WO2015135368A1 - 一种与纸尿裤配合使用的呼吸监护装置 - Google Patents

一种与纸尿裤配合使用的呼吸监护装置 Download PDF

Info

Publication number
WO2015135368A1
WO2015135368A1 PCT/CN2014/095781 CN2014095781W WO2015135368A1 WO 2015135368 A1 WO2015135368 A1 WO 2015135368A1 CN 2014095781 W CN2014095781 W CN 2014095781W WO 2015135368 A1 WO2015135368 A1 WO 2015135368A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
user
diaper
respiratory
component
Prior art date
Application number
PCT/CN2014/095781
Other languages
English (en)
French (fr)
Inventor
黄新凯
Original Assignee
启通科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 启通科技有限公司 filed Critical 启通科技有限公司
Publication of WO2015135368A1 publication Critical patent/WO2015135368A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0826Detecting or evaluating apnoea events
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4806Sleep evaluation
    • A61B5/4818Sleep apnoea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/6808Diapers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/746Alarms related to a physiological condition, e.g. details of setting alarm thresholds or avoiding false alarms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/45Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the shape
    • A61F13/49Absorbent articles specially adapted to be worn around the waist, e.g. diapers
    • A61F13/496Absorbent articles specially adapted to be worn around the waist, e.g. diapers in the form of pants or briefs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/84Accessories, not otherwise provided for, for absorbent pads
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/84Accessories, not otherwise provided for, for absorbent pads
    • A61F2013/8488Accessories, not otherwise provided for, for absorbent pads including testing apparatus

Definitions

  • the present invention relates to the field of medical monitoring devices, and more particularly to a respiratory monitoring device for use with a diaper.
  • Sudden infant death syndrome also known as cot death (crib death) refers to a sudden and unexpected death of a baby who appears to be completely healthy.
  • SIDS Sudden infant death syndrome
  • the second international SIDS Sudden infant death syndrome was held in Seattle, North America in 1969. The meeting stipulated that it was defined as: sudden death of the baby, and after the death, although the autopsy failed to determine the cause of the death, it was called SIDS.
  • Sudden Infant Death Syndrome is the most common cause of death between 2 weeks and 1 year of age, accounting for 30% of mortality in this age group. The incidence rate is generally 1 ⁇ 2 ⁇ , and its distribution is worldwide. Generally, there are many cases in the middle of the night to early morning. Almost all deaths of sudden infant death syndrome occur in infants' sleep.
  • SIDS victims may lack an automatic wake-up (wheeze) function, which is part of a lack of suffocation awakening response.
  • the sudden death of a baby has a great relationship with its sleep, if there is a respiratory detector that can effectively monitor the sleeping position of the baby and its breathing state, it will help to prevent sudden death of the baby, because the call
  • the suction detector alarms when the baby is asleep, and the sleeping position can be corrected; and the baby is alerted to an early apnea during sleep, so that the baby can be awakened in time to resume breathing and prevent sudden death.
  • the contact type includes a baby micro motion detecting device, a chest and abdomen belt type breathing detecting device, and the like, and a non-contact type microwave breathing monitoring device, a high sensitivity mattress micro motion monitoring device, and the like.
  • microwave respiration monitoring is clearly more expensive, and concerns about microwave radiation have also hampered its widespread use.
  • the device has a soft probe that extends forward. When used, the probe touches the baby's abdomen to sense its breathing movement, but if it is not fixed properly, When the probe is separated from the baby's abdomen, a false alarm will occur.
  • the chest and abdomen belt type breathing test it is simple and practical.
  • the main disadvantage is that the monitored person is bound by the chest and abdomen belt when sleeping, and if the restraint is not strong, the effect of the test will be affected.
  • the mattress type micro-motion monitoring although it relieves the restraint of the chest and abdomen belt, it requires high sensitivity due to work, which is easily interfered by the outside world, such as a noisy environment, a vehicle passing by on the road, and a breeze outside the window. If it is blown, it may interfere with the test results. In this case, even if a baby apnea event occurs, it may not be detected.
  • the technical problem to be solved by the present invention is to provide a respiratory monitoring device that is easy to use and has reliable monitoring and is used in conjunction with a diaper.
  • the present invention provides a respiratory monitoring device for use with a diaper, which comprises:
  • first component and a second component comprising a first sensor
  • second component comprising a second sensor
  • first component and the second component being respectively disposed at different positions of the front diaper area of the diaper
  • the first sensor and the second sensor are configured to monitor a change in the abdomen caused by the user's breathing tension and output a corresponding signal
  • a microprocessor electrically coupled to the first sensor and the second sensor, respectively, for determining a breathing state of the user according to a signal output by the first sensor and/or the second sensor;
  • a breathing state indicator for indicating a breathing state of the user according to the judgment result of the microprocessor, and performing an alarm when the microprocessor determines that the user has a breathing abnormal state.
  • the first sensor and the second sensor are both inclination sensors, which generate periodic angle changes as the user breathes, and output corresponding signals.
  • the inclination sensor is a three-axis or three-axis gravity acceleration sensor, which generates a periodic angular change on at least one axis as the user breathes and outputs a corresponding signal.
  • first sensor and the second sensor are symmetrically disposed on the left and right sides in the front abdominal patch region of the diaper.
  • the first part facing the diaper is provided with a Velcro surface suitable for being connected with the rough surface of the front diaper of the diaper, and the side facing away from the diaper is provided with a thorn surface suitable for binding to the left side of the diaper.
  • a velcro surface to which the diaper is attached a side of the second member facing the diaper comprising a velcro surface adapted to be attached to the matte side of the front diaper of the diaper, and a side facing away from the diaper comprising a gusset suitable for the right side of the diaper
  • the slick face is connected to the velcro face.
  • the breathing state indicator comprises an audible and visual alarm.
  • the respiratory status indicator comprises a wireless transmitter, a wireless receiver, and a display.
  • the invention also provides a respiratory monitoring device for use with a diaper, comprising:
  • first component and a second component comprising a first sensor
  • second component comprising a second sensor
  • first component and the second component being respectively disposed at different positions of the front diaper area of the diaper
  • the first sensor and the second sensor are configured to monitor a change in the abdomen caused by the user's breathing tension and output a corresponding signal
  • a third component disposed between the first component and the second component and connecting the first component and the second component together, the third component including a third sensor for monitoring a user Sleep posture or abdominal changes due to respiratory tension and output corresponding signals;
  • a microprocessor electrically coupled to the first sensor, the second sensor, and the third sensor, respectively, for determining a breathing state of the user based on signals output by the first sensor, the second sensor, and the third sensor;
  • the respiratory monitoring device of claim 1 further comprising:
  • the third sensor is a flexible sensor for periodically bending changes according to the breathing of the user, and outputting a corresponding signal.
  • the flexible sensor is a flexible piezoelectric sensor composed of a piezoelectric polymer comprising a polyvinylidene fluoride PVDF film; or
  • the flexible sensor is a flexible pressure sensitive sensor composed of a pressure sensitive conductive composite material or a pressure sensitive conductive rubber material.
  • the pulse signal is output to the microprocessor for processing; the microprocessor counts the pulse signal to calculate and determine the user. Breathing frequency.
  • the side of the third component facing the diaper is provided with a velcro surface suitable for being connected with the matte surface of the front diaper of the diaper.
  • the first sensor and the second sensor are flexible sensors
  • the third sensor is a three-axis or three-axis gravity acceleration sensor.
  • the flexible sensor is a flexible piezoelectric sensor composed of a piezoelectric polymer comprising a polyvinylidene fluoride PVDF film; or
  • the flexible sensor is a flexible pressure sensitive sensor composed of a pressure sensitive conductive composite material or a pressure sensitive conductive rubber material.
  • the breathing state indicator comprises an audible and visual alarm.
  • the respiratory status indicator comprises a wireless transmitter, a wireless receiver, and a display.
  • the invention monitors the breathing state of the user by providing two sensors at different positions, different orientations or different inclination angles and having a certain spacing in the front nipple region of the diaper, thereby avoiding the occurrence of the detection blind zone and improving the anti-interference ability and data.
  • the reliability can not only relieve the chest and abdomen strap of the traditional respiratory test, but also monitor the respiratory state of the user stably and reliably, which can greatly reduce the mortality of sleep apnea syndrome.
  • Figure 1 is a schematic view of a conventional diaper in normal use.
  • FIG. 2 is a schematic view showing the structure of a respiratory monitoring device used in conjunction with a diaper according to a first embodiment of the present invention.
  • Fig. 3 is a schematic view showing the arrangement of various related components of the respiratory monitoring device according to the first embodiment of the present invention.
  • Fig. 4 is a view showing the inclination of the first member of the respiratory monitoring apparatus according to the first embodiment of the present invention as a function of the breathing movement of the user.
  • Fig. 5 is a waveform diagram showing the inclination of the first member of the respiratory monitoring apparatus according to the first embodiment of the present invention as a function of the breathing movement of the user.
  • FIG. 6 is a schematic diagram of a gravity acceleration sensor signal output circuit of the respiratory monitoring device according to the first embodiment of the present invention.
  • Fig. 7 is a schematic diagram showing the waveform of the output signal of the gravity acceleration sensor of the respiratory monitoring apparatus according to the first embodiment of the present invention.
  • Figure 8 is a block diagram showing the functional blocks of a respiratory monitoring apparatus according to a first embodiment of the present invention.
  • Figure 9 is a schematic view showing the structure of a respiratory monitoring device used in conjunction with a diaper according to a second embodiment of the present invention.
  • Fig. 10 is a schematic view showing the configuration of each relevant component of the respiratory monitoring device according to the second embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a flexible sensor signal output circuit of a respiratory monitoring device according to a second embodiment of the present invention.
  • Fig. 12 is a schematic diagram showing the waveform of a flexible sensor signal output of the respiratory monitoring apparatus according to the second embodiment of the present invention.
  • Figure 13 is a block diagram showing the functional blocks of the respiratory monitoring apparatus according to the second embodiment of the present invention.
  • Fig. 14 is a view showing the functional structure of a respiratory monitoring device used in conjunction with a diaper according to a third embodiment of the present invention.
  • Figure 15 is a schematic view showing the structure of a respiratory monitoring apparatus according to a third embodiment of the present invention.
  • Figure 16 is a block diagram showing the functional configuration of a respiratory monitoring apparatus according to a third embodiment of the present invention.
  • 17 is a schematic diagram showing the relationship between the output voltage of the gravity acceleration sensor and the sleeping position of the user of the respiratory monitoring device according to the embodiment of the present invention.
  • FIG. 1 is a schematic view of a conventional diaper when it is used normally.
  • 10 is a conventional diaper (applicable to infants or adult diapers).
  • the diaper is divided into two parts, the front part is the abdomen, the back part is the buttocks, and the rear part extends to form the left and right (to the reader as a reference).
  • the rims 11, 12 are respectively provided with a viscous stickers 16, 18 on the rims 11, 12, which can tighten and fix the left and right rims 11, 12 to the front flank of the diaper 15
  • the upper and lower portions of the diaper are joined together to wrap the user's abdomen and buttocks.
  • the advantage of this structure is that it is easy to wear, and the left and right fasteners can be attached to different places of the front abdomen as needed to adjust the size and tightness of the waist circumference of the diaper.
  • the adhesive has adhesive force, and can be pasted on the front belly sticker 15 designed as a smooth plastic film, and can be repeatedly used for easy unwinding. Check the wetness of the diaper or adjust the tightness of the diaper.
  • Another way to paste is to use a magic button (Hook & Loop).
  • the magic button is also called a snap button or a nylon button.
  • a small soft fiber garden hair (Loop, hereinafter referred to as a matte surface), which can be placed on the front belly sticker 15
  • a hard hooked bristles Hook, hereinafter referred to as thorns
  • thorns hard hooked bristles
  • FIG. 2 this is a schematic structural view of a respiratory monitoring device used in conjunction with a diaper according to a first embodiment of the present invention.
  • 10 is the diaper shown in FIG. 1, including the peripheral edges 11, 12 of the left and right waist circumferences, the stickers 16, 18 respectively disposed on the surrounding edges 11, 12, and the left and right stickers 16, 18 are respectively pasted.
  • the front and back portions of the diaper are joined together to wrap the user's abdomen and buttocks.
  • the respiratory monitoring apparatus of the present embodiment further includes the first member 21 and the second member 22 having a certain interval, wherein the first member 21 is disposed on the left side fastener 16 and the front abdomen Between the stickers 15, the second member 22 is disposed between the right side fastener 18 and the front web sticker 15.
  • the first component 21 and the second component 22 are respectively pasted between the fasteners 16, 18 and the front belly sticker 15, and the manner of bonding can also be divided into adhesive bonding and velcro bonding.
  • the Velcro paste method is preferred, but the basic principle is also applicable to the adhesive paste.
  • the first member 21 and the second member 22 are provided with a velcro surface on the side of the front web sticker 15 and can be attached to the front web sticker 15 provided with a velcro matte surface. Since the surface of the front web 15 is covered by the first member 21 and the second member 22, it occupies the place where the left and right tabs 16, 18 are originally reserved for the diaper. To solve this problem, the embodiment is first.
  • the member 21 and the second member 22 are provided with a matte surface of the velcro on the side of the front web 15 so that the left and right tabs 16, 18 of the diaper 10 can be directly pasted on the first member 21 and the second member 22, respectively.
  • the adhesive fixing function of the front nipple 15 of the diaper be replaced, but also the first component 21 and the second component 22 can be double-fixed, so that the respiratory tension of the diaper user can be effectively transmitted to the first component 21 and Above the second component 22.
  • the purpose of enabling the diaper user's breathing tension to be effectively transmitted over the first member 21 and the second member 22 is that the present embodiment achieves a breathing state by sensors disposed in the first member 21 and the second member 22. Monitoring.
  • this is a schematic diagram of the configuration of various related components of the respiratory monitoring device according to the first embodiment of the present invention.
  • 20 represents a cross section of the abdomen of the user (infant or adult), and the first and second members 21, 22 are respectively disposed on the left and right sides of the front abdomen along the user's abdominal surface 20, when the user is lying flat
  • the angle between the first member 21 and the horizontal position is a
  • the angle between the second member 22 and the horizontal position is b.
  • the horizontal position herein refers to a horizontal plane, that is, a plane that is tangent to the center of the front abdomen of the diaper when the user is lying down.
  • the abdominal surface 20 changes periodically with the breathing movement. Since the first and second members 21, 22 are both within the respiratory motion region of the user's abdomen, in general, the first and second members 21, 22 have a left-right movement in addition to the vertically varying component. The component of this component causes the horizontal angles a and b to change.
  • FIG. 4 this is a schematic diagram in which the inclination (or position) of one of the components (first member 21) of the respiratory monitoring device according to the embodiment of the present invention changes with the breathing motion of the user.
  • A1 is the case when the user inhales the abdominal breathing exercise (the abdomen is raised by the expansion), and the corresponding horizontal angle is a1.
  • A2 is the case when the user exhales in the abdominal breathing exercise (the abdomen is lowered due to the contraction), and the corresponding horizontal angle is a2.
  • the angle is at a1
  • the breathing state and breathing cycle of the user can be known, and thus the respiratory rate of the user can be measured.
  • a tilt sensor is disposed in each of the first member 21 and the second member 22, in which case the first and second members can be used. 21, 22 are referred to as first and second inclination sensors.
  • the tilt sensor can detect its own tilt angle, and by continuously monitoring the tilt angle, the user's breathing state can be known, and the breathing cycle and breathing rate can be calculated.
  • the tilt sensor uses a gravity acceleration sensor (also known as a gravity sensor, Gravity Sensor, G-Sensor, etc.), and particularly preferably a three-axis (or higher) gravity acceleration sensor, which can output X, Y,
  • the three axial values of Z can be placed in the area where the user's abdomen reflects the breathing movement. It not only has high sensitivity, but also has good reliability.
  • the three-axis gravity acceleration sensor can give clear 3D position information, it is also possible to accurately determine the user's sleep posture, for example, to determine the sleeping position of the baby such as supine, side lying, and prone (sleeping).
  • the breathing state of the user can be judged. Further statistical analysis of the regularity can also obtain the respiratory cycle information of the user, and then the respiratory rate of the user can be calculated.
  • two (or more) sensors are disposed in the abdominal respiratory motion region of the user and are at different positions, different orientations or different inclination angles to monitor the breathing state of the user. It is more efficient to use a single sensor or to have two (or more) sensors in the same place (or the same orientation/tilt angle) for the following reasons:
  • the embodiment of the present invention in order to achieve the best detection effect and cost Benefits, in the embodiment of the present invention, two separate sensors are preferred, and the sensors are symmetrically disposed on the left and right sides of the diaper of the user's front abdomen (as shown in FIGS. 2 and 3), which does not affect the user. Sleeping, on the one hand, can produce a larger span, and produce a more obvious change in the inclination angle, and the inclination change has symmetry, while detecting and comparing two symmetrical inclination changes can greatly improve the anti-interference ability of the device. Make the data more credible.
  • the respiratory monitoring device of the embodiment further includes components capable of analyzing, judging, calculating, and processing the output of the sensor to obtain accurate and reliable respiratory state information of the user.
  • Microprocessors are used in practical applications. Of course, other similar devices can be used as long as the corresponding data processing functions can be realized.
  • FIG. 5 it is a waveform diagram of the inclination of the first component 21 of the respiratory monitoring device according to the first embodiment of the present invention as a function of the user's respiratory motion, which is a change in the inclination of the first component 21 shown in FIG. Abstract description. It is assumed in the drawing that the angle between the first member 21 and the horizontal position periodically changes between a1 and a2 as the user's breathing motion.
  • this is a graph of the gravity acceleration sensor signal output circuit of the respiratory monitoring device according to the embodiment of the present invention.
  • 23 is a three-axis gravity acceleration sensor included in the aforementioned first member 21 or second member 22, which includes voltage outputs of three axes of Xout, Yout, and Zout.
  • These voltages are further output to the A/D input (analog-to-digital conversion input) of the microprocessor for sampling analysis of the output of the gravity acceleration sensor 23, whereby the inclination information of the gravity acceleration sensor 23 can be obtained by the inclination angle
  • the analysis of the information can know the sleeping position of the user, or monitor the breathing state of the user according to the change information of the inclination angle of the gravity acceleration sensor 23, and further calculate the respiratory frequency information of the user according to the periodic inclination change waveform.
  • this is a waveform diagram of the gravitational acceleration sensor signal output of the respiratory monitoring device according to the embodiment of the present invention. It is assumed in the figure that the gravitational acceleration sensor is placed on the first member 21 shown in Fig. 3, and changes in the inclination angle of a1 to a2 as shown in Fig. 5 as the user's breathing motion. It is further assumed that the inclination change directly acts on the X-axis of the gravitational acceleration sensor, and the X-axis is also periodically changed within the angular range of a1 to a2, thereby generating a voltage output change of Va1 to Va2.
  • the sensitivity of the gravity acceleration sensor is 1000 mV/g, and a2 and a1 are 29° and 31°, respectively (ie, varying in the range of 30°+-1°), and Xout is at 29° and 31°.
  • the horizontal angle is taken to obtain the value of its vertical component because the output of the gravity acceleration sensor is directly related to its vertical component.
  • the vertical component When in the fully vertical position (90°), the vertical component is 1g; when at 30°, the vertical component is 0.5g; the 0° position (ie, horizontal position) has a vertical component of 0g.
  • Both the first member 21 and the second member 22 have a tilt sensor built therein, and the tilt sensor outputs a tilt signal that periodically changes with the user's breathing motion.
  • the tilt sensor of the embodiment is preferably a three-axis (or multi-axis) gravity acceleration sensor, so that the X, Y, and Z three-axis information can be output, so that the monitoring of the user's respiratory motion is more comprehensive, accurate, and effective, and at the same time,
  • the user's sleep posture is judged based on the information, for example, the baby's supine, side, and prone (sleeping) postures are discriminated.
  • the microprocessor 30 can be placed in the first component 21 or the second component 22, and has electrical connection relationship with the two tilting sensors, so that the output signal of the tilting sensor can be received, thereby effectively monitoring the breathing state of the user. Because as long as the user has breathing motion, the X, Y, and Z axis outputs of the gravity accelerometer are periodically changed, which not only confirms the existence of the user's breathing motion, but also outputs the X, Y, and Z axes. The analysis of the signal law can further confirm the user's breathing cycle and calculate the user's respiratory rate.
  • the breathing state indicator is used to indicate the breathing state of the user according to the judgment result of the microprocessor 30, and to perform an alarm when the microprocessor 30 determines that the user has a breathing abnormal state, mainly including the sound and light alarm 32.
  • a breathing abnormal state mainly including the sound and light alarm 32.
  • the microprocessor 30 activates an alarm program and alerts the sound and light signals of the audible and visual alarm 32 (which can be placed within any tilt sensor).
  • the microprocessor 30 can also judge the sleeping position of the infant user according to the output of the gravity acceleration sensor, and can implement an alarm when it is found to be dozing, which can greatly reduce the incidence of sudden infant death syndrome.
  • the respiratory status indicator further includes a wireless transmitter 33, a wireless receiver 34, and a display/alarm 35, which can be transmitted by wireless means (for example, Wi-Fi, Bluetooth, Zigbee, low-power wireless, etc.), Receiving and displaying the user's respiratory status information, doze alarm information, and The apnea alarm message, etc., effectively expands the user's monitoring range.
  • wireless means for example, Wi-Fi, Bluetooth, Zigbee, low-power wireless, etc.
  • Embodiment 2 of the present invention will be described below with reference to Figs.
  • the respiratory monitoring device used in conjunction with the diaper according to the second embodiment of the present invention is different from the first embodiment in that a third component 28 is added between the first component 21 and the second component 22, The first component 21 and the second component 22 are joined together. Similar to the first member 21 and the second member 22, the third member 28 is also attached to the front web sticker 15 of the diaper 10.
  • the preferred attachment method is a Velcro manner, and the third member 28 is attached to the front web.
  • One side has a velcro face, which is attached to the front belly sticker 15 with a velcro face.
  • the third component includes a third sensor for monitoring a user's sleep posture or abdominal changes due to respiratory tension and outputting a corresponding signal.
  • this is a schematic diagram of the configuration of each related component of the respiratory monitoring device according to the second embodiment of the present invention.
  • 20 denotes a cross section of the abdomen of the user (infant or adult), and the first member 21, the second member 22, and the third member 28 are respectively disposed on the left, middle, and right sides of the front abdomen along the user's abdominal surface 20,
  • the angle between the first member 21 and the horizontal position is a
  • the angle between the second member 22 and the horizontal position is b
  • the angle between the third member 28 and the horizontal position is 0. .
  • the abdominal surface 20 changes periodically with the breathing movement.
  • the first, second, and third members 21, 22, 28 are all within the respiratory motion region of the user's abdomen, in general, the third member 28 is vertically undulating, and its angle with the abdomen is unchanged;
  • the first and second members 21, 22 also have a component that moves left and right, and this component causes the horizontal angles a, b to change. Please refer to FIG. 4 and FIG. 5 for a schematic diagram of changes in the angles a and b.
  • the third member 28 is a flexible member 28 in which a piezoelectric sensor or a pressure sensitive sensor (referred to as a flexible sensor) having flexibility is disposed, and the left and right sides of the flexible sensor are respectively fixed to the first and second members 21 and 22 respectively.
  • a flexible sensor a piezoelectric sensor or a pressure sensitive sensor
  • the angle c becomes larger, indicating that the bending of the flexible sensor 28 becomes smaller; and when the user inhales, b decreases and a When increased, the value of the angle c becomes smaller, which means that the curvature of the flexible sensor 28 is increased.
  • the first member 21 and the second member 22 have a certain spacing, an effective span can be created so that the flexible sensor in the third member 28 between the spans can produce an effective periodic flexibility with the user's breathing motion.
  • the bending deformation also realizes the respiratory monitoring function, which is equivalent to adding a device for monitoring the respiratory condition in addition to the first component 21 and the second component 22, so that the monitoring is more comprehensive.
  • the flexible sensor may be a flexible piezoelectric sensor or a flexible pressure sensitive sensor, specifically:
  • the flexible piezoelectric sensor 28 can be operated with a soft piezoelectric material such as a piezoelectric polymer, including a polyvinylidene fluoride (PVDF) film or the like.
  • the piezoelectric film can output a voltage as long as it is bent, and the faster/degree the bending deformation is, the larger the output voltage is, so that the bending deformation state and the period of the sensor can be known. Further, the state of the user's breathing can be judged, and at least the user can be judged whether or not the user has a state of apnea. In the case of apnea, the piezoelectric sensor will have no signal output (or no change in the output signal).
  • the polyvinylidene fluoride film has good flexibility (elasticity) and relatively high sensitivity, and is very suitable for use in this embodiment.
  • a soft pressure sensitive conductive material such as a pressure sensitive conductive composite material, or a pressure sensitive conductive rubber material (PCR) or the like can be used. These are sensitive materials with resistance strain effects, also known as pressure-sensitive conductive materials. When there is no external force (or no bending deformation), the resistance value of the pressure-sensitive conductive material is high, and when the pressure is applied (or bending deformation), the resistance value is remarkably lowered, and the conductive property is exhibited.
  • the state of breathing of the user can be known by detecting the resistance value, such as whether a state of apnea occurs.
  • parameters such as the respiratory rate of the user can be calculated, and the respiratory health of the user can be more effectively monitored.
  • the present embodiment adds a flexible third component, which also functions as a sensor to monitor the breathing condition of the user, thereby further enhancing the reliability and accuracy of the monitoring.
  • the flexible sensor provided in the third component of the embodiment can be inferred that the tilt sensor in the first component 21 and the second component 22 in the first embodiment of the present invention is replaced with the flexible sensor of the third component in the embodiment. It can play the role of monitoring the breathing condition of the user by monitoring the change of the piezoelectric signal generated by the bending deformation of the flexible sensor.
  • the specific principle is as described above and will not be described here.
  • the microprocessor for analyzing, judging, calculating, and processing the output of the sensor to obtain accurate and reliable respiratory state information of the user may also be disposed in the third component 28 and respectively associated with the first
  • the respective ones of the second and third components 21, 22, 28 are electrically connected to process the output signals of the respective sensors, respectively.
  • FIG. 11 this is a schematic diagram of a flexible sensor signal output circuit of the respiratory monitoring device according to the second embodiment of the present invention.
  • 50 is a flexible sensor (for example, 28 in the foregoing figure), and a practical use of a polyvinylidene fluoride (PVDF) piezoelectric film, which is a typical flexible piezoelectric sensor having a frequency bandwidth (for example) 0.1Hz to 10MHz), high sensitivity (for example, 1v ⁇ 10v / g), high dielectric strength, high stability and so on.
  • PVDF polyvinylidene fluoride
  • this piezoelectric sensor also has a high output impedance.
  • the output of the flexible sensor 50 is connected to the operational amplifier U1 to improve its signal output capability, and also in the loop.
  • the filter capacitor C1 is connected to remove high frequency interference, and is connected to the limiter diodes D1, D2 to prevent the output voltage of the flexible sensor 50 from exceeding the detection range, thereby realizing the protection of the operational amplifier U1.
  • the principle of the output signal of the flexible pressure sensitive sensor is the same and will not be described again.
  • this is a waveform diagram of the flexible sensor signal output of the respiratory monitoring apparatus according to the second embodiment of the present invention, which is a description of the signal output effect of the foregoing circuit of FIG.
  • Va is the output voltage of the operational amplifier U1. This voltage changes positively and negatively with the user's breathing motion, and its voltage amplitude is limited to the forward voltage Vd (for example, 0.7v) of the diodes D1 and D2. .
  • Vd for example, 0.7v
  • the breathing frequency of the user can be known, so that the respiratory monitoring function of the embodiment of the present invention can be realized very conveniently.
  • the pulse signal is output to the microprocessor for processing, and then the microprocessor counts the pulse signal, so that the user can be calculated and judged.
  • the breathing rate is gone.
  • this is a functional block diagram of a respiratory monitoring apparatus according to a second embodiment of the present invention.
  • the figure includes a first component 21 and a second component 22, and a third component between the first and second components and structurally associated with the first and second components, namely a flexible sensor 28 (For example, a soft piezoelectric material or a pressure sensitive conductive material), the flexible sensor 28 is further electrically coupled to a microprocessor 30 (which can be placed within the first component 21 or the second component 22) to enable the microprocessor 30 to Effectively receiving the output signal of the flexible sensor 28, thereby performing a breathing state on the user Effective monitoring.
  • a microprocessor 30 which can be placed within the first component 21 or the second component 22
  • the breathing state indicator is used to indicate the breathing state of the user according to the judgment result of the microprocessor 30, and to perform an alarm when the microprocessor 30 determines that the user has a breathing abnormal state, mainly including sound.
  • Light alarm 32 is used to indicate the breathing state of the user according to the judgment result of the microprocessor 30, and to perform an alarm when the microprocessor 30 determines that the user has a breathing abnormal state, mainly including sound.
  • the microprocessor 30 when the microprocessor 30 does not detect the relevant change, it indicates that the presence of respiratory motion cannot be detected, and a so-called apnea state occurs if the state continues to exceed the time set by the timer 31 (eg, 15 to 20 seconds), the microprocessor 30 activates an alarm program and alerts the sound and light signals of the audible and visual alarm 32 (which can be placed within the first component 21 or the second component 22).
  • the respiratory status indicator in FIG. 13 also includes a wireless transmitter 33 (which can be placed within the first component 21 or the second component 22), a wireless receiver 34, and a display/alarm 35.
  • a wireless transmitter 33 which can be placed within the first component 21 or the second component 22
  • a wireless receiver 34 which can be placed within the first component 21 or the second component 22
  • a display/alarm 35 In this way, the user's breathing state information and apnea alarm information can be transmitted, received and displayed wirelessly (for example, Wi-Fi, Bluetooth, Zigbee, low-power wireless, etc.), thus effectively expanding the monitoring range for the user. .
  • FIG. 14 this is a schematic diagram of the functional structure of the respiratory monitoring device used in conjunction with the diaper according to the third embodiment of the present invention.
  • the functional structure of the respiratory monitoring device of the third embodiment is mainly divided into three parts: A, B, and C.
  • C is located in the middle position, and is located in the middle of the user's abdomen in practical application; and A and B are symmetric in the left and right, and are located in the user's abdomen in practical application.
  • C includes a body portion 45 in which a microprocessor is included to process the signals of the connected sensors.
  • a gravity acceleration sensor is also included in the main body portion 45 to sense the sleeping position of the user.
  • both sides of C include flexible sensors 41, 42 which can periodically deform with the user's breathing motion and generate corresponding induced voltages.
  • the intermediate position is a gravity acceleration sensor, and the left and right sides are flexible sensors; and in the second embodiment, the middle position is a flexible sensor, and the left and right sides are gravity acceleration sensors. .
  • the side of the main body portion 45 facing the diaper further includes a backing (or velcro) 43 and the left and right flexible sensors 41, 42 include a backing (or velcro)
  • the side of the flexible sensor 41, 42 facing away from the diaper includes There is a smooth surface (or velcro surface) that can be attached to the left and right diapers 16, 18 on the 41, 42 to replace the front nipple of the diaper, which not only makes the system better fixed, but also makes the diaper
  • the breathing motion of the user's abdomen can be directly transmitted to the flexible sensors 41, 42 to more effectively detect the breathing state of the user.
  • FIG. 15 this is a schematic structural diagram of the respiratory monitoring apparatus according to the third embodiment of the present invention, which is a visual supplementary explanation of the above-mentioned FIG.
  • the flexible sensors 41, 42 occupy the position of the front nipple 15 of the diaper, so that it is necessary to attach the left and right stickers 16, 18 of the diaper to the flexible sensors 41, 42.
  • the flexible sensor The glossy design or the velcro matte design will replace the original front belly sticker.
  • the main body portion may also include a breathing state indicator or an alarm to indicate the breathing state of the user or to alert the user to an abnormal breathing state. It can be a local sound and light indication/alarm, or a remote status indication/alarm can be configured by configuring a wireless transmitter in the main unit.
  • FIG. 16 this is a block diagram showing the functional configuration of the respiratory monitoring apparatus according to the third embodiment of the present invention, which is a general summary of FIGS.
  • 51, 52, and 43 respectively represent three fixed points of A, B, and C.
  • the flexible sensors 41 and 42 are respectively disposed between A/C and C/B.
  • the left and right sides of the user's abdomen can be The breathing tension is effectively transmitted to the corresponding flexible sensor 41 and the flexible sensor 42 on the left and right sides, so that the flexible sensor is bent and deformed, thereby generating a corresponding piezoelectric effect and outputting a corresponding signal, thereby making the micro-device body 45
  • the processor can effectively detect changes in the signal to monitor the breathing state of the user, and obtain the respiratory rate of the user by analyzing the periodic signal.
  • the gravitational acceleration sensor can be placed in the main body portion 45 shown in FIG. 14 or FIG. 15.
  • the connection relationship with the microprocessor can be referred to the foregoing FIG. 6, including the output signals of the Xout, Yot, and Zout axes. .
  • the gravitational acceleration sensor has an operating voltage of 3.3V, a sensitivity of 800mV/g, and three axes operate linearly in the range of -1g to 1g, and the output voltage at 0g is 1.65v (half of the operating voltage), 1g.
  • the output voltage is 2.45v, and the output voltage at -1g is 0.85v. It is further assumed that the main body portion 45 is placed in the middle position of the user's front abdomen, and the user has a Z-axis upward (gravity is 1 g) when lying on the back, an X-axis upward (gravity is 1 g) when lying on the left side, and an X-axis downward when lying on the right side. (gravity is -1g), the Z axis is facing down when sleeping (gravity is -1g), When standing (or sitting) with the Y axis facing up (gravity is 1g), the relationship between the output voltage of the three axes and the sleeping position of the baby is shown in Fig. 16. By detecting and judging the relevant voltage, the information of the user's sleeping position can be conveniently obtained, so that the sleep monitoring function of the embodiment of the present invention can be conveniently implemented.
  • the present invention can relieve the chest and abdomen strap restraint of the traditional respiratory test, and can stably and reliably monitor the respiratory state of the infant, and can greatly reduce the mortality of the infant sleep apnea syndrome.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Physiology (AREA)
  • Pulmonology (AREA)
  • Epidemiology (AREA)
  • Vascular Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种与纸尿裤(10)配合使用的呼吸监测装置,包括:第一部件(21)及第二部件(22),第一部件(21)包括第一传感器,第二部件(22)包括第二传感器,第一、第二部件分别设置在纸尿裤(10)前腹贴(15)区域的不同位置上,具有不同的朝向或倾斜角度,第一传感器和第二传感器用于监测使用者呼吸张力变化并输出相应的信号;微处理器(30),分别与第一传感器和第二传感器电连接,根据第一传感器和/或第二传感器输出的信号判断使用者的呼吸状态;以及呼吸状态指示器,根据微处理器的判断结果对使用者的呼吸状态进行指示,并在微处理器判断使用者出现呼吸异常状态时进行报警。该呼吸监测装置既可解除传统呼吸检测的胸腹带束缚,又可稳定可靠地监测使用者呼吸状态,大大降低睡眠窒息综合征的死亡率。

Description

一种与纸尿裤配合使用的呼吸监护装置
本申请要求于2014年3月12日提交中国专利局、申请号为201410089035.7、发明名称为“一种与纸尿裤配合使用的呼吸监护装置”的中国专利申请的优先权,上述专利的全部内容通过引用结合在本申请中。
技术领域
本发明涉及医疗监护设备领域,尤其涉及一种与纸尿裤配合使用的呼吸监护装置。
背景技术
婴儿猝死综合症也称摇篮死亡(cot death,crib death),系指外表似乎完全健康的婴儿突然意外死亡,1969年在北美西雅图召开的第二次国际SIDS(Sudden infant death syndrome,初生婴儿猝死症)会议规定其定义为:婴儿突然意外死亡,死后虽经尸检亦未能确定其致死原因者称SIDS。婴儿猝死综合征是2周~1岁之间最常见的死亡原因,占该年龄组死亡率的30%。发病率一般为1‰~2‰,其分布是全世界性的,一般半夜至清晨发病为多,几乎所有婴儿猝死综合征的死亡发生在婴儿睡眠中。
相关研究证明,婴儿的呼吸模式与婴儿猝死综合症有较大的关系,包括长时间呼吸暂停、频繁的短暂呼吸暂停、周期性呼吸频率减慢等。缺乏觉醒反应可能是发生SIDS的必要条件。SIDS受害者可能缺乏自动苏醒(喘息)功能,这是缺乏窒息觉醒反应的组成部分。
学界对其致病机制的了解,始于1980年代荷兰的流行病学调查,当时发现趴睡是婴儿猝死症候群的危险因素之一。后来纽澳等国家也陆续发现趴睡是重要的危险因素,于是从1991年开始倡导不要趴睡,结果该地的婴儿猝死症候群发生率急遽下降。美国于1992年开始建议不要趴睡,并于1994年发起"Back to Sleep"运动,同样得到婴儿猝死大幅减少的成果。
由于婴儿猝死与其睡眠有莫大的关系,因此如果有一种可以有效监测婴儿睡姿及其呼吸状态的呼吸检测器,那对预防婴儿猝死将带来帮助,因为呼 吸检测器在婴儿趴睡时报警,其睡姿便可得到纠正;以及在婴儿睡眠出现呼吸暂停初期报警,从而有机会及时唤醒婴儿,令其恢复呼吸从而防止猝死意外的发生。
目前现有的婴儿呼吸检测产品有不同的形式,包括接触式及非接触式的。接触式的有婴儿微动检测装置、胸腹带式呼吸检测装置的等,而非接触式的有微波呼吸监测装置、高灵敏度床垫微动监测装置等。
微波呼吸监测价格显然比较贵,并且人们对微波辐射的担忧也妨碍了其普及化的应用。对于接触式的婴儿微动监测,有一种是别在婴儿裤子上使用的,该装置有一个前伸的柔软探头,使用时该探头接触婴儿的腹部可感应其呼吸运动,但如果固定不好,探头与婴儿腹部分离,就会出现误报警。
至于胸腹带式呼吸检测则较为简单实用,其主要不足是被监测者睡眠时要受胸腹带的束缚,并且如果束缚不牢还会影响检测的效果。至于床垫式微动监测其虽然解除了胸腹带的束缚,但由于工作时需要有很高的灵敏度,这容易受外界的干扰,例如嘈杂的环境,马路上车辆的驶过,窗外微风的吹过,都有可能干扰到检测结果,在这种情况下即使真有婴儿呼吸暂停事件发生亦未必能检测出来。
发明内容
本发明所要解决的技术问题在于,提供一种使用方便、监测可靠的与纸尿裤配合使用的呼吸监护装置。
为了解决上述技术问题,本发明提供一种与纸尿裤配合使用的呼吸监测装置,其中,包括:
第一部件及第二部件,所述第一部件包括第一传感器,所述第二部件包括第二传感器,所述第一、第二部件分别设置在纸尿裤前腹贴区域的不同位置上,具有不同的朝向或倾斜角度,所述第一传感器和第二传感器用于监测使用者因呼吸张力而产生的腹部变化并输出相应的信号;
微处理器,分别与所述第一传感器和第二传感器电连接,用于根据所述第一传感器和/或第二传感器输出的信号判断使用者的呼吸状态;以及
呼吸状态指示器,用于根据所述微处理器的判断结果对使用者的呼吸状态进行指示,并在所述微处理器判断使用者出现呼吸异常状态时进行报警。
其中,所述第一传感器和第二传感器均为倾角传感器,随使用者呼吸产生周期性角度变化,并输出相应的信号。
其中,所述倾角传感器为三轴或三轴以上的重力加速度传感器,随使用者呼吸在至少一轴上产生周期性角度变化并输出相应的信号。
其中,所述第一传感器和第二传感器对称设置在所述纸尿裤的前腹贴区域内的左右两侧。
其中,所述第一部件朝向纸尿裤的一侧设有适合与所述纸尿裤前腹贴的毛面相连接的魔术贴刺面,背向纸尿裤的一侧设有适合与纸尿裤左侧粘扣的刺面相连接的魔术贴毛面;所述第二部件朝向纸尿裤的一侧包括适合与所述纸尿裤前腹贴的毛面相连接的魔术贴刺面,背向纸尿裤的一侧包括适合与纸尿裤右侧粘扣的刺面相连接的魔术贴毛面。
其中,所述呼吸状态指示器包括声光报警器。
其中,所述呼吸状态指示器包括无线发射器、无线接收器以及显示器。
本发明还提供一种与纸尿裤配合使用的呼吸监测装置,其中,包括:
第一部件及第二部件,所述第一部件包括第一传感器,所述第二部件包括第二传感器,所述第一、第二部件分别设置在纸尿裤前腹贴区域的不同位置上,具有不同的朝向或倾斜角度,所述第一传感器和第二传感器用于监测使用者因呼吸张力而产生的腹部变化并输出相应的信号;
设置在所述第一部件和第二部件之间,将所述第一部件和第二部件之间连接在一起的第三部件,所述第三部件包括第三传感器,用于监测使用者的睡眠姿势或因呼吸张力而产生的腹部变化并输出相应的信号;
微处理器,分别与所述第一传感器、第二传感器和第三传感器电连接,用于根据所述第一传感器、第二传感器和第三传感器输出的信号判断使用者的呼吸状态;以及
呼吸状态指示器,用于根据所述微处理器的判断结果对使用者的呼吸状态进行指示,并在所述微处理器判断使用者出现呼吸异常状态时进行报警。根据权利要求1所述的呼吸监测装置,其中,还包括:
其中,所述第三传感器为柔性传感器,用于随使用者的呼吸产生周期性弯曲变化,并输出相应的信号。
其中,
所述柔性传感器为柔性压电传感器,其由压电聚合物组成,所述压电聚合物包括偏聚氟乙烯PVDF薄膜;或
所述柔性传感器为柔性压敏传感器,其由压敏导电复合材料或压敏导电橡胶材料组成。
其中,所述柔性传感器的输出信号经放大、滤波、限幅处理后,输出脉冲信号至所述微处理器进行处理;所述微处理器对所述脉冲信号进行计数,以计算及判断使用者的呼吸频率。
其中,所述第三部件朝向纸尿裤的一侧设有适合与所述纸尿裤前腹贴的毛面相连接的魔术贴刺面。
其中,所述第一传感器和第二传感器为柔性传感器,所述第三传感器为三轴或三轴以上的重力加速度传感器。
其中,
所述柔性传感器为柔性压电传感器,其由压电聚合物组成,所述压电聚合物包括偏聚氟乙烯PVDF薄膜;或
所述柔性传感器为柔性压敏传感器,其由压敏导电复合材料或压敏导电橡胶材料组成。
其中,所述呼吸状态指示器包括声光报警器。
其中,所述呼吸状态指示器包括无线发射器、无线接收器以及显示器。
本发明通过在纸尿裤前腹贴区域设置两个处于不同位置、不同朝向或不同倾斜角度的且具有一定间距的传感器来监测使用者的呼吸状态,可以避免检测盲区的出现,提高抗干扰能力及数据的可靠性,因此既可解除传统呼吸检测的胸腹带束缚,又可稳定可靠地监测使用者的呼吸状态,可以大大降低睡眠窒息综合征的死亡率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是常规纸尿裤正常使用时的示意图。
图2是本发明实施例一与纸尿裤配合使用的呼吸监测装置的结构示意图。
图3是本发明实施例一的呼吸监测装置各相关部件的配置示意图。
图4是本发明实施例一的呼吸监测装置的第一部件的倾角随使用者呼吸运动而变化的示意图。
图5是本发明实施例一的呼吸监测装置的第一部件的倾角随使用者呼吸运动而变化的波形示意图。
图6是本发明实施例一的呼吸监测装置的重力加速度传感器信号输出电路示意图。
图7是本发明实施例一的呼吸监测装置的重力加速度传感器信号输出波形示意图。
图8是本发明实施例一的呼吸监测装置的功能模块方框图。
图9是本发明实施例二与纸尿裤配合使用的呼吸监测装置的结构示意图。
图10是本发明实施例二的呼吸监测装置各相关部件的配置示意图。
图11是本发明实施例二的呼吸监测装置的柔性传感器信号输出电路示意图。
图12是本发明实施例二的呼吸监测装置的柔性传感器信号输出波形示意图。
图13是本发明实施例二的呼吸监测装置的功能模块方框图。
图14是本发明实施例三与纸尿裤配合使用的呼吸监测装置的功能结构示意图。
图15是本发明实施例三的呼吸监测装置的结构示意图。
图16是本发明实施例三的呼吸监测装置的功能结构方框图。
图17是本发明实施例的呼吸监测装置的重力加速度传感器输出电压与使用者睡姿的关系示意图。
具体实施方式
以下各实施例的说明是参考附图,用以示例本发明可以用以实施的特定 实施例。本发明所提到的方向和位置用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「内」、「外」、「顶部」、「底部」、「侧面」等,仅是参考附图的方向或位置。因此,使用的方向和位置用语是用以说明及理解本发明,而非对本发明保护范围的限制。
请参照图1所示,这是常规纸尿裤正常使用时的示意图。图中10为一常规的纸尿裤(婴儿或成人纸尿裤均适用),纸尿裤分前后两部分,前边部分为腹部,后边部分为臀部,从后边部分延伸形成左、右(以朝向阅读者为参照)两个围边11、12,在围边11、12上分别设有一个带粘性的贴扣16、18,可将左、右两个围边11、12拉紧并固定在纸尿裤的前腹贴15上,从而将纸尿裤前后两部分连在一起包裹使用者的腹部及臀部。这种结构的好处是穿着方便,并且左右贴扣可根据需要随意贴在前腹贴的不同地方,以调节纸尿裤腰围的大小及松紧。
常规的纸尿裤左右贴扣有两种粘贴方式,一种是使用背胶,背胶有粘着力,可粘贴在设计为光滑塑料薄膜的前腹贴15上,并可反复粘贴使用,以方便解开检查纸尿裤的尿湿状况,或调节纸尿裤的松紧度。另一种粘贴方式是采用魔术扣(Hook&Loop),魔术扣又叫做子母扣或尼龙扣,其一面是细小柔软的纤维园毛(Loop,下面简称为毛面),可设置在前腹贴15上;魔术贴的另一面是较硬带钩的刺毛(Hook,下面简称为刺面),可设置在纸尿裤左、右贴扣16、18上,这样左、右贴扣16、18及前腹贴15之间便可产生粘力并可反复粘贴使用。
请参照图2所示,这是本发明实施例一与纸尿裤配合使用的呼吸监测装置的结构示意图。图中10为图1所示的纸尿裤,包括左、右两边腰围的围边11、12,分别设置在围边11、12上的贴扣16、18,左、右贴扣16、18分别粘贴在纸尿裤10的前腹贴15上,从而将纸尿裤前后两部分连在一起包裹使用者的腹部及臀部。除上述这些常规纸尿裤的基本结构之外,本实施例的呼吸监测装置还包括具有一定间距的第一部件21和第二部件22,其中,第一部件21设置在左侧粘扣16与前腹贴15之间,第二部件22设置在右侧粘扣18与前腹贴15之间。具体地,第一部件21和第二部件22分别粘贴在粘扣16、18与前腹贴15之间,其粘贴的方式也可分为背胶粘贴及魔术贴粘 贴,本实施例中优选魔术贴粘贴方式,但其基本原理亦同样适用于背胶粘贴。第一部件21、第二部件22朝向前腹贴15一侧设有魔术贴的刺面,可粘贴在设有魔术贴毛面的前腹贴15上。由于前腹贴15的表面为第一部件21和第二部件22等部件所覆盖,占据了原本预留给纸尿裤左右贴扣16、18粘贴的地方,为了解决这个问题,本实施例在第一部件21和第二部件22背向前腹贴15一侧设置了魔术贴的毛面,令纸尿裤10的左右贴扣16、18可以分别直接粘贴在第一部件21和第二部件22之上,这样不但可以起到替代纸尿裤前腹贴15的粘贴固定作用,同时对第一部件21和第二部件22起到双重固定作用,令纸尿裤使用者的呼吸张力能有效地传递到第一部件21和第二部件22之上。
令纸尿裤使用者的呼吸张力能有效地传递到第一部件21和第二部件22之上的目的在于,本实施例通过设置在第一部件21和第二部件22中的传感器来实现对呼吸状态的监测。
请参照图3所示,这是本发明实施例一的呼吸监测装置的各相关部件的配置示意图。图中20代表使用者(婴儿或成人)腹部的横切面,第一、第二部件21、22沿使用者腹部表面20而分别设置于前腹部的左、右两侧,当使用者处于平躺(仰卧)位置时,第一部件21与水平位置的夹角为a,第二部件22与水平位置的夹角为b。需要说明的是,此处的水平位置是指水平面,即使用者平躺时,与纸尿裤前腹部中心相切的平面。
在这种情况下,当使用者呼吸时,其腹部表面20会随呼吸运动而呈周期性的起伏变化。由于第一、第二部件21、22均处于使用者的腹部呼吸运动区域之内,在一般情况下,第一、第二部件21、22除了有垂直变化的分量之外,还有一个左右移动的分量,这个分量会导致水平夹角a、b发生变化。
下面再请参照图4所示,这是本发明实施例的呼吸监测装置的其中一个部件(第一部件21)的倾角(或位置)随使用者呼吸运动而变化的示意图。图中A1为用户作腹式呼吸运动吸气时的情形(腹部因膨胀而升高),对应的水平夹角为a1。图中A2为用户作腹式呼吸运动呼气时的情形(腹部因收缩而降低),其对应的水平夹角为a2。当使用者正常呼吸时,所述夹角便在a1 与a2之间作周期性变化,通过对所述夹角的检测,便可知道使用者的呼吸状态及呼吸周期,并由此可以测量出使用者的呼吸频率来。
对于夹角变化的检测有多种不同的方法,本实施例采用在第一部件21和第二部件22内部各自配置一个倾角传感器,在这种情况下,可将前述的第一、第二部件21、22称之为第一、第二倾角传感器。倾角传感器可以检测其自身的倾斜角度,通过对所述倾斜角度的连续监测,便可以知道使用者的呼吸状态,以及计算其呼吸周期与呼吸频率。为了达到最佳的监测效果,倾角传感器采用重力加速度传感器(又称重力感器、Gravity Sensor、G-Sensor等),特别优选三轴(或以上)的重力加速度传感器,其可以输出X、Y、Z三个轴向的数值,可配置在使用者腹部体现呼吸运动的区域之内,其不但具有较高的灵敏度,同时还具有很好的可靠性。同时由于三轴重力加速度传感器可以给出明确的3D位置信息,因此还可以较准确判断使用者的睡眠姿势,例如可判别婴儿的仰卧、侧卧、俯卧(趴睡)等睡姿状态。
在实际应用中,并非一定要检测倾角传感器的水平夹角,事实上只要检测到X、Y、Z轴中的任一个夹角发生变化,都可以判断使用者的呼吸运动状态,通过对呼吸运动规律的进一步统计分析,还可以得到使用者的呼吸周期信息,进而可以计算出使用者的呼吸频率。
在本实施例中,采用两个(或以上)配置于使用者腹部呼吸运动区域内,并且处于不同位置、不同朝向或不同倾斜角度的具有一定间距的传感器来监测使用者的呼吸状态,较之采用单一传感器,或将两个(或以上)的传感器配置在同一个地方(或同一个朝向/倾斜角度)更为有效,理由如下:
1、避免检测盲区的出现:使用者的腹部虽然会随呼吸运动而起伏变化,但在某些特定位置上,例如仰卧使用者的腹部中心位置的倾角并不会因所述腹部的起伏而发生改变,即会出现一个所谓的“平移”区域(只有上下移动),这就形成了一个角度检测的盲区了。由于使用者的睡姿随时会发生改变,因此所述的盲区位置具有不确定性。本实施例选择两个(或以上)不同位置、不同朝向或不同倾斜角度的监测点就可以有效解决这个问题,并保证绝大多数情况下都有最少一个检测点能发生有效的倾角变化。
2、提高抗干扰能力及数据的可靠性:为了达到最佳的检测效果及成本 效益,本发明实施例优选两个分离的传感器,并将所述传感器对称配置在使用者前腹部的纸尿裤左右两侧位置上(如图2、3所示),这一方面不会影响使用者的睡眠,令一方面又可产生较大的跨度,并产生较明显的倾角变化,并且所述倾角变化具有对称性,同时检测及比较两个对称的倾角变化可大大提高装置的抗干扰能力,令数据具有更高的可信性。
本实施例的呼吸监测装置还包括有能对传感器的输出进行分析、判断、计算、处理的部件,以获得使用者准确可靠的呼吸状态信息。在实际应用中会采用微处理器,当然也可以采用其它相类似的器件,只要能实现相应的数据处理功能便可。
请参照图5所示,为本发明实施例一的呼吸监测装置的第一部件21的倾角随使用者呼吸运动而变化的波形示意图,这是对图4所示第一部件21的倾角变化的抽象描述。图中假设第一部件21与水平位置的夹角随使用者的呼吸运动在a1与a2之间发生周期性变化。
下面再请参照图6所示,这是本发明实施例的呼吸监测装置的重力加速度传感器信号输出电路图。图中23为包含在前述第一部件21或第二部件22中的三轴重力加速度传感器,其包括有Xout、Yout、Zout三个轴的电压输出。这些电压被进一步输出至微处理器的A/D输入(模数转换输入),以便对重力加速度传感器23的输出进行采样分析,由此可获得重力加速度传感器23的倾角信息,通过对所述倾角信息的分析便可知道使用者的睡姿,或根据所述重力加速度传感器23倾角的变化信息监测使用者的呼吸状态,并根据周期性的倾角变化波形进一步计算出使用者的呼吸频率信息来。
下面再请参照图7所示,这是本发明实施例的呼吸监测装置的重力加速度传感器信号输出波形图。图中假设所述的重力加速度传感器放置在图3所示第一部件21上,并随使用者的呼吸运动作幅度为a1~a2的倾角变化(如图5所示)。再假设该倾角变化直接作用于重力加速度传感器的X轴,令X轴也在a1~a2的角度范围内周期性变化,由此产生Va1~Va2的电压输出变化。再进一步假设该重力加速度传感器的灵敏度为1000mV/g,而a2、a1分别为29°及31°(即在30°+-1°的范围内变化),则Xout在29°及31°时的相对信号输出为Sin(29°)x 1000mV及Sin(31°)x 1000mV,即Va2=485mV 及Va1=515mV。在上述算法中对水平夹角取正弦是为了求出其垂直分量的数值,因为所述重力加速度传感器的输出与其垂直分量直接相关。当处于完全垂直位置(90°)时,所述垂直分量便为1g;当处于30°时的垂直分量为0.5g;0°位置(即水平位置)的垂直分量为0g。通过上述的计算,可方便实现对使用者呼吸状态的监测;通过对呼吸波形的周期性变化的分析,即可计算出使用者的呼吸频率。
再请参照图8所示,这是本发明实施例一的呼吸监测装置的功能模块方框图。第一部件21和第二部件22均内置有倾角传感器,倾角传感器可输出随使用者呼吸运动而周期性改变的倾角信号。本实施例的倾角传感器优选三轴(或多轴)重力加速度传感器,这样便可输出X、Y、Z三轴信息,令对使用者的呼吸运动的监测更全面、准确及有效,同时还可以根据有关信息判断使用者的睡眠姿势,例如判别婴儿的仰卧、侧卧、俯卧(趴睡)姿势。微处理器30可放置于第一部件21或第二部件22之内,与两个倾角传感器均具有电连接关系,以便可以接收倾角传感器的输出信号,从而实现对使用者呼吸状态进行有效监测,因为只要使用者有呼吸运动,便会令所述重力加速度传感器的X、Y、Z轴输出发生周期性变化,这不但可确认使用者呼吸运动的存在,同时通过对X、Y、Z轴输出信号规律的分析,还可进一步确认使用者的呼吸周期并计算使用者的呼吸频率。呼吸状态指示器用于根据微处理器30的判断结果对使用者的呼吸状态进行指示,并在微处理器30判断使用者出现呼吸异常状态时进行报警,主要包括声光报警器32。例如当微处理器30检测不到X、Y、Z轴有变化时,就说明了无法检测到呼吸运动的存在,这就出现了所谓使用者呼吸暂停的状态,如果这个状态持续超过定时器31设定的时间(例如15~20秒),微处理器30便会启动报警程序,并通过声光报警器32(可放置在任一倾角传感器之内)的声光信号进行报警。另外微处理器30还可根据重力加速度传感器的输出判断婴儿使用者的睡姿,当发现为趴睡时可实施报警,这也可大大降低婴儿猝死综合症的发生率。
为了实现远程的监测和报警呼吸状态指示器还包括无线发射器33、无线接收器34及显示器/报警器35,可通过无线方式(例如Wi-Fi、蓝牙、Zigbee、小功率无线等)发射、接收及显示使用者的呼吸状态信息、趴睡报警信息及 呼吸暂停报警信息等,这样便有效地扩大了使用者的监测范围。
以下结合图9~13对本发明实施例二进行说明。
请参照图9所示,本发明实施例二与纸尿裤配合使用的呼吸监测装置,与实施例一相比,区别在于:在第一部件21和第二部件22之间增加了第三部件28,将第一部件21和第二部件22连接在一起。与第一部件21和第二部件22相类似,第三部件28也粘贴在纸尿裤10的前腹贴15上,本实施例优选的粘贴方式为魔术贴方式,第三部件28朝向前腹贴15一侧设有魔术贴的刺面,粘贴在设有魔术贴毛面的前腹贴15上。第三部件包括第三传感器,用于监测使用者的睡眠姿势或因呼吸张力而产生的腹部变化并输出相应的信号。
再如图10所示,这是本发明实施例二的呼吸监测装置的各相关部件的配置示意图。图中20代表使用者(婴儿或成人)腹部的横切面,第一部件21、第二部件22、第三部件28沿使用者腹部表面20而分别设置于前腹部的左、中、右侧,当使用者处于平躺(仰卧)位置时,第一部件21与水平位置的夹角为a,第二部件22与水平位置的夹角为b,第三部件28与水平位置的夹角为0。
在这种情况下,当使用者呼吸时,其腹部表面20会随呼吸运动而呈周期性的起伏变化。由于第一、第二、第三部件21、22、28均处于使用者的腹部呼吸运动区域之内,在一般情况下,第三部件28作垂直起伏,其与腹部的夹角不变;而第一、第二部件21、22除了有垂直变化的分量之外,还有一个左右移动的分量,这个分量会导致水平夹角a、b发生变化。有关夹角a、b变化示意图请参照图4及图5所示。
第三部件28为柔性部件28,其内设置有一个具有柔性的压电传感器或压敏传感器(简称柔性传感器),所述柔性传感器的左右两则分别固定在第一、第二部件21、22上,这样当第一、第二部件21、22随使用者的呼吸运动,其水平夹角(a、b)发生周期性变化时,柔性传感器28的弯曲度(弯曲变形的程度)也会随之发生周期性变化。假设第一、第二部件21、22延伸线的夹角为c,则c=b-a。当使用者呼气时,b增大而a减小,夹角c数值变大,代表柔性传感器28的弯曲度变小;而当使用者吸气时,b减小而a 增大,夹角c数值变小,代表柔性传感器28的弯曲度加大。由于第一部件21与第二部件22具有一定间距,可以产生一个有效的跨度,令处于跨度之间的第三部件28中的柔性传感器能随使用者的呼吸运动产生一个有效的周期性的柔性弯曲变形,同样实现呼吸监测功能,相当于在第一部件21与第二部件22之外,又新增了一个监测呼吸状况的器件,使监测更全面。
上述柔性传感器可以为柔性压电传感器,也可以为柔性压敏传感器,具体的:
柔性压电传感器28可采用柔软的压电材料,例如压电聚合物,包括偏聚氟乙烯(PVDF)薄膜等来担当。这种压电薄膜只要发生弯曲变形便可输出一个电压,弯曲变形的速度越快/程度越高,其输出的电压也就越大,由此可以知道所述传感器弯曲变形的情况及周期,从而进一步可判断使用者呼吸的状态,最少可以判断使用者是否有发生呼吸暂停的状态。在呼吸暂停情况下,压电传感器将无信号输出(或输出信号无变化)。偏聚氟乙烯薄膜具有良好的柔软性(弹性)及相当高的灵敏度,非常适合本实施例使用。
至于柔性压敏传感器28则可采用柔软的压敏导电材料,例如压敏导电复合材料,或压敏导电橡胶材料(PCR)等来组成。这些都是具有电阻应变效应的敏感材料,又称为感压导电材料。当无外力作用(或无弯曲变形)时,所述压敏导电材料的电阻值较高,而当加受压力(或产生弯曲变形)时,其电阻值明显降低,并显示导电的性质。通过对所述电阻值的检测可知道使用者的呼吸状态,例如是否发生呼吸暂停的状态。此外,通过对使用者呼吸运动周期的检测,还可计算出使用者的呼吸频率等参数,可更有效监测使用者的呼吸健康状况。
本实施例在本发明实施例一的基础上,增加柔性第三部件,同样起到传感器的作用,对使用者呼吸状况进行监测,进一步增强了监测的可靠性和准确性。此外,由本实施例第三部件设置的柔性传感器可以推知,将本发明实施例一中第一部件21、第二部件22中的倾角传感器替换为本实施例中第三部件的柔性传感器,也同样能起到通过监测柔性传感器弯曲变形所产生的压电信号变化,来对使用者呼吸情况进行监测的效果,具体原理如上所述,此处不再赘述。
本实施例的用于对传感器的输出进行分析、判断、计算、处理,以获得使用者准确可靠的呼吸状态信息的微处理器,还可以设置在第三部件28中,并分别与第一、第二、第三部件21、22、28中的相应传感器电连接,以分别处理相应传感器的输出信号。
下面再请参照图11所示,这是本发明实施例二的呼吸监测装置的柔性传感器信号输出电路示意图。图中50为柔性传感器(例如为前述图中的28),在实际应用中可采用偏聚氟乙烯(PVDF)压电薄膜,这是一种典型的柔性压电传感器,其具有频带宽(例如0.1Hz~10MHz)、灵敏度高(例如1v~10v/g)、介电强度高、稳定度高等特点。然而这种压电传感器同时也具有较高的输出阻抗,为了有效检测其输出电压,图中将柔性传感器50的输出与运算放大器U1进行连接,以提高其信号输出能力,并且在回路中还与滤波电容C1连接以去除高频干扰,以及与限幅二极管D1、D2连接以防止柔性传感器50输出电压超过检测范围,实现对运放U1的保护。柔性压敏传感器输出信号的原理相同,不再赘述。
下面再请参照图12所示,这是本发明实施例二的呼吸监测装置的柔性传感器信号输出波形图,这是对前述图6电路的信号输出效果的一个描述。图中Va为运算放大器U1的输出电压,这个电压随使用者的呼吸运动而作正负脉冲变化,其电压幅度被限制在二极管D1、D2的正向导通电压Vd(例如0.7v)范围之内。在本发明实施例中只要对该脉冲信号进行计数(通过微处理器),便可知道使用者的呼吸频率,从而可以非常方便地实现本发明实施例的呼吸监测功能。总的来说是柔性传感器的输出信号经放大、滤波、限幅处理后,输出脉冲信号至所述微处理器进行处理,然后微处理器对所述脉冲信号进行计数,便可以计算判断使用者的呼吸频率了。
请参照图13所示,这是本发明实施例二的呼吸监测装置的功能模块方框图。图中包括第一部件21及第二部件22,以及处于所述第一、第二部件之间,并与所述第一、第二部件在结构上相关联的第三部件,即柔性传感器28(例如柔软的压电材料或压敏导电材料),所述柔性传感器28进一步与微处理器30(可放置于第一部件21或第二部件22之内)电连接,令微处理器30能有效接收柔性传感器28的输出信号,从而对使用者的呼吸状态进行有 效的监测。因为只要使用者有呼吸运动,便会令柔性传感器28的压电材料或压敏导电材料受压或产生弯曲变形,从而令其输出的电压值或电阻值发生改变。同样地,本实施例中,呼吸状态指示器用于根据微处理器30的判断结果对使用者的呼吸状态进行指示,并在微处理器30判断使用者出现呼吸异常状态时进行报警,主要包括声光报警器32。例如,当微处理器30检测不到有关的变化时,就说明了无法检测到呼吸运动的存在,这就出现了所谓的呼吸暂停状态,如果这个状态持续超过定时器31设定的时间(例如15~20秒),微处理器30便会启动报警程序,并通过声光报警器32(可放置于第一部件21或第二部件22之内)的声光信号进行报警。
为了实现远程的监测和报警,在图13中呼吸状态指示器还包括无线发射器33(可放置于第一部件21或第二部件22之内)、无线接收器34及显示器/报警器35,这样便可通过无线方式(例如Wi-Fi、蓝牙、Zigbee、小功率无线等)发射、接收及显示使用者的呼吸状态信息及呼吸暂停报警信息,这样便有效地扩大了对使用者的监测范围。
下面再请参照图14所示,这是本发明实施例三与纸尿裤配合使用的呼吸监测装置的功能结构示意图。实施例三的呼吸监测装置的功能结构主要分A、B、C三部分,C位于中间位置,在实际应用时位于使用者腹部正中;而A、B左右对称,在实际应用时位于使用者腹部的左右两侧。C中包括有主体部分45,在主体部分45中包含有微处理器,可以对相连的传感器的信号进行处理。在主体部分45中还包含有重力加速度传感器,以便感应使用者的睡姿。图中,C的两侧则包括有柔性传感器41、42,其可以随使用者的呼吸运动产生周期性的弯曲变形,并产生相应的感应电压。与前述本发明实施例二的不同之处在于,本实施例中,中间位置为重力加速度传感器,左右两侧为柔性传感器;而实施例二是中间位置为柔性传感器,左右两侧为重力加速度传感器。
为了在使用时与纸尿裤固定,在主体部分45面向纸尿裤的一侧还包括有背胶(或魔术贴的刺面)43,而左右两侧柔性传感器41、42则包括有背胶(或魔术贴的刺面)51、52,这样可方便将A、B、C三部份分别固定在纸尿裤前腹贴上。更进一步地,柔性传感器41、42背对纸尿裤的一侧包括 有光滑面(或魔术贴的毛面)可将纸尿裤左右贴16、18粘贴在41、42上,起到替代纸尿裤前腹贴的作用,其不但令系统有更好的固定,同时还令纸尿裤使用者腹部的呼吸运动能直接传递到柔性传感器41、42上,可更有效地检测使用者的呼吸状态。
下面再请参照图15所示,这是本发明实施例三的呼吸监测装置的结构示意图,是对上述图14的一个形象化补充说明。图中可清晰看到柔性传感器41、42占据了纸尿裤前腹贴15的位置,因而有需要将纸尿裤的左右贴16、18贴在柔性传感器41、42上,在这种意义上来说,柔性传感器上的光面设计或魔术贴毛面设计便起到替代原前腹贴的作用。在实际应用中,主体部分还会包括呼吸状态指示器或报警器,可对使用者的呼吸状态进行指示,或对使用者的呼吸异常状态进行报警。其可以是本地声光指示/报警,也可以通过在主体装置中配置无线发射器进行远程的状态指示/报警。
再请参照图16所示,这是本发明实施例三的呼吸监测装置的功能结构方框图,这是对图14、15的一个概括性总结。图中51、52、43分别代表A、B、C三个固定点,柔性传感器41、42分别配置于A/C及C/B之间,通过这样的安排,可以将使用者腹部左右两侧的呼吸张力有效传递到左右两侧的相应的柔性传感器41及柔性传感器42之上,令柔性传感器发生弯曲变形,从而产生相应的压电效应及输出相应的信号,从而令主体装置45内的微处理器能有效检测有关信号的变化而实现对使用者呼吸状态的监测,并通过对周期性信号的分析得到使用者的呼吸频率。
请参照图17所示,这是本发明实施例的呼吸监测装置的重力加速度传感器输出电压与使用者睡姿的关系图。所述重力加速度传感器可以放置在图14或图15所示的主体部分45之内,与微处理器的连接关系则可参考前述图6所示,包括有Xout、Yout、Zout三轴的输出信号。假设所述的重力加速度传感器的工作电压为3.3V,灵敏度为800mV/g,三个轴在-1g~1g范围内线性工作,则0g时的输出电压为1.65v(工作电压的一半),1g时的输出电压为2.45v,-1g时的输出电压为0.85v。再假设主体部分45放置于使用者前腹部中间位置,使用者仰卧时Z轴朝上(重力为1g),左侧卧时X轴朝上(重力为1g),右侧卧时X轴朝下(重力为-1g),趴睡时Z轴朝下(重力为-1g), 站立(或坐着)时Y轴朝上(重力为1g),则有三个轴的输出电压与婴儿睡姿的关系如图16所示。通过对有关电压的检测及判断,便可方便得到使用者睡姿的信息,从而可方便实现本发明专利实施例的睡眠监测功能。
通过上述实施例的描述可知,本发明既可解除传统呼吸检测的胸腹带束缚,又可稳定可靠地监测婴儿的呼吸状态,可以大大降低婴儿睡眠窒息综合征的死亡率。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (16)

  1. 一种与纸尿裤配合使用的呼吸监测装置,其中,包括:
    第一部件及第二部件,所述第一部件包括第一传感器,所述第二部件包括第二传感器,所述第一、第二部件分别设置在纸尿裤前腹贴区域的不同位置上,具有不同的朝向或倾斜角度,所述第一传感器和第二传感器用于监测使用者因呼吸张力而产生的腹部变化并输出相应的信号;
    微处理器,分别与所述第一传感器和第二传感器电连接,用于根据所述第一传感器和/或第二传感器输出的信号判断使用者的呼吸状态;以及
    呼吸状态指示器,用于根据所述微处理器的判断结果对使用者的呼吸状态进行指示,并在所述微处理器判断使用者出现呼吸异常状态时进行报警。
  2. 根据权利要求1所述的呼吸监测装置,其中,所述第一传感器和第二传感器均为倾角传感器,随使用者呼吸产生周期性角度变化,并输出相应的信号。
  3. 根据权利要求2所述的呼吸监测装置,其中,所述倾角传感器为三轴或三轴以上的重力加速度传感器,随使用者呼吸在至少一轴上产生周期性角度变化并输出相应的信号。
  4. 根据权利要求1所述的呼吸监测装置,其中,所述第一传感器和第二传感器对称设置在所述纸尿裤的前腹贴区域内的左右两侧。
  5. 根据权利要求4所述的呼吸监测装置,其中,所述第一部件朝向纸尿裤的一侧设有适合与所述纸尿裤前腹贴的毛面相连接的魔术贴刺面,背向纸尿裤的一侧设有适合与纸尿裤左侧粘扣的刺面相连接的魔术贴毛面;所述第二部件朝向纸尿裤的一侧包括适合与所述纸尿裤前腹贴的毛面相连接的魔术贴刺面,背向纸尿裤的一侧包括适合与纸尿裤右侧粘扣的刺面相连接的魔术贴毛面。
  6. 根据权利要求1所述的呼吸监测装置,其中,所述呼吸状态指示器包括声光报警器。
  7. 根据权利要求1所述的呼吸监测装置,其中,所述呼吸状态指示器包括无线发射器、无线接收器以及显示器。
  8. 一种与纸尿裤配合使用的呼吸监测装置,其中,包括:
    第一部件及第二部件,所述第一部件包括第一传感器,所述第二部件包括第二传感器,所述第一、第二部件分别设置在纸尿裤前腹贴区域的不同位置上,具有不同的朝向或倾斜角度,所述第一传感器和第二传感器用于监测使用者因呼吸张力而产生的腹部变化并输出相应的信号;
    设置在所述第一部件和第二部件之间,将所述第一部件和第二部件之间连接在一起的第三部件,所述第三部件包括第三传感器,用于监测使用者的睡眠姿势或因呼吸张力而产生的腹部变化并输出相应的信号;
    微处理器,分别与所述第一传感器、第二传感器和第三传感器电连接,用于根据所述第一传感器、第二传感器和第三传感器输出的信号判断使用者的呼吸状态;以及
    呼吸状态指示器,用于根据所述微处理器的判断结果对使用者的呼吸状态进行指示,并在所述微处理器判断使用者出现呼吸异常状态时进行报警。根据权利要求1所述的呼吸监测装置,其中,还包括:
  9. 根据权利要求8所述的呼吸监测装置,其中,所述第三传感器为柔性传感器,用于随使用者的呼吸产生周期性弯曲变化,并输出相应的信号。
  10. 根据权利要求9所述的呼吸监测装置,其中,
    所述柔性传感器为柔性压电传感器,其由压电聚合物组成,所述压电聚合物包括偏聚氟乙烯PVDF薄膜;或
    所述柔性传感器为柔性压敏传感器,其由压敏导电复合材料或压敏导电橡胶材料组成。
  11. 根据权利要求10所述的呼吸监测装置,其中,所述柔性传感器的输出信号经放大、滤波、限幅处理后,输出脉冲信号至所述微处理器进行处理;所述微处理器对所述脉冲信号进行计数,以计算及判断使用者的呼吸频率。
  12. 根据权利要求8所述的呼吸监测装置,其中,所述第三部件朝向纸尿裤的一侧设有适合与所述纸尿裤前腹贴的毛面相连接的魔术贴刺面。
  13. 根据权利要求8所述的呼吸监测装置,其中,所述第一传感器和第二传感器为柔性传感器,所述第三传感器为三轴或三轴以上的重力加速度传感器。
  14. 根据权利要求13所述的呼吸监测装置,其中,
    所述柔性传感器为柔性压电传感器,其由压电聚合物组成,所述压电聚合物包括偏聚氟乙烯PVDF薄膜;或
    所述柔性传感器为柔性压敏传感器,其由压敏导电复合材料或压敏导电橡胶材料组成。
  15. 根据权利要求8所述的呼吸监测装置,其中,所述呼吸状态指示器包括声光报警器。
  16. 根据权利要求8所述的呼吸监测装置,其中,所述呼吸状态指示器包括无线发射器、无线接收器以及显示器。
PCT/CN2014/095781 2014-03-12 2014-12-31 一种与纸尿裤配合使用的呼吸监护装置 WO2015135368A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410089035.7 2014-03-12
CN201410089035.7A CN104905792A (zh) 2014-03-12 2014-03-12 一种与纸尿裤配合使用的呼吸监护装置

Publications (1)

Publication Number Publication Date
WO2015135368A1 true WO2015135368A1 (zh) 2015-09-17

Family

ID=54070900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/095781 WO2015135368A1 (zh) 2014-03-12 2014-12-31 一种与纸尿裤配合使用的呼吸监护装置

Country Status (2)

Country Link
CN (1) CN104905792A (zh)
WO (1) WO2015135368A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105919181A (zh) * 2016-06-28 2016-09-07 李玉婷 一种智能裤子
CN105943050A (zh) * 2016-05-31 2016-09-21 广西长益智能科技有限公司 一种穿戴式呼吸检测设备
TWI649727B (zh) * 2017-12-14 2019-02-01 長庚大學 非接觸式嬰幼兒用穿戴式智能裝置及其運作方法
CN109949542A (zh) * 2019-04-29 2019-06-28 广东交通职业技术学院 一种婴儿睡姿检测装置
US11471106B2 (en) * 2017-10-09 2022-10-18 Wesper Inc. Systems, apparatus, and methods for detection and monitoring of chronic sleep disorders

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6798684B2 (ja) * 2016-09-09 2020-12-09 合同会社アーク 体動検知センサ
CN108926430A (zh) * 2018-09-26 2018-12-04 深圳市安全家科技有限公司 一种智能纸尿裤
CN114287923B (zh) * 2021-12-29 2023-08-25 贝亲母婴用品(常州)有限公司 柔性腹部贴片以及利用柔性腹部贴片检测用户状态的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020057202A1 (en) * 2000-10-26 2002-05-16 2Spot. Com Ltd. Infant monitoring system
CN1826081A (zh) * 2003-08-04 2006-08-30 约翰内斯·德克勒克·皮特森 人体状况监测装置
US20080094226A1 (en) * 2006-10-24 2008-04-24 O'shea Michael D Methods and systems for monitoring position and movement of human beings
CN101209205A (zh) * 2007-12-21 2008-07-02 热映光电股份有限公司 呼吸感测装置
CN101917903A (zh) * 2007-10-18 2010-12-15 谢克德·拉哈明 呼吸暂停检测器与系统
CN102525475A (zh) * 2010-12-27 2012-07-04 深圳市迈迪加科技发展有限公司 一种呼吸传感器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020057202A1 (en) * 2000-10-26 2002-05-16 2Spot. Com Ltd. Infant monitoring system
CN1826081A (zh) * 2003-08-04 2006-08-30 约翰内斯·德克勒克·皮特森 人体状况监测装置
US20080094226A1 (en) * 2006-10-24 2008-04-24 O'shea Michael D Methods and systems for monitoring position and movement of human beings
CN101917903A (zh) * 2007-10-18 2010-12-15 谢克德·拉哈明 呼吸暂停检测器与系统
CN101209205A (zh) * 2007-12-21 2008-07-02 热映光电股份有限公司 呼吸感测装置
CN102525475A (zh) * 2010-12-27 2012-07-04 深圳市迈迪加科技发展有限公司 一种呼吸传感器

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105943050A (zh) * 2016-05-31 2016-09-21 广西长益智能科技有限公司 一种穿戴式呼吸检测设备
CN105919181A (zh) * 2016-06-28 2016-09-07 李玉婷 一种智能裤子
US11471106B2 (en) * 2017-10-09 2022-10-18 Wesper Inc. Systems, apparatus, and methods for detection and monitoring of chronic sleep disorders
US11510622B2 (en) 2017-10-09 2022-11-29 Wesper Inc. Systems, apparatus, and methods for detection and monitoring of chronic sleep disorders
US11596354B2 (en) 2017-10-09 2023-03-07 Wesper Inc. Systems, apparatus, and methods for detection and monitoring of chronic sleep disorders
TWI649727B (zh) * 2017-12-14 2019-02-01 長庚大學 非接觸式嬰幼兒用穿戴式智能裝置及其運作方法
CN109949542A (zh) * 2019-04-29 2019-06-28 广东交通职业技术学院 一种婴儿睡姿检测装置

Also Published As

Publication number Publication date
CN104905792A (zh) 2015-09-16

Similar Documents

Publication Publication Date Title
WO2015135368A1 (zh) 一种与纸尿裤配合使用的呼吸监护装置
US9468399B2 (en) Detection of changes from a seated or lying body position by sensing body angle
US7423537B2 (en) Procedure and system for detecting a person's fall
EP2124748B1 (en) Infant monitor
US7319400B2 (en) Method and apparatus for monitoring a restraint device
US20140249382A1 (en) Motion detection system
US20090163778A1 (en) Personal Warning Apparatus
JP3932726B2 (ja) 生体モニタ装置
CN102136180A (zh) 人体跌倒检测与报警装置
KR101390845B1 (ko) 기저귀형 생체신호 측정 장치
KR20090074212A (ko) 인간의 자세와 움직임을 감시하기 위한 방법 및 시스템
US9877669B2 (en) Method and device for monitoring body movement by detecting pattern changes in the distance variations between proximity sensors and their respective sensor zone
US20130072763A1 (en) Mobile Monitoring Device for Monitoring Physical Characteristics of a Subject
US20090131809A1 (en) Respiration sensor
US20150112202A1 (en) Optical respiration sensor
CA3029216A1 (en) Proximity based fall and distress detection systems and methods
JP2005312901A (ja) 乳幼児うつ伏せ寝検出装置
US20090240160A1 (en) Infant monitoring system
EP3995074A1 (en) Comprehensive care device
US11100779B1 (en) Comprehensive care device
Wipulasundara A novel concept for remotely monitoring babies
CN101390135B (zh) 人身警报装置
EP3764905A1 (en) Fall management using a bladder sensor
TWI649727B (zh) 非接觸式嬰幼兒用穿戴式智能裝置及其運作方法
CN115243611A (zh) 人体运动传感器、程序、信息提示系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14885546

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14885546

Country of ref document: EP

Kind code of ref document: A1