WO2015136996A1 - Tire - Google Patents

Tire Download PDF

Info

Publication number
WO2015136996A1
WO2015136996A1 PCT/JP2015/052352 JP2015052352W WO2015136996A1 WO 2015136996 A1 WO2015136996 A1 WO 2015136996A1 JP 2015052352 W JP2015052352 W JP 2015052352W WO 2015136996 A1 WO2015136996 A1 WO 2015136996A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
tire
groove wall
protrusion
width direction
Prior art date
Application number
PCT/JP2015/052352
Other languages
French (fr)
Japanese (ja)
Inventor
康典 阿部
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2015136996A1 publication Critical patent/WO2015136996A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/01Shape of the shoulders between tread and sidewall, e.g. rounded, stepped or cantilevered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1307Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove walls
    • B60C11/1323Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove walls asymmetric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/01Shape of the shoulders between tread and sidewall, e.g. rounded, stepped or cantilevered
    • B60C2011/013Shape of the shoulders between tread and sidewall, e.g. rounded, stepped or cantilevered provided with a recessed portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1307Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove walls
    • B60C2011/1338Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove walls comprising protrusions

Definitions

  • the present invention relates to a tire that can improve shoulder uneven wear not only in the early stage of wear but also in the end stage of wear.
  • a technique in which a narrow groove called a defense side groove (hereinafter referred to as DSG) is provided at an end portion in the width direction of a tread portion in order to improve uneven wear properties of a tire shoulder portion.
  • DSG defense side groove
  • annular groove 13 ⁇ / b> A that extends continuously in the tire circumferential direction is provided on the groove bottom side of the groove wall 11 on the inner side in the tire width direction of the DSG 10 ⁇ / b> A provided in the shoulder land portion 5.
  • a technique for improving the tear resistance of the bottom and suppressing the occurrence of cracks has been proposed (see, for example, Patent Document 1).
  • the present invention has been made in view of the conventional problems, and provides a tire capable of improving the uneven shoulder wear from the beginning of travel to the end of travel by improving the uneven wear at the beginning of traveling. Objective.
  • the present invention relates to a plurality of circumferential grooves formed on the tread surface so as to extend along the tire circumferential direction, a circumferential groove provided on a tire width direction end side of the circumferential grooves, and a tread grounding.
  • a tire including a circumferential narrow groove (DSG) formed in a land portion between the ends and extending along a tire circumferential direction, wherein the circumferential narrow groove is a groove of the circumferential narrow groove
  • the groove width is provided on the bottom side and extends continuously in the tire circumferential direction, and the groove width is a groove wall located on the inner side in the tire width direction of the circumferential narrow groove and a groove wall located on the outer side in the tire width direction.
  • An annular groove wider than an interval with a certain outer groove wall (hereinafter referred to as a DSG groove width), and a protrusion that is provided on the outer groove wall and protrudes toward the inner groove wall and substantially continuous in the tire circumferential direction And the protrusion is provided only on the outer groove wall, and Characterized by contacting the groove wall.
  • the rigidity of the land portion on the outer side in the tire width direction of the DSG can be increased. Therefore, when the projection and the groove wall come into contact with each other, a force in the direction opposite to the brake direction can be efficiently generated, and thus the slip in the brake direction can be reliably suppressed.
  • the rigidity of the land part of a tire width direction outer side will become low if a projection part is provided in an inner side groove wall, the effect which suppresses the slip of a brake direction will fall.
  • FIG. 1 is a cross-sectional view of a main part (a cross-sectional view in the tire width direction) of a tire 1 according to the present embodiment, where CL in the figure is a tire equatorial plane.
  • CL in the figure is a tire equatorial plane.
  • 2 is a tread
  • 3a and 3b are circumferential grooves formed on the tread 2 on the tread surface side so as to extend along the tire circumferential direction.
  • the circumferential groove 3a located on the tire equatorial plane CL side is referred to as a main groove
  • the circumferential groove 3b located on the outer side in the tire width direction is referred to as a shoulder groove.
  • the central land portion 4 is defined by the main groove 3a and the shoulder groove 3b, and the shoulder land portion 5 is defined by the shoulder groove 3b.
  • a circumferential narrow groove (hereinafter referred to as DSG) 10 extending along the tire circumferential direction is formed between the tread grounding end TG of the shoulder land portion 5, and the shoulder land portion 5 serves as an inner shoulder by the DSG 10. It is divided into a land portion 5a and an outer shoulder land portion 5b.
  • FIG. 2 is an enlarged view of the DSG 10 in the tire width direction cross section.
  • the DSG 10 includes a linear inner groove wall 11 extending inward in the tire radial direction from the opening end 10i on the tire width direction inner side of the DSG 10, and an outer side in the tire width direction. From the linear outer groove wall 12 extending inward in the tire radial direction from the open end 10o, the annular groove 13 provided on the groove bottom 10d side and continuously extending in the tire circumferential direction, and the groove wall of the outer groove wall 12 And a protrusion 14 protruding toward the inner groove wall 11 side.
  • the height of the outer shoulder land portion 5b in the tire radial direction is formed to be lower than the height dimension of the inner shoulder land portion 5a by d, thereby promoting the wear of the outer shoulder land portion 5b.
  • the uneven wear of the shoulder land portion 5a is suppressed.
  • the annular groove 13 includes a groove side bottom portion 13m communicating with a groove portion (hereinafter referred to as an opening side groove portion) 15 surrounded by the inner groove wall 11 and the outer groove wall 12, and a tire width from the groove bottom 10d side of the inner groove wall 11.
  • a widened portion 13n that swells inward in the direction is provided.
  • the protrusion 14 is provided only on the groove wall of the outer groove wall 12.
  • the annular groove has a first circular arc portion having a curvature radius R1 of 1.0 to 12.0 mm, the center of curvature being on the inner side in the tire width direction of the inner groove wall, and one end connected to the inner groove wall.
  • the radius of curvature R2 provided between the terminal end of the first arc portion and the innermost end in the tire width direction of the annular groove is 1.5-4.
  • the tire width direction distance to the outer groove wall is 5.7 to 6.5 mm, and the angle ⁇ between the extending direction of the inner groove wall and the tread surface is 60 ° or more and less than 90 °. It is configured.
  • the above dimensions are values when a tire is mounted on an applicable rim and is in a specified internal pressure and no load unless otherwise specified.
  • four circular arc portions are provided in the annular groove, and the shape of the annular groove is made smooth, so that it is possible to improve the stone biting property and the groove bottom tear resistance and the groove bottom crack resistance. Can also be improved.
  • the first arc portion 16 connects the inner radial end of the inner groove wall 11 and the end of the annular groove 13 on the inner groove wall 11 side, and the center of curvature is the inner width of the inner groove wall 11 in the tire width direction.
  • the second arc portion 17 is an arc having a center of curvature in the annular groove 13 and a radius of curvature R2 of 1.5 to 4.0 mm. It is directed to the inner end 10c and constitutes a groove wall on the inner side in the tire width direction of the annular groove 13.
  • An end portion on the outer side in the tire radial direction, which is the starting end of the second arc portion 17, and an end portion on the inner side in the tire radial direction, which is the terminal end of the first arc portion 16, are connected by a smooth curve.
  • the third arc portion 18 is a third circular arc having a radius of curvature R3 of 1.0 to 16.0 mm with the center of curvature in the annular groove 13, and is annular from the innermost end 10c in the tire width direction of the annular groove 13. It is formed between the innermost end in the tire radial direction of the groove 13 and constitutes a groove wall on the inner side in the tire radial direction of the annular groove 13. An end portion on the inner side in the tire width direction which is the starting end of the third arc portion 18 and an end portion on the inner side in the tire radial direction which is the end portion of the second arc portion 17 are connected by a smooth curve.
  • the fourth arc portion 19 connects the end of the outer groove wall 12 on the inner side in the tire radial direction and the end of the annular groove 13 on the outer groove wall 12 side, and has a curvature radius R4 of 2.0 to 16.0 mm. Consists of arcs.
  • the end portion on the outer side in the direction and the end portion on the inner side in the tire radial direction of the outer groove wall 12 are connected by a smooth curve.
  • the groove width W of the opening side groove portion 15 is set to 1.0 to 5.0 mm, and the groove width of the annular groove 13 from the innermost end 10c in the tire width direction to the outer groove wall 12 is set.
  • the distance in the tire width direction is 5.7 to 6.5 mm (see FIG. 3). This is because if the groove width of the annular groove 13 is less than 5.7 mm, the effect of reducing the contact pressure by the annular groove 13 cannot be obtained, and shoulder uneven wear at the initial stage of wear cannot be suppressed. Further, if the groove width exceeds 6.5 mm, the width in the tire width direction of the outer shoulder land portion 5b becomes excessively small at the end of wear, and shoulder uneven wear is promoted.
  • the angle ⁇ formed between the extending direction of the inner groove wall 11 and the tread surface is 60 ° or more and less than 90 °.
  • is less than 60 °, it is difficult for foreign matter to be discharged when foreign matter enters DSG 10, and cracks are likely to occur.
  • is 90 ° or more, the tread rubber is less likely to bulge in the tire width direction, and it is difficult to suppress uneven shoulder wear.
  • the length of the inner groove wall in the tire radial direction is L
  • the end portion of the protrusion portion on the opening side of the circumferential narrow groove and the outer groove wall When the protrusion depth, which is the distance from the opening end, is H, the protrusion depth H satisfies the relationship 0 ⁇ H ⁇ L / 3.
  • the braking force in the tire circumferential direction acts on the land portion located on the outer side in the tire width direction of the DSG to suppress the wear on the land portion located on the inner side in the tire width direction of the DSG. Can be improved.
  • the protruding portion 14 includes a rising portion 14a that rises from the groove wall of the outer groove wall 12 toward the inner groove wall 11, a flat end portion 14b that includes a plane parallel to the outer groove wall 12, and an outer groove wall that falls from the flat end portion 14b. 12 and a falling portion 14c connected to the groove wall, and the flat end portion 14b contacts the inner groove wall 11 when loaded.
  • the end portion P on the opening end 10o side of the protrusion 14 is located on the inner side in the tire radial direction by a distance H from the surface of the outer shoulder land portion 5b.
  • the distance H is referred to as the protrusion depth.
  • the protrusion depth H is in the range of 0 ⁇ H ⁇ L / 3. This is because when the protrusion depth H exceeds 1 / 3L, the groove walls of the opening of the DSG come into contact with each other before the protrusion 14 contacts the inner groove wall at the time of load. This is because it is difficult to generate a force in the direction opposite to the force, and the effect of improving the uneven wear of the shoulder portion at the initial stage of traveling is reduced.
  • FIG.3 (b) it is good also considering the edge part P by the side of the opening end 10o of the projection part 14 as the same position as the opening end 10o.
  • the protrusion depth H is 1/3 L or less, it is possible to prevent the opening of the DSG 10 from coming into contact first during rolling of the load. Therefore, the braking force in the tire circumferential direction works on the land portion located on the outer side in the tire width direction of the DSG 10, and the wear on the land portion located on the inner side in the tire width direction of the DSG 10 is suppressed. Can be improved.
  • the tire tread when no load is applied is the inner shoulder surface. It becomes the land part 5a.
  • the protrusion depth H ′ viewed from the tire tread surface is in the range of d ⁇ H ′ ⁇ d + L / 3.
  • the length L of the inner groove wall 11 in the tire radial direction is preferably 6 to 10 mm. This is because, when L is too small, an annular groove having a wide groove width approaches the ground contact surface at an early stage of traveling, and a corner portion (indicated by reference numeral 16 in FIG. 2) having a low rigidity comes to ground. This is because the wear of the steel becomes faster. In addition, when L is too large, the annular groove is separated from the road surface, so that the action of reducing the contact pressure at the contact end is reduced in the initial traveling stage.
  • the protrusion depth H and the protrusion length K are L / 3 ⁇
  • the protrusion thickness which is the protrusion dimension of the protrusion from the outer groove wall
  • the protrusion thickness w is W It is configured to satisfy the relationship of / 3 ⁇ w ⁇ 2W / 3.
  • the protrusion thickness w which is a protruding dimension of the protrusion 14 from the outer groove wall 12, preferably satisfies the relationship W / 3 ⁇ w ⁇ 2W / 3. .
  • W is the groove width of the opening-side groove 15 as described above.
  • H + K is less than L / 3
  • the contact area between the protrusion 14 and the inner groove wall 11 is insufficient, and as a result, the force in the direction opposite to the brake direction becomes weak, and the effect of suppressing slippage in the brake direction is reduced. Because it does.
  • H + K exceeds L
  • the groove bottom 10d side of the protrusion 14 does not come into contact with the inner groove wall 11, so that the effect of providing the protrusion 14 cannot be obtained. Therefore, the sum H + K of the protrusion length K and the protrusion depth H is preferably in the range of L / 3 ⁇ H + K ⁇ L. Further, if the protrusion thickness w is less than W / 3, the DSG may not be closed when the load is small.
  • the protrusion depth H and the protrusion thickness w be in the range of W / 3 ⁇ w ⁇ 2W / 3.
  • the rising portion 14a and the falling portion 14c are provided to increase the rigidity of the protruding portion 14, and are not essential elements of the protruding portion 14. Therefore, as shown in FIGS. 3A and 3B, the rising portion 14a and the falling portion 14c may be omitted.
  • FIG. 4 is a diagram showing the effect of reducing the wear energy due to the provision of the protrusions.
  • the horizontal axis is the tread tire width direction position [mm]
  • the vertical axis is the wear energy [9.8 ⁇ 10 5 erg / cm 2 ]. is there.
  • the solid line in the figure is the wear energy of the tire of the present invention in which the projections are provided on the DSG shown in FIG. 2, and the broken line is the wear energy of a conventional tire having no projections on the DSG.
  • the tire size used in the test is 295 / 75R22.5, and the internal pressure is 690 kPa.
  • the wear energy is measured by measuring the force acting on the tire contact surface during rolling of the tire and the slip between the tire contact surface and the road surface, and the energy generated by friction from the product of the force and the slip (wear energy). ) was used, a known wear energy tester was used.
  • the present invention has an annular groove 13A that widens only on the inner groove wall 11 side, but the angle ⁇ formed between the extending direction of the inner groove wall 11 and the tread surface is 90 °.
  • the present invention is also applicable to the conventional DSG 10A.
  • the said embodiment demonstrated DSG10 which has the annular groove 13 provided with the widening part 13n swelled in the tire width direction inner side from the groove bottom side of the inner side groove wall 11, this invention is shown in FIG.5 (b).
  • the present invention is also applicable to a DSG 10B having an annular groove 13B having a widened portion on both the groove bottom side of the inner groove wall 11 and the groove bottom side of the outer groove wall 12 as shown.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

Provided is a tire, wherein the uneven wear of a shoulder from the initial phase of use to the final phase of use can be reduced by reducing uneven wear in the initial phase of use. A circumferential narrow groove (10) formed in a land portion between a shoulder groove and a tread ground-contacting end (TG) and extending along the tire circumferential direction is provided with: an annular groove (13) that is provided on the side of the circumferential narrow groove (10) oriented toward a groove bottom (10d), extends continuously in the tire circumferential direction, and has a groove width wider than the distance between an inside groove wall (11) and an outside groove wall (12); and a protruding portion (14) that is provided on the outside groove wall (12) and protrudes toward the inside groove wall (11). The protruding portion (14) comes into contact with the inside groove wall (11) under a load, and is substantially continuous in the tire circumferential direction.

Description

タイヤtire
 本発明は、摩耗初期のみならず、摩耗末期にいてもショルダー偏摩耗性を向上させることのできるタイヤに関するものである。 The present invention relates to a tire that can improve shoulder uneven wear not only in the early stage of wear but also in the end stage of wear.
 従来、タイヤショルダー部の偏摩耗性を向上させるため、ディフェンスサイドグルーブ(以下、DSGという)と呼ばれる幅狭溝をトレッド部の幅方向端部に設ける技術が知られている。
 また、図6に示すように、ショルダー陸部5に設けられたDSG10Aの、タイヤ幅方向内側の溝壁11の溝底側に、タイヤ周方向に連続して延びる環状溝13Aを設けて、溝底の耐テア性を向上させるとともに、クラックの発生を抑制する技術が提案されている(例えば、特許文献1参照)。
2. Description of the Related Art Conventionally, a technique is known in which a narrow groove called a defense side groove (hereinafter referred to as DSG) is provided at an end portion in the width direction of a tread portion in order to improve uneven wear properties of a tire shoulder portion.
Further, as shown in FIG. 6, an annular groove 13 </ b> A that extends continuously in the tire circumferential direction is provided on the groove bottom side of the groove wall 11 on the inner side in the tire width direction of the DSG 10 </ b> A provided in the shoulder land portion 5. A technique for improving the tear resistance of the bottom and suppressing the occurrence of cracks has been proposed (see, for example, Patent Document 1).
WO 2008/111582 A1WO 2008/111582 A1
 しかしながら、上記特許文献1のタイヤでは、ショルダー部幅方向のゴムの膨出が増加する一方で、周方向のゴムの膨出が少なくなる。その結果、タイヤ周方向の滑りを抑制することが困難になるので、走行初期時におけるショルダー部の偏摩耗性が十分ではなかった。 However, in the tire of Patent Document 1, the swelling of rubber in the shoulder width direction increases, while the swelling of rubber in the circumferential direction decreases. As a result, it becomes difficult to suppress slipping in the tire circumferential direction, so that the partial wear of the shoulder portion at the initial running is not sufficient.
 本発明は、従来の問題点に鑑みてなされたもので、走行初期における偏摩耗性を向上させることで、走行初期から走行末期におけるショルダー偏摩耗性を向上させることができるタイヤを提供することを目的とする。 The present invention has been made in view of the conventional problems, and provides a tire capable of improving the uneven shoulder wear from the beginning of travel to the end of travel by improving the uneven wear at the beginning of traveling. Objective.
 本発明は、トレッド表面にタイヤ周方向に沿って延長するように形成された複数の周方向溝と、前記周方向溝のうちのタイヤ幅方向端部側に設けられた周方向溝とトレッド接地端との間の陸部に形成されて、タイヤ周方向に沿って延長する周方向細溝(DSG)とを備えたタイヤであって、前記周方向細溝は、当該周方向細溝の溝底側に設けられてタイヤ周方向に連続して延びる、溝幅が、当該周方向細溝のタイヤ幅方向内側に位置する溝壁である内側溝壁とタイヤ幅方向外側に位置する溝壁である外側溝壁との間隔(以下、DSGの溝幅という)よりも広い環状溝と、前記外側溝壁に設けられて前記内側溝壁側に突出する、タイヤ周方向に実質的に連続する突起部とを備え、前記突起部が、前記外側溝壁のみに設けられて、荷重時に前記内側溝壁に接触することを特徴とする。
 これにより、荷重時には周方向細溝が閉じるので、ショルダー部幅方向のゴムの膨出による剪断力を小さくできるとともに、周方向のゴムの膨出による剪断力を大きくできるので、走行初期時におけるショルダー部の偏摩耗性を向上させることができる。
 また、突起部を、周方向細溝のタイヤ幅方向外側の溝壁のみに設けたので、DSGのタイヤ幅方向外側の陸部の剛性を高めることができる。したがって、突起部と溝壁とが接触した際に、ブレーキ方向とは逆方向の力を効率よく発生させることができるので、ブレーキ方向の滑りを確実に抑制できる。
 なお、突起部を内側溝壁に設けると、タイヤ幅方向外側の陸部の剛性が低くなってしまうので、ブレーキ方向の滑りを抑制する効果が低下する。
The present invention relates to a plurality of circumferential grooves formed on the tread surface so as to extend along the tire circumferential direction, a circumferential groove provided on a tire width direction end side of the circumferential grooves, and a tread grounding. A tire including a circumferential narrow groove (DSG) formed in a land portion between the ends and extending along a tire circumferential direction, wherein the circumferential narrow groove is a groove of the circumferential narrow groove The groove width is provided on the bottom side and extends continuously in the tire circumferential direction, and the groove width is a groove wall located on the inner side in the tire width direction of the circumferential narrow groove and a groove wall located on the outer side in the tire width direction. An annular groove wider than an interval with a certain outer groove wall (hereinafter referred to as a DSG groove width), and a protrusion that is provided on the outer groove wall and protrudes toward the inner groove wall and substantially continuous in the tire circumferential direction And the protrusion is provided only on the outer groove wall, and Characterized by contacting the groove wall.
As a result, since the circumferential narrow groove is closed during loading, the shearing force caused by the bulging of rubber in the width direction of the shoulder portion can be reduced and the shearing force caused by the bulging of the rubber in the circumferential direction can be increased. The partial wear property of the part can be improved.
In addition, since the protrusion is provided only on the groove wall on the outer side in the tire width direction of the circumferential narrow groove, the rigidity of the land portion on the outer side in the tire width direction of the DSG can be increased. Therefore, when the projection and the groove wall come into contact with each other, a force in the direction opposite to the brake direction can be efficiently generated, and thus the slip in the brake direction can be reliably suppressed.
In addition, since the rigidity of the land part of a tire width direction outer side will become low if a projection part is provided in an inner side groove wall, the effect which suppresses the slip of a brake direction will fall.
 なお、前記発明の概要は、本発明の必要な全ての特徴を列挙したものではなく、これらの特徴群のサブコンビネーションもまた、発明となり得る。 It should be noted that the summary of the invention does not list all necessary features of the present invention, and sub-combinations of these feature groups can also be the invention.
本実施の形態に係るタイヤの要部断面図である。It is principal part sectional drawing of the tire which concerns on this Embodiment. 本実施の形態に係るDSGの拡大図である。It is an enlarged view of DSG which concerns on this Embodiment. 突起部の位置、長さ、及び、厚さを示す図である。It is a figure which shows the position of a projection part, length, and thickness. 突起部を設けたことによる摩耗エネルギーの低減効果を示す図である。It is a figure which shows the reduction effect of the wear energy by having provided the projection part. 本発明による周方向細溝の他の例を示す図である。It is a figure which shows the other example of the circumferential direction thin groove by this invention. 従来のDSGの形状を示す図である。It is a figure which shows the shape of the conventional DSG.
 以下、本発明の実施の形態について、図面に基づき説明する。
 図1は本実施の形態に係るタイヤ1の要部断面図(タイヤ幅方向断面図)で、同図のCLはタイヤ赤道面である。
 同図において、2はトレッド、3a,3bはトレッド2の踏面側にタイヤ周方向に沿って延長するように形成された周方向溝である。以下、タイヤ赤道面CL側に位置する周方向溝3aを主溝、タイヤ幅方向外側に位置する周方向溝3bをショルダー溝とする。
 主溝3aとショルダー溝3bとにより中央陸部4が区画され、ショルダー溝3bによりショルダー陸部5が区画される。
 ショルダー陸部5のトレッド接地端TGとの間には、タイヤ周方向に沿って延長する周方向細溝(以下、DSGという)10が形成され、このDSG10により、ショルダー陸部5は、内側ショルダー陸部5aと外側ショルダー陸部5bとに区画される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view of a main part (a cross-sectional view in the tire width direction) of a tire 1 according to the present embodiment, where CL in the figure is a tire equatorial plane.
In the figure, 2 is a tread, 3a and 3b are circumferential grooves formed on the tread 2 on the tread surface side so as to extend along the tire circumferential direction. Hereinafter, the circumferential groove 3a located on the tire equatorial plane CL side is referred to as a main groove, and the circumferential groove 3b located on the outer side in the tire width direction is referred to as a shoulder groove.
The central land portion 4 is defined by the main groove 3a and the shoulder groove 3b, and the shoulder land portion 5 is defined by the shoulder groove 3b.
A circumferential narrow groove (hereinafter referred to as DSG) 10 extending along the tire circumferential direction is formed between the tread grounding end TG of the shoulder land portion 5, and the shoulder land portion 5 serves as an inner shoulder by the DSG 10. It is divided into a land portion 5a and an outer shoulder land portion 5b.
 図2は、タイヤ幅方向断面におけるDSG10の拡大図で、DSG10は、DSG10のタイヤ幅方向内側の開口端10iからタイヤ径方向内側に延長する直線状の内側溝壁11と、タイヤ幅方向外側の開口端10oからタイヤ径方向内側に延長する直線状の外側溝壁12と、溝底10d側に設けられて、タイヤ周方向に連続して延びる環状溝13と、外側溝壁12の溝壁から内側溝壁11側に突出する突起部14とを有する。
 本例では、外側ショルダー陸部5bのタイヤ径方向高さ寸法を、内側ショルダー陸部5aの高さ寸法よりもdだけ低く形成することで、外側ショルダー陸部5bの摩耗を促進させて、内側ショルダー陸部5aの偏摩耗を抑制するようにしている。
 環状溝13は、内側溝壁11と外側溝壁12で囲まれた溝部(以下、開口部側溝部という)15に連通する溝側底部13mと、内側溝壁11の溝底10d側からタイヤ幅方向内側に膨らむ拡幅部13nを備える。
 突起部14は、外側溝壁12の溝壁のみに設けられる。
FIG. 2 is an enlarged view of the DSG 10 in the tire width direction cross section. The DSG 10 includes a linear inner groove wall 11 extending inward in the tire radial direction from the opening end 10i on the tire width direction inner side of the DSG 10, and an outer side in the tire width direction. From the linear outer groove wall 12 extending inward in the tire radial direction from the open end 10o, the annular groove 13 provided on the groove bottom 10d side and continuously extending in the tire circumferential direction, and the groove wall of the outer groove wall 12 And a protrusion 14 protruding toward the inner groove wall 11 side.
In this example, the height of the outer shoulder land portion 5b in the tire radial direction is formed to be lower than the height dimension of the inner shoulder land portion 5a by d, thereby promoting the wear of the outer shoulder land portion 5b. The uneven wear of the shoulder land portion 5a is suppressed.
The annular groove 13 includes a groove side bottom portion 13m communicating with a groove portion (hereinafter referred to as an opening side groove portion) 15 surrounded by the inner groove wall 11 and the outer groove wall 12, and a tire width from the groove bottom 10d side of the inner groove wall 11. A widened portion 13n that swells inward in the direction is provided.
The protrusion 14 is provided only on the groove wall of the outer groove wall 12.
 また、本例では、環状溝が、曲率中心が内側溝壁のタイヤ幅方向内側にあり、一端が前記内側溝壁に繋がる、曲率半径R1が1.0~12.0mmの第1の円弧部と、曲率中心が当該環状溝内にあり、前記第1の円弧部の終端部から当該環状溝のタイヤ幅方向最内端までの間に設けられた、曲率半径R2が1.5~4.0mmの第2の円弧部と、曲率中心が当該環状溝内にあり、当該環状溝のタイヤ幅方向最内端から当該環状溝のタイヤ径方向最内端までの間に設けられた、曲率半径R3が1.0~16.0mmの第3の円弧部と、曲率中心が当該環状溝内にあり、第3の円弧部の終端部と外側溝壁との間に設けられた、外側溝壁の終端に繋がる、曲率半径R4が2.0~16.0mmの第4の円弧部とを備え、環状溝のタイヤ幅方向最内端から前記外側溝壁までのタイヤ幅方向距離が5.7~6.5mmであって、前記内側溝壁の延長方向と、トレッド踏面とのなす角度θが、60°以上90°未満となるように構成している。なお、上記寸法は、特に断らない限り、タイヤを適用リムに装着し、規定内圧、無負荷状態とした時の値である。
 このように、環状溝に4つの円弧部を設けて、環状溝の形状を滑らかにしたので、石噛み性を向上させることができるとともに、耐溝底テア性、及び、耐溝底クラック性についても向上させることができる。
Further, in this example, the annular groove has a first circular arc portion having a curvature radius R1 of 1.0 to 12.0 mm, the center of curvature being on the inner side in the tire width direction of the inner groove wall, and one end connected to the inner groove wall. The radius of curvature R2 provided between the terminal end of the first arc portion and the innermost end in the tire width direction of the annular groove is 1.5-4. A radius of curvature provided between the second circular arc portion of 0 mm and the center of curvature in the annular groove and between the innermost end in the tire width direction of the annular groove and the innermost end in the tire radial direction of the annular groove. A third arcuate portion having R3 of 1.0 to 16.0 mm, an outer groove wall having a center of curvature in the annular groove and provided between the terminal end of the third arcuate portion and the outer groove wall And a fourth arc portion with a radius of curvature R4 of 2.0 to 16.0 mm, which is connected to the end of the tire, and the innermost end in the tire width direction of the annular groove The tire width direction distance to the outer groove wall is 5.7 to 6.5 mm, and the angle θ between the extending direction of the inner groove wall and the tread surface is 60 ° or more and less than 90 °. It is configured. The above dimensions are values when a tire is mounted on an applicable rim and is in a specified internal pressure and no load unless otherwise specified.
As described above, four circular arc portions are provided in the annular groove, and the shape of the annular groove is made smooth, so that it is possible to improve the stone biting property and the groove bottom tear resistance and the groove bottom crack resistance. Can also be improved.
 すなわち、本例では、DSG10に4つの円弧部16~19を設けて、開口部側溝部15と環状溝13とを結ぶ部分の溝壁の形状、及び、環状溝13の溝壁の形状が滑らかになるようにすることで、石噛み性を向上させるとともに、耐溝底テア性、及び、耐溝底クラック性についても向上させるようにしている。
 第1の円弧部16は、内側溝壁11のタイヤ径方向内側の端部と環状溝13の内側溝壁11側の端部とを連結する、曲率中心が内側溝壁11のタイヤ幅方向内側にある曲率半径R1が1.0~12.0mmの円弧から構成される。第1の円弧部16の始端であるタイヤ径方向外側の端部と内側溝壁11のタイヤ径方向内側の端部とは滑らかな曲線により連結されている。
 第2の円弧部17は、曲率中心が環状溝13内にある、曲率半径R2が1.5~4.0mmの円弧で、第1の円弧部の終端部から環状溝13のタイヤ幅方向最内端10cまでの間に向けられて、環状溝13のタイヤ幅方向内側の溝壁を構成する。第2の円弧部17の始端であるタイヤ径方向外側の端部と第1の円弧部16の終端であるタイヤ径方向内側の端部とは、滑らかな曲線により連結されている。
That is, in this example, four arc portions 16 to 19 are provided in the DSG 10, and the shape of the groove wall at the portion connecting the opening side groove portion 15 and the annular groove 13 and the shape of the groove wall of the annular groove 13 are smooth. Thus, the stone biting property is improved, and the groove bottom tear resistance and the groove bottom crack resistance are also improved.
The first arc portion 16 connects the inner radial end of the inner groove wall 11 and the end of the annular groove 13 on the inner groove wall 11 side, and the center of curvature is the inner width of the inner groove wall 11 in the tire width direction. Are formed of circular arcs having a curvature radius R1 of 1.0 to 12.0 mm. An end portion on the tire radial direction outer side which is a starting end of the first arc portion 16 and an end portion on the inner radial direction of the inner groove wall 11 are connected by a smooth curve.
The second arc portion 17 is an arc having a center of curvature in the annular groove 13 and a radius of curvature R2 of 1.5 to 4.0 mm. It is directed to the inner end 10c and constitutes a groove wall on the inner side in the tire width direction of the annular groove 13. An end portion on the outer side in the tire radial direction, which is the starting end of the second arc portion 17, and an end portion on the inner side in the tire radial direction, which is the terminal end of the first arc portion 16, are connected by a smooth curve.
 第3の円弧部18は、曲率中心が環状溝13内にある曲率半径R3が1.0~16.0mmの第3の円の円弧で、環状溝13のタイヤ幅方向最内端10cから環状溝13のタイヤ径方向最内端までの間に形成されて、環状溝13のタイヤ径方向内側の溝壁を構成する。
 第3の円弧部18の始端であるタイヤ幅方向内側の端部と第2の円弧部17の終端であるタイヤ径方向内側の端部とは、滑らかな曲線により連結されている。
 第4の円弧部19は、外側溝壁12のタイヤ径方向内側の端部と環状溝13の外側溝壁12側の端部とを連結する、曲率半径R4が2.0~16.0mmの円弧から構成される。第4の円弧部19の始端であるタイヤ径方向内側の端部と第3の円弧部18の終端であるタイヤ幅方向外側の端部、及び、第4の円弧部19の終端であるタイヤ径方向外側の端部と外側溝壁12のタイヤ径方向内側の端部とは、それぞれ、滑らかな曲線により連結されている。
The third arc portion 18 is a third circular arc having a radius of curvature R3 of 1.0 to 16.0 mm with the center of curvature in the annular groove 13, and is annular from the innermost end 10c in the tire width direction of the annular groove 13. It is formed between the innermost end in the tire radial direction of the groove 13 and constitutes a groove wall on the inner side in the tire radial direction of the annular groove 13.
An end portion on the inner side in the tire width direction which is the starting end of the third arc portion 18 and an end portion on the inner side in the tire radial direction which is the end portion of the second arc portion 17 are connected by a smooth curve.
The fourth arc portion 19 connects the end of the outer groove wall 12 on the inner side in the tire radial direction and the end of the annular groove 13 on the outer groove wall 12 side, and has a curvature radius R4 of 2.0 to 16.0 mm. Consists of arcs. A tire radial direction inner end that is the starting end of the fourth arc portion 19, an end portion on the outer side in the tire width direction that is the end of the third arc portion 18, and a tire diameter that is the end of the fourth arc portion 19 The end portion on the outer side in the direction and the end portion on the inner side in the tire radial direction of the outer groove wall 12 are connected by a smooth curve.
 また、本例では、開口部側溝部15の溝幅Wを1.0~5.0mmにするとともに、環状溝13の溝幅である、タイヤ幅方向最内端10cから外側溝壁12までのタイヤ幅方向距離を5.7~6.5mmとしている(図3を参照)。
 これは、環状溝13の溝幅が5.7mm未満では、環状溝13による接地圧の低減効果が得られず、摩耗初期におけるショルダー偏摩耗を抑制できないためである。また、溝幅が6.5mmを超えると、摩耗末期に外側ショルダー陸部5bのタイヤ幅方向幅が過度に小さくなって、ショルダー偏摩耗が促進してしまうためである。
 また、内側溝壁11の延長方向とトレッド踏面とのなす角度θは、60°以上90°未満とすることが好ましい。
 θを60°未満とすると、DSG10に異物が侵入した場合に異物が排出しにくくなり、そのため、クラックが発生しやすくなる。また、θを90°以上にすると、トレッドゴムのタイヤ幅方向への膨出が小さくなるため、ショルダー偏摩耗を抑制することが困難となる。
Further, in this example, the groove width W of the opening side groove portion 15 is set to 1.0 to 5.0 mm, and the groove width of the annular groove 13 from the innermost end 10c in the tire width direction to the outer groove wall 12 is set. The distance in the tire width direction is 5.7 to 6.5 mm (see FIG. 3).
This is because if the groove width of the annular groove 13 is less than 5.7 mm, the effect of reducing the contact pressure by the annular groove 13 cannot be obtained, and shoulder uneven wear at the initial stage of wear cannot be suppressed. Further, if the groove width exceeds 6.5 mm, the width in the tire width direction of the outer shoulder land portion 5b becomes excessively small at the end of wear, and shoulder uneven wear is promoted.
Moreover, it is preferable that the angle θ formed between the extending direction of the inner groove wall 11 and the tread surface is 60 ° or more and less than 90 °.
When θ is less than 60 °, it is difficult for foreign matter to be discharged when foreign matter enters DSG 10, and cracks are likely to occur. Further, when θ is 90 ° or more, the tread rubber is less likely to bulge in the tire width direction, and it is difficult to suppress uneven shoulder wear.
 本発明は本例では、タイヤ幅方向断面において、前記内側溝壁のタイヤ径方向の長さをLとし、前記突起部の前記周方向細溝の開口部側の端部と前記外側溝壁の開口端との距離である突起部深さをHとしたときに、前記突起部深さHが0≦H≦L/3なる関係を満たすように構成している。
 これにより、荷重転動時において、突起部が内側溝壁に接触するよりも、DSGの開口部が先に接触することを防ぐことができる。その結果、DSGのタイヤ幅方向外側に位置する陸部にタイヤ周方向のブレーキングフォースが働いて、DSGのタイヤ幅方向内側に位置する陸部の摩耗を抑制するので、ショルダー部の偏摩耗性を向上させることができる。
In the present embodiment, in the present embodiment, in the cross section in the tire width direction, the length of the inner groove wall in the tire radial direction is L, and the end portion of the protrusion portion on the opening side of the circumferential narrow groove and the outer groove wall When the protrusion depth, which is the distance from the opening end, is H, the protrusion depth H satisfies the relationship 0 ≦ H ≦ L / 3.
Thereby, at the time of load rolling, it can prevent that the opening part of DSG contacts previously rather than a projection part contacting an inner side groove wall. As a result, the braking force in the tire circumferential direction acts on the land portion located on the outer side in the tire width direction of the DSG to suppress the wear on the land portion located on the inner side in the tire width direction of the DSG. Can be improved.
 突起部14は、外側溝壁12の溝壁から内側溝壁11方向に立ちあがる立ち上がり部14aと、外側溝壁12と平行な面から成る平端部14bと、平端部14bから立ち下がって外側溝壁12の溝壁に連結する立ち下がり部14cとを備え、荷重時には、平端部14bが内側溝壁11に当接する。
 タイヤ幅方向断面でみたとき、突起部14の開口端10o側の端部Pは、外側ショルダー陸部5bの表面よりも距離Hだけタイヤ径方向内側に位置している。以下、距離Hを突起部深さという。内側溝壁11のタイヤ径方向の長さをLとしたとき、本例では、突起部深さHを、0≦H≦L/3の範囲とした。これは、突起部深さHが1/3Lを超えると、荷重時には、突起部14が内側溝壁に接触するよりも先に、DSGの開口部の溝壁同士が接触してしまうので、ブレーキ力とは逆方向の力を発生することが困難となり、走行初期時におけるショルダー部の偏摩耗性の向上効果が低減するためである。
 なお、図3(b)に示すように、突起部14の開口端10o側の端部Pを、開口端10oと同じ位置としてもよい。
 このように、突起部深さHを1/3L以下とすれば、荷重転動時において、DSG10の開口部が先に接触することを防ぐことができる。したがって、DSG10のタイヤ幅方向外側に位置する陸部にタイヤ周方向のブレーキングフォースが働いて、DSG10のタイヤ幅方向内側に位置する陸部の摩耗を抑制するので、ショルダー部の偏摩耗性を向上させることができる。
 なお、本例のように、外側ショルダー陸部5bのタイヤ径方向の高さ寸法が内側ショルダー陸部5aの高さ寸法よりもdだけ低い場合には、無荷重時におけるタイヤ踏面は、内側ショルダー陸部5aとなる。したがって、タイヤ踏面からみた突起部深さH’は、d≦H’≦d+L/3の範囲にあることになる。
 なお、内側溝壁11のタイヤ径方向の長さLは、6~10mmとすることが好ましい。これは、Lが小さすぎる場合、走行の早い段階で、溝幅の広い環状溝が接地面に近づき、剛性が弱い角部(図2符号16で示す部分)が接地するようになり、この部分の摩耗が速くなってしまうからである。また、Lが大きすぎる場合には、環状溝が路面から離れているため、走行初期段階で、接地端部の接地圧を緩和する作用が小さくなってしまうからである。
The protruding portion 14 includes a rising portion 14a that rises from the groove wall of the outer groove wall 12 toward the inner groove wall 11, a flat end portion 14b that includes a plane parallel to the outer groove wall 12, and an outer groove wall that falls from the flat end portion 14b. 12 and a falling portion 14c connected to the groove wall, and the flat end portion 14b contacts the inner groove wall 11 when loaded.
When viewed in the cross section in the tire width direction, the end portion P on the opening end 10o side of the protrusion 14 is located on the inner side in the tire radial direction by a distance H from the surface of the outer shoulder land portion 5b. Hereinafter, the distance H is referred to as the protrusion depth. When the length of the inner groove wall 11 in the tire radial direction is L, in this example, the protrusion depth H is in the range of 0 ≦ H ≦ L / 3. This is because when the protrusion depth H exceeds 1 / 3L, the groove walls of the opening of the DSG come into contact with each other before the protrusion 14 contacts the inner groove wall at the time of load. This is because it is difficult to generate a force in the direction opposite to the force, and the effect of improving the uneven wear of the shoulder portion at the initial stage of traveling is reduced.
In addition, as shown in FIG.3 (b), it is good also considering the edge part P by the side of the opening end 10o of the projection part 14 as the same position as the opening end 10o.
Thus, if the protrusion depth H is 1/3 L or less, it is possible to prevent the opening of the DSG 10 from coming into contact first during rolling of the load. Therefore, the braking force in the tire circumferential direction works on the land portion located on the outer side in the tire width direction of the DSG 10, and the wear on the land portion located on the inner side in the tire width direction of the DSG 10 is suppressed. Can be improved.
As in this example, when the height dimension of the outer shoulder land portion 5b in the tire radial direction is lower than the height dimension of the inner shoulder land portion 5a by d, the tire tread when no load is applied is the inner shoulder surface. It becomes the land part 5a. Therefore, the protrusion depth H ′ viewed from the tire tread surface is in the range of d ≦ H ′ ≦ d + L / 3.
The length L of the inner groove wall 11 in the tire radial direction is preferably 6 to 10 mm. This is because, when L is too small, an annular groove having a wide groove width approaches the ground contact surface at an early stage of traveling, and a corner portion (indicated by reference numeral 16 in FIG. 2) having a low rigidity comes to ground. This is because the wear of the steel becomes faster. In addition, when L is too large, the annular groove is separated from the road surface, so that the action of reducing the contact pressure at the contact end is reduced in the initial traveling stage.
 また、本例では、タイヤ幅方向断面において、突起部のタイヤ径方向に沿った長さである突起部長さをKとすると、突起部深さHと突起部長さKとは、L/3≦H+K≦Lなる関係を満たし、突起部の前記外側溝壁からの突出寸法である突起部厚さをw、内側溝壁と外側溝壁との間隔をWとすると、突起部厚さwはW/3≦w≦2W/3なる関係を満たすように構成している。
 これにより、突起部と内側溝壁とを確実に接触させることができるので、ショルダー部の偏摩耗性を更に向上させることができる。
 すなわち、図3(a),(b)に示すように、突起部14のタイヤ径方向に沿った長さを突起部長さKとすると、突起部深さHと突起部長さKとは、L/3≦H+K≦Lなる関係を満たし、突起部14の外側溝壁12からの突出寸法である突起部厚さwは、W/3≦w≦2W/3なる関係を満たしていることが好ましい。Wは、上述したように、開口部側溝部15の溝幅である。
 H+KがL/3未満であれば、突起部14と内側溝壁11との接触面積が足りず、その結果、ブレーキ方向とは逆方向の力が弱くなり、ブレーキ方向の滑りの抑制効果が低減するからである。また、H+KがLを超えると、突起部14の溝底10d側が内側溝壁11と接触しなくなるので、突起部14を設けた効果が得られない。したがって、突起部長さKと突起部深さHとの和H+Kを、L/3≦H+K≦Lの範囲とすることが好ましい。
 また、突起部厚さwがW/3未満であれば、荷重が小さい場合にDSGが閉じなくなるおそれがある。逆に、wが2W/3を超えると、外側ショルダー陸部5bの剛性が高くなりすぎるので、内側ショルダー陸部5aの偏摩耗を十分に抑制できない。したがって、突起部深さHと突起部厚さwを、W/3≦w≦2W/3の範囲とすることが好ましい。
 なお、立ち上がり部14a及び立ち下がり部14cは、突起部14の剛性を高めるために設けられたものであるので、突起部14の必須の要素ではない。したがって、図3(a),(b)に示すように、立ち上がり部14a及び立ち下がり部14cを省略してもよい。
Further, in this example, when the protrusion length, which is the length of the protrusion along the tire radial direction, is K in the tire width direction cross section, the protrusion depth H and the protrusion length K are L / 3 ≦ When the relationship of H + K ≦ L is satisfied, the protrusion thickness, which is the protrusion dimension of the protrusion from the outer groove wall, is w, and the distance between the inner groove wall and the outer groove wall is W, the protrusion thickness w is W It is configured to satisfy the relationship of / 3 ≦ w ≦ 2W / 3.
Thereby, since a projection part and an inner side groove wall can be made to contact reliably, the partial wear property of a shoulder part can further be improved.
That is, as shown in FIGS. 3A and 3B, when the length of the protrusion 14 along the tire radial direction is the protrusion length K, the protrusion depth H and the protrusion length K are L / 3 ≦ H + K ≦ L is satisfied, and the protrusion thickness w, which is a protruding dimension of the protrusion 14 from the outer groove wall 12, preferably satisfies the relationship W / 3 ≦ w ≦ 2W / 3. . W is the groove width of the opening-side groove 15 as described above.
If H + K is less than L / 3, the contact area between the protrusion 14 and the inner groove wall 11 is insufficient, and as a result, the force in the direction opposite to the brake direction becomes weak, and the effect of suppressing slippage in the brake direction is reduced. Because it does. If H + K exceeds L, the groove bottom 10d side of the protrusion 14 does not come into contact with the inner groove wall 11, so that the effect of providing the protrusion 14 cannot be obtained. Therefore, the sum H + K of the protrusion length K and the protrusion depth H is preferably in the range of L / 3 ≦ H + K ≦ L.
Further, if the protrusion thickness w is less than W / 3, the DSG may not be closed when the load is small. On the other hand, if w exceeds 2W / 3, the rigidity of the outer shoulder land portion 5b becomes too high, so that the partial wear of the inner shoulder land portion 5a cannot be sufficiently suppressed. Therefore, it is preferable that the protrusion depth H and the protrusion thickness w be in the range of W / 3 ≦ w ≦ 2W / 3.
The rising portion 14a and the falling portion 14c are provided to increase the rigidity of the protruding portion 14, and are not essential elements of the protruding portion 14. Therefore, as shown in FIGS. 3A and 3B, the rising portion 14a and the falling portion 14c may be omitted.
[実験例]
 図4は、突起部を設けたことによる摩耗エネルギーの低減効果を示す図で、横軸はトレッドのタイヤ幅方向位置[mm]、縦軸は摩耗エネルギー[9.8×10erg/cm2]である。同図の実線が図2に示したDSGに突起部を設けた本発明のタイヤの摩耗エネルギーで、破線がDSGに突起部がない従来のタイヤの摩耗エネルギーである。
 試験に用いたタイヤのタイヤサイズは295/75R22.5で、内圧は690kPaである。
 摩耗エネルギーの測定には、タイヤ転動時にタイヤ接地面に作用する力とタイヤ接地面と路面との間の滑りを計測し、前記力と前記滑りとの積から摩擦により発生するエネルギー(摩耗エネルギー)を算出する、周知の摩耗エネルギー試験機を用いた。
 同図から明らかなように、DSGに突起部を設けた本発明のタイヤでは、トレッド接地端TGからショルダー陸部の中央部までの摩耗エネルギーが大幅に減少していることが分かる。
 摩耗エネルギーEWは、摩擦力をFc、滑り量をSとするとEW=Fc×Sと表わせる(摩擦力Fcに代えて、接地圧を用いる場合もある)。したがって、DSGに突起部を設けることで、滑り量が大幅に減少していることが分かる。
 これにより、突起部が、突起部と溝壁とが接触した際に、ブレーキ方向とは逆方向の力を効率よく発生させてブレーキ方向の滑りを確実に抑制できることが確認された。
[Experimental example]
FIG. 4 is a diagram showing the effect of reducing the wear energy due to the provision of the protrusions. The horizontal axis is the tread tire width direction position [mm], and the vertical axis is the wear energy [9.8 × 10 5 erg / cm 2 ]. is there. The solid line in the figure is the wear energy of the tire of the present invention in which the projections are provided on the DSG shown in FIG. 2, and the broken line is the wear energy of a conventional tire having no projections on the DSG.
The tire size used in the test is 295 / 75R22.5, and the internal pressure is 690 kPa.
The wear energy is measured by measuring the force acting on the tire contact surface during rolling of the tire and the slip between the tire contact surface and the road surface, and the energy generated by friction from the product of the force and the slip (wear energy). ) Was used, a known wear energy tester was used.
As can be seen from the figure, in the tire of the present invention in which the protrusion is provided on the DSG, the wear energy from the tread ground contact end TG to the center of the shoulder land portion is significantly reduced.
The wear energy EW can be expressed as EW = F c × S where the frictional force is F c and the slip amount is S (the contact pressure may be used instead of the frictional force F c ). Therefore, it can be seen that the slip amount is greatly reduced by providing the projections on the DSG.
Thus, it has been confirmed that when the protruding portion comes into contact with the groove wall, the force in the direction opposite to the braking direction can be efficiently generated and the sliding in the braking direction can be reliably suppressed.
 以上、本発明を実施の形態及び実験例を用いて説明したが、本発明の技術的範囲は前記実施の形態に記載の範囲には限定されない。前記実施の形態に、多様な変更または改良を加えることが可能であることが当業者にも明らかである。そのような変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲から明らかである。 As mentioned above, although this invention was demonstrated using embodiment and the experiment example, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the embodiment. It is apparent from the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.
 例えば、本発明は、図5(a)に示すように、内側溝壁11側にのみ拡幅する環状溝13Aを有するが、内側溝壁11の延長方向とトレッド踏面とのなす角度θが90°であるような従来のDSG10Aにも適用可能である。
 また、前記実施の形態では、内側溝壁11の溝底側からタイヤ幅方向内側に膨らむ拡幅部13nを備えた環状溝13を有するDSG10について説明したが、本発明は、図5(b)に示すような、内側溝壁11の溝底側と外側溝壁12の溝底側との両方に拡幅部を有する環状溝13Bを有するDSG10Bにも適用可能である。
 要は、内側溝壁と外側溝壁との間隔よりも広い溝幅を有する環状溝を備えたDSGの外側溝壁のみに、内側溝壁側に突出する突起部を設ければ、ブレーキ方向の滑りを確実に抑制でき、走行初期時におけるショルダー部の偏摩耗性を向上させることができる。
 なお、図5(c)に示すように、環状溝を有しない構成のDSG10Cでは、大きな横力が作用したときに、溝底10dに応力が集中して溝底クラックが発生する。また、環状溝を有しない構成のDSG10Cに突起部14を設けた場合には、外側ショルダー陸部5bの剛性が高くなりすぎてしまうので、溝幅を狭くしないと溝壁同士が接触しない。しかしながら、溝幅を狭くすると、上述した応力集中が増大するので、ショルダー部幅方向の剪断力は緩和されない。すなわち、環状溝を有しない構成のDSG10Cに突起部14を設けても、本発明の効果は得られない。
For example, as shown in FIG. 5A, the present invention has an annular groove 13A that widens only on the inner groove wall 11 side, but the angle θ formed between the extending direction of the inner groove wall 11 and the tread surface is 90 °. The present invention is also applicable to the conventional DSG 10A.
Moreover, although the said embodiment demonstrated DSG10 which has the annular groove 13 provided with the widening part 13n swelled in the tire width direction inner side from the groove bottom side of the inner side groove wall 11, this invention is shown in FIG.5 (b). The present invention is also applicable to a DSG 10B having an annular groove 13B having a widened portion on both the groove bottom side of the inner groove wall 11 and the groove bottom side of the outer groove wall 12 as shown.
In short, if only the outer groove wall of the DSG having an annular groove having a groove width wider than the distance between the inner groove wall and the outer groove wall is provided with a protruding portion protruding toward the inner groove wall side, Slip can be reliably suppressed, and uneven wear of the shoulder portion at the initial stage of traveling can be improved.
As shown in FIG. 5C, in the DSG 10C having no annular groove, when a large lateral force is applied, stress concentrates on the groove bottom 10d and a groove bottom crack is generated. Further, when the protrusion 14 is provided on the DSG 10C having no annular groove, the outer shoulder land portion 5b becomes too rigid, so that the groove walls do not contact each other unless the groove width is narrowed. However, if the groove width is narrowed, the stress concentration described above increases, so the shear force in the shoulder portion width direction is not relaxed. That is, the effect of the present invention cannot be obtained even if the protrusion 14 is provided on the DSG 10C having no annular groove.
 1 タイヤ、2 トレッド、3a 主溝、3b ショルダー溝、
4 中央陸部、5 ショルダー陸部、5a 内側ショルダー陸部、
5b 外側ショルダー陸部、10 周方向細溝(DSG)、
10i,10o 開口端、11 内側溝壁、12 外側溝壁、
13 環状溝、13m 溝側底部、13n 拡幅部、
14 突起部、15 開口部側溝部、16~19 円弧部、
CL 赤道面、TG トレッド接地端。
 
 
1 tire, 2 tread, 3a main groove, 3b shoulder groove,
4 central land, 5 shoulder land, 5a inner shoulder land,
5b Outer shoulder land, 10 circumferential narrow groove (DSG),
10i, 10o open end, 11 inner groove wall, 12 outer groove wall,
13 annular groove, 13m groove side bottom, 13n widened part,
14 Protrusion, 15 Opening side groove, 16-19 Arc,
CL Equatorial plane, TG tread ground end.

Claims (4)

  1.  トレッド表面にタイヤ周方向に沿って延長するように形成された複数の周方向溝と、前記周方向溝のうちのタイヤ幅方向端部側に設けられた周方向溝とトレッド接地端との間の陸部に形成されて、タイヤ周方向に沿って延長する周方向細溝とを備えたタイヤであって、
    前記周方向細溝は、
    当該周方向細溝の溝底側に設けられてタイヤ周方向に連続して延びる、溝幅が、当該周方向細溝のタイヤ幅方向内側に位置する溝壁である内側溝壁とタイヤ幅方向外側に位置する溝壁である外側溝壁との間隔よりも広い環状溝と、
    前記外側溝壁に設けられて前記内側溝壁側に突出する、タイヤ周方向に実質的に連続する突起部とを備え、
    前記突起部が、前記外側溝壁のみに設けられて、荷重時に前記内側溝壁に接触することを特徴とするタイヤ。
    A plurality of circumferential grooves formed on the tread surface so as to extend along the tire circumferential direction, and between the circumferential grooves provided on the tire width direction end side of the circumferential grooves and the tread ground contact edge The tire is provided with a circumferential narrow groove that is formed in the land portion of the tire and extends along the tire circumferential direction,
    The circumferential narrow groove is
    An inner groove wall which is provided on the groove bottom side of the circumferential narrow groove and extends continuously in the tire circumferential direction, the groove width being a groove wall located on the inner side of the circumferential narrow groove in the tire width direction and the tire width direction An annular groove wider than the interval with the outer groove wall which is the groove wall located on the outside;
    A protrusion that is provided on the outer groove wall and protrudes toward the inner groove wall, and that is substantially continuous in the tire circumferential direction;
    The tire, wherein the protrusion is provided only on the outer groove wall and contacts the inner groove wall when loaded.
  2.  タイヤ幅方向断面において、
    前記内側溝壁のタイヤ径方向の長さをLとし、前記突起部の前記周方向細溝の開口部側の端部と前記外側溝壁の開口端との距離である突起部深さをHとしたときに、前記突起部深さHは0≦H≦L/3なる関係を満たしていることを特徴とする請求項1に記載のタイヤ。
    In the tire width direction cross section,
    The length of the inner groove wall in the tire radial direction is L, and the protrusion depth, which is the distance between the end of the protrusion on the opening side of the circumferential groove and the opening end of the outer groove wall, is H. 2. The tire according to claim 1, wherein the protrusion depth H satisfies a relationship of 0 ≦ H ≦ L / 3.
  3.  タイヤ幅方向断面において、
    前記突起部のタイヤ径方向に沿った長さである突起部長さをKとすると、前記突起部深さHと突起部長さKとは、L/3≦H+K≦Lなる関係を満たし、
    前記突起部の前記外側溝壁からの突出寸法である突起部厚さをw、前記内側溝壁と前記外側溝壁との間隔をWとすると、前記突出部厚さwはW/3≦w≦2W/3なる関係を満たしていることを特徴とする請求項2に記載のタイヤ。
    In the tire width direction cross section,
    When the protrusion length, which is the length along the tire radial direction of the protrusion, is K, the protrusion depth H and the protrusion length K satisfy the relationship L / 3 ≦ H + K ≦ L,
    The protrusion thickness w is W / 3 ≦ w, where w is the protrusion thickness, which is the protruding dimension of the protrusion from the outer groove wall, and W is the distance between the inner groove wall and the outer groove wall. The tire according to claim 2, wherein a relationship of ≦ 2 W / 3 is satisfied.
  4.  前記環状溝が、
    曲率中心が前記内側溝壁のタイヤ幅方向内側にあり、一端が前記内側溝壁に繋がる、曲率半径R1が1.0~12.0mmの第1の円弧部と、
    曲率中心が当該環状溝内にあり、前記第1の円弧部の終端部から当該環状溝のタイヤ幅方向最内端までの間に設けられた、曲率半径R2が1.5~4.0mmの第2の円弧部と、
    曲率中心が当該環状溝内にあり、当該環状溝のタイヤ幅方向最内端から当該環状溝のタイヤ径方向最内端までの間に設けられた、曲率半径R3が1.0~16.0mmの第3の円弧部と、
    曲率中心が当該環状溝内にあり、前記第3の円弧部の終端部と前記外側溝壁との間に設けられた、前記外側溝壁の終端に繋がる、曲率半径R4が2.0~16.0mmの第4の円弧部とを備え、
    前記環状溝のタイヤ幅方向最内端から前記外側溝壁までのタイヤ幅方向距離が5.7~6.5mmであって、
    前記内側溝壁の延長方向と、トレッド踏面とのなす角度θが、60°以上90°未満であることを特徴とする請求項2または請求項3に記載のタイヤ。
    The annular groove is
    A first arc portion having a radius of curvature R1 of 1.0 to 12.0 mm, the center of curvature being on the inner side in the tire width direction of the inner groove wall and one end connected to the inner groove wall;
    The center of curvature is in the annular groove, and the radius of curvature R2 provided between the terminal end of the first arc portion and the innermost end in the tire width direction of the annular groove is 1.5 to 4.0 mm. A second arc portion;
    The center of curvature is in the annular groove, and the radius of curvature R3 provided between the innermost end in the tire width direction of the annular groove and the innermost end in the tire radial direction of the annular groove is 1.0 to 16.0 mm. A third arc portion of
    The center of curvature is in the annular groove, and the radius of curvature R4 provided between the terminal end of the third arc portion and the outer groove wall and connected to the terminal end of the outer groove wall is 2.0-16. A fourth arc portion of 0.0 mm,
    The distance in the tire width direction from the innermost end in the tire width direction of the annular groove to the outer groove wall is 5.7 to 6.5 mm,
    4. The tire according to claim 2, wherein an angle θ between the extending direction of the inner groove wall and the tread surface is 60 ° or more and less than 90 °. 5.
PCT/JP2015/052352 2014-03-12 2015-01-28 Tire WO2015136996A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014049104A JP2015171865A (en) 2014-03-12 2014-03-12 tire
JP2014-049104 2014-03-12

Publications (1)

Publication Number Publication Date
WO2015136996A1 true WO2015136996A1 (en) 2015-09-17

Family

ID=54071450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052352 WO2015136996A1 (en) 2014-03-12 2015-01-28 Tire

Country Status (2)

Country Link
JP (1) JP2015171865A (en)
WO (1) WO2015136996A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180134091A1 (en) * 2016-11-15 2018-05-17 Toyo Tire & Rubber Co., Ltd. Pneumatic tire
US20180134095A1 (en) * 2016-11-11 2018-05-17 Toyo Tire & Rubber Co., Ltd. Pneumatic tire
US20180162176A1 (en) * 2016-12-14 2018-06-14 Toyo Tire & Rubber Co., Ltd. Pneumatic tire
EP3560733A1 (en) * 2018-04-26 2019-10-30 Hankook Tire Co., Ltd. Tire for preventing irregular tread wear
CN111873718A (en) * 2020-07-30 2020-11-03 江苏通用科技股份有限公司 Stepped radiating groove of tire shoulder
CN114746286A (en) * 2019-11-21 2022-07-12 大陆轮胎德国有限公司 Commercial vehicle tire

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6754681B2 (en) * 2016-11-25 2020-09-16 Toyo Tire株式会社 Pneumatic tires

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH037604A (en) * 1989-06-05 1991-01-14 Ohtsu Tire & Rubber Co Ltd :The Heavy duty pneumatic tire
JP2001260612A (en) * 2000-03-21 2001-09-26 Bridgestone Corp Pneumatic tire for heavy load
JP2002019420A (en) * 2000-07-04 2002-01-23 Bridgestone Corp Pneumatic tire
JP2003048408A (en) * 2001-08-07 2003-02-18 Bridgestone Corp Pneumatic tire
WO2008111582A1 (en) * 2007-03-13 2008-09-18 Bridgestone Corporation Pneumatic tire
JP2012162135A (en) * 2011-02-04 2012-08-30 Bridgestone Corp Pneumatic tire

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH037604A (en) * 1989-06-05 1991-01-14 Ohtsu Tire & Rubber Co Ltd :The Heavy duty pneumatic tire
JP2001260612A (en) * 2000-03-21 2001-09-26 Bridgestone Corp Pneumatic tire for heavy load
JP2002019420A (en) * 2000-07-04 2002-01-23 Bridgestone Corp Pneumatic tire
JP2003048408A (en) * 2001-08-07 2003-02-18 Bridgestone Corp Pneumatic tire
WO2008111582A1 (en) * 2007-03-13 2008-09-18 Bridgestone Corporation Pneumatic tire
JP2012162135A (en) * 2011-02-04 2012-08-30 Bridgestone Corp Pneumatic tire

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108068557B (en) * 2016-11-11 2020-01-10 东洋橡胶工业株式会社 Pneumatic tire
US20180134095A1 (en) * 2016-11-11 2018-05-17 Toyo Tire & Rubber Co., Ltd. Pneumatic tire
CN108068557A (en) * 2016-11-11 2018-05-25 东洋橡胶工业株式会社 Pneumatic tire
US10639938B2 (en) 2016-11-11 2020-05-05 Toyo Tire Corporation Pneumatic tire
JP2018079767A (en) * 2016-11-15 2018-05-24 東洋ゴム工業株式会社 Pneumatic tire
US20180134091A1 (en) * 2016-11-15 2018-05-17 Toyo Tire & Rubber Co., Ltd. Pneumatic tire
US20180162176A1 (en) * 2016-12-14 2018-06-14 Toyo Tire & Rubber Co., Ltd. Pneumatic tire
CN110406325A (en) * 2018-04-26 2019-11-05 韩国轮胎株式会社 Prevent the tire of irregular wear
EP3560733A1 (en) * 2018-04-26 2019-10-30 Hankook Tire Co., Ltd. Tire for preventing irregular tread wear
CN110406325B (en) * 2018-04-26 2022-02-11 韩国轮胎株式会社 Irregular wear prevention tire
CN114746286A (en) * 2019-11-21 2022-07-12 大陆轮胎德国有限公司 Commercial vehicle tire
CN114746286B (en) * 2019-11-21 2023-11-21 大陆轮胎德国有限公司 Commercial vehicle tyre
CN111873718A (en) * 2020-07-30 2020-11-03 江苏通用科技股份有限公司 Stepped radiating groove of tire shoulder

Also Published As

Publication number Publication date
JP2015171865A (en) 2015-10-01

Similar Documents

Publication Publication Date Title
WO2015136996A1 (en) Tire
CA2680648C (en) Pneumatic tire with circumferential shoulder grooves
RU2554035C2 (en) Tire stud
JP5060973B2 (en) Pneumatic tire
JP4539774B2 (en) Heavy duty pneumatic tire
WO2014178186A1 (en) Pneumatic tyre
WO2013150783A1 (en) Pneumatic tire
JP6122872B2 (en) Low wear tire tread band
US20180104992A1 (en) Tire Comprising A Tread Layer Containing Channels
US20160375729A1 (en) Tread Band Having Curved Blocks with Sipes
RU2014134855A (en) TIRE
JP2012162135A (en) Pneumatic tire
EP3290236A1 (en) Tire tread with asymmetric circumferential groove
JP5309741B2 (en) Pneumatic tire
JP2010052683A (en) Pneumatic tire
JP2012148678A (en) Pneumatic tire
JP2009248582A (en) Pneumatic tire
JP2011245996A (en) Pneumatic tire
JP2019026010A (en) tire
JP6557064B2 (en) Heavy duty tire
JP5986502B2 (en) Evaluation method of carcass durability at bead part of heavy duty tire
JP2013107545A (en) Pneumatic radial tire
JP6754675B2 (en) Pneumatic tires
JP4966749B2 (en) Pneumatic tire
JP2019099077A (en) Pneumatic tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15762166

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15762166

Country of ref document: EP

Kind code of ref document: A1