaped) stirring blade. Or the thing of a multi-axis is preferable from a viewpoint of self-cleaning. In the case where the raw material containing the catalyst is sufficiently mixed in advance, a static mixer that performs multi-stage division and combination (merging) of the flow with a guide device can also be applied to the stirring device. As static mixers, those disclosed in Japanese Patent Publication Nos. 47-15526, 47-15527, 47-15528, 47-15533, etc. (multilayer mixer), and disclosed in JP-A-47-33166. And the like (Kenix type) and similar mixing devices without moving parts. When the reaction vessel 13 does not have a stirrer, pressure-resistant piping is preferably used as the reaction vessel 13.
 図3では、反応容器13が1個の例を示したが、2個以上の反応容器13を用いることもできる。複数の反応容器13を用いる場合、反応容器13毎の反応(重合)条件、すなわち温度、触媒濃度、圧力、平均滞留時間、攪拌速度などは、同一でもよいが、重合の進行にあわせて、それぞれ最適の条件を選ぶことが好ましい。なお、反応時間の増加や装置の煩雑化を招くため、あまり多くの容器を多段的に結合することは得策でなく、段数は1以上4以下、特に1以上3以下が好ましい。 FIG. 3 shows an example in which the number of reaction vessels 13 is one, but two or more reaction vessels 13 can also be used. When a plurality of reaction vessels 13 are used, the reaction (polymerization) conditions for each reaction vessel 13, that is, temperature, catalyst concentration, pressure, average residence time, stirring speed, etc. may be the same. It is preferable to select the optimum conditions. In order to increase the reaction time and complicate the apparatus, it is not a good idea to combine too many containers in multiple stages, and the number of stages is preferably 1 or more and 4 or less, particularly preferably 1 or more and 3 or less.
 一般的には、反応容器を1個だけで重合した場合、得られるポリマーの重合度や残存モノマー量が不安定で変動し易く、工業生産に適しないとされている。これは、溶融粘度数ポイズから数10ポイズ程度の重合原料と、溶融粘度数1,000ポイズ程度の重合されたポリマーとが同一容器内に混在するための不安定さに起因するものと思われる。これに対し、本実施形態では、原材料と生成したポリマーとが溶融(液状化)することによって反応容器13内(重合系ともいう)の粘度差を小さくすることが可能となるため、従来の重合反応装置より段数を減らしても、安定的にポリマーを製造することができる。 Generally, when polymerization is performed with only one reaction vessel, the degree of polymerization of the polymer obtained and the amount of residual monomer are unstable and easily fluctuate, and are not suitable for industrial production. This is considered to be caused by instability due to mixing of a polymerization raw material having a melt viscosity of several poise to several tens of poise and a polymerized polymer having a melt viscosity of about 1,000 poise in the same container. . On the other hand, in this embodiment, since the raw material and the produced polymer are melted (liquefied), it becomes possible to reduce the difference in viscosity in the reaction vessel 13 (also referred to as a polymerization system), so that the conventional polymerization Even if the number of stages is reduced as compared with the reactor, the polymer can be produced stably.
 計量ポンプ14は、反応容器13で重合されたポリマー生成物Pを、ポリマー排出口の一例としての押出口金15から、反応容器13の外に送り出す。なお、反応容器13の内外の圧力差を利用することにより、計量ポンプ14を用いずにポリマー生成物Pを反応容器13内から送り出すこともできる。この場合、反応容器13内の圧力やポリマー生成物Pの送り出し量を調整するために、計量ポンプ14に変えて、図4に示したように、圧調整バルブ16を用いることもできる。 The metering pump 14 sends the polymer product P polymerized in the reaction vessel 13 out of the reaction vessel 13 from an extrusion die 15 as an example of a polymer discharge port. In addition, the polymer product P can be sent out from the reaction vessel 13 without using the metering pump 14 by utilizing the pressure difference between the inside and outside of the reaction vessel 13. In this case, in order to adjust the pressure in the reaction vessel 13 and the delivery amount of the polymer product P, the pressure adjusting valve 16 can be used as shown in FIG.
-バッチ式の重合反応装置-
 続いて、図5に示されたバッチ式の重合反応装置400について説明する。図5の系統図において、重合反応装置400は、タンク407と、計量ポンプ408と、添加ポット411と、反応容器413と、バルブ(421,422,423,424,425)とを有している。上記の各装置は耐圧性の配管430によって図5に示したように接続されている。また、配管430には、継手(430a,430b)が設けられている。
-Batch polymerization reactor-
Next, the batch type polymerization reaction apparatus 400 shown in FIG. 5 will be described. In the system diagram of FIG. 5, the polymerization reaction apparatus 400 includes a tank 407, a metering pump 408, an addition pot 411, a reaction vessel 413, and valves (421, 422, 423, 424, 425). . Each of the above devices is connected by a pressure resistant pipe 430 as shown in FIG. The pipe 430 is provided with joints (430a, 430b).
 タンク407は、圧縮性流体を貯蔵する。なお、タンク407は、反応容器413に供給される供給経路或いは反応容器413内で加熱、加圧されて圧縮性流体となる気体(ガス)又は固体を貯蔵してもよい。この場合、タンク407に貯蔵される気体又は固体は、加熱又は加圧されることにより、反応容器413内で図2の相図における(1)、(2)、又は(3)の状態となる。 The tank 407 stores a compressible fluid. The tank 407 may store a gas (gas) or solid that is heated and pressurized in the supply path supplied to the reaction vessel 413 or the reaction vessel 413 to become a compressible fluid. In this case, the gas or solid stored in the tank 407 is heated or pressurized to be in the state (1), (2), or (3) in the phase diagram of FIG. .
 計量ポンプ408は、タンク407に貯蔵された圧縮性流体を、一定の圧力及び流量で反応容器413に供給する。
 添加ポット411は、反応容器413内の原材料に添加される触媒を貯蔵する。バルブ(421,422,423,424)は、それぞれを開閉させることにより、タンク407に貯蔵された圧縮性流体を、添加ポット411を経由して反応容器413に供給する経路と、添加ポット411を経由せずに反応容器413に供給する経路などとを切り換える。
 なお、図5では添加ポット411が1個の例を示したが、本実施形態では触媒として有機触媒と金属触媒の2種類使用するため、添加ポット411に有機触媒を入れ使ったらその後金属触媒を入れなおす、あるいは金属触媒を入れ使ったらその後有機触媒を入れなおす場合には、添加ポット411は1個でもよい。しかし、同時に両触媒を使用する場合やあるいは両触媒をタンクに貯蔵しておく場合には2個以上の添加ポット411を用いることができる。その場合には、添加ポット411の数毎に継手(430a、430b)、バルブ(423、424)を介して反応器413に触媒を供給する配管が設けられている。
The metering pump 408 supplies the compressive fluid stored in the tank 407 to the reaction vessel 413 at a constant pressure and flow rate.
The addition pot 411 stores a catalyst added to the raw material in the reaction vessel 413. The valves (421, 422, 423, 424) open and close each, thereby supplying a compressive fluid stored in the tank 407 to the reaction vessel 413 via the addition pot 411, and the addition pot 411. The route for supplying to the reaction vessel 413 without switching through is switched.
FIG. 5 shows an example in which the addition pot 411 is one. However, in this embodiment, since two types of catalyst, an organic catalyst and a metal catalyst, are used, if an organic catalyst is put in the addition pot 411, then a metal catalyst is added. If the metal catalyst is reinserted or the metal catalyst is used and then the organic catalyst is reinserted, the number of addition pots 411 may be one. However, when both catalysts are used simultaneously or when both catalysts are stored in a tank, two or more addition pots 411 can be used. In that case, piping for supplying the catalyst to the reactor 413 is provided for each number of the addition pots 411 through the joints (430a, 430b) and the valves (423, 424).
 反応容器413には、重合を開始する前に予め開環重合性モノマー及び開始剤が収容される。これにより、反応容器413は、予め収容された開環重合性モノマー及び開始剤と、タンク407から供給された圧縮性流体と、添加ポット411から供給された触媒とを接触させて、開環重合性モノマーを開環重合させるための耐圧性の容器である。なお、反応容器413には、蒸発物を除去するための気体出口が設けられていてもよい。また、反応容器413は、原材料及び圧縮性流体を加熱するためのヒータを有している。更に、反応容器413は、原材料、及び圧縮性流体を攪拌する攪拌装置を有している。原材料と生成したポリマーとの密度差が生じたときに、攪拌装置の攪拌を加えることで生成したポリマーの沈降を抑制できるので、重合反応をより均一かつ定量的に進められる。バルブ425は、重合反応終了後に開放されることにより反応容器413内の圧縮性流体と生成物(ポリマー)とを排出する。なお、反応容器413には、重合工程の途中段階において、圧縮性流体を反応容器外へ取り出すためのバルブ432を有していてもよい。 The reaction vessel 413 contains a ring-opening polymerizable monomer and an initiator in advance before starting the polymerization. As a result, the reaction vessel 413 is brought into contact with the ring-opening polymerizable monomer and initiator stored in advance, the compressive fluid supplied from the tank 407, and the catalyst supplied from the addition pot 411. It is a pressure-resistant container for ring-opening polymerization of a functional monomer. Note that the reaction vessel 413 may be provided with a gas outlet for removing evaporated substances. The reaction vessel 413 has a heater for heating the raw materials and the compressive fluid. Furthermore, the reaction vessel 413 includes a stirring device that stirs the raw materials and the compressive fluid. When the density difference between the raw material and the generated polymer occurs, the settling of the generated polymer can be suppressed by adding the stirring of the stirring device, so that the polymerization reaction can proceed more uniformly and quantitatively. The valve 425 is opened after the completion of the polymerization reaction to discharge the compressive fluid and the product (polymer) in the reaction vessel 413. The reaction vessel 413 may have a valve 432 for taking out the compressive fluid out of the reaction vessel in the middle of the polymerization process.
<<連続式重合方法及びバッチ式重合方法>>
 重合反応装置100を用いて本実施形態における開環重合性モノマーの連続式の重合方法について、重合反応装置400を用いて本実施形態における開環重合性モノマーのバッチ式の重合方法について、それぞれ以下で具体的に説明する。
<< Continuous polymerization method and batch polymerization method >>
About the continuous polymerization method of the ring-opening polymerizable monomer in the present embodiment using the polymerization reactor 100, and the batch type polymerization method of the ring-opening polymerizable monomer in the present embodiment using the polymerization reactor 400, respectively. Will be described in detail.
-連続式重合方法-
 まず、重合反応装置100を用いた開環重合性モノマーの連続式の重合方法について説明する。重合反応装置100では、前記開環重合性モノマーを含有する原材料と、前記圧縮性流体とを連続的に接触させて、前記開環重合性モノマーを開環重合させてポリマーを連続的に得る。
 まず、各計量フィーダー(2,4)及び計量ポンプ6、計量ポンプ8を作動させ、各タンク(1,3,5,7)内の開環重合性モノマー、開始剤、添加剤、圧縮性流体を、各導入口(9a,9b,9c,9d)から、溶融混合装置9の容器内に連続的に導入させる。なお、固体(粉末又は粒状)の原材料は、液体の原材料と比較して計量精度が低い場合がある。この場合、固体の原材料を前もって溶融させて液体の状態にしてタンク5に貯蔵しておき、計量ポンプ6によって溶融混合装置9の容器内に導入させてもよい。各計量フィーダー(2,4)及び計量ポンプ6、計量ポンプ8を作動させる順序は、特に限定されないが、初期の原材料が圧縮流体に接触せずに反応容器13に送られると、温度低下によって固化する恐れがあるため、先に計量ポンプ8を作動させることが好ましい。
-Continuous polymerization method-
First, a continuous polymerization method for ring-opening polymerizable monomers using the polymerization reaction apparatus 100 will be described. In the polymerization reaction apparatus 100, the raw material containing the ring-opening polymerizable monomer and the compressive fluid are continuously brought into contact with each other, and the ring-opening polymerizable monomer is subjected to ring-opening polymerization to continuously obtain a polymer.
First, each metering feeder (2, 4), the metering pump 6, and the metering pump 8 are operated, and the ring-opening polymerizable monomer, initiator, additive, compressive fluid in each tank (1, 3, 5, 7). Are continuously introduced into the container of the melt mixing device 9 from each inlet (9a, 9b, 9c, 9d). In addition, solid (powder or granular) raw materials may have lower measurement accuracy than liquid raw materials. In this case, the solid raw material may be previously melted and stored in the tank 5 in a liquid state, and introduced into the container of the melt mixing device 9 by the metering pump 6. The order in which each metering feeder (2, 4), metering pump 6 and metering pump 8 are operated is not particularly limited, but when the initial raw material is sent to the reaction vessel 13 without contacting the compressed fluid, it solidifies due to a decrease in temperature. Therefore, it is preferable to operate the metering pump 8 first.
 計量フィーダー(2,4)及び計量ポンプ6による各原材料の各供給速度は、開環重合性モノマー、開始剤、及び添加剤の所定の量比に基づいて、一定の比率となるように調整される。計量フィーダー(2,4)及び計量ポンプ6よって単位時間当たりに供給される各原材料の質量の合計(原材料の供給速度(フィード量)、(g/min))は、所望のポリマー物性や反応時間等に基づいて調整される。同様に、計量ポンプ8による単位時間当たりに供給される圧縮性流体の質量(圧縮性流体の供給速度(フィード量)、(g/min))は、所望のポリマー物性や反応時間等に基づいて調整される。下記不等式で示される原材料の供給速度と圧縮性流体の供給速度との比(以下、フィード比ともいう)は、0.50以上1.00未満であることが好ましく、0.65以上0.99以下であることがより好ましく、0.80以上0.95以下であることが特に好ましい。 Each feed rate of each raw material by the metering feeders (2, 4) and the metering pump 6 is adjusted to be a constant ratio based on a predetermined ratio of the ring-opening polymerizable monomer, the initiator, and the additive. The The total mass of raw materials supplied per unit time by the metering feeders (2, 4) and the metering pump 6 (raw material feed rate (feed amount), (g / min)) is the desired polymer properties and reaction time. It is adjusted based on etc. Similarly, the mass of the compressible fluid supplied per unit time by the metering pump 8 (supply rate of the compressible fluid (feed amount), (g / min)) is based on desired polymer physical properties, reaction time, and the like. Adjusted. The ratio of the feed rate of the raw material and the feed rate of the compressible fluid represented by the following inequality (hereinafter also referred to as feed ratio) is preferably 0.50 or more and less than 1.00, and is 0.65 or more and 0.99. Or less, more preferably 0.80 or more and 0.95 or less.
Figure JPOXMLDOC01-appb-M000003
 
Figure JPOXMLDOC01-appb-M000003
 
 前記フィード比が0.5未満であると、圧縮性流体の使用量が増えることによって経済的ではないばかりか、開環重合性モノマーの密度が低くなるため、重合速度が低下する場合がある。また、前記フィード比が0.5未満であると、圧縮性流体の質量が原材料の質量よりも大きくなるため、開環重合性モノマーが溶融した溶融相と、開環重合性モノマーが圧縮性流体に溶解した流体相とが共存し、均一に反応が進行し難くなる場合がある。 If the feed ratio is less than 0.5, the amount of the compressive fluid used is not economical, and the density of the ring-opening polymerizable monomer is lowered, so that the polymerization rate may decrease. Further, when the feed ratio is less than 0.5, the mass of the compressive fluid becomes larger than the mass of the raw material, so that the melt phase in which the ring-opening polymerizable monomer is melted and the ring-opening polymerizable monomer is in the compressive fluid The fluid phase dissolved in the coexistence may coexist and the reaction may not easily proceed.
 前記フィード比を0.5以上とすることにより、各原材料及び圧縮性流体が反応容器13に送液されたときに、原材料及び生成したポリマーの濃度(いわゆる固形分濃度)が高い状態で反応が進行する。このときの重合系内の固形分濃度は、従来の製造方法で圧倒的な量の圧縮性流体に対して少量の開環重合性モノマーを溶解させて重合したときの重合系の固形分濃度とは大きく異なる。本実施形態の製造方法は、固形分濃度が高い重合系でも重合反応が効率的かつ安定して進行する。なお、前記フィード比が0.99を超えると、圧縮性流体が開環重合性モノマーを溶融させる能力が不十分となる恐れがあり、目的とする反応が均一に進まない場合がある。 By setting the feed ratio to 0.5 or more, when each raw material and the compressive fluid are sent to the reaction vessel 13, the reaction is performed in a state where the concentration of the raw material and the generated polymer (so-called solid content concentration) is high. proceed. The solid content concentration in the polymerization system at this time is the solid content concentration of the polymerization system when polymerizing by dissolving a small amount of ring-opening polymerizable monomer in an overwhelming amount of compressive fluid in the conventional production method. Are very different. In the production method of the present embodiment, the polymerization reaction proceeds efficiently and stably even in a polymerization system having a high solid content concentration. When the feed ratio exceeds 0.99, the ability of the compressive fluid to melt the ring-opening polymerizable monomer may be insufficient, and the target reaction may not proceed uniformly.
 各原材料及び圧縮性流体は、溶融混合装置9の容器内に連続的に導入されるので、それぞれが連続的に接触する。これにより、溶融混合装置9内で、開環重合性モノマー、開始剤、添加物などの各原材料が溶融する。溶融混合装置9が攪拌装置を有する場合には、各原材料及び圧縮性流体を攪拌してもよい。導入された圧縮性流体が気体に変わることを避けるため、反応容器13の容器内の温度及び圧力は、少なくとも上記圧縮性流体の三重点以上の温度及び圧力に制御される。この制御は、溶融混合装置9のヒータの出力あるいは圧縮性流体の供給量を調整することにより行われる。本実施形態において、開環重合性モノマーを溶融させるときの温度は、開環重合性モノマーの常圧での融点以下の温度であってもよい。これは、圧縮性流体の存在下、溶融混合装置9内が高圧となり、開環重合性モノマーの融点が常圧での融点よりも低下することによると考えられる。このため、開環重合性モノマーに対する圧縮性流体の量が少ない場合であっても、溶融混合装置9内で開環重合性モノマーは溶融する。 Since each raw material and compressive fluid are continuously introduced into the container of the melt mixing device 9, they are in continuous contact with each other. As a result, the raw materials such as the ring-opening polymerizable monomer, the initiator, and the additive are melted in the melt mixing device 9. When the melt mixing device 9 has a stirring device, the raw materials and the compressive fluid may be stirred. In order to prevent the introduced compressive fluid from turning into a gas, the temperature and pressure in the container of the reaction vessel 13 are controlled to a temperature and pressure at least above the triple point of the compressive fluid. This control is performed by adjusting the output of the heater of the melt mixing device 9 or the supply amount of the compressive fluid. In the present embodiment, the temperature at which the ring-opening polymerizable monomer is melted may be a temperature equal to or lower than the melting point at normal pressure of the ring-opening polymerizable monomer. This is considered to be due to the high pressure in the melt mixing device 9 in the presence of the compressive fluid, and the melting point of the ring-opening polymerizable monomer being lower than the melting point at normal pressure. For this reason, even when the amount of the compressive fluid with respect to the ring-opening polymerizable monomer is small, the ring-opening polymerizable monomer is melted in the melt mixing device 9.
 各原材料が効率的に溶融するように、溶融混合装置9で各原材料及び圧縮性流体に熱や攪拌を加えるタイミングを調整してもよい。この場合、各原材料と圧縮性流体とを接触させた後、熱や攪拌を加えても、各原材料と圧縮性流体とを接触させながら、熱や攪拌を加えてもよい。また、より確実に溶融させるため、例えば、あらかじめ開環重合性モノマーに融点以上の熱をかけて溶融させてから、開環重合性モノマーと圧縮性流体とを接触させてもよい。上記の各態様は、例えば溶融混合装置9が二軸の混合装置である場合には、スクリュウの配列、各導入口(9a,9b,9c,9d)の配置、溶融混合装置9のヒータの温度を適宜設定することにより実現される。 The timing of applying heat and stirring to each raw material and compressive fluid may be adjusted by the melt mixing device 9 so that each raw material is efficiently melted. In this case, after bringing each raw material and the compressive fluid into contact, heat or stirring may be applied, or heat or stirring may be applied while bringing each raw material into contact with the compressive fluid. In order to melt more reliably, for example, the ring-opening polymerizable monomer and the compressive fluid may be brought into contact with each other after the ring-opening polymerizable monomer is previously melted by applying heat equal to or higher than the melting point. For example, in the case where the melt mixing device 9 is a biaxial mixing device, the above-described embodiments are arranged in an arrangement of screws, the arrangement of the inlets (9a, 9b, 9c, 9d), the temperature of the heater of the melt mixing device 9 This is realized by setting as appropriate.
 なお、本実施形態では、開環重合性モノマーとは別に添加物を溶融混合装置9に供給しているが、開環重合性モノマーと共に添加物を供給してもよい。また、重合反応後に添加物を供給してもよい。この場合、反応容器13から得られたポリマー生成物を取り出した後に添加物を溶融混錬しながら添加することもできる。 In this embodiment, the additive is supplied to the melt mixing device 9 separately from the ring-opening polymerizable monomer, but the additive may be supplied together with the ring-opening polymerizable monomer. Moreover, you may supply an additive after a polymerization reaction. In this case, after taking out the polymer product obtained from the reaction vessel 13, the additive can be added while melt-kneading.
 溶融混合装置9で溶融させた各材料は送液ポンプ10によって送液され、導入口13aから反応容器13に供給される。一方、タンク11内の触媒は、計量ポンプ12によって計量され、導入口13bから反応容器13へ所定量供給される。触媒は室温でも作用しうるため、本実施形態では、原材料を圧縮性流体に溶融させた後、触媒を添加している。
 触媒の添加は開環重合性モノマーを圧縮性流体に接触させる前でも後でも同時でもよい。また、触媒と圧縮性流体との接触は開環重合性モノマーへの添加前でも後でも同時でもよい。
Each material melted by the melt mixing device 9 is fed by the feed pump 10 and supplied to the reaction vessel 13 from the inlet 13a. On the other hand, the catalyst in the tank 11 is measured by the metering pump 12 and supplied to the reaction vessel 13 through the introduction port 13b. In this embodiment, the catalyst is added after the raw material is melted in the compressive fluid because the catalyst can act at room temperature.
The catalyst may be added before or after contacting the ring-opening polymerizable monomer with the compressive fluid. The contact of the catalyst and the compressive fluid may be before or after the addition to the ring-opening polymerizable monomer.
 また、本実施形態では有機触媒と金属触媒の2種類を使用するが、先に有機触媒を用いポリマー中間体を製造し、続いて金属触媒を用いポリマー生成物を製造しても、先に金属触媒を用いポリマー中間体を製造し、続いて有機触媒を用いポリマー生成物を製造しても、同時に有機触媒と金属触媒を用いポリマー生成物を製造してもよい。触媒の添加順序は、目的に応じて適宜選択されるが、前記開環重合性モノマーを含有する原材料と、前記圧縮性流体とを接触させて、前記金属原子を含有しない有機触媒の存在下で、前記開環重合性モノマーを開環重合させた後、前記金属原子を含有する触媒の存在下で、さらに重合させる方法が、転化率向上の点でより好ましい。 Also, in this embodiment, two types of organic catalyst and metal catalyst are used. Even if the polymer intermediate is first produced using the organic catalyst and then the polymer product is produced using the metal catalyst, the metal catalyst is first produced. The catalyst may be used to produce a polymer intermediate followed by an organic catalyst to produce a polymer product, or simultaneously an organic catalyst and a metal catalyst to produce a polymer product. The order of addition of the catalyst is appropriately selected according to the purpose, but the raw material containing the ring-opening polymerizable monomer and the compressive fluid are brought into contact with each other in the presence of the organic catalyst not containing the metal atom. A method in which the ring-opening polymerizable monomer is subjected to ring-opening polymerization and then further polymerized in the presence of the metal atom-containing catalyst is more preferable from the viewpoint of improving the conversion rate.
 送液ポンプ10によって送液された各材料及び計量ポンプ12によって供給された触媒は、必要に応じて反応容器13の攪拌装置によって充分に攪拌され、ヒータにより所定温度に加熱される。これにより、反応容器13内で、触媒の存在下、開環重合性モノマーは開環重合する(重合工程)。 The materials fed by the feed pump 10 and the catalyst supplied by the metering pump 12 are sufficiently stirred by the stirring device of the reaction vessel 13 as necessary, and heated to a predetermined temperature by the heater. Thereby, the ring-opening polymerizable monomer undergoes ring-opening polymerization in the presence of the catalyst in the reaction vessel 13 (polymerization step).
 前記開環重合性モノマーを開環重合させる際の温度(重合反応温度)の下限は、特に限定されないが、40℃が好ましく、50℃がより好ましく、60℃が特に好ましい。重合反応温度が40℃未満であると、開環重合性モノマー種によっては、圧縮性流体による溶融に長い時間がかかったり、溶融が不十分であったり、触媒の活性が低くなったりする。これにより、重合時には反応速度が低下しやすくなり、定量的に重合反応を進めることができなくなる場合がある。 The lower limit of the temperature (polymerization reaction temperature) for ring-opening polymerization of the ring-opening polymerizable monomer is not particularly limited, but is preferably 40 ° C, more preferably 50 ° C, and particularly preferably 60 ° C. When the polymerization reaction temperature is less than 40 ° C., depending on the ring-opening polymerizable monomer species, it takes a long time to melt by the compressive fluid, the melting is insufficient, or the activity of the catalyst is lowered. As a result, the reaction rate tends to decrease during polymerization, and the polymerization reaction may not proceed quantitatively.
 重合反応温度の上限は、特に限定されないが、100℃、又は、開環重合性モノマーの融点より30℃高い温度のうちいずれか高い温度である。重合反応温度の上限は、90℃、又は、開環重合性モノマーの融点のうちいずれか高い温度が好ましく、80℃、又は、開環重合性モノマーの融点より20℃低い温度のうちいずれか高い温度がより好ましい。重合反応温度が、開環重合性モノマーの融点より30℃高い温度を超えると、開環重合の逆反応である解重合反応も平衡して起こりやすく、定量的に重合反応が進みにくくなる。室温で液状である開環重合性モノマーなどの融点が低い開環性モノマーを使用する場合においては、触媒の活性を高めるため、重合反応温度を融点より30℃高い温度としてもよい。この場合でも、重合反応温度を100℃以下とすることが好ましい。なお、重合反応温度は、反応容器13に設けられたヒータあるいは反応容器13の外部からの加熱等により制御される。また、重合反応温度を測定する場合、重合反応によって得られたポリマー生成物を用いてもよい。 The upper limit of the polymerization reaction temperature is not particularly limited, but is 100 ° C. or 30 ° C. higher than the melting point of the ring-opening polymerizable monomer, whichever is higher. The upper limit of the polymerization reaction temperature is preferably 90 ° C. or the higher melting point of the ring-opening polymerizable monomer, and preferably 80 ° C. or 20 ° C. lower than the melting point of the ring-opening polymerizable monomer. Temperature is more preferred. When the polymerization reaction temperature exceeds 30 ° C. higher than the melting point of the ring-opening polymerizable monomer, the depolymerization reaction, which is the reverse reaction of the ring-opening polymerization, tends to occur in equilibrium, and the polymerization reaction is difficult to proceed quantitatively. When using a ring-opening monomer having a low melting point, such as a ring-opening polymerizable monomer that is liquid at room temperature, the polymerization reaction temperature may be 30 ° C. higher than the melting point in order to increase the activity of the catalyst. Even in this case, the polymerization reaction temperature is preferably 100 ° C. or lower. The polymerization reaction temperature is controlled by a heater provided in the reaction vessel 13 or heating from the outside of the reaction vessel 13. Moreover, when measuring polymerization reaction temperature, you may use the polymer product obtained by polymerization reaction.
 超臨界二酸化炭素を用いた従来のポリマーの製造方法において、超臨界二酸化炭素はポリマーの溶解能が低いことから、多量の超臨界二酸化炭素を用いて開環重合性モノマーを重合させていた。本実施形態の重合法によれば、圧縮性流体を用いたポリマーの製造方法においては、従来にない高い濃度で開環重合性モノマーを開環重合させる。この場合、圧縮性流体の存在下、反応容器13内が高圧となり、生成したポリマーのガラス転移温度(Tg)が低下する。これにより、生成したポリマーが低粘度化するので、ポリマー生成物の濃度が高くなった状態でも均一に開環重合反応が進行する。 In a conventional method for producing a polymer using supercritical carbon dioxide, since supercritical carbon dioxide has low polymer solubility, ring-opening polymerizable monomers were polymerized using a large amount of supercritical carbon dioxide. According to the polymerization method of the present embodiment, in the method for producing a polymer using a compressive fluid, the ring-opening polymerizable monomer is subjected to ring-opening polymerization at an unprecedented high concentration. In this case, the pressure in the reaction vessel 13 becomes high in the presence of the compressive fluid, and the glass transition temperature (Tg) of the produced polymer is lowered. As a result, the viscosity of the produced polymer is lowered, and the ring-opening polymerization reaction proceeds uniformly even when the concentration of the polymer product is high.
 本実施形態において、重合反応時間(反応容器13内の平均滞留時間)は、目標とする分子量に応じて設定されるが、通常、1時間以内が好ましく、45分以内がより好ましく、30分以内が特に好ましい。本実施形態の製造方法によると、重合反応時間を20分以内とすることもできる。これは、圧縮性流体中での開環重合性モノマーの重合では前例がない短時間である。 In the present embodiment, the polymerization reaction time (average residence time in the reaction vessel 13) is set according to the target molecular weight, but is usually preferably within 1 hour, more preferably within 45 minutes, and within 30 minutes. Is particularly preferred. According to the production method of the present embodiment, the polymerization reaction time can be set to 20 minutes or less. This is a short time that is unprecedented in the polymerization of ring-opening polymerizable monomers in a compressible fluid.
 重合時の圧力、すなわち圧縮性流体の圧力は、タンク7から供給された圧縮性流体が液化ガス(図2の相図の(2))、又は高圧ガス(図2の相図の(3))となる圧力でもよいが、超臨界流体(図2の相図の(1))となる圧力が好ましい。圧縮性流体を超臨界流体の状態とすることで、開環重合性モノマーの溶融が促進され、均一かつ定量的に重合反応を進めることができる。なお、二酸化炭素を圧縮性流体として用いる場合、反応の効率化やポリマー転化率等を考慮すると、その圧力は、3.7MPa以上が好ましく、5MPa以上がより好ましく、臨界圧力の7.4MPa以上が特に好ましい。また、二酸化炭素を圧縮性流体として用いる場合、同様の理由により、その温度は25℃以上であることが好ましい。 The pressure at the time of polymerization, that is, the pressure of the compressive fluid is such that the compressive fluid supplied from the tank 7 is a liquefied gas ((2) in the phase diagram of FIG. 2) or a high-pressure gas ((3) in the phase diagram of FIG. 2). The pressure that becomes the supercritical fluid ((1) in the phase diagram of FIG. 2) is preferable. By making the compressible fluid into a supercritical fluid state, melting of the ring-opening polymerizable monomer is promoted, and the polymerization reaction can be promoted uniformly and quantitatively. When carbon dioxide is used as the compressible fluid, the pressure is preferably 3.7 MPa or more, more preferably 5 MPa or more, and a critical pressure of 7.4 MPa or more, considering efficiency of the reaction, polymer conversion rate, and the like. Particularly preferred. Moreover, when using a carbon dioxide as a compressive fluid, it is preferable that the temperature is 25 degreeC or more for the same reason.
 反応容器13内の水分量は、前記開環重合性モノマーに対して、4モル%以下が好ましく、1モル%以下がより好ましく、0.5モル%以下が特に好ましい。水分量が4モル%を超えると、水分自体も開始剤として寄与するため、分子量の制御が困難となる場合がある。重合反応系内の水分量を制御するために、必要に応じて、前処理として、開環重合性モノマー、その他原材料に含まれる水分を除去する操作を加えてもよい。 The water content in the reaction vessel 13 is preferably 4 mol% or less, more preferably 1 mol% or less, and particularly preferably 0.5 mol% or less with respect to the ring-opening polymerizable monomer. When the amount of water exceeds 4 mol%, the water itself contributes as an initiator, so that it may be difficult to control the molecular weight. In order to control the amount of water in the polymerization reaction system, an operation for removing water contained in the ring-opening polymerizable monomer and other raw materials may be added as a pretreatment as necessary.
 反応容器13内で開環重合反応を終えたポリマー生成物Pは、計量ポンプ14によって反応容器13の外へ送り出される。計量ポンプ14がポリマー生成物Pを送り出す速度は、圧縮性流体で満たされた重合系内の圧力を一定にして、運転させ均一な重合品を得るために、一定とすることが好ましい。そのため、計量ポンプ14の背圧が一定となるように、反応容器13の内部の送液機構及び送液ポンプ10の送液量は制御される。同様に、送液ポンプ10の背圧が一定となるように、溶融混合装置9内部の送液機構及び計量フィーダー(2,4)、及び計量ポンプ(6,8)の供給速度は制御される。制御方式は、ON-OFF型つまり間欠フィード型でもよいが、ポンプ等の回転速度を徐々に増減する連続又はステップ方式の方がより好ましいことが多い。いずれにせよこのような制御によって、均一なポリマー生成物を安定に得ることが出来る。 The polymer product P that has completed the ring-opening polymerization reaction in the reaction vessel 13 is sent out of the reaction vessel 13 by the metering pump 14. The rate at which the metering pump 14 delivers the polymer product P is preferably constant in order to obtain a uniform polymerized product by operating at a constant pressure in the polymerization system filled with the compressive fluid. Therefore, the liquid feeding mechanism inside the reaction vessel 13 and the liquid feeding amount of the liquid feeding pump 10 are controlled so that the back pressure of the metering pump 14 is constant. Similarly, the feeding speed of the liquid feeding mechanism, the metering feeders (2, 4), and the metering pumps (6, 8) in the melt mixing device 9 are controlled so that the back pressure of the liquid pump 10 is constant. . The control method may be an ON-OFF type, that is, an intermittent feed type, but a continuous or step method in which the rotational speed of a pump or the like is gradually increased or decreased is often more preferable. In any case, a uniform polymer product can be stably obtained by such control.
-バッチ式重合方法-
 続いて、重合反応装置400を用いた開環重合性モノマーのバッチ式の重合方法について説明する。重合反応装置400では、開環重合性モノマーを含有する原材料と、圧縮性流体とを所定の混合比で接触させて、触媒の存在下、開環重合性モノマーを開環重合させる。この場合、まず、計量ポンプ408を作動させ、バルブ(421、422)を開放することにより、タンク407に貯蔵された圧縮性流体を、添加ポット411を経由せずに反応容器413に供給する。これにより、反応容器413内で、予め収容された開環重合性モノマー及び開始剤と、タンク407から供給された圧縮性流体と、が接触し、攪拌装置によって攪拌されて、開環重合性モノマーなどの原材料が溶融する。前記重合工程において、前記開環重合性モノマーを含有する原材料と、圧縮性流体とを接触させることにより、前記開環重合性モノマーを溶融させることが好ましい。開環重合性モノマーを溶融させて開環重合を行った場合には、原材料の比率が高い状態で反応を進行させることができるので、反応の効率が向上する。
-Batch polymerization method-
Next, a batch polymerization method for ring-opening polymerizable monomers using the polymerization reaction apparatus 400 will be described. In the polymerization reaction apparatus 400, a raw material containing a ring-opening polymerizable monomer and a compressive fluid are brought into contact with each other at a predetermined mixing ratio, and the ring-opening polymerizable monomer is subjected to ring-opening polymerization in the presence of a catalyst. In this case, first, the metering pump 408 is operated and the valves (421, 422) are opened, whereby the compressive fluid stored in the tank 407 is supplied to the reaction vessel 413 without going through the addition pot 411. As a result, the ring-opening polymerizable monomer and initiator stored in advance in the reaction vessel 413 come into contact with the compressive fluid supplied from the tank 407, and are stirred by the stirring device to be ring-opening polymerizable monomer. And other raw materials melt. In the polymerization step, the ring-opening polymerizable monomer is preferably melted by bringing a raw material containing the ring-opening polymerizable monomer into contact with a compressive fluid. When ring-opening polymerization is performed by melting the ring-opening polymerizable monomer, the reaction can proceed with a high ratio of raw materials, so that the efficiency of the reaction is improved.
 この場合、反応容器413内での原材料と圧縮性流体との質量比(以下、混合比ともいう)は、特に制限はないが下記不等式の範囲であることがより好ましい。 In this case, the mass ratio between the raw material and the compressive fluid in the reaction vessel 413 (hereinafter also referred to as a mixing ratio) is not particularly limited, but is more preferably in the range of the following inequality.
Figure JPOXMLDOC01-appb-M000004
 
Figure JPOXMLDOC01-appb-M000004
 
 なお、本実施形態において、上式における原材料には、開環重合性モノマー及び開始剤が含まれる。前記混合比としては、特に制限はなく、目的に応じて適宜選択することができるが、0.5以上が好ましく、0.7以上がより好ましく、0.85以上が特に好ましい。また、前記混合比の上限値としては1未満が好ましく、前記混合比が0.5未満であると、圧縮性流体の使用量が増えることによって経済的ではないばかりか、開環重合性モノマーの密度が低くなるため、重合速度が低下する場合がある。また、前記混合比が0.5未満であると、圧縮性流体の質量が原材料の質量よりも大きくなるため、開環重合性モノマーが溶融した溶融相と、開環重合性モノマーが圧縮性流体に溶解した流体相とが共存し、均一に反応が進行し難くなる場合がある。 In this embodiment, the raw material in the above formula includes a ring-opening polymerizable monomer and an initiator. There is no restriction | limiting in particular as said mixing ratio, Although it can select suitably according to the objective, 0.5 or more are preferable, 0.7 or more are more preferable, 0.85 or more are especially preferable. Further, the upper limit of the mixing ratio is preferably less than 1, and if the mixing ratio is less than 0.5, it is not economical because the amount of compressive fluid used increases, Since the density decreases, the polymerization rate may decrease. Further, if the mixing ratio is less than 0.5, the mass of the compressive fluid becomes larger than the mass of the raw material, so that the melt phase in which the ring-opening polymerizable monomer is melted and the ring-opening polymerizable monomer is in the compressive fluid The fluid phase dissolved in the coexistence may coexist and the reaction may not easily proceed.
 反応容器413内で、開環重合性モノマーを溶融させるときの温度及び圧力は、供給された圧縮性流体が気体に変わることを避けるため、少なくとも前記圧縮性流体の三重点以上の温度及び圧力に制御される。この制御は、反応容器413のヒータの出力或いはバルブ(421、422)の開閉度を調整することにより行われる。本実施形態において、開環重合性モノマーを溶融させるときの温度は、開環重合性モノマーの常圧での融点以下の温度であってもよい。これは、圧縮性流体の存在下、反応容器413内が高圧となり、開環重合性モノマーの融点が低下することによる。このため、圧縮性流体の量が少なく前記混合比が大きい場合であっても、反応容器413内で開環重合性モノマーは溶融する。 The temperature and pressure at which the ring-opening polymerizable monomer is melted in the reaction vessel 413 is set to a temperature and pressure at least equal to or higher than the triple point of the compressive fluid in order to prevent the supplied compressive fluid from turning into a gas. Be controlled. This control is performed by adjusting the output of the heater of the reaction vessel 413 or the opening / closing degree of the valves (421, 422). In the present embodiment, the temperature at which the ring-opening polymerizable monomer is melted may be a temperature equal to or lower than the melting point at normal pressure of the ring-opening polymerizable monomer. This is because the pressure in the reaction vessel 413 becomes high in the presence of the compressive fluid, and the melting point of the ring-opening polymerizable monomer is lowered. For this reason, the ring-opening polymerizable monomer melts in the reaction vessel 413 even when the amount of the compressive fluid is small and the mixing ratio is large.
 また、各原材料が効率的に溶融するように、反応容器413で各原材料及び圧縮性流体に熱や攪拌を加えるタイミングを調整してもよい。この場合、各原材料と圧縮性流体とを接触させた後、熱や攪拌を加えても、各原材料と圧縮性流体とを接触させながら熱や攪拌を加えてもよい。また、予め開環重合性モノマーに融点以上の熱を加えて溶融させてから、開環重合性モノマーと圧縮性流体とを接触させてもよい。 Also, the timing at which heat or agitation is applied to each raw material and compressive fluid in the reaction vessel 413 may be adjusted so that each raw material is efficiently melted. In this case, after bringing each raw material and the compressive fluid into contact, heat or stirring may be applied, or heat or stirring may be applied while bringing each raw material into contact with the compressive fluid. In addition, the ring-opening polymerizable monomer may be brought into contact with the compressive fluid after previously melting the ring-opening polymerizable monomer by applying heat equal to or higher than the melting point.
 続いて、バルブ(423,424)を開き、添加ポット411内の触媒を、反応容器413内に供給する。反応容器413に供給された触媒は、必要に応じて反応容器413の攪拌装置によって充分に攪拌され、ヒータにより所定温度に加熱される。これにより、反応容器413内で、触媒の存在下、開環重合性モノマーが開環重合してポリマーが生成する。
 また、本実施形態では有機触媒と金属触媒の2種類を使用するが、先に有機触媒を用いポリマー中間体を製造し、続いて金属触媒を用いポリマー生成物を製造しても、先に金属触媒を用いポリマー中間体を製造し、続いて有機触媒を用いポリマー生成物を製造しても、同時に有機触媒と金属触媒を用いポリマー生成物を製造してもよい。触媒の添加順序は、目的に応じて適宜選択されるが、前記開環重合性モノマーを含有する原材料と、前記圧縮性流体とを接触させて、前記金属原子を含有しない有機触媒の存在下で、前記開環重合性モノマーを開環重合させた後、前記金属触媒の存在下で、さらに重合させる方法が、転化率向上の点でより好ましい。
Subsequently, the valves (423 and 424) are opened, and the catalyst in the addition pot 411 is supplied into the reaction vessel 413. The catalyst supplied to the reaction vessel 413 is sufficiently stirred by a stirring device of the reaction vessel 413 as necessary, and heated to a predetermined temperature by a heater. As a result, in the reaction vessel 413, the ring-opening polymerizable monomer is subjected to ring-opening polymerization in the presence of a catalyst to produce a polymer.
Also, in this embodiment, two types of organic catalyst and metal catalyst are used. Even if the polymer intermediate is first produced using the organic catalyst and then the polymer product is produced using the metal catalyst, the metal catalyst is first produced. The catalyst may be used to produce a polymer intermediate followed by an organic catalyst to produce a polymer product, or simultaneously an organic catalyst and a metal catalyst to produce a polymer product. The order of addition of the catalyst is appropriately selected according to the purpose, but the raw material containing the ring-opening polymerizable monomer and the compressive fluid are brought into contact with each other in the presence of the organic catalyst not containing the metal atom. A method of further polymerizing the ring-opening polymerizable monomer in the presence of the metal catalyst after ring-opening polymerization of the ring-opening polymerizable monomer is more preferable in terms of improving the conversion.
 開環重合性モノマーを開環重合させる際の温度(重合反応温度)の範囲は、下限としては、開環重合性モノマーの融点よりも50℃低い温度が好ましく、前記融点よりも40℃低い温度がより好ましい。上限としては、開環重合性モノマーの融点よりも50℃高い温度であることが好ましく、前記融点よりも40℃高い温度がより好ましい。重合反応温度が、開環重合性モノマーの融点よりも50℃低い温度未満では反応速度が低下しやすく、定量的に重合反応を進めることができない場合がある。また、重合反応温度が、開環重合性モノマーの融点よりも50℃高い温度を超えると、解重合反応も平衡して起きるため、やはり定量的に重合反応が進みにくくなる。ただし、圧縮性流体、開環重合性モノマー及び触媒の組み合わせなどによっては、前記範囲以外の温度で開環重合性モノマーを開環重合させてもよい。例えば、室温で液状である開環重合性モノマーなどの融点が低い開環重合性モノマーを使用する場合においては、触媒の活性を高めるため、前記範囲より高い温度としてもよいが、この場合でも、重合反応温度を150℃以下とすることが好ましく、100℃以下とすることがより好ましい。 The lower limit of the temperature (polymerization reaction temperature) for ring-opening polymerization of the ring-opening polymerizable monomer is preferably 50 ° C. lower than the melting point of the ring-opening polymerizable monomer, and 40 ° C. lower than the melting point. Is more preferable. The upper limit is preferably a temperature that is 50 ° C. higher than the melting point of the ring-opening polymerizable monomer, and more preferably a temperature that is 40 ° C. higher than the melting point. If the polymerization reaction temperature is less than 50 ° C. lower than the melting point of the ring-opening polymerizable monomer, the reaction rate tends to decrease, and the polymerization reaction may not proceed quantitatively. Further, when the polymerization reaction temperature exceeds 50 ° C. higher than the melting point of the ring-opening polymerizable monomer, the depolymerization reaction also occurs in equilibrium, so that the polymerization reaction is difficult to proceed quantitatively. However, depending on the combination of the compressive fluid, the ring-opening polymerizable monomer, and the catalyst, the ring-opening polymerizable monomer may be subjected to ring-opening polymerization at a temperature other than the above range. For example, in the case of using a ring-opening polymerizable monomer having a low melting point such as a ring-opening polymerizable monomer that is liquid at room temperature, the temperature may be higher than the above range in order to increase the activity of the catalyst. The polymerization reaction temperature is preferably 150 ° C. or lower, and more preferably 100 ° C. or lower.
 超臨界二酸化炭素を用いた従来のポリマーの製造方法において、超臨界二酸化炭素はポリマーの溶解能が低いことから、多量の超臨界二酸化炭素を用いて開環重合性モノマーを重合させていた。本実施形態の重合法によれば、圧縮性流体を用いたポリマーの製造方法においては、従来にない高い混合比で開環重合性モノマーを開環重合させる。この場合、圧縮性流体の存在下、反応容器413内が高圧となり、生成したポリマーのガラス転移温度(Tg)が低下する。これにより生成したポリマーが低粘度化するので、ポリマーの濃度が高くなった状態でも均一に開環重合反応が進行する。 In a conventional method for producing a polymer using supercritical carbon dioxide, since supercritical carbon dioxide has low polymer solubility, ring-opening polymerizable monomers were polymerized using a large amount of supercritical carbon dioxide. According to the polymerization method of the present embodiment, in the method for producing a polymer using a compressive fluid, the ring-opening polymerizable monomer is subjected to ring-opening polymerization at a high mixing ratio that has not been conventionally obtained. In this case, the inside of the reaction vessel 413 becomes a high pressure in the presence of the compressive fluid, and the glass transition temperature (Tg) of the produced polymer is lowered. As a result, the viscosity of the produced polymer is lowered, so that the ring-opening polymerization reaction proceeds even when the polymer concentration is high.
 本実施形態において、重合反応時間は、目標とする分子量に応じて設定される。目標とする重量平均分子量が3,000~500,000である場合、重合反応時間は2時間以内に完結する。 In this embodiment, the polymerization reaction time is set according to the target molecular weight. When the target weight average molecular weight is 3,000 to 500,000, the polymerization reaction time is completed within 2 hours.
 重合時の圧力、即ち、圧縮性流体の圧力は、タンク407から供給された圧縮性流体が液化ガス(図2の相図の(2))、又は高圧ガス(図2の相図の(3))となる圧力でもよいが、超臨界流体(図2の相図の(1))となる圧力が好ましい。圧縮性流体を超臨界流体の状態とすることで、開環重合性モノマーの溶融が促進され、均一かつ定量的に重合反応を進めることができる。なお、二酸化炭素を圧縮性流体として用いる場合、反応の効率化やポリマー転化率等を考慮すると、その圧力は、3.7MPa以上が好ましく、5MPa以上がより好ましく、臨界圧力の7.4PMa以上が特に好ましい。また、二酸化炭素を圧縮性流体として用いる場合、同様の理由により、その温度は25℃以上であることが好ましい。 The pressure at the time of polymerization, that is, the pressure of the compressive fluid is such that the compressive fluid supplied from the tank 407 is a liquefied gas ((2) in the phase diagram of FIG. 2) or a high-pressure gas ((3 in the phase diagram of FIG. 2). )) May be used, but a pressure which becomes a supercritical fluid ((1) in the phase diagram of FIG. 2) is preferable. By making the compressible fluid into a supercritical fluid state, melting of the ring-opening polymerizable monomer is promoted, and the polymerization reaction can be promoted uniformly and quantitatively. When carbon dioxide is used as the compressive fluid, the pressure is preferably 3.7 MPa or more, more preferably 5 MPa or more, and a critical pressure of 7.4 PMa or more in consideration of efficiency of the reaction, polymer conversion rate, and the like. Particularly preferred. Moreover, when using a carbon dioxide as a compressive fluid, it is preferable that the temperature is 25 degreeC or more for the same reason.
 反応容器413内の水分量は、開環重合性モノマーに対して、4モル%以下が好ましく、1モル%以下がより好ましく、0.5モル%以下が特に好ましい。水分量が4モル%を超えると、水分自体も開始剤として寄与するため、分子量の制御が困難となる場合がある。重合反応系内の水分量を制御するために、必要に応じて、前処理として、開環重合性モノマー、その他原材料に含まれる水分を除去する操作を加えてもよい。 The amount of water in the reaction vessel 413 is preferably 4 mol% or less, more preferably 1 mol% or less, and particularly preferably 0.5 mol% or less with respect to the ring-opening polymerizable monomer. When the amount of water exceeds 4 mol%, the water itself contributes as an initiator, so that it may be difficult to control the molecular weight. In order to control the amount of water in the polymerization reaction system, an operation for removing water contained in the ring-opening polymerizable monomer and other raw materials may be added as a pretreatment as necessary.
 前記開環重合性モノマーを重合させたポリマーに対して、ウレタン結合やエーテル結合を導入することも可能である。このウレタン結合やエーテル結合は、開環重合性モノマーと同様に、イソシアネート化合物やグリシジル化合物を加えて圧縮性流体中で重付加反応させることにより導入できる。この場合、分子構造を制御するために、開環重合性モノマーの重合反応終了後に、別途前記化合物を加えて反応させる方法がより好ましい。 It is also possible to introduce a urethane bond or an ether bond to the polymer obtained by polymerizing the ring-opening polymerizable monomer. This urethane bond or ether bond can be introduced by adding an isocyanate compound or a glycidyl compound and carrying out a polyaddition reaction in a compressive fluid, like the ring-opening polymerizable monomer. In this case, in order to control the molecular structure, a method in which the compound is added and reacted after completion of the polymerization reaction of the ring-opening polymerizable monomer is more preferable.
 重付加反応で用いられるイソシアネート化合物としては、特に限定されないが、イソホロンジイソシアネート、ヘキサメチレンジイソシアネート、リジンジイソシアネート、キシレンジイソシアネート、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、シクロヘキサンジイソシアネートなどの多官能性イソシアネート化合物が挙げられる。グリシジル化合物としては、特に限定されないが、ジエチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、ジグリシジルテレフタレート等の多官能グリシジル化合物が挙げられる。 The isocyanate compound used in the polyaddition reaction is not particularly limited, and examples thereof include polyfunctional isocyanate compounds such as isophorone diisocyanate, hexamethylene diisocyanate, lysine diisocyanate, xylene diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, and cyclohexane diisocyanate. The glycidyl compound is not particularly limited, and examples thereof include polyfunctional glycidyl compounds such as diethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, and diglycidyl terephthalate. .
 反応容器413内で開環重合反応を終えたポリマーPは、バルブ425から排出され、反応容器413の外へ送り出される。 The polymer P that has completed the ring-opening polymerization reaction in the reaction vessel 413 is discharged from the valve 425 and sent out of the reaction vessel 413.
-その他の改良-
 本発明のポリマーの製造方法のさらなる改良として以下の処理を加えてもよい。
 開環重合性モノマーを開環重合させる際、反応容器内に予め前記金属原子を含有しない有機触媒及び前記金属原子を含有する触媒の少なくともいずれかの触媒を保持させていてもよい。
 つまり前記開環重合性モノマーを含有する原材料と、前記圧縮性流体とを接触させて、前記金属原子を含有しない有機触媒及び前記金属原子を含有する触媒の少なくともいずれかの触媒が保持された反応容器内で、前記開環重合性モノマーを開環重合させてもよい。より具体的には、前記開環重合性モノマーを含有する原材料と、前記圧縮性流体とを接触させた後、予め金属触媒の固形物が塗布されている反応容器内に溶融後の各原材料と有機触媒を供給し、開環重合性モノマーを開環重合させるとよい。
-Other improvements-
As a further improvement of the method for producing the polymer of the present invention, the following treatment may be added.
When the ring-opening polymerizable monomer is subjected to ring-opening polymerization, at least one of an organic catalyst not containing the metal atom and a catalyst containing the metal atom may be held in the reaction vessel in advance.
That is, a reaction in which at least one of the organic catalyst containing no metal atom and the catalyst containing the metal atom is retained by bringing the raw material containing the ring-opening polymerizable monomer into contact with the compressive fluid. The ring-opening polymerizable monomer may be subjected to ring-opening polymerization in a container. More specifically, after bringing the raw material containing the ring-opening polymerizable monomer into contact with the compressive fluid, each raw material after melting in a reaction vessel in which a solid metal catalyst is applied in advance. An organic catalyst may be supplied to cause the ring-opening polymerizable monomer to undergo ring-opening polymerization.
 また、本発明のポリマーの製造方法では、前記開環重合工程において、前記金属原子を含有しない有機触媒及び前記金属原子を含有する触媒の少なくともいずれかの触媒を除去する処理を更に含んでいてもよい。
 前記ポリマーの製造方法により得られるポリマー生成物に残存する触媒は、必要に応じて除去される。除去方法としては、特に限定するものではないが、例えば、沸点を有する化合物であれば減圧留去や、触媒を溶解させる物質をエントレーナーとして用いて触媒を抽出してこれを除去する方法や、カラムにより触媒を吸着して除去する方法などが挙げられる。この場合、触媒を除去する方式としては、ポリマー生成物を反応容器から取り出した後に除去するバッチ方式でも、取り出さずそのまま連続処理する方式でもかまわない。減圧留去する場合、減圧条件は触媒の沸点に基づいて設定される。例えば、減圧の際の温度は、100℃以上120℃以下であり、ポリマー生成物が解重合する温度より低い温度で触媒を除去することが可能である。この抽出操作において有機溶媒を用いると、触媒を抽出後に有機溶媒を除去する工程が必要となる場合がある。このため、抽出操作においても溶媒として圧縮流体を用いることが好ましい。このような抽出操作としては、香料の抽出などの公知の技術が転用できる。
 より具体的には、前記開環重合性モノマーを含有する原材料と、前記圧縮性流体とを接触させて、前記金属原子を含有しない有機触媒の存在下で、前記開環重合性モノマーを開環重合させた後、生成したポリマー中間体に残存する前記金属原子を含有しない有機触媒を除去し、その後、前記金属原子を含有する触媒の存在下で、さらに重合させてポリマー生成物を得るのが、転化率向上の点でより好ましい。
In the polymer production method of the present invention, the ring-opening polymerization step may further include a treatment for removing at least one of the organic catalyst containing no metal atom and the catalyst containing the metal atom. Good.
The catalyst remaining in the polymer product obtained by the polymer production method is removed if necessary. The removal method is not particularly limited.For example, if it is a compound having a boiling point, it is distilled off under reduced pressure, or a method of removing the catalyst by using a substance that dissolves the catalyst as an entrainer, For example, a method of adsorbing and removing a catalyst by a column may be used. In this case, the method for removing the catalyst may be a batch method in which the polymer product is removed after being taken out from the reaction vessel, or a method in which the polymer product is continuously treated without being taken out. In the case of distilling off under reduced pressure, the reduced pressure condition is set based on the boiling point of the catalyst. For example, the temperature during decompression is 100 ° C. or higher and 120 ° C. or lower, and the catalyst can be removed at a temperature lower than the temperature at which the polymer product is depolymerized. When an organic solvent is used in this extraction operation, a step for removing the organic solvent after extraction of the catalyst may be required. For this reason, it is preferable to use a compressed fluid as a solvent also in extraction operation. As such an extraction operation, a known technique such as extraction of a fragrance can be diverted.
More specifically, the raw material containing the ring-opening polymerizable monomer is brought into contact with the compressive fluid to open the ring-opening polymerizable monomer in the presence of the organic catalyst not containing the metal atom. After the polymerization, the organic catalyst not containing the metal atom remaining in the produced polymer intermediate is removed, and then further polymerized in the presence of the catalyst containing the metal atom to obtain a polymer product. From the viewpoint of improving the conversion rate.
 <<ポリマー生成物>>
 本発明のポリマーの製造方法によると、圧縮性流体を用いることで、上述の通り、低い温度での重合反応が可能となるため、従来の溶融重合と比して、大幅に解重合反応を抑制できる。これにより、連続式工程あるいはバッチ式工程の場合であっても、ポリマー転化率を、97モル%以上、好ましくは98モル%以上とすることができる。ポリマー転化率が97モル%に満たない場合、ポリマー生成物としての熱特性が不十分になり、別途開環重合性モノマーを除去する操作が必要になる場合がある。なお、本実施形態においてポリマー転化率とは、原材料としての開環重合性モノマーに対する、ポリマーの生成に寄与した開環重合性モノマーの割合を意味する。ポリマーの生成に寄与した開環重合性モノマーの量は、生成したポリマーの量から未反応の開環重合性モノマー(残存開環重合性モノマー)の量を差し引くことにより得られる。
<< Polymer product >>
According to the method for producing a polymer of the present invention, the use of a compressive fluid enables a polymerization reaction at a low temperature as described above, so that the depolymerization reaction is greatly suppressed as compared with conventional melt polymerization. it can. Thereby, even in the case of a continuous process or a batch process, the polymer conversion rate can be 97 mol% or more, preferably 98 mol% or more. When the polymer conversion rate is less than 97 mol%, the thermal characteristics as the polymer product may be insufficient, and an operation for separately removing the ring-opening polymerizable monomer may be required. In the present embodiment, the polymer conversion rate means the ratio of the ring-opening polymerizable monomer that has contributed to the formation of the polymer with respect to the ring-opening polymerizable monomer as a raw material. The amount of the ring-opening polymerizable monomer that contributed to the production of the polymer can be obtained by subtracting the amount of the unreacted ring-opening polymerizable monomer (residual ring-opening polymerizable monomer) from the amount of the produced polymer.
 本実施形態により得られるポリマーの数平均分子量は、開始剤の量によって調整が可能である。特に限定されるものではないが、数平均分子量は一般的に1.2万以上20万以下である。数平均分子量が20万より大きい場合、粘性の上昇に伴う生産性の悪化により経済的ではない場合がある。数平均分子量が1.2万より小さい場合、ポリマーとしての強度が不十分となり好ましくない場合がある。本実施形態により得られるポリマーの重量平均分子量を数平均分子量で除した値は、1.0以上2.5以下の範囲が好ましく、1.0以上2.0以下の範囲がより好ましい。この値が2.0より大きい場合、重合反応が不均一に行われている可能性が高く、ポリマー物性をコントロールすることが困難になることから好ましくない。 The number average molecular weight of the polymer obtained by this embodiment can be adjusted by the amount of the initiator. Although not particularly limited, the number average molecular weight is generally from 12,000 to 200,000. When the number average molecular weight is larger than 200,000, it may not be economical due to a deterioration in productivity accompanying an increase in viscosity. When the number average molecular weight is less than 12,000, the strength as a polymer may be insufficient, which may not be preferable. The value obtained by dividing the weight average molecular weight of the polymer obtained by this embodiment by the number average molecular weight is preferably in the range of 1.0 to 2.5, and more preferably in the range of 1.0 to 2.0. When this value is larger than 2.0, there is a high possibility that the polymerization reaction is performed non-uniformly, and it is difficult to control the physical properties of the polymer.
 本実施形態により得られるポリマー生成物は、有機溶媒を使用しない製法で製造されるため、実質的に有機溶媒が含まれず、また金属触媒の使用量を極めて少量とすることで金属原子の含有量を少なくすることができ、残存モノマー量も1000ppm以下と極めて少ないことから、安全性、安定性に優れている。また、低温、短時間で触媒使用量を少なくして重合反応させた結果、着色のないポリマー生成物となり、実用性に優れている。従って、本実施形態のポリマー生成物は、日用品、医薬品、化粧品、電子写真用トナー等の用途として幅広く適用される。なお、本実施形態において、有機溶媒とは、開環重合に用いられる有機物の溶媒である。実質的に有機溶媒を含有しないとは、以下の測定方法により測定されるポリマー生成物中の有機溶媒の含有量が検出限界以下であることを言う。 Since the polymer product obtained by this embodiment is produced by a production method that does not use an organic solvent, the organic product is substantially free of an organic solvent, and the content of metal atoms can be reduced by using a very small amount of a metal catalyst. Since the amount of residual monomer is as low as 1000 ppm or less, it is excellent in safety and stability. Moreover, as a result of carrying out the polymerization reaction by reducing the amount of the catalyst used at a low temperature for a short time, a polymer product having no coloration is obtained, which is excellent in practicality. Therefore, the polymer product of the present embodiment is widely applied for uses such as daily necessities, pharmaceuticals, cosmetics, and electrophotographic toners. In the present embodiment, the organic solvent is an organic solvent used for ring-opening polymerization. The phrase “substantially free of organic solvent” means that the content of the organic solvent in the polymer product measured by the following measurement method is below the detection limit.
--残存有機溶媒の測定方法--
 測定対象となるポリマー生成物1質量部に2-プロパノール2質量部を加え、超音波で30分間分散させた後、冷蔵庫(5℃)にて1日以上保存し、ポリマー生成物中の有機溶媒を抽出する。上澄み液をガスクロマトグラフィ(GC-14A,SHIMADZU)で分析し、ポリマー生成物中の有機溶媒及び残留モノマーを定量することにより有機溶媒濃度を測定する。かかる分析時の測定条件は、以下の通りである。
装置 : 島津GC-14A
カラム : CBP20-M 50-0.25
検出器 : FID
注入量 : 1μL~5μL
キャリアガス : He2.5kg/cm
水素流量 : 0.6kg/cm
空気流量 : 0.5kg/cm
チャートスピード : 5mm/min
感度 : Range101×Atten20
カラム温度 : 40℃
Injection Temp : 150℃
--Measurement method of residual organic solvent--
Add 2 parts by mass of 2-propanol to 1 part by mass of the polymer product to be measured, disperse with ultrasound for 30 minutes, and store in a refrigerator (5 ° C.) for 1 day or longer. Organic solvent in the polymer product To extract. The supernatant is analyzed by gas chromatography (GC-14A, SHIMADZU), and the organic solvent concentration is measured by quantifying the organic solvent and residual monomers in the polymer product. Measurement conditions at the time of such analysis are as follows.
Equipment: Shimadzu GC-14A
Column: CBP20-M 50-0.25
Detector: FID
Injection volume: 1 μL to 5 μL
Carrier gas: He 2.5 kg / cm 2
Hydrogen flow rate: 0.6 kg / cm 2
Air flow rate: 0.5 kg / cm 2
Chart speed: 5mm / min
Sensitivity: Range101 × Atten20
Column temperature: 40 ° C
Injection Temp: 150 ° C
-ポリマー生成物の用途-
 本発明のポリマーの製造方法により得られたポリマー生成物は、金属含有量が少なく、残存モノマー量も少ないことから、安全性、安定性に優れている。従って、本実施形態の製造方法により得られたポリマー生成物は、電子写真の現像剤、印刷用インク、建築用塗料、化粧品、医療用材料などの各種用途に幅広く適用される。その際、成形性、二次加工性、分解性、引張強度、耐熱性、保存安定性、結晶性、耐候性等を向上させる目的で、各種添加剤を使用してもよい。
-Uses of polymer products-
The polymer product obtained by the method for producing a polymer of the present invention is excellent in safety and stability because it has a small metal content and a small amount of residual monomer. Therefore, the polymer product obtained by the production method of the present embodiment is widely applied to various uses such as an electrophotographic developer, printing ink, architectural paint, cosmetics, and medical materials. At that time, various additives may be used for the purpose of improving moldability, secondary processability, decomposability, tensile strength, heat resistance, storage stability, crystallinity, weather resistance and the like.
-本発明のポリマーの製造方法による効果-
 本発明のポリマーの製造方法によると、以下の理由により、低コスト、低環境負荷、省エネルギー、省資源の点で優れ、成形加工性、熱安定性に優れたポリマー生成物の提供が可能となる。
(1)高温(例えば150℃以上)で反応させる溶融重合法と比較して、低温で反応が進む。
(2)低温で反応が進むので、副反応もほとんど起こらず、加えた開環重合性モノマーに対して高収率でポリマー生成物が得られる(すなわち未反応の開環重合性モノマーが少ない)。これにより、成形加工性、熱安定性に優れたポリマーを得るための未反応の開環重合性モノマーの除去等の精製工程を簡略化又は省略できる。
(3)有機溶媒を用いた重合法では、得られたポリマー生成物を固体で使用するためには溶媒を除去する工程が必要となる。本実施形態の重合方法では、圧縮性流体を用いるため廃液等も発生せず、乾燥したポリマー生成物が1段階の工程で得られることから、乾燥工程も簡略化又は省略できる。
(4)圧縮性流体を用いるため、有機溶剤を用いずに開環重合反応を行うことができる。なお、有機溶剤とは、開環重合性モノマーを溶かすために用いる液体の有機化合物を意味する。
(5)圧縮性流体中に開環重合性モノマーを溶融させた後に、触媒を加えて開環重合させると、均一に反応が進む。このため、光学異性体や他のモノマー種との共重合体を得る場合に、好適に用いられる。
-Effects of the polymer production method of the present invention-
According to the method for producing a polymer of the present invention, for the following reasons, it is possible to provide a polymer product that is excellent in terms of low cost, low environmental load, energy saving, and resource saving, and excellent in molding processability and thermal stability. .
(1) The reaction proceeds at a low temperature as compared with the melt polymerization method in which the reaction is performed at a high temperature (for example, 150 ° C. or higher).
(2) Since the reaction proceeds at a low temperature, almost no side reaction occurs, and a polymer product is obtained in a high yield with respect to the added ring-opening polymerizable monomer (that is, there are few unreacted ring-opening polymerizable monomers). . Thereby, a purification process such as removal of an unreacted ring-opening polymerizable monomer for obtaining a polymer excellent in molding processability and thermal stability can be simplified or omitted.
(3) In the polymerization method using an organic solvent, a step of removing the solvent is required in order to use the obtained polymer product as a solid. In the polymerization method of this embodiment, since a compressive fluid is used, no waste liquid or the like is generated, and a dried polymer product is obtained in a single step, so that the drying step can be simplified or omitted.
(4) Since a compressive fluid is used, the ring-opening polymerization reaction can be performed without using an organic solvent. The organic solvent means a liquid organic compound used for dissolving the ring-opening polymerizable monomer.
(5) When the ring-opening polymerizable monomer is melted in the compressive fluid and then the catalyst is added to cause ring-opening polymerization, the reaction proceeds uniformly. For this reason, it is suitably used when obtaining a copolymer with an optical isomer or other monomer species.
(本発明のポリマーの製造方法の応用例)
 本発明のポリマーの製造方法として上述した一つの実施形態(第1の実施形態ともいう)の応用例として、他の実施形態(第2の実施形態ともいう)について説明する。第1の実施形態の製造方法では、残存モノマーがほとんどなく反応が定量的に進む。このことから、第2の実施形態では、第1の実施形態の製造方法で製造されたポリマー生成物を用い、数種類の開環重合性モノマーを加えるタイミングを適宜設定することにより、複合体を合成する。なお、本実施形態において、複合体とは、モノマーを複数の系列に分けて重合して得られる2種以上のポリマーセグメントを有する共重合体又はモノマーを複数の系列に分けて重合して得られる2種以上のポリマーの混合物を意味する。以下、複合体の一例として、ステレオコンプレックスの合成方法を二通り示す。
(Application example of the polymer production method of the present invention)
As an application example of one embodiment (also referred to as the first embodiment) described above as the method for producing the polymer of the present invention, another embodiment (also referred to as the second embodiment) will be described. In the production method of the first embodiment, the reaction proceeds quantitatively with almost no residual monomer. Therefore, in the second embodiment, a composite is synthesized by appropriately setting the timing of adding several types of ring-opening polymerizable monomers using the polymer product produced by the production method of the first embodiment. To do. In the present embodiment, the composite is obtained by polymerizing a copolymer or monomer having two or more polymer segments obtained by polymerizing monomers in a plurality of series. It means a mixture of two or more polymers. Hereinafter, as an example of the complex, two methods for synthesizing a stereo complex will be described.
<第1の方法>
 まず、図6A及び図6Bを用いて第1の方法について説明する。図6A及び図6Bは、第1の方法で用いられる複合体製造システムを示す模式図である。第1の方法では、図6Aの複合体製造システム200における系列1で、第1の実施形態の製造方法でポリマーを生成し、得られたポリマー生成物Pと、新たに導入された第2の開環重合性モノマーとを系列2で接触させて圧縮性流体の存在下、連続的に混合させることによって、複合体生成物PP(最終的なポリマー生成物)を製造する。なお、図6Aの複合体製造システム200における系列2と同様の系列を直列に繰り返すことにより、3種以上のセグメントを有する複合体生成物PPを得ることもできる。
<First method>
First, the first method will be described with reference to FIGS. 6A and 6B. 6A and 6B are schematic views showing a complex production system used in the first method. In the first method, a polymer is produced by the production method of the first embodiment in series 1 in the complex production system 200 of FIG. 6A, and the obtained polymer product P and the newly introduced second product are used. A composite product PP (final polymer product) is produced by contacting the ring-opening polymerizable monomer in series 2 and mixing continuously in the presence of a compressive fluid. In addition, the complex product PP which has a 3 or more types of segment can also be obtained by repeating the series similar to the series 2 in the complex manufacturing system 200 of FIG. 6A in series.
 続いて、図6Bを用いて複合体製造システム200の具体例について説明する。複合体製造システム200は、第1の実施形態で用いたものと同様の重合反応装置100と、タンク(21,27)と、計量フィーダー22と、計量ポンプ28と、溶融混合装置29と、反応容器33と、圧調整バルブ34と、を有する。
 複合体製造システム200において、反応容器33のポリマー導入口33aは、耐圧性の配管31を介して重合反応装置100の排出口と接続している。ここで、重合反応装置100の排出口とは、反応容器13、計量ポンプ14(図3)、又は、圧調整バルブ16(図4)の排出口を意味する。いずれの場合でも、各重合反応装置100で生成されたポリマー生成物Pを常圧に戻すことなく溶融した状態のまま反応容器33に供給することができる。
Next, a specific example of the complex manufacturing system 200 will be described with reference to FIG. 6B. The complex production system 200 includes a polymerization reaction device 100, tanks (21, 27), a metering feeder 22, a metering pump 28, a melt mixing device 29, and a reaction similar to those used in the first embodiment. A container 33 and a pressure adjusting valve 34 are provided.
In the complex production system 200, the polymer introduction port 33 a of the reaction vessel 33 is connected to the discharge port of the polymerization reaction apparatus 100 via the pressure resistant pipe 31. Here, the outlet of the polymerization reaction apparatus 100 means the outlet of the reaction vessel 13, the metering pump 14 (FIG. 3), or the pressure regulating valve 16 (FIG. 4). In any case, the polymer product P generated in each polymerization reaction apparatus 100 can be supplied to the reaction vessel 33 in a molten state without returning to normal pressure.
 タンク21は、第2の開環重合性モノマーを貯蔵する。なお、第1の方法において、第2の開環重合性モノマーは、タンク1に貯蔵される開環重合性モノマーの光学異性体である。タンク27は、圧縮性流体を貯蔵する。タンク27に貯蔵される圧縮性流体は、特に限定されないが、均一に重合反応を進めるために、タンク7に貯蔵される圧縮性流体と同種のものであることが好ましい。なお、タンク27は、溶融混合装置29に供給される過程で、あるいは、溶融混合装置29内で加熱又は加圧されて圧縮性流体となる気体(ガス)、又は、固体を貯蔵してもよい。この場合、タンク27に貯蔵される気体又は固体は、加熱又は加圧されることにより、溶融混合装置29内で図2の相図における(1)、(2)、又は(3)の状態となる。 Tank 21 stores the second ring-opening polymerizable monomer. In the first method, the second ring-opening polymerizable monomer is an optical isomer of the ring-opening polymerizable monomer stored in the tank 1. The tank 27 stores a compressible fluid. The compressive fluid stored in the tank 27 is not particularly limited, but is preferably the same type as the compressive fluid stored in the tank 7 in order to advance the polymerization reaction uniformly. The tank 27 may store a gas (gas) or a solid that is a compressible fluid in the course of being supplied to the melt mixing device 29, or heated or pressurized in the melt mixing device 29. . In this case, the gas or solid stored in the tank 27 is heated or pressurized to be in the state of (1), (2), or (3) in the phase diagram of FIG. Become.
 計量フィーダー22は、タンク21に貯蔵された第2の開環重合性モノマーを計量して溶融混合装置29に連続的に供給する。計量ポンプ28は、タンク27に貯蔵された圧縮性流体を、一定の圧力及び流量で溶融混合装置29に連続的に供給する。溶融混合装置29は、タンク21から供給された第2の開環重合性モノマーと、タンク27から供給された圧縮性流体とを連続的に接触させ、原材料を溶融させるための耐圧性の容器を有した装置である。溶融混合装置29の容器には、計量ポンプ28によってタンク27から供給された圧縮性流体を導入する導入口29aと、計量フィーダー22によってタンク21から供給された第2の開環重合性モノマーを導入する導入口29bとが設けられている。なお、本実施形態において、溶融混合装置29としては、溶融混合装置9と同様のものが用いられる。 The metering feeder 22 measures the second ring-opening polymerizable monomer stored in the tank 21 and continuously supplies it to the melt mixing device 29. The metering pump 28 continuously supplies the compressive fluid stored in the tank 27 to the melt mixing device 29 at a constant pressure and flow rate. The melt mixing device 29 is a pressure-resistant container for continuously bringing the second ring-opening polymerizable monomer supplied from the tank 21 and the compressive fluid supplied from the tank 27 into contact with each other to melt the raw materials. It is a device that has. Into the container of the melt mixing device 29, the introduction port 29 a for introducing the compressive fluid supplied from the tank 27 by the metering pump 28 and the second ring-opening polymerizable monomer supplied from the tank 21 by the metering feeder 22 are introduced. And an introduction port 29b. In the present embodiment, as the melt mixing device 29, the same one as the melt mixing device 9 is used.
 反応容器33は、重合反応装置100で重合して得られ、圧縮性流体に溶融した状態の中間体としてのポリマー生成物Pと、溶融混合装置29で圧縮性流体に溶融させた第2の開環重合性モノマーとを重合させるための耐圧性の容器である。反応容器33には、上記の溶融した中間体としてのポリマー生成物Pを容器内に導入するための導入口33aと、上記の溶融させた第2の開環重合性モノマーを容器内に導入する導入口33bとが設けられている。なお、本実施形態において、反応容器33として、反応容器13と同様のものが用いられる。圧調整バルブ34は、反応容器33の内外の圧力差を利用することにより、反応容器33で重合された複合体生成物PPを反応容器33の外に送り出す。
 第1の方法では、反応容器13で開環重合性モノマー(例えば、L-ラクチド)を重合し、反応が定量的に終了した後、第2の開環重合性モノマーの一例としての光学異性体の開環重合性モノマー(例えば、D-ラクチド)を反応容器33に加え、さらに重合反応を行う。これにより、ステレオブロック共重合体が得られる。この方法は、残存モノマーが少ない状態で開環重合性モノマーの融点以下で反応を進められることから、ラセミ化が非常に起こりにくく、かつ1段階の反応で得られるため非常に有用である。
The reaction vessel 33 is obtained by polymerization in the polymerization reactor 100, and the polymer product P as an intermediate melted in the compressive fluid, and a second opening that is melted in the compressive fluid by the melt mixing device 29. It is a pressure-resistant container for polymerizing a ring polymerizable monomer. Into the reaction vessel 33, the inlet 33a for introducing the molten polymer product P as an intermediate into the vessel and the molten second ring-opening polymerizable monomer are introduced into the vessel. An introduction port 33b is provided. In the present embodiment, the same reaction vessel 33 as the reaction vessel 13 is used. The pressure adjusting valve 34 sends out the complex product PP polymerized in the reaction vessel 33 to the outside of the reaction vessel 33 by utilizing the pressure difference between the inside and outside of the reaction vessel 33.
In the first method, a ring-opening polymerizable monomer (for example, L-lactide) is polymerized in the reaction vessel 13 and the reaction is quantitatively terminated, and then an optical isomer as an example of the second ring-opening polymerizable monomer. The ring-opening polymerizable monomer (for example, D-lactide) is added to the reaction vessel 33, and the polymerization reaction is further performed. Thereby, a stereo block copolymer is obtained. This method is very useful because the reaction can proceed at a temperature below the melting point of the ring-opening polymerizable monomer with a small amount of residual monomer, so that racemization hardly occurs and the reaction is obtained in a one-step reaction.
<第2の方法>
 続いて、図7を用いて第2の方法について説明する。図7は、第2の方法で用いられる複合体製造システムを示す模式図である。第2の方法では、第1の実施形態の製造方法でそれぞれ製造された複数のポリマー生成物を圧縮性流体の存在下、連続的に混合させることによって、複合体生成物PPを製造する。複数のポリマー生成物は、互いに光学異性体の開環重合性モノマーをそれぞれ重合したものである。複合体製造システム300は、複数の重合反応装置100と混合装置41と圧調整バルブ42とを有する。
<Second method>
Subsequently, the second method will be described with reference to FIG. FIG. 7 is a schematic diagram showing a complex production system used in the second method. In the second method, a composite product PP is produced by continuously mixing a plurality of polymer products produced by the production method of the first embodiment in the presence of a compressive fluid. The plurality of polymer products are obtained by polymerizing ring-opening polymerizable monomers of optical isomers to each other. The complex manufacturing system 300 includes a plurality of polymerization reaction devices 100, a mixing device 41, and a pressure adjustment valve 42.
 複合体製造システム300において、混合装置41のポリマー導入口41aは、耐圧性の配管31を介して各重合反応装置100の排出口と接続している。ここで、重合反応装置100の排出口とは、反応容器13、計量ポンプ14(図3)、又は、圧調整バルブ16(図4)の排出口を意味する。いずれの場合でも、各重合反応装置100で生成されたポリマー生成物Pを常圧に戻すことなく溶融した状態のまま混合装置41に供給することができる。その結果、圧縮流体の存在下、各ポリマー生成物Pが低粘度化するので、混合装置41では、より低温で2種類以上のポリマー生成物Pを混合することが可能となる。なお、図7では、配管31が一つの継手31aを有することにより重合反応装置100を並列に二つ備えた例を示したが、複数の継手を設けることにより、重合反応装置100を並列に三つ以上備えていてもよい。 In the complex production system 300, the polymer inlet 41 a of the mixing device 41 is connected to the outlet of each polymerization reaction device 100 via the pressure resistant pipe 31. Here, the outlet of the polymerization reaction apparatus 100 means the outlet of the reaction vessel 13, the metering pump 14 (FIG. 3), or the pressure regulating valve 16 (FIG. 4). In any case, the polymer product P generated in each polymerization reaction device 100 can be supplied to the mixing device 41 in a molten state without returning to normal pressure. As a result, each polymer product P has a reduced viscosity in the presence of the compressed fluid, so that the mixing device 41 can mix two or more types of polymer products P at a lower temperature. FIG. 7 shows an example in which the piping 31 has one joint 31a so that two polymerization reaction apparatuses 100 are provided in parallel. However, by providing a plurality of joints, the polymerization reaction apparatus 100 can be connected in three in parallel. You may have more than one.
 混合装置41としては、各重合反応装置100から供給された複数のポリマー生成物を混合可能なものであれば、限定されないが、攪拌装置を備えたものが挙げられる。攪拌装置としては、一軸のスクリュウ、互いに噛み合う二軸のスクリュウ、互いに噛み合う又は重なり合う多数の攪拌素子をもつ二軸の混合機、互いに噛み合うらせん形の攪拌素子を有するニーダー、スタティックミキサーなどが好ましく用いられる。混合装置41で各ポリマー生成物を混合させる際の温度(混合温度)は、反応容器13における重合反応温度と同様に設定することができる。なお、混合装置41は、混合されるポリマー生成物に、別途、圧縮性流体を供給する機構を有していてもよい。圧調整バルブ42は、混合装置41でポリマー生成物が混合されて得られた複合体生成物PPの流量を調整するための装置である。 The mixing device 41 is not limited as long as it can mix a plurality of polymer products supplied from the respective polymerization reaction devices 100, and includes a stirring device. As the agitation device, a uniaxial screw, a biaxial screw meshing with each other, a biaxial mixer having a large number of meshing elements meshing with each other or overlapping, a kneader having helical stirring elements meshing with each other, a static mixer, etc. are preferably used. . The temperature (mixing temperature) at which each polymer product is mixed by the mixing device 41 can be set similarly to the polymerization reaction temperature in the reaction vessel 13. The mixing device 41 may have a mechanism for supplying a compressive fluid separately to the polymer product to be mixed. The pressure adjusting valve 42 is a device for adjusting the flow rate of the composite product PP obtained by mixing the polymer product with the mixing device 41.
 第2の方法では、重合反応装置100であらかじめL体、D体のモノマー(例えば、ラクチド)を圧縮性流体中でそれぞれ重合する。さらに、重合させて得られたポリマー生成物を圧縮性流体中でブレンドしてステレオブロック共重合体を得る。通常、ポリ乳酸などのポリマーは、残存モノマーが限りなく少ない場合でも、再度加熱溶解すると、分解してしまうことが多い。第2の方法では、圧縮性流体で溶融させた低粘性のポリ乳酸を、融点以下でブレンドすることにより、第1の方法と同様にラセミ化や熱劣化を抑えることができるため有用である。 In the second method, L-type and D-type monomers (for example, lactide) are polymerized in advance in the compressive fluid in the polymerization reaction apparatus 100 in advance. Furthermore, the polymer product obtained by polymerization is blended in a compressive fluid to obtain a stereoblock copolymer. In general, polymers such as polylactic acid often decompose when heated and dissolved again, even when the residual monomer is extremely small. The second method is useful because, by blending low-viscosity polylactic acid melted with a compressive fluid at a melting point or lower, racemization and thermal degradation can be suppressed as in the first method.
 なお、第1の方法及び第2の方法では、互いに光学異性体の開環重合性モノマーをそれぞれ重合してステレオコンプレックスを製造する場合について説明した。しかしながら、本実施形態で用いられる開環重合性モノマーは互いに光学異性体である必要はない。また、第1の方法と第2の方法とを組み合わせることにより、ステレオコンプレックスを形成するブロック共重合体を混合することも可能である。 In the first method and the second method, a case where a stereocomplex is produced by polymerizing ring-opening polymerizable monomers that are optical isomers to each other has been described. However, the ring-opening polymerizable monomers used in this embodiment do not need to be optical isomers. Moreover, it is also possible to mix the block copolymer which forms a stereocomplex by combining the 1st method and the 2nd method.
 以下、実施例及び比較例を示して本実施形態をさらに具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではない。各表中の「ppm」は質量分率を示す。なお、実施例及び比較例で得られたポリマー生成物の分子量、ポリマー転化率、YI値、残存触媒量は次のようにして求めた。 Hereinafter, the present embodiment will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples. “Ppm” in each table indicates a mass fraction. The molecular weight, polymer conversion rate, YI value, and residual catalyst amount of the polymer products obtained in Examples and Comparative Examples were determined as follows.
<ポリマー生成物の分子量測定>
 GPC(Gel Permeation Chromatography)により以下の条件で測定した。
 ・装置:GPC-8020(東ソー社製)
 ・カラム:TSK G2000HXL及びG4000HXL(東ソー社製)
 ・温度:40℃
 ・溶媒:THF(テトラヒドロフラン)とジクロロメタンの90wt%/10wt%混     合液
 ・流速:1.0mL/分間
 濃度0.5質量%のポリマー生成物を1mL注入し、上記の条件で測定したポリマー生成物の分子量分布から単分散ポリスチレン標準試料により作成した分子量校正曲線を使用してポリマーの数平均分子量Mn、重量平均分子量Mwを算出した。分子量分布はMwをMnで除した値である。
<Measurement of molecular weight of polymer product>
The measurement was carried out under the following conditions by GPC (Gel Permeation Chromatography).
・ Device: GPC-8020 (manufactured by Tosoh Corporation)
Column: TSK G2000HXL and G4000HXL (manufactured by Tosoh Corporation)
・ Temperature: 40 ℃
-Solvent: 90 wt% / 10 wt% mixture of THF (tetrahydrofuran) and dichloromethane-Flow rate: 1.0 mL / min 1 mL of a polymer product having a concentration of 0.5 mass% was injected, and the polymer product measured under the above conditions The number average molecular weight Mn and the weight average molecular weight Mw of the polymer were calculated from the molecular weight distribution using a molecular weight calibration curve prepared with a monodisperse polystyrene standard sample. The molecular weight distribution is a value obtained by dividing Mw by Mn.
<モノマーのポリマー転化率>
・ラクチドのポリマー転化率
 日本電子社製核磁気共鳴装置JNM-AL300を使用し、重クロロホルム中で生成物のポリ乳酸の核磁気共鳴測定を行った。この場合、ポリ乳酸由来の四重線ピーク面積(5.10~5.20ppm)に対するラクチド由来の四重線ピーク面積(4.98~5.05ppm)の比を算出し、これを100倍したものを未反応モノマー量(モル%)(残存開環重合性モノマー量)とした。ポリマー転化率は、100から算出した未反応モノマー量を差し引いた値である。
・ラクチド以外のポリマー転化率
 ラクチド以外のポリマーも、上記と同様にして測定し、ポリマー由来の高磁場側の4重線ピーク面積対するモノマー由来の低磁場側の四重線ピーク面積の比を算出し、これを100倍したものを未反応モノマー量(モル%)とした。ポリマー転化率は、100から算出した未反応モノマー量を差し引いた値である。
<Polymer conversion of monomer>
-Polymer conversion rate of lactide Using a nuclear magnetic resonance apparatus JNM-AL300 manufactured by JEOL Ltd., nuclear magnetic resonance measurement of the product polylactic acid was performed in deuterated chloroform. In this case, the ratio of the lactide-derived quadruple peak area (4.98 to 5.05 ppm) to the polylactic acid-derived quadruple peak area (5.10 to 5.20 ppm) was calculated and multiplied by 100. This was defined as an unreacted monomer amount (mol%) (residual ring-opening polymerizable monomer amount). The polymer conversion rate is a value obtained by subtracting the amount of unreacted monomer calculated from 100.
・ Conversion rate of polymers other than lactide Polymers other than lactide were measured in the same manner as described above, and the ratio of the quadruple peak area on the low magnetic field side from the monomer to the quadruple peak area on the high magnetic field side from the polymer was calculated. Then, 100 times this was taken as the amount of unreacted monomer (mol%). The polymer conversion rate is a value obtained by subtracting the amount of unreacted monomer calculated from 100.
<YI値の測定>
 ポリマー生成物の黄色度、黄変度を調べるため、ポリマー生成物を180℃に加熱させたヒートプレス機に厚みが1mmとなるように調整してセットし、1分間プレスし、ポリマーシートを得た。得られたシートのYI値をJIS規格K7373に準じて求めた。
<Measurement of YI value>
In order to investigate the yellowness and yellowing degree of the polymer product, the polymer product was adjusted to a thickness of 1 mm in a heat press machine heated to 180 ° C., and pressed for 1 minute to obtain a polymer sheet. It was. The YI value of the obtained sheet was determined according to JIS standard K7373.
<残存触媒量>
 ポリマー生成物(ポリ乳酸)に残存している有機触媒量は、ポリ乳酸等のポリマー生成物をジクロロメタンに均一に溶解し、アセトン/シクロヘキサン混合溶液(質量比1/1)を加えてポリマー生成物を再沈させた上澄み液を、水素炎検出器(FID)付ガスクロマトグラフ(GC)に供し、残存触媒を分離し、内部標準法により定量することによりポリマー生成物中の残存触媒量を測定した。なお、ガスクロマトグラフィー(GC)測定は、以下の条件で行った。
<Remaining catalyst amount>
The amount of organic catalyst remaining in the polymer product (polylactic acid) is determined by uniformly dissolving the polymer product such as polylactic acid in dichloromethane and adding an acetone / cyclohexane mixed solution (mass ratio 1/1). The supernatant obtained by re-precipitation was subjected to a gas chromatograph (GC) with a hydrogen flame detector (FID), the remaining catalyst was separated, and the amount of the remaining catalyst in the polymer product was measured by quantifying by an internal standard method. . Gas chromatography (GC) measurement was performed under the following conditions.
-GC測定条件-
・カラム  :キャピラリーカラム
Agilent J&W GCカラム-DB-17ms(アジレント・テクノロジー株式会社製、長さ30m×内径0.25mm、膜厚0.25μm)
・内部標準 :2,6-ジメチル-γピロン
・カラム流量:1.8mL/分間
・カラム温度:50℃、1分間保持。25℃/分間で定速昇温して320℃、5分間保持。
・検出器  :水素炎イオン化法(FID)
-GC measurement conditions-
Column: capillary column Agilent J & W GC column-DB-17 ms (manufactured by Agilent Technologies, length 30 m × inner diameter 0.25 mm, film thickness 0.25 μm)
Internal standard: 2,6-dimethyl-γ pyrone Column flow rate: 1.8 mL / min Column temperature: 50 ° C., hold for 1 minute. The temperature is raised at a constant rate of 25 ° C./min and held at 320 ° C. for 5 minutes.
・ Detector: Flame ionization method (FID)
 金属触媒については、ICP発光分光分析法(高周波誘導結合プラズマ発光分光分析法)により以下の条件で測定し、その測定結果に基づいて残触媒量を求めた。
・装置  :ICP発光分光分析装置(ICP-OES/ICP-AES)
      SPS5100型、エスアイアイ・ナノテクノロジー製
 試料(ポリマー生成物)を硫酸、硝酸で加熱分解後(加熱温度は230℃)、超純水で定容して検液とした。ICP-AES法により検液中のSnの定量分析を行った。
The metal catalyst was measured under the following conditions by ICP emission spectroscopy (high frequency inductively coupled plasma emission spectroscopy), and the amount of residual catalyst was determined based on the measurement results.
・ Device: ICP emission spectroscopic analyzer (ICP-OES / ICP-AES)
A sample (polymer product) made by SPS5100, SII Nanotechnology was decomposed by heating with sulfuric acid and nitric acid (heating temperature is 230 ° C.), and then the volume was measured with ultrapure water to prepare a test solution. Quantitative analysis of Sn in the test solution was performed by ICP-AES method.
(実施例1)
 図3の重合反応装置100を用いて、L-ラクチド(純度99.5wt%)の開環重合を行った。重合反応装置100の構成を示す。
タンク1,計量フィーダー2:
     日本精密社製 プランジャーポンプNP-S462
     タンク1には、開環重合性モノマーとして溶融状態のラクチドを充填した。
タンク3,計量フィーダー4:
     日本分光社製 インテリジェントHPLCポンプ (PU-2080)
     タンク3には、開始剤としてラウリルアルコールを充填した。
タンク5,計量ポンプ6:本実施例では使用しなかった。
タンク7:炭酸ガスボンベ
タンク11,計量ポンプ12:
     日本分光社製 インテリジェントHPLCポンプ (PU-2080)
     タンク11にはDBU(有機触媒)を充填した。
溶融混合装置9:互いに噛み合うスクリュウを取付けた二軸攪拌装置
        シリンダー内径 30mm
        シリンダー設定温度 100℃
        二軸同方向回転
        回転速度 30rpm
反応容器13: 二軸混練機
        シリンダー内径 40mm
        シリンダー設定温度 原料供給部100℃ 先端部80℃
        二軸同方向回転
        回転速度 60rpm
Example 1
Ring-opening polymerization of L-lactide (purity 99.5 wt%) was performed using the polymerization reactor 100 of FIG. The structure of the polymerization reaction apparatus 100 is shown.
Tank 1, weighing feeder 2:
Plunger pump NP-S462 made by Nippon Seimitsu
Tank 1 was filled with molten lactide as a ring-opening polymerizable monomer.
Tank 3, weighing feeder 4:
Intelligent spectrometer pump (PU-2080) manufactured by JASCO
Tank 3 was filled with lauryl alcohol as an initiator.
Tank 5, metering pump 6: Not used in this example.
Tank 7: Carbon dioxide cylinder tank 11, metering pump 12:
Intelligent spectrometer pump (PU-2080) manufactured by JASCO
The tank 11 was filled with DBU (organic catalyst).
Melt mixing device 9: biaxial stirring device with screws that mesh with each other Cylinder inner diameter 30 mm
Cylinder set temperature 100 ℃
Two shafts rotating in the same direction Rotating speed 30rpm
Reaction vessel 13: Biaxial kneader Cylinder inner diameter 40mm
Cylinder set temperature Raw material supply part 100 ℃ Tip part 80 ℃
Two shafts rotating in the same direction Rotation speed 60rpm
 溶融混合装置9及び反応容器13を上記の設定条件で作動させた。計量フィーダー2は、タンク1内の溶融状態のラクチドを溶融混合装置9の容器内に定量供給した。計量フィーダー4は、タンク3内のラウリルアルコールを、前記開環重合性モノマーに対する開始剤の量が0.07モル%となるように、つまりラクチドの供給量1モルに対し0.07モルとなるように溶融混合装置9の容器内に定量供給した。計量ポンプ8は、タンク7より圧縮性流体としての炭酸ガス(二酸化炭素)を単位時間当たりに供給される原材料90質量部に対して10質量部となるように、溶融混合装置9の配管内に連続的に供給した。すなわち、フィード比=原材料の供給速度(g/min)/〔原材料の供給速度(g/min)+圧縮性流体の供給速度(g/min)〕=90/100=0.9に設定した。なお、ここでの原材料とは、開環重合性モノマーであるラクチド及び開始剤として加えているラウリルアルコールである。なお、原材料のフィード量は10g/分であった。溶融混合装置9の容器内の圧力が15MPaとなるように供給した。これにより、溶融混合装置9は、各タンク(1,3,7)から供給されたラクチド及びラウリルアルコールの各原材料と圧縮性流体とを連続的に接触させるとともに、スクリュウで混合して、各原材料を溶融させた。 The melt mixing device 9 and the reaction vessel 13 were operated under the above set conditions. The weighing feeder 2 quantitatively supplied the molten lactide in the tank 1 into the container of the melt mixing device 9. The measuring feeder 4 has 0.07 mol of lauryl alcohol in the tank 3 such that the amount of initiator relative to the ring-opening polymerizable monomer is 0.07 mol%, that is, 1 mol of lactide is supplied. Thus, a fixed amount was supplied into the container of the melt mixing apparatus 9. The metering pump 8 is placed in the pipe of the melt mixing device 9 so that the carbon dioxide (carbon dioxide) as a compressive fluid from the tank 7 becomes 10 parts by mass with respect to 90 parts by mass of the raw material supplied per unit time. Continuously fed. That is, the feed ratio was set to the feed rate of raw materials (g / min) / [feed rate of raw materials (g / min) + feed rate of compressible fluid (g / min)] = 90/100 = 0.9. Here, the raw materials are lactide which is a ring-opening polymerizable monomer and lauryl alcohol added as an initiator. The feed amount of the raw material was 10 g / min. It supplied so that the pressure in the container of the melt mixing apparatus 9 might be set to 15 MPa. As a result, the melt mixing device 9 continuously brings the raw materials of lactide and lauryl alcohol supplied from the tanks (1, 3, 7) and the compressive fluid into contact with each other and mixes them with a screw. Was melted.
 溶融混合装置9で溶融させた各材料は、送液ポンプ10によって反応容器13に送液された。計量ポンプ12は、タンク11の有機触媒(DBU)をラクチド1質量部に対して200ppmとなるように反応容器13としての二軸混練機の原料供給孔へ供給した。
反応容器13内で、送液ポンプ10によって送液された各材料と、計量ポンプ12によって供給されたDBUを混合し、ラクチドを開環重合した。
 この有機触媒との混合後、ただちにタンク11に金属触媒(ビス(2-エチルへキサン酸)スズ(II))を充填し、計量ポンプ12が、ラクチド1質量部に対して金属触媒(ビス(2-エチルへキサン酸)スズ(II))200ppmとなるように反応容器13としての二軸混練機の原料供給孔へ供給した。
Each material melted by the melt mixing device 9 was sent to the reaction vessel 13 by the liquid feed pump 10. The metering pump 12 supplied the organic catalyst (DBU) in the tank 11 to the raw material supply hole of the biaxial kneader as the reaction vessel 13 so as to be 200 ppm with respect to 1 part by mass of lactide.
In the reaction vessel 13, each material fed by the liquid feed pump 10 and DBU supplied by the metering pump 12 were mixed, and lactide was subjected to ring-opening polymerization.
Immediately after mixing with the organic catalyst, the tank 11 is filled with a metal catalyst (bis (2-ethylhexanoic acid) tin (II)), and the metering pump 12 is charged with metal catalyst (bis ( 2-Ethylhexanoic acid) tin (II)) was supplied to the raw material supply hole of the twin-screw kneader as the reaction vessel 13 so as to be 200 ppm.
 反応容器13内で、有機触媒の存在下でラクチドを開環重合させた後、さらに金属触媒の存在下で重合させた。
 この際、溶融混合装置9の温度を150℃、反応容器13の温度を150℃に上昇させた。この場合、反応容器13内の各材料の平均滞留時間は約1,200秒とした。
 反応容器13の先端には、計量ポンプ14、及び押出口金15を取付けた。計量ポンプ14の生成物としてのポリマー(ポリ乳酸)の送り速度は200g/minであった。得られたポリマー生成物について上記の方法で物性値(Mn、Mw、ポリマー転化率、YI値、触媒残存量)を求めた。結果を表1に示す。
In the reaction vessel 13, lactide was subjected to ring-opening polymerization in the presence of an organic catalyst, and then further polymerized in the presence of a metal catalyst.
At this time, the temperature of the melt mixing device 9 was increased to 150 ° C., and the temperature of the reaction vessel 13 was increased to 150 ° C. In this case, the average residence time of each material in the reaction vessel 13 was about 1,200 seconds.
A metering pump 14 and an extrusion cap 15 were attached to the tip of the reaction vessel 13. The feed rate of the polymer (polylactic acid) as the product of the metering pump 14 was 200 g / min. With respect to the obtained polymer product, physical property values (Mn, Mw, polymer conversion rate, YI value, catalyst residual amount) were determined by the above method. The results are shown in Table 1.
(実施例2)
 図3の重合反応装置100を用いて、L-ラクチド(純度99.5wt%)の開環重合を行った。重合反応装置100の構成を示す。
タンク1,計量フィーダー2:
     日本精密社製 プランジャーポンプNP-S462
     タンク1には、開環重合性モノマーとして溶融状態のラクチドを充填した。
タンク3,計量フィーダー4:
     日本分光社製 インテリジェントHPLCポンプ (PU-2080)
     タンク3には、開始剤としてラウリルアルコールを充填した。
タンク5,計量ポンプ6:本実施例では使用しなかった。
タンク7:炭酸ガスボンベ
タンク11,計量ポンプ12:
     日本分光社製 インテリジェントHPLCポンプ (PU-2080)
     タンク11には金属触媒ビス(2-エチルへキサン酸)スズを充填した。
溶融混合装置9:互いに噛み合うスクリュウを取付けた二軸攪拌装置
        シリンダー内径 30mm
        シリンダー設定温度 150℃
        二軸同方向回転
        回転速度 30rpm
反応容器13 :二軸混練機
        シリンダー内径 40mm
        シリンダー設定温度 原料供給部150℃ 先端部80℃
        二軸同方向回転
        回転速度 60rpm
(Example 2)
Ring-opening polymerization of L-lactide (purity 99.5 wt%) was performed using the polymerization reactor 100 of FIG. The structure of the polymerization reaction apparatus 100 is shown.
Tank 1, weighing feeder 2:
Plunger pump NP-S462 made by Nippon Seimitsu
Tank 1 was filled with molten lactide as a ring-opening polymerizable monomer.
Tank 3, weighing feeder 4:
Intelligent spectrometer pump (PU-2080) manufactured by JASCO
Tank 3 was filled with lauryl alcohol as an initiator.
Tank 5, metering pump 6: Not used in this example.
Tank 7: Carbon dioxide cylinder tank 11, metering pump 12:
Intelligent spectrometer pump (PU-2080) manufactured by JASCO
Tank 11 was filled with metal catalyst bis (2-ethylhexanoate) tin.
Melt mixing device 9: biaxial stirring device with screws that mesh with each other Cylinder inner diameter 30 mm
Cylinder set temperature 150 ℃
Two shafts rotating in the same direction Rotating speed 30rpm
Reaction vessel 13: Biaxial kneader Cylinder inner diameter 40mm
Cylinder set temperature Raw material supply part 150 ° C Tip part 80 ° C
Two shafts rotating in the same direction Rotation speed 60rpm
 溶融混合装置9及び反応容器13を上記の設定条件で作動させた。計量フィーダー2は、タンク1内の溶融状態のラクチドを溶融混合装置9の容器内に定量供給した。計量フィーダー4は、タンク3内のラウリルアルコールを、ラクチドの供給量1モルに対し0.07モルとなるように溶融混合装置9の容器内に定量供給した。計量ポンプ8は、タンク7より圧縮性流体としての炭酸ガス(二酸化炭素)を単位時間当たりに供給される原材料90質量部に対して10質量部となるように、溶融混合装置9の配管内に連続的に供給した。すなわち、フィード比=原材料の供給速度(g/min)/〔原材料の供給速度(g/min)+圧縮性流体の供給速度(g/min)〕=90/100=0.9に設定した。なお、ここでの原材料とは、開環重合性モノマーであるラクチド及び開始剤として加えているラウリルアルコールである。なお、原材料のフィード量は10g/分であった。溶融混合装置9の容器内の圧力が15MPaとなるように供給した。これにより、溶融混合装置9は、各タンク(1,3,7)から供給されたラクチド及びラウリルアルコールの各原材料と圧縮性流体とを連続的に接触させるとともに、スクリュウで混合して、各原材料を溶融させた。 The melt mixing device 9 and the reaction vessel 13 were operated under the above set conditions. The weighing feeder 2 quantitatively supplied the molten lactide in the tank 1 into the container of the melt mixing device 9. The measuring feeder 4 quantitatively supplied the lauryl alcohol in the tank 3 into the container of the melt mixing device 9 so as to be 0.07 mol per mol of lactide supplied. The metering pump 8 is placed in the pipe of the melt mixing device 9 so that the carbon dioxide (carbon dioxide) as a compressive fluid from the tank 7 becomes 10 parts by mass with respect to 90 parts by mass of the raw material supplied per unit time. Continuously fed. That is, the feed ratio was set to the feed rate of raw materials (g / min) / [feed rate of raw materials (g / min) + feed rate of compressible fluid (g / min)] = 90/100 = 0.9. Here, the raw materials are lactide which is a ring-opening polymerizable monomer and lauryl alcohol added as an initiator. The feed amount of the raw material was 10 g / min. It supplied so that the pressure in the container of the melt mixing apparatus 9 might be set to 15 MPa. As a result, the melt mixing device 9 continuously brings the raw materials of lactide and lauryl alcohol supplied from the tanks (1, 3, 7) and the compressive fluid into contact with each other and mixes them with a screw. Was melted.
 溶融混合装置9で溶融させた各材料は、送液ポンプ10によって反応容器13に送液された。計量ポンプ12は、タンク11の金属触媒(ビス(2-エチルへキサン酸)スズをラクチド1質量部に対して200ppmとなるように反応容器13としての二軸混練機の原料供給孔へ供給した。
 反応容器13内で、送液ポンプ10によって送液された各材料と、計量ポンプ12によって供給されたビス(2-エチルへキサン酸)スズを混合し、ラクチドを開環重合した。
 この金属触媒との混合後、ただちにタンク11にDBU(有機触媒)を充填し、計量ポンプ12がラクチド1質量部に対してDBU200ppmとなるように反応容器13としての二軸混練機の原料供給孔へ供給した。
Each material melted by the melt mixing device 9 was sent to the reaction vessel 13 by the liquid feed pump 10. The metering pump 12 supplied the metal catalyst (bis (2-ethylhexanoic acid) tin) in the tank 11 to the raw material supply hole of the twin-screw kneader as the reaction vessel 13 so as to be 200 ppm with respect to 1 part by mass of lactide. .
In the reaction vessel 13, each material fed by the liquid feeding pump 10 and bis (2-ethylhexanoic acid) tin supplied by the metering pump 12 were mixed to perform ring-opening polymerization of lactide.
Immediately after mixing with the metal catalyst, the tank 11 is filled with DBU (organic catalyst), and the feed pump of the biaxial kneader as the reaction vessel 13 so that the metering pump 12 becomes 200 ppm of DBU with respect to 1 part by mass of lactide. Supplied.
 反応容器13内で、金属触媒の存在下でラクチドを開環重合させた後、さらに有機触媒の存在下で重合させた。
 この際、溶融混合装置9の温度を100℃、反応容器13の温度を100℃に低下させた。この場合、反応容器13内の各材料の平均滞留時間は約1,200秒とした。
 反応容器13の先端には、計量ポンプ14、及び押出口金15を取付けた。計量ポンプ14の生成物としてのポリマー(ポリ乳酸)の送り速度は200g/minであった。得られたポリマー生成物について上記の方法で物性値(Mn、Mw、ポリマー転化率、YI値、触媒残存量)を求めた。結果を表1に示す。
In the reaction vessel 13, lactide was subjected to ring-opening polymerization in the presence of a metal catalyst, and then further polymerized in the presence of an organic catalyst.
At this time, the temperature of the melt mixing device 9 was lowered to 100 ° C., and the temperature of the reaction vessel 13 was lowered to 100 ° C. In this case, the average residence time of each material in the reaction vessel 13 was about 1,200 seconds.
A metering pump 14 and an extrusion cap 15 were attached to the tip of the reaction vessel 13. The feed rate of the polymer (polylactic acid) as the product of the metering pump 14 was 200 g / min. With respect to the obtained polymer product, physical property values (Mn, Mw, polymer conversion rate, YI value, catalyst residual amount) were determined by the above method. The results are shown in Table 1.
(実施例3)~(実施例5)
 実施例1において、使用する触媒種をDBUのかわりに表1に示す材料に変更した以外は、全て(実施例1)と同様にして、実験を行った。得られたポリマー生成物について上記の方法で物性値(Mn、Mw、ポリマー転化率、YI値、触媒残存量)を求めた。結果を表1に示す。
(Example 3) to (Example 5)
Experiments were conducted in the same manner as in (Example 1) except that the catalyst type used in Example 1 was changed to the material shown in Table 1 instead of DBU. With respect to the obtained polymer product, physical property values (Mn, Mw, polymer conversion rate, YI value, catalyst residual amount) were determined by the above method. The results are shown in Table 1.
(実施例6)~(実施例8)
 実施例2において、使用する触媒種をDBUのかわりに表1に示す材料に変更した以外は、全て(実施例2)と同様にして、実験を行った。得られたポリマー生成物について上記の方法で物性値(Mn、Mw、ポリマー転化率、YI値、触媒残存量)を求めた。結果を表1に示す。
(Example 6) to (Example 8)
In Example 2, the experiment was performed in the same manner as in (Example 2) except that the catalyst type used was changed to the material shown in Table 1 instead of DBU. With respect to the obtained polymer product, physical property values (Mn, Mw, polymer conversion rate, YI value, catalyst residual amount) were determined by the above method. The results are shown in Table 1.
(実施例9)
 実施例1において、添加するラウリルアルコールの量を表1に示すように変更した以外は、全て(実施例1)と同様にして、実験を行った。得られたポリマー生成物について上記の方法で物性値(Mn、Mw、ポリマー転化率、YI値、触媒残存量)を求めた。結果を表1に示す。
Example 9
Experiments were conducted in the same manner as in (Example 1) except that the amount of lauryl alcohol added in Example 1 was changed as shown in Table 1. With respect to the obtained polymer product, physical property values (Mn, Mw, polymer conversion rate, YI value, catalyst residual amount) were determined by the above method. The results are shown in Table 1.
(実施例10)~(実施例23)
 実施例1において、使用するモノマーの種類を表1~3に示すように変更した以外は、全て(実施例1)と同様にして、実験を行った。なお、2種類のモノマーの組み合わせ(実施例16)~(実施例23)については、それぞれのモノマーをひとつずつ合成し、図7の反応容器100に投入した後、反応容器41にて共重合を行った。得られたポリマー生成物について上記の方法で物性値(Mn、Mw、ポリマー転化率、YI値、触媒残存量)を求めた。実施例10~18の結果を表2に、実施例19~23の結果を表3に示す。
(Example 10) to (Example 23)
Experiments were conducted in the same manner as in (Example 1) except that the types of monomers used in Example 1 were changed as shown in Tables 1 to 3. For the combinations of the two types of monomers (Example 16) to (Example 23), each of the monomers was synthesized one by one and charged into the reaction vessel 100 of FIG. went. With respect to the obtained polymer product, physical property values (Mn, Mw, polymer conversion rate, YI value, catalyst residual amount) were determined by the above method. Table 2 shows the results of Examples 10 to 18, and Table 3 shows the results of Examples 19 to 23.
(実施例24)
 実施例1において、添加する触媒の順番を分けずに同時に混合するよう変更した以外は、全て(実施例1)と同様にして、実験を行った。得られたポリマー生成物について上記の方法で物性値(Mn、Mw、ポリマー転化率、YI値、触媒残存量)を求めた。結果を表3に示す。
(Example 24)
The experiment was performed in the same manner as in (Example 1) except that the order of the catalyst to be added was changed so as to be mixed at the same time in Example 1. With respect to the obtained polymer product, physical property values (Mn, Mw, polymer conversion rate, YI value, catalyst residual amount) were determined by the above method. The results are shown in Table 3.
(実施例25)
 実施例1において、添加する開始剤の量をラクチド1モルに対し0.01モルとした以外は、全て(実施例1)と同様にして、実験を行った。得られたポリマー生成物について上記の方法で物性値(Mn、Mw、ポリマー転化率、YI値、触媒残存量)を求めた。結果を表3に示す。
(Example 25)
In Example 1, the experiment was performed in the same manner as in (Example 1) except that the amount of the initiator to be added was 0.01 mol with respect to 1 mol of lactide. With respect to the obtained polymer product, physical property values (Mn, Mw, polymer conversion rate, YI value, catalyst residual amount) were determined by the above method. The results are shown in Table 3.
(実施例26)
 実施例1において、図3の反応容器13の管の壁面に固体触媒として予め目開き100μmのメッシュを用い篩分けした酸化錫(製造会社名:Aldrich cat、no24,464-3. Tin(ii)oxide、99-%)を1g均一に塗布し、金属触媒(ビス(2-エチルへキサン酸)スズ(II))を使用しなかったこと以外は、全て(実施例1)と同様にして実験を行った。得られたポリマー生成物について上記の方法で物性値(Mn、Mw、ポリマー転化率、YI値、触媒残存量)を求めた。結果を表3に示す。
(Example 26)
In Example 1, tin oxide (manufacturer name: Aldrich cat, no24, 464-3. Tin (ii)) which was previously sieved on the wall of the tube of the reaction vessel 13 in FIG. Oxide, 99-%) was applied uniformly to 1 g, and the same experiment as in Example 1 was conducted except that the metal catalyst (bis (2-ethylhexanoic acid) tin (II)) was not used. Went. With respect to the obtained polymer product, physical property values (Mn, Mw, polymer conversion rate, YI value, catalyst residual amount) were determined by the above method. The results are shown in Table 3.
(実施例27)
 図5の重合反応装置400を用いて、L-ラクチドの開環重合を行った。重合反応装置400の構成を示す。
タンク407  :炭酸ガスボンベ
添加ポット411:1/4インチのSUS316の配管をバルブ423,424に挟んで        添加ポットとして使用した。
        予めDBUをラクチド1質量部に対し200ppmとなるよう充填した。
反応容器413 :100mLのSUS316製の耐圧容器
        予め開環重合性モノマーとして液体の状態のラクチドと、
        開始剤としてのラウリルアルコールと、の混合物(モル比100/3)
        108gを充填した。
(Example 27)
Ring-opening polymerization of L-lactide was performed using the polymerization reaction apparatus 400 of FIG. The structure of the polymerization reaction apparatus 400 is shown.
Tank 407: Carbon dioxide cylinder addition pot 411: A 1/4 inch SUS316 pipe was sandwiched between valves 423 and 424 and used as an addition pot.
DBU was previously filled to 200 ppm with respect to 1 part by mass of lactide.
Reaction vessel 413: 100 mL pressure vessel made of SUS316 Preliminarily lactide in a liquid state as a ring-opening polymerizable monomer,
Mixture with lauryl alcohol as initiator (molar ratio 100/3)
108 g was charged.
 計量ポンプ408を作動させ、バルブ(421,422)を開放することにより、タンク407に貯蔵された二酸化炭素を、添加ポット411を経由せずに反応容器413に供給した。反応容器413内の空間を二酸化炭素で置換した後、反応容器413内の圧力が15MPaになるまで二酸化炭素を充填した。反応容器413内を100℃まで昇温した後、バルブ(423,424)を開き、添加ポット411内のDBUを、反応容器413内に供給した。その後、反応容器413内で、1時間ラクチドの重合反応を行った。
この間に、添加ポット411に金属触媒(ビス(2-エチルへキサン酸)スズ(II))をラクチド1質量部に対し200ppmとなるように仕込んでおいた。
By operating the metering pump 408 and opening the valves (421, 422), the carbon dioxide stored in the tank 407 was supplied to the reaction vessel 413 without going through the addition pot 411. After replacing the space in the reaction vessel 413 with carbon dioxide, carbon dioxide was charged until the pressure in the reaction vessel 413 reached 15 MPa. After the temperature in the reaction vessel 413 was raised to 100 ° C., the valve (423, 424) was opened, and the DBU in the addition pot 411 was supplied into the reaction vessel 413. Thereafter, a polymerization reaction of lactide was performed in the reaction vessel 413 for 1 hour.
During this time, a metal catalyst (bis (2-ethylhexanoic acid) tin (II)) was charged in the addition pot 411 so that the concentration was 200 ppm with respect to 1 part by mass of lactide.
 反応終了後、計量ポンプ408を作動させ、バルブ(421,422)を開放することにより、タンク407に貯蔵された二酸化炭素を、添加ポット411を経由せずに反応容器413に供給した。反応容器413内の空間を二酸化炭素で置換した後、反応容器413内の圧力が15MPaになるまで二酸化炭素を充填した。反応容器413内を150℃まで昇温した後、バルブ(423,424)を開き、添加ポット411内の金属触媒(ビス(2-エチルへキサン酸)スズ(II))を反応容器413内に供給した。その後、反応容器413内で、1時間ラクチドの重合反応を行った。
 反応終了後、バルブ425を開放し、徐々に反応容器413内の温度、圧力を常温、常圧まで戻し、3時間後に、反応容器413内のポリマー生成物(ポリ乳酸)を取り出した。
After completion of the reaction, the metering pump 408 was operated and the valves (421, 422) were opened to supply the carbon dioxide stored in the tank 407 to the reaction vessel 413 without going through the addition pot 411. After replacing the space in the reaction vessel 413 with carbon dioxide, carbon dioxide was charged until the pressure in the reaction vessel 413 reached 15 MPa. After raising the temperature in the reaction vessel 413 to 150 ° C., the valve (423, 424) is opened, and the metal catalyst (bis (2-ethylhexanoic acid) tin (II)) in the addition pot 411 is placed in the reaction vessel 413. Supplied. Thereafter, a polymerization reaction of lactide was performed in the reaction vessel 413 for 1 hour.
After completion of the reaction, the valve 425 was opened, the temperature and pressure in the reaction vessel 413 were gradually returned to room temperature and normal pressure, and after 3 hours, the polymer product (polylactic acid) in the reaction vessel 413 was taken out.
 超臨界二酸化炭素の空間容積 :100mL-108g/1.27(原材料の比重)=15mL
 超臨界二酸化炭素の質量 :15mL×0.303(110℃、15MPaでの二酸化炭素の比重)=4.5
 混合比 :108g/(108g+4.5g)=0.96
Space volume of supercritical carbon dioxide: 100mL-108g / 1.27 (specific gravity of raw materials) = 15mL
Mass of supercritical carbon dioxide: 15 mL × 0.303 (specific gravity of carbon dioxide at 110 ° C. and 15 MPa) = 4.5
Mixing ratio: 108 g / (108 g + 4.5 g) = 0.96
 得られたポリマー生成物について上記の方法で物性値(Mn、Mw、ポリマー転化率、YI値、触媒残存量)を求めた。結果を表4に示す。 The physical properties (Mn, Mw, polymer conversion rate, YI value, catalyst residual amount) of the obtained polymer product were determined by the above method. The results are shown in Table 4.
(実施例28)
 図5の重合反応装置400を用いて、L-ラクチドの開環重合を行った。重合反応装置400の構成を示す。
タンク407   :炭酸ガスボンベ
添加ポット411:1/4インチのSUS316の配管をバルブ423,424に挟んで         添加ポットとして使用した。
         予め金属触媒(ビス(2-エチルへキサン酸)スズ(II))をラク         チド1質量部に対し200ppmとなるよう充填した。
反応容器413 :100mlのSUS316製の耐圧容器
        予め開環重合性モノマーとして液体の状態のラクチドと、
        開始剤としてのラウリルアルコールと、の混合物(モル比100/3)
        108gを充填した。
(Example 28)
Ring-opening polymerization of L-lactide was performed using the polymerization reaction apparatus 400 of FIG. The structure of the polymerization reaction apparatus 400 is shown.
Tank 407: Carbon dioxide cylinder addition pot 411: A 1/4 inch SUS316 pipe was sandwiched between valves 423 and 424 and used as an addition pot.
In advance, a metal catalyst (bis (2-ethylhexanoic acid) tin (II)) was charged to 200 ppm with respect to 1 part by mass of lactide.
Reaction vessel 413: 100 ml pressure vessel made of SUS316 Preliminarily liquid lactide as a ring-opening polymerizable monomer,
Mixture with lauryl alcohol as initiator (molar ratio 100/3)
108 g was charged.
 計量ポンプ408を作動させ、バルブ(421,422)を開放することにより、タンク407に貯蔵された二酸化炭素を、添加ポット411を経由せずに反応容器413に供給した。反応容器413内の空間を二酸化炭素で置換した後、反応容器413内の圧力が15MPaになるまで二酸化炭素を充填した。反応容器413内を150℃まで昇温した後、バルブ(423,424)を開き、添加ポット411内の金属触媒(ビス(2-エチルへキサン酸)スズ(II))を、反応容器413内に供給した。その後、反応容器413内で、1時間ラクチドの重合反応を行った。 The carbon dioxide stored in the tank 407 was supplied to the reaction vessel 413 without going through the addition pot 411 by operating the metering pump 408 and opening the valves (421, 422). After replacing the space in the reaction vessel 413 with carbon dioxide, carbon dioxide was charged until the pressure in the reaction vessel 413 reached 15 MPa. After raising the temperature in the reaction vessel 413 to 150 ° C., the valve (423, 424) is opened, and the metal catalyst (bis (2-ethylhexanoic acid) tin (II)) in the addition pot 411 is placed in the reaction vessel 413. Supplied to. Thereafter, a polymerization reaction of lactide was performed in the reaction vessel 413 for 1 hour.
 この間に、添加ポット411にDBUをラクチド1質量部に対し200ppmとなるように仕込んでおいた。
 反応終了後、計量ポンプ408を作動させ、バルブ(421,422)を開放することにより、タンク407に貯蔵された二酸化炭素を、添加ポット411を経由せずに反応容器413に供給した。反応容器413内の空間を二酸化炭素で置換した後、反応容器413内の圧力が15MPaになるまで二酸化炭素を充填した。反応容器413内を100℃まで降温した後、バルブ(423,424)を開き、添加ポット411内のDBUを反応容器413内に供給した。その後、反応容器413内で、1時間ラクチドの重合反応を行った。
 反応終了後、バルブ425を開放し、徐々に反応容器413内の温度、圧力を常温、常圧まで戻し、3時間後に、反応容器413内のポリマー生成物(ポリ乳酸)を取り出した。 
During this time, DBU was charged in the addition pot 411 so that the amount became 200 ppm with respect to 1 part by mass of lactide.
After completion of the reaction, the metering pump 408 was operated and the valves (421, 422) were opened to supply the carbon dioxide stored in the tank 407 to the reaction vessel 413 without going through the addition pot 411. After replacing the space in the reaction vessel 413 with carbon dioxide, carbon dioxide was charged until the pressure in the reaction vessel 413 reached 15 MPa. After the temperature in the reaction vessel 413 was lowered to 100 ° C., the valve (423, 424) was opened, and the DBU in the addition pot 411 was supplied into the reaction vessel 413. Thereafter, a polymerization reaction of lactide was performed in the reaction vessel 413 for 1 hour.
After completion of the reaction, the valve 425 was opened, the temperature and pressure in the reaction vessel 413 were gradually returned to room temperature and normal pressure, and after 3 hours, the polymer product (polylactic acid) in the reaction vessel 413 was taken out.
 超臨界二酸化炭素の空間容積 :100mL-108g/1.27(原材料の比重)=15mL
 超臨界二酸化炭素の質量 :15mL×0.303(110℃、15MPaでの二酸化炭素の比重)=4.5
 混合比 :108g/(108g+4.5g)=0.96
Space volume of supercritical carbon dioxide: 100mL-108g / 1.27 (specific gravity of raw materials) = 15mL
Mass of supercritical carbon dioxide: 15 mL × 0.303 (specific gravity of carbon dioxide at 110 ° C. and 15 MPa) = 4.5
Mixing ratio: 108 g / (108 g + 4.5 g) = 0.96
 得られたポリマー生成物について上記の方法で物性値(Mn、Mw、ポリマー転化率、YI値、触媒残存量)を求めた。結果を表4に示す。 The physical properties (Mn, Mw, polymer conversion rate, YI value, catalyst residual amount) of the obtained polymer product were determined by the above method. The results are shown in Table 4.
(実施例29)
 実施例27において、以下の触媒を抽出する操作を、触媒の添加後に行った以外は、全て(実施例27)と同様にして、実験を行った。
<触媒抽出工程>
 図5の反応装置413内にて、得られたポリマー中間体を100℃で保持した状態で、計量ポンプ408にて超臨界二酸化炭素(100℃、10MPa、332kg/m)、2mLを30分間で流通させ、バルブ432から排出を行い、系内を10MPaに保持するように操作を行った。ポリマー中間体は、圧縮性流体と接触し、ポリマー中間体に含まれる未反応モノマー及び触媒は圧縮性流体に溶解され、バルブ432を通して除去される。前記超臨界二酸化炭素の流通の終了後に、反応容器内の温度を150℃に上昇させ、(実施例27)と同様に金属触媒を添加して反応を再度行い、反応の終了後、常温、常圧へ戻し、反応容器内のポリマー生成物(ポリ乳酸)をバルブ425より取り出し、ポリマー生成物を得た。
(Example 29)
In Example 27, an experiment was performed in the same manner as in (Example 27) except that the following catalyst extraction operation was performed after the addition of the catalyst.
<Catalyst extraction process>
In the reaction apparatus 413 of FIG. 5, supercritical carbon dioxide (100 ° C., 10 MPa, 332 kg / m 3 ) and 2 mL for 30 minutes with a metering pump 408 while the obtained polymer intermediate is kept at 100 ° C. And was discharged from the valve 432, and the operation was performed so as to keep the system at 10 MPa. The polymer intermediate comes into contact with the compressive fluid, and unreacted monomer and catalyst contained in the polymer intermediate are dissolved in the compressible fluid and removed through valve 432. After the supercritical carbon dioxide circulation is completed, the temperature in the reaction vessel is increased to 150 ° C., and the reaction is performed again by adding a metal catalyst in the same manner as in (Example 27). The pressure was restored, and the polymer product (polylactic acid) in the reaction vessel was taken out from the valve 425 to obtain a polymer product.
 得られたポリマー生成物について上記の方法で物性値(Mn、Mw、ポリマー転化率、YI値、触媒残存量)を求めた。結果を表4に示す。 The physical properties (Mn, Mw, polymer conversion rate, YI value, catalyst residual amount) of the obtained polymer product were determined by the above method. The results are shown in Table 4.
(実施例30)
 実施例29において、抽出工程にて、超臨界二酸化炭素の流通させる時間を60分とした以外は、全て(実施例29)と同様にして、実験を行った。
 得られたポリマー生成物について上記の方法で物性値(Mn、Mw、ポリマー転化率、YI値、触媒残存量)を求めた。結果を表4に示す。
(Example 30)
In Example 29, the experiment was performed in the same manner as in (Example 29) except that the time for circulating supercritical carbon dioxide was 60 minutes in the extraction step.
With respect to the obtained polymer product, physical property values (Mn, Mw, polymer conversion rate, YI value, catalyst residual amount) were determined by the above method. The results are shown in Table 4.
(比較例1)、(比較例3)、(比較例5)
 金属触媒を使用せず、温度の設定を表5のようにした以外はすべて(実施例1)と同様にして、実験を行った。
 得られたポリマー生成物について上記の方法で物性値(Mn、Mw、ポリマー転化率、YI値、触媒残存量)を求めた。結果を表5に示す。
(Comparative Example 1), (Comparative Example 3), (Comparative Example 5)
The experiment was performed in the same manner as in Example 1 except that no metal catalyst was used and the temperature was set as shown in Table 5.
With respect to the obtained polymer product, physical property values (Mn, Mw, polymer conversion rate, YI value, catalyst residual amount) were determined by the above method. The results are shown in Table 5.
(比較例2)、(比較例4)、(比較例6)
 有機触媒を使用せず、温度の設定を表5のようにした以外はすべて(実施例2)と同様にして、実験を行った。
 得られたポリマー生成物について上記の方法で物性値(Mn、Mw、ポリマー転化率、YI値、触媒残存量)を求めた。結果を表5に示す。
(Comparative Example 2), (Comparative Example 4), (Comparative Example 6)
The experiment was conducted in the same manner as in Example 2 except that no organic catalyst was used and the temperature was set as shown in Table 5.
With respect to the obtained polymer product, physical property values (Mn, Mw, polymer conversion rate, YI value, catalyst residual amount) were determined by the above method. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000008
 
Figure JPOXMLDOC01-appb-T000008
 
Figure JPOXMLDOC01-appb-T000009
 
Figure JPOXMLDOC01-appb-T000009
 
 本発明の態様は、例えば、以下のとおりである。
<1> 開環重合性モノマーを含有する原材料と、圧縮性流体とを接触させて、前記開環重合性モノマーを開環重合させる開環重合工程を含み、
 前記開環重合工程において、金属原子を含有しない有機触媒と、金属原子を含有する触媒とを用いることを特徴とするポリマーの製造方法である。
<2> 開環重合性モノマーを含有する原材料と、圧縮性流体とを下式の混合比で接触させる前記<1>に記載のポリマーの製造方法である。
Figure JPOXMLDOC01-appb-M000010
<3> 開環重合性モノマーを含有する原材料と、圧縮性流体とを連続的に接触させる前記<1>に記載のポリマーの製造方法である。
<4> 開環重合性モノマーを含有する原材料と、圧縮性流体とを下式の条件で連続的に供給し接触させる前記<3>に記載のポリマーの製造方法である。
Figure JPOXMLDOC01-appb-M000011
 
<5> 開環重合性モノマーに対する、金属原子を含有しない有機触媒と、金属原子を含有する触媒との合計使用量が、50ppm~500ppmである前記<1>から<4>のいずれかに記載のポリマーの製造方法である。
<6> 金属原子を含有しない有機触媒と、金属原子を含有する触媒の使用量の質量比率(有機触媒:金属触媒)が50:50~99:1である前記<1>から<5>のいずれかに記載のポリマーの製造方法である。
<7> 開環重合工程が、金属原子を含有しない有機触媒の存在下で、開環重合性モノマーを開環重合させた後、金属原子を含有する触媒の存在下で、さらに重合させるものである前記<1>から<6>のいずれかに記載のポリマーの製造方法である。
<8> 開環重合工程が、金属原子を含有しない有機触媒及び金属原子を含有する触媒の少なくともいずれかの触媒が保持された反応容器内で行われる前記<1>から<7>のいずれかに記載のポリマーの製造方法である。
<9> 圧縮性流体が、二酸化炭素を含有する前記<1>から<8>のいずれかに記載のポリマーの製造方法である。
Aspects of the present invention are as follows, for example.
<1> comprising a ring-opening polymerization step of bringing the ring-opening polymerizable monomer into contact with a raw material containing a ring-opening polymerizable monomer and a compressive fluid;
In the ring-opening polymerization step, an organic catalyst containing no metal atom and a catalyst containing a metal atom are used.
<2> The method for producing a polymer according to <1>, wherein the raw material containing the ring-opening polymerizable monomer is brought into contact with the compressive fluid at a mixing ratio of the following formula.
Figure JPOXMLDOC01-appb-M000010
<3> The method for producing a polymer according to <1>, wherein the raw material containing the ring-opening polymerizable monomer is continuously brought into contact with the compressive fluid.
<4> The method for producing a polymer according to <3>, wherein the raw material containing the ring-opening polymerizable monomer and the compressive fluid are continuously supplied and contacted under the following conditions.
Figure JPOXMLDOC01-appb-M000011

<5> Any one of <1> to <4>, wherein the total amount of the organic catalyst containing no metal atom and the catalyst containing the metal atom is 50 ppm to 500 ppm based on the ring-opening polymerizable monomer This is a method for producing the polymer.
<6> From the above <1> to <5>, wherein the mass ratio (organic catalyst: metal catalyst) of the organic catalyst containing no metal atom and the catalyst containing the metal atom is 50:50 to 99: 1 It is a manufacturing method of the polymer in any one.
<7> In the ring-opening polymerization step, the ring-opening polymerizable monomer is subjected to ring-opening polymerization in the presence of an organic catalyst not containing a metal atom, and then further polymerized in the presence of a catalyst containing a metal atom. A method for producing a polymer according to any one of <1> to <6>.
<8> Any one of <1> to <7>, wherein the ring-opening polymerization step is performed in a reaction vessel in which at least one of an organic catalyst containing no metal atom and a catalyst containing a metal atom is held. A method for producing the polymer described in 1. above.
<9> The method for producing a polymer according to any one of <1> to <8>, wherein the compressive fluid contains carbon dioxide.
1、3、5、7、11、21、27 タンク
2、4、22 計量フィーダー
6、8、12、14、28 計量ポンプ
9、29 溶融混合装置
9a 導入口(圧縮性流体導入口の一例)
9b 導入口(モノマー導入口の一例)
10 送液ポンプ
13、33 反応容器
13a 導入口
13b 導入口(触媒導入口の一例)
15 押出口金(ポリマー排出口の一例)
16 圧調整バルブ
30、31 配管
33a、41a ポリマー導入口
34 圧調整バルブ(複合体排出口の一例)
42 圧調整バルブ(複合体排出口の一例)
41 混合装置(複合体連続製造装置の一例)
100 重合反応装置
100a 供給装置
100b 重合反応装置本体(ポリマー連続製造装置の一例)
200、300 複合体製造システム
407 タンク
408 計量ポンプ
411 添加ポット
413 反応容器
421、422、423、424、425、432 バルブ
P ポリマー生成物
PP 複合体生成物
 
1, 3, 5, 7, 11, 21, 27 Tanks 2, 4, 22 Metering feeders 6, 8, 12, 14, 28 Metering pumps 9, 29 Melting and mixing device 9a Inlet (an example of compressive fluid inlet)
9b Inlet (Example of monomer inlet)
10 Liquid feed pumps 13, 33 Reaction vessel 13a Inlet 13b Inlet (an example of a catalyst inlet)
15 Extrusion cap (Example of polymer discharge port)
16 Pressure adjusting valve 30, 31 Piping 33a, 41a Polymer inlet 34 Pressure adjusting valve (an example of a composite outlet)
42 Pressure adjustment valve (an example of a composite outlet)
41 Mixing device (an example of a composite continuous manufacturing device)
100 Polymerization Reaction Device 100a Supply Device 100b Polymerization Reaction Device Body (Example of Continuous Polymer Production Device)
200, 300 Composite production system 407 Tank 408 Metering pump 411 Addition pot 413 Reaction vessel 421, 422, 423, 424, 425, 432 Valve P Polymer product PP Complex product

Claims (9)

  1.  開環重合性モノマーを含有する原材料と、圧縮性流体とを接触させて、前記開環重合性モノマーを開環重合させる開環重合工程を含み、
     前記開環重合工程において、金属原子を含有しない有機触媒と、金属原子を含有する触媒とを用いることを特徴とするポリマーの製造方法。
    A ring-opening polymerization step of bringing the ring-opening polymerizable monomer into contact with a compressive fluid and bringing the ring-opening polymerizable monomer into contact with a raw material containing the ring-opening polymerizable monomer;
    In the ring-opening polymerization step, an organic catalyst containing no metal atom and a catalyst containing a metal atom are used.
  2.  開環重合性モノマーを含有する原材料と、圧縮性流体とを下式の混合比で接触させる請求項1に記載のポリマーの製造方法。
    Figure JPOXMLDOC01-appb-M000001
    The method for producing a polymer according to claim 1, wherein the raw material containing the ring-opening polymerizable monomer and the compressive fluid are contacted at a mixing ratio of the following formula.
    Figure JPOXMLDOC01-appb-M000001
  3.  開環重合性モノマーを含有する原材料と、圧縮性流体とを連続的に接触させる請求項1に記載のポリマーの製造方法。 The method for producing a polymer according to claim 1, wherein the raw material containing the ring-opening polymerizable monomer and the compressive fluid are continuously contacted.
  4.  開環重合性モノマーを含有する原材料と、圧縮性流体とを下式の条件で連続的に供給し接触させる請求項3に記載のポリマーの製造方法。
    Figure JPOXMLDOC01-appb-M000002
     
    The method for producing a polymer according to claim 3, wherein the raw material containing the ring-opening polymerizable monomer and the compressive fluid are continuously supplied and contacted under the following conditions.
    Figure JPOXMLDOC01-appb-M000002
  5.  開環重合性モノマーに対する、金属原子を含有しない有機触媒と、金属原子を含有する触媒との合計使用量が、50ppm~500ppmである請求項1から4のいずれかに記載のポリマーの製造方法。 The method for producing a polymer according to any one of claims 1 to 4, wherein the total amount of the organic catalyst containing no metal atom and the catalyst containing the metal atom based on the ring-opening polymerizable monomer is 50 ppm to 500 ppm.
  6.  金属原子を含有しない有機触媒と、金属原子を含有する触媒の使用量の質量比率(有機触媒:金属触媒)が50:50~99:1である請求項1から5のいずれかに記載のポリマーの製造方法。 The polymer according to any one of claims 1 to 5, wherein the mass ratio of the amount of the organic catalyst not containing a metal atom to the amount of the catalyst containing the metal atom (organic catalyst: metal catalyst) is 50:50 to 99: 1. Manufacturing method.
  7.  開環重合工程が、金属原子を含有しない有機触媒の存在下で、開環重合性モノマーを開環重合させた後、金属原子を含有する触媒の存在下で、さらに重合させるものである請求項1から6のいずれかに記載のポリマーの製造方法。 The ring-opening polymerization step is to perform ring-opening polymerization of a ring-opening polymerizable monomer in the presence of an organic catalyst not containing a metal atom, and then further polymerize in the presence of a catalyst containing a metal atom. A method for producing the polymer according to any one of 1 to 6.
  8.  開環重合工程が、金属原子を含有しない有機触媒及び金属原子を含有する触媒の少なくともいずれかの触媒が保持された反応容器内で行われる請求項1から7のいずれかに記載のポリマーの製造方法。 The polymer production according to any one of claims 1 to 7, wherein the ring-opening polymerization step is performed in a reaction vessel in which at least one of an organic catalyst containing no metal atom and a catalyst containing a metal atom is held. Method.
  9.  圧縮性流体が、二酸化炭素を含有する請求項1から8のいずれかに記載のポリマーの製造方法。 The method for producing a polymer according to any one of claims 1 to 8, wherein the compressive fluid contains carbon dioxide.
PCT/JP2015/055024 2014-03-14 2015-02-23 Method for producing polymer WO2015137103A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014052743 2014-03-14
JP2014-052743 2014-03-14

Publications (1)

Publication Number Publication Date
WO2015137103A1 true WO2015137103A1 (en) 2015-09-17

Family

ID=54071552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055024 WO2015137103A1 (en) 2014-03-14 2015-02-23 Method for producing polymer

Country Status (1)

Country Link
WO (1) WO2015137103A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013189620A (en) * 2011-07-29 2013-09-26 Ricoh Co Ltd Method of manufacturing polymer, polymer continuous manufacturing apparatus, composite continuous manufacturing apparatus, and polymer product
JP2013189616A (en) * 2012-02-14 2013-09-26 Ricoh Co Ltd Method of manufacturing polymer and polymer product
JP2014040560A (en) * 2012-02-14 2014-03-06 Ricoh Co Ltd Method for manufacturing a polymer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013189620A (en) * 2011-07-29 2013-09-26 Ricoh Co Ltd Method of manufacturing polymer, polymer continuous manufacturing apparatus, composite continuous manufacturing apparatus, and polymer product
JP2013189616A (en) * 2012-02-14 2013-09-26 Ricoh Co Ltd Method of manufacturing polymer and polymer product
JP2014040560A (en) * 2012-02-14 2014-03-06 Ricoh Co Ltd Method for manufacturing a polymer

Similar Documents

Publication Publication Date Title
JP6024299B2 (en) Polymer production method and polymer continuous production apparatus
JP2013216851A (en) Method for producing polymer, apparatus for continuously producing polymer, apparatus for continuously producing composite, and polymer product
JP5998676B2 (en) Method for producing polymer
JP6003411B2 (en) Method for producing polymer
JP6011183B2 (en) Polymer composition
JP5182439B1 (en) Method for producing polymer
JP2014145015A (en) Method for producing polymer, and polymer product
JP2014159553A (en) Polymer product, manufacturing method thereof and polymer product manufacturing apparatus
JP2014159539A (en) Polymer producing apparatus
JP2014159552A (en) Polymer product, manufacturing method thereof and polymer product manufacturing apparatus
JP6515466B2 (en) Polymer manufacturing apparatus and polymer manufacturing method
JP6060670B2 (en) Method for producing polymer
JP2013166944A (en) Method for producing polymer, and continuous production apparatus of polymer
WO2015137103A1 (en) Method for producing polymer
JP2013166943A (en) Method for producing polymer
JP2016098320A (en) Apparatus and method for continuously manufacturing polymer
JP2016060801A (en) Polymer production apparatus, and polymer production method
JP2015194225A (en) Tubular object, tubular body, manufacturing method of tubular object and manufacturing device of tubular object

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15761819

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15761819

Country of ref document: EP

Kind code of ref document: A1