WO2015136861A1 - Cooling system - Google Patents

Cooling system Download PDF

Info

Publication number
WO2015136861A1
WO2015136861A1 PCT/JP2015/000912 JP2015000912W WO2015136861A1 WO 2015136861 A1 WO2015136861 A1 WO 2015136861A1 JP 2015000912 W JP2015000912 W JP 2015000912W WO 2015136861 A1 WO2015136861 A1 WO 2015136861A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber hose
impeller
cooling water
pump
coolant
Prior art date
Application number
PCT/JP2015/000912
Other languages
French (fr)
Japanese (ja)
Inventor
武司 山本
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2015136861A1 publication Critical patent/WO2015136861A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/04Arrangements of liquid pipes or hoses

Definitions

  • the present disclosure relates to a cooling system that cools an object to be cooled using a coolant.
  • Patent Document 1 describes a centrifugal pump in which cooling liquid is sucked into an impeller in a direction parallel to the rotation axis of the impeller and discharged from the impeller in a direction orthogonal to the rotation axis of the impeller. .
  • the pump is provided with a mechanism for generating a swirling flow of the cooling liquid in the casing in a flow path from the suction port to the impeller in the casing that houses the impeller.
  • a rubber hose is used as a pipe connected to a pump inlet. Since the rubber hose can be bent and deformed, it can be mounted on the vehicle and has a high degree of freedom in piping layout when mounted on the vehicle. Furthermore, the rubber hose does not require a complicated seal structure at the pipe connection portion, and is lightweight. Therefore, the fuel consumption of the vehicle can be improved as compared with the case where a pipe heavier than the rubber hose is employed.
  • This indication aims at providing the cooling system which can improve pump efficiency, preventing collapse of a rubber hose in view of the above-mentioned point.
  • the cooling system of the present disclosure includes a casing formed with a suction port for sucking a coolant and a discharge port for discharging the coolant, and is accommodated in the casing, and sucks the coolant by rotating together with the rotating shaft.
  • a pump having an impeller that discharges the sucked coolant in a direction intersecting the rotation axis, a rubber hose that is connected to the suction port and through which the coolant flows, and is arranged inside the rubber hose so as to be in contact with the inner peripheral surface of the rubber hose And a coil in which a linear member is spirally wound.
  • FIG. 1 It is a figure which shows the cross-sectional structure of the pump in 1st Embodiment, and a cooling system. It is a perspective view of an impeller inside a pump and a coil inside a rubber hose in the first embodiment. It is a measurement result of the pump efficiency in the cooling system of 1st, 2nd embodiment and the comparative example 1.
  • FIG. It is a perspective view of the impeller inside a pump and the coil inside a rubber hose in 2nd Embodiment.
  • the cooling system of the present disclosure is applied to a cooling system for a vehicle that is mounted on a vehicle and cools an engine for the vehicle with cooling water.
  • the cooling system 1 for vehicles of this embodiment is equipped with the electric water pump 2, the engine 3, the radiator 4, and the piping 5, 6, and 7 which connect these. .
  • the water pump 2, the engine 3, and the radiator 4 are connected to each other by pipes 5, 6, and 7.
  • a cooling water circuit in which the cooling water circulates in the order of the water pump 2, the engine 3, and the radiator 4 is configured.
  • an ethylene glycol aqueous solution is used as the cooling water.
  • the water pump 2, the engine 3, and the cooling water of the present embodiment correspond to a pump, a heating element mounted on the vehicle, and a coolant, respectively.
  • the water pump 2 distributes cooling water.
  • the water pump 2 includes a casing 13, an impeller (impeller) 15, and an electric motor 16.
  • the casing 13 has a suction port 11 for sucking cooling water and a discharge port 12 for discharging cooling water.
  • the impeller 15 is accommodated inside the casing 13 and rotates together with the rotating shaft 14.
  • the electric motor 16 rotationally drives the impeller 15.
  • a centrifugal pump is employed as the water pump 2.
  • Casing 13 is made of resin.
  • the suction port 11 of the casing 13 is formed of a cylindrical portion, and the axis X1 of the rotary shaft 14 and the axis X2 of the suction port 11 are aligned. Thereby, cooling water is sucked into the impeller 15 from the suction port 11 in a direction parallel to the rotation shaft 14.
  • the casing 13 has a scroll portion 17 that forms a spiral cooling water passage on the radially outer side of the impeller 15. The end of the scroll part 17 is the discharge port 12.
  • the impeller 15 is made of resin.
  • the impeller 15 has a closed structure having two disk parts 15a and 15b and a plurality of blade parts 15c arranged between the two disk parts 15a and 15b.
  • the rotating shaft 14 is made of metal and is sealed with a mechanical seal 18 inside the casing 13.
  • the engine 3 is an internal combustion engine mounted on a vehicle, and is an object to be cooled that is cooled by cooling water.
  • the engine 3 has a cooling water inlet 3a through which cooling water flows into the interior, and a cooling water outlet 3b through which cooling water flows out to the outside.
  • the cooling water inlet 3 a of the engine 3 is connected to the discharge port 12 of the water pump 2 via the pipe 5.
  • the radiator 4 is a heat exchanger that exchanges heat between cooling water and air to dissipate the cooling water.
  • the radiator 4 has a cooling water inlet 4a through which cooling water flows into the interior, and a cooling water outlet 4b through which cooling water flows out to the outside.
  • the cooling water inlet 4 a is connected to the cooling water outlet 3 b of the engine 3 through the pipe 6.
  • the cooling water outlet 4b is connected to the suction port 11 of the water pump 2 through a rubber hose 7 as a pipe.
  • the rubber hose 7 is a rubber hose (pipe) that bends freely.
  • a general rubber hose used in a vehicle cooling system can be employed.
  • the rubber hose 7 has one end connected to the suction port 11 of the water pump 2 and the other end connected to the cooling water outlet 4 b of the radiator 4. Cooling water flows inside the rubber hose 7 from the radiator 4 toward the water pump 2.
  • a coil 21 is located inside the rubber hose 7 so as to be in contact with the inner peripheral surface of the rubber hose 7.
  • the coil 21 is formed by spirally winding a metal linear member having high corrosion resistance such as stainless steel.
  • the coil 21 reinforces the rubber hose 7 and generates a swirling flow in the cooling water flowing inside the rubber hose 7.
  • the thickness of the linear member is set so that the strength against the compressive force in the radial direction of the coil is higher than that of the rubber hose 7.
  • the length of the coil 21 may not be the same as the length from the suction port 11 of the water pump 2 to the cooling water outlet 4b of the radiator 4 as long as the rubber hose 7 can be prevented from being crushed.
  • the helical angle of the coil 21 is appropriately set according to the performance and the rotational speed of the water pump 2 so that a swirling flow capable of improving the pump efficiency can be generated.
  • the coil 21 is not fixed to the casing 13 and the rubber hose 7 by welding or the like. However, since the outer diameter of the coil is larger than the inner diameter of the cylindrical portion constituting the suction port 11 of the casing 13, the positioning inside the rubber hose 7 is performed by hitting the suction port 11 of the casing 13. The coil 21 is press-fitted into the rubber hose 7 and is held by the rubber hose 7 by the elastic force of the rubber hose 7.
  • the winding direction D1 of the coil 21 when viewed from the upstream side of the cooling water flow is opposite to the rotational direction D2 of the impeller 15. Specifically, when the impeller 15 and the coil 21 are viewed from the upstream side of the cooling water flow, the rotation direction D2 of the impeller 15 is counterclockwise (counterclockwise), whereas the winding direction D1 of the coil 21 is clockwise. Rotation (clockwise).
  • the cooling water is sucked into the casing 13 from the suction port 11, and the cooling water is sucked into the impeller 15 from a direction parallel to the rotation shaft 14. Cooling water is discharged from the impeller 15 in a direction orthogonal to the direction 14. At this time, the cooling water flows into the blade portion 15c of the impeller 15 and flows along the blade portion 15c, whereby the flow direction of the cooling water is changed. Then, the cooling water discharged from the impeller 15 passes through the scroll portion 17 and is discharged from the discharge port 12. Note that that the cooling water is sucked into the impeller 15 means that the cooling water flows between the blade portions 15c adjacent to each other in the rotation direction D2. The cooling water being discharged from the impeller 15 means that the cooling water is discharged from between the blade portions 15c adjacent to each other in the rotation direction D2.
  • the cooling water discharged from the discharge port 12 of the water pump 2 passes through the inside of the engine 3 to cool the engine 3 and is then radiated by the radiator 4. Then, the cooling water radiated by the radiator 4 flows through the rubber hose 7 and is sucked from the suction port 11 of the water pump 2.
  • FIG. 3 measured the pump efficiency by controlling the flow rate by changing the pipe resistance using a prototype of the water pump 2 having a rotation speed of 5000 rpm and a flow rate of about 200 L / min (pump output 500 W). It is an experimental result. In this experiment, the cooling water temperature was room temperature.
  • Comparative Example 1 shown in FIG. 3 the coil 21 inside the rubber hose 7 is omitted from the cooling system 1 of the present embodiment. From FIG. 3, it can be seen that the pump efficiency of the present embodiment is higher than that of the comparative example in an operation region where the pump output is 400 W or higher. Therefore, as in the present embodiment, the cooling water is also drawn into the impeller 15 by generating a swirling flow swirling in the direction opposite to the rotation direction D2 of the impeller 15 with respect to the cooling water sucked into the impeller 15. When the direction is changed by flowing into the blade portion 15c and flowing along the blade portion 15c, it is presumed that a flow with less flow loss along the blade portion 15c can be made.
  • the rubber hose 7 is reinforced by the coil 21 disposed inside the rubber hose 7. Therefore, the rubber hose 7 can be prevented from being crushed due to a pressure drop on the suction port 11 side of the casing 13, and the effective flow area of the cooling water can be maintained at a required size.
  • an existing general rubber hose can be adopted as the rubber hose 7.
  • the coil 21 is simply inserted into the rubber hose 7, and the coil 21 can be easily assembled to the rubber hose 7.
  • the cooling system 1 of this embodiment is obtained by changing the coil 21 in the cooling system 1 of the first embodiment to a coil 22 shown in FIG. 4, and the other configuration is the same as that of the first embodiment.
  • the winding direction D ⁇ b> 1 when viewed from the upstream side of the cooling water flow is the same direction as the rotational direction D ⁇ b> 2 of the impeller 15.
  • the winding direction D1 of the coil 22 and the rotation direction D2 of the impeller 15 are counterclockwise. For this reason, a swirl flow swirling in the same direction as the rotation direction D ⁇ b> 2 is generated inside the rubber hose 7.
  • the pump efficiency can be improved in the operation region where the pump output is large as compared with the comparative example 1 in which the swirl flow is not generated according to this embodiment. Can do.
  • the winding direction D1 of the coil disposed inside the rubber hose 7 is preferably opposite to the rotation direction D2 of the impeller 15.
  • the present disclosure is not limited to the above-described embodiment, and can be appropriately changed within a range not departing from the gist of the present disclosure, for example, as described below.
  • the coils 21 and 22 are made of metal, but may be made of resin.
  • the casing 13 of the water pump 2 is not provided with a mechanism for generating a swirling flow in the cooling water.
  • the casing 13 may be provided with a mechanism similar to that of the prior art.
  • the cooling system 1 constitutes a cooling water circuit in which the cooling water circulates in the order of the water pump 2, the engine 3, and the radiator 4.
  • a cooling water circuit in which cooling water circulates in the order of the water pump 2, the radiator 4, and the engine 3 may be configured.
  • the cooling system 1 of the present disclosure is applied to a vehicle cooling system whose cooling target is the engine 3.
  • the cooling target is not limited to the engine 3, and the cooling system 1 of the present disclosure can be applied to a cooling system that cools a heating element mounted on a vehicle.
  • the heating element mounted on the vehicle is, for example, an inverter of an electric vehicle or a hybrid vehicle, a fuel cell of a fuel cell vehicle, or the like.
  • the cooling system 1 of the present disclosure can also be applied to a cooling system that cools a heating element other than a heating element mounted on a vehicle.
  • an ethylene glycol aqueous solution is used as the cooling water, but other aqueous solutions may be used, and a coolant other than the aqueous solution may be used.
  • the centrifugal pump is employed as the water pump 2, but a mixed flow pump may be employed.
  • the cooling water is sucked into the impeller from a direction parallel to the rotation axis, and the cooling water is discharged from the impeller in a direction oblique to the rotation axis.
  • the present disclosure can employ a pump that discharges cooling water sucked into the impeller from the impeller in a direction intersecting the rotation axis.
  • the flow direction of the cooling water sucked into the impeller may not be a direction parallel to the rotation axis, and may be a direction along the rotation axis.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

A cooling system is provided with: a pump (2) having a casing (13) in which an intake port (11) for drawing in a coolant and a discharge port (12) for discharging the coolant are formed, and an impeller (15) that is housed inside the casing and rotates with a rotating shaft (14) so as to draw in the coolant and discharge the drawn-in coolant in a direction that intersects with the rotating shaft; a rubber hose (7) connected to the intake port and through which the coolant flows; and a coil (21, 22) formed by winding a linear member into a spiral shape and placed inside the rubber hose so as to be in contact with the inner peripheral surface of the rubber hose.

Description

冷却システムCooling system 関連出願の相互参照Cross-reference of related applications
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2014年3月12日に出願された日本特許出願2014-049035号を基にしている。 This application is based on Japanese Patent Application No. 2014-049035 filed on March 12, 2014, the disclosure of which is incorporated herein by reference.
 本開示は、冷却液を用いて冷却対象物を冷却する冷却システムに関するものである。 The present disclosure relates to a cooling system that cools an object to be cooled using a coolant.
 特許文献1には、インペラの回転軸と平行な方向で冷却液がインペラ内に吸入され、インペラの回転軸と直交する方向で冷却液がインペラから吐出される遠心式のポンプが記載されている。このポンプには、インペラを収容するケーシングのうち吸入口からインペラに至るまでの流路に、ケーシングの内部に冷却液の旋回流を発生させるための機構が設けられている。 Patent Document 1 describes a centrifugal pump in which cooling liquid is sucked into an impeller in a direction parallel to the rotation axis of the impeller and discharged from the impeller in a direction orthogonal to the rotation axis of the impeller. . The pump is provided with a mechanism for generating a swirling flow of the cooling liquid in the casing in a flow path from the suction port to the impeller in the casing that houses the impeller.
 これによれば、インペラに吸入される冷却液に旋回流を発生させることで、冷却液がインペラに吸入される際に生じる流れ損失を低減でき、ポンプ効率の向上を図ることができる。なお、特許文献1の従来技術では、インペラの回転方向と同じ方向に旋回する旋回流を発生させている。 According to this, by generating a swirl flow in the coolant sucked into the impeller, it is possible to reduce the flow loss that occurs when the coolant is sucked into the impeller, and to improve the pump efficiency. In the prior art of Patent Document 1, a swirl flow swirling in the same direction as the rotation direction of the impeller is generated.
特開2012-92698号公報JP 2012-92698 A
 ところで、車両用の冷却システムでは、ポンプの吸入口に接続される配管としてゴムホースが用いられている。ゴムホースは、曲げ変形させることができるため、車両搭載性が良く、車両搭載時の配管レイアウトの自由度が高い。さらに、ゴムホースは、配管接続部に複雑なシール構造が不要であり、軽量でもある。従って、ゴムホースよりも重い配管を採用する場合と比較して、車両の燃費を向上できる。 By the way, in a vehicle cooling system, a rubber hose is used as a pipe connected to a pump inlet. Since the rubber hose can be bent and deformed, it can be mounted on the vehicle and has a high degree of freedom in piping layout when mounted on the vehicle. Furthermore, the rubber hose does not require a complicated seal structure at the pipe connection portion, and is lightweight. Therefore, the fuel consumption of the vehicle can be improved as compared with the case where a pipe heavier than the rubber hose is employed.
 そして、ゴムホースを用いる車両用の冷却システムにおいて、上述の特許文献1の従来技術を適用して、ポンプのケーシングのうち吸入口からインペラに至るまでの流路に冷却水の旋回流を発生させる機構を設けることが考えられる。これにより、ポンプ効率を向上させてポンプの大出力化を図ることが可能となる。 And in the cooling system for vehicles using a rubber hose, the mechanism which generates the swirl | vortex flow of a cooling water in the flow path from the inlet to the impeller among the casings of a pump by applying the prior art of the above-mentioned patent document 1 It is conceivable to provide As a result, the pump efficiency can be improved and the output of the pump can be increased.
 しかし、本出願の発明者による検討によれば、このようにしてポンプの大出力化を図っても、実際にポンプを大出力で運転した際には、ケーシングの吸入口側の圧力が低下して負圧となり、冷却液の温度条件によってはゴムホースがつぶれてしまう恐れがある。この場合、必要な流量の冷却液を送り出すことができなくなる。 However, according to the examination by the inventors of the present application, even when the pump output is increased in this way, when the pump is actually operated at a large output, the pressure on the suction port side of the casing decreases. Therefore, the rubber hose may be crushed depending on the temperature condition of the coolant. In this case, it becomes impossible to send out a coolant having a necessary flow rate.
 本開示は上記点に鑑みて、ゴムホースのつぶれを防止しつつ、ポンプ効率を向上させることができる冷却システムを提供することを目的とする。 This indication aims at providing the cooling system which can improve pump efficiency, preventing collapse of a rubber hose in view of the above-mentioned point.
 本開示の冷却システムは、冷却液を吸入する吸入口および冷却液を吐出する吐出口が形成されたケーシング、およびケーシングの内部に収容され、回転軸とともに回転することにより、冷却液を吸入し、吸入した冷却液を回転軸と交差する方向へ吐出するインペラとを有するポンプと、吸入口に接続され、内部を冷却液が流れるゴムホースと、ゴムホースの内周面に接するようにゴムホースの内部に配置され、線状部材をらせん状に巻いたコイルとを備える。 The cooling system of the present disclosure includes a casing formed with a suction port for sucking a coolant and a discharge port for discharging the coolant, and is accommodated in the casing, and sucks the coolant by rotating together with the rotating shaft. A pump having an impeller that discharges the sucked coolant in a direction intersecting the rotation axis, a rubber hose that is connected to the suction port and through which the coolant flows, and is arranged inside the rubber hose so as to be in contact with the inner peripheral surface of the rubber hose And a coil in which a linear member is spirally wound.
 本開示では、ケーシングの吸入口に接続されるゴムホースの内部にコイルを配置することで、ゴムホースを補強するだけでなく、コイルの形状特性によってゴムホースの内部を流れる冷却液に旋回流を発生させることができる。これにより、ケーシングの吸入口側の圧力低下によるゴムホースのつぶれを防止しつつ、冷却液がインペラに吸入される際に生じる流れ損失を低減して、ポンプ効率を向上させることができる。 In the present disclosure, by arranging the coil inside the rubber hose connected to the suction port of the casing, not only the rubber hose is reinforced, but also a swirl flow is generated in the coolant flowing inside the rubber hose according to the shape characteristic of the coil. Can do. Accordingly, it is possible to improve the pump efficiency by reducing the flow loss that occurs when the coolant is sucked into the impeller while preventing the rubber hose from being crushed due to the pressure drop on the suction port side of the casing.
第1実施形態におけるポンプの断面構成および冷却システムを示す図である。It is a figure which shows the cross-sectional structure of the pump in 1st Embodiment, and a cooling system. 第1実施形態におけるポンプ内部のインペラとゴムホース内部のコイルの斜視図である。It is a perspective view of an impeller inside a pump and a coil inside a rubber hose in the first embodiment. 第1、第2実施形態および比較例1の冷却システムにおけるポンプ効率の測定結果である。It is a measurement result of the pump efficiency in the cooling system of 1st, 2nd embodiment and the comparative example 1. FIG. 第2実施形態におけるポンプ内部のインペラとゴムホース内部のコイルの斜視図である。It is a perspective view of the impeller inside a pump and the coil inside a rubber hose in 2nd Embodiment.
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。
(第1実施形態)
 本実施形態は、車両に搭載され、車両用のエンジンを冷却水によって冷却する車両用の冷却システムに本開示の冷却システムを適用したものである。
Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, parts that are the same or equivalent to each other will be described with the same reference numerals.
(First embodiment)
In the present embodiment, the cooling system of the present disclosure is applied to a cooling system for a vehicle that is mounted on a vehicle and cools an engine for the vehicle with cooling water.
 図1に示すように、本実施形態の車両用の冷却システム1は、電動式のウォータポンプ2と、エンジン3と、ラジエータ4と、これらを接続する配管5、6、7とを備えている。ウォータポンプ2、エンジン3およびラジエータ4は、配管5、6、7によって互いに接続されている。これにより、ウォータポンプ2、エンジン3、ラジエータ4の順に冷却水が循環する冷却水回路が構成される。本実施形態では、冷却水として、エチレングリコール水溶液を用いている。また、本実施形態のウォータポンプ2、エンジン3、冷却水が、それぞれ、ポンプ、車両に搭載される発熱体、冷却液に対応する。 As shown in FIG. 1, the cooling system 1 for vehicles of this embodiment is equipped with the electric water pump 2, the engine 3, the radiator 4, and the piping 5, 6, and 7 which connect these. . The water pump 2, the engine 3, and the radiator 4 are connected to each other by pipes 5, 6, and 7. Thereby, a cooling water circuit in which the cooling water circulates in the order of the water pump 2, the engine 3, and the radiator 4 is configured. In the present embodiment, an ethylene glycol aqueous solution is used as the cooling water. In addition, the water pump 2, the engine 3, and the cooling water of the present embodiment correspond to a pump, a heating element mounted on the vehicle, and a coolant, respectively.
 ウォータポンプ2は、冷却水を流通させる。具体的には、ウォータポンプ2は、ケーシング13と、インペラ(羽根車)15と、電動モータ16とを備える。ケーシング13は、冷却水を吸入する吸入口11および冷却水を吐出する吐出口12を有する。インペラ15は、ケーシング13の内部に収容され、回転軸14とともに回転する。電動モータ16は、インペラ15を回転駆動する。本実施形態では、ウォータポンプ2として遠心ポンプを採用している。 The water pump 2 distributes cooling water. Specifically, the water pump 2 includes a casing 13, an impeller (impeller) 15, and an electric motor 16. The casing 13 has a suction port 11 for sucking cooling water and a discharge port 12 for discharging cooling water. The impeller 15 is accommodated inside the casing 13 and rotates together with the rotating shaft 14. The electric motor 16 rotationally drives the impeller 15. In this embodiment, a centrifugal pump is employed as the water pump 2.
 ケーシング13は、樹脂で構成されている。ケーシング13の吸入口11は、筒部で構成されており、回転軸14の軸心X1と吸入口11の軸心X2とが一致している。これにより、回転軸14と平行な方向にて吸入口11からインペラ15に冷却水が吸入される。ケーシング13は、インペラ15の径方向外側に渦巻き状の冷却水通路を構成するスクロール部17を有している。スクロール部17の終端部が吐出口12である。 Casing 13 is made of resin. The suction port 11 of the casing 13 is formed of a cylindrical portion, and the axis X1 of the rotary shaft 14 and the axis X2 of the suction port 11 are aligned. Thereby, cooling water is sucked into the impeller 15 from the suction port 11 in a direction parallel to the rotation shaft 14. The casing 13 has a scroll portion 17 that forms a spiral cooling water passage on the radially outer side of the impeller 15. The end of the scroll part 17 is the discharge port 12.
 インペラ15は、樹脂で構成されている。インペラ15は、2枚の円盤部15a、15bと、この2枚の円盤部15a、15bの間に配置された複数枚の羽根部15cとを有するクローズ型構造を有する。なお、回転軸14は、金属で構成されており、ケーシング13の内部において、メカニカルシール18でシールされている。 The impeller 15 is made of resin. The impeller 15 has a closed structure having two disk parts 15a and 15b and a plurality of blade parts 15c arranged between the two disk parts 15a and 15b. The rotating shaft 14 is made of metal and is sealed with a mechanical seal 18 inside the casing 13.
 エンジン3は、車両に搭載された内燃機関であり、冷却水によって冷却される冷却対象物である。エンジン3は、内部に冷却水を流入させる冷却水入口3aと、外部に冷却水を流出する冷却水出口3bとを有している。エンジン3の冷却水入口3aは、配管5を介して、ウォータポンプ2の吐出口12と接続されている。 The engine 3 is an internal combustion engine mounted on a vehicle, and is an object to be cooled that is cooled by cooling water. The engine 3 has a cooling water inlet 3a through which cooling water flows into the interior, and a cooling water outlet 3b through which cooling water flows out to the outside. The cooling water inlet 3 a of the engine 3 is connected to the discharge port 12 of the water pump 2 via the pipe 5.
 ラジエータ4は、冷却水と空気とを熱交換させて、冷却水を放熱させる熱交換器である。ラジエータ4は、内部に冷却水を流入させる冷却水入口4aと、外部に冷却水を流出する冷却水出口4bとを有している。冷却水入口4aは、配管6を介して、エンジン3の冷却水出口3bと接続されている。冷却水出口4bは、配管としてのゴムホース7を介して、ウォータポンプ2の吸入口11に接続されている。 The radiator 4 is a heat exchanger that exchanges heat between cooling water and air to dissipate the cooling water. The radiator 4 has a cooling water inlet 4a through which cooling water flows into the interior, and a cooling water outlet 4b through which cooling water flows out to the outside. The cooling water inlet 4 a is connected to the cooling water outlet 3 b of the engine 3 through the pipe 6. The cooling water outlet 4b is connected to the suction port 11 of the water pump 2 through a rubber hose 7 as a pipe.
 ゴムホース7は、自由に曲がるゴム製のホース(配管)である。ゴムホース7としては、車両用の冷却システムに用いられる一般的なゴムホースを採用することができる。ゴムホース7は、一端がウォータポンプ2の吸入口11に接続され、他端がラジエータ4の冷却水出口4bに接続されている。ゴムホース7の内部を、ラジエータ4からウォータポンプ2に向かって冷却水が流れる。ゴムホース7の内部には、ゴムホース7の内周面に接するようにコイル21が位置している。 The rubber hose 7 is a rubber hose (pipe) that bends freely. As the rubber hose 7, a general rubber hose used in a vehicle cooling system can be employed. The rubber hose 7 has one end connected to the suction port 11 of the water pump 2 and the other end connected to the cooling water outlet 4 b of the radiator 4. Cooling water flows inside the rubber hose 7 from the radiator 4 toward the water pump 2. A coil 21 is located inside the rubber hose 7 so as to be in contact with the inner peripheral surface of the rubber hose 7.
 コイル21は、ステンレス等の耐腐食性が高い金属製の線状部材をらせん状に巻いたものである。コイル21は、ゴムホース7を補強するとともに、ゴムホース7の内部を流れる冷却水に旋回流を発生させる。 The coil 21 is formed by spirally winding a metal linear member having high corrosion resistance such as stainless steel. The coil 21 reinforces the rubber hose 7 and generates a swirling flow in the cooling water flowing inside the rubber hose 7.
 このため、コイルの径方向における圧縮力に対する強度がゴムホース7よりも高くなるように、線状部材の太さ等が設定されている。また、コイル21の長さは、ゴムホース7のつぶれを防止できれば、ウォータポンプ2の吸入口11からラジエータ4の冷却水出口4bまでの長さと同じでなくてもよく、それよりも短くてもよい。また、コイル21のらせん角度は、ポンプ効率を向上させることができる旋回流を発生できるように、ウォータポンプ2の性能や回転数に応じて適宜設定される。 For this reason, the thickness of the linear member is set so that the strength against the compressive force in the radial direction of the coil is higher than that of the rubber hose 7. Further, the length of the coil 21 may not be the same as the length from the suction port 11 of the water pump 2 to the cooling water outlet 4b of the radiator 4 as long as the rubber hose 7 can be prevented from being crushed. . Further, the helical angle of the coil 21 is appropriately set according to the performance and the rotational speed of the water pump 2 so that a swirling flow capable of improving the pump efficiency can be generated.
 コイル21は、ケーシング13およびゴムホース7に対して溶着等による固定はされていない。しかしながら、コイルの外径がケーシング13の吸入口11を構成する筒部の内径よりも大きいため、ケーシング13の吸入口11に突き当たることで、ゴムホース7内部の位置決めがされている。また、コイル21は、ゴムホース7の内部に圧入されており、ゴムホース7の弾性力によって、ゴムホース7に保持されている。 The coil 21 is not fixed to the casing 13 and the rubber hose 7 by welding or the like. However, since the outer diameter of the coil is larger than the inner diameter of the cylindrical portion constituting the suction port 11 of the casing 13, the positioning inside the rubber hose 7 is performed by hitting the suction port 11 of the casing 13. The coil 21 is press-fitted into the rubber hose 7 and is held by the rubber hose 7 by the elastic force of the rubber hose 7.
 図2に示すように、冷却水流れ上流側から見たときのコイル21の巻き方向D1が、インペラ15の回転方向D2とは逆方向である。具体的には、冷却水流れ上流側からインペラ15およびコイル21を見たとき、インペラ15の回転方向D2は反時計回り(左回り)であるのに対して、コイル21の巻き方向D1は時計回り(右回り)である。 As shown in FIG. 2, the winding direction D1 of the coil 21 when viewed from the upstream side of the cooling water flow is opposite to the rotational direction D2 of the impeller 15. Specifically, when the impeller 15 and the coil 21 are viewed from the upstream side of the cooling water flow, the rotation direction D2 of the impeller 15 is counterclockwise (counterclockwise), whereas the winding direction D1 of the coil 21 is clockwise. Rotation (clockwise).
 次に、本実施形態の作用および効果について説明する。 Next, the operation and effect of this embodiment will be described.
 ウォータポンプ2において、電動モータ16によりインペラ15が回転駆動すると、吸入口11からケーシング13の内部に冷却水が吸入され、回転軸14と平行な方向からインペラ15に冷却水が吸入され、回転軸14と直交する方向へインペラ15から冷却水が吐出される。このとき、冷却水がインペラ15の羽根部15cに流入し、羽根部15cに沿って流れることで、冷却水の流れ方向が変換される。そして、インペラ15から吐出された冷却水は、スクロール部17を通過して吐出口12から吐出される。なお、インペラ15に冷却水が吸入されるとは、回転方向D2において隣り合う羽根部15cと羽根部15cとの間に冷却水が流入することを意味する。インペラ15から冷却水が吐出されるとは、回転方向D2において隣り合う羽根部15cと羽根部15cとの間から冷却水が吐き出されることを意味する。 In the water pump 2, when the impeller 15 is rotationally driven by the electric motor 16, the cooling water is sucked into the casing 13 from the suction port 11, and the cooling water is sucked into the impeller 15 from a direction parallel to the rotation shaft 14. Cooling water is discharged from the impeller 15 in a direction orthogonal to the direction 14. At this time, the cooling water flows into the blade portion 15c of the impeller 15 and flows along the blade portion 15c, whereby the flow direction of the cooling water is changed. Then, the cooling water discharged from the impeller 15 passes through the scroll portion 17 and is discharged from the discharge port 12. Note that that the cooling water is sucked into the impeller 15 means that the cooling water flows between the blade portions 15c adjacent to each other in the rotation direction D2. The cooling water being discharged from the impeller 15 means that the cooling water is discharged from between the blade portions 15c adjacent to each other in the rotation direction D2.
 ウォータポンプ2の吐出口12から吐出された冷却水は、エンジン3の内部を通過して、エンジン3を冷却した後、ラジエータ4で放熱される。そして、ラジエータ4で放熱された冷却水が、ゴムホース7の内部を流れて、ウォータポンプ2の吸入口11から吸入される。 The cooling water discharged from the discharge port 12 of the water pump 2 passes through the inside of the engine 3 to cool the engine 3 and is then radiated by the radiator 4. Then, the cooling water radiated by the radiator 4 flows through the rubber hose 7 and is sucked from the suction port 11 of the water pump 2.
 このとき、本実施形態では、ゴムホース7の内部にコイル21が位置しているので、ゴムホース7の内部を流れる冷却水はコイル21に沿って流れる。このため、ゴムホース7の内部に、コイル21に沿って旋回する旋回流が生じる。本実施形態では、コイル21の巻き方向D1が、インペラ15の回転方向D2とは逆方向であるため、旋回流の旋回方向は、インペラ15の回転方向D2とは逆方向となる。 At this time, in this embodiment, since the coil 21 is located inside the rubber hose 7, the cooling water flowing inside the rubber hose 7 flows along the coil 21. For this reason, a swirl flow swirling along the coil 21 is generated inside the rubber hose 7. In the present embodiment, since the winding direction D1 of the coil 21 is opposite to the rotation direction D2 of the impeller 15, the turning direction of the swirling flow is opposite to the rotation direction D2 of the impeller 15.
 ここで、特許文献1の従来技術では、ポンプ効率の向上のために、インペラに吸入される冷却水に対して、インペラの回転方向と同じ方向に旋回する旋回流を発生させている。しかしながら、図3に示す実験結果からわかるように、インペラ15に吸入される冷却水に対して、インペラ15の回転方向D2と逆方向に旋回する旋回流を発生させることによっても、ポンプ効率を向上させることができる。 Here, in the prior art of Patent Document 1, in order to improve pump efficiency, a swirl flow swirling in the same direction as the impeller rotation direction is generated with respect to the cooling water sucked into the impeller. However, as can be seen from the experimental results shown in FIG. 3, the pump efficiency is also improved by generating a swirling flow swirling in the direction opposite to the rotation direction D <b> 2 of the impeller 15 with respect to the cooling water sucked into the impeller 15. Can be made.
 なお、図3は、ウォータポンプ2として、回転数5000rpmで流量が200L/min(ポンプ出力500W)程度の試作機を用いて、管路抵抗を変化させて流量を制御してポンプ効率を計測した実験結果である。この実験では、冷却水温度を常温とした。図3の縦軸のポンプ効率(%)は、ポンプ効率(%)=水仕事(W)/動力(W)×100の式によって算出したものである。本実施形態のウォータポンプ2は電動式であるため、動力(W)は動力(W)=入力電圧(V)×駆動電力(A)の式によって算出される値となる。また、図3の横軸のポンプ出力(W)は、水仕事(W)である。 In addition, FIG. 3 measured the pump efficiency by controlling the flow rate by changing the pipe resistance using a prototype of the water pump 2 having a rotation speed of 5000 rpm and a flow rate of about 200 L / min (pump output 500 W). It is an experimental result. In this experiment, the cooling water temperature was room temperature. The pump efficiency (%) on the vertical axis in FIG. 3 is calculated by the formula of pump efficiency (%) = water work (W) / power (W) × 100. Since the water pump 2 of the present embodiment is an electric type, the power (W) is a value calculated by the following formula: power (W) = input voltage (V) × drive power (A). Moreover, the pump output (W) on the horizontal axis in FIG. 3 is hydraulic work (W).
 図3に示す比較例1は、本実施形態の冷却システム1に対して、ゴムホース7の内部のコイル21を省略したものである。図3より、ポンプ出力が400W以上の大出力での運転領域では、本実施形態の方が比較例よりもポンプ効率が高いことがわかる。このことから、本実施形態のように、インペラ15に吸入される冷却水に対して、インペラ15の回転方向D2と逆方向に旋回する旋回流を発生させることによっても、冷却水がインペラ15の羽根部15cに流入して、羽根部15cに沿って流れることで方向変換される際に、羽根部15cに沿った流れ損失の少ない流れを作ることができると推測される。 In Comparative Example 1 shown in FIG. 3, the coil 21 inside the rubber hose 7 is omitted from the cooling system 1 of the present embodiment. From FIG. 3, it can be seen that the pump efficiency of the present embodiment is higher than that of the comparative example in an operation region where the pump output is 400 W or higher. Therefore, as in the present embodiment, the cooling water is also drawn into the impeller 15 by generating a swirling flow swirling in the direction opposite to the rotation direction D2 of the impeller 15 with respect to the cooling water sucked into the impeller 15. When the direction is changed by flowing into the blade portion 15c and flowing along the blade portion 15c, it is presumed that a flow with less flow loss along the blade portion 15c can be made.
 また、ウォータポンプ2を大出力で運転した際には、ラジエータ4からウォータポンプ2の間の配管内部の圧力が低下する。従って、本実施形態と異なり、比較例1のようにゴムホース7の内部にコイル21を挿入しない場合では、ゴムホース7の強度が不十分となり、つぶれてしまう。このため、冷却水の流路有効断面積が小さくなり、必要な流量の冷却液を送り出すことができなくなる恐れがある。なお、このゴムホース7がつぶれる現象は、冷却水の飽和蒸気圧が下がる温度が高い場合、および大気圧が下がる高地で使用した場合に起き易い。 In addition, when the water pump 2 is operated at a high output, the pressure inside the pipe between the radiator 4 and the water pump 2 decreases. Therefore, unlike this embodiment, when the coil 21 is not inserted into the rubber hose 7 as in the comparative example 1, the strength of the rubber hose 7 becomes insufficient, and the rubber hose 7 is crushed. For this reason, there is a possibility that the effective cross-sectional area of the flow path of the cooling water becomes small and it becomes impossible to send out the coolant having a necessary flow rate. The phenomenon that the rubber hose 7 is crushed easily occurs when the temperature at which the saturated vapor pressure of the cooling water is lowered is high and when the rubber hose 7 is used at a high altitude where the atmospheric pressure is lowered.
 これに対して、本実施形態では、ゴムホース7の内部に配置されたコイル21により、ゴムホース7が補強されている。従って、ケーシング13の吸入口11側の圧力低下によるゴムホース7のつぶれを防止でき、冷却水の流路有効断面積を必要な大きさに保持することができる。 In contrast, in the present embodiment, the rubber hose 7 is reinforced by the coil 21 disposed inside the rubber hose 7. Therefore, the rubber hose 7 can be prevented from being crushed due to a pressure drop on the suction port 11 side of the casing 13, and the effective flow area of the cooling water can be maintained at a required size.
 ところで、ゴムホース7のつぶれ防止の方法として、ゴムホース7の肉厚化や、繊維状補強材の使用によって、ゴムホース7の強度を向上させる方法が考えられる。しかしながら、この場合、重量やコストが増加してしまう。さらに、肉厚化等によってゴムホース7が太くなると、ゴムホース7の曲げ部における曲率半径Rが大きくなるため、ゴムホース7を車両に搭載する際のレイアウトの自由度が低くなる恐れがある。 By the way, as a method for preventing the rubber hose 7 from being crushed, a method of improving the strength of the rubber hose 7 by increasing the thickness of the rubber hose 7 or using a fibrous reinforcing material can be considered. However, in this case, the weight and cost increase. Furthermore, when the rubber hose 7 becomes thick due to thickening or the like, the radius of curvature R at the bent portion of the rubber hose 7 increases, so that the degree of freedom in layout when the rubber hose 7 is mounted on the vehicle may be reduced.
 また、ゴムホース7のつぶれ防止の別の方法として、配管の材質を樹脂や金属等に変更することも考えられる。しかしながら、この場合、ゴムホース7(配管)を曲げ変形させながら車両に搭載することができず、搭載性が悪化したり、配管接続部のシール継ぎ手の構造が複雑となったりする恐れがある。 Also, as another method for preventing the rubber hose 7 from being crushed, it is conceivable to change the material of the piping to resin or metal. However, in this case, the rubber hose 7 (pipe) cannot be mounted on the vehicle while being bent and deformed, and the mountability may be deteriorated or the structure of the seal joint of the pipe connection portion may be complicated.
 これに対して、本実施形態によれば、ゴムホース7として既存の一般的なゴムホースを採用できる。これにより、既存のゴムホース7に対してゴムホース7自体の構造や材質を変更しなくても済むので、上述のゴムホース7自体の構造や材質を変更することによる不具合を回避できる。 On the other hand, according to this embodiment, an existing general rubber hose can be adopted as the rubber hose 7. Thereby, since it is not necessary to change the structure and material of rubber hose 7 itself with respect to the existing rubber hose 7, the trouble by changing the structure and material of the above-mentioned rubber hose 7 itself can be avoided.
 また、本実施形態では、ゴムホース7の内部にコイル21を配置する構成を採用する。従って、特許文献1の従来技術のように、ケーシングに旋回流を発生させるための機構を設ける必要が無く、ケーシング13の形状を簡素化できる。 In the present embodiment, a configuration in which the coil 21 is disposed inside the rubber hose 7 is employed. Therefore, unlike the prior art of Patent Document 1, it is not necessary to provide a mechanism for generating a swirling flow in the casing, and the shape of the casing 13 can be simplified.
 また、本実施形態では、ゴムホース7の内部にコイル21を挿入するだけであり、ゴムホース7にコイル21を容易に組み付けることができる。
(第2実施形態)
 本実施形態の冷却システム1は、第1実施形態の冷却システム1におけるコイル21を図4に示すコイル22に変更したものであり、他の構成は、第1実施形態と同じである。
In the present embodiment, the coil 21 is simply inserted into the rubber hose 7, and the coil 21 can be easily assembled to the rubber hose 7.
(Second Embodiment)
The cooling system 1 of this embodiment is obtained by changing the coil 21 in the cooling system 1 of the first embodiment to a coil 22 shown in FIG. 4, and the other configuration is the same as that of the first embodiment.
 図4に示すように、本実施形態のコイル22は、冷却水流れ上流側から見たときの巻き方向D1が、インペラ15の回転方向D2と同じ方向である。具体的には、冷却水流れ上流側からインペラ15およびコイル22を見たとき、コイル22の巻き方向D1およびインペラ15の回転方向D2は、反時計回りである。このため、ゴムホース7の内部に、回転方向D2と同じ方向に旋回する旋回流が生じる。 As shown in FIG. 4, in the coil 22 of this embodiment, the winding direction D <b> 1 when viewed from the upstream side of the cooling water flow is the same direction as the rotational direction D <b> 2 of the impeller 15. Specifically, when the impeller 15 and the coil 22 are viewed from the upstream side of the cooling water flow, the winding direction D1 of the coil 22 and the rotation direction D2 of the impeller 15 are counterclockwise. For this reason, a swirl flow swirling in the same direction as the rotation direction D <b> 2 is generated inside the rubber hose 7.
 これにより、図3に示す実験結果からわかるように、本実施形態によっても、旋回流を発生しない比較例1と比較して、ポンプ出力が大出力での運転領域で、ポンプ効率を向上させることができる。 Thereby, as can be seen from the experimental results shown in FIG. 3, the pump efficiency can be improved in the operation region where the pump output is large as compared with the comparative example 1 in which the swirl flow is not generated according to this embodiment. Can do.
 なお、図3に示す実験結果からわかるように、第1実施形態と第2実施形態とを比較すると、第1実施形態の方がポンプ効率をより向上できる。したがって、ポンプ効率を高くするためには、ゴムホース7の内部に配置するコイルの巻き方向D1は、インペラ15の回転方向D2と逆方向であることが好ましい。
(他の実施形態)
 本開示は上記した実施形態に限定されるものではなく、例えば下記のように、本開示の趣旨を逸脱しない範囲内において適宜変更が可能である。
As can be seen from the experimental results shown in FIG. 3, when the first embodiment and the second embodiment are compared, the pump efficiency of the first embodiment can be further improved. Therefore, in order to increase the pump efficiency, the winding direction D1 of the coil disposed inside the rubber hose 7 is preferably opposite to the rotation direction D2 of the impeller 15.
(Other embodiments)
The present disclosure is not limited to the above-described embodiment, and can be appropriately changed within a range not departing from the gist of the present disclosure, for example, as described below.
 (1)上記した各実施形態では、コイル21、22は金属製であったが、樹脂製であってもよい。 (1) In each embodiment described above, the coils 21 and 22 are made of metal, but may be made of resin.
 (2)上記した各実施形態では、ウォータポンプ2のケーシング13に、冷却水に旋回流を発生させるための機構を設けていない。しかしながら、旋回流を増強させるために、ケーシング13に従来技術と同様の機構を設けても良い。 (2) In each of the above embodiments, the casing 13 of the water pump 2 is not provided with a mechanism for generating a swirling flow in the cooling water. However, in order to enhance the swirl flow, the casing 13 may be provided with a mechanism similar to that of the prior art.
 (3)上記した各実施形態では、冷却システム1は、ウォータポンプ2、エンジン3、ラジエータ4の順に冷却水が循環する冷却水回路を構成している。しかしながら、ウォータポンプ2、ラジエータ4、エンジン3の順に冷却水が循環する冷却水回路を構成してもよい。 (3) In each of the above-described embodiments, the cooling system 1 constitutes a cooling water circuit in which the cooling water circulates in the order of the water pump 2, the engine 3, and the radiator 4. However, a cooling water circuit in which cooling water circulates in the order of the water pump 2, the radiator 4, and the engine 3 may be configured.
 (4)上記した各実施形態では、冷却対象物がエンジン3である車両用の冷却システムに本開示の冷却システム1を適用した。しかしながら、冷却対象物はエンジン3に限られず、車両に搭載される発熱体を冷却する冷却システムに本開示の冷却システム1を適用できる。車両に搭載される発熱体は、例えば、電気自動車やハイブリッド車のインバータや、燃料電池車の燃料電池等である。また、本開示の冷却システム1は、車両に搭載される発熱体以外の発熱体を冷却する冷却システムにも適用可能である。 (4) In each of the above-described embodiments, the cooling system 1 of the present disclosure is applied to a vehicle cooling system whose cooling target is the engine 3. However, the cooling target is not limited to the engine 3, and the cooling system 1 of the present disclosure can be applied to a cooling system that cools a heating element mounted on a vehicle. The heating element mounted on the vehicle is, for example, an inverter of an electric vehicle or a hybrid vehicle, a fuel cell of a fuel cell vehicle, or the like. The cooling system 1 of the present disclosure can also be applied to a cooling system that cools a heating element other than a heating element mounted on a vehicle.
 (5)上記した各実施形態では、冷却水としてエチレングリコール水溶液を用いたが、他の水溶液を用いてもよく、冷却液として水溶液以外のものを用いてもよい。 (5) In each of the above-described embodiments, an ethylene glycol aqueous solution is used as the cooling water, but other aqueous solutions may be used, and a coolant other than the aqueous solution may be used.
 (6)上記した各実施形態では、ウォータポンプ2として遠心ポンプを採用したが、斜流ポンプを採用してもよい。この場合、ケーシングの内部において、回転軸と平行な方向からインペラに冷却水が吸入され、回転軸に対して斜めの方向へインペラから冷却水が吐出される。要するに、本開示は、インペラに吸入された冷却水を、回転軸と交差する方向へインペラから吐出するポンプを採用することができる。なお、インペラに吸入される冷却水の流れ方向は、回転軸と平行な方向でなくてもよく、回転軸に沿った方向であればよい。 (6) In each of the above-described embodiments, the centrifugal pump is employed as the water pump 2, but a mixed flow pump may be employed. In this case, in the casing, the cooling water is sucked into the impeller from a direction parallel to the rotation axis, and the cooling water is discharged from the impeller in a direction oblique to the rotation axis. In short, the present disclosure can employ a pump that discharges cooling water sucked into the impeller from the impeller in a direction intersecting the rotation axis. In addition, the flow direction of the cooling water sucked into the impeller may not be a direction parallel to the rotation axis, and may be a direction along the rotation axis.
 (7)上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。 (7) The above-described embodiments are not irrelevant to each other, and can be appropriately combined unless the combination is clearly impossible. In each of the above-described embodiments, it is needless to say that elements constituting the embodiment are not necessarily essential unless explicitly stated as essential and clearly considered essential in principle. Yes.

Claims (3)

  1.  冷却液を吸入する吸入口(11)および前記冷却液を吐出する吐出口(12)が形成されたケーシング(13)、および前記ケーシングの内部に収容され、回転軸(14)とともに回転することにより、前記冷却液を吸入し、吸入した前記冷却液を前記回転軸と交差する方向へ吐出するインペラ(15)を有するポンプ(2)と、
     前記吸入口に接続され、内部を前記冷却液が流れるゴムホース(7)と、
     前記ゴムホースの内周面に接するように前記ゴムホースの内部に配置され、線状部材をらせん状に巻いて形成されたコイル(21、22)とを備える冷却システム。
    A casing (13) in which a suction port (11) for sucking cooling liquid and a discharge port (12) for discharging the cooling liquid are formed, and the casing (13) is housed in the casing and rotates together with the rotating shaft (14). A pump (2) having an impeller (15) for sucking the coolant and discharging the sucked coolant in a direction intersecting the rotation axis;
    A rubber hose (7) connected to the inlet and through which the coolant flows;
    A cooling system provided with the coil (21, 22) arrange | positioned inside the said rubber hose so that the inner peripheral surface of the said rubber hose may be touched and formed by winding a linear member helically.
  2.  前記コイル(21)は、冷却液流れ上流側から見たときの巻き方向(D1)が、前記インペラの回転方向(D2)とは逆方向である請求項1に記載の冷却システム。 The cooling system according to claim 1, wherein the coil (21) has a winding direction (D1) as viewed from an upstream side of a coolant flow direction opposite to a rotation direction (D2) of the impeller.
  3.  前記ポンプおよび前記ゴムホースは、車両に搭載され、
     前記冷却液は、前記車両に搭載される発熱体(3)を冷却する請求項1または2に記載の冷却システム。
    The pump and the rubber hose are mounted on a vehicle,
    The cooling system according to claim 1 or 2, wherein the cooling liquid cools a heating element (3) mounted on the vehicle.
PCT/JP2015/000912 2014-03-12 2015-02-24 Cooling system WO2015136861A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-049035 2014-03-12
JP2014049035A JP2015172362A (en) 2014-03-12 2014-03-12 cooling system

Publications (1)

Publication Number Publication Date
WO2015136861A1 true WO2015136861A1 (en) 2015-09-17

Family

ID=54071322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000912 WO2015136861A1 (en) 2014-03-12 2015-02-24 Cooling system

Country Status (2)

Country Link
JP (1) JP2015172362A (en)
WO (1) WO2015136861A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5663812U (en) * 1979-10-22 1981-05-29
JPH06123298A (en) * 1992-10-09 1994-05-06 Hitachi Ltd High lift pump
JPH09324881A (en) * 1996-06-05 1997-12-16 Bridgestone Corp Flexible coupler
JP2007009698A (en) * 2005-06-28 2007-01-18 Nissan Diesel Motor Co Ltd Structure of radiator hose
JP2012092698A (en) * 2010-10-26 2012-05-17 Aisin Seiki Co Ltd Centrifugal pump

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5663812U (en) * 1979-10-22 1981-05-29
JPH06123298A (en) * 1992-10-09 1994-05-06 Hitachi Ltd High lift pump
JPH09324881A (en) * 1996-06-05 1997-12-16 Bridgestone Corp Flexible coupler
JP2007009698A (en) * 2005-06-28 2007-01-18 Nissan Diesel Motor Co Ltd Structure of radiator hose
JP2012092698A (en) * 2010-10-26 2012-05-17 Aisin Seiki Co Ltd Centrifugal pump

Also Published As

Publication number Publication date
JP2015172362A (en) 2015-10-01

Similar Documents

Publication Publication Date Title
US9970454B2 (en) Propeller fan, blower device, and outdoor equipment
CN104956089B (en) Turbine system
EP3026268A1 (en) Fan assembly for centrifugal blower and air conditioning apparatus including the same
JP6011571B2 (en) Electric turbo compressor
US9897108B2 (en) Propeller fan, air blower, outdoor unit
US20150345507A1 (en) Compressor and turbo chiller
JP2016044586A (en) Outdoor unit of air conditioner
JP2013024057A (en) Centrifugal compressor
US20170346368A1 (en) Electric motor having a tangential architecture with improved air cooling
WO2017073106A1 (en) Return flow channel formation part for centrifugal compressor, centrifugal compressor
JP6035508B2 (en) Blower and outdoor unit using it
US11098953B2 (en) Integrated fan heat exchanger
EP2796725B1 (en) Fan systems
WO2015136861A1 (en) Cooling system
JP4937331B2 (en) Blower and heat pump device
JP2015038338A (en) Blower
JP6856165B2 (en) Blower and refrigeration system with a blower
CN113623183B (en) Air compressor shell and air compressor
JP2016166558A (en) Air blower
WO2018110445A1 (en) Blower and refrigeration device comprising blower
WO2020077795A1 (en) Contra-rotating fan
US11209011B2 (en) Air conditioner
JP5915147B2 (en) Centrifugal compressor impeller
JP6463497B2 (en) Blower, outdoor unit and refrigeration cycle apparatus
KR20140018432A (en) Compressor with cooling function

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15761098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15761098

Country of ref document: EP

Kind code of ref document: A1