WO2015133927A1 - Acier de décolletage à teneur moyenne en carbone et procédé de traitement thermique de laminage calibré - Google Patents

Acier de décolletage à teneur moyenne en carbone et procédé de traitement thermique de laminage calibré Download PDF

Info

Publication number
WO2015133927A1
WO2015133927A1 PCT/RU2014/000681 RU2014000681W WO2015133927A1 WO 2015133927 A1 WO2015133927 A1 WO 2015133927A1 RU 2014000681 W RU2014000681 W RU 2014000681W WO 2015133927 A1 WO2015133927 A1 WO 2015133927A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
gauged
free
inclusions
bismuth
Prior art date
Application number
PCT/RU2014/000681
Other languages
English (en)
Russian (ru)
Inventor
Александр Дмитриевич ВОЛОСКОВ
Original Assignee
Закрытое акционерное общество "Омутнинский металлургический завод"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Закрытое акционерное общество "Омутнинский металлургический завод" filed Critical Закрытое акционерное общество "Омутнинский металлургический завод"
Publication of WO2015133927A1 publication Critical patent/WO2015133927A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2261/00Machining or cutting being involved

Definitions

  • the invention relates to ferrous metallurgy, and in particular to the production of structural steel with increased machinability by cutting for the manufacture of parts in mechanical engineering.
  • This steel is the closest to the proposed mechanical properties, composition and purpose and is taken as a prototype.
  • the main technical objective of the invention is to provide increased strength properties with a slight decrease in plastic properties relative to the mechanical properties of similar lead-containing steel, improving the environmental situation in the metallurgical industry, improving the processability of rolled metal at the consumer.
  • a heat treatment mode for calibrated rolled products including tempering at a temperature of 400-450 ° C, holding for 4-6 hours and cooling in air.
  • the optimal microstructure of steel and stress relief of cold-rolled steel during tempering depends on the sulfur content, and morphology - on the degree of steel deoxidation and oxygen content in it, as well as on the cooling rate during crystallization.
  • the optimal form of sulfides for increasing the workability of steel is round, close to globular, slightly deformed. To do this, the content of total oxygen is provided - 0.002-0.020% in order to obtain slightly redox steel.
  • the presence of close to globular, slightly deformed sulfides in the metal is in good agreement with the content of active oxygen and residual aluminum:
  • the maximum aluminum content of 0.03% is limited by a decrease in machinability of parts.
  • the carbon content of 0.32-0.42% provides the necessary mechanical characteristics. To achieve the desired strength ' properties of the proposed steel, the carbon content should be at least 0.32%. Despite the fact that an increase in the carbon content in steel provides an increase in its strength and wear resistance, the content should be limited carbon in it with a value of 0.42%, in order to prevent a significant decrease in ductility.
  • the content of manganese and sulfur provides an Mn / S ratio of 5.0-22.0, which leads to almost complete binding of sulfur to the refractory manganese sulfide MnS and eliminates the formation of low-melting sulfide eutectic. This avoids the red and brittleness of the steel during hot processing.
  • manganese with a content of 1.4-1.8% together with carbon provides the necessary level of strength properties. Increased workability is achieved primarily due to the high sulfur content (0.08-0.35%). Quantitative sulfur content below 0.08% leads to a decrease in the acceptable machinability level of medium-carbon steels.
  • Low phosphorus content favorably improves the process of chip formation and the quality of the processed surface.
  • the phosphorus concentration exceeds 0.04%, its negative effect on the ductility and cold brittleness of the metal is manifested.
  • the minimum bismuth content in steel is 0.05% due to the achievement of machinability at the level of lead-containing steel.
  • the maximum content of 0.12% is experimentally selected for optimal casting conditions for continuous casting machines, compliance with the requirements for maximum permissible concentration (MAC) of bismuth in air (set at 0.5 mg / m 3 ).
  • the introduction of bismuth provides the globularization of sulfide inclusions. Globular (slightly deformed) inclusions do not adversely affect the properties of steel, in contrast to sulfide inclusions stretched along the rolling direction of sulphide automatic steels.
  • the figure 1 shows a photograph of the microstructure (cross section of the sample) of the modified automatic steel of one of the melts with a grain size of 8-9 number at 100-fold magnification with a scale scale of 400 microns in length.
  • the figure 2 presents a photograph of the microstructure
  • the figure 3 shows the distribution and shape of sulfide inclusions in a modified automatic steel of one of the melts in the surface layer of a longitudinal section at a 100-fold increase.
  • the figure 4 shows the distribution and shape of sulfide inclusions in the surface layer of a longitudinal section of a modified automatic steel, with a 500-fold increase.
  • Figure 5 shows the distribution and shape of sulfide inclusions in a sample of one of the melts of modified automatic steel in the central part of a longitudinal section at a 100-fold increase.
  • Figure b shows the distribution and shape of sulfide inclusions in the sample of one of the melts in the central part of the longitudinal section at a 500-fold increase.
  • Smelting of the declared steel grade is carried out at OMZ CJSC in the steelmaking unit.
  • Deoxidation of steel by aluminum is carried out at the drain from the steelmaking unit into the ladle, components for deoxidation are introduced into the bottom zone of the ladle at the optimal ratio [Mn] / [Si] ⁇ 3.
  • Out-of-furnace treatment is carried out in a ladle furnace when purging with argon with guidance of calcareous-alumina slag, a flux-cored wire with filler elemental sulfur is introduced after the slag is thickened with magnesite powder. Subsequently, a filler wire is introduced - bismuth (MnBi). Casting is carried out on continuous casting machine "under the level". Steel is obtained in the form of a continuously cast billet.
  • the billet is rolled in hot rolling mills according to technological instructions and rolling schemes of OMZ CJSC. Then the tackle is calibrated on drawing mills with an effort of 10.15 tons into a finished profile - circles from 11 to 43 mm or on a drawing mill "Shumag" - circles from 5 to 10 mm (depending on the cross section of the finished profile and production technology). Vacation for the purpose of removal
  • the stresses obtained during cold deformation are carried out at 400-450 ° C with a holding time of 4-6 hours, depending on the mass of the metal rolling cages in the thermal furnace.
  • the mechanical properties and structure of steel AM35G2 were evaluated in the laboratory of control tests of OMZ CJSC.
  • the mechanical properties were tested on a 25-ton QUASAR 250 tensile testing machine, and the hardness test was carried out on a TSh-2M hardness tester according to the Brinell method.
  • the results of the study of the mechanical properties of the proposed calibrated steel are shown in table 2. From the experimental heats were made party lots of profiles of various sizes. Some variation in strength properties is due to the degree of compression during drawing of profiles of different sizes.
  • the microstructure of steel, the shape and distribution of sulfide inclusions were investigated using a NE0PH0T-21 microscope.
  • the microstructure of the steel is homogeneous ferrite-pearlite with a grain size of 8-9 number.
  • the grain size was evaluated on a transverse section of a calibrated profile at a 100-fold increase in accordance with GOST 5639 (Fig. 1), the ratio of granular perlite to plate (prevalence of plate perlite) was evaluated on a transverse section at a 500-fold increase in accordance with GOST 8233 (Fig. 2).
  • the shape of non-metallic inclusions was evaluated according to the SEP 1572 scales. It showed the presence of uniformly distributed, isolated, slightly deformed ellipsoidal sulfides of 2.1-2.2 points, the absence of accumulations of film inclusions that reduce the physicomechanical and technological properties of the metal.
  • the ratio of the length of sulfide particles to their thickness in the surface layer is 2-4 (Fig. 3, 4), in the center of the section is 3-7 (Fig. 5, b).
  • the obtained form of sulfide inclusions provides a decrease in the adhesive interactions of the processed material and the tool and, as a result, ensures surface roughness and the wear rate of the cutting tool (tool life) compared to lead-containing steel.
  • Pilot testing of the proposed ⁇ of metal steel was carried out on the basis of JSC "AVTOVAZ" in order to reduce production costs and reduce the use of hazardous substances in the vehicle details.
  • the proposed chemical composition, heat treatment mode allows to obtain metal rolling from steel of increased strength and wear resistance with a slight decrease in ductility relative to the level of lead-containing steel, increased machinability, as well as improving the environmental situation in the metallurgical industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

L'invention se rapporte au domaine de la métallurgie des métaux ferreux, et concerne notamment la production d'acier de décolletage structurel ayant une grande aptitude à la découpe afin de fabriquer des pièces de génie mécanique. L'acier comprend les composants suivants en % en poids : carbone - 0, 32-0, 42; silicium - moins de 0,35; manganèse - 1,4-1,8; phosphore - moins de 0,04; soufre - 0,08-0,4; aluminium - moins de 0,03; bismuth - 0,03-0,12; le reste se composant de fer et d'impuretés. Cet acier comprend des inclusions de sulfure faiblement déformes et réparties uniformément de 2,1-2,2 unités et de forme ellipsoïde, et un contenu total en oxygène de 0,002-0,020%. A l'état calibré, l'acier est soumis à un revenu à une température de 400-450°С maintenu ainsi pendant 4-6 heures puis refroidi à l'air. Le produit calibré obtenu possède une grande résistance et une meilleure aptitude à la découpe.
PCT/RU2014/000681 2014-03-06 2014-09-11 Acier de décolletage à teneur moyenne en carbone et procédé de traitement thermique de laminage calibré WO2015133927A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2014108526 2014-03-06
RU2014108526/02A RU2544981C1 (ru) 2014-03-06 2014-03-06 Среднеуглеродистая автоматная сталь

Publications (1)

Publication Number Publication Date
WO2015133927A1 true WO2015133927A1 (fr) 2015-09-11

Family

ID=53290827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2014/000681 WO2015133927A1 (fr) 2014-03-06 2014-09-11 Acier de décolletage à teneur moyenne en carbone et procédé de traitement thermique de laminage calibré

Country Status (2)

Country Link
RU (1) RU2544981C1 (fr)
WO (1) WO2015133927A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109234640A (zh) * 2018-11-16 2019-01-18 泉州市恒通机械配件有限公司 一种铸钢及其生产工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1188846B1 (fr) * 2000-08-30 2004-11-03 Kabushiki Kaisha Kobe Seiko Sho Acier destiné a des piéces structurelles de machines présentant une abilité ameliorée d'évacuation des copeaux d'acier et de propriétés mécaniques supérieures
EP1316624B1 (fr) * 2001-11-28 2006-08-09 Daido Steel Company Limited Acier pour des structures de machines ayant une bonne usinabilité et une bonne aptitude à la rupture de coupeaux
EP1270757B1 (fr) * 2000-02-10 2007-07-18 Sanyo Special Steel Co., Ltd. Acier structural sans plomb pour construction mecanique presentant une excellente usinabilite et une anisotropie de resistance reduite
RU2326179C2 (ru) * 2002-11-19 2008-06-10 Эндюстель Крезо Способ получения листа из износостойкой стали и полученный этим способом стальной лист

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2437739C1 (ru) * 2010-03-29 2011-12-27 ЗАО "Омутнинский металлургический завод" Способ производства автоматной стали ам14

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1270757B1 (fr) * 2000-02-10 2007-07-18 Sanyo Special Steel Co., Ltd. Acier structural sans plomb pour construction mecanique presentant une excellente usinabilite et une anisotropie de resistance reduite
EP1188846B1 (fr) * 2000-08-30 2004-11-03 Kabushiki Kaisha Kobe Seiko Sho Acier destiné a des piéces structurelles de machines présentant une abilité ameliorée d'évacuation des copeaux d'acier et de propriétés mécaniques supérieures
EP1316624B1 (fr) * 2001-11-28 2006-08-09 Daido Steel Company Limited Acier pour des structures de machines ayant une bonne usinabilité et une bonne aptitude à la rupture de coupeaux
RU2326179C2 (ru) * 2002-11-19 2008-06-10 Эндюстель Крезо Способ получения листа из износостойкой стали и полученный этим способом стальной лист

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GULIAEV A.P.: "Metallovedenie", UCHEBNIK DLIA VUZOV., 1986, pages 216 *

Also Published As

Publication number Publication date
RU2544981C1 (ru) 2015-03-20

Similar Documents

Publication Publication Date Title
CA2966476C (fr) Feuille d'acier epaisse, haute durete, haute tenacite ayant une excellente uniformite de matiere et son procede de fabrication
EP2975149B1 (fr) Acier en forme de h et son procédé de fabrication
US10280476B2 (en) H-section steel and method of producing the same
TW201443245A (zh) 具有優異冷加工性與加工後之表面硬度的熱軋鋼板
JP6177551B2 (ja) 絞り加工性と加工後の表面硬さに優れる熱延鋼板
KR101886030B1 (ko) 피로 특성이 우수한 내마모성 강재 및 그 제조 방법
KR20220084382A (ko) 핫 스탬프 성형품 및 핫 스탬프용 강판
US10844466B2 (en) Hot forging steel and hot forged product
JP6652021B2 (ja) 熱間鍛造用鋼及び熱間鍛造品
RU2544981C1 (ru) Среднеуглеродистая автоматная сталь
RU2503737C1 (ru) Автоматные висмутсодержащие стали
JP6354259B2 (ja) 疲労強度に優れた鋼板及びその製造方法
RU2337151C1 (ru) Трубная заготовка из легированной борсодержащей стали
KR20170121267A (ko) 열간 압연 봉선재, 부품 및 열간 압연 봉선재의 제조 방법
RU2360980C1 (ru) Способ производства катанки с нормируемым относительным сужением
US11111568B2 (en) Steel for cold forging and manufacturing method thereof
WO2014088454A1 (fr) Acier structurel faiblement dopé ayant une plus grande résistance
RU2337152C1 (ru) Трубная заготовка из среднеуглеродистой низколегированной стали
RU2338796C2 (ru) Трубная заготовка из низкоуглеродистой теплостойкой стали
RU2336315C2 (ru) Сортовой прокат круглый из пружинной стали со специальной отделкой поверхности
RU2337149C1 (ru) Трубная заготовка из среднеуглеродистой низколегированной стали
WO2015080618A1 (fr) Acier structurel dopé ayant une plus grande résistance et procédé de renforcement par laminage à chaud
RU2336329C1 (ru) Трубная заготовка из низкоуглеродистой марганецсодержащей стали
RU2330889C2 (ru) Сортовой прокат горячекалиброванный из пружинной стали
RU2336325C1 (ru) Трубная заготовка из низкоуглеродистой низколегированной стали

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14884696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14884696

Country of ref document: EP

Kind code of ref document: A1