WO2015133647A1 - Gas/liquid separated solution storage device, persulfuric acid generation system, and gas/liquid separation method for electrolyte solution - Google Patents

Gas/liquid separated solution storage device, persulfuric acid generation system, and gas/liquid separation method for electrolyte solution Download PDF

Info

Publication number
WO2015133647A1
WO2015133647A1 PCT/JP2015/056868 JP2015056868W WO2015133647A1 WO 2015133647 A1 WO2015133647 A1 WO 2015133647A1 JP 2015056868 W JP2015056868 W JP 2015056868W WO 2015133647 A1 WO2015133647 A1 WO 2015133647A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
solution
separation
liquid separation
liquid
Prior art date
Application number
PCT/JP2015/056868
Other languages
French (fr)
Japanese (ja)
Inventor
内田 稔
友野 佐々木
晴義 山川
Original Assignee
栗田工業株式会社
内田 稔
友野 佐々木
晴義 山川
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社, 内田 稔, 友野 佐々木, 晴義 山川 filed Critical 栗田工業株式会社
Publication of WO2015133647A1 publication Critical patent/WO2015133647A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0042Degasification of liquids modifying the liquid flow
    • B01D19/0052Degasification of liquids modifying the liquid flow in rotating vessels, vessels containing movable parts or in which centrifugal movement is caused
    • B01D19/0057Degasification of liquids modifying the liquid flow in rotating vessels, vessels containing movable parts or in which centrifugal movement is caused the centrifugal movement being caused by a vortex, e.g. using a cyclone, or by a tangential inlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/14Construction of the underflow ducting; Apex constructions; Discharge arrangements ; discharge through sidewall provided with a few slits or perforations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/24Multiple arrangement thereof
    • B04C5/26Multiple arrangement thereof for series flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C9/00Combinations with other devices, e.g. fans, expansion chambers, diffusors, water locks
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/22Inorganic acids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/28Per-compounds
    • C25B1/29Persulfates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes

Definitions

  • the present invention relates to a gas-liquid separation solution storage device, a persulfuric acid generation system, and a method for gas-liquid separation of an electrolytic solution.
  • Patent Document 1 There is an apparatus disclosed in Patent Document 1 as a conventional technique for gas-liquid separation of an electrolyzed solution.
  • the apparatus shown in FIG. 17 is mentioned as an apparatus equivalent to the apparatus shown in the document.
  • a cyclone mist separation mechanism is provided on the upper side of the gravity separation type gas-liquid separator.
  • a liquid supply mechanism to the cleaning machine such as a pump and a filter, is not shown.
  • the apparatus shown in FIG. 17 will be described below.
  • the electrolytic solution exiting the electrolytic cell 100 is introduced into the gas-liquid separator 101 to separate the electrolytic solution by gravity.
  • the main components of the separation gas are hydrogen and oxygen, and the ratio is approximately 2 to 1, so there is a risk of explosion, and it is necessary to immediately dilute it with nitrogen.
  • the gas-liquid separator 101 centrifuges the mist in the separated gas by a swirling flow and then sends it to the exhaust gas treatment step.
  • the liquid stored in the gas-liquid separator 101 and sent to the storage tank 102 is accompanied by a small amount of hydrogen / oxygen mixed gas, which may cause the storage tank 102 to be filled with explosive gas. Purge with gas.
  • the purged gas is sent to the exhaust gas treatment process together with the gas from the gas-liquid separator.
  • the solution in the storage tank 102 can be returned to the electrolysis cell by the pump 103 and further electrolyzed.
  • ⁇ h 15 to 50 mm.
  • the storage tank must be designed so that the liquid level in the storage tank does not overflow. (4) Strictly, mist separation may not be possible with the nitrogen gas cyclone at the top of the gas-liquid separator alone. In such a case, the exhaust gas treatment process is accompanied by a mist containing a small amount of sulfuric acid, and the duct is associated with long-term operation. There is concern about problems such as dripping inside.
  • An object of the present invention is to provide a generation system and a gas-liquid separation method of an electrolytic solution.
  • the first invention of the present invention is an electrolyzed solution is introduced for gas-liquid separation, and the separated solution is discharged and the separated gas is discharged.
  • the cyclone-type gas-liquid separation unit has at least a part on the lower side so that the separated solution is discharged to the solution reservoir through the opening within the height range of the solution reservoir of the reservoir. It is installed in the department.
  • the gas-liquid separation solution storage device of the second aspect of the present invention is the separation gas that is connected to the separation gas discharge part and sends the separation gas discharged from the separation gas discharge part into the storage part in the first aspect of the present invention.
  • the gas-liquid separation solution storage device of the third aspect of the present invention is characterized in that, in the first or second aspect of the present invention, a purge gas introduction line for introducing a purge gas into the cyclone-type gas-liquid separation unit is provided. .
  • the purge gas introduction line is formed in a cylindrical shape and protrudes into the cyclone-type gas-liquid separation unit, and the separation gas introduction line
  • the separation gas discharge part having an outer cylindrical shape is provided at an interval on the outer side.
  • a gas-liquid separation solution storage device is the gas-liquid separation solution storage apparatus according to any one of the first to fourth aspects, wherein the opening is lower than a solution setting height position of the solution storage part of the storage part.
  • the separation gas discharge part is located at a location higher than the storage part.
  • the cyclone-type gas-liquid separation section has a straight body shape inside the separation section main body. It is characterized by that.
  • the storage section includes a storage section exhaust line that exhausts the gas in the storage section and the storage section.
  • a storage unit dilution gas supply line for sending dilution gas is connected.
  • the storage part is sealed except for gas movement and liquid movement.
  • a gas-liquid separation solution storage device according to a ninth aspect of the present invention is the seventh or eighth aspect of the present invention, wherein the separation gas exhausted from the separation gas discharge part is connected to the separation gas discharge part and the storage part exhaust gas is discharged.
  • the gas-liquid separation solution storage device of the tenth aspect of the present invention, in the ninth aspect of the present invention, dilution gas is supplied to the storage section exhaust line upstream of a connection point of the separation section exhaust line with respect to the storage section exhaust line. A dilution gas supply line for an exhaust line to be introduced is connected.
  • the gas-liquid separation solution storage device according to an eleventh aspect of the present invention is the second cyclone type gas-liquid separation part between the storage part exhaust line and the storage part in any of the seventh to tenth aspects of the invention.
  • the second cyclone gas-liquid separation unit has an opening through which the separated solution is discharged, and the separated solution passes through the opening and the solution storage unit of the storage unit. It is installed so that it may be discharged.
  • the gas-liquid separation solution storage device of the twelfth aspect of the invention is the eleventh aspect of the invention, wherein the separation gas is connected to the separation gas discharge part and the separation gas discharged from the separation gas discharge part is transferred to the second cyclone gas. It has a separation gas separation part introduction line to be introduced into the liquid separation part.
  • the gas-liquid separation solution storage device according to the twelfth aspect of the present invention, wherein the purge gas supplied to the second cyclone gas-liquid separation section is introduced into the separation gas separation section introduction line.
  • a purge gas introduction part for two separation parts is provided.
  • the gas-liquid separation solution storage device according to any one of the eleventh to thirteenth aspects of the present invention, wherein the second cyclonic gas-liquid separation section has an inner diameter at the lower side of the separation section main body. It has the narrowed-down part.
  • a mist eliminator or a demister is interposed as a mist removal separation section in the storage section exhaust line. It is characterized by that.
  • the dilution gas is introduced into one or both of the storage section exhaust lines located upstream and downstream of the mist eliminator or demister. It has the separation part side dilution gas introduction line for mist removal.
  • a cyclone-type gas-liquid separation section for removing mist is interposed in the storage section exhaust line. It is characterized by. According to an eighteenth aspect of the present invention, there is provided the gas-liquid separation solution storage device according to the seventeenth aspect of the present invention, wherein the cyclone type gas-liquid separation section for removing mist is interposed in a multistage manner in the storage section exhaust line.
  • the gas-liquid separation solution storage device according to the seventeenth or eighteenth aspect of the present invention, wherein the mist removal cyclone type gas-liquid separation section is located upstream and downstream of the cyclone gas-liquid separation section.
  • One or both have a mist removal separation part side dilution gas introduction line for introducing dilution gas.
  • the gas-liquid separation solution storage device is the mist-removing cyclone type gas-liquid separation part according to any one of the seventeenth to nineteenth aspects, wherein the separation part main body has an inner diameter at the lower side. It has the narrowed-down part.
  • a persulfuric acid production system is an electrolysis apparatus for electrolyzing a solution containing sulfuric acid, a gas-liquid separation solution storage apparatus according to any one of the first to twentieth aspects of the present invention, and A feed line for sending the solution after electrolysis to the cyclone gas-liquid separation unit of the gas-liquid separation solution storage device, and a return line for sending the solution in the storage unit of the gas-liquid separation solution storage device to the electrolysis device for electrolysis It is characterized by that.
  • a solution containing an electrolysis-generated gas produced by electrolysis is separated into gas and liquid at a cyclone-type gas-liquid separation unit installed at least on the lower side in the storage unit, and separated.
  • the solution thus obtained is dropped and stored in the storage unit as it is, the separated gas is diluted with an inert gas, and the diluted gas is subjected to exhaust gas treatment.
  • the gas-liquid separation method of the electrolytic solution according to the twenty-second aspect of the present invention, wherein the gas separated by the cyclone-type gas-liquid separation unit It introduce
  • the gas-liquid separation method of the electrolytic solution in the twenty-second or twenty-third aspect of the present invention, performs mist removal from the separated gas.
  • a gas-liquid separation method of an electrolytic solution according to any one of the 22nd to 24th aspects of the present invention, wherein in the exhaust gas treatment, the separated gas is subjected to ozonolysis.
  • the present invention it is possible to reduce the restrictions on the structure of the apparatus and avoid an increase in the space of the apparatus due to the gas-liquid separation mechanism, and to suppress the generation of entrained mist and bubbles as much as possible with the electrolyzed solution.
  • the solution can be stored by phase separation.
  • the persulfuric acid concentration can be increased by circulating the solution to the electrolyzer.
  • the gas-liquid separation solution storage device 1 has a tank-shaped storage unit 2, and a cyclone type gas-liquid separator 3 is attached to the storage unit 2.
  • the reservoir 2 is sealed except for the mounting position of the cyclone gas-liquid separator 3 and the moving locations for gas and solution.
  • the cyclone type gas-liquid separator 3 has a cylindrical body 3C inside the cylindrical separation unit main body, and the solution separated by the cyclone type gas-liquid separator 3 is discharged to the lower side surface portion thereof. An opening 3A is formed. The separated solution flows out of the separation unit main body from the opening 3A without staying in the separation unit main body.
  • the cyclone type gas-liquid separator 3 is attached to the top plate of the storage part 2, the opening 3A is located in the solution storage part 2A of the storage part, and the height of the opening 3A is the solution storage of the storage part. It is positioned at a position lower than the set height of the solution stored in the part 2A.
  • the cyclone gas-liquid separator 3 can move the solution without causing pressure loss because the inside of the separation unit main body has the straight body shape 3C.
  • Many ordinary cyclone type gas-liquid separators have a constricted part on the lower side, but pressure loss occurs in the constricted part, so the gas-liquid interface inside the cyclone changes vertically when the liquid flow rate changes. Will do. (For example, ⁇ h is 30 to 100 mm).
  • ⁇ h is 30 to 100 mm.
  • the gas in the cyclone type gas-liquid separator 3 is sealed by making the height of the upper end of the opening 3A of the cyclone type gas-liquid separator 3 lower than the set height of the solution, and only the liquid is stored. 2 has the effect of flowing in. It is preferable that the upper end of the opening 3A is configured to have a height of about 5 to 20 mm from the bottom surface of the storage unit 2. Thereby, even if the gas-liquid interface inside a cyclone falls, the liquid seal of the gas inside a cyclone can be prevented.
  • the upper part of the cyclone type gas-liquid separator 3 is provided with a separation gas discharge part 3B, and the upper side is sealed except for the separation gas discharge part 3B.
  • the separation gas discharge part 3 ⁇ / b> B protrudes to a position higher than the top plate of the storage part 2. Thereby, the height for gas-liquid separation can be ensured also using the height inside the storage part 2, and the height of the apparatus can be kept low.
  • An electrolysis device 7 is provided outside the storage unit 2, and a solution feed line 8A is connected to a liquid discharge side to which a solution electrolyzed by the electrolysis device 7 is sent, and a tip side of the solution feed line 8A is
  • the cyclone gas-liquid separator 3 is connected to the upper side along the tangential direction of the cross section of the separator main body.
  • the solution fed through the solution feed line 8A is introduced into the separation unit main body of the cyclone type gas-liquid separator 3 while swirling along the trunk.
  • a solution return line 8 ⁇ / b> B that discharges the solution in the solution reservoir 2 ⁇ / b> A and sends it to the electrolyzer 7 is connected to the solution reservoir 2 ⁇ / b> A of the reservoir 2.
  • the solution return line 8B is provided with a liquid feed pump 9, and the tip side of the solution return line 8B is connected to the liquid inlet side of the electrolyzer 7, so that the solution sent through the solution return line 8B is electrolyzed. Can be provided.
  • the solution feed line 8A corresponds to the feed line of the present invention
  • the solution return line 8B corresponds to the return line of the present invention.
  • the electrode configuration is not particularly limited, but it is desirable to use a diamond electrode at least for the anode. Moreover, you may have a bipolar electrode. A diamond electrode may be used for the cathode or the bipolar electrode.
  • the gas-liquid separation solution storage device 1, the electrolysis device 7, the feed line 8A, and the return line 8B are the main components of the persulfuric acid generation system of the present invention.
  • the separation gas storage part introduction line 4 is connected to the separation gas discharge part 3 ⁇ / b> B of the cyclone type gas-liquid separator 3, and the leading end side of the separation gas storage part introduction line 4 is It is connected to the top plate of the storage unit 2 and communicates with the internal space of the storage unit 2.
  • a storage unit dilution gas supply line 5 for introducing a dilution gas is connected to the storage unit 2
  • the storage unit 2 further includes a gas in the storage unit 2. Is connected to a storage part exhaust line 6. The gas sent through the storage unit exhaust line 6 is transferred to the exhaust gas treatment process 200.
  • a sulfuric acid solution having a set height is stored in the storage unit 2 in advance to form a solution storage unit 2A, and the sulfuric acid solution is sent to the electrolysis device 7 through the solution return line 8B by the liquid feed pump 9, and the electrode is energized by the electrolysis device 7 I do.
  • concentration of a sulfuric acid solution is not specifically limited as this invention, For example, a sulfuric acid density
  • the sulfuric acid solution is passed through the electrolyzer 7 while being electrolyzed, and is sent to the solution reservoir 2A of the reservoir 2 via the cyclone gas-liquid separator 3 through the solution feed line 8A and circulates.
  • the flow rate of the solution passed through the electrolyzer 7 is not particularly limited, but for example, 1 to 10,000 m / hr. In the direction parallel to the electrode surface. It can be.
  • the electrolyzer 7 it is desirable to energize so that the current density on the electrode surface is 10 to 100,000 A / m 2, and persulfuric acid is efficiently generated in the sulfuric acid solution.
  • the temperature of the solution is not particularly limited, but it is desirable that the electrolysis is performed at a temperature of 10 to 90 ° C. for reasons such as electrolytic efficiency and prevention of self-decomposition of the oxidizing agent in the electrolytic solution.
  • the temperature of the solution rises by electrolysis and increases by about 5 to 20 ° C.
  • the temperature of the solution stored in the storage unit 2 is not particularly limited, but can be set to 50 to 80 ° C., for example.
  • a cooler may be provided in the solution return line 8B so that the temperature is suitable for electrolysis and sent to the electrolyzer 7.
  • hydrogen and oxygen are mainly generated by electrolysis, and a small amount of ozone, sulfuric acid vapor, water vapor or the like is accompanied by the solution and sent to the solution feed line 8A.
  • Electrolyzed solution is sent by the solution feed line 8A and introduced into the upper part of the cyclone type gas-liquid separator 3.
  • the introduced solution generates a swirling flow in the main body of the separator, and the gas is separated and the gas-liquid separated solution falls by its own weight, and the solution reservoir 2A is opened through the opening 3A.
  • the diluent gas (inert gas, here nitrogen gas) passes through the reservoir dilution gas supply line 5.
  • the gas in the storage unit 2 is purged to the storage unit exhaust line 6 by the dilution nitrogen gas sent through the storage unit dilution gas supply line 5 and transferred through the storage unit exhaust line 6. Exhaust gas treatment is performed.
  • the purge gas discharged from the storage unit 2 is accompanied by sulfuric acid vapor or water vapor.
  • the inlet temperature of the electrolyzer 7 is adjusted to 50 ° C., for example, by installing a cooler between the liquid feed pump 9 and the electrolyzer 7. Since the electrolyzer 7 generates heat, the outlet temperature of the electrolyzer 7 is about 65 ° C., for example. Therefore, the solution temperature in the reservoir 2 is 60 to 65 ° C. For this reason, the nitrogen gas introduced into the upper portion of the storage unit 2 is ventilated to the exhaust gas treatment process accompanied by sulfuric acid vapor or water vapor corresponding to 60 to 65 ° C.
  • the separation gas is introduced into the storage part 2 from the upper side of the storage part 2 through the separation gas storage part introduction line 4, so that a part of the mist accompanying the separation gas is stored in the storage part. 2 can be separated by gravity.
  • the gas-liquid mixed phase fluid exiting the electrolysis apparatus is phase-separated in a state where generation of entrained mist and bubbles is suppressed as much as possible.
  • the phase-separated electrolytic solution can be stored.
  • the stored electrolytic solution can be circulated to the electrolysis apparatus to increase the concentration of persulfuric acid, and can be supplied to a cleaning machine according to the demand of a semiconductor wafer cleaning machine and used for wafer processing.
  • the cyclone gas-liquid separator 3 has been described as having the opening 3A on the side surface of the lower end, but the shape of the opening is not particularly limited, and the shape of the opening is round, triangular, It can be constituted by notches (notch structure) of various shapes such as a square shape. Moreover, the lower end of an opening part may be provided in a position higher than the lower end part of a gas-liquid separator, and you may have an opening part in several height positions. Only one opening may be formed, or a plurality of openings may be formed on the peripheral side wall of the cyclonic gas-liquid separator 3 at intervals. In the case where an opening is provided on the side surface of the lower end of the gas-liquid separator, the bottom may be bottomed or non-bottomed, or may be partially open with a perforated bottom plate.
  • an opening is not provided in the side surface of the lower end side of the cyclone type gas-liquid separator 3, but a pedestal is installed at the bottom of the storage unit 2, and a cyclone type gas-liquid separator is installed on the pedestal. 3 so as to form an opening structure between the bottom of 3 and the bottom of the reservoir 2, so that the liquid movement of the solution reservoir 2A from the cyclone-type gas-liquid separator 3 can be ensured. Good.
  • the shape of the pedestal at this time is not particularly limited, and may support a part or all of the lower end of the cyclone gas-liquid separator 3.
  • the cyclone type gas-liquid separator 3 is not provided with an opening on the side surface on the lower end side, and the lower end of the cyclone type gas-liquid separator 3 is positioned above the bottom surface of the storage unit 2.
  • the separator 3 is suspended and supported by a support material to form an opening structure between the bottom of the gas-liquid separator 3 and the bottom of the reservoir 2, and the liquid in the solution reservoir 2 ⁇ / b> A from the cyclone gas-liquid separator 3. Movement may be made.
  • the cyclone type gas-liquid separator 3 is attached to the top plate of the storage part 2, since the top plate bends due to the weight of the gas-liquid separator 3 only by attaching to the top plate, it is necessary to support it with a support material. Become.
  • the support material may support the bottom of the cyclone type gas-liquid separator 3 or may support the side surface, and the support structure, the support position, etc. are not particularly limited.
  • the liquid level in the solution reservoir 2A may drop due to the supply of the gas-liquid separation solution in the reservoir 2 to the use part, etc.
  • the liquid level in the cyclone gas-liquid separator 3 follows this. Then go down.
  • the liquid level in the cyclone-type gas-liquid separator 3 is slightly lower than the liquid level in the solution reservoir 2A. Maintained.
  • the gas in the gas-liquid separator 3 flows out to the solution reservoir 2A through the opening 3A and the liquid seal is formed. It will run out. Therefore, it is necessary to set the height of the opening 3A so as not to break the liquid seal, and it is preferable to configure the upper end of the opening 3A to be about 5 to 20 mm from the bottom surface of the storage unit 2. .
  • the cyclone type gas-liquid separator has a straight body type inside the separation unit main body, but may be one in which a throttle part is provided in the separation unit main body.
  • the cyclone type gas-liquid separator 30 in FIG. 2 has a throttle part 30C on the lower side in the separation part main body, and the lower part of the throttle part 30C is opened so that the gas-liquid separated solution is discharged.
  • a cylindrical purge gas introduction part 32 is attached to the upper part outside the separation part main body, and the purge gas introduction part 32 further protrudes downward on the upper side in the separation part main body.
  • a separation gas discharge portion 30B formed in a cylindrical shape is provided around the purge gas introduction portion 32 in the separation portion main body, and a separation gas transfer line 33 is connected to the separation gas discharge portion 30B for separation. Gas can be discharged.
  • the separation gas transfer line 33 corresponds to a separation gas reservoir introduction line when connected to the reservoir 2.
  • the separation gas transfer line 33 may be connected to the reservoir exhaust line 6 or connected to a second cyclone gas-liquid separator, which will be described later, interposed in the reservoir exhaust line 6. It may be.
  • the solution introduced into the separation unit main body through the solution introduction unit 31 provided in the separation unit main body generates a swirling flow in the separation unit main body, and further the rotation radius is reduced in the throttling unit 30C.
  • the throttling portion 30C can have a tapered shape with a diameter that gradually decreases downward in part or in whole.
  • the shape of the aperture portion 30C is not particularly limited, but an aperture angle of 30 to 45 ° of the tapered portion can be shown as a suitable aperture.
  • the separated gas separated in the separation body of the cyclone type gas-liquid separator 30 is discharged from the separated gas discharge part 30B through the separated gas transfer line 33, and the exhaust gas treatment is performed thereafter. Further, in the cyclone type gas-liquid separator 30, a purge gas (nitrogen gas in this modified example) is introduced into the separation unit main body through the purge gas introduction unit 32.
  • the purge gas is supplied to the cyclone type gas-liquid separator 30 at a small flow rate (for example, 5 to 15 NL / min).
  • the purpose is to prevent the hydrogen / oxygen mixed gas from staying in the cyclone gas-liquid separator 30 when the circulation of the electrolyte is stopped.
  • a large purge gas flow rate is not preferable because the nitrogen gas consumption and the exhaust gas treatment air volume increase.
  • the purge gas flow rate is approximately 1/4 to 1/3 of the cracked gas.
  • Embodiment 2 In Embodiment 1 described above, the mist in the cracked gas is separated by gravity in the storage unit 2, but a configuration in which this is not employed may also be employed.
  • the system which has 1 A of gas-liquid separation solution storage apparatuses is demonstrated based on FIG.
  • symbol is attached
  • the separation part exhaust line 10 is connected to the separation gas discharge part 3B, and the downstream side of the separation part exhaust line 10 joins the storage part exhaust line 6. is doing.
  • an exhaust line dilution gas supply line 11 is connected on the upstream side in the vicinity of the position where the separation unit exhaust line 10 joins.
  • the separated gas separated by the cyclone gas-liquid separator 3 is sent from the separated gas discharge part 3B to the storage part exhaust line 6 through the separation part exhaust line 10.
  • dilution gas nitrogen gas in the present embodiment
  • the gas introduced from the separation unit exhaust line 10 is diluted.
  • the gas in the storage unit exhaust line 6 is subjected to exhaust gas treatment in the exhaust gas treatment process 200.
  • the dilution gas is connected to the storage section exhaust line 6 connected to the storage section 2 and merged with the separated gas separated by the cyclone gas-liquid separator 3.
  • the remaining small amount of diluent gas is introduced into the reservoir 2 through the reservoir dilution gas supply line 5 for purging.
  • the supply temperature of the dilution gas is 20 to 25 ° C. and it is completely dried. Since the amount of gas introduced from the storage unit dilution gas supply line 5 is small, sulfuric acid vapor and water vapor accompanied by the gas toward the exhaust gas treatment process 200 are greatly reduced.
  • a second cyclone gas-liquid separator In order to further separate the mist in the separated gas discharged from the cyclone gas-liquid separator 3, a second cyclone gas-liquid separator can be provided. This configuration will be described with reference to FIG. In addition, about the structure similar to Embodiment 1, the same code
  • the separation gas separation part introduction line 13 is connected to the separation gas discharge part 3B of the cyclone type gas-liquid separator 3, and the downstream end of the separation gas separation part introduction line 13 is connected. Is connected to the upper side of the second cyclonic gas-liquid separator 14 along the tangential direction of the cross section of the separator main body. Further, the purge gas introduction line 15 for the second separation unit is joined to the separation gas separation unit introduction line 13, so that a dilution gas (nitrogen gas in this embodiment) can be supplied into the separation gas separation unit introduction line 13. It has become.
  • the second cyclone gas-liquid separator 14 has a throttle part 14C in which the separator main body is formed in a cylindrical shape and the inside of the separator main part is throttled on the lower side.
  • An opening 14A through which the separated solution is discharged is formed at the lower end of the separation unit main body, and the opening 14A is formed by opening the top plate of the storage unit 2.
  • the separated solution falls from the opening 14 ⁇ / b> A without being retained in the separation body.
  • a separation gas discharge part 14B is provided on the upper part of the separation part main body, and the storage part exhaust line 6 is connected to the separation gas discharge part 14B. That is, the storage part exhaust line 6 is connected to the storage part 2 via the second cyclonic gas-liquid separator 14.
  • the separated gas separated by the cyclone type gas-liquid separator 3 passes through the separated gas discharge part 3B, the separated gas separation part introduction line 13, and passes through the second separation part purge gas introduction line 15 to form nitrogen.
  • Gas is supplied.
  • the gas passing through the separation gas separation unit introduction line 13 is introduced into the separation unit body on the upper side of the second cyclonic gas-liquid separator 14 together with the dilution gas, and a swirling flow is generated in the separation unit body.
  • the narrowed portion 14C can have a tapered shape with a diameter that gradually decreases downward in part or in whole.
  • the liquid component separated by gas-liquid flows down to the solution reservoir 2A through the opening 14A.
  • the second cyclone type gas-liquid separator 14 uses this as a power source.
  • a swirl flow is generated and the mist accompanying the separation gas discharged from the cyclone gas-liquid separator 3 can be efficiently separated by the second cyclone gas-liquid separator 14.
  • the flow rate (200 to 300 NL / min) of the purge gas introduced from the purge gas introduction line 15 for the second separation unit needs to be an amount sufficient to bring the hydrogen gas concentration below the lower explosion limit.
  • the separation gas in the cyclone type gas-liquid separator 3 has a high partial pressure of sulfuric acid vapor and water vapor, but since nitrogen gas of 20 to 25 ° C. is mixed with this, the sulfuric acid vapor and water vapor are condensed at the junction. Mist is generated and can be effectively separated in the second cyclonic gas-liquid separator 14.
  • the second cyclone gas-liquid separator 14 is preferably provided with a throttle portion 14C. Since the amount of liquid flowing from the second cyclone gas-liquid separator 14 to the reservoir 2 is extremely small, it is not necessary to consider pressure loss, and it is advantageous to increase the angular velocity of the turn by providing a throttle.
  • the degree of aperture is not particularly limited in the present invention, but for example, an aperture angle of 30 to 45 ° can be shown as a suitable aperture.
  • the gas from which the mist has been removed by the second cyclone gas-liquid separator 14 is sent to the storage part exhaust line 6 through the separation gas discharge part 14B.
  • the gas sent through the storage unit exhaust line 6 is subjected to exhaust gas treatment in the exhaust gas treatment process 200.
  • the reservoir exhaust line 6 is provided with a mist eliminator 20, and the mist eliminator 20 is connected to the upstream and downstream reservoir exhaust lines 6 with a pipe-like diluting gas (air in this example).
  • the side dilution gas introduction lines 16 and 17 are joined.
  • An ozone decomposer 50 is interposed in the reservoir exhaust line 6 on the downstream side of the point where the eliminator side dilution gas introduction line 17 joins, and the reservoir exhaust line 6 on the downstream side of the ozone decomposer 50. Is connected to the exhaust duct 201.
  • a hydrogen gas catalytic oxidation reactor may be provided instead of the ozonolysis device.
  • the gas exiting the reservoir 2 is mixed with dry air through the eliminator-side dilution gas introduction lines 16 and 17 so that the hydrogen concentration after mixing is 1 vol% or less.
  • This is a safety standard of a quarter of the explosion limit concentration of 4 vol% of hydrogen in the air.
  • the moisture content of the dry air is preferably 0.7 MPa (G) and a dryness (0.16 vol%) with a dew point of 10 ° C. or less.
  • mist eliminator 20 When instrument air is used as dry air, it usually contains 0.1 to 0.2 vol% of water. For this reason, the sulfuric acid vapor
  • the sulfuric acid mist produced by condensation from the gas phase has a particle size of 1 to 2 ⁇ m or less, or submicron, and has a Brownian motion. Therefore, a mist eliminator of a type having a low passing linear velocity is desirable. This is larger than the mist eliminator due to inertial collision.
  • the apparatus shown in FIG. 8 is divided into two stages and a mist eliminator is installed between them.
  • the distribution of Air by the eliminator side dilution gas introduction line 16 and Air by the eliminator side dilution gas introduction line 17 are determined in consideration of the hydrogen concentration and the required size of the mist eliminator.
  • the configuration of the mist eliminator is not limited to a specific one, and a known one can be used.
  • an eliminator based on the principle capable of capturing particles that perform Brownian motion is also preferably used.
  • the gas at the outlet of the electrolyzer contains ozone at a high concentration. Even if diluted with nitrogen or air, the concentration is still high, so after being decomposed by the ozonolysis catalyst of the ozonolysis device 50, the exhaust is exhausted from the exhaust duct 201. In the hydrogen gas catalytic oxidation reactor, the reaction temperature rises to around 200 ° C., so ozone is also decomposed simultaneously. In the apparatus of the first embodiment, since all the dilution nitrogen is passed through the reservoir, the gas at the outlet of the reservoir 2 contains sulfuric acid vapor having a relatively high concentration (for example, 5 to 15 mg / m 3 ). Become. A mist eliminator is required to remove the mist generated when this is diluted with air.
  • the particle size of sulfuric acid mist is as small as submicron to several microns, and most of the sulfuric acid mist generated by this device (weight basis) is considered to be several microns or more.
  • the demister 20 ⁇ / b> A that can remove these particles by the collision principle can be used in place of the mist eliminator 20.
  • the filter material of a demister can use the thing of the mesh structure of PFA (perfluoroalkoxy fluororesin), for example.
  • the mist eliminator can be replaced with a cyclone gas-liquid separator to save space and reduce costs.
  • cyclonic gas-liquid separators may be installed in multiple stages as shown in FIG. Furthermore, in the apparatus of Embodiment 2 and Embodiment 3, since the amount of nitrogen passed through the storage unit 2 is small, the sulfuric acid vapor brought out by the outlet gas of the storage unit 2 is small. Therefore, the mist eliminator and the demister can be omitted, and a simplified exhaust gas treatment process can be performed as shown in FIG.
  • Embodiment B A system for the exhaust gas treatment process shown in FIG. 6 will be described.
  • symbol is attached
  • a demister 20A is interposed in the reservoir exhaust line 6, and dilution gas (air in this example) is supplied to the upstream and downstream reservoir exhaust lines 6 of the demister 20A. Mist removal separation part side dilution gas introduction lines 16 and 17 are joined.
  • An ozone decomposer 50 is interposed in the reservoir exhaust line 6 downstream from the point where the separation part side dilution gas introduction line 17 for mist removal joins, and on the downstream side of the ozone decomposer 50,
  • the reservoir exhaust line 6 is connected to the exhaust duct 201.
  • the dry air is introduced into the reservoir exhaust line 6 upstream of the demister 20A through the mist removal separation part side dilution gas introduction line 16 to dilute the gas.
  • the separated liquid is discharged as a drain through the drain pipe 21 and collected in the drain pot.
  • the gas from which the liquid has been removed is subjected to ozonolysis by the ozonolysis device 50 and then transferred to the exhaust duct 201 through the storage unit exhaust line 6.
  • the dilution air preferably has a temperature of 20 to 25 ° C. and a water content of 0.16 vol% or less, that is, a dew point of about ⁇ 17 ° C. under atmospheric pressure.
  • Embodiment C A system for the exhaust gas treatment process shown in FIG. 7 will be described.
  • symbol is attached
  • a mist removing cyclone gas-liquid separation unit 40 is interposed in the storage unit exhaust line 6, and the upstream and downstream storage unit exhaust lines 6 of the mist removal cyclone type gas-liquid separation unit 40 are respectively diluted. Mist removing separation part side dilution gas introduction lines 25 and 26 for supplying working gas (air in this example) are joined.
  • An ozone decomposer 50 is interposed in the reservoir exhaust line 6 downstream of the point where the separation part side dilution gas introduction line 26 for mist removal joins, and on the downstream side of the ozone decomposer 50,
  • the reservoir exhaust line 6 is connected to the exhaust duct 201.
  • the dry air is introduced into the reservoir exhaust line 6 upstream of the cyclone type gas-liquid separator 40 for mist removal through the mist removal separator-side dilution gas introduction line 25 to dilute the gas.
  • the cyclone type gas-liquid separator 40 for removing mist can be provided with a throttle in the main body of the separator to enhance the separation function.
  • the separated liquid is discharged as a drain through the drain pipe 41 and collected in the drain pot.
  • the gas from which the liquid has been removed is subjected to ozonolysis by the ozonolysis device 50 and then transferred to the exhaust duct 201 through the storage unit exhaust line 6.
  • the dilution air preferably has a temperature of 20 to 25 ° C. and a moisture content of 50% or less relative humidity.
  • the mist removing cyclone type gas-liquid separation unit can be provided in multiple stages in the storage unit exhaust line 6, and the storage unit exhaust line in the upstream and downstream of each stage of the mist removal cyclone type gas-liquid separation unit.
  • a mist removing separation part side dilution gas introduction part can be joined to one or both of the parts 6.
  • FIG. 8 shows an apparatus for an exhaust gas treatment process having such a configuration.
  • symbol is attached
  • Mist removal cyclone gas / liquid separators 40 and 42 are interposed in the reservoir exhaust line 6 in multiple stages, and the reservoir exhaust line 6 upstream of the mist remover cyclone gas / liquid separator 40 is used for dilution.
  • the mist removal separation part side dilution gas introduction line 25 for supplying gas (air in this example) joins, and the downstream side of the mist removal cyclone gas / liquid separation part 40 and the mist removal cyclone gas / liquid separation part 42
  • a mist removing separation portion side dilution gas introduction line 26 for supplying a dilution gas (air in this example) joins the upstream storage portion exhaust line 6.
  • An ozone decomposer 50 is interposed in the reservoir exhaust line 6 on the downstream side of the cyclone type gas-liquid separator 42 for removing mist, and the reservoir exhaust line 6 is connected to the exhaust duct on the downstream side of the ozone decomposer 50. 201 is connected.
  • dry air is introduced through the mist removal separation unit side dilution gas introduction line 25 upstream of the mist removal cyclone gas-liquid separation unit 40 to dilute the gas.
  • the cyclone type gas-liquid separator 40 for removing mist can be provided with a throttle in the main body of the separator to enhance the separation function.
  • the separated liquid is discharged as a drain through the drain pipe 41 and collected in the drain pot.
  • the gas from which the liquid has been removed is sent through the storage unit exhaust line 6, and dry air is introduced through the mist removal separation unit side dilution gas introduction line 26 upstream of the mist removal cyclone gas-liquid separation unit 42, and the gas is Diluted.
  • the dilution gas supply line 24 joins downstream, and a dilution gas (air in this example) is introduced from the dilution gas supply line 24 into the reservoir exhaust line 6 to dilute the gas. Is made.
  • a dilution gas air in this example
  • the reservoir exhaust line 6 is connected to an exhaust duct 201.
  • Comparative Example 1 In Comparative Example 1, the conventional system shown in FIG. 10 was used. In this system, an ozonolysis device 50 is provided in the system shown in FIG. The conventional apparatus will be described with reference to FIG. The main device of the conventional apparatus is the apparatus shown in FIG. 17, and the same components as those shown in FIG. 17 are denoted by the same reference numerals, and the description of the structure and operation is partially omitted. Or simplify.
  • the electrolytic solution exiting the electrolytic cell 100 is introduced into the gas-liquid separator 101 through the feed line 110, and the gas-liquid is separated by gravity.
  • a dilution gas (nitrogen gas in this example) is introduced into the gas-liquid separator 101 through the dilution gas supply line 105.
  • the solution is stored in the solution reservoir 101 ⁇ / b> A, and the solution is transferred into the reservoir 102 by the feed line 111. Since a small amount of hydrogen / oxygen mixed gas accompanies the liquid flowing down to the storage unit 102, a dilution gas (here, nitrogen gas) is supplied into the storage unit 102 through the storage unit dilution gas supply line 121.
  • the gas is purged from the inside of the unit 102 and sent to the storage unit exhaust line 122.
  • the gas-liquid separation unit 101 is provided with a separation gas discharge unit 101B that discharges the gas-liquid separated gas.
  • a separation unit exhaust line 123 is connected to the separation gas discharge unit 101B, and the separation unit exhaust gas is discharged.
  • the line 123 joins the storage unit exhaust line 122.
  • the dilution gas supply line 124 is joined downstream from the point where the separation unit exhaust line 123 joins, and the dilution gas (air in this example) is introduced into the storage unit exhaust line 122. can do.
  • An ozonolysis device 50 is interposed further downstream of the reservoir exhaust line 122, and the reservoir exhaust line 122 is connected to the exhaust duct 201 on the downstream side thereof.
  • mist concentration and the amount of mist are as shown in Table 1.
  • the mist amount at the inlet of the ozonolysis device was 24.1 mg / h.
  • the apparatus installation height was 3.0 m.
  • Example 1 In Example 1, the system shown in FIG. 11 was prepared. This system is obtained by connecting the system for the exhaust gas treatment process of Embodiment A shown in FIG. 5 to the system of Embodiment 1 shown in FIG. 1, and the description of the apparatus is omitted.
  • the mist concentration and the amount of mist are as shown in Table 2.
  • the mist amount at the inlet of the ozonolysis device was 1.3 mg / h.
  • the apparatus installation height was 2.0 m.
  • Example 2 In Example 2, the system shown in FIG. 12 was prepared. This system is obtained by connecting the system for the exhaust gas treatment process of Embodiment B shown in FIG. 9 to the system of the embodiment 2 shown in FIG. The description of the apparatus is omitted.
  • the mist concentration and the amount of mist are as shown in Table 3.
  • the mist amount at the inlet of the ozonolysis device was 13.0 mg / h.
  • the apparatus installation height was 2.0 m.
  • Example 3 In Example 3, the system shown in FIG. 13 was prepared. The system is obtained by connecting the system for the exhaust gas treatment process of Embodiment B shown in FIG. 9 to the system of the embodiment 3 shown in FIG. The description of the apparatus is omitted.
  • the mist concentration and the amount of mist are as shown in Table 4.
  • the mist amount at the inlet of the ozonolysis device was 0.72 mg / h.
  • the apparatus installation height was 2.2 m.
  • Example 4 In Example 4, the system shown in FIG. 14 was prepared. This system is obtained by connecting the system for the exhaust gas treatment process of the embodiment A shown in FIG. 5 to the system of the embodiment 2 shown in FIG.
  • the mist concentration and the amount of mist are as shown in Table 5.
  • the amount of mist at the inlet of the ozonolysis device was 0.025 mg / h.
  • the apparatus installation height was 2.2 m.
  • Example 5 In Example 5, the system shown in FIG. 15 was prepared. The system is obtained by connecting the system for the exhaust gas treatment process of Embodiment C shown in FIG. 7 to the system of Embodiment 2 shown in FIG. 3, and the description of the apparatus is omitted.
  • the mist eliminator is replaced with a cyclone.
  • mist concentration and the amount of mist are as shown in Table 6.
  • the mist amount at the inlet of the ozonolysis device was 1.30 mg / h.
  • the apparatus installation height was 2.0 m.
  • Example 6 In Example 6, the system shown in FIG. 16 was prepared. The system is obtained by connecting the system for the exhaust gas treatment process of Embodiment D shown in FIG. 8 to the system of Embodiment 2 shown in FIG. 3, and the description of the apparatus is omitted.
  • cyclone type gas-liquid separators for mist removal are arranged in two stages in order to improve the mist removal performance.
  • the mist concentration and the amount of mist are as shown in Table 7.
  • the amount of mist at the inlet of the ozonolysis device was 0.13 mg / h.
  • the apparatus installation height was 2.0 m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cyclones (AREA)
  • Separating Particles In Gases By Inertia (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

The present invention has: a cyclone-type gas/liquid separation unit having an opening into which an electrolyzed solution is introduced and separated into a gas and liquid and from which the separated solution is discharged, and having a separated gas discharge portion where the separated gas is discharged; and a storage portion where the solution is stored. At least a portion of the lower side of the cyclone-type gas/liquid separation unit is disposed inside the storage portion such that the separated solution is discharged through the opening into a solution reservoir portion of the storage portion within the height range of the solution reservoir portion. The electrolyzed solution is separated into a gas and liquid by the cyclone-type gas/liquid separation unit that is disposed in the storage portion, the separated solution is dropped as is into the storage portion and is stored, the gas separated by the cyclone-type gas/liquid separation unit is diluted, the gas is moved through a storage portion exhaust line that is connected to the storage portion, and exhaust gas processing is performed.

Description

気液分離溶液貯留装置、過硫酸生成システムおよび電解溶液の気液分離方法Gas-liquid separation solution storage device, persulfuric acid generation system, and gas-liquid separation method of electrolytic solution
 この発明は、電解した溶液を気液分離して溶液を貯留する気液分離溶液貯留装置、過硫酸生成システムおよび電解溶液の気液分離方法に関する。 The present invention relates to a gas-liquid separation solution storage device, a persulfuric acid generation system, and a method for gas-liquid separation of an electrolytic solution.
 電解された溶液を気液分離する従来技術として特許文献1に開示された装置がある。同文献に示された装置と同等の装置として図17に示す装置が挙げられる。重力分離式気液分離器の上部側にはサイクロン式ミスト分離機構が設けられている。なお、同図では、洗浄機への液供給機構、例えばポンプ、フィルターなどは図示していない。 There is an apparatus disclosed in Patent Document 1 as a conventional technique for gas-liquid separation of an electrolyzed solution. The apparatus shown in FIG. 17 is mentioned as an apparatus equivalent to the apparatus shown in the document. A cyclone mist separation mechanism is provided on the upper side of the gravity separation type gas-liquid separator. In the figure, a liquid supply mechanism to the cleaning machine, such as a pump and a filter, is not shown.
 以下に、図17に示す装置について説明する。
 電解セル100を出た電解液を気液分離器101に導入し、電解液を重力分離する。分離ガスの主成分は水素と酸素であり、その比率はほぼ2対1なので、爆発の危険性があり、これを直ちに窒素で希釈することが必要である。希釈用窒素供給源の圧力を利用して、気液分離器101で分離ガス中のミストを旋回流で遠心分離してから排ガス処理工程へ送る。気液分離器101で貯留されて貯留槽102へ送られる液中には少量の水素/酸素混合ガスが同伴するので、貯留槽102内に爆発性ガスが充満する可能性があり、これを窒素ガスでパージする。パージ後のガスは、気液分離器からのガスとともに排ガス処理工程へ送られる。貯留槽102内の溶液はポンプ103で電解セルに戻し、さらに電解を行うことができる。
The apparatus shown in FIG. 17 will be described below.
The electrolytic solution exiting the electrolytic cell 100 is introduced into the gas-liquid separator 101 to separate the electrolytic solution by gravity. The main components of the separation gas are hydrogen and oxygen, and the ratio is approximately 2 to 1, so there is a risk of explosion, and it is necessary to immediately dilute it with nitrogen. Using the pressure of the nitrogen supply source for dilution, the gas-liquid separator 101 centrifuges the mist in the separated gas by a swirling flow and then sends it to the exhaust gas treatment step. The liquid stored in the gas-liquid separator 101 and sent to the storage tank 102 is accompanied by a small amount of hydrogen / oxygen mixed gas, which may cause the storage tank 102 to be filled with explosive gas. Purge with gas. The purged gas is sent to the exhaust gas treatment process together with the gas from the gas-liquid separator. The solution in the storage tank 102 can be returned to the electrolysis cell by the pump 103 and further electrolyzed.
特開2007-262532号公報JP 2007-262532 A
 しかし、前記した従来技術には次の課題がある。
(1)気液分離器から貯留槽へ液が重力流下するための落差が必要であり、電解硫酸装置を収納する筐体の所要高さを押し上げる要因の一つになっている。
(2)流下配管での圧力損失のため、電解セル循環液量が多いと、気液分離器内の液面が上昇する。(例えばΔhが30~100mm)。このため、液面上昇分を見込んで気液分離器を設計しなければならない。これもシステム全体の高さを押し上げる要因の一つになっている。
(3)電解液の循環を停止すると、液面上昇分の液が貯留槽に落ちるため、貯留槽の液面が上昇する。(例えばΔhが15~50mm)。このため、貯留槽内の液位がオーバーフローしないように貯留槽を設計しなければならない。
(4)気液分離器上部の窒素ガスサイクロンだけでは厳密には完全にミスト分離ができないことがあり、その場合、排ガス処理工程へ微量の硫酸を含むミストを同伴し、長時間運転に伴いダクト内での液垂れなどのトラブルが懸念される。
However, the above-described prior art has the following problems.
(1) A drop is required for gravity to flow from the gas-liquid separator to the storage tank, and this is one of the factors that push up the required height of the housing that houses the electrolytic sulfuric acid device.
(2) Due to pressure loss in the downstream pipe, if the amount of electrolytic cell circulating fluid is large, the liquid level in the gas-liquid separator rises. (For example, Δh is 30 to 100 mm). For this reason, the gas-liquid separator must be designed in anticipation of the rise in liquid level. This is also one of the factors that increase the height of the entire system.
(3) When the circulation of the electrolyte solution is stopped, the liquid level rises and the liquid level of the storage tank rises. (For example, Δh is 15 to 50 mm). For this reason, the storage tank must be designed so that the liquid level in the storage tank does not overflow.
(4) Strictly, mist separation may not be possible with the nitrogen gas cyclone at the top of the gas-liquid separator alone. In such a case, the exhaust gas treatment process is accompanied by a mist containing a small amount of sulfuric acid, and the duct is associated with long-term operation. There is concern about problems such as dripping inside.
 本発明は、上記事情を背景としてなされたものであり、装置構造(高さなど)の制約を解消し、オーバーフローや液垂れなどの弊害を防止することができる気液分離溶液貯留装置、過硫酸生成システムおよび電解溶液の気液分離方法を提供することを目的の一つとしている。 The present invention has been made in the context of the above circumstances, and eliminates restrictions on the device structure (height, etc.) and prevents adverse effects such as overflow and dripping, and a persulfuric acid storage device. An object of the present invention is to provide a generation system and a gas-liquid separation method of an electrolytic solution.
 すなわち本発明の気液分離溶液貯留装置のうち、第1の本発明は、電解された溶液が導入されて気液分離され、分離された溶液が排出される開口部と分離されたガスを排出する分離ガス排出部とを有するサイクロン式気液分離部と、
 前記溶液が貯留される貯留部と、を有し、
 前記サイクロン式気液分離部は、分離された溶液が前記貯留部の溶液溜め部の高さ範囲内で前記開口部を通じて前記溶液溜め部に排出されるように少なくとも下方側の一部が前記貯留部内に設置されていることを特徴とする。
 第2の本発明の気液分離溶液貯留装置は、前記第1の本発明において、前記分離ガス排出部に接続され、前記分離ガス排出部から排出された分離ガスを前記貯留部内に送る分離ガス貯留部導入ラインを有することを特徴とする。
 第3の本発明の気液分離溶液貯留装置は、前記第1または第2の本発明において、前記サイクロン式気液分離部にパージガスを導入するパージガス導入ラインが設けられていることを特徴とする。
 第4の本発明の気液分離溶液貯留装置は、前記第3の本発明において、前記パージガス導入ラインが筒状に形成されて前記サイクロン式気液分離部内に突出しており、前記分離ガス導入ラインの外側に間隔を置いて外筒状の前記分離ガス排出部が設けられていることを特徴とする。
 第5の本発明の気液分離溶液貯留装置は、前記第1~第4の本発明のいずれかにおいて、前記開口部が、前記貯留部の溶液溜め部の溶液設定高さ位置よりも低い箇所に位置し、前記分離ガス排出部が前記貯留部よりも高い箇所に位置していることを特徴とする。
 第6の本発明の気液分離溶液貯留装置は、前記第1~第5の本発明のいずれかにおいて、前記サイクロン式気液分離部は、分離部本体内部が直胴形状を有していることを特徴とする。
 第7の本発明の気液分離溶液貯留装置は、前記第1~第6の本発明のいずれかにおいて、前記貯留部は、前記貯留部内のガスを排気する貯留部排気ラインと前記貯留部内に希釈ガスを送る貯留部用希釈ガス供給ラインとが接続されていることを特徴とする。
 第8の本発明の気液分離溶液貯留装置は、前記第7の本発明において、前記貯留部は、ガス移動用および液移動用を除いて封止されていることを特徴とする。
 第9の本発明の気液分離溶液貯留装置は、前記第7または第8の本発明において、前記分離ガス排出部に接続され、前記分離ガス排出部から排出された分離ガスを前記貯留部排気ラインに送る分離部排気ラインを有することを特徴とする。
 第10の本発明の気液分離溶液貯留装置は、前記第9の本発明において、前記貯留部排気ラインに対する前記分離部排気ラインの接続地点よりも上流側で前記貯留部排気ラインに希釈ガスを導入する排気ライン用希釈ガス供給ラインが接続されていることを特徴とする。
 第11の本発明の気液分離溶液貯留装置は、前記第7~第10の本発明のいずれかにおいて、前記貯留部排気ラインと前記貯留部との間に第2のサイクロン式気液分離部が介設されており、前記第2のサイクロン式気液分離部では、分離された溶液が排出される開口部を有し、前記開口部を通して、分離された溶液が前記貯留部の溶液溜め部に排出されるように設置されていることを特徴とする。
 第12の本発明の気液分離溶液貯留装置は、前記第11の本発明において、前記分離ガス排出部に接続され、前記分離ガス排出部から排出された分離ガスを前記第2のサイクロン式気液分離部に導入する分離ガス分離部導入ラインを有することを特徴とする。
 第13の本発明の気液分離溶液貯留装置は、前記第12の本発明において、前記分離ガス分離部導入ライン内に前記第2のサイクロン式気液分離部に供給されるパージガスを導入する第2分離部用パージガス導入部が設けられていることを特徴とする。
 第14の本発明の気液分離溶液貯留装置は、前記第11~第13の本発明のいずれかにおいて、前記第2のサイクロン式気液分離部は、分離部本体内部が下方側において内径を絞った絞り部を有することを特徴とする。
 第15の本発明の気液分離溶液貯留装置は、前記第7~第14の本発明のいずれかにおいて、前記貯留部排気ラインにミスト除去用分離部としてミストエリミネーターまたはデミスターが介設されていることを特徴とする。
 第16の本発明の気液分離溶液貯留装置は、前記第15の本発明において、前記ミストエリミネーターまたはデミスターの上流側と下流側に位置する貯留部排気ラインの一方または両方に希釈ガスを導入するミスト除去用分離部側希釈ガス導入ラインを有することを特徴とする。
 第17の本発明の気液分離溶液貯留装置は、前記第7~第16の本発明のいずれかにおいて、前記貯留部排気ラインにミスト除去用サイクロン式気液分離部が介設されていることを特徴とする。
 第18の本発明の気液分離溶液貯留装置は、前記第17の本発明において、前記ミスト除去用サイクロン式気液分離部が、前記貯留部排気ラインに多段に介設されていることを特徴とする。
 第19の本発明の気液分離溶液貯留装置は、前記第17または第18の本発明において、前記ミスト除去用のサイクロン式気液分離部の上流側と下流側に位置する貯留部排気ラインの一方または両方に、希釈ガスを導入するミスト除去用分離部側希釈ガス導入ラインを有することを特徴とする。
 第20の本発明の気液分離溶液貯留装置は、前記第17~第19の本発明のいずれかにおいて、前記ミスト除去用サイクロン式気液分離部は、分離部本体内部が下方側において内径を絞った絞り部を有することを特徴とする。
That is, of the gas-liquid separation solution storage device of the present invention, the first invention of the present invention is an electrolyzed solution is introduced for gas-liquid separation, and the separated solution is discharged and the separated gas is discharged. A cyclone gas-liquid separation unit having a separation gas discharge unit to perform,
A reservoir for storing the solution,
The cyclone-type gas-liquid separation unit has at least a part on the lower side so that the separated solution is discharged to the solution reservoir through the opening within the height range of the solution reservoir of the reservoir. It is installed in the department.
The gas-liquid separation solution storage device of the second aspect of the present invention is the separation gas that is connected to the separation gas discharge part and sends the separation gas discharged from the separation gas discharge part into the storage part in the first aspect of the present invention. It has a storage part introduction line.
The gas-liquid separation solution storage device of the third aspect of the present invention is characterized in that, in the first or second aspect of the present invention, a purge gas introduction line for introducing a purge gas into the cyclone-type gas-liquid separation unit is provided. .
In the gas-liquid separation solution storage device of the fourth aspect of the present invention, in the third aspect of the present invention, the purge gas introduction line is formed in a cylindrical shape and protrudes into the cyclone-type gas-liquid separation unit, and the separation gas introduction line The separation gas discharge part having an outer cylindrical shape is provided at an interval on the outer side.
A gas-liquid separation solution storage device according to a fifth aspect of the present invention is the gas-liquid separation solution storage apparatus according to any one of the first to fourth aspects, wherein the opening is lower than a solution setting height position of the solution storage part of the storage part. The separation gas discharge part is located at a location higher than the storage part.
In the gas-liquid separation solution storage device of the sixth aspect of the present invention, in any one of the first to fifth aspects of the present invention, the cyclone-type gas-liquid separation section has a straight body shape inside the separation section main body. It is characterized by that.
In the gas-liquid separation solution storage device of the seventh aspect of the present invention, in any one of the first to sixth aspects of the present invention, the storage section includes a storage section exhaust line that exhausts the gas in the storage section and the storage section. A storage unit dilution gas supply line for sending dilution gas is connected.
In the gas-liquid separation solution storage device of the eighth invention according to the seventh invention, the storage part is sealed except for gas movement and liquid movement.
A gas-liquid separation solution storage device according to a ninth aspect of the present invention is the seventh or eighth aspect of the present invention, wherein the separation gas exhausted from the separation gas discharge part is connected to the separation gas discharge part and the storage part exhaust gas is discharged. It has the separation part exhaust line sent to a line, It is characterized by the above-mentioned.
In the gas-liquid separation solution storage device of the tenth aspect of the present invention, in the ninth aspect of the present invention, dilution gas is supplied to the storage section exhaust line upstream of a connection point of the separation section exhaust line with respect to the storage section exhaust line. A dilution gas supply line for an exhaust line to be introduced is connected.
The gas-liquid separation solution storage device according to an eleventh aspect of the present invention is the second cyclone type gas-liquid separation part between the storage part exhaust line and the storage part in any of the seventh to tenth aspects of the invention. The second cyclone gas-liquid separation unit has an opening through which the separated solution is discharged, and the separated solution passes through the opening and the solution storage unit of the storage unit. It is installed so that it may be discharged.
The gas-liquid separation solution storage device of the twelfth aspect of the invention is the eleventh aspect of the invention, wherein the separation gas is connected to the separation gas discharge part and the separation gas discharged from the separation gas discharge part is transferred to the second cyclone gas. It has a separation gas separation part introduction line to be introduced into the liquid separation part.
According to a thirteenth aspect of the present invention, there is provided the gas-liquid separation solution storage device according to the twelfth aspect of the present invention, wherein the purge gas supplied to the second cyclone gas-liquid separation section is introduced into the separation gas separation section introduction line. A purge gas introduction part for two separation parts is provided.
According to a fourteenth aspect of the present invention, there is provided the gas-liquid separation solution storage device according to any one of the eleventh to thirteenth aspects of the present invention, wherein the second cyclonic gas-liquid separation section has an inner diameter at the lower side of the separation section main body. It has the narrowed-down part.
In the gas-liquid separation solution storage device of the fifteenth aspect of the present invention, in any of the seventh to fourteenth aspects of the present invention, a mist eliminator or a demister is interposed as a mist removal separation section in the storage section exhaust line. It is characterized by that.
In the gas-liquid separation solution storage device of the sixteenth aspect of the present invention, in the fifteenth aspect of the present invention, the dilution gas is introduced into one or both of the storage section exhaust lines located upstream and downstream of the mist eliminator or demister. It has the separation part side dilution gas introduction line for mist removal.
In the gas-liquid separation solution storage device of the seventeenth aspect of the present invention, in any of the seventh to sixteenth aspects of the present invention, a cyclone-type gas-liquid separation section for removing mist is interposed in the storage section exhaust line. It is characterized by.
According to an eighteenth aspect of the present invention, there is provided the gas-liquid separation solution storage device according to the seventeenth aspect of the present invention, wherein the cyclone type gas-liquid separation section for removing mist is interposed in a multistage manner in the storage section exhaust line. And
According to a nineteenth aspect of the present invention, there is provided the gas-liquid separation solution storage device according to the seventeenth or eighteenth aspect of the present invention, wherein the mist removal cyclone type gas-liquid separation section is located upstream and downstream of the cyclone gas-liquid separation section. One or both have a mist removal separation part side dilution gas introduction line for introducing dilution gas.
The gas-liquid separation solution storage device according to a twentieth aspect of the present invention is the mist-removing cyclone type gas-liquid separation part according to any one of the seventeenth to nineteenth aspects, wherein the separation part main body has an inner diameter at the lower side. It has the narrowed-down part.
 第21の本発明の過硫酸生成システムは、硫酸を含む溶液を電解する電解装置と、第1~第20の本発明のいずれかに記載の気液分離溶液貯留装置と、前記電解装置から前記気液分離溶液貯留装置のサイクロン式気液分離部に電解後の溶液を送る送りラインと、前記気液分離溶液貯留装置の貯留部内の溶液を電解用に前記電解装置に送る戻りラインとを有することを特徴とする。 A persulfuric acid production system according to a twenty-first aspect of the present invention is an electrolysis apparatus for electrolyzing a solution containing sulfuric acid, a gas-liquid separation solution storage apparatus according to any one of the first to twentieth aspects of the present invention, and A feed line for sending the solution after electrolysis to the cyclone gas-liquid separation unit of the gas-liquid separation solution storage device, and a return line for sending the solution in the storage unit of the gas-liquid separation solution storage device to the electrolysis device for electrolysis It is characterized by that.
 第22の本発明の電解溶液の気液分離方法は、電解されて生成された電解生成ガスを含む溶液を少なくとも下方側が貯留部内に設置されたサイクロン式気液分離部で気液分離し、分離された溶液はそのまま貯留部内に落下させて貯留し、分離されたガスは不活性ガスで希釈し、希釈されたガスに対して排ガス処理を行うことを特徴とする。
 第23の本発明の電解溶液の気液分離方法は、前記第22の本発明において、サイクロン式気液分離部で分離されたガスを前記貯留部内、前記貯留部排気ライン内もしくは前記貯留部排気ラインに設けられた第2のサイクロン式気液分離部に導入することを特徴とする。
 第24の本発明の電解溶液の気液分離方法は、前記第22または第23の本発明において、前記排ガス処理では、分離ガスからミスト除去を行うことを特徴とする。
 第25の本発明の電解溶液の気液分離方法は、前記第22~第24の本発明のいずれかにおいて、前記排ガス処理では、分離ガスのオゾン分解を行うことを特徴とする。
In the gas-liquid separation method of the electrolytic solution of the twenty-second aspect of the present invention, a solution containing an electrolysis-generated gas produced by electrolysis is separated into gas and liquid at a cyclone-type gas-liquid separation unit installed at least on the lower side in the storage unit, and separated. The solution thus obtained is dropped and stored in the storage unit as it is, the separated gas is diluted with an inert gas, and the diluted gas is subjected to exhaust gas treatment.
According to a twenty-third aspect of the present invention, there is provided the gas-liquid separation method of the electrolytic solution according to the twenty-second aspect of the present invention, wherein the gas separated by the cyclone-type gas-liquid separation unit It introduce | transduces into the 2nd cyclone type gas-liquid separation part provided in the line, It is characterized by the above-mentioned.
According to a twenty-fourth aspect of the present invention, in the twenty-second or twenty-third aspect of the present invention, in the exhaust gas treatment, the gas-liquid separation method of the electrolytic solution performs mist removal from the separated gas.
According to a 25th aspect of the present invention, there is provided a gas-liquid separation method of an electrolytic solution according to any one of the 22nd to 24th aspects of the present invention, wherein in the exhaust gas treatment, the separated gas is subjected to ozonolysis.
 以上説明したように、本発明によれば、装置構造の制約を小さくして気液分離機構による装置のスペース増大を回避でき、電解された溶液を同伴ミストや気泡の発生を極力抑えた状態で相分離して溶液を貯留することができる。
 また、本発明の過硫酸生成システムでは、前記溶液を電解装置へ循環させて過硫酸濃度を高めることができる。
As described above, according to the present invention, it is possible to reduce the restrictions on the structure of the apparatus and avoid an increase in the space of the apparatus due to the gas-liquid separation mechanism, and to suppress the generation of entrained mist and bubbles as much as possible with the electrolyzed solution. The solution can be stored by phase separation.
In the persulfuric acid generation system of the present invention, the persulfuric acid concentration can be increased by circulating the solution to the electrolyzer.
本発明の一実施形態のシステムを示す図である。It is a figure which shows the system of one Embodiment of this invention. 同じく、気液分離器の変更例を示す図である。Similarly, it is a figure which shows the example of a change of a gas-liquid separator. 他の実施形態のシステムを示す図である。It is a figure which shows the system of other embodiment. さらに他の実施形態のシステムを示す図である。It is a figure which shows the system of other embodiment. 本発明の一実施形態における排ガス処理工程に使用するシステムを示す図である。It is a figure which shows the system used for the waste gas treatment process in one Embodiment of this invention. 同じく、排ガス処理工程に使用する他のシステムを示す図である。Similarly, it is a figure which shows the other system used for an exhaust gas treatment process. 同じく、排ガス処理工程に使用する他のシステムを示す図である。Similarly, it is a figure which shows the other system used for an exhaust gas treatment process. 同じく、排ガス処理工程に使用する他のシステムを示す図である。Similarly, it is a figure which shows the other system used for an exhaust gas treatment process. 同じく、排ガス処理工程に使用する他のシステムを示す図である。Similarly, it is a figure which shows the other system used for an exhaust gas treatment process. 従来のシステムを示す図である。It is a figure which shows the conventional system. 本発明の一実施例に使用されるシステムを示す図である。It is a figure which shows the system used for one Example of this invention. 本発明の他の実施例に使用されるシステムを示す図である。It is a figure which shows the system used for the other Example of this invention. 本発明の他の実施例に使用されるシステムを示す図である。It is a figure which shows the system used for the other Example of this invention. 本発明の他の実施例に使用されるシステムを示す図である。It is a figure which shows the system used for the other Example of this invention. 本発明の他の実施例に使用されるシステムを示す図である。It is a figure which shows the system used for the other Example of this invention. 本発明の他の実施例に使用されるシステムを示す図である。It is a figure which shows the system used for the other Example of this invention. 従来のシステムを示す概略図である。It is the schematic which shows the conventional system.
(実施形態1)
 以下に、本発明の一実施形態のシステムを図1に基づいて説明する。
 気液分離溶液貯留装置1には、槽状とした貯留部2を有し、該貯留部2には、サイクロン式気液分離器3が取り付けられている。貯留部2は、サイクロン式気液分離器3の取り付け位置とガス用および溶液用の移動箇所を除いて封止されている。
 サイクロン式気液分離器3は、筒状の分離部本体内部が直胴形状3Cを有しており、その下端側側面部に、サイクロン式気液分離器3で分離された溶液が排出される開口部3Aが形成されている。分離された溶液は分離部本体内に滞留することなく開口部3Aから分離部本体外に流出する。サイクロン式気液分離器3は、貯留部2の天板に取り付けられ、開口部3Aが貯留部の溶液溜め部2A内に位置しており、開口部3Aの高さは、貯留部の溶液溜め部2Aに貯留される溶液の設定高さよりも低い箇所に位置付けられている。
(Embodiment 1)
Below, the system of one Embodiment of this invention is demonstrated based on FIG.
The gas-liquid separation solution storage device 1 has a tank-shaped storage unit 2, and a cyclone type gas-liquid separator 3 is attached to the storage unit 2. The reservoir 2 is sealed except for the mounting position of the cyclone gas-liquid separator 3 and the moving locations for gas and solution.
The cyclone type gas-liquid separator 3 has a cylindrical body 3C inside the cylindrical separation unit main body, and the solution separated by the cyclone type gas-liquid separator 3 is discharged to the lower side surface portion thereof. An opening 3A is formed. The separated solution flows out of the separation unit main body from the opening 3A without staying in the separation unit main body. The cyclone type gas-liquid separator 3 is attached to the top plate of the storage part 2, the opening 3A is located in the solution storage part 2A of the storage part, and the height of the opening 3A is the solution storage of the storage part. It is positioned at a position lower than the set height of the solution stored in the part 2A.
 サイクロン式気液分離器3は、分離部本体内部が直胴形状3Cを有することで、圧損を生じることなく溶液を移動させることができる。通常のサイクロン式気液分離器では、下方側に絞り部分を有したものが多く使用されているが、絞り部分で圧損を生じるので、液流量が変化するとサイクロン内部の気液界面が上下に変化することになる。(例えばΔhが30~100mm)。直胴形状の構造では、微細な気泡の同伴があっても貯留部(貯留槽)内で重力分離されるので、液面変化が少ないという点で直胴型を採用するのが妥当である。 The cyclone gas-liquid separator 3 can move the solution without causing pressure loss because the inside of the separation unit main body has the straight body shape 3C. Many ordinary cyclone type gas-liquid separators have a constricted part on the lower side, but pressure loss occurs in the constricted part, so the gas-liquid interface inside the cyclone changes vertically when the liquid flow rate changes. Will do. (For example, Δh is 30 to 100 mm). In the structure of the straight body, it is appropriate to adopt the straight body type in that the liquid level is small because gravitational separation occurs in the storage part (storage tank) even if fine bubbles are accompanied.
 また、サイクロン式気液分離器3の開口部3Aの上端の高さを溶液の設定高さよりも低くすることで、サイクロン式気液分離器3内のガスを封止し、液のみを貯留部2内に流入させるという効果がある。なお開口部3Aの上端を貯留部2の底面から5~20mm程度の高さになるように構成するのが好ましい。これによりサイクロン内部の気液界面が下がってもサイクロン内部のガスの液封が切れることを防止できる。 Moreover, the gas in the cyclone type gas-liquid separator 3 is sealed by making the height of the upper end of the opening 3A of the cyclone type gas-liquid separator 3 lower than the set height of the solution, and only the liquid is stored. 2 has the effect of flowing in. It is preferable that the upper end of the opening 3A is configured to have a height of about 5 to 20 mm from the bottom surface of the storage unit 2. Thereby, even if the gas-liquid interface inside a cyclone falls, the liquid seal of the gas inside a cyclone can be prevented.
 サイクロン式気液分離器3の上部は、分離ガス排出部3Bが設けられており、分離ガス排出部3Bを除いて上部側が封止されている。分離ガス排出部3Bは、貯留部2の天板よりも高い位置に突き出している。これにより気液分離のための高さを貯留部2内部の高さも利用して確保することができ、装置の高さを低く抑えることができる。 The upper part of the cyclone type gas-liquid separator 3 is provided with a separation gas discharge part 3B, and the upper side is sealed except for the separation gas discharge part 3B. The separation gas discharge part 3 </ b> B protrudes to a position higher than the top plate of the storage part 2. Thereby, the height for gas-liquid separation can be ensured also using the height inside the storage part 2, and the height of the apparatus can be kept low.
 貯留部2の外部には電解装置7を有しており、電解装置7で電解された溶液が送り出される出液側には溶液送りライン8Aが接続されており、溶液送りライン8Aの先端側はサイクロン式気液分離器3の上部側に、分離部本体の断面の接線方向に沿って接続されている。これにより溶液送りライン8Aで送られる溶液がサイクロン式気液分離器3の分離部本体内に、胴部に沿って旋回しながら導入される。
 貯留部2の溶液溜め部2Aには、溶液溜め部2Aの溶液を排出して電解装置7に送る溶液戻りライン8Bが接続されている。溶液戻りライン8Bには、送液ポンプ9が介設されており、溶液戻りライン8Bの先端側は電解装置7の入液側に接続されており、溶液戻りライン8Bで送られる溶液を電解に供することができる。溶液送りライン8Aは本発明の送りラインに相当し、溶液戻りライン8Bは本発明の戻りラインに相当する。
An electrolysis device 7 is provided outside the storage unit 2, and a solution feed line 8A is connected to a liquid discharge side to which a solution electrolyzed by the electrolysis device 7 is sent, and a tip side of the solution feed line 8A is The cyclone gas-liquid separator 3 is connected to the upper side along the tangential direction of the cross section of the separator main body. As a result, the solution fed through the solution feed line 8A is introduced into the separation unit main body of the cyclone type gas-liquid separator 3 while swirling along the trunk.
A solution return line 8 </ b> B that discharges the solution in the solution reservoir 2 </ b> A and sends it to the electrolyzer 7 is connected to the solution reservoir 2 </ b> A of the reservoir 2. The solution return line 8B is provided with a liquid feed pump 9, and the tip side of the solution return line 8B is connected to the liquid inlet side of the electrolyzer 7, so that the solution sent through the solution return line 8B is electrolyzed. Can be provided. The solution feed line 8A corresponds to the feed line of the present invention, and the solution return line 8B corresponds to the return line of the present invention.
 電解装置7では、電極構成が特に限定されるものではないが、少なくとも陽極にはダイヤモンド電極を用いるのが望ましい。また、バイポーラ電極を有するものであってもよい。陰極やバイポーラ電極にダイヤモンド電極を用いるようにしてもよい。
 気液分離溶液貯留装置1、電解装置7、送りライン8Aおよび戻りライン8Bは、本発明の過硫酸生成システムの主構成になっている。
In the electrolyzer 7, the electrode configuration is not particularly limited, but it is desirable to use a diamond electrode at least for the anode. Moreover, you may have a bipolar electrode. A diamond electrode may be used for the cathode or the bipolar electrode.
The gas-liquid separation solution storage device 1, the electrolysis device 7, the feed line 8A, and the return line 8B are the main components of the persulfuric acid generation system of the present invention.
 また、気液分離溶液貯留装置1では、サイクロン式気液分離器3の分離ガス排出部3Bに、分離ガス貯留部導入ライン4が接続されており、分離ガス貯留部導入ライン4の先端側は貯留部2の天板に接続されて貯留部2内空間に連通している。
 貯留部2では、貯留部2内に希釈ガス(この実施形態では窒素ガス)を導入する貯留部用希釈ガス供給ライン5が接続されており、さらに貯留部2には、貯留部2内のガスを排気する貯留部排気ライン6が接続されている。貯留部排気ライン6で送られるガスは、排ガス処理工程200に移送される。
In the gas-liquid separation solution storage device 1, the separation gas storage part introduction line 4 is connected to the separation gas discharge part 3 </ b> B of the cyclone type gas-liquid separator 3, and the leading end side of the separation gas storage part introduction line 4 is It is connected to the top plate of the storage unit 2 and communicates with the internal space of the storage unit 2.
In the storage unit 2, a storage unit dilution gas supply line 5 for introducing a dilution gas (nitrogen gas in this embodiment) is connected to the storage unit 2, and the storage unit 2 further includes a gas in the storage unit 2. Is connected to a storage part exhaust line 6. The gas sent through the storage unit exhaust line 6 is transferred to the exhaust gas treatment process 200.
 次に、本実施形態におけるシステムの動作について説明する。
 予め貯留部2内に設定高さの硫酸溶液を貯留し溶液溜め部2Aを形成し、送液ポンプ9で溶液戻りライン8Bを通じて硫酸溶液を電解装置7に送り、電解装置7で電極に対し通電を行う。硫酸溶液の濃度は本発明として特に限定されるものではないが、例えば硫酸濃度が70質量%以上のものを用いることができる。
Next, the operation of the system in this embodiment will be described.
A sulfuric acid solution having a set height is stored in the storage unit 2 in advance to form a solution storage unit 2A, and the sulfuric acid solution is sent to the electrolysis device 7 through the solution return line 8B by the liquid feed pump 9, and the electrode is energized by the electrolysis device 7 I do. Although the density | concentration of a sulfuric acid solution is not specifically limited as this invention, For example, a sulfuric acid density | concentration can use a 70 mass% or more thing.
 硫酸溶液は、電解装置7内で電解されつつ通液され、溶液送りライン8Aを通じてサイクロン式気液分離器3を介して貯留部2の溶液溜め部2Aに送られて循環する。電解装置7で通液される溶液の通液線速度は、特に限定されるものではないが、例えば電極面と平行な方向で1~10,000m/hr.とすることができる。電解装置7では、電極表面での電流密度が10~100,000A/mとなるように通電するのが望ましく、硫酸溶液中に過硫酸が効率的に生成される。なお、電解に際し溶液の温度は特に限定されるものではないが、電解効率や電解液中酸化剤の自己分解を防ぐなどの理由で10~90℃の温度で電解されるのが望ましい。 The sulfuric acid solution is passed through the electrolyzer 7 while being electrolyzed, and is sent to the solution reservoir 2A of the reservoir 2 via the cyclone gas-liquid separator 3 through the solution feed line 8A and circulates. The flow rate of the solution passed through the electrolyzer 7 is not particularly limited, but for example, 1 to 10,000 m / hr. In the direction parallel to the electrode surface. It can be. In the electrolyzer 7, it is desirable to energize so that the current density on the electrode surface is 10 to 100,000 A / m 2, and persulfuric acid is efficiently generated in the sulfuric acid solution. In the electrolysis, the temperature of the solution is not particularly limited, but it is desirable that the electrolysis is performed at a temperature of 10 to 90 ° C. for reasons such as electrolytic efficiency and prevention of self-decomposition of the oxidizing agent in the electrolytic solution.
 電解装置7では、電解によって溶液の温度が上がり、5~20℃程度高くなる。また、貯留部2に貯留された溶液の温度は特に限定されるものではないが、例えば50~80℃に設定することができる。貯留部2内の溶液温度が高い場合、溶液戻りライン8Bに冷却器を設けて電解に適した温度にして電解装置7に送るようにしてもよい。
 電解装置7では、電解によって主として水素と酸素とが発生し、さらに少量のオゾンや硫酸蒸気や水蒸気などが溶液に同伴されて溶液送りライン8Aに送られる。
In the electrolyzer 7, the temperature of the solution rises by electrolysis and increases by about 5 to 20 ° C. The temperature of the solution stored in the storage unit 2 is not particularly limited, but can be set to 50 to 80 ° C., for example. When the solution temperature in the storage unit 2 is high, a cooler may be provided in the solution return line 8B so that the temperature is suitable for electrolysis and sent to the electrolyzer 7.
In the electrolyzer 7, hydrogen and oxygen are mainly generated by electrolysis, and a small amount of ozone, sulfuric acid vapor, water vapor or the like is accompanied by the solution and sent to the solution feed line 8A.
 電解された溶液は溶液送りライン8Aによって送られ、サイクロン式気液分離器3の上部側に導入される。サイクロン式気液分離器3では、導入された溶液は分離部本体内で旋回流を生じ、ガスが分離するとともに気液分離された溶液は、自重によって落下し、開口部3Aを通じて溶液溜め部2Aに流入する。なお、気液分離後も溶液中には少量の水素および酸素が残存して貯留部2内で滞留するため、貯留部用希釈ガス供給ライン5を通じて希釈ガス(不活性ガス、ここでは窒素ガス)を投入する。貯留部2内のガスは、貯留部用希釈ガス供給ライン5を通じて送られる希釈用窒素ガスによって貯留部排気ライン6へとパージされ、貯留部排気ライン6を通じて移送され、排ガス処理工程200で所定の排ガス処理がなされる。 Electrolyzed solution is sent by the solution feed line 8A and introduced into the upper part of the cyclone type gas-liquid separator 3. In the cyclone type gas-liquid separator 3, the introduced solution generates a swirling flow in the main body of the separator, and the gas is separated and the gas-liquid separated solution falls by its own weight, and the solution reservoir 2A is opened through the opening 3A. Flow into. Since a small amount of hydrogen and oxygen remain in the solution after gas-liquid separation and stay in the reservoir 2, the diluent gas (inert gas, here nitrogen gas) passes through the reservoir dilution gas supply line 5. . The gas in the storage unit 2 is purged to the storage unit exhaust line 6 by the dilution nitrogen gas sent through the storage unit dilution gas supply line 5 and transferred through the storage unit exhaust line 6. Exhaust gas treatment is performed.
 本実施形態では、貯留部2内に希釈用窒素ガスを投入するため、貯留部2から排出されるパージガスに硫酸蒸気や水蒸気が同伴される。送液ポンプ9と電解装置7との間に冷却器が設置されるなどして、電解装置7の入口温度は例えば50℃に調整される。電解装置7では発熱があるので、電解装置7の出口温度は、例えば約65℃になる。よって、貯留部2内の溶液温度は60~65℃となる。このため貯留部2の上部側に投入された窒素ガスは60~65℃に相当する硫酸蒸気や水蒸気を同伴して排ガス処理工程へ通気されることになる。 
 なお、この実施形態では、貯留部2内に分離ガスが分離ガス貯留部導入ライン4を通じて貯留部2の上方側から導入されることで、分離ガスに同伴しているミストの一部を貯留部2内で重力分離することができる。
In this embodiment, since the diluting nitrogen gas is introduced into the storage unit 2, the purge gas discharged from the storage unit 2 is accompanied by sulfuric acid vapor or water vapor. The inlet temperature of the electrolyzer 7 is adjusted to 50 ° C., for example, by installing a cooler between the liquid feed pump 9 and the electrolyzer 7. Since the electrolyzer 7 generates heat, the outlet temperature of the electrolyzer 7 is about 65 ° C., for example. Therefore, the solution temperature in the reservoir 2 is 60 to 65 ° C. For this reason, the nitrogen gas introduced into the upper portion of the storage unit 2 is ventilated to the exhaust gas treatment process accompanied by sulfuric acid vapor or water vapor corresponding to 60 to 65 ° C.
In this embodiment, the separation gas is introduced into the storage part 2 from the upper side of the storage part 2 through the separation gas storage part introduction line 4, so that a part of the mist accompanying the separation gas is stored in the storage part. 2 can be separated by gravity.
 本実施形態によれば、半導体製造装置向け過硫酸溶液を製造する過硫酸生成ユニットにおいて、電解装置を出た気液混相流体を、同伴ミストや気泡の発生を極力抑えた状態で相分離するとともに、相分離された電解溶液を貯留することができる。貯留された電解溶液は、電解装置へ循環して過硫酸濃度を高めることができ、半導体ウエハ洗浄機などの要求に応じて洗浄機へ供給され、ウエハ処理に用いることができる。以下の各実施形態も同様である。 According to this embodiment, in the persulfuric acid production unit for producing a persulfuric acid solution for a semiconductor manufacturing apparatus, the gas-liquid mixed phase fluid exiting the electrolysis apparatus is phase-separated in a state where generation of entrained mist and bubbles is suppressed as much as possible. The phase-separated electrolytic solution can be stored. The stored electrolytic solution can be circulated to the electrolysis apparatus to increase the concentration of persulfuric acid, and can be supplied to a cleaning machine according to the demand of a semiconductor wafer cleaning machine and used for wafer processing. The following embodiments are also the same.
(気液分離器変更例1)
 なお、サイクロン式気液分離器3では、下端部側面に開口部3Aを有するものとして説明したが、開口部の形状は特に限定されるものではなく、開口部の形状を丸孔、三角形状、方形状などの各種形状の切り欠き(ノッチ構造)により構成することができる。また、開口部の下端を気液分離器の下端部よりも高い位置に設けるものであってもよく、複数の高さ位置に開口部を有するものであってもよい。開口部は、一つのみが形成されているものでもよく、またサイクロン式気液分離器3の周囲側壁に間隔をおいて複数が形成されているものであってもよい。気液分離器の下端部側面に開口部を有する場合、底面は有底でも無底でもよく、また孔空き底板で部分的に開口している構造でもよい。
(Gas-liquid separator change example 1)
The cyclone gas-liquid separator 3 has been described as having the opening 3A on the side surface of the lower end, but the shape of the opening is not particularly limited, and the shape of the opening is round, triangular, It can be constituted by notches (notch structure) of various shapes such as a square shape. Moreover, the lower end of an opening part may be provided in a position higher than the lower end part of a gas-liquid separator, and you may have an opening part in several height positions. Only one opening may be formed, or a plurality of openings may be formed on the peripheral side wall of the cyclonic gas-liquid separator 3 at intervals. In the case where an opening is provided on the side surface of the lower end of the gas-liquid separator, the bottom may be bottomed or non-bottomed, or may be partially open with a perforated bottom plate.
 また、サイクロン式気液分離器3の下端側の側面に開口部を設けず、貯留部2の底部に台座を設置して、台座上にサイクロン式気液分離器を、サイクロン式気液分離器3の底部と貯留部2の底面との間に開口構造を形成するように載置することで、サイクロン式気液分離器3から溶液溜め部2Aの液移動が確実になされるようにしてもよい。この際の台座の形状は特に限定されるものではなく、サイクロン式気液分離器3の下端の一部または全部を支持するものであってもよい。
 同様に、サイクロン式気液分離器3の下端側の側面に開口部を設けず、サイクロン式気液分離器3の下端が貯留部2の底面よりも上方に位置するように、サイクロン式気液分離器3を支持材で宙吊り支持することで気液分離器3の底部と貯留部2の底面との間に開口構造を形成して、サイクロン式気液分離器3から溶液溜め部2Aの液移動がなされるようにしてもよい。サイクロン式気液分離器3は、貯留部2の天板に取り付けられているが、天板に取り付けるだけでは気液分離器3の重みで天板がたわんでしまうので支持材による支持が必要になる。支持材はサイクロン式気液分離器3の底部を支持してもよく、また、側面を支持するようにしてもよく、支持構造、支持位置などは特に限定されるものではない。
Moreover, an opening is not provided in the side surface of the lower end side of the cyclone type gas-liquid separator 3, but a pedestal is installed at the bottom of the storage unit 2, and a cyclone type gas-liquid separator is installed on the pedestal. 3 so as to form an opening structure between the bottom of 3 and the bottom of the reservoir 2, so that the liquid movement of the solution reservoir 2A from the cyclone-type gas-liquid separator 3 can be ensured. Good. The shape of the pedestal at this time is not particularly limited, and may support a part or all of the lower end of the cyclone gas-liquid separator 3.
Similarly, the cyclone type gas-liquid separator 3 is not provided with an opening on the side surface on the lower end side, and the lower end of the cyclone type gas-liquid separator 3 is positioned above the bottom surface of the storage unit 2. The separator 3 is suspended and supported by a support material to form an opening structure between the bottom of the gas-liquid separator 3 and the bottom of the reservoir 2, and the liquid in the solution reservoir 2 </ b> A from the cyclone gas-liquid separator 3. Movement may be made. Although the cyclone type gas-liquid separator 3 is attached to the top plate of the storage part 2, since the top plate bends due to the weight of the gas-liquid separator 3 only by attaching to the top plate, it is necessary to support it with a support material. Become. The support material may support the bottom of the cyclone type gas-liquid separator 3 or may support the side surface, and the support structure, the support position, etc. are not particularly limited.
 なお、貯留部2内の気液分離溶液の使用部への供給等により溶液溜め部2Aの液面が下がることがあり、このとき、サイクロン式気液分離器3内の液面もこれに追随して下がる。気液分離器3内は加圧されているため図示していないが厳密にはサイクロン式気液分離器3内の液面の高さは溶液溜め部2Aの液面の高さより若干低い状態で維持されている。ここで、サイクロン式気液分離器3内の液面が開口部3Aの上端より低い位置まで下がると気液分離器3内のガスが開口部3Aを通じて溶液溜め部2Aに流出して液封が切れてしまう。よって、液封が切れないように開口部3Aの高さを設定する必要があり、開口部3Aの上端を貯留部2の底面から5~20mm程度の高さになるように構成するのが好ましい。 Note that the liquid level in the solution reservoir 2A may drop due to the supply of the gas-liquid separation solution in the reservoir 2 to the use part, etc. At this time, the liquid level in the cyclone gas-liquid separator 3 follows this. Then go down. Although the inside of the gas-liquid separator 3 is pressurized and not shown, strictly speaking, the liquid level in the cyclone-type gas-liquid separator 3 is slightly lower than the liquid level in the solution reservoir 2A. Maintained. Here, when the liquid level in the cyclone gas-liquid separator 3 is lowered to a position lower than the upper end of the opening 3A, the gas in the gas-liquid separator 3 flows out to the solution reservoir 2A through the opening 3A and the liquid seal is formed. It will run out. Therefore, it is necessary to set the height of the opening 3A so as not to break the liquid seal, and it is preferable to configure the upper end of the opening 3A to be about 5 to 20 mm from the bottom surface of the storage unit 2. .
(気液分離器変更例2)
 上記実施形態1では、サイクロン式気液分離器として分離部本体内が直胴型のものを用いたが、分離部本体内に絞り部を設けたものであってもよい。
 図2のサイクロン式気液分離器30は、分離部本体内の下方側に絞り部30Cを有しており、絞り部30Cの下部は気液分離した溶液が排出されるよう開口している。
 分離部本体外の上部には、筒状のパージガス導入部32が取り付けられており、パージガス導入部32はさらに分離部本体内の上部側で下方に向けて突出している。
(Gas-liquid separator change example 2)
In Embodiment 1 described above, the cyclone type gas-liquid separator has a straight body type inside the separation unit main body, but may be one in which a throttle part is provided in the separation unit main body.
The cyclone type gas-liquid separator 30 in FIG. 2 has a throttle part 30C on the lower side in the separation part main body, and the lower part of the throttle part 30C is opened so that the gas-liquid separated solution is discharged.
A cylindrical purge gas introduction part 32 is attached to the upper part outside the separation part main body, and the purge gas introduction part 32 further protrudes downward on the upper side in the separation part main body.
 分離部本体内のパージガス導入部32の周囲には、間隔を置いて筒状に形成した分離ガス排出部30Bが設けられており、分離ガス排出部30Bに分離ガス移送ライン33が接続されて分離ガスの排出が可能になっている。分離ガス移送ライン33は、貯留部2内に接続される場合、分離ガス貯留部導入ラインに相当する。分離ガス移送ライン33は、貯留部排気ライン6に接続されるものであってもよく、貯留部排気ライン6に介設された、後述する第2のサイクロン式気液分離器に接続されるものであってもよい。 A separation gas discharge portion 30B formed in a cylindrical shape is provided around the purge gas introduction portion 32 in the separation portion main body, and a separation gas transfer line 33 is connected to the separation gas discharge portion 30B for separation. Gas can be discharged. The separation gas transfer line 33 corresponds to a separation gas reservoir introduction line when connected to the reservoir 2. The separation gas transfer line 33 may be connected to the reservoir exhaust line 6 or connected to a second cyclone gas-liquid separator, which will be described later, interposed in the reservoir exhaust line 6. It may be.
 本変更例では、分離部本体に設けた溶液導入部31を通じて分離部本体内に導入された溶液は、分離部本体内で旋回流を生じ、さらに絞り部30Cで回転半径が小さくなることで、角速度を大きくして遠心力を大きくし、溶液に同伴する気泡をより効率的に分離することができる。絞り部30Cは、一部または全部で下方に向けて次第に径が小さくなるテーパー形状とすることができる。絞り部30Cの形状は特に限定されるものではないが、テーパー部の絞り角度30~45°を好適な絞りとして示すことができる。
 なお、本変更例のサイクロン式気液分離器30では、絞り部分で圧損を生じるので、液流量が変化するとサイクロン内部の気液界面が上下に変化することになり(例えばΔhが30~100mm)、この点では不利である。
In this modified example, the solution introduced into the separation unit main body through the solution introduction unit 31 provided in the separation unit main body generates a swirling flow in the separation unit main body, and further the rotation radius is reduced in the throttling unit 30C. By increasing the angular velocity and increasing the centrifugal force, bubbles accompanying the solution can be separated more efficiently. The throttling portion 30C can have a tapered shape with a diameter that gradually decreases downward in part or in whole. The shape of the aperture portion 30C is not particularly limited, but an aperture angle of 30 to 45 ° of the tapered portion can be shown as a suitable aperture.
In the cyclone type gas-liquid separator 30 of this modified example, pressure loss occurs at the throttle portion, so that the gas-liquid interface inside the cyclone changes vertically when the liquid flow rate changes (for example, Δh is 30 to 100 mm). This is disadvantageous.
 サイクロン式気液分離器30の分離部本体内で気液分離された分離ガスは、分離ガス排出部30Bから分離ガス移送ライン33を通じて排出され、以降に排ガス処理がなされる。
 また、サイクロン式気液分離器30では、分離部本体内にパージガス導入部32を通じてパージ用ガス(本変更例では窒素ガス)が導入される。パージ用ガスは小流量でサイクロン式気液分離器30に供給される(例えば5~15NL/min)。この目的は、電解液の循環を停止したときに水素/酸素混合ガスがサイクロン式気液分離器30内部に滞留することを防ぐためである。パージガス流量が多いと窒素ガス消費量や排ガス処理風量が増えるので好ましくない。パージガス流量は、分解ガスの1/4~1/3が目安である。
The separated gas separated in the separation body of the cyclone type gas-liquid separator 30 is discharged from the separated gas discharge part 30B through the separated gas transfer line 33, and the exhaust gas treatment is performed thereafter.
Further, in the cyclone type gas-liquid separator 30, a purge gas (nitrogen gas in this modified example) is introduced into the separation unit main body through the purge gas introduction unit 32. The purge gas is supplied to the cyclone type gas-liquid separator 30 at a small flow rate (for example, 5 to 15 NL / min). The purpose is to prevent the hydrogen / oxygen mixed gas from staying in the cyclone gas-liquid separator 30 when the circulation of the electrolyte is stopped. A large purge gas flow rate is not preferable because the nitrogen gas consumption and the exhaust gas treatment air volume increase. The purge gas flow rate is approximately 1/4 to 1/3 of the cracked gas.
(実施形態2)
 上記実施形態1では、貯留部2で分解ガス中のミストの重力分離を行っているが、これを採用しない構成とすることもできる。以下に、気液分離溶液貯留装置1Aを有するシステムを図3に基づいて説明する。なお、実施形態1と同様の構成については、同一の符号を付し、一部においてその構成および作用の説明を省略または簡略化する。
 貯留部2に取り付けられたサイクロン式気液分離器3では、分離ガス排出部3Bに分離部排気ライン10が接続されており、分離部排気ライン10の下流側は、貯留部排気ライン6に合流している。貯留部排気ライン6では、分離部排気ライン10が合流する位置近傍の上流側で排気ライン用希釈ガス供給ライン11が接続されている。
(Embodiment 2)
In Embodiment 1 described above, the mist in the cracked gas is separated by gravity in the storage unit 2, but a configuration in which this is not employed may also be employed. Below, the system which has 1 A of gas-liquid separation solution storage apparatuses is demonstrated based on FIG. In addition, about the structure similar to Embodiment 1, the same code | symbol is attached | subjected and description of the structure and effect | action is abbreviate | omitted or simplified in one part.
In the cyclone type gas-liquid separator 3 attached to the storage part 2, the separation part exhaust line 10 is connected to the separation gas discharge part 3B, and the downstream side of the separation part exhaust line 10 joins the storage part exhaust line 6. is doing. In the storage unit exhaust line 6, an exhaust line dilution gas supply line 11 is connected on the upstream side in the vicinity of the position where the separation unit exhaust line 10 joins.
 次に、本実施形態2の作用について説明する。
 サイクロン式気液分離器3で気液分離された分離ガスは、分離ガス排出部3Bから分離部排気ライン10を通して貯留部排気ライン6に送られる。貯留部排気ライン6では、排気ライン用希釈ガス供給ライン11から希釈用ガス(本実施形態では窒素ガス)が導入され、分離部排気ライン10から導入されるガスを希釈する。貯留部排気ライン6内のガスは排ガス処理工程200で排ガス処理される。
Next, the operation of the second embodiment will be described.
The separated gas separated by the cyclone gas-liquid separator 3 is sent from the separated gas discharge part 3B to the storage part exhaust line 6 through the separation part exhaust line 10. In the storage unit exhaust line 6, dilution gas (nitrogen gas in the present embodiment) is introduced from the exhaust line dilution gas supply line 11, and the gas introduced from the separation unit exhaust line 10 is diluted. The gas in the storage unit exhaust line 6 is subjected to exhaust gas treatment in the exhaust gas treatment process 200.
 なお、大半の希釈用ガスは、貯留部2に接続された貯留部排気ライン6に繋げて、サイクロン式気液分離器3で分離された分離ガスに合流させる。残りの少量の希釈ガスはパージ用として貯留部用希釈ガス供給ライン5を通して貯留部2内に導入する。希釈ガスの供給温度は20~25℃で完全に乾燥している。貯留部用希釈ガス供給ライン5から導入されるガス量は少ないので、排ガス処理工程200へ向かうガスが同伴する硫酸蒸気や水蒸気は大幅に少なくなる。 Note that most of the dilution gas is connected to the storage section exhaust line 6 connected to the storage section 2 and merged with the separated gas separated by the cyclone gas-liquid separator 3. The remaining small amount of diluent gas is introduced into the reservoir 2 through the reservoir dilution gas supply line 5 for purging. The supply temperature of the dilution gas is 20 to 25 ° C. and it is completely dried. Since the amount of gas introduced from the storage unit dilution gas supply line 5 is small, sulfuric acid vapor and water vapor accompanied by the gas toward the exhaust gas treatment process 200 are greatly reduced.
(実施形態3)
 サイクロン式気液分離器3から排出された分離ガス中のミストをさらに分離するため、第2のサイクロン式気液分離器を設けることができる。この構成を図4に基づいて説明する。
 なお、実施形態1と同様の構成については、同一の符号を付し、一部においてその構成および作用の説明を省略または簡略化する。
(Embodiment 3)
In order to further separate the mist in the separated gas discharged from the cyclone gas-liquid separator 3, a second cyclone gas-liquid separator can be provided. This configuration will be described with reference to FIG.
In addition, about the structure similar to Embodiment 1, the same code | symbol is attached | subjected and description of the structure and effect | action is abbreviate | omitted or simplified in one part.
 この実施形態の気液分離溶液貯留装置1Bでは、サイクロン式気液分離器3の分離ガス排出部3Bに分離ガス分離部導入ライン13が接続されており、分離ガス分離部導入ライン13の下流端は第2のサイクロン式気液分離器14の上部側に分離部本体の断面の接線方向に沿って接続されている。また、分離ガス分離部導入ライン13には、第2分離部用パージガス導入ライン15が合流しており、希釈用ガス(この実施形態では窒素ガス)を分離ガス分離部導入ライン13内に供給可能になっている。 In the gas-liquid separation solution storage apparatus 1B of this embodiment, the separation gas separation part introduction line 13 is connected to the separation gas discharge part 3B of the cyclone type gas-liquid separator 3, and the downstream end of the separation gas separation part introduction line 13 is connected. Is connected to the upper side of the second cyclonic gas-liquid separator 14 along the tangential direction of the cross section of the separator main body. Further, the purge gas introduction line 15 for the second separation unit is joined to the separation gas separation unit introduction line 13, so that a dilution gas (nitrogen gas in this embodiment) can be supplied into the separation gas separation unit introduction line 13. It has become.
 第2のサイクロン式気液分離器14は、分離部本体が筒状に形成され、分離部本体内部が下方側で絞られた絞り部14Cを有している。分離部本体の下端には、分離された溶液が排出される開口部14Aが形成されており、該開口部14Aは、貯留部2の天板が開口されて形成されている。第2のサイクロン式気液分離器14では、分離された溶液は分離部本体内に滞留させることなく開口部14Aから落下する。 The second cyclone gas-liquid separator 14 has a throttle part 14C in which the separator main body is formed in a cylindrical shape and the inside of the separator main part is throttled on the lower side. An opening 14A through which the separated solution is discharged is formed at the lower end of the separation unit main body, and the opening 14A is formed by opening the top plate of the storage unit 2. In the second cyclone gas-liquid separator 14, the separated solution falls from the opening 14 </ b> A without being retained in the separation body.
 第2のサイクロン式気液分離器14では、分離部本体上部に分離ガス排出部14Bが設けられており、分離ガス排出部14Bに貯留部排気ライン6が接続されている。すなわち、貯留部2には、第2のサイクロン式気液分離器14を介して貯留部排気ライン6が接続されている。 In the second cyclone type gas-liquid separator 14, a separation gas discharge part 14B is provided on the upper part of the separation part main body, and the storage part exhaust line 6 is connected to the separation gas discharge part 14B. That is, the storage part exhaust line 6 is connected to the storage part 2 via the second cyclonic gas-liquid separator 14.
 この実施形態では、サイクロン式気液分離器3で気液分離された分離ガスは、分離ガス排出部3B、分離ガス分離部導入ライン13を通り、また第2分離部用パージガス導入ライン15を通じて窒素ガスが供給される。分離ガス分離部導入ライン13を通るガスは希釈用ガスとともに第2のサイクロン式気液分離器14の上部側で分離部本体内に導入されて分離部本体内で旋回流が生じる。旋回流は、絞り部14Cで回転半径が小さくなることで、角速度を大きくして遠心力を大きくし、ガスに同伴する気泡を効果的に分離することができる。絞り部14Cは、一部または全部で下方に向けて次第に径が小さくなるテーパー形状とすることができる。気液分離された液分は、開口部14Aを通じて溶液溜め部2Aに流下する。 In this embodiment, the separated gas separated by the cyclone type gas-liquid separator 3 passes through the separated gas discharge part 3B, the separated gas separation part introduction line 13, and passes through the second separation part purge gas introduction line 15 to form nitrogen. Gas is supplied. The gas passing through the separation gas separation unit introduction line 13 is introduced into the separation unit body on the upper side of the second cyclonic gas-liquid separator 14 together with the dilution gas, and a swirling flow is generated in the separation unit body. As the swirling flow has a reduced radius of rotation at the constricted portion 14C, the angular velocity can be increased, the centrifugal force can be increased, and bubbles accompanying the gas can be effectively separated. The narrowed portion 14C can have a tapered shape with a diameter that gradually decreases downward in part or in whole. The liquid component separated by gas-liquid flows down to the solution reservoir 2A through the opening 14A.
 なお、第2分離部用パージガス導入ライン15で供給される希釈用ガスの流量を多く(例えば200~300NL/min)することで、これを動力源として第2のサイクロン式気液分離器14で旋回流が生じ、サイクロン式気液分離器3から排出された分離ガスに同伴するミストを第2のサイクロン式気液分離器14で効率よく分離することができる。第2分離部用パージガス導入ライン15から導入されるパージガスの流量(200~300NL/min)は、水素ガス濃度を爆発下限界以下にするのに十分な量である必要がある。
 サイクロン式気液分離器3における分離ガスは、硫酸蒸気および水蒸気の分圧は高くなっているが、これに20~25℃の窒素ガスを混ぜるので、合流点において硫酸蒸気および水蒸気が凝縮してミストが発生し、これを第2のサイクロン式気液分離器14において効果的に分離することができる。
In addition, by increasing the flow rate of the dilution gas supplied from the purge gas introduction line 15 for the second separation unit (for example, 200 to 300 NL / min), the second cyclone type gas-liquid separator 14 uses this as a power source. A swirl flow is generated and the mist accompanying the separation gas discharged from the cyclone gas-liquid separator 3 can be efficiently separated by the second cyclone gas-liquid separator 14. The flow rate (200 to 300 NL / min) of the purge gas introduced from the purge gas introduction line 15 for the second separation unit needs to be an amount sufficient to bring the hydrogen gas concentration below the lower explosion limit.
The separation gas in the cyclone type gas-liquid separator 3 has a high partial pressure of sulfuric acid vapor and water vapor, but since nitrogen gas of 20 to 25 ° C. is mixed with this, the sulfuric acid vapor and water vapor are condensed at the junction. Mist is generated and can be effectively separated in the second cyclonic gas-liquid separator 14.
 なお、第2のサイクロン式気液分離器14では、サイクロン式気液分離器3とは異なり、絞り部14Cを設けるのが望ましい。第2のサイクロン式気液分離器14から貯留部2に流下する液量は極めて少量なので圧損を考慮する必要はなく、絞りを与えて旋回の角速度を高めるのが有利である。絞りの程度は本発明としては特に限定されるものではないが、例えば絞り角度30~45°を好適な絞りとして示すことができる。第2のサイクロン式気液分離器14でミストが除去されたガスは、分離ガス排出部14Bを通じて貯留部排気ライン6に送られる。
 貯留部排気ライン6で送られたガスは排ガス処理工程200で排ガス処理がなされる。
Unlike the cyclone gas-liquid separator 3, the second cyclone gas-liquid separator 14 is preferably provided with a throttle portion 14C. Since the amount of liquid flowing from the second cyclone gas-liquid separator 14 to the reservoir 2 is extremely small, it is not necessary to consider pressure loss, and it is advantageous to increase the angular velocity of the turn by providing a throttle. The degree of aperture is not particularly limited in the present invention, but for example, an aperture angle of 30 to 45 ° can be shown as a suitable aperture. The gas from which the mist has been removed by the second cyclone gas-liquid separator 14 is sent to the storage part exhaust line 6 through the separation gas discharge part 14B.
The gas sent through the storage unit exhaust line 6 is subjected to exhaust gas treatment in the exhaust gas treatment process 200.
(実施形態A)
 次に、排ガス処理工程に用いる装置の例を図5に基づいて説明する。なお、前記各実施形態と同様の構成については、同一の符号を付し、一部においてその構成および作用の説明を省略または簡略化する。
 なお、気液分離溶液貯留装置では、貯留部2に貯留部排気ライン6が接続され、貯留部2には、貯留部用希釈ガス供給ライン5が接続されて貯留部2内に希釈用ガス(ここでは窒素ガス)の供給が可能になっている。なお、この例では、気液分離溶液貯留装置が簡略に示されており、貯留部排気ライン6に第2のサイクロン式気液分離器などが介設されたものであってもよく、貯留部排気ライン6以降の構成を説明するためのものである。
(Embodiment A)
Next, an example of an apparatus used in the exhaust gas treatment process will be described with reference to FIG. In addition, about the structure similar to the said each embodiment, the same code | symbol is attached | subjected and description of the structure and effect | action is abbreviate | omitted or simplified in one part.
In the gas-liquid separation solution storage device, a storage part exhaust line 6 is connected to the storage part 2, and a storage part dilution gas supply line 5 is connected to the storage part 2, so that a dilution gas ( Here, supply of nitrogen gas) is possible. In this example, the gas-liquid separation solution storage device is simply shown, and the storage unit exhaust line 6 may be provided with a second cyclonic gas-liquid separator, etc. It is for demonstrating the structure after the exhaust line 6. FIG.
 貯留部排気ライン6には、ミストエリミネーター20が介設されており、ミストエリミネーター20の上下流の貯留部排気ライン6には、それぞれ配管状で希釈用ガス(この例では空気)を供給するエリミネーター側希釈ガス導入ライン16、17が合流している。エリミネーター側希釈ガス導入ライン17が合流している地点よりも下流側の貯留部排気ライン6には、オゾン分解器50が介設されており、オゾン分解器50の下流側の貯留部排気ライン6は、排気ダクト201に接続されている。なお、オゾン分解器の代わりに水素ガス触媒酸化反応器を設けても良い。 The reservoir exhaust line 6 is provided with a mist eliminator 20, and the mist eliminator 20 is connected to the upstream and downstream reservoir exhaust lines 6 with a pipe-like diluting gas (air in this example). The side dilution gas introduction lines 16 and 17 are joined. An ozone decomposer 50 is interposed in the reservoir exhaust line 6 on the downstream side of the point where the eliminator side dilution gas introduction line 17 joins, and the reservoir exhaust line 6 on the downstream side of the ozone decomposer 50. Is connected to the exhaust duct 201. A hydrogen gas catalytic oxidation reactor may be provided instead of the ozonolysis device.
 上記実施形態では、貯留部2を出たガスにエリミネーター側希釈ガス導入ライン16、17によって乾燥空気を混ぜて、混合後の水素濃度が1vol%以下になるようにするのが望ましい。これは、空気中における水素の爆発限界濃度4vol%の4分の1を安全の目安としたものである。乾燥空気の水分量は0.7MPa(G)で露点10℃の乾燥度(0.16vol%)、あるいはそれ以下が望ましい。 In the above embodiment, it is desirable that the gas exiting the reservoir 2 is mixed with dry air through the eliminator-side dilution gas introduction lines 16 and 17 so that the hydrogen concentration after mixing is 1 vol% or less. This is a safety standard of a quarter of the explosion limit concentration of 4 vol% of hydrogen in the air. The moisture content of the dry air is preferably 0.7 MPa (G) and a dryness (0.16 vol%) with a dew point of 10 ° C. or less.
 乾燥空気として計装空気を用いると、通常0.1~0.2vol%の水分を含んでいる。このため、貯留部出口ガス中に含まれる硫酸蒸気が水分と結合して硫酸ミストとして凝縮する。これを除くために、ミストエリミネーター20を設ける。除去された液分は、ドレイン管21よりドレインとして排出され、ドレインポットに回収される。気相から凝縮して生成する硫酸ミストは、粒子径が1~2μm以下あるいはサブミクロンであり、ブラウン運動をするため、通過線速度の遅いタイプのミストエリミネーターが望ましい。これは慣性衝突によるミストエリミネーターよりも大型になる。そこで、乾燥空気全量を一度に混ぜてミストエリミネーターに通すとミストエリミネーターの容量が大きくなり過ぎるので、図8の装置は、これを2段に分け、間にミストエリミネーターを設置したものである。水素濃度とミストエリミネーター所要寸法との兼ね合いでエリミネーター側希釈ガス導入ライン16によるAirとエリミネーター側希釈ガス導入ライン17によるAirの分配を決める。
 なお、本発明としてはミストエリミネーターの構成が特定のものに限定されるものではなく、既知のものを用いることができる。特には、ブラウン運動をする粒子をも捕捉できる原理のエリミネーターが好適に使用される。
When instrument air is used as dry air, it usually contains 0.1 to 0.2 vol% of water. For this reason, the sulfuric acid vapor | steam contained in the storage part exit gas couple | bonds with a water | moisture content, and is condensed as sulfuric acid mist. In order to eliminate this, a mist eliminator 20 is provided. The removed liquid is discharged as a drain from the drain pipe 21 and collected in the drain pot. The sulfuric acid mist produced by condensation from the gas phase has a particle size of 1 to 2 μm or less, or submicron, and has a Brownian motion. Therefore, a mist eliminator of a type having a low passing linear velocity is desirable. This is larger than the mist eliminator due to inertial collision. Therefore, if the total amount of dry air is mixed and passed through the mist eliminator, the capacity of the mist eliminator becomes too large. Therefore, the apparatus shown in FIG. 8 is divided into two stages and a mist eliminator is installed between them. The distribution of Air by the eliminator side dilution gas introduction line 16 and Air by the eliminator side dilution gas introduction line 17 are determined in consideration of the hydrogen concentration and the required size of the mist eliminator.
In the present invention, the configuration of the mist eliminator is not limited to a specific one, and a known one can be used. In particular, an eliminator based on the principle capable of capturing particles that perform Brownian motion is also preferably used.
 なお、電解装置出口のガスはオゾンを高濃度で含む。窒素や空気で希釈してもなお濃度が高いので、オゾン分解器50のオゾン分解触媒で分解した後、排気ダクト201より排気する。水素ガス触媒酸化反応器では反応温度が200℃付近まで上昇するので、オゾンも同時に分解される。
 実施形態1の装置では、希釈用窒素を全量貯留部に通しているので、貯留部2出口のガス中には比較的高濃度(例えば5~15mg/m)の硫酸蒸気が含まれることになる。これを空気希釈したときに発生するミストを除去するためにミストエリミネーターが必要になる。
The gas at the outlet of the electrolyzer contains ozone at a high concentration. Even if diluted with nitrogen or air, the concentration is still high, so after being decomposed by the ozonolysis catalyst of the ozonolysis device 50, the exhaust is exhausted from the exhaust duct 201. In the hydrogen gas catalytic oxidation reactor, the reaction temperature rises to around 200 ° C., so ozone is also decomposed simultaneously.
In the apparatus of the first embodiment, since all the dilution nitrogen is passed through the reservoir, the gas at the outlet of the reservoir 2 contains sulfuric acid vapor having a relatively high concentration (for example, 5 to 15 mg / m 3 ). Become. A mist eliminator is required to remove the mist generated when this is diluted with air.
 ただし、前述の通り硫酸ミストの粒径はサブミクロン~数ミクロン程度と小さく、また本装置で発生する硫酸ミストの大半(重量ベース)は数ミクロン以上と考えて、図6のように数ミクロン以上の粒子を衝突原理により除去可能であるデミスター20Aをミストエリミネーター20に替えて用いることができる。ミストエリミネーターより小型であるデミスターを用いることにより装置の小型化を図ることができる。なお、デミスターのろ材は例えばPFA(ペルフルオロアルコキシフッ素樹脂)のメッシュ構造のものを用いることができる。
 あるいは、図7のように、ミストエリミネーターをサイクロン式気液分離器に置き換えて、省スペース、コストダウンを図ることもできる。この場合、図8のようにサイクロン式気液分離器を多段に設置しても良い。
 さらに実施形態2および実施形態3の装置では、貯留部2に通す窒素量が少量なので、貯留部2の出口ガスが持ち出す硫酸蒸気は少ない。したがって、ミストエリミネーターやデミスターを省いて、図9に示すように、簡略化した排ガス処理工程にすることもできる。
However, as mentioned above, the particle size of sulfuric acid mist is as small as submicron to several microns, and most of the sulfuric acid mist generated by this device (weight basis) is considered to be several microns or more. The demister 20 </ b> A that can remove these particles by the collision principle can be used in place of the mist eliminator 20. By using a demister that is smaller than the mist eliminator, the apparatus can be miniaturized. In addition, the filter material of a demister can use the thing of the mesh structure of PFA (perfluoroalkoxy fluororesin), for example.
Alternatively, as shown in FIG. 7, the mist eliminator can be replaced with a cyclone gas-liquid separator to save space and reduce costs. In this case, cyclonic gas-liquid separators may be installed in multiple stages as shown in FIG.
Furthermore, in the apparatus of Embodiment 2 and Embodiment 3, since the amount of nitrogen passed through the storage unit 2 is small, the sulfuric acid vapor brought out by the outlet gas of the storage unit 2 is small. Therefore, the mist eliminator and the demister can be omitted, and a simplified exhaust gas treatment process can be performed as shown in FIG.
(実施形態B)
 図6に示す排ガス処理工程用のシステムを説明する。なお、前記各実施形態と同様の構成については、同一の符号を付し、一部においてその構成および作用の説明を省略または簡略化する。
 この実施形態では、貯留部排気ライン6にデミスター20Aが介設されており、デミスター20Aの上流側、下流側の貯留部排気ライン6には、それぞれ希釈用ガス(この例では空気)を供給するミスト除去用分離部側希釈ガス導入ライン16、17が合流している。ミスト除去用分離部側希釈ガス導入ライン17が合流している地点よりも下流側の貯留部排気ライン6には、オゾン分解器50が介設されており、オゾン分解器50の下流側では、貯留部排気ライン6は排気ダクト201に接続されている。
(Embodiment B)
A system for the exhaust gas treatment process shown in FIG. 6 will be described. In addition, about the structure similar to the said each embodiment, the same code | symbol is attached | subjected and description of the structure and effect | action is abbreviate | omitted or simplified in one part.
In this embodiment, a demister 20A is interposed in the reservoir exhaust line 6, and dilution gas (air in this example) is supplied to the upstream and downstream reservoir exhaust lines 6 of the demister 20A. Mist removal separation part side dilution gas introduction lines 16 and 17 are joined. An ozone decomposer 50 is interposed in the reservoir exhaust line 6 downstream from the point where the separation part side dilution gas introduction line 17 for mist removal joins, and on the downstream side of the ozone decomposer 50, The reservoir exhaust line 6 is connected to the exhaust duct 201.
 デミスター20Aの上流側の貯留部排気ライン6にはミスト除去用分離部側希釈ガス導入ライン16を通じて乾燥空気が導入されてガスが希釈される。デミスター20Aでは、分離された液分は、ドレイン管21を通じてドレインとして排出され、ドレインポットに回収される。液分を除去したガスはオゾン分解器50でオゾン分解した後、貯留部排気ライン6を通じて排気ダクト201に移送される。希釈用の空気は、温度が20~25℃で、水分量が0.16vol%以下、すなわち、露点が大気圧下で-17℃程度であるのが望ましい。 The dry air is introduced into the reservoir exhaust line 6 upstream of the demister 20A through the mist removal separation part side dilution gas introduction line 16 to dilute the gas. In the demister 20A, the separated liquid is discharged as a drain through the drain pipe 21 and collected in the drain pot. The gas from which the liquid has been removed is subjected to ozonolysis by the ozonolysis device 50 and then transferred to the exhaust duct 201 through the storage unit exhaust line 6. The dilution air preferably has a temperature of 20 to 25 ° C. and a water content of 0.16 vol% or less, that is, a dew point of about −17 ° C. under atmospheric pressure.
(実施形態C)
 図7に示す排ガス処理工程用のシステムを説明する。なお、前記各実施形態と同様の構成については、同一の符号を付し、一部においてその構成および作用の説明を省略または簡略化する。
 貯留部排気ライン6にミスト除去用サイクロン式気液分離部40が介設されており、ミスト除去用サイクロン式気液分離部40の上流側、下流側の貯留部排気ライン6には、それぞれ希釈用ガス(この例では空気)を供給するミスト除去用分離部側希釈ガス導入ライン25、26が合流している。ミスト除去用分離部側希釈ガス導入ライン26が合流している地点よりも下流側の貯留部排気ライン6には、オゾン分解器50が介設されており、オゾン分解器50の下流側では、貯留部排気ライン6は排気ダクト201に接続されている。
(Embodiment C)
A system for the exhaust gas treatment process shown in FIG. 7 will be described. In addition, about the structure similar to the said each embodiment, the same code | symbol is attached | subjected and description of the structure and effect | action is abbreviate | omitted or simplified in one part.
A mist removing cyclone gas-liquid separation unit 40 is interposed in the storage unit exhaust line 6, and the upstream and downstream storage unit exhaust lines 6 of the mist removal cyclone type gas-liquid separation unit 40 are respectively diluted. Mist removing separation part side dilution gas introduction lines 25 and 26 for supplying working gas (air in this example) are joined. An ozone decomposer 50 is interposed in the reservoir exhaust line 6 downstream of the point where the separation part side dilution gas introduction line 26 for mist removal joins, and on the downstream side of the ozone decomposer 50, The reservoir exhaust line 6 is connected to the exhaust duct 201.
 ミスト除去用サイクロン式気液分離部40の上流側の貯留部排気ライン6にはミスト除去用分離部側希釈ガス導入ライン25を通じて乾燥空気が導入されてガスが希釈される。ミスト除去用サイクロン式気液分離部40は分離部本体内に絞り部を設けて分離機能を高めることができ、分離された液分は、ドレイン管41を通じてドレインとして排出され、ドレインポットに回収される。液分を除去したガスはオゾン分解器50でオゾン分解した後、貯留部排気ライン6を通じて排気ダクト201に移送される。希釈用の空気は、温度が20~25℃で、水分量が相対湿度50%以下であるのが望ましい。 The dry air is introduced into the reservoir exhaust line 6 upstream of the cyclone type gas-liquid separator 40 for mist removal through the mist removal separator-side dilution gas introduction line 25 to dilute the gas. The cyclone type gas-liquid separator 40 for removing mist can be provided with a throttle in the main body of the separator to enhance the separation function. The separated liquid is discharged as a drain through the drain pipe 41 and collected in the drain pot. The The gas from which the liquid has been removed is subjected to ozonolysis by the ozonolysis device 50 and then transferred to the exhaust duct 201 through the storage unit exhaust line 6. The dilution air preferably has a temperature of 20 to 25 ° C. and a moisture content of 50% or less relative humidity.
(実施形態D)
 なお、ミスト除去用サイクロン式気液分離部は、前述したように貯留部排気ライン6に多段に設けることができ、各段のミスト除去用サイクロン式気液分離部の上下流における貯留部排気ライン6の一方または両方には、ミスト除去用分離部側希釈ガス導入部を合流させることができる。該構成の排ガス処理工程の装置を図8に示す。なお、前記各実施形態と同様の構成については、同一の符号を付し、一部においてその構成および作用の説明を省略または簡略化する。
(Embodiment D)
As described above, the mist removing cyclone type gas-liquid separation unit can be provided in multiple stages in the storage unit exhaust line 6, and the storage unit exhaust line in the upstream and downstream of each stage of the mist removal cyclone type gas-liquid separation unit. A mist removing separation part side dilution gas introduction part can be joined to one or both of the parts 6. FIG. 8 shows an apparatus for an exhaust gas treatment process having such a configuration. In addition, about the structure similar to the said each embodiment, the same code | symbol is attached | subjected and description of the structure and effect | action is abbreviate | omitted or simplified in one part.
 貯留部排気ライン6にミスト除去用サイクロン式気液分離部40、42が多段に介設されており、ミスト除去用サイクロン式気液分離部40の上流側の貯留部排気ライン6には希釈用ガス(この例では空気)を供給するミスト除去用分離部側希釈ガス導入ライン25が合流し、ミスト除去用サイクロン式気液分離部40の下流側およびミスト除去用サイクロン式気液分離部42の上流側の貯留部排気ライン6には希釈用ガス(この例では空気)を供給するミスト除去用分離部側希釈ガス導入ライン26が合流している。
 ミスト除去用サイクロン式気液分離部42の下流側の貯留部排気ライン6には、オゾン分解器50が介設されており、オゾン分解器50の下流側で、貯留部排気ライン6は排気ダクト201に接続されている。
Mist removal cyclone gas / liquid separators 40 and 42 are interposed in the reservoir exhaust line 6 in multiple stages, and the reservoir exhaust line 6 upstream of the mist remover cyclone gas / liquid separator 40 is used for dilution. The mist removal separation part side dilution gas introduction line 25 for supplying gas (air in this example) joins, and the downstream side of the mist removal cyclone gas / liquid separation part 40 and the mist removal cyclone gas / liquid separation part 42 A mist removing separation portion side dilution gas introduction line 26 for supplying a dilution gas (air in this example) joins the upstream storage portion exhaust line 6.
An ozone decomposer 50 is interposed in the reservoir exhaust line 6 on the downstream side of the cyclone type gas-liquid separator 42 for removing mist, and the reservoir exhaust line 6 is connected to the exhaust duct on the downstream side of the ozone decomposer 50. 201 is connected.
 貯留部排気ライン6では、ミスト除去用サイクロン式気液分離部40の上流側でミスト除去用分離部側希釈ガス導入ライン25を通じて乾燥空気が導入されてガスが希釈される。ミスト除去用サイクロン式気液分離部40は分離部本体内に絞り部を設けて分離機能を高めることができ、分離された液分は、ドレイン管41を通じてドレインとして排出され、ドレインポットに回収される。
 液分を除去したガスは貯留部排気ライン6で送られ、ミスト除去用サイクロン式気液分離部42の上流側でミスト除去用分離部側希釈ガス導入ライン26を通じて乾燥空気が導入されてガスが希釈される。ミスト除去用サイクロン式気液分離部42は分離部本体内に絞り部を設けて分離機能を高めることができ、分離された液分は、ドレイン管43を通してドレインとして排出され、ドレインポットに回収される。液分を除去したガスはオゾン分解器50でオゾン分解した後、貯留部排気ライン6を通じて排気ダクト201に移送される。
 上記乾燥空気は、温度を20~25℃、水分量を相対湿度50%以下とするのが望ましい。
In the storage unit exhaust line 6, dry air is introduced through the mist removal separation unit side dilution gas introduction line 25 upstream of the mist removal cyclone gas-liquid separation unit 40 to dilute the gas. The cyclone type gas-liquid separator 40 for removing mist can be provided with a throttle in the main body of the separator to enhance the separation function. The separated liquid is discharged as a drain through the drain pipe 41 and collected in the drain pot. The
The gas from which the liquid has been removed is sent through the storage unit exhaust line 6, and dry air is introduced through the mist removal separation unit side dilution gas introduction line 26 upstream of the mist removal cyclone gas-liquid separation unit 42, and the gas is Diluted. The cyclone type gas-liquid separation part 42 for removing mist can be provided with a throttle part in the separation part main body to enhance the separation function, and the separated liquid is discharged as a drain through the drain pipe 43 and collected in the drain pot. The The gas from which the liquid has been removed is subjected to ozonolysis by the ozonolysis device 50 and then transferred to the exhaust duct 201 through the storage unit exhaust line 6.
The dry air preferably has a temperature of 20 to 25 ° C. and a moisture content of 50% or less relative humidity.
(実施形態E)
 以下、図9に示す排ガス処理工程用のシステムを説明する。なお、前記各実施形態と同様の構成については、同一の符号を付し、一部においてその構成および作用の説明を省略または簡略化する。
 貯留部2に接続された貯留部排気ライン6には、希釈ガス供給ライン23によって希釈用ガス(この例では窒素ガス)が導入される。貯留部排気ライン6では、第2のサイクロン式気液分離器14の有無は問わない。第2のサイクロン式気液分離器14を有する場合、希釈ガス供給ライン23の希釈用ガスは、第2のサイクロン式気液分離器14に供給される。
 貯留部排気ライン6では、下流側で希釈ガス供給ライン24が合流しており、希釈ガス供給ライン24から希釈用ガス(この例では空気)が貯留部排気ライン6内に導入されてガスの希釈がなされる。その下流側でオゾン分解器50が介設され、オゾン分解器50の下流側で貯留部排気ライン6は排気ダクト201に接続されている。
(Embodiment E)
Hereinafter, the system for the exhaust gas treatment process shown in FIG. 9 will be described. In addition, about the structure similar to the said each embodiment, the same code | symbol is attached | subjected and description of the structure and effect | action is abbreviate | omitted or simplified in one part.
Dilution gas (nitrogen gas in this example) is introduced into the reservoir exhaust line 6 connected to the reservoir 2 through the dilution gas supply line 23. In the storage part exhaust line 6, the presence or absence of the second cyclone gas-liquid separator 14 does not matter. When the second cyclonic gas-liquid separator 14 is provided, the dilution gas in the dilution gas supply line 23 is supplied to the second cyclonic gas-liquid separator 14.
In the reservoir exhaust line 6, the dilution gas supply line 24 joins downstream, and a dilution gas (air in this example) is introduced from the dilution gas supply line 24 into the reservoir exhaust line 6 to dilute the gas. Is made. On the downstream side, an ozonolysis device 50 is interposed, and on the downstream side of the ozonolysis device 50, the reservoir exhaust line 6 is connected to an exhaust duct 201.
 以下に、本発明の実施例および本発明の範囲外となる比較例とを説明する。
(比較例1)
 比較例1では、図10に示す従来のシステムを用いた。このシステムは、図17に示すシステムにオゾン分解器50を設けたものである。
 上記従来装置を図10に基づいて説明する。従来装置は、図17に示す装置を主構成とするものであり、なお、図17に示す装置と同様の構成については、同一の符号を付し、一部においてその構成および作用の説明を省略または簡略化する。
Examples of the present invention and comparative examples outside the scope of the present invention will be described below.
(Comparative Example 1)
In Comparative Example 1, the conventional system shown in FIG. 10 was used. In this system, an ozonolysis device 50 is provided in the system shown in FIG.
The conventional apparatus will be described with reference to FIG. The main device of the conventional apparatus is the apparatus shown in FIG. 17, and the same components as those shown in FIG. 17 are denoted by the same reference numerals, and the description of the structure and operation is partially omitted. Or simplify.
 電解セル100を出た電解液は、送りライン110を通じて気液分離器101に導入され、気液を重力分離する。気液分離器101には、希釈ガス供給ライン105を通じて希釈用ガス(この例では窒素ガス)が導入される。気液分離器101では、溶液溜め部101Aに溶液を溜め、送りライン111によって貯留部102内に溶液を移送する。貯留部102へ流下する液中には少量の水素/酸素混合ガスが同伴するので、貯留部102内に貯留部用希釈ガス供給ライン121によって希釈用ガス(ここでは窒素ガス)を供給し、貯留部102内からガスをパージし貯留部排気ライン122に送る。
 また、気液分離部101には気液分離したガスを排出する分離ガス排出部101Bが設けられており、分離ガス排出部101Bには、分離部排気ライン123が接続されており、分離部排気ライン123は貯留部排気ライン122に合流している。
 貯留部排気ライン122では、分離部排気ライン123が合流した地点の下流側で希釈用ガス供給ライン124が合流しており、貯留部排気ライン122内に希釈用ガス(この例では空気)を導入することができる。貯留部排気ライン122のさらに下流側にはオゾン分解器50が介設されており、その下流側で貯留部排気ライン122は排気ダクト201に接続されている。
The electrolytic solution exiting the electrolytic cell 100 is introduced into the gas-liquid separator 101 through the feed line 110, and the gas-liquid is separated by gravity. A dilution gas (nitrogen gas in this example) is introduced into the gas-liquid separator 101 through the dilution gas supply line 105. In the gas-liquid separator 101, the solution is stored in the solution reservoir 101 </ b> A, and the solution is transferred into the reservoir 102 by the feed line 111. Since a small amount of hydrogen / oxygen mixed gas accompanies the liquid flowing down to the storage unit 102, a dilution gas (here, nitrogen gas) is supplied into the storage unit 102 through the storage unit dilution gas supply line 121. The gas is purged from the inside of the unit 102 and sent to the storage unit exhaust line 122.
Further, the gas-liquid separation unit 101 is provided with a separation gas discharge unit 101B that discharges the gas-liquid separated gas. A separation unit exhaust line 123 is connected to the separation gas discharge unit 101B, and the separation unit exhaust gas is discharged. The line 123 joins the storage unit exhaust line 122.
In the storage unit exhaust line 122, the dilution gas supply line 124 is joined downstream from the point where the separation unit exhaust line 123 joins, and the dilution gas (air in this example) is introduced into the storage unit exhaust line 122. can do. An ozonolysis device 50 is interposed further downstream of the reservoir exhaust line 122, and the reservoir exhaust line 122 is connected to the exhaust duct 201 on the downstream side thereof.
 上記装置を用いた比較例1における運転条件を以下に示す。
(運転条件)
 硫酸溶液濃度=85wt%
 電解セル出口温度=65℃
 貯留槽(部)溶液温度=60℃
 電解セル出口ガス流量=16.5NL/min 組成=H/O=2/1
 希釈用N(気液分離器投入)=266NL/min
 パージ用N(貯留槽投入)=10NL/min
 希釈用空気流量=849NL/min、空気温度=25℃、含有水分=0.156  vol% (含有水分は、7kgf/cm(G)で露点10℃に相当)
The operating conditions in Comparative Example 1 using the above apparatus are shown below.
(Operating conditions)
Sulfuric acid solution concentration = 85 wt%
Electrolytic cell outlet temperature = 65 ° C
Storage tank (part) solution temperature = 60 ° C.
Electrolytic cell outlet gas flow rate = 16.5 NL / min Composition = H 2 / O 2 = 2/1
N 2 for dilution (gas-liquid separator input) = 266 NL / min
N 2 for purge (storage tank input) = 10 NL / min
Air flow for dilution = 849 NL / min, air temperature = 25 ° C., water content = 0.156 vol% (water content is equivalent to a dew point of 10 ° C. at 7 kgf / cm 2 (G))
 この時、ミスト濃度およびミスト量は表1のようになった。
 オゾン分解器入口のミスト量は24.1mg/hであった。また、装置設置高さは、3.0mであった。
At this time, the mist concentration and the amount of mist are as shown in Table 1.
The mist amount at the inlet of the ozonolysis device was 24.1 mg / h. The apparatus installation height was 3.0 m.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(実施例1)
 実施例1では、図11に示すシステムを用意した。該システムは、図1に示した実施形態1のシステムに、図5に示す実施形態Aの排ガス処理工程用のシステムを接続したものであり、装置の説明は省略する。
Example 1
In Example 1, the system shown in FIG. 11 was prepared. This system is obtained by connecting the system for the exhaust gas treatment process of Embodiment A shown in FIG. 5 to the system of Embodiment 1 shown in FIG. 1, and the description of the apparatus is omitted.
 実施例1の運転条件は下記の通りとして試験を行った。
(運転条件)
 硫酸溶液濃度=85wt%
 電解セル出口温度=65℃
 貯留槽(部)溶液温度=60℃
 電解セル出口ガス流量=16.5NL/min 組成=H/O=2/1
 希釈用N(貯留槽投入)=266NL/min
 希釈用一次空気(ミストエリミネーター手前)=300NL/min
 希釈用二次空気(ミストエリミネーター後側)=549NL/min
 希釈用空気温度=25℃、含有水分=0.156vol%
  (含有水分は、7kgf/cm(G)で露点10℃に相当)
The test was conducted under the operating conditions of Example 1 as follows.
(Operating conditions)
Sulfuric acid solution concentration = 85 wt%
Electrolytic cell outlet temperature = 65 ° C
Storage tank (part) solution temperature = 60 ° C.
Electrolytic cell outlet gas flow rate = 16.5 NL / min Composition = H 2 / O 2 = 2/1
N 2 for dilution (introducing storage tank) = 266 NL / min
Primary air for dilution (before mist eliminator) = 300 NL / min
Secondary air for dilution (rear side of mist eliminator) = 549 NL / min
Air temperature for dilution = 25 ° C., moisture content = 0.156 vol%
(Moisture content is equivalent to a dew point of 10 ° C. at 7 kgf / cm 2 (G))
 試験の結果、ミスト濃度およびミスト量は表2のようになった。 オゾン分解器入口のミスト量は1.3mg/hであった。また、装置設置高さは、2.0mであった。 As a result of the test, the mist concentration and the amount of mist are as shown in Table 2. The mist amount at the inlet of the ozonolysis device was 1.3 mg / h. Moreover, the apparatus installation height was 2.0 m.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(実施例2)
 実施例2では、図12に示すシステムを用意した。該システムは、図3に示した実施形態2のシステムに図9に示した実施形態Bの排ガス処理工程用のシステムを接続したものであり、排ガス処理工程用のシステムの一部構成の図示は省略し、装置の説明は省略する。
(Example 2)
In Example 2, the system shown in FIG. 12 was prepared. This system is obtained by connecting the system for the exhaust gas treatment process of Embodiment B shown in FIG. 9 to the system of the embodiment 2 shown in FIG. The description of the apparatus is omitted.
 実施例の運転条件は下記の通りとして試験を行った。
(運転条件)
 硫酸溶液濃度=85wt%
 電解セル出口温度=65℃
 貯留槽(部)溶液温度=60℃
 電解セル出口ガス流量=16.5NL/min 組成=H/O=2/1
 希釈用N(N(2))=266NL/min
 貯留槽パージ用N(N(1))=10NL/min
 希釈用空気(オゾン分解器手前)=849NL/min
 希釈用空気温度=25℃、含有水分=0.156vol%
  (含有水分は、7kgf/cm(G)で露点10℃に相当)
The test was conducted under the following operating conditions in the examples.
(Operating conditions)
Sulfuric acid solution concentration = 85 wt%
Electrolytic cell outlet temperature = 65 ° C
Storage tank (part) solution temperature = 60 ° C.
Electrolytic cell outlet gas flow rate = 16.5 NL / min Composition = H 2 / O 2 = 2/1
N 2 for dilution (N 2 (2)) = 266 NL / min
Reservoir purge N 2 (N 2 (1)) = 10 NL / min
Air for dilution (before ozonolysis device) = 849NL / min
Air temperature for dilution = 25 ° C., moisture content = 0.156 vol%
(Moisture content is equivalent to a dew point of 10 ° C. at 7 kgf / cm 2 (G))
 試験の結果、ミスト濃度およびミスト量は表3のようになった。オゾン分解器入口のミスト量は13.0mg/hであった。また、装置設置高さは、2.0mであった。 As a result of the test, the mist concentration and the amount of mist are as shown in Table 3. The mist amount at the inlet of the ozonolysis device was 13.0 mg / h. Moreover, the apparatus installation height was 2.0 m.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(実施例3)
 実施例3では、図13に示すシステムを用意した。該システムは、図4に示した実施形態3のシステムに図9に示した実施形態Bの排ガス処理工程用のシステムを接続したものであり、排ガス処理工程用のシステムの一部構成の図示は省略し、装置の説明は省略する。
Example 3
In Example 3, the system shown in FIG. 13 was prepared. The system is obtained by connecting the system for the exhaust gas treatment process of Embodiment B shown in FIG. 9 to the system of the embodiment 3 shown in FIG. The description of the apparatus is omitted.
 実施例の運転条件は下記の通りとして試験を行った。
(運転条件)
 硫酸溶液濃度=85wt%
 電解セル出口温度=65℃
 貯留槽(部)溶液温度=60℃
 電解セル出口ガス流量=16.5NL/min 組成=H/O=2/1
 希釈用N(N(2))=266NL/min
 貯留槽パージ用N(N(1))=10NL/min
 希釈用空気(オゾン分解器手前)=849NL/min
 希釈用空気温度=25℃、含有水分=0.156vol%
   (含有水分は、7kgf/cm(G)で露点10℃に相当)
The test was conducted under the following operating conditions in the examples.
(Operating conditions)
Sulfuric acid solution concentration = 85 wt%
Electrolytic cell outlet temperature = 65 ° C
Storage tank (part) solution temperature = 60 ° C.
Electrolytic cell outlet gas flow rate = 16.5 NL / min Composition = H 2 / O 2 = 2/1
N 2 for dilution (N 2 (2)) = 266 NL / min
Reservoir purge N 2 (N 2 (1)) = 10 NL / min
Air for dilution (before ozonolysis device) = 849NL / min
Air temperature for dilution = 25 ° C., moisture content = 0.156 vol%
(Moisture content is equivalent to a dew point of 10 ° C. at 7 kgf / cm 2 (G))
 試験の結果、ミスト濃度およびミスト量は表4のようになった。オゾン分解器入口のミスト量は0.72mg/hであった。また、装置設置高さは、2.2mであった。 As a result of the test, the mist concentration and the amount of mist are as shown in Table 4. The mist amount at the inlet of the ozonolysis device was 0.72 mg / h. Moreover, the apparatus installation height was 2.2 m.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(実施例4)
 実施例4では、図14に示すシステムを用意した。該システムは、図3に示した実施形態2のシステムに図5に示した実施形態Aの排ガス処理工程用のシステムを接続したものであり、装置の説明は省略する。
Example 4
In Example 4, the system shown in FIG. 14 was prepared. This system is obtained by connecting the system for the exhaust gas treatment process of the embodiment A shown in FIG. 5 to the system of the embodiment 2 shown in FIG.
 実施例の運転条件は下記の通りとして試験を行った。
(運転条件)
 硫酸溶液濃度=85wt%
 電解セル出口温度=65℃
 貯留槽(部)溶液温度=60℃
 電解セル出口ガス流量=16.5NL/min 組成=H/O=2/1
 希釈用N(N(2))=266NL/min
 貯留槽パージ用N(N(1))=10NL/min
 希釈用一次空気(ミストエリミネーター手前)=300NL/min
 希釈用二次空気(オゾン分解器手前)=549NL/min
 希釈用空気温度=25℃、含有水分=0.156vol%
  (含有水分は、7kgf/cm(G)で露点10℃に相当)
The test was conducted under the following operating conditions in the examples.
(Operating conditions)
Sulfuric acid solution concentration = 85 wt%
Electrolytic cell outlet temperature = 65 ° C
Storage tank (part) solution temperature = 60 ° C.
Electrolytic cell outlet gas flow rate = 16.5 NL / min Composition = H 2 / O 2 = 2/1
N 2 for dilution (N 2 (2)) = 266 NL / min
Reservoir purge N 2 (N 2 (1)) = 10 NL / min
Primary air for dilution (before mist eliminator) = 300 NL / min
Secondary air for dilution (before ozonolysis unit) = 549 NL / min
Air temperature for dilution = 25 ° C., moisture content = 0.156 vol%
(Moisture content is equivalent to a dew point of 10 ° C. at 7 kgf / cm 2 (G))
 試験の結果、ミスト濃度およびミスト量は表5のようになった。オゾン分解器入口のミスト量は、0.025mg/hであった。また、装置設置高さは、2.2mであった。 As a result of the test, the mist concentration and the amount of mist are as shown in Table 5. The amount of mist at the inlet of the ozonolysis device was 0.025 mg / h. Moreover, the apparatus installation height was 2.2 m.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
(実施例5)
 実施例5では、図15に示すシステムを用意した。該システムは、図3に示した実施形態2のシステムに図7に示した実施形態Cの排ガス処理工程用のシステムを接続したものであり、装置の説明は省略する。なお、実施例4に述べたシステムでは、ミストエリミネーターの寸法が大きく(フランジ外径=350mm)、価格も高いので、この実施形態5ではミストエリミネーターをサイクロンに置き換えたものである。
(Example 5)
In Example 5, the system shown in FIG. 15 was prepared. The system is obtained by connecting the system for the exhaust gas treatment process of Embodiment C shown in FIG. 7 to the system of Embodiment 2 shown in FIG. 3, and the description of the apparatus is omitted. In the system described in Example 4, the mist eliminator has a large size (flange outer diameter = 350 mm) and a high price. In the fifth embodiment, the mist eliminator is replaced with a cyclone.
 実施例の運転条件は下記の通りとして試験を行った。
(運転条件)
 硫酸溶液濃度=85wt%
 電解セル出口温度=65℃
 貯留槽(部)溶液温度=60℃
 電解セル出口ガス流量=16.5NL/min 組成=H/O=2/1
 希釈用N(N(2))=266NL/min
 貯留槽パージ用N(N(1))=10NL/min
 希釈用一次空気(ミスト除去用分離部手前)=300NL/min
 希釈用二次空気(オゾン分解器手前)=549NL/min
 希釈用空気温度=25℃、含有水分=0.156vol%
   (含有水分は、7kgf/cm(G)で露点10℃に相当)
The test was conducted under the following operating conditions in the examples.
(Operating conditions)
Sulfuric acid solution concentration = 85 wt%
Electrolytic cell outlet temperature = 65 ° C
Storage tank (part) solution temperature = 60 ° C.
Electrolytic cell outlet gas flow rate = 16.5 NL / min Composition = H 2 / O 2 = 2/1
N 2 for dilution (N 2 (2)) = 266 NL / min
Reservoir purge N 2 (N 2 (1)) = 10 NL / min
Primary air for dilution (before the separation part for mist removal) = 300 NL / min
Secondary air for dilution (before ozonolysis unit) = 549 NL / min
Air temperature for dilution = 25 ° C., moisture content = 0.156 vol%
(Moisture content is equivalent to a dew point of 10 ° C. at 7 kgf / cm 2 (G))
 試験の結果、ミスト濃度およびミスト量は表6のようになった。オゾン分解器入口のミスト量は、1.30mg/hであった。また、装置設置高さは、2.0mであった。 As a result of the test, the mist concentration and the amount of mist are as shown in Table 6. The mist amount at the inlet of the ozonolysis device was 1.30 mg / h. Moreover, the apparatus installation height was 2.0 m.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
(実施例6)
 実施例6では、図16に示すシステムを用意した。該システムは、図3に示した実施形態2のシステムに図8に示した実施形態Dの排ガス処理工程用のシステムを接続したものであり、装置の説明は省略する。この実施例6ではミスト除去性能を上げるためミスト除去用サイクロン式気液分離器を2段に配置したものである。
(Example 6)
In Example 6, the system shown in FIG. 16 was prepared. The system is obtained by connecting the system for the exhaust gas treatment process of Embodiment D shown in FIG. 8 to the system of Embodiment 2 shown in FIG. 3, and the description of the apparatus is omitted. In the sixth embodiment, cyclone type gas-liquid separators for mist removal are arranged in two stages in order to improve the mist removal performance.
 実施例の運転条件は下記の通りとして試験を行った。
(運転条件)
 硫酸溶液濃度=85wt%
 電解セル出口温度=65℃
 貯留槽(部)溶液温度=60℃
 電解セル出口ガス流量=16.5NL/min 組成=H/O=2/1
 希釈用N(N(2))=266NL/min
 貯留槽パージ用N(N(1))=10NL/min
 希釈用一次空気(ミスト除去用サイクロン式気液分離部40手前)=300NL/min
 希釈用二次空気(ミスト除去用サイクロン式気液分離部42手前)=549NL/min
 希釈用空気温度=25℃、含有水分=0.156vol%
   (含有水分は、7kgf/cm(G)で露点10℃に相当)
The test was conducted under the following operating conditions in the examples.
(Operating conditions)
Sulfuric acid solution concentration = 85 wt%
Electrolytic cell outlet temperature = 65 ° C
Storage tank (part) solution temperature = 60 ° C.
Electrolytic cell outlet gas flow rate = 16.5 NL / min Composition = H 2 / O 2 = 2/1
N 2 for dilution (N 2 (2)) = 266 NL / min
Reservoir purge N 2 (N 2 (1)) = 10 NL / min
Primary air for dilution (before 40 cyclone gas-liquid separator for mist removal) = 300 NL / min
Secondary air for dilution (before 42 cyclone gas-liquid separator for mist removal) = 549 NL / min
Air temperature for dilution = 25 ° C., moisture content = 0.156 vol%
(Moisture content is equivalent to a dew point of 10 ° C. at 7 kgf / cm 2 (G))
 試験の結果、ミスト濃度およびミスト量は表7のようになった。オゾン分解器入口のミスト量は、0.13mg/hであった。また、装置設置高さは、2.0mであった。 As a result of the test, the mist concentration and the amount of mist are as shown in Table 7. The amount of mist at the inlet of the ozonolysis device was 0.13 mg / h. Moreover, the apparatus installation height was 2.0 m.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 以上の実施例および比較例の試験結果から次のことがいえる。
(1)実施形態1~3の方法により、従来技術よりも排気ガスに同伴するミスト量を大幅に減らすことができる。また、装置設置高さを低く抑えることができる。
(2)実施形態2または3の方法のようにミストエリミネーターやデミスターを組み合わせることによりミスト除去効率を極めて高くすることができる。
(3)特に、実施形態3の方法によれば、ミストエリミネーターを用いなくても、サイクロンによりかなりのミスト低減効果が得られる。
The following can be said from the test results of the above Examples and Comparative Examples.
(1) By the methods of Embodiments 1 to 3, the amount of mist accompanying the exhaust gas can be greatly reduced as compared with the prior art. Moreover, the apparatus installation height can be kept low.
(2) Mist removal efficiency can be made extremely high by combining a mist eliminator or a demister as in the method of the second or third embodiment.
(3) In particular, according to the method of the third embodiment, a significant mist reduction effect can be obtained by the cyclone without using a mist eliminator.
 以上、本発明について上記実施形態および実施例に基づいて発明の説明を行ったが、本発明は上記説明の内容に限定されるものではなく、本発明の範囲を逸脱しない限りは適宜の変更が可能であって、この範囲の変更は本発明の範囲内となるものである。 The present invention has been described above based on the above-described embodiments and examples. However, the present invention is not limited to the above description, and appropriate modifications can be made without departing from the scope of the present invention. It is possible and variations in this range are within the scope of the present invention.
 1  気液分離溶液貯留装置
 2  貯留部
 2A 溶液溜め部
 3  サイクロン式気液分離器
 3A 開口部
 3B 分離ガス排出部
 4  分離ガス貯留部導入ライン
 5  貯留部用希釈ガス供給ライン
 6  貯留部排気ライン
 7  電解装置
 8A 送りライン
 8B 戻りライン
11  排気ライン用希釈ガス供給ライン
13  分離ガス分離部導入ライン
14  第2のサイクロン式気液分離器
14A 開口部
14B 分離ガス排出部
15  第2分離部用パージガス導入ライン
16  エリミネーター側希釈ガス導入ライン
17  エリミネーター側希釈ガス導入ライン
25  ミスト除去用分離部側希釈ガス導入ライン
26  ミスト除去用分離部側希釈ガス導入ライン
40  ミスト除去用サイクロン式気液分離部
42  ミスト除去用サイクロン式気液分離部
DESCRIPTION OF SYMBOLS 1 Gas-liquid separation solution storage apparatus 2 Storage part 2A Solution storage part 3 Cyclone type gas-liquid separator 3A Opening 3B Separation gas discharge part 4 Separation gas storage part introduction line 5 Reservation part dilution gas supply line 6 Storage part exhaust line 7 Electrolytic device 8A Feed line 8B Return line 11 Dilution gas supply line 13 for exhaust line Separation gas separation part introduction line 14 Second cyclone gas-liquid separator 14A Opening part 14B Separation gas discharge part 15 Purge gas introduction line for second separation part 16 Eliminator side dilution gas introduction line 17 Eliminator side dilution gas introduction line 25 Mist removal separation part side dilution gas introduction line 26 Mist removal separation part side dilution gas introduction line 40 Mist removal cyclone gas-liquid separation part 42 For mist removal Cyclone gas-liquid separator

Claims (25)

  1.  電解された溶液が導入されて気液分離され、分離された溶液が排出される開口部と分離されたガスを排出する分離ガス排出部とを有するサイクロン式気液分離部と、
     前記溶液が貯留される貯留部と、を有し、
     前記サイクロン式気液分離部は、分離された溶液が前記貯留部の溶液溜め部の高さ範囲内で前記開口部を通じて前記溶液溜め部に排出されるように少なくとも下方側の一部が前記貯留部内に設置されていることを特徴とする気液分離溶液貯留装置。
    A cyclone type gas-liquid separation unit having an opening through which an electrolyzed solution is introduced and gas-liquid separated, and the separated solution is discharged, and a separation gas discharge unit for discharging the separated gas;
    A reservoir for storing the solution,
    The cyclone-type gas-liquid separation unit has at least a part on the lower side so that the separated solution is discharged to the solution reservoir through the opening within the height range of the solution reservoir of the reservoir. A gas-liquid separation solution storage device, wherein the gas-liquid separation solution storage device is installed in a section.
  2.  前記分離ガス排出部に接続され、前記分離ガス排出部から排出された分離ガスを前記貯留部内に送る分離ガス貯留部導入ラインを有することを特徴とする請求項1に記載の気液分離溶液貯留装置。 2. The gas-liquid separation solution storage according to claim 1, further comprising a separation gas storage unit introduction line connected to the separation gas discharge unit and configured to send the separation gas discharged from the separation gas discharge unit into the storage unit. apparatus.
  3.  前記サイクロン式気液分離部にパージガスを導入するパージガス導入ラインが設けられていることを特徴とする請求項1または2に記載の気液分離溶液貯留装置。 The gas-liquid separation solution storage device according to claim 1 or 2, further comprising a purge gas introduction line for introducing a purge gas into the cyclone gas-liquid separation unit.
  4.  前記パージガス導入ラインが筒状に形成されて前記サイクロン式気液分離部内に突出しており、前記分離ガス貯留部導入ラインの外側に間隔を置いて外筒状の前記分離ガス排出部が設けられていることを特徴とする請求項3記載の気液分離溶液貯留装置。 The purge gas introduction line is formed in a cylindrical shape and protrudes into the cyclone type gas-liquid separation part, and the separation gas discharge part having an outer cylindrical shape is provided outside the separation gas storage part introduction line. The gas-liquid separation solution storage device according to claim 3.
  5.  前記開口部が、前記貯留部の溶液溜め部の溶液設定高さ位置よりも低い箇所に位置し、前記分離ガス排出部が前記貯留部よりも高い箇所に位置していることを特徴とする請求項1~4のいずれか1項に記載の気液分離溶液貯留装置。 The opening is located at a location lower than the solution setting height position of the solution reservoir of the storage portion, and the separation gas discharge portion is located at a location higher than the storage portion. Item 5. The gas-liquid separation solution storage device according to any one of Items 1 to 4.
  6.  前記サイクロン式気液分離部は、分離部本体内部が直胴形状を有していることを特徴とする請求項1~5のいずれか1項に記載の気液分離溶液貯留装置。 The gas-liquid separation solution storage device according to any one of claims 1 to 5, wherein the cyclone gas-liquid separation unit has a straight body shape inside the separation unit main body.
  7.  前記貯留部は、前記貯留部内のガスを排気する貯留部排気ラインと前記貯留部内に希釈ガスを送る貯留部用希釈ガス供給ラインとが接続されていることを特徴とする請求項1~6のいずれか1項に記載の気液分離溶液貯留装置。 The storage section is connected to a storage section exhaust line that exhausts gas in the storage section and a storage section dilution gas supply line that sends dilution gas into the storage section. The gas-liquid separation solution storage apparatus of any one of Claims.
  8.  前記貯留部は、ガス移動用および液移動用を除いて封止されていることを特徴とする請求項7記載の気液分離溶液貯留装置。 The gas-liquid separation solution storage device according to claim 7, wherein the storage unit is sealed except for gas transfer and liquid transfer.
  9.  前記分離ガス排出部に接続され、前記分離ガス排出部から排出された分離ガスを前記貯留部排気ラインに送る分離部排気ラインを有することを特徴とする請求項7または8に記載の気液分離溶液貯留装置。 The gas-liquid separation according to claim 7 or 8, further comprising a separation unit exhaust line connected to the separation gas discharge unit and configured to send the separation gas discharged from the separation gas discharge unit to the storage unit exhaust line. Solution storage device.
  10.  前記貯留部排気ラインに対する前記分離部排気ラインの接続地点よりも上流側で前記貯留部排気ラインに希釈ガスを導入する排気ライン用希釈ガス供給ラインが接続されていることを特徴とする請求項9に記載の気液分離溶液貯留装置。 The exhaust gas dilution gas supply line for introducing dilution gas into the reservoir exhaust line is connected upstream of the connection point of the separation unit exhaust line with respect to the reservoir exhaust line. The gas-liquid separation solution storage device described in 1.
  11.  前記貯留部排気ラインと前記貯留部との間に第2のサイクロン式気液分離部が介設されており、前記第2のサイクロン式気液分離部では、分離された溶液が排出される開口部を有し、前記開口部を通して、分離された溶液が前記貯留部の溶液溜め部に排出されるように設置されていることを特徴とする請求項7~10のいずれか1項に記載の気液分離溶液貯留装置。 A second cyclonic gas / liquid separator is interposed between the reservoir exhaust line and the reservoir, and the second cyclone gas / liquid separator is an opening through which the separated solution is discharged. The apparatus according to any one of claims 7 to 10, characterized in that it is installed so that the separated solution is discharged to the solution reservoir of the reservoir through the opening. Gas-liquid separation solution storage device.
  12.  前記分離ガス排出部に接続され、前記分離ガス排出部から排出された分離ガスを前記第2のサイクロン式気液分離部に導入する分離ガス分離部導入ラインを有することを特徴とする請求項11記載の気液分離溶液貯留装置。 12. A separation gas separation part introduction line connected to the separation gas discharge part and introducing the separation gas discharged from the separation gas discharge part into the second cyclone gas-liquid separation part. The gas-liquid separation solution storage device described.
  13.  前記分離ガス分離部導入ライン内に前記第2のサイクロン式気液分離部に供給されるパージガスを導入する第2分離部用パージガス導入部が設けられていることを特徴とする請求項12記載の気液分離溶液貯留装置。 The purge gas introduction part for the 2nd separation part which introduces the purge gas supplied to the 2nd cyclone type gas-liquid separation part in the separation gas separation part introduction line is provided. Gas-liquid separation solution storage device.
  14.  前記第2のサイクロン式分離部は、分離部本体内部が下方側において内径を絞った絞り部を有することを特徴とする請求項11~13のいずれか1項に記載の気液分離溶液貯留装置。 The gas-liquid separation solution storage device according to any one of claims 11 to 13, wherein the second cyclonic separation part has a constriction part in which the inside of the separation part main body has a narrowed inner diameter on the lower side. .
  15.  前記貯留部排気ラインにミスト除去用分離部としてミストエリミネーターまたはデミスターが介設されていることを特徴とする請求項7~14のいずれか1項に記載の気液分離溶液貯留装置。 The gas-liquid separation solution storage device according to any one of claims 7 to 14, wherein a mist eliminator or a demister is interposed as a mist removal separation unit in the storage unit exhaust line.
  16.  前記ミストエリミネーターまたはデミスターの上流側と下流側に位置する貯留部排気ラインの一方または両方に希釈ガスを導入するミスト除去用分離部側希釈ガス導入ラインを有することを特徴とする請求項15に記載の気液分離溶液貯留装置。 The mist removal separation part side dilution gas introduction line for introducing dilution gas into one or both of the storage part exhaust lines located on the upstream side and the downstream side of the mist eliminator or demister. Gas-liquid separation solution storage device.
  17.  前記貯留部排気ラインにミスト除去用サイクロン式気液分離部が介設されていることを特徴とする7~16のいずれか1項に記載の気液分離溶液貯留装置。 17. The gas-liquid separation solution storage device according to any one of 7 to 16, wherein a cyclone type gas-liquid separation unit for removing mist is interposed in the storage unit exhaust line.
  18.  前記ミスト除去用サイクロン式気液分離部が、前記貯留部排気ラインに多段に介設されていることを特徴とする請求項17記載の気液分離溶液貯留装置。 18. The gas-liquid separation solution storage device according to claim 17, wherein the cyclone type gas-liquid separation unit for mist removal is interposed in multiple stages in the storage unit exhaust line.
  19.  前記ミスト除去用のサイクロン式気液分離部の上流側と下流側に位置する貯留部排気ラインの一方または両方に、希釈ガスを導入するミスト除去用分離部側希釈ガス導入ラインを有することを特徴とする請求項17または18に記載の気液分離溶液貯留装置。 A mist removal separation part side dilution gas introduction line for introducing dilution gas is provided in one or both of the storage part exhaust lines located upstream and downstream of the cyclone type gas-liquid separation part for mist removal. The gas-liquid separation solution storage device according to claim 17 or 18.
  20.  前記ミスト除去用サイクロン式気液分離部は、分離部本体内部が下方側において内径を絞った絞り部を有することを特徴とする請求項17~19のいずれか1項に記載の気液分離溶液貯留装置。 The gas-liquid separation solution according to any one of claims 17 to 19, wherein the cyclone-type gas-liquid separation unit for removing mist has a constricted portion with a narrowed inner diameter on the lower side inside the main body of the separation unit. Storage device.
  21.  硫酸を含む溶液を電解する電解装置と、請求項1~20のいずれか1項に記載の気液分離溶液貯留装置と、前記電解装置から前記気液分離溶液貯留装置のサイクロン式気液分離部に電解後の溶液を送る送りラインと、前記気液分離溶液貯留装置の貯留部内の溶液を電解用に前記電解装置に送る戻りラインとを有することを特徴とする過硫酸生成システム。 An electrolyzer that electrolyzes a solution containing sulfuric acid, a gas-liquid separation solution storage device according to any one of claims 1 to 20, and a cyclone-type gas-liquid separation unit of the gas-liquid separation solution storage device from the electrolysis device A persulfuric acid generation system, comprising: a feed line for sending a solution after electrolysis to a cell; and a return line for sending a solution in a storage part of the gas-liquid separation solution storage device to the electrolysis device for electrolysis.
  22.  電解されて生成された電解生成ガスを含む溶液を少なくとも下方側が貯留部内に設置されたサイクロン式気液分離部で気液分離し、分離された溶液はそのまま貯留部内に落下させて貯留し、分離されたガスは不活性ガスで希釈し、希釈されたガスに対して排ガス処理を行うことを特徴とする電解溶液の気液分離方法。 The solution containing the electrolyzed gas generated by electrolysis is gas-liquid separated at least in the cyclone type gas-liquid separation part installed in the storage part at the lower side, and the separated solution is dropped and stored in the storage part as it is, and separated. A gas-liquid separation method for an electrolytic solution, wherein the gas is diluted with an inert gas, and the exhaust gas treatment is performed on the diluted gas.
  23.  サイクロン式気液分離部で分離されたガスを前記貯留部内、前記貯留部排気ライン内もしくは前記貯留部排気ラインに設けられた第2のサイクロン式気液分離部に導入することを特徴とする請求項22記載の電解溶液の気液分離方法。 The gas separated by the cyclone gas-liquid separation unit is introduced into the second cyclone gas-liquid separation unit provided in the storage unit, the storage unit exhaust line, or the storage unit exhaust line. Item 22. A method for gas-liquid separation of an electrolytic solution according to Item 22.
  24.  前記排ガス処理では、分離ガスからミスト除去を行うことを特徴とする請求項22または23に記載の電解溶液の電解溶液の気液分離方法。 24. The method for gas-liquid separation of an electrolytic solution of an electrolytic solution according to claim 22 or 23, wherein in the exhaust gas treatment, mist is removed from the separated gas.
  25.  前記排ガス処理では、分離ガスのオゾン分解を行うことを特徴とする請求項22~24のいずれか1項に記載の電解溶液の気液分離方法。 25. The method for gas-liquid separation of an electrolytic solution according to any one of claims 22 to 24, wherein in the exhaust gas treatment, ozonolysis of a separated gas is performed.
PCT/JP2015/056868 2014-03-07 2015-03-09 Gas/liquid separated solution storage device, persulfuric acid generation system, and gas/liquid separation method for electrolyte solution WO2015133647A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014045239A JP5831720B2 (en) 2014-03-07 2014-03-07 Gas-liquid separation solution storage device, persulfuric acid generation system, and gas-liquid separation method of electrolytic solution
JP2014-045239 2014-03-07

Publications (1)

Publication Number Publication Date
WO2015133647A1 true WO2015133647A1 (en) 2015-09-11

Family

ID=54055441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056868 WO2015133647A1 (en) 2014-03-07 2015-03-09 Gas/liquid separated solution storage device, persulfuric acid generation system, and gas/liquid separation method for electrolyte solution

Country Status (3)

Country Link
JP (1) JP5831720B2 (en)
TW (1) TW201538800A (en)
WO (1) WO2015133647A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114074969A (en) * 2020-08-07 2022-02-22 中国石油天然气集团有限公司 Dehydrogenation device, dehydrogenation method, and wastewater treatment system
EP4339327A1 (en) * 2022-09-14 2024-03-20 Linde GmbH Method for operating an electrolysis system, and electrolysis system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2908620A (en) * 1957-01-09 1959-10-13 Carus Chemical Company Production of potassium permanganate
JPS63250481A (en) * 1987-04-08 1988-10-18 Hitachi Ltd Hydrogen and oxygen generator
JPH10165843A (en) * 1996-12-11 1998-06-23 Fuji Oozx Inc Cleaning device for waste grinding liquid or the like
JP2006314914A (en) * 2005-05-12 2006-11-24 Morinaga Milk Ind Co Ltd Apparatus for treating by-product gas and system for supplying electrolytic water
JP2007100679A (en) * 2005-10-07 2007-04-19 Toyota Boshoku Corp Gas liquid separator and oil tank structure
JP2007262532A (en) * 2006-03-29 2007-10-11 Kurita Water Ind Ltd Electrolytic gas processing apparatus and sulfuric acid recycle type cleaning system
JP2009119325A (en) * 2007-11-12 2009-06-04 Toyota Boshoku Corp Bubble separator
WO2011155336A1 (en) * 2010-06-07 2011-12-15 栗田工業株式会社 Washing system and washing method
JP2012251223A (en) * 2011-06-03 2012-12-20 Kurita Water Ind Ltd Sulfuric acid solution supply system and sulfuric acid solution supply method
JP2013513475A (en) * 2009-12-15 2013-04-22 ビーエーエスエフ ソシエタス・ヨーロピア Device for separating droplets from a feed gas stream containing droplets, with a liquid volume in excess of 10 liquid l / feed gas m3

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2908620A (en) * 1957-01-09 1959-10-13 Carus Chemical Company Production of potassium permanganate
JPS63250481A (en) * 1987-04-08 1988-10-18 Hitachi Ltd Hydrogen and oxygen generator
JPH10165843A (en) * 1996-12-11 1998-06-23 Fuji Oozx Inc Cleaning device for waste grinding liquid or the like
JP2006314914A (en) * 2005-05-12 2006-11-24 Morinaga Milk Ind Co Ltd Apparatus for treating by-product gas and system for supplying electrolytic water
JP2007100679A (en) * 2005-10-07 2007-04-19 Toyota Boshoku Corp Gas liquid separator and oil tank structure
JP2007262532A (en) * 2006-03-29 2007-10-11 Kurita Water Ind Ltd Electrolytic gas processing apparatus and sulfuric acid recycle type cleaning system
JP2009119325A (en) * 2007-11-12 2009-06-04 Toyota Boshoku Corp Bubble separator
JP2013513475A (en) * 2009-12-15 2013-04-22 ビーエーエスエフ ソシエタス・ヨーロピア Device for separating droplets from a feed gas stream containing droplets, with a liquid volume in excess of 10 liquid l / feed gas m3
WO2011155336A1 (en) * 2010-06-07 2011-12-15 栗田工業株式会社 Washing system and washing method
JP2012251223A (en) * 2011-06-03 2012-12-20 Kurita Water Ind Ltd Sulfuric acid solution supply system and sulfuric acid solution supply method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114074969A (en) * 2020-08-07 2022-02-22 中国石油天然气集团有限公司 Dehydrogenation device, dehydrogenation method, and wastewater treatment system
EP4339327A1 (en) * 2022-09-14 2024-03-20 Linde GmbH Method for operating an electrolysis system, and electrolysis system
WO2024056203A1 (en) * 2022-09-14 2024-03-21 Linde Gmbh Method for operating an electrolysis plant, and electrolysis plant

Also Published As

Publication number Publication date
TW201538800A (en) 2015-10-16
JP5831720B2 (en) 2015-12-09
JP2015167921A (en) 2015-09-28

Similar Documents

Publication Publication Date Title
US9844742B2 (en) Device for liquid degassing
US10894231B2 (en) Waste gas treatment method with application of nano-bubble and waste gas treatment system using the same
US8486338B2 (en) Gas-liquid contactor
JP2019528162A (en) Internal circulation reactor with both reaction and separation functions
WO2015133647A1 (en) Gas/liquid separated solution storage device, persulfuric acid generation system, and gas/liquid separation method for electrolyte solution
CN104549065B (en) A kind of slurry bed circulatory flow reactor and application and a kind of method for producing hydrogen peroxide
TW299301B (en)
US11207628B2 (en) Processes and devices for separating entrainment from sulphuric acid plant process gas
JP4613578B2 (en) Method and apparatus for producing oxygen-enriched air
JP2015058430A (en) Method and system for seawater foam control
CN216639401U (en) Chlorinated paraffin production and treatment device
CN215505940U (en) Multistage gas-liquid separator for tetrahydrofuran rectification
Uki et al. Design of gas-liquid separator for complete degasing
JP2015217325A (en) Cyclone type gas-liquid separator having improved gas-liquid separation efficiency
RU29248U1 (en) Hydrocyclone microflotator
JP2010207727A (en) Apparatus and method for purifying gas
CN210710747U (en) Flash tank for vacuum dehydration in hydrogen peroxide working solution by anthraquinone process
CN206823800U (en) Gas-liquid-solid phase reaction device
CN219376413U (en) Novel cyclone tube demister
CN103641073A (en) Method and device for drying working solution in production of hydrogen peroxide of slurry reactor
JPH0113897B2 (en)
CN220194263U (en) Gas-liquid separation device
JP2013208587A (en) Separation device, and separation method
JP2006111753A (en) Organic material-containing gas-treating system
JP7129123B1 (en) Diluted hydrogen gas supply device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15758465

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15758465

Country of ref document: EP

Kind code of ref document: A1