WO2015133468A1 - Production method for copolymer polyester using recombinant strain having modified protein locus for polyester granule binding - Google Patents

Production method for copolymer polyester using recombinant strain having modified protein locus for polyester granule binding Download PDF

Info

Publication number
WO2015133468A1
WO2015133468A1 PCT/JP2015/056201 JP2015056201W WO2015133468A1 WO 2015133468 A1 WO2015133468 A1 WO 2015133468A1 JP 2015056201 W JP2015056201 W JP 2015056201W WO 2015133468 A1 WO2015133468 A1 WO 2015133468A1
Authority
WO
WIPO (PCT)
Prior art keywords
pha
nucleic acid
seq
strain
gene
Prior art date
Application number
PCT/JP2015/056201
Other languages
French (fr)
Japanese (ja)
Inventor
俊昭 福居
和泉 折田
由依 川島
Original Assignee
国立大学法人東京工業大学
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学, 株式会社カネカ filed Critical 国立大学法人東京工業大学
Publication of WO2015133468A1 publication Critical patent/WO2015133468A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters
    • C12P7/625Polyesters of hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)

Definitions

  • the present invention is based on poly (3-hydroxybutanoic acid-co-3-hydroxyhexanoic acid), which is one of copolymerized polyhydroxyalkanoic acids, which can be decomposed by microorganisms using vegetable oil as a basic raw material and has excellent biocompatibility. ) By a microorganism and controlling the composition ratio of the monomer units in the copolymer.
  • Petroleum synthetic plastic an essential material in modern society, is cheap and easy to process, but it is difficult to dispose of it because of its indegradability.
  • Polyhydroxyalkanoic acid (hereinafter abbreviated as “PHA”) that accumulates in cells as an energy source for microorganisms is expected to be a plastic material of environmentally low load type that uses renewable biomass as a raw material and has biodegradability.
  • PHA Polyhydroxyalkanoic acid
  • P (3HB) Poly ((R) -3-hydroxybutanoic acid)
  • P (3HB) is a typical PHA biosynthesized by many microorganisms, but is practical because of its physical properties of being hard and brittle. Is difficult.
  • Aeromonas caviae isolated from soil is obtained from (R) -3-hydroxybutanoic acid using (R) -3-hydroxybutanoic acid as a raw material.
  • Poly ((R) -3-hydroxybutanoic acid-co- (R) -3-hydroxyhexanoic acid) copolymer which is a copolyester composed of R) -3-hydroxyhexanoic acid hereinafter abbreviated as 3HHx
  • 3HHx a copolyester composed of R) -3-hydroxyhexanoic acid
  • Patent Document 1 P (3HB-co-3HHx) biosynthesized by Caviae from vegetable oil has a 3HHx fraction of 10 to 20 mol%, showing flexibility suitable for practical use, but its cell accumulation rate is as low as about 15% by weight. It was difficult to apply to actual production (Patent Document 1, Patent Document 2, Non-Patent Document 1).
  • Non-Patent Literature 4 Necrotor strain chromosome Caviae-derived PHA synthase gene introduction
  • Patent Literature 5 inactivation of 3HB monomer supply enzyme ⁇ -ketothiolase gene or acetoacetyl-CoA reductase
  • Patent Literature 5 R-form-specific enoyl-CoA hydratase gene (phaJ) which converts 2-enoyl-CoA, an intermediate in the fatty acid ⁇ -oxidation pathway, to (R) -3-hydroxyacyl-CoA ((R) -3HA-CoA) )
  • Patent document 6 non-patent document 3, non-patent document 4
  • modification by gene disruption of ⁇ -oxidation pathway enzyme non-patent document 5
  • PHA biosynthesized in cells exists as water-insoluble granules in the cells, and its surface is covered with a lipid monolayer, and is a granule-binding protein called phasin, PHA polymerizing enzyme, and PHA which is a degrading enzyme. Depolymerase is bound.
  • the granule-binding protein is an amphipathic protein, and it has been proposed to maintain the granule in the cytoplasm by binding to the highly hydrophobic polyester granule surface and to adjust the ratio of the surface area to the granule volume. Yes. More recently, granule-binding proteins have been found to interact with PHA polymerizing enzymes (Wieczorek, R.
  • the present inventors have found that an excellent production strain capable of biosynthesizing P (3HB-co-3HHx) having a high 3HHx fraction from a vegetable oil raw material at a high accumulation rate can be provided, and the present invention has been completed.
  • the present invention is as follows.
  • a recombinant strain imparted with the ability to produce copolymerized PHA introduces one or more genes encoding a broad substrate-specific PHA polymerase and one or more R-isomer-specific enoyl-CoA hydratase genes The method according to [1] above, wherein the strain is a cultured strain.
  • the copolymerized PHA is poly (3-hydroxybutanoic acid-co-3-hydroxyhexanoic acid), and increases the fraction of 3-hydroxyhexanoic acid in the copolymerized PHA. 2].
  • the gene encoding the PHA granule binding protein used for replacement is (A) a nucleic acid comprising the nucleotide sequence represented by SEQ ID NO: 2; or (b) an activity that hybridizes with a nucleic acid comprising the nucleotide sequence represented by SEQ ID NO: 2 under stringent conditions and binds to PHA granules.
  • the method according to [1] to [5] above which comprises a nucleic acid encoding a protein having [7]
  • the R-form-specific enoyl-CoA hydratase gene is (A) a nucleic acid comprising the base sequence represented by SEQ ID NO: 3; or (b) hybridizing with a nucleic acid comprising the base sequence represented by SEQ ID NO: 3 under stringent conditions and in the middle of the fatty acid ⁇ -oxidation system.
  • the method according to any one of [1] to [6] above comprising a nucleic acid encoding a protein having an activity of converting the body into (R) -3-hydroxyacyl-CoA.
  • One of the genes encoding a broad substrate-specific PHA synthase is (A) a nucleic acid comprising the base sequence represented by SEQ ID NO: 1; or (b) an activity of hybridizing with a nucleic acid comprising the base sequence represented by SEQ ID NO: 1 under stringent conditions and synthesizing PHA.
  • One of the genes encoding PHA granule binding proteins used for replacement is (A) a nucleic acid comprising the nucleotide sequence represented by SEQ ID NO: 2; or (b) an activity that hybridizes with a nucleic acid comprising the nucleotide sequence represented by SEQ ID NO: 2 under stringent conditions and binds to PHA granules.
  • a R-form specific enoyl-CoA hydratase gene (A) a nucleic acid comprising the base sequence represented by SEQ ID NO: 3; or (b) hybridizing with a nucleic acid comprising the base sequence represented by SEQ ID NO: 3 under stringent conditions and in the middle of the fatty acid ⁇ -oxidation system.
  • the method according to any one of [1] to [7] above, comprising a nucleic acid encoding a protein having an activity of converting the body into (R) -3-hydroxyacyl-CoA.
  • the present invention provides a recombinant strain imparted with the ability to produce copolymer PHA by introducing a gene encoding one or more broad substrate-specific PHA synthases into a host different from the species of the gene.
  • a monomer in a copolymerized PHA comprising replacing a gene encoding a main PHA granule-binding protein in the recombinant strain with a gene encoding a PHA granule-binding protein derived from the same species as the PHA-polymerizing enzyme
  • the present invention relates to a method for controlling the composition ratio of units.
  • the host used in the present invention is not particularly limited as long as it is different from the species of PHA synthase gene (phaC) introduced into the host.
  • necator strain A. Caviae strain and Escherichia coli Escherichia coli strain can be mentioned.
  • the phaC to be introduced is A.I.
  • the host may be any other microbial species (for example, a C. necator strain). According to the present invention, it is possible to use a recombinant strain in which a gene encoding a broad substrate-specific PHA synthase described later is introduced in advance into a host different from the species of the gene.
  • the R-form-specific enoyl-CoA hydratase gene described later may be further introduced into the recombinant strain.
  • the foreign species encoding the broad substrate-specific PHA polymerizing enzyme and the species of the gene encoding the PHA granule-binding protein described later are: The same, but preferably different from the species of the recombinant strain.
  • a foreign gene encoding a broad substrate-specific PHA synthase foreign phaC
  • a foreign gene encoding one or more broad substrate specific PHA polymerases (hereinafter abbreviated as foreign phaC) is used in the host.
  • foreign phaC broad substrate specific PHA polymerases
  • the “broad substrate-specific PHA polymerization enzyme” used for controlling the copolymer composition of the present invention is an enzyme whose polymerization activity for synthesizing PHA is not limited to only one type of (R) -3HA-CoA. Say.
  • PHA polymerase with broader substrate specificity can be used for microorganisms in which biosynthesis of copolymerized PHA is not possible due to the substrate specificity of PHA polymerase or the composition of the copolymer is limited.
  • PHA in which various 3-hydroxyalkanoic acid units are copolymerized can be synthesized.
  • a recombinant strain into which a foreign gene of a PHA synthase having activity against (R) -3HA-CoA having 4 to 6 carbon atoms has been introduced may have P ( 3HB-co-3HHx) has been reported (Patent Literature 3, Patent Literature 4, Non Patent Literature 2, and Non Patent Literature 3).
  • Examples of strains expressing such a broad substrate-specific PHA synthase include A. Caviae FA440 strain (FERM P-15786) (Patent No. 3062459), Aeromonas hydrophila WQ strain and 4AK5 strain (Lu, X. et al., FEMS Microbiol. Lett., 243: 149-55 (2005)). Etc. are known.
  • the exogenous phaC used in the present invention includes single-stranded or double-stranded DNA and its RNA complement.
  • DNA includes, for example, naturally-derived DNA, recombinant DNA, chemically synthesized DNA, DNA amplified by PCR, and combinations thereof.
  • the nucleic acid used in the present invention DNA is preferable.
  • codons are degenerate and some amino acids have multiple base sequences encoding one amino acid.
  • Nucleic acids having any base sequence are within the scope of the present invention.
  • the number of exogenous phaC introduced into the host may be one or more. Specifically, the number of genes introduced is one, two, three, four, or five, preferably one or two.
  • the gene encoding a broad substrate-specific PHA synthase used for copolymer composition control is preferably phaC NSDG .
  • phaC NSDG refers to A.I. It is a gene that encodes a mutant (NSDG mutant) in which the asparagine at position 149 of serine and the aspartic acid at position 171 are replaced by glycine in the polyhydroxyalkanoic acid synthase derived from Caviae strain.
  • the cloning of the phaC NSDG gene can be performed by an ordinary molecular biological technique. For example, Tsuge, T .; Et al., FEMS Microbiol. Lett. 277: 217-222 (2007); Kichise, T .; Et al., Appl. Environ. Microbiol. 68: 2411-2419 (2002); JP 2008-29218; International Publication WO2011 / 105369.
  • the phaC NSDG gene comprises (a) a nucleic acid comprising the base sequence represented by SEQ ID NO: 1; or (b) a nucleic acid comprising the base sequence represented by SEQ ID NO: 1 and stringent conditions It may consist of a nucleic acid that encodes a protein that hybridizes underneath and has an activity to synthesize PHA.
  • the phaC NSDG gene comprises (a) a nucleic acid comprising the base sequence represented by SEQ ID NO: 1; or (b) a nucleic acid comprising the base sequence represented by SEQ ID NO: 1 and a string. It may be composed of a nucleic acid that encodes a protein that hybridizes under gentle conditions and has an activity to synthesize PHA.
  • the phaC NSDG gene is a synthetic nucleotide designed as a primer based on the nucleotide sequence of SEQ ID NO: 1, as described in Example 1 described later.
  • PCR polymerase chain reaction
  • LCR ligase chain reaction
  • transcription-based amplification Kwoh DY et al., Proc. Natl. Acad. Sci. USA, 86, 1173-1177 (1989)
  • SDA strand displacement reactions
  • under stringent conditions means to hybridize under moderate or high stringent conditions.
  • moderately stringent conditions can be easily determined by those skilled in the art based on, for example, the length of DNA.
  • Basic conditions are described in Sambrook, J. et al. Are shown in Molecular Cloning, A Laboratory Manual (3rd edition), Cold Spring Harbor Laboratory, 7.42-7.45 (2001), with regard to nitrocellulose filters, 5 ⁇ SSC, 0.5% SDS, 1.
  • High stringency conditions can also be readily determined by one skilled in the art based on, for example, the length of the DNA. Generally, such conditions include hybridization and / or washing at higher temperatures and / or lower salt concentrations than moderately stringent conditions, such as hybridization conditions as described above, and about 68 ° C. Defined with 0.2 ⁇ SSC, 0.1% SDS wash.
  • the temperature and wash solution salt concentration can be adjusted as needed according to factors such as the length of the probe.
  • Homologous nucleic acids cloned using the nucleic acid amplification reaction or hybridization as described above are at least 30% or more, preferably 50% or more, respectively, more preferably than the base sequence described in SEQ ID NO: 1. Has an identity of 70% or more, even more preferably 90% or more, still more preferably 95% or more, and most preferably 98% or more. Note that the percent identity can be determined by visual inspection and mathematical calculation. Alternatively, the percent identity of two nucleic acid sequences can be determined by Devereux et al., Nucl. Acids Res. , 12, 387 (1984) and determined by comparing sequence information using the GAP computer program (GCG Wisconsin Package, version 10.3) available from the University of Wisconsin Genetics Computer Group (UWGCG). can do.
  • GAP computer program GAP computer program
  • the gene encoding a broad substrate-specific PHA synthase is one or two phaC NSDG genes, and may be a nucleic acid comprising the base sequence represented by SEQ ID NO: 1. Good.
  • genes introduced on the chromosome of the host are appropriately transcribed and further translated into a protein having the desired activity, these genes are suitable on the chromosome. It needs to be integrated so that it is under the control of the promoter.
  • PHA granule binding protein (phaP)
  • the main PHA granule-binding protein is converted into the PHA.
  • PHA granule-binding protein used in the present invention means a protein having an activity of binding to the surface of PHA granules accumulated in cells. PhaP1 (Wieczorek, R.
  • PhaP2 PhaP3, PhaP4 (Potter, M. et al., Microbiology, 151, 825-833) (2005)
  • PhaP in Caviae FA440 strain (Fukui, T. et al., Biomacromolecules, 2, 148-153 (2001)
  • PhaP in Paracoccus denitificicans strain (Maehara, A. et al., J. Bacteriol., 181, 294-21-29) Etc. are known.
  • “major” PHA granule-binding protein means that when a plurality of PHA granule-binding proteins are present in the cell, it is present in the largest amount.
  • PhaP1 corresponds (Wieczorek, R. et al., J. Bacteriol., 177, 2425-2435 (1995)).
  • the exogenous phaC encoding a broad substrate-specific PHA synthase introduced into the host and the gene of the main PHA granule binding protein functioning in the recombinant strain are the same organism.
  • the phaP present in the recombinant strain imparted with the ability to produce copolymerized PHA as a host is different from the species of foreign phaP introduced for composition control.
  • the origin of exogenous phaC encoding a broad substrate-specific PHA synthase is In the case of a Caviae strain, the origin of the foreign phaP introduced into the host is A.
  • An embodiment that is a Caviae strain is included in the present invention.
  • the foreign phaC and foreign phaP introduced into the host are not particularly limited as long as they are the same species.
  • the phaP used in the present invention includes single-stranded or double-stranded DNA and its RNA complement.
  • DNA includes, for example, naturally-derived DNA, recombinant DNA, chemically synthesized DNA, DNA amplified by PCR, and combinations thereof.
  • the nucleic acid used in the present invention DNA is preferable. As is well known, codons are degenerate and some amino acids have multiple base sequences that encode one amino acid. However, if the base sequence of a nucleic acid that encodes a protein having activity to bind to PHA granules, A nucleic acid having any base sequence is also included in the scope of the present invention.
  • a gene (phaP) encoding a PHA granule-binding protein used for copolymer composition control is A.I. from Caviae strains or C.I. It is preferably derived from a necator strain.
  • “phaP Ac ” refers to A.I. It refers to a gene encoding a PHA granule binding protein derived from a Caviae strain.
  • GenBank GenBank Accession No. Nucleotides 2197-2547 (“ORF1”) in D88825 can be utilized. In this specification, the base sequence of the gene is described in the sequence listing as SEQ ID NO: 2.
  • phaP1 Cn refers to C.I. It refers to the gene encoding the major PHA granule binding protein derived from the necator strain.
  • C.I. Necator genome NC No. 01576.16.1
  • the nucleotide sequence of the gene is described in the sequence listing as SEQ ID NO: 4.
  • the phaP Ac gene and the phaP1 Cn gene can be isolated and identified by ordinary molecular biological techniques.
  • the exogenous phaP introduced into the host is (a) a nucleic acid comprising the base sequence represented by SEQ ID NO: 2; or (b) a nucleic acid comprising the base sequence represented by SEQ ID NO: 2; It may consist of a nucleic acid that encodes a protein that hybridizes under stringent conditions and has an activity of binding to PHA granules.
  • the exogenous phaP is (a) a nucleic acid comprising the base sequence represented by SEQ ID NO: 2; or (b) a nucleic acid comprising the base sequence represented by SEQ ID NO: 2 and a stringent It may consist of a nucleic acid that encodes a protein that hybridizes under conditions and has an activity of binding to PHA granules.
  • the phaP to be substituted present on the host chromosome is (a) a nucleic acid comprising the base sequence represented by SEQ ID NO: 4; or (b) a nucleic acid comprising the base sequence represented by SEQ ID NO: 4. It may be a thing.
  • the “stringent conditions” are as described above, and the homologous nucleic acid cloned using a nucleic acid amplification reaction, hybridization, or the like, respectively, with respect to the base sequence described in SEQ ID NO: 2, At least 30% or more, preferably 50% or more, more preferably 70% or more, even more preferably 90% or more, still more preferably 95% or more, and most preferably 98% or more.
  • the percent identity can be determined by visual inspection and mathematical calculation.
  • the percent identity of two nucleic acid sequences can be determined by Devereux et al., Nucl. Acids Res. , 12, 387 (1984) and determined by comparing sequence information using the GAP computer program (GCG Wisconsin Package, version 10.3) available from the University of Wisconsin Genetics Computer Group (UWGCG). can do.
  • the exogenous phaP introduced into the host may be phaP Ac and may be a nucleic acid comprising the base sequence represented by SEQ ID NO: 2.
  • SEQ ID NO: 2 the base sequence represented by SEQ ID NO: 2.
  • the “R-form-specific enoyl-CoA hydratase” used in the present invention is an enzyme that converts enoyl-CoA, which is a fatty acid ⁇ -oxidation intermediate, into (R) -3HA-CoA, which is a PHA monomer.
  • the origin of the biological species is not particularly limited.
  • phaJ used in the present invention includes single-stranded or double-stranded DNA and its RNA complement.
  • DNA includes, for example, naturally-derived DNA, recombinant DNA, chemically synthesized DNA, DNA amplified by PCR, and combinations thereof.
  • the nucleic acid used in the present invention DNA is preferable.
  • codons are degenerate and some amino acids have a plurality of base sequences encoding one amino acid.
  • any base sequence of a nucleic acid encoding R-isomer-specific enoyl-CoA hydratase can be used. Nucleic acids having the base sequences are also included in the scope of the present invention.
  • phaJ used in the present invention
  • A. Base sequence of R-specific enoyl-CoA hydratase gene (phaJ Ac ) derived from Caviae strain: GenBank Accession No. Nucleotides 4475-4879 (“ORF3”) in D88825 can be utilized.
  • the number of genes encoding R-isomer specific enoyl-CoA hydratase may be one or more. Specifically, the number of genes introduced is one, two, three, four, or five, preferably one or two.
  • phaJ introduced into the host is A.
  • Caviae-derived phaJ Ac is preferable. Isolation and identification of phaJ Ac can be performed by an ordinary molecular biological technique.
  • Patent Document 3 (described above) may be referred to.
  • phaJ is (a) a nucleic acid comprising the base sequence represented by SEQ ID NO: 3; or (b) a stringent nucleic acid comprising the nucleic acid comprising the base sequence represented by SEQ ID NO: 3.
  • phaJ is (a) a nucleic acid comprising the base sequence represented by SEQ ID NO: 3; or (b) a nucleic acid comprising the base sequence represented by SEQ ID NO: 3 and stringent conditions It may be composed of a nucleic acid that encodes a protein that hybridizes below and has an activity of converting a fatty acid ⁇ -oxidation intermediate into (R) -3-hydroxyacyl-CoA.
  • the “stringent conditions” are as described above, and the homologous nucleic acid cloned using a nucleic acid amplification reaction, hybridization, or the like, respectively, with respect to the base sequence described in SEQ ID NO: 3, At least 30% or more, preferably 50% or more, more preferably 70% or more, even more preferably 90% or more, still more preferably 95% or more, and most preferably 98% or more.
  • the percent identity can be determined by visual inspection and mathematical calculation.
  • the percent identity of two nucleic acid sequences can be determined by Devereux et al., Nucl. Acids Res. , 12, 387 (1984) and determined by comparing sequence information using the GAP computer program (GCG Wisconsin Package, version 10.3) available from the University of Wisconsin Genetics Computer Group (UWGCG). can do.
  • the gene encoding R-specific enoyl-CoA hydratase introduced into the host may be phaJ Ac and may be a nucleic acid consisting of the base sequence represented by SEQ ID NO: 3.
  • these genes are under the control of appropriate promoters in order for the genes introduced into the host to be properly transcribed and further translated into proteins with the desired activity. Need to be incorporated.
  • the method for introducing foreign phaC, foreign phaP having the same origin as foreign phaC, and phaJ into the host is not particularly limited, and may be introduction using a plasmid vector capable of autonomous replication in the host. It may be introduced into the chromosome by replacement.
  • exogenous phaP may be introduced by recombination, or exogenous phaP may be introduced by a plasmid vector capable of autonomous replication into a strain in which the function of endogenous phaP has been lost by mutation, destruction, or deletion.
  • exogenous phaP may be introduced by a plasmid vector capable of autonomous replication into a strain in which the function of endogenous phaP has been lost by mutation, destruction, or deletion.
  • these genes need to be incorporated under the control of an appropriate promoter.
  • each gene to be introduced is not limited as long as the desired effect is achieved.
  • the positional relationship of each introduced gene is not particularly limited, and may be arranged on or separated from each other on a chromosome or in an autonomously replicating vector, and a part thereof is introduced into the chromosome by homologous recombination. Then, the rest may be introduced with an autonomously replicating vector, or introduced with a plurality of different compatible autonomously replicating vectors.
  • a strain in which pphaC NSDG is pre-integrated on a chromosome may be used.
  • An NSDG strain is exemplified as such a microorganism (see Patent Document 6).
  • “NSDG strain” means C.I. necator, H16 strain (ATCC16699 strain, DSM428 strain) which is a kind of wild strain
  • the original phaC in the pha operon on the chromosome of This is a recombinant strain in which phaC NSDG , which is a gene of Caviae-derived PHA synthase mutant enzyme, is substituted by homologous recombination.
  • a strain in which pphaC NSDG and phaJ are pre-integrated on a chromosome may be used as long as the object of the present invention is achieved.
  • An example of such a microorganism is the MF02 strain (see Patent Document 6).
  • the MF02 strain is a recombinant strain in which phaJ Ac is integrated between phaC NSDG and phaA ( ⁇ -ketothiolase gene) in the pha operon on the chromosome of NSDG strain.
  • a vector can be prepared simply by ligating a desired gene to a recombination vector (for example, plasmid DNA) available in the technical field by a conventional method.
  • a recombination vector for example, plasmid DNA
  • a polyester-polymerizing enzyme gene derived from a microorganism already incorporated in the chromosome of a microorganism is used as a foreign substrate-specific polyester polymerizing enzyme.
  • a recombinant vector suitable for the host cell in order to express the desired protein can do.
  • a vector is a region in which the gene used in the present invention functions so as to cause homologous recombination with the gene of the target host cell (if necessary, an autonomous replication origin, a junction transmission region, a selection marker (for example, , Kanamycin resistance gene), etc.) are appropriately arranged or introduced so that the nucleic acid is constructed or constructed so that it is appropriately recombined.
  • a transformant can be prepared by incorporating a recombinant vector into a host cell.
  • the host cell can be either a prokaryotic cell (for example, E. coli (S17-1 strain, etc.), Bacillus subtilis) or a eukaryotic cell (mammalian cell, yeast, insect cell, etc.).
  • Introduction (transformation) of a recombinant vector into a host cell can be performed using a known method.
  • bacteria E. coli, Bacillus subtilis, etc.
  • the method of Cohen et al. Proc. Natl. Acad. Sci. USA, 69, 2110 (1972)
  • the protoplast method Mol. Gen.
  • conjugation transfer method can be used to introduce expression vectors into cells belonging to the genus Ralstonia, Alcaligenes, Pseudomonas, etc. (J. Bacteriol., 147, 198). (1981)).
  • This conjugation transfer method is based on the nature of cells that transfer a chromosome genome or plasmid from one cell to another by contact between cells. For example, self-transmission carrying the target DNA.
  • a series of bridge formation in both cells a series of bridge formation in both cells, replication and transfer of the plasmid, and separation of the cells upon completion of DNA synthesis It is a means that enables gene transfer by a process.
  • the synthesis of copolymerized PHA involves introducing a gene encoding one or more broad substrate specific PHA polymerase into a host different from the species of the gene.
  • the gene encoding the PHA granule binding protein present on the chromosome of the recombinant strain is derived from the same species as the gene encoding the PHA polymerase.
  • copolymerized PHA is generated and accumulated in the recombinant strain or in a culture (for example, a medium), and the desired copolymerized PHA is obtained from the recombinant strain or culture. It is done by collecting.
  • the recombinant strain is preferably placed under suitable culture conditions in order to synthesize copolymerized PHA. The culture conditions of the parent strain before performing such recombinant strain culture and gene recombination may be followed.
  • the recombinant strain may be grown in a medium containing vegetable oil or fatty acid as a carbon source.
  • C.I As a medium in the case of using a necator strain as a host, vegetable oil that can be assimilated by the microorganism strain or a medium- or long-chain fatty acid having 6 or more carbon atoms was added to restrict any of nitrogen sources, inorganic salts, and other organic nutrient sources.
  • a culture medium is mentioned.
  • the medium temperature is in the range of 25 ° C. to 37 ° C., and aerobically cultured for 1 to 10 days, so that copolymerized PHA is produced and accumulated in the cells, and then recovered and purified.
  • the desired copolymerized PHA can be prepared.
  • vegetable oil when using vegetable oil as a carbon source, generally available vegetable oil can be used as vegetable oil which can be used,
  • the supply source is not specifically limited.
  • the concentration of the vegetable oil in the medium is preferably 0.1 to 5%, but can be appropriately adjusted by those skilled in the art.
  • a nitrogen source or an inorganic substance may be added to the medium.
  • the nitrogen source include ammonia, ammonium chloride, ammonium sulfate, ammonium phosphate and the like, as well as peptone, meat extract, yeast extract, corn steep liquor and the like.
  • inorganic substances include monopotassium phosphate, dipotassium phosphate, magnesium phosphate, magnesium sulfate, and sodium chloride.
  • Cultivation is usually carried out using shaking culture, and it is preferable to carry out the aerobic conditions at 25 ° C. to 37 ° C. for at least one day after induction of gene expression.
  • an antibiotic kanamycin, ampicillin or the like may be added to the medium.
  • arabinose, indoleacrylic acid (IAA), isopropyl- ⁇ -D-thiogalactopyranoside (IPTG) or the like can be used as a gene expression inducer.
  • IAA indoleacrylic acid
  • IPTG isopropyl- ⁇ -D-thiogalactopyranoside
  • a person skilled in the art can appropriately select culture conditions and conditions for inducing gene expression that are possible for desired gene expression.
  • a gene encoding one or more broad substrate specific PHA polymerases is introduced into a host different from the species of the gene.
  • the gene encoding the PHA granule binding protein present in the recombinant strain is derived from the same species as the gene encoding the PHA polymerase.
  • control means changing the composition ratio of the monomer units constituting the copolymerized PHA produced by the present invention to a desired value or range. More specifically, such a composition ratio is controlled by selecting genes introduced into the host (ie, exogenous phaC, phaP and phaJ having the same origin as the exogenous phaC), and appropriately changing the species. It can be carried out. Moreover, as one aspect, the expression of these genes introduced onto the chromosome can be performed by changing the activity of regulatory factors (eg, transcription factors, promoters, enhancers). Furthermore, mutation may be added to the gene introduced into the host to alter the function of the gene. These modifications can be performed using a general genetic engineering technique based on the genome information of the host and the base sequence information of the introduced gene. Moreover, you may change suitably the culture conditions of a recombinant strain.
  • regulatory factors eg, transcription factors, promoters, enhancers
  • the copolymer PHA is poly (3-hydroxybutanoic acid-co-3-hydroxyhexanoic acid) (hereinafter sometimes referred to as “P (3HB-co-3HHx)”)
  • the fraction of 3-hydroxyhexanoic acid (3HHx) in the copolymerized PHA can be controlled, and preferably the fraction of 3HHx can be increased, for example as detailed in Example 2 below.
  • the 3HHx fraction in P (3HB-co-3HHx) was 6.5 mol%.
  • the phaP1 Cn gene present on the chromosome of the strain by substituting phaP1 Ac gene from the same A.caviae strain as phaC NSDG gene, 3
  • the Hx percentage could be increased to 9.3mol%.
  • copolymerized PHA can be purified as follows: a transformant is recovered from the medium by centrifugation, washed with distilled water, dried or frozen. dry. Thereafter, the transformant dried in chloroform is suspended and stirred at room temperature for a predetermined time to extract copolymerized PHA. In the extraction stage, heating may be performed if necessary. The residue is removed by filtration, methanol is added to the supernatant to precipitate copolymer PHA, and the precipitate is filtered or centrifuged to remove the supernatant and dried to obtain purified copolymer PHA. Thereafter, although not limited, the composition ratio of the monomer units of the obtained copolymer PHA can be confirmed using NMR (nuclear magnetic resonance) and gas chromatography.
  • the 3HHx fraction when the copolymerized PHA is P (3HB-co-3HHx), the 3HHx fraction may be at least 1% mol or more, for example, 1 mol%, 2 mol%, 3 mol %, 4 mol%, 5 mol%, 6 mol%, 7 mol%, 8 mol%, 9 mol%, 10 mol%, or more.
  • the 3HHx fraction may be 99 mol% or less, for example, 99 mol%, 98 mol%, 97 mol%, 96 mol%, 95 mol%, 94 mol%, 93 mol%, 92 mol%. 91 mol%, 90 mol%, or less.
  • the possible range of the 3HHx fraction is not limited, but for example, 1 to 99 mol%, 1 to 95 mol%, 1 to 90 mol%, 1 to 85 mol%, 1 to 80 mol%, 1 to 75 mol %, 1 to 70 mol%, 1 to 65 mol%, 1 to 60 mol%, 1 to 55 mol%, 1 to 50 mol%, 1 to 45 mol%, 1 to 40 mol%, 1 to 35 mol%, 1 to 30 mol%, 1 to 25 mol%, 1 to 20 mol%, 2 to 99 mol%, 2 to 95 mol%, 2 to 90 mol%, 2 to 85 mol%, 2 to 80 mol%, 2 to 75 mol%, 2 to 70 mol%, 2 to 65 mol%, 2 to 60 mol%, 2 to 55 mol%, 2 to 50 mol%, 2 to 45 mol%, 2 to 40 mol%, 2 to 35 mol%, 2 to 30 mol%, 2 to 25 mol%, 2 to 20 mol
  • the 3HHx fraction is preferably 3 to 90 mol%, more preferably 4 to 80 mol%, and still more preferably 5 to 70 mol%.
  • mol% refers to the sum of the number of moles of each component in a multi-component system divided by the number of moles of a component.
  • the copolymerized PHA obtained by the control method of the present invention is accumulated in the cells at a rate of 50 to 95% by weight, preferably 70 to 95% by weight, based on the dry cell weight.
  • Example 1 Production of Vector for Homologous Recombination
  • a series of recombinant vectors used in the present invention were produced as follows. In the following operations, unless otherwise specified, KOD Plus DNA polymerase (Toyobo) is used as a DNA polymerase for PCR, and T4 polynucleotide kinase (Toyobo) is used for 5′-phosphorylation.
  • KOD Plus DNA polymerase Toyobo
  • T4 polynucleotide kinase Toyobo
  • Bovine small intestine-derived alkaline phosphatase was used for 5'-dephosphorylation reaction
  • Ligation High Toyobo was used for ligation of DNA fragments.
  • Sequence 1 CGGGATCCCCTGGTGCACATCCAGGTCGACCACG (SEQ ID NO: 5)
  • Sequence 2 TGCTGGTCTCCAGTGGTGAACTTC (SEQ ID NO: 6)
  • Sequence 3 CGGGATCCGACGCGTTCTATGTTGCCTCTCAC (SEQ ID NO: 7)
  • Sequence 4 TAACTGCCCTGCGTTGAAGATGAC (SEQ ID NO: 8)
  • the amplified downstream fragment of phaP1 Cn was 5′-phosphorylated by kinase treatment and ligated with the upstream fragment.
  • a fragment (1.6 kb) in which the upstream and downstream of phaP1 Cn were ligated was amplified by PCR using the oligonucleotides of sequence 1 and sequence 3 as primers. PCR was performed for 30 cycles, with a reaction of 98 ° C. for 20 seconds, 59 ° C. for 20 seconds, and 68 ° C. for 2 minutes as one cycle.
  • the amplified upstream / downstream ligated fragment of phaP1 Cn was 5′-phosphorylated by kinase treatment, and the vector plasmid pK18mobsacB was cleaved with HincII to prepare pK18ms-P1ud linked to the dephosphorylated fragment.
  • the amplified phaC NSDG fragment was 5′-phosphorylated by kinase treatment and ligated with the vector fragment obtained by removing phaC Ac from pEE32.
  • a plasmid in which phaC NSDG was ligated in the same direction as the upstream and downstream genes was selected and designated pEE32-NSDG.
  • the entire region (7.3 kb) was amplified by PCR using pK18ms-P1ud as a template and the oligonucleotides of sequence 2 and sequence 4 described above as primers, and at the junction of the phaP1 Cn upstream region and phaP1 Cn downstream region.
  • An open vector fragment was obtained.
  • KOD Plus Neo DNA polymerase (Toyobo Co., Ltd.) was used, and the reaction was performed 30 cycles at 98 ° C. for 20 seconds, 63 ° C. for 20 seconds, and 68 ° C. for 4 minutes.
  • the amplified phaP Ac fragment was 5′-phosphorylated by kinase treatment and ligated with a vector fragment opened from pK18ms-P1ud by PCR amplification.
  • a plasmid in which phaP Ac was ligated in the same direction as the promoter region was selected and designated pK18ms-P1ud-P Ac .
  • the amplified phaP Ac -phaC NSDG -phaJ Ac fragment was 5′-phosphorylated by kinase treatment and ligated with the vector fragment opened from the above-mentioned pK18ms-P1ud by PCR amplification.
  • a plasmid in which phaP Ac -phaC NSDG -phaJ Ac was ligated in the same direction as the promoter region was selected and designated pK18ms-P1ud-P Ac CJ.
  • Sequence 12 ATGAGCGCACAATCCCTGGAAGTAG (SEQ ID NO: 16) Next, the vector fragment that had been opened except for phaC NSDG was 5′-phosphorylated by kinase treatment and self-ligated at both ends to prepare pK18ms-P1ud-P Ac J.
  • phaP1 Cn fragment (0.6 kb) (SEQ ID NO: 4) was amplified by PCR using the genomic DNA of necator H16 strain as a template and oligonucleotides of the following sequences 13 and 14 as primers. PCR was performed for 30 cycles, with a reaction of 98 ° C. for 20 seconds, 54 ° C. for 20 seconds, and 68 ° C. for 50 seconds as one cycle.
  • Sequence 13 ATGATCCTCACCCCGGGAACAA (SEQ ID NO: 17)
  • Sequence 14 TCAGGCAGCCCGTCGTCTTCTTTGCCCGT (SEQ ID NO: 18)
  • phaP1 Cn upstream-phaP Ac -phaC NSDG -phaJ Ac -phaP1 Cn downstream fragment (3. p.sup.18 ms-P1ud-P Ac CJ as a template and PCR using the oligonucleotides of sequence 1 and sequence 3 described above as primers. 3 kb) was amplified.
  • the amplified fragment is 5′-phosphorylated by kinase treatment, ligated to the HincII site of pK18mobsacB, a plasmid in which the fragment is ligated in the opposite direction to pK18ms-P1ud-P Ac CJ is selected, and pK18ms-P1ud-P Ac CJ-R.
  • KOD Plus Neo DNA polymerase (Toyobo Co., Ltd.) was used, and the reaction was carried out for 30 cycles, with a reaction of 98 ° C. for 20 seconds, 59 ° C. for 20 seconds, and 68 ° C. for 5 minutes.
  • the amplified phaP1 Cn fragment was 5′-phosphorylated by kinase treatment, and ligated with a vector fragment obtained by removing phaP Ac from K18ms-P1ud-P Ac CJ-R.
  • a plasmid in which phaP1 Cn was linked in the same direction as the promoter region and the downstream gene was selected and designated pK18ms-P1ud-P1 Cn CJ.
  • phaP1 Cn amplified fragment was 5′-phosphorylated by kinase treatment, and ligated with the vector fragment obtained by removing phaP Ac from pK18ms-P1ud-P Ac J.
  • a plasmid in which phaP1 Cn was linked in the same direction as the promoter region and the downstream gene was selected and designated pK18ms-P1ud-P1 Cn J.
  • Example 2 Production and PHA biosynthesis of NSDG-P1 Cn J strain and NSDG-P Ac J strain
  • the gene (phaJ Ac ) encoding R-hydratase derived from Caviae strain is C.I.
  • NSDG-P1 Cn J strain was inserted downstream of phaP1 Cn of NSDG lines from necator strains, further A.
  • This phaP1 Cn is phaC NSDG akin NSDG-P Ac J strain substituted with phaP Ac derived from Caviae strain was prepared, and its synthetic ability was examined. Specifically, it is as follows.
  • C.I. Necator NSDG strain was transformed by conjugation transfer. First, pK18ms-P1ud-P1 Cn J was introduced into Escherichia coli S17-1 by the calcium chloride method. Next, this recombinant Escherichia coli was cultured overnight at 37 ° C. in 3.0 ml of LB medium (1% tryptone, 1% sodium chloride, 0.5% yeast extract, pH 7.2). In parallel with this, C.I. Necator NSDG strain was cultured overnight at 30 ° C.
  • necator NSDG strain 0.1 ml was mixed and cultured at 30 ° C. for 6 hours. This bacterial cell mixture was applied to a Simons Citrate agar medium (Difco) supplemented with 0.2 mg / ml kanamycin and cultured at 30 ° C. for 3 days.
  • the recombinant Escherichia coli plasmid is C.I.
  • the bacterial cells transferred to the necator and incorporated into the chromosome by homologous recombination show kanamycin resistance, while the recombinant Escherichia coli cannot grow on the Simmons Citrate agar medium.
  • PK18ms-P1ud-P1 Cn J incorporated into the chromosome of the recombinant E. coli Necator transformant (pop-in strain). Further, the pop-in strain was cultured in NR medium at 30 ° C. overnight, applied to NR medium supplemented with 10% sucrose, and cultured at 30 ° C. for 3 days.
  • Levansucrase encoded by sacB on the pK18mobsacB-derived vector accumulates toxic polysaccharide in cells using sucrose as a substrate. For this reason, only a strain from which the plasmid region has been eliminated (pop-out strain) can grow in a medium supplemented with 10% sucrose. From these colonies, a clone in which phaJ Ac was inserted downstream of phaP1 Cn on the chromosome was selected by the PCR method, and this was designated NSDG-P1 Cn J strain.
  • NSDG strain was similarly transformed by conjugation transfer. PhaP1 Cn on the chromosome from the colonies resulting pop-out line was replaced in phaP Ac, further Clones PhaJ Ac is inserted into the downstream were selected by PCR, which the NSDG-P Ac J strain did.
  • Recombinant strains pre-cultured in NR medium were treated with 100 ml of MB medium (0.9% disodium hydrogen phosphate 12 hydrate, 0.15% potassium dihydrogen phosphate, 0.05% ammonium chloride, % Trace metal solution) and cultured with shaking in a Sakaguchi flask at 30 ° C. for 72 hours. 1% soybean oil was used as a carbon source. In addition, 0.1 mg / ml kanamycin is added to the medium. After culturing, the cells were collected by centrifugation, washed with 70% ethanol to remove the attached oil, and then washed with distilled water. The obtained cells were freeze-dried and the dry cell weight was measured.
  • the temperature was raised from the initial temperature of 100 ° C. at a rate of 8 ° C./min.
  • the prepared recombinant C.I. Table 1 shows the composition of related genes on the chromosome of the necator strain and the results regarding PHA production.
  • phaC NSDG was introduced into pha operon on the chromosome, further NSDG-P1 Cn J strain was inserted PhaJ Ac to phaP1 Cn downstream on the chromosome, soy oil carbon source 3HHx fraction of 6.5 mol% P ( 3HB-co-3HHx) was synthesized.
  • PHA synthase is A.I. derived from the Caviae strain and the major granule-binding protein is C.I. It is different from the necator strain.
  • phaP1 Cn on the chromosome is converted to the same A.P.
  • NSDG-P Ac J strain which was phaP Ac derived from Caviae strain, the 3HHx fraction increased from 6.5 mol% to 9.3 mol% while the PHA production amount increased slightly.
  • Example 3 Production of NSDG-P1 Cn CJ strain and NSDG-P Ac CJ strain and biosynthesis of PHA
  • NSDG-P1 Cn J strain phaP1 Cn and phaJ Ac were examined for their PHA biosynthesis ability. Specifically, it is as follows.
  • NSDG strain was similarly transformed by conjugation transfer.
  • a clone in which phaC NSDG -phaJ Ac was inserted downstream of phaP1 Cn on the chromosome was selected from the obtained popout colonies by PCR, and this was designated NSDG-P1ud-P1 Cn CJ strain.
  • NSDG strain was similarly transformed by conjugative transfer using the recombinant plasmid pK18ms-P1ud-P Ac CJ obtained in Example 1 (4).
  • PhaP1 Cn on the chromosome from the colonies resulting pop-out line was replaced in phaP Ac, further Clones phaC NSDG -phaJ Ac is inserted into the downstream were selected by PCR, which NSDG-P Ac CJ strain was designated.
  • Table 2 shows the composition of related genes on the chromosome of the prepared recombinant strain and the results relating to PHA production.
  • the phaC NSDG introduced into pha operon on the chromosome, NSDG-P1 Cn CJ strains inserting the phaC NSDG and PhaJ Ac further 1 copy phaP1 Cn downstream on the chromosome, 3HHx fraction from soybean carbon source 10 .5 mol% P (3HB-co-3HHx) was synthesized.
  • PHA synthase is A.I. derived from the Caviae strain and the major granule-binding protein is C.I. It is different from the necator strain.
  • phaP1 Cn on the chromosome is converted to the same A.P.
  • NSDG-P Ac CJ strain which is phaP Ac derived from Caviae strain
  • the 3HHx fraction increased from 10.5 mol% to 17.2 mol% while the PHA production amount increased slightly.
  • Example 4 Production of MF02-P Ac strain and PHA biosynthesis
  • the previously produced MF02 strain is a strain in which phaC NSDG -phaJ Ac is introduced into the chromosome pha operon, and 4.6 mol% 3HHx from soybean oil.
  • a copolymer is biosynthesized (Patent Document 6).
  • a MF02-P Ac strain in which the main granule-binding protein gene phaP1 Cn was replaced with phaP Ac was prepared, and its PHA biosynthesis ability was examined. Specifically, it is as follows.
  • the MF02 strain was similarly transformed by conjugation transfer.
  • a clone in which phaP1 Cn on the chromosome was replaced by phaP Ac was selected from the obtained popout colonies by PCR, and this was designated as MF02-P Ac strain.
  • the MF02 strain which is derived from different PHA synthase and main granule binding protein, synthesized P (3HB-co-3HHx) having a 3HHx fraction of 4.6 mol% from a soybean oil carbon source.
  • phaP1 Cn on the chromosome of MF02 strain with phaP Ac derived from the same as phaC NSDG , the origin of the PHA synthase and the main granule binding protein is the same
  • the 3HHx fraction increased from 4.6 mol% to 6.4 mol% while the PHA production amount increased slightly.
  • the strain with the same microbial species from both has improved the PHA production amount, and the 3HHx fraction is 1.4 to 1.7 times could be increased.
  • the NSDG-P Ac J strain can biosynthesize about 9 mol% 3HHx-containing copolymer PHA that can be expected to show an appropriate degree of crystallinity and flexibility, compared to conventional strains.
  • NSDG-P Ac CJ strain efficiently biosynthesizes P (3HB-co-3HHx) with a high 3HHx fraction of 17.2 mol%.
  • Such a copolymerized PHA having a high 3HHx fraction has a potential for new applications as a highly flexible bioplastic.
  • an excellent copolymerized polyhydroxyalkanoic acid producing strain and a method for efficiently producing a copolymerized polyhydroxyalkanoic acid having a high 3HHx fraction are provided.
  • a method for controlling the composition ratio of the monomer units can be provided.

Abstract

The purpose of the present invention is to provide a method by which the composition ratio of monomer units in a copolymer polyhydroxyalkanoic acid is controlled. Provided is a method by which the composition ratio of monomer units within a copolymer PHA is controlled, and in which, in a recombinant strain having copolymer PHA productivity imparted thereto by the insertion of one of more genes that code a polyhydroxyalkanoic acid (PHA) polymer enzyme having wide-substrate specificity into a host that is different to the living organism of the inserted gene, a gene that codes the main PHA granule binding protein in the recombinant strain is made into a gene that codes a PHA granule binding protein deriving from the same living organism as the gene that codes the PHA polymer enzyme.

Description

ポリエステル顆粒結合タンパク質遺伝子座を改変した組換え株による共重合ポリエステルの製造法Production of copolyesters by recombinant strains with modified polyester granule binding protein loci
 本発明は、植物油を基本原料として、微生物により分解可能であり、生体適合性にも優れた共重合ポリヒドロキシアルカン酸の1つであるポリ(3-ヒドロキシブタン酸-co-3-ヒドロキシヘキサン酸)を微生物により製造し、共重合体中のモノマーユニットの組成比を制御する方法に関する。 The present invention is based on poly (3-hydroxybutanoic acid-co-3-hydroxyhexanoic acid), which is one of copolymerized polyhydroxyalkanoic acids, which can be decomposed by microorganisms using vegetable oil as a basic raw material and has excellent biocompatibility. ) By a microorganism and controlling the composition ratio of the monomer units in the copolymer.
 現代社会における必須材料である石油合成プラスチックは安価で加工しやすい反面、難分解性のため廃棄された際の処理が問題になっている。微生物がエネルギー源として細胞内に蓄積するポリヒドロキシアルカン酸(以下、「PHA」と略記する。)は再生可能バイオマスを原料とし、かつ生分解性を有する環境低負荷型のプラスチック素材として期待されている。ポリ((R)-3-ヒドロキシブタン酸)(以下、「P(3HB)」と略記する。)は多くの微生物が生合成する代表的なPHAであるが、固くて脆いという物性のため実用化が困難である。 石油 Petroleum synthetic plastic, an essential material in modern society, is cheap and easy to process, but it is difficult to dispose of it because of its indegradability. Polyhydroxyalkanoic acid (hereinafter abbreviated as “PHA”) that accumulates in cells as an energy source for microorganisms is expected to be a plastic material of environmentally low load type that uses renewable biomass as a raw material and has biodegradability. Yes. Poly ((R) -3-hydroxybutanoic acid) (hereinafter abbreviated as “P (3HB)”) is a typical PHA biosynthesized by many microorganisms, but is practical because of its physical properties of being hard and brittle. Is difficult.
 一方、土壌より単離されたアエロモナス・キャビエ(Aeromonas caviae)(以下、単に「A.caviae」と略記することがある。)は植物油や脂肪酸を原料として(R)-3-ヒドロキシブタン酸と(R)-3-ヒドロキシヘキサン酸(以下、3HHxと略記する)からなる共重合ポリエステルであるポリ((R)-3-ヒドロキシブタン酸-co-(R)-3-ヒドロキシヘキサン酸)共重合体(以下、[P(3HB-co-3HHx)]と略記する。)を生合成する。このP(3HB-co-3HHx)は3HHx分率の増加にしたがって柔軟性に富む優れた物性を示すことがわかっている。A.caviaeが植物油から生合成するP(3HB-co-3HHx)の3HHx分率は10~20mol%であり、実用化に適した柔軟性を示すものの、その菌体内蓄積率は約15重量%と低く、実生産に適用することは困難であった(特許文献1、特許文献2、非特許文献1)。 On the other hand, Aeromonas caviae (hereinafter sometimes abbreviated simply as “A. caviae”) isolated from soil is obtained from (R) -3-hydroxybutanoic acid using (R) -3-hydroxybutanoic acid as a raw material. Poly ((R) -3-hydroxybutanoic acid-co- (R) -3-hydroxyhexanoic acid) copolymer which is a copolyester composed of R) -3-hydroxyhexanoic acid (hereinafter abbreviated as 3HHx) (Hereinafter abbreviated as [P (3HB-co-3HHx)]). It has been found that this P (3HB-co-3HHx) exhibits excellent physical properties rich in flexibility as the 3HHx fraction increases. A. P (3HB-co-3HHx) biosynthesized by Caviae from vegetable oil has a 3HHx fraction of 10 to 20 mol%, showing flexibility suitable for practical use, but its cell accumulation rate is as low as about 15% by weight. It was difficult to apply to actual production (Patent Document 1, Patent Document 2, Non-Patent Document 1).
 微生物ポリエステルの実用化のためには、多様な物性を実現する多様な組成の共重合体を効率よく生産する技術が必要である。これまでにP(3HB-co-3HHx)を蓄積し、かつ増殖能の高い組換え株の作製や共重合組成の制御技術が探索され、効率的P(3HB)生産菌である水素細菌クプリアヴィダス・ネカトール(Cupriavidus necator)(以下、単に「C.necator」と略記することがある。)のP(3HB)生合成能欠失変異株へのA.caviae株由来のPHA重合酵素遺伝子の導入(特許文献3、非特許文献2)、C.necator株染色体へのA.caviae由来のPHA重合酵素変異酵素遺伝子の導入(特許文献4、非特許文献3)、3HBモノマーの供給酵素であるβ-ケトチオラーゼ遺伝子又はアセトアセチル-CoA還元酵素の不活性化(特許文献5)、脂肪酸β-酸化経路中の中間体である2-エノイル-CoAを(R)-3-ヒドロキシアシル-CoA((R)-3HA-CoA)に変換するR体特異的エノイル-CoAヒドラターゼ遺伝子(phaJ)の導入(特許文献6、非特許文献3、非特許文献4)、β-酸化経路酵素の遺伝子破壊などによる改変(非特許文献5)が開示されている。しかしながら、共重合PHAの生合成を目的とした代謝改変では、第二、第三ユニット分率の増加は、第一ユニット分率の低下による相対的なものであり、結果的に生産量の低下を伴うことが多い。10mol%程度に高い3HHx分率の共重合PHAの生合成と高い生産性との両立にはさらなる技術開発が必要である。 In order to put microbial polyester into practical use, it is necessary to have a technology for efficiently producing copolymers with various compositions that realize various physical properties. So far, the search for technology to control recombinant copolymer production and copolymer composition by accumulating P (3HB-co-3HHx) and having high growth ability, and the efficient P (3HB) -producing bacterium, Cupriavidas A. P. (3HB) biosynthetic ability-deficient mutant of Necatol (Cupriavidus nector) (hereinafter sometimes simply referred to as “C. necator”). Introduction of PHA synthase gene derived from Caviae strain (Patent Document 3, Non-Patent Document 2), C.I. A. Necrotor strain chromosome Caviae-derived PHA synthase gene introduction (Patent Literature 4, Non-Patent Literature 3), inactivation of 3HB monomer supply enzyme β-ketothiolase gene or acetoacetyl-CoA reductase (Patent Literature 5), R-form-specific enoyl-CoA hydratase gene (phaJ) which converts 2-enoyl-CoA, an intermediate in the fatty acid β-oxidation pathway, to (R) -3-hydroxyacyl-CoA ((R) -3HA-CoA) ) (Patent document 6, non-patent document 3, non-patent document 4), and modification by gene disruption of β-oxidation pathway enzyme (non-patent document 5). However, in metabolic modifications aimed at biosynthesis of copolymerized PHA, the increase in the second and third unit fractions is relative to the decrease in the first unit fraction, resulting in a decrease in production. Is often accompanied. Further technological development is necessary to achieve both high-productivity and biosynthesis of copolymer PHA having a 3HHx fraction as high as about 10 mol%.
特開平5-93049号公報JP-A-5-93049 特開平7-265065号公報Japanese Patent Laid-Open No. 7-265065 特許第3062459号公報Japanese Patent No. 3062459 特開2008-86238号広報JP 2008-86238 A 特開2008-29218号広報JP 2008-29218 A 国際公開WO2011/105379International Publication WO2011 / 105379
 細胞内で生合成されたPHAは菌体内で水不溶性の顆粒として存在し、その表面は脂質一重膜で覆われるとともに、ファシン(phasin)と呼ばれる顆粒結合タンパク質、PHA重合酵素、分解酵素であるPHAデポリメラーゼなどが結合している。顆粒結合タンパク質は両親媒性タンパク質であり、疎水性の高いポリエステル顆粒表面に結合することで顆粒を細胞質に維持し易くしているとともに、顆粒の体積に対する表面積の割合を調整する機能が提唱されている。さらに近年では、顆粒結合タンパク質はPHA重合酵素と相互作用することが見出されている(Wieczorek,R.et al.,J.Bacteriol.,177:2425-2435(1995);Potter,M.et al.,Microbiology,151:825-833(2005);Cho,M.,et al.,Biochemistry,20:2276-2288(2012)参照)。そこで、本発明者らはこのPHA重合酵素と顆粒結合タンパク質の相互作用に着目し、PHA生産菌であるC.necator株の顆粒結合タンパク質遺伝子座位の改変を行った。すなわち、C.necator株細胞内での顆粒結合タンパク質を、重合に機能させる外来PHA重合酵素と同一微生物種に由来するものとすることによってPHA重合酵素の重合特性が変化する可能性を考え、鋭意検討の結果、植物油原料から高3HHx分率のP(3HB-co-3HHx)を高い蓄積率で生合成する優れた生産株を提供することができることを見出し、本発明を完成するに至った。 PHA biosynthesized in cells exists as water-insoluble granules in the cells, and its surface is covered with a lipid monolayer, and is a granule-binding protein called phasin, PHA polymerizing enzyme, and PHA which is a degrading enzyme. Depolymerase is bound. The granule-binding protein is an amphipathic protein, and it has been proposed to maintain the granule in the cytoplasm by binding to the highly hydrophobic polyester granule surface and to adjust the ratio of the surface area to the granule volume. Yes. More recently, granule-binding proteins have been found to interact with PHA polymerizing enzymes (Wieczorek, R. et al., J. Bacteriol., 177: 2425-2435 (1995); Potter, M. et. al., Microbiology, 151: 825-833 (2005); Cho, M., et al., Biochemistry, 20: 2276-2288 (2012)). Therefore, the present inventors pay attention to the interaction between the PHA synthase and the granule-binding protein, and C. a. The granule binding protein gene locus of the necator strain was modified. That is, C.I. Considering the possibility that the polymerization characteristics of the PHA synthase can be changed by making the granule-binding protein in the Necator strain cells derived from the same microbial species as the foreign PHA synthase functioning in polymerization, The present inventors have found that an excellent production strain capable of biosynthesizing P (3HB-co-3HHx) having a high 3HHx fraction from a vegetable oil raw material at a high accumulation rate can be provided, and the present invention has been completed.
 すなわち、本発明は、以下の通りである。
 [1]1つ以上の広基質特異性のポリヒドロキシアルカン酸(PHA)重合酵素をコードする遺伝子を該遺伝子の生物種と異なる宿主に導入することで共重合PHA生産能を付与した組換え株において、該組換え株で主要なPHA顆粒結合タンパク質をコードする遺伝子を、上記PHA重合酵素と同じ生物種に由来するPHA顆粒結合タンパク質をコードする遺伝子とすることを含む、共重合PHA中のモノマーユニットの組成比を制御する方法。
 [2]共重合PHA生産能を付与した組換え株が、1つ以上の広基質特異性のPHA重合酵素をコードする遺伝子と、さらに1つ以上のR体特異的エノイル-CoAヒドラターゼ遺伝子が導入された株である、上記[1]に記載の方法。
 [3]共重合PHAが、ポリ(3-ヒドロキシブタン酸-co-3-ヒドロキシヘキサン酸)であり、共重合PHA中の3-ヒドロキシヘキサン酸の分率を増加させる、上記[1]及び[2]に記載の方法。
 [4]広基質特異性のPHA重合酵素及びPHA顆粒結合タンパク質が、アエロモナス・キャビエ(A.caviae)株由来である、上記[1]~[3]に記載の方法。
 [5]宿主がクプリアヴィダス・ネカトール(C.necator)株由来である、上記[1]~[4]に記載の方法。
 [6]広基質特異性のPHA重合酵素をコードする遺伝子の1つが、
(a)配列番号1で表される塩基配列を含む核酸;又は
(b)配列番号1で表される塩基配列を含む核酸とストリンジェントな条件下でハイブリダイズし、かつPHAを合成する活性を有するタンパク質をコードする核酸
からなり;
 置換に使用されるPHA顆粒結合タンパク質をコードする遺伝子が、
(a)配列番号2で表される塩基配列を含む核酸;又は
(b)配列番号2で表される塩基配列を含む核酸とストリンジェントな条件下でハイブリダイズし、かつPHA顆粒に結合する活性を有するタンパク質をコードする核酸
からなる、上記[1]~[5]に記載の方法。
 [7]R体特異的エノイル-CoAヒドラターゼ遺伝子が、
(a)配列番号3で表される塩基配列を含む核酸;又は
(b)配列番号3で表される塩基配列を含む核酸とストリンジェントな条件下でハイブリダイズし、かつ脂肪酸β-酸化系中間体を(R)-3-ヒドロキシアシル-CoAに変換する活性を有するタンパク質をコードする核酸
からなる、上記[1]~[6]に記載の方法。
 [8]広基質特異性のPHA重合酵素をコードする遺伝子の1つが、
(a)配列番号1で表される塩基配列を含む核酸;又は
(b)配列番号1で表される塩基配列を含む核酸とストリンジェントな条件下でハイブリダイズし、かつPHAを合成する活性を有するタンパク質をコードする核酸
からなり;
 置換に使用されるPHA顆粒結合タンパク質をコードする遺伝子の1つが、
(a)配列番号2で表される塩基配列を含む核酸;又は
(b)配列番号2で表される塩基配列を含む核酸とストリンジェントな条件下でハイブリダイズし、かつPHA顆粒に結合する活性を有するタンパク質をコードする核酸
からなり;及び
 R体特異的エノイル-CoAヒドラターゼ遺伝子が、
(a)配列番号3で表される塩基配列を含む核酸;又は
(b)配列番号3で表される塩基配列を含む核酸とストリンジェントな条件下でハイブリダイズし、かつ脂肪酸β-酸化系中間体を(R)-3-ヒドロキシアシル-CoAに変換する活性を有するタンパク質をコードする核酸
からなる、上記[1]~[7]に記載の方法。
That is, the present invention is as follows.
[1] A recombinant strain imparted with the ability to produce copolymer PHA by introducing a gene encoding one or more broad substrate specific polyhydroxyalkanoic acid (PHA) polymerase into a host different from the species of the gene. And a gene encoding a main PHA granule-binding protein in the recombinant strain, which is a gene encoding a PHA granule-binding protein derived from the same species as the PHA-polymerizing enzyme. A method for controlling the composition ratio of units.
[2] A recombinant strain imparted with the ability to produce copolymerized PHA introduces one or more genes encoding a broad substrate-specific PHA polymerase and one or more R-isomer-specific enoyl-CoA hydratase genes The method according to [1] above, wherein the strain is a cultured strain.
[3] The copolymerized PHA is poly (3-hydroxybutanoic acid-co-3-hydroxyhexanoic acid), and increases the fraction of 3-hydroxyhexanoic acid in the copolymerized PHA. 2].
[4] The method according to [1] to [3] above, wherein the broad substrate-specific PHA synthase and the PHA granule-binding protein are derived from an A. caviae strain.
[5] The method described in [1] to [4] above, wherein the host is derived from a C. necator strain.
[6] One of the genes encoding a broad substrate-specific PHA synthase is
(A) a nucleic acid comprising the base sequence represented by SEQ ID NO: 1; or (b) an activity of hybridizing with a nucleic acid comprising the base sequence represented by SEQ ID NO: 1 under stringent conditions and synthesizing PHA. Consisting of a nucleic acid encoding a protein having:
The gene encoding the PHA granule binding protein used for replacement is
(A) a nucleic acid comprising the nucleotide sequence represented by SEQ ID NO: 2; or (b) an activity that hybridizes with a nucleic acid comprising the nucleotide sequence represented by SEQ ID NO: 2 under stringent conditions and binds to PHA granules. The method according to [1] to [5] above, which comprises a nucleic acid encoding a protein having
[7] The R-form-specific enoyl-CoA hydratase gene is
(A) a nucleic acid comprising the base sequence represented by SEQ ID NO: 3; or (b) hybridizing with a nucleic acid comprising the base sequence represented by SEQ ID NO: 3 under stringent conditions and in the middle of the fatty acid β-oxidation system The method according to any one of [1] to [6] above, comprising a nucleic acid encoding a protein having an activity of converting the body into (R) -3-hydroxyacyl-CoA.
[8] One of the genes encoding a broad substrate-specific PHA synthase is
(A) a nucleic acid comprising the base sequence represented by SEQ ID NO: 1; or (b) an activity of hybridizing with a nucleic acid comprising the base sequence represented by SEQ ID NO: 1 under stringent conditions and synthesizing PHA. Consisting of a nucleic acid encoding a protein having:
One of the genes encoding PHA granule binding proteins used for replacement is
(A) a nucleic acid comprising the nucleotide sequence represented by SEQ ID NO: 2; or (b) an activity that hybridizes with a nucleic acid comprising the nucleotide sequence represented by SEQ ID NO: 2 under stringent conditions and binds to PHA granules. And a R-form specific enoyl-CoA hydratase gene,
(A) a nucleic acid comprising the base sequence represented by SEQ ID NO: 3; or (b) hybridizing with a nucleic acid comprising the base sequence represented by SEQ ID NO: 3 under stringent conditions and in the middle of the fatty acid β-oxidation system The method according to any one of [1] to [7] above, comprising a nucleic acid encoding a protein having an activity of converting the body into (R) -3-hydroxyacyl-CoA.
 P(3HB-co-3HHx)生産菌の顆粒結合タンパク質遺伝子座の改変を行うことにより、優れた共重合ポリヒドロキシアルカン酸生産株及び高3HHx分率の共重合ポリヒドロキシアルカン酸の効率的な製造方法を提供することができる。 Efficient production of copolymer polyhydroxyalkanoic acid producing strain and copolymerized polyhydroxyalkanoic acid having a high 3HHx fraction by modifying the granule binding protein locus of P (3HB-co-3HHx) producing bacteria A method can be provided.
 以下、本発明の説明のために、好ましい実施形態に関して詳述する。
 前述の通り、本発明は、1つ以上の広基質特異性のPHA重合酵素をコードする遺伝子を該遺伝子の生物種と異なる宿主に導入することで共重合PHA生産能を付与した組換え株において、該組換え株で主要なPHA顆粒結合タンパク質をコードする遺伝子を、上記PHA重合酵素と同じ生物種に由来するPHA顆粒結合タンパク質をコードする遺伝子で置換することを含む、共重合PHA中のモノマーユニットの組成比を制御する方法に関する。
Hereinafter, preferred embodiments will be described in detail for the purpose of explaining the present invention.
As described above, the present invention provides a recombinant strain imparted with the ability to produce copolymer PHA by introducing a gene encoding one or more broad substrate-specific PHA synthases into a host different from the species of the gene. A monomer in a copolymerized PHA comprising replacing a gene encoding a main PHA granule-binding protein in the recombinant strain with a gene encoding a PHA granule-binding protein derived from the same species as the PHA-polymerizing enzyme The present invention relates to a method for controlling the composition ratio of units.
(1)宿主(微生物)
 本発明において使用される宿主は、該宿主に導入されるPHA重合酵素の遺伝子(phaC)の生物種と異なればよく、特に限定されないが、C.necator株、A.caviae株、大腸菌Escherichia coli株が挙げられる。例えば、導入されるphaCがA.caviae株由来である場合、宿主としては、それ以外の微生物種(例えば、C.necator株)であればよい。なお、本発明によれば、後述する広基質特異性のPHA重合酵素をコードする遺伝子が、該遺伝子の生物種と異なる宿主にあらかじめ導入された組換え株を用いることができる。さらに、本発明の一実施形態では、上記組換え株に、後述するR体特異的エノイル-CoAヒドラターゼ遺伝子がさらに導入されていてもよい。共重合PHA中のモノマーユニットの組成比を制御するという本発明の目的では、上記広基質特異性のPHA重合酵素をコードする外来遺伝子と、後述するPHA顆粒結合タンパク質をコードする遺伝子の生物種は同じとするが、組換え株の生物種とは異なることが好ましい。
(1) Host (microorganism)
The host used in the present invention is not particularly limited as long as it is different from the species of PHA synthase gene (phaC) introduced into the host. necator strain, A. Caviae strain and Escherichia coli Escherichia coli strain can be mentioned. For example, the phaC to be introduced is A.I. When it is derived from a Caviae strain, the host may be any other microbial species (for example, a C. necator strain). According to the present invention, it is possible to use a recombinant strain in which a gene encoding a broad substrate-specific PHA synthase described later is introduced in advance into a host different from the species of the gene. Furthermore, in one embodiment of the present invention, the R-form-specific enoyl-CoA hydratase gene described later may be further introduced into the recombinant strain. For the purpose of the present invention to control the composition ratio of the monomer units in the copolymerized PHA, the foreign species encoding the broad substrate-specific PHA polymerizing enzyme and the species of the gene encoding the PHA granule-binding protein described later are: The same, but preferably different from the species of the recombinant strain.
(2)広基質特異性のPHA重合酵素をコードする外来遺伝子(外来phaC)
 本発明によれば、共重合PHA中のモノマーユニットの組成比を制御することを目的として、宿主に1つ以上の広基質特異性のPHA重合酵素をコードする外来遺伝子(以下、外来phaCと略記することがある)を導入することができる。ここで、本発明の共重合組成制御に使用される「広基質特異性のPHA重合酵素」とは、PHAを合成する重合活性が1種類の(R)-3HA-CoAだけに限定されない酵素をいう。PHAをあらかじめ合成できる微生物であっても、PHA重合酵素の基質特異性により共重合PHAの生合成ができない、あるいはその共重合組成が制限されている微生物に、より広基質特異性のPHA重合酵素をコードする遺伝子を導入し、炭素源や培養条件を適したものとすることによって、多様な3-ヒドロキシアルカン酸ユニットが共重合されたPHAを合成させることができる。一例として、炭素数4~6の(R)-3HA-CoAに対して活性を示すPHA重合酵素の外来遺伝子を導入した組換え株は、このPHA重合酵素の基質特異性に応じて、P(3HB-co-3HHx)を合成することが報告されている(特許文献3、特許文献4、非特許文献2、非特許文献3)。このような広基質特異性のPHA重合酵素を発現する菌株には、例えば、A.caviae FA440株(FERM P-15786)(特許第3062459号)、アエロモナス・ヒドロフィラ(Aeromonus hydrophila)WQ株及び4AK5株(Lu,X.ら,FEMS Microbiol.Lett.,243:149-55(2005))などが知られている。
(2) A foreign gene encoding a broad substrate-specific PHA synthase (foreign phaC)
According to the present invention, for the purpose of controlling the composition ratio of the monomer units in the copolymerized PHA, a foreign gene encoding one or more broad substrate specific PHA polymerases (hereinafter abbreviated as foreign phaC) is used in the host. Can be introduced). Here, the “broad substrate-specific PHA polymerization enzyme” used for controlling the copolymer composition of the present invention is an enzyme whose polymerization activity for synthesizing PHA is not limited to only one type of (R) -3HA-CoA. Say. Even if microorganisms can synthesize PHA in advance, PHA polymerase with broader substrate specificity can be used for microorganisms in which biosynthesis of copolymerized PHA is not possible due to the substrate specificity of PHA polymerase or the composition of the copolymer is limited. By introducing a gene coding for and making the carbon source and culture conditions suitable, PHA in which various 3-hydroxyalkanoic acid units are copolymerized can be synthesized. As an example, a recombinant strain into which a foreign gene of a PHA synthase having activity against (R) -3HA-CoA having 4 to 6 carbon atoms has been introduced may have P ( 3HB-co-3HHx) has been reported (Patent Literature 3, Patent Literature 4, Non Patent Literature 2, and Non Patent Literature 3). Examples of strains expressing such a broad substrate-specific PHA synthase include A. Caviae FA440 strain (FERM P-15786) (Patent No. 3062459), Aeromonas hydrophila WQ strain and 4AK5 strain (Lu, X. et al., FEMS Microbiol. Lett., 243: 149-55 (2005)). Etc. are known.
 本発明で使用する外来phaCには、一本鎖又は二本鎖型DNA、及びそのRNA相補体も含む。DNAには、例えば、天然由来のDNA、組換えDNA、化学合成したDNA、PCRによって増幅されたDNA、及びそれらの組み合わせが含まれる。本発明で使用される核酸としてはDNAが好ましい。なお、周知の通り、コドンには縮重があり、1つのアミノ酸をコードする塩基配列が複数存在するアミノ酸もあるが、広基質特異性のPHA重合酵素をコードする核酸の塩基配列であれば、いずれの塩基配列を有する核酸も本発明の範囲に含まれる。なお、上記の通り、本発明によれば、宿主に導入される外来phaCの数は、1つ以上であってもよい。具体的には、導入される遺伝子の数は、1つ、2つ、3つ、4つ、又は5つであり、好ましくは1つ又は2つである。 The exogenous phaC used in the present invention includes single-stranded or double-stranded DNA and its RNA complement. DNA includes, for example, naturally-derived DNA, recombinant DNA, chemically synthesized DNA, DNA amplified by PCR, and combinations thereof. As the nucleic acid used in the present invention, DNA is preferable. As is well known, codons are degenerate and some amino acids have multiple base sequences encoding one amino acid. However, if the base sequence of a nucleic acid encoding a broad substrate-specific PHA synthase is used, Nucleic acids having any base sequence are within the scope of the present invention. As described above, according to the present invention, the number of exogenous phaC introduced into the host may be one or more. Specifically, the number of genes introduced is one, two, three, four, or five, preferably one or two.
 本発明の一実施形態において、共重合組成制御に使用される広基質特異性のPHA重合酵素をコードする遺伝子は、phaCNSDGであることが好ましい。本明細書で使用するとき、「phaCNSDG」とは、A.caviae株由来のポリヒドロキシアルカン酸重合酵素の149番のアスパラギンがセリンに、かつ171番のアスパラギン酸がグリシンに置換された変異体(NSDG変異体)をコードする遺伝子である。なお、phaCNSDG遺伝子のクローニングについては、通常の分子生物学的手法により行うことができる。例えば、Tsuge,T.ら,FEMS Microbiol.Lett.,277:217-222(2007);Kichise,T.ら,Appl.Environ.Microbiol.,68:2411-2419(2002);特開2008-29218;国際公開WO2011/105369を参照されたい。 In one embodiment of the present invention, the gene encoding a broad substrate-specific PHA synthase used for copolymer composition control is preferably phaC NSDG . As used herein, “phaC NSDG ” refers to A.I. It is a gene that encodes a mutant (NSDG mutant) in which the asparagine at position 149 of serine and the aspartic acid at position 171 are replaced by glycine in the polyhydroxyalkanoic acid synthase derived from Caviae strain. The cloning of the phaC NSDG gene can be performed by an ordinary molecular biological technique. For example, Tsuge, T .; Et al., FEMS Microbiol. Lett. 277: 217-222 (2007); Kichise, T .; Et al., Appl. Environ. Microbiol. 68: 2411-2419 (2002); JP 2008-29218; International Publication WO2011 / 105369.
 本発明の一実施形態において、phaCNSDG遺伝子は、(a)配列番号1で表される塩基配列を含む核酸;又は(b)配列番号1で表される塩基配列を含む核酸とストリンジェントな条件下でハイブリダイズし、かつPHAを合成する活性を有するタンパク質をコードする核酸からなるものであってもよい。さらに、本発明の別の実施形態において、phaCNSDG遺伝子は、(a)配列番号1で表される塩基配列からなる核酸;又は(b)配列番号1で表される塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつPHAを合成する活性を有するタンパク質をコードする核酸からなるものであってもよい。 In one embodiment of the present invention, the phaC NSDG gene comprises (a) a nucleic acid comprising the base sequence represented by SEQ ID NO: 1; or (b) a nucleic acid comprising the base sequence represented by SEQ ID NO: 1 and stringent conditions It may consist of a nucleic acid that encodes a protein that hybridizes underneath and has an activity to synthesize PHA. Furthermore, in another embodiment of the present invention, the phaC NSDG gene comprises (a) a nucleic acid comprising the base sequence represented by SEQ ID NO: 1; or (b) a nucleic acid comprising the base sequence represented by SEQ ID NO: 1 and a string. It may be composed of a nucleic acid that encodes a protein that hybridizes under gentle conditions and has an activity to synthesize PHA.
 phaCNSDG遺伝子は、例えば、後述する実施例1に記載するように、配列番号1の塩基配列に基づいてプライマーとして合成ヌクレオチドを設計し、A.caviae株の染色体DNAや、染色体DNAを含むプラスミドなどを鋳型として増幅した後に、通常の手法を用いて149番のアスパラギンをセリンに、かつ171番のアスパラギン酸をグリシンに置換することに相当した部位特異的変異を導入することによって調製できる。核酸を増幅するための手法としては、例えば、ポリメラーゼ連鎖反応(PCR)(Saiki R.K.ら,Science,230,1350-1354(1985))、ライゲース連鎖反応(LCR)(Wu D.Y.ら,Genomics,4,560-569(1989))、及び転写に基づく増幅(Kwoh D.Y.ら,Proc.Natl.Acad.Sci.USA,86,1173-1177(1989))等の温度循環を必要とする反応、並びに鎖置換反応(SDA)(Walker G.T.ら,Proc.Natl.Acad.Sci.USA,89,392-396(1992);Walker G.T.ら,Nuc.Acids Res.,20,1691-1696(1992))、自己保持配列複製(3SR)(Guatelli J.C.,Proc.Natl.Acad.Sci.USA,87,1874-1878(1990))、及びQβレプリカーゼシステム(Lizardi,P.M.ら、BioTechnology,6,1197-1202(1988))等の恒温反応を利用することができるが、これらに限定されない。本発明においては、PCR法を使用することが好ましい。なお、遺伝子に変異を導入する方法は、一般的に知られ、例えば、部位特異的変異誘発法(Current Protocols in Molecular Biology,edited by Ausubel,F.M.,et al.,Unit 8.1-8.5,John Wiley & Sons,Inc.,NY)が挙げられる。本発明においては、QuikChange II XL Site-Directed Mutagenesis Kits(Agilent Technologies)を使用することができる。 The phaC NSDG gene is a synthetic nucleotide designed as a primer based on the nucleotide sequence of SEQ ID NO: 1, as described in Example 1 described later. A site corresponding to substituting asparagine No. 149 with serine and aspartic acid No. 171 with glycine after amplification using chromosomal DNA of Caviae strain or a plasmid containing chromosomal DNA as a template. It can be prepared by introducing specific mutations. As a method for amplifying a nucleic acid, for example, polymerase chain reaction (PCR) (Saiki RK et al., Science, 230, 1350-1354 (1985)), ligase chain reaction (LCR) (Wu DY. , Genomics, 4, 560-569 (1989)), and transcription-based amplification (Kwoh DY et al., Proc. Natl. Acad. Sci. USA, 86, 1173-1177 (1989)). As well as strand displacement reactions (SDA) (Walker GT et al., Proc. Natl. Acad. Sci. USA, 89, 392-396 (1992); Walker GT et al., Nuc. Acids Res., 20, 1691-1696 (1992)), self-retaining sequence replication (3SR) (G atelli J. C., Proc. Natl. Acad. Sci. USA, 87, 1874-1878 (1990)), and Qβ replicase system (Lizardi, PM et al., BioTechnology, 6, 1191-2202 (1988)). However, the present invention is not limited to these. In the present invention, it is preferable to use the PCR method. Methods for introducing mutations into a gene are generally known, for example, site-specific mutagenesis (Current Protocols in Molecular Biology, edited by Ausubel, FM, et al., Unit 8.1-). 8.5, John Wiley & Sons, Inc., NY). In the present invention, QuikChange II XL Site-Directed Mutagenesis Kits (Agilent Technologies) can be used.
 本明細書において使用するとき、「ストリンジェントな条件下」とは、中程度又は高程度なストリンジェントな条件においてハイブリダイズすることを意味する。具体的には、中程度のストリンジェントな条件は、例えば、DNAの長さに基づき、一般の技術を有する当業者によって、容易に決定することが可能である。基本的な条件は、Sambrook,J.ら、Molecular Cloning,A Laboratory Manual(3rd edition),Cold Spring Harbor Laboratory,7.42-7.45(2001)に示されるが、ニトロセルロースフィルターに関し、5×SSC、0.5% SDS、1.0mM EDTA(pH8.0)の前洗浄溶液、約40~50℃での、約50%ホルムアミド、2×SSC~6×SSC(又は約42℃での約50%ホルムアミド中の、スターク溶液(Stark’s solution)などの他の同様のハイブリダイゼーション溶液)のハイブリダイゼーション条件、及び約60℃、0.5×SSC、0.1% SDSの洗浄条件の使用が含まれる。高ストリンジェントな条件もまた、例えばDNAの長さに基づき、当業者によって、容易に決定することが可能である。一般的に、こうした条件は、中程度にストリンジェントな条件よりも高い温度及び/又は低い塩濃度でのハイブリダイゼーション及び/又は洗浄を含み、例えば上記のようなハイブリダイゼーション条件、及び約68℃、0.2×SSC、0.1% SDSの洗浄を伴うと定義される。当業者は、温度及び洗浄溶液塩濃度は、プローブの長さ等の要因に従って、必要に応じて調整可能であることを認識する。 As used herein, “under stringent conditions” means to hybridize under moderate or high stringent conditions. Specifically, moderately stringent conditions can be easily determined by those skilled in the art based on, for example, the length of DNA. Basic conditions are described in Sambrook, J. et al. Are shown in Molecular Cloning, A Laboratory Manual (3rd edition), Cold Spring Harbor Laboratory, 7.42-7.45 (2001), with regard to nitrocellulose filters, 5 × SSC, 0.5% SDS, 1. Pre-wash solution of 0 mM EDTA (pH 8.0), about 50% formamide at about 40-50 ° C., 2 × SSC-6 × SSC (or Stark solution (Stark in about 50% formamide at about 42 ° C.) use of other similar hybridization solutions such as' s solution) and washing conditions of about 60 ° C., 0.5 × SSC, 0.1% SDS. High stringency conditions can also be readily determined by one skilled in the art based on, for example, the length of the DNA. Generally, such conditions include hybridization and / or washing at higher temperatures and / or lower salt concentrations than moderately stringent conditions, such as hybridization conditions as described above, and about 68 ° C. Defined with 0.2 × SSC, 0.1% SDS wash. One skilled in the art will recognize that the temperature and wash solution salt concentration can be adjusted as needed according to factors such as the length of the probe.
 上記のような核酸増幅反応又はハイブリダイゼーション等を使用してクローニングされる相同な核酸は、配列番号1に記載の塩基配列に対して、それぞれ、少なくとも30%以上、好ましくは50%以上、より好ましくは70%以上、さらにより好ましくは90%以上、さらになお好ましくは95%以上、最も好ましくは98%以上の同一性を有する。なお、同一性パーセントは、視覚的検査及び数学的計算によって決定することが可能である。あるいは、2つの核酸配列の同一性パーセントは、Devereuxら,Nucl.Acids Res.,12,387(1984)に記載され、そしてウィスコンシン大学遺伝学コンピューターグループ(UWGCG)より入手可能なGAPコンピュータープログラム(GCG Wisconsin Package、バージョン10.3)を用いて、配列情報を比較することによって決定することができる。 Homologous nucleic acids cloned using the nucleic acid amplification reaction or hybridization as described above are at least 30% or more, preferably 50% or more, respectively, more preferably than the base sequence described in SEQ ID NO: 1. Has an identity of 70% or more, even more preferably 90% or more, still more preferably 95% or more, and most preferably 98% or more. Note that the percent identity can be determined by visual inspection and mathematical calculation. Alternatively, the percent identity of two nucleic acid sequences can be determined by Devereux et al., Nucl. Acids Res. , 12, 387 (1984) and determined by comparing sequence information using the GAP computer program (GCG Wisconsin Package, version 10.3) available from the University of Wisconsin Genetics Computer Group (UWGCG). can do.
 本発明のより好ましい態様では、広基質特異性のPHA重合酵素をコードする遺伝子は、1つ又は2つのphaCNSDG遺伝子であって、配列番号1で表される塩基配列からなる核酸であってもよい。なお、当業者に理解されるように、宿主の染色体上に導入された遺伝子が適切に転写され、さらには所望の活性を有するタンパク質に翻訳されるために、これらの遺伝子は染色体上で適切なプロモーターの制御下にあるように組み込まれる必要がある。 In a more preferred embodiment of the present invention, the gene encoding a broad substrate-specific PHA synthase is one or two phaC NSDG genes, and may be a nucleic acid comprising the base sequence represented by SEQ ID NO: 1. Good. As will be understood by those skilled in the art, since genes introduced on the chromosome of the host are appropriately transcribed and further translated into a protein having the desired activity, these genes are suitable on the chromosome. It needs to be integrated so that it is under the control of the promoter.
(3)PHA顆粒結合タンパク質をコードする遺伝子(phaP)
 本発明によれば、1つ以上の広基質特異性のPHA重合酵素をコードする遺伝子を導入することで共重合PHA生産能を付与した組換え株において、主要なPHA顆粒結合タンパク質を、該PHA重合酵素と同じ生物種に由来するものとすることによって、共重合PHA中のモノマーユニットの組成比を制御することができる。ここで、本発明に使用される「PHA顆粒結合タンパク質」とは、細胞内に蓄積したPHA顆粒の表面に結合する活性を有するタンパク質を意味し、これまでに、C.necator H16株におけるPhaP1(Wieczorek,R.ら,J.Bacteriol.,177,2425-2435(1995))、PhaP2、PhaP3、PhaP4(Potter,M.ら,Microbiology,151,825-833(2005))、A.caviae FA440株におけるPhaP(Fukui,T.ら,Biomacromolecules,2,148-153(2001))、Paracoccus denitorificans株のPhaP(Maehara,A.ら、J.Bacteriol.,181,2914-2921(1999))などが知られている。また、「主要な」PHA顆粒結合タンパク質とは、その細胞内に複数のPHA顆粒結合タンパク質が存在する場合、最も多量に存在することを意味しており、C.necator H16株においてはPhaP1が相当する(Wieczorek,R.ら,J.Bacteriol.,177,2425-2435(1995))。本発明における共重合組成制御の方法は、宿主に導入された広基質特異性のPHA重合酵素をコードする外来phaCと、該組換え株で機能する主要なPHA顆粒結合タンパク質の遺伝子は、同じ生物種であることを特徴としており、すなわち、宿主となる共重合PHA生産能を付与した組換え株に存在しているphaPと、組成制御のために導入される外来phaPの生物種とは互いに異なる。さらに、当業者に容易に理解されるように、例えば、広基質特異性のPHA重合酵素をコードする外来phaCの由来がA.caviae株である場合、宿主に導入される外来phaPの由来はA.caviae株である態様が本発明に含まれる。なお、宿主に導入される外来phaC及び外来phaPは、同じ生物種であれば特に限定されない。
(3) Gene encoding PHA granule binding protein (phaP)
According to the present invention, in a recombinant strain imparted with the ability to produce a copolymerized PHA by introducing one or more genes encoding a broad substrate-specific PHA synthase, the main PHA granule-binding protein is converted into the PHA. By being derived from the same species as the polymerization enzyme, the composition ratio of the monomer units in the copolymerized PHA can be controlled. Here, “PHA granule-binding protein” used in the present invention means a protein having an activity of binding to the surface of PHA granules accumulated in cells. PhaP1 (Wieczorek, R. et al., J. Bacteriol., 177, 2425-2435 (1995)), PhaP2, PhaP3, PhaP4 (Potter, M. et al., Microbiology, 151, 825-833) (2005) A. PhaP in Caviae FA440 strain (Fukui, T. et al., Biomacromolecules, 2, 148-153 (2001)), PhaP in Paracoccus denitificicans strain (Maehara, A. et al., J. Bacteriol., 181, 294-21-29) Etc. are known. In addition, “major” PHA granule-binding protein means that when a plurality of PHA granule-binding proteins are present in the cell, it is present in the largest amount. In Necator H16 strain, PhaP1 corresponds (Wieczorek, R. et al., J. Bacteriol., 177, 2425-2435 (1995)). In the method of controlling the copolymer composition in the present invention, the exogenous phaC encoding a broad substrate-specific PHA synthase introduced into the host and the gene of the main PHA granule binding protein functioning in the recombinant strain are the same organism. In other words, the phaP present in the recombinant strain imparted with the ability to produce copolymerized PHA as a host is different from the species of foreign phaP introduced for composition control. . Furthermore, as will be readily understood by those skilled in the art, for example, the origin of exogenous phaC encoding a broad substrate-specific PHA synthase is In the case of a Caviae strain, the origin of the foreign phaP introduced into the host is A. An embodiment that is a Caviae strain is included in the present invention. The foreign phaC and foreign phaP introduced into the host are not particularly limited as long as they are the same species.
 なお、本発明に使用されるphaPには、一本鎖又は二本鎖型DNA、及びそのRNA相補体も含む。DNAには、例えば、天然由来のDNA、組換えDNA、化学合成したDNA、PCRによって増幅されたDNA、及びそれらの組み合わせが含まれる。本発明で使用される核酸としてはDNAが好ましい。なお、周知の通り、コドンには縮重があり、1つのアミノ酸をコードする塩基配列が複数存在するアミノ酸もあるが、PHA顆粒に結合する活性を有するタンパク質をコードする核酸の塩基配列であれば、いずれの塩基配列を有する核酸も本発明の範囲に含まれる。 The phaP used in the present invention includes single-stranded or double-stranded DNA and its RNA complement. DNA includes, for example, naturally-derived DNA, recombinant DNA, chemically synthesized DNA, DNA amplified by PCR, and combinations thereof. As the nucleic acid used in the present invention, DNA is preferable. As is well known, codons are degenerate and some amino acids have multiple base sequences that encode one amino acid. However, if the base sequence of a nucleic acid that encodes a protein having activity to bind to PHA granules, A nucleic acid having any base sequence is also included in the scope of the present invention.
 本発明の一実施形態において、共重合組成制御に使用されるPHA顆粒結合タンパク質をコードする遺伝子(phaP)は、A.caviae株由来又はC.necator株由来であることが好ましい。本明細書で使用するとき、「phaPAc」とは、A.caviae株に由来するPHA顆粒結合タンパク質をコードする遺伝子を指す。phaPAcとして、GenBank GenBank Accession No.D88825中のヌクレオチド2197-2547(“ORF1”)を利用することができる。本明細書では、該遺伝子の塩基配列を配列番号2として配列表に記載する。なお、phaPAc遺伝子の単離及び同定は、通常の分子生物学的手法により行うことができる。また、本明細書で使用するとき、「phaP1Cn」とは、C.necator株に由来する主要PHA顆粒結合タンパク質をコードする遺伝子を指す。phaP1Cnとして、C.necator株のゲノム(NC 015726.1)中の1419025-1419603を利用することができる。本明細書では、該遺伝子の塩基配列を配列番号4として配列表に記載する。なお、phaPAc遺伝子及びphaP1Cn遺伝子の単離及び同定は、通常の分子生物学的手法により行うことができる。 In one embodiment of the present invention, a gene (phaP) encoding a PHA granule-binding protein used for copolymer composition control is A.I. from Caviae strains or C.I. It is preferably derived from a necator strain. As used herein, “phaP Ac ” refers to A.I. It refers to a gene encoding a PHA granule binding protein derived from a Caviae strain. As phaP Ac , GenBank GenBank Accession No. Nucleotides 2197-2547 (“ORF1”) in D88825 can be utilized. In this specification, the base sequence of the gene is described in the sequence listing as SEQ ID NO: 2. In addition, isolation and identification of a phaP Ac gene can be performed by a normal molecular biological technique. As used herein, “phaP1 Cn ” refers to C.I. It refers to the gene encoding the major PHA granule binding protein derived from the necator strain. As phaP1 Cn , C.I. Necator genome (NC   No. 01576.16.1) can be used. In the present specification, the nucleotide sequence of the gene is described in the sequence listing as SEQ ID NO: 4. The phaP Ac gene and the phaP1 Cn gene can be isolated and identified by ordinary molecular biological techniques.
 本発明の一実施形態において、宿主に導入される外来phaPは、(a)配列番号2で表される塩基配列を含む核酸;又は(b)配列番号2で表される塩基配列を含む核酸とストリンジェントな条件下でハイブリダイズし、かつPHA顆粒に結合する活性を有するタンパク質をコードする核酸からなるものであってもよい。さらに、本発明の一実施形態において、外来phaPは、(a)配列番号2で表される塩基配列からなる核酸;又は(b)配列番号2で表される塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつPHA顆粒に結合する活性を有するタンパク質をコードする核酸からなるものであってもよい。また、宿主の染色体上に存在する、置換されるphaPは、(a)配列番号4で表される塩基配列を含む核酸;又は(b)配列番号4で表される塩基配列からなる核酸であるものであってもよい。 In one embodiment of the present invention, the exogenous phaP introduced into the host is (a) a nucleic acid comprising the base sequence represented by SEQ ID NO: 2; or (b) a nucleic acid comprising the base sequence represented by SEQ ID NO: 2; It may consist of a nucleic acid that encodes a protein that hybridizes under stringent conditions and has an activity of binding to PHA granules. Further, in one embodiment of the present invention, the exogenous phaP is (a) a nucleic acid comprising the base sequence represented by SEQ ID NO: 2; or (b) a nucleic acid comprising the base sequence represented by SEQ ID NO: 2 and a stringent It may consist of a nucleic acid that encodes a protein that hybridizes under conditions and has an activity of binding to PHA granules. The phaP to be substituted present on the host chromosome is (a) a nucleic acid comprising the base sequence represented by SEQ ID NO: 4; or (b) a nucleic acid comprising the base sequence represented by SEQ ID NO: 4. It may be a thing.
 なお、「ストリンジェントな条件」については、上述した通りであり、核酸増幅反応又はハイブリダイゼーション等を使用してクローニングされる相同な核酸は、配列番号2に記載の塩基配列に対して、それぞれ、少なくとも30%以上、好ましくは50%以上、より好ましくは70%以上、さらにより好ましくは90%以上、さらになお好ましくは95%以上、最も好ましくは98%以上の同一性を有する。なお、同一性パーセントは、視覚的検査及び数学的計算によって決定することが可能である。あるいは、2つの核酸配列の同一性パーセントは、Devereuxら,Nucl.Acids Res.,12,387(1984)に記載され、そしてウィスコンシン大学遺伝学コンピューターグループ(UWGCG)より入手可能なGAPコンピュータープログラム(GCG Wisconsin Package、バージョン10.3)を用いて、配列情報を比較することによって決定することができる。 The “stringent conditions” are as described above, and the homologous nucleic acid cloned using a nucleic acid amplification reaction, hybridization, or the like, respectively, with respect to the base sequence described in SEQ ID NO: 2, At least 30% or more, preferably 50% or more, more preferably 70% or more, even more preferably 90% or more, still more preferably 95% or more, and most preferably 98% or more. Note that the percent identity can be determined by visual inspection and mathematical calculation. Alternatively, the percent identity of two nucleic acid sequences can be determined by Devereux et al., Nucl. Acids Res. , 12, 387 (1984) and determined by comparing sequence information using the GAP computer program (GCG Wisconsin Package, version 10.3) available from the University of Wisconsin Genetics Computer Group (UWGCG). can do.
 本発明のより好ましい態様では、宿主に導入される外来phaPは、phaPAcであって、配列番号2で表される塩基配列からなる核酸であってもよい。なお、当業者に理解されるように、宿主の染色体上に導入された遺伝子が適切に転写され、さらには所望の活性を有するタンパク質に翻訳されるために、これらの遺伝子は染色体上で適切なプロモーターの制御下にあるように組み込まれる必要がある。 In a more preferred embodiment of the present invention, the exogenous phaP introduced into the host may be phaP Ac and may be a nucleic acid comprising the base sequence represented by SEQ ID NO: 2. As will be understood by those skilled in the art, since genes introduced on the chromosome of the host are appropriately transcribed and further translated into a protein having the desired activity, these genes are suitable on the chromosome. It needs to be integrated so that it is under the control of the promoter.
(4)R体特異エノイル-CoAヒドラターゼをコードする遺伝子(phaJ)
 本発明による共重合組成制御方法においては、宿主として、広基質特異性PHA重合酵素をコードする外来遺伝子の他に、共重合PHAの生合成を効率的に行うために、1つ以上のR体特異エノイル-CoAヒドラターゼをコードする遺伝子(phaJ)をあらかじめ導入してある組換え株を用いてもよい。ここで、本発明に使用される「R体特異エノイル-CoAヒドラターゼ」とは、脂肪酸β-酸化系中間体であるエノイル-CoAをPHAモノマーである(R)-3HA-CoAに変換する酵素を意味し、この活性を有する限りにおいては、生物種の由来は特に限定されない。
(4) Gene encoding R-form specific enoyl-CoA hydratase (phaJ)
In the copolymer composition control method according to the present invention, as a host, in addition to a foreign gene encoding a broad substrate-specific PHA polymerase, one or more R isomers are used to efficiently perform biosynthesis of copolymer PHA. A recombinant strain into which a gene (phaJ) encoding specific enoyl-CoA hydratase has been introduced in advance may be used. Here, the “R-form-specific enoyl-CoA hydratase” used in the present invention is an enzyme that converts enoyl-CoA, which is a fatty acid β-oxidation intermediate, into (R) -3HA-CoA, which is a PHA monomer. As long as it has this activity, the origin of the biological species is not particularly limited.
 なお、本発明に使用されるphaJは、一本鎖又は二本鎖型DNA、及びそのRNA相補体も含む。DNAには、例えば、天然由来のDNA、組換えDNA、化学合成したDNA、PCRによって増幅されたDNA、及びそれらの組み合わせが含まれる。本発明で使用される核酸としてはDNAが好ましい。なお、周知の通り、コドンには縮重があり、1つのアミノ酸をコードする塩基配列が複数存在するアミノ酸もあるが、R体特異エノイル-CoAヒドラターゼをコードする核酸の塩基配列であれば、いずれの塩基配列を有する核酸も本発明の範囲に含まれる。 Note that phaJ used in the present invention includes single-stranded or double-stranded DNA and its RNA complement. DNA includes, for example, naturally-derived DNA, recombinant DNA, chemically synthesized DNA, DNA amplified by PCR, and combinations thereof. As the nucleic acid used in the present invention, DNA is preferable. As is well known, codons are degenerate and some amino acids have a plurality of base sequences encoding one amino acid. However, any base sequence of a nucleic acid encoding R-isomer-specific enoyl-CoA hydratase can be used. Nucleic acids having the base sequences are also included in the scope of the present invention.
 本発明の一実施形態において、本発明に使用されるphaJとして、A.caviae株由来のR体特異エノイル-CoAヒドラターゼをコードする遺伝子(phaJAc)の塩基配列:GenBank Accession No.D88825中のヌクレオチド4475-4879(“ORF3”)を利用することができる。なお、上記の通り、本発明によれば、R体特異エノイル-CoAヒドラターゼをコードする遺伝子の数は、1つ以上であってもよい。具体的には、導入される遺伝子の数は、1つ、2つ、3つ、4つ、又は5つであり、好ましくは1つ又は2つである。 In one embodiment of the present invention, as phaJ used in the present invention, A. Base sequence of R-specific enoyl-CoA hydratase gene (phaJ Ac ) derived from Caviae strain: GenBank Accession No. Nucleotides 4475-4879 (“ORF3”) in D88825 can be utilized. As described above, according to the present invention, the number of genes encoding R-isomer specific enoyl-CoA hydratase may be one or more. Specifically, the number of genes introduced is one, two, three, four, or five, preferably one or two.
 本発明の一実施形態において、宿主に導入されるphaJは、A.caviae由来のphaJAcであることが好ましい。phaJAcの単離及び同定は、通常の分子生物学的手法により行うことができ、例えば、特許文献3(前述)を参照してもよい。さらに、本発明の特定の実施形態において、phaJは、(a)配列番号3で表される塩基配列を含む核酸;又は(b)配列番号3で表される塩基配列を含む核酸とストリンジェントな条件下でハイブリダイズし、かつ脂肪酸β-酸化系中間体であるエノイル-CoAを(R)-3HA-CoAに変換する活性を有するタンパク質をコードする核酸からなるものであってもよい。さらに、本発明の一実施形態において、phaJは、(a)配列番号3で表される塩基配列からなる核酸;又は(b)配列番号3で表される塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ脂肪酸β-酸化系中間体を(R)-3-ヒドロキシアシル-CoAに変換する活性を有するタンパク質をコードする核酸からなるものであってもよい。 In one embodiment of the present invention, phaJ introduced into the host is A. Caviae-derived phaJ Ac is preferable. Isolation and identification of phaJ Ac can be performed by an ordinary molecular biological technique. For example, Patent Document 3 (described above) may be referred to. Further, in a specific embodiment of the present invention, phaJ is (a) a nucleic acid comprising the base sequence represented by SEQ ID NO: 3; or (b) a stringent nucleic acid comprising the nucleic acid comprising the base sequence represented by SEQ ID NO: 3. It may be composed of a nucleic acid that encodes a protein that hybridizes under conditions and has an activity of converting enoyl-CoA, which is a fatty acid β-oxidation intermediate, into (R) -3HA-CoA. Furthermore, in one embodiment of the present invention, phaJ is (a) a nucleic acid comprising the base sequence represented by SEQ ID NO: 3; or (b) a nucleic acid comprising the base sequence represented by SEQ ID NO: 3 and stringent conditions It may be composed of a nucleic acid that encodes a protein that hybridizes below and has an activity of converting a fatty acid β-oxidation intermediate into (R) -3-hydroxyacyl-CoA.
 なお、「ストリンジェントな条件」については、上述した通りであり、核酸増幅反応又はハイブリダイゼーション等を使用してクローニングされる相同な核酸は、配列番号3に記載の塩基配列に対して、それぞれ、少なくとも30%以上、好ましくは50%以上、より好ましくは70%以上、さらにより好ましくは90%以上、さらになお好ましくは95%以上、最も好ましくは98%以上の同一性を有する。なお、同一性パーセントは、視覚的検査及び数学的計算によって決定することが可能である。あるいは、2つの核酸配列の同一性パーセントは、Devereuxら,Nucl.Acids Res.,12,387(1984)に記載され、そしてウィスコンシン大学遺伝学コンピューターグループ(UWGCG)より入手可能なGAPコンピュータープログラム(GCG Wisconsin Package、バージョン10.3)を用いて、配列情報を比較することによって決定することができる。 The “stringent conditions” are as described above, and the homologous nucleic acid cloned using a nucleic acid amplification reaction, hybridization, or the like, respectively, with respect to the base sequence described in SEQ ID NO: 3, At least 30% or more, preferably 50% or more, more preferably 70% or more, even more preferably 90% or more, still more preferably 95% or more, and most preferably 98% or more. Note that the percent identity can be determined by visual inspection and mathematical calculation. Alternatively, the percent identity of two nucleic acid sequences can be determined by Devereux et al., Nucl. Acids Res. , 12, 387 (1984) and determined by comparing sequence information using the GAP computer program (GCG Wisconsin Package, version 10.3) available from the University of Wisconsin Genetics Computer Group (UWGCG). can do.
 本発明のより好ましい態様では、宿主に導入されるR体特異エノイル-CoAヒドラターゼをコードする遺伝子は、phaJAcであって、配列番号3で表される塩基配列からなる核酸であってもよい。なお、当業者に理解されるように、宿主に導入された遺伝子が適切に転写され、さらには所望の活性を有するタンパク質に翻訳されるために、これらの遺伝子は適切なプロモーターの制御下にあるように組み込まれる必要がある。 In a more preferred embodiment of the present invention, the gene encoding R-specific enoyl-CoA hydratase introduced into the host may be phaJ Ac and may be a nucleic acid consisting of the base sequence represented by SEQ ID NO: 3. As will be appreciated by those skilled in the art, these genes are under the control of appropriate promoters in order for the genes introduced into the host to be properly transcribed and further translated into proteins with the desired activity. Need to be incorporated.
(5)外来phaC、外来phaCと由来を同じくする外来phaP、及びphaJの導入方法及び位置関係
 本発明によれば、微生物細胞内で合成される共重合PHAの組成比を制御することができれば、外来phaC、外来phaCと由来を同じくする外来phaP、及びphaJの宿主への導入方法は特に限定されず、宿主において自律複製可能なプラスミドベクターを用いた導入であってもよく、また、相同性組換えによる染色体への導入であってもよい。なお、外来phaCと由来を同じくするphaPから発現したタンパク質を、該組換え株における主要な顆粒結合タンパク質とすることを達成する方法として、宿主に内在するphaPの全体又は一部を置換する相同性組換えによって外来phaPを導入すること、あるいは内在phaPの機能を変異・破壊・欠失によって喪失させた株に自律複製可能なプラスミドベクターによって外来phaPを導入することのいずれあってもよい。また、組み込まれた遺伝子が適切に転写され、さらには所望の活性を有するタンパク質に翻訳されるために、これらの遺伝子は適切なプロモーターの制御下にあるように組み込まれる必要がある。また、所望の効果が達成される限りにおいて、導入される各遺伝子の数は限定されない。さらに、導入された各遺伝子の位置関係は特に限定されず、染色体上や自律複製ベクターにおいて互いに隣接するように配置されても離れていてもよく、さらに一部を相同性組換えにより染色体へ導入し、残りを自律複製ベクターで導入することや、複数の異なる和合性自律複製ベクターでそれぞれ導入することであってもよい。
(5) Introduction method and positional relationship of foreign phaC, foreign phaP having the same origin as foreign phaC, and phaJ According to the present invention, if the composition ratio of copolymerized PHA synthesized in microbial cells can be controlled, The method for introducing foreign phaC, foreign phaP having the same origin as foreign phaC, and phaJ into the host is not particularly limited, and may be introduction using a plasmid vector capable of autonomous replication in the host. It may be introduced into the chromosome by replacement. As a method for achieving a protein expressed from phaP having the same origin as foreign phaC as the main granule-binding protein in the recombinant strain, homology that replaces all or part of phaP in the host is used. Either exogenous phaP may be introduced by recombination, or exogenous phaP may be introduced by a plasmid vector capable of autonomous replication into a strain in which the function of endogenous phaP has been lost by mutation, destruction, or deletion. In addition, in order for the incorporated genes to be appropriately transcribed and further translated into a protein having the desired activity, these genes need to be incorporated under the control of an appropriate promoter. Further, the number of each gene to be introduced is not limited as long as the desired effect is achieved. Furthermore, the positional relationship of each introduced gene is not particularly limited, and may be arranged on or separated from each other on a chromosome or in an autonomously replicating vector, and a part thereof is introduced into the chromosome by homologous recombination. Then, the rest may be introduced with an autonomously replicating vector, or introduced with a plurality of different compatible autonomously replicating vectors.
 本発明の別の態様において、本発明の目的が達成される限り、特に限定されないが、pphaCNSDGが染色体上に予め組み込まれた株を用いてもよい。このような微生物として、NSDG株が例示される(特許文献6参照)。ここで、「NSDG株」とは、C.necator、野生株の一種であるH16株(ATCC16699株、DSM428株)
の染色体上phaオペロン中の本来のphaCを、A.caviae由来PHA重合酵素変異酵素の遺伝子であるphaCNSDGに相同性組換えにより置換した組換え株である。
In another embodiment of the present invention, as long as the object of the present invention is achieved, a strain in which pphaC NSDG is pre-integrated on a chromosome may be used. An NSDG strain is exemplified as such a microorganism (see Patent Document 6). Here, “NSDG strain” means C.I. necator, H16 strain (ATCC16699 strain, DSM428 strain) which is a kind of wild strain
The original phaC in the pha operon on the chromosome of This is a recombinant strain in which phaC NSDG , which is a gene of Caviae-derived PHA synthase mutant enzyme, is substituted by homologous recombination.
 本発明の別の態様において、本発明の目的が達成される限り、特に限定されないが、pphaCNSDGとphaJが染色体上に予め組み込まれた株を用いてもよい。このような微生物として、MF02株が例示される(特許文献6参照)。ここで、MF02株は、NSDG株の染色体上phaオペロン中のphaCNSDGとphaA(β-ケトチオラーゼ遺伝子)の間にphaJAcが組み込まれた組換え株である。 In another embodiment of the present invention, a strain in which pphaC NSDG and phaJ are pre-integrated on a chromosome may be used as long as the object of the present invention is achieved. An example of such a microorganism is the MF02 strain (see Patent Document 6). Here, the MF02 strain is a recombinant strain in which phaJ Ac is integrated between phaC NSDG and phaA (β-ketothiolase gene) in the pha operon on the chromosome of NSDG strain.
(6)遺伝子置換ベクターの構築及び組換え微生物の作製
 本発明によれば、phaCNSDG、phaP、及びphaJを宿主の染色体に導入するための、これらの遺伝子の各々若しくはいずれかの組み合わせを相同性組換え用ベクターに組み込んだ遺伝子置換ベクター、又は該遺伝子の各々若しくはいずれかの組み合わせを自律複製ベクターに組み込んだ発現ベクターが提供される。ここで、ベクターに遺伝子を組み込む方法としては、例えば、Sambrook,J.ら,Molecular Cloning,A Laboratory Manual(3rd edition),Cold Spring Harbor Laboratory,1.1(2001)に記載の方法などが挙げられる。簡便には、市販のライゲーションキット(例えば、トーヨーボー社製等)を用いることもできる。
(6) Construction of a gene replacement vector and production of a recombinant microorganism According to the present invention, homology of each or any combination of these genes for introducing phaC NSDG , phaP, and phaJ into the host chromosome A gene replacement vector incorporated into a recombination vector or an expression vector incorporating each or any combination of the genes into an autonomously replicating vector is provided. Here, as a method for incorporating a gene into a vector, for example, Sambrook, J. et al. Et al., Molecular Cloning, A Laboratory Manual (3rd edition), Cold Spring Harbor Laboratory, 1.1 (2001). For convenience, a commercially available ligation kit (for example, manufactured by Toyobo Co., Ltd.) can also be used.
 ベクターは、簡単には当該技術分野において入手可能な組換え用ベクター(例えば、プラスミドDNA等)に所望の遺伝子を常法により連結することによって調製することができる。本発明のポリヒドロキシアルカン酸共重合体の制御方法に用いられるベクターとしては、微生物内で、微生物の染色体に既に組み込まれている微生物由来のポリエステル重合酵素遺伝子を外来の広基質特異性ポリエステル重合酵素遺伝子によって置換することを目的として、限定されないが、相同性組換え用ベクターpK18mobsacB(Schaferら,Gene 145,69-73(1994))、pJQ200(Quandt,J.及びHynes,M.P.,“Versatile suicide vectors which allow direct selection for gene replacement in gram-negative bacteria”,Gene(1993)127:15-21を使用することが好ましい。あるいは、グラム陰性菌で自律複製することが知られている広宿主域ベクターpBBR1-MCS2(GenBank Accession No.U23751)、pJRD215(M16198)(Davision,J.ら、(1987)Gene,51,275-80を参照)、pJB861(U82000)、pHRP311(Parales,R.E.及びHarwood,C.S.(1993)Gene,133,23-30を参照)が例示されるが、これらに限定されない。また、大腸菌用のプラスミドとして、例えば、pBAD24(GenBank Accession No.X81837)、pDONR201、pBluescript、pUC118、pUC18、pUC19、pBR322等を使用することができる。 A vector can be prepared simply by ligating a desired gene to a recombination vector (for example, plasmid DNA) available in the technical field by a conventional method. As a vector used in the method for controlling the polyhydroxyalkanoic acid copolymer of the present invention, a polyester-polymerizing enzyme gene derived from a microorganism already incorporated in the chromosome of a microorganism is used as a foreign substrate-specific polyester polymerizing enzyme. For the purpose of replacement by gene, but not limited to, homologous recombination vectors pK18mobsacB (Schaffer et al., Gene 145, 69-73 (1994)), pJQ200 (Quantt, J. and Hynes, MP, “ Versatile suicide vectors whos select direct selection for gene replacement in gram-negative bacteria ", Gene (1993) 127: 1 It is preferable to use -21, or the broad host range vectors pBBR1-MCS2 (GenBank Accession No. U23751), pJRD215 (M16198) (Davision, J. et al., (See 1987) Gene, 51,275-80), pJB861 (U82000), pHRP311 (see Parales, RE and Harwood, CS (1993) Gene, 133, 23-30). In addition, plasmids for E. coli such as pBAD24 (GenBank Accession No. X81837), pDONR201, pBluescript, pUC118, pUC18, pUC1 , It can be used pBR322 and the like.
 また、当業者であれば、組換えベクターに適合するように制限末端を適宜選択することができ、さらに、所望のタンパク質を発現させるために、宿主細胞に適した組換えベクターを適宜選択することができる。このようなベクターは、本発明で使用する遺伝子が目的の宿主細胞の遺伝子と相同性組換えが起るように機能する領域(必要に応じて、自律複製起点、接合伝達領域、選択マーカー(例えば、カナマイシン耐性遺伝子)等)が適切に配列されており又は導入することにより、該核酸が適切に組換えられるように構築されている又は構築することが好ましい。 Moreover, those skilled in the art can appropriately select the restriction ends so as to be compatible with the recombinant vector, and further appropriately select a recombinant vector suitable for the host cell in order to express the desired protein. Can do. Such a vector is a region in which the gene used in the present invention functions so as to cause homologous recombination with the gene of the target host cell (if necessary, an autonomous replication origin, a junction transmission region, a selection marker (for example, , Kanamycin resistance gene), etc.) are appropriately arranged or introduced so that the nucleic acid is constructed or constructed so that it is appropriately recombined.
 一般的に、形質転換体は、組換えベクターを宿主細胞に組み込むことによって作製することができる。この場合、宿主細胞として原核細胞(例えば、大腸菌(S17-1株等)、枯草菌)であっても真核細胞(哺乳類細胞、酵母、昆虫細胞等)であっても使用することができる。組換えベクターの宿主細胞への導入(形質転換)は公知の方法を用いて行うことができる。例えば、細菌(大腸菌、Bacillus subtilis等)の場合は、例えばCohenらの方法(Proc.Natl.Acad.Sci.USA,69,2110(1972))、プロトプラスト法(Mol.Gen.Genet.,168,111(1979))やコンピテント法(J.Mol.Biol.,56,209(1971))、塩化カルシウム法、エレクトロポレーション法等が挙げられる。また、Ralstonia(ラルストニア)属、Alcaligenes(アルカリゲネス)属、Pseudomonas(シュードモナス)属等に属する菌体への発現ベクターの導入では、接合伝達法を使用することができる(J.Bacteriol.,147,198(1981))。 Generally, a transformant can be prepared by incorporating a recombinant vector into a host cell. In this case, the host cell can be either a prokaryotic cell (for example, E. coli (S17-1 strain, etc.), Bacillus subtilis) or a eukaryotic cell (mammalian cell, yeast, insect cell, etc.). Introduction (transformation) of a recombinant vector into a host cell can be performed using a known method. For example, in the case of bacteria (E. coli, Bacillus subtilis, etc.), for example, the method of Cohen et al. (Proc. Natl. Acad. Sci. USA, 69, 2110 (1972)), the protoplast method (Mol. Gen. Genet., 168, 111 (1979)), competent method (J. Mol. Biol., 56, 209 (1971)), calcium chloride method, electroporation method and the like. In addition, the conjugation transfer method can be used to introduce expression vectors into cells belonging to the genus Ralstonia, Alcaligenes, Pseudomonas, etc. (J. Bacteriol., 147, 198). (1981)).
 この接合伝達法は、簡単には、細胞同士の接触によって染色体ゲノム又はプラスミドを一方の細胞から他方の細胞に移行させる細胞の性質を利用したものであり、例えば、目的のDNAを担持する自己伝達性プラスミドが導入された供与菌と該プラスミドを有しない受容菌との接合に始まり、両菌体における橋の形成、該プラスミドの複製と移行、並びにDNA合成の完了と共に菌体の分離といった一連の工程によって遺伝子導入を可能にする手段である。 This conjugation transfer method is based on the nature of cells that transfer a chromosome genome or plasmid from one cell to another by contact between cells. For example, self-transmission carrying the target DNA. Starting with conjugation between a donor bacterium into which a sex plasmid has been introduced and a recipient bacterium that does not have the plasmid, a series of bridge formation in both cells, replication and transfer of the plasmid, and separation of the cells upon completion of DNA synthesis It is a means that enables gene transfer by a process.
(7)共重合PHAの合成
 本発明によれば、共重合PHAの合成は、1つ以上の広基質特異性のPHA重合酵素をコードする遺伝子を該遺伝子の生物種と異なる宿主に導入することで共重合PHA生産能を付与した組換え株において、該組換え株の染色体上に存在するPHA顆粒結合タンパク質をコードする遺伝子を、上記PHA重合酵素をコードする遺伝子と同じ生物種に由来するPHA顆粒結合タンパク質をコードする遺伝子で置換することによって、該組換え株内又は培養物(例えば、培地)中に共重合PHAを生成及び蓄積させ、組換え株又は培養物から目的とする共重合PHAを採取することにより行われる。なお、当業者にも理解されるように、共重合PHAを合成させるために、上記組換え株を適切な培養条件下に置くことが好ましい。このような組換え株の培養、遺伝子組換えを行う前の親株の培養条件に従ってもよい。また、本発明の特定の一実施形態において、炭素源として植物油又は脂肪酸を含有する培地中で組換え株を増殖させてもよい。
(7) Synthesis of copolymerized PHA According to the present invention, the synthesis of copolymerized PHA involves introducing a gene encoding one or more broad substrate specific PHA polymerase into a host different from the species of the gene. In the recombinant strain imparted with the ability to produce copolymer PHA, the gene encoding the PHA granule binding protein present on the chromosome of the recombinant strain is derived from the same species as the gene encoding the PHA polymerase. By substituting with a gene encoding a granule-binding protein, copolymerized PHA is generated and accumulated in the recombinant strain or in a culture (for example, a medium), and the desired copolymerized PHA is obtained from the recombinant strain or culture. It is done by collecting. As will be understood by those skilled in the art, the recombinant strain is preferably placed under suitable culture conditions in order to synthesize copolymerized PHA. The culture conditions of the parent strain before performing such recombinant strain culture and gene recombination may be followed. In one specific embodiment of the present invention, the recombinant strain may be grown in a medium containing vegetable oil or fatty acid as a carbon source.
 一例として、C.necator株を宿主とした場合の培地として、該微生物株が資化し得る植物油又は炭素数6以上の中長鎖脂肪酸を添加し、窒素源、無機塩類、その他の有機栄養源のいずれかを制限した培地が挙げられる。典型的には、培地温度を25℃~37℃の範囲にし、好気的に1~10日培養することにより、共重合PHAを菌体内に生成し蓄積させ、その後、回収・精製することによって所望の共重合PHAを調製することができる。また、植物油を炭素源として用いる場合、使用可能な植物油としては、一般的に市販されている植物油を使用することができ、その供給源は特に限定されない。好ましくは、大豆油、コーン油、サフラワー油、オリーブ油、ヤシ油、パーム油、ナタネ油、魚油、鯨油、豚油又は牛油などの天然油脂である。なお、培地中の植物油の濃度は、0.1~5%が好ましいが、当業者であれば適宜調整することができる。 As an example, C.I. As a medium in the case of using a necator strain as a host, vegetable oil that can be assimilated by the microorganism strain or a medium- or long-chain fatty acid having 6 or more carbon atoms was added to restrict any of nitrogen sources, inorganic salts, and other organic nutrient sources. A culture medium is mentioned. Typically, the medium temperature is in the range of 25 ° C. to 37 ° C., and aerobically cultured for 1 to 10 days, so that copolymerized PHA is produced and accumulated in the cells, and then recovered and purified. The desired copolymerized PHA can be prepared. Moreover, when using vegetable oil as a carbon source, generally available vegetable oil can be used as vegetable oil which can be used, The supply source is not specifically limited. Preferred are natural fats such as soybean oil, corn oil, safflower oil, olive oil, palm oil, palm oil, rapeseed oil, fish oil, whale oil, pig oil or cow oil. The concentration of the vegetable oil in the medium is preferably 0.1 to 5%, but can be appropriately adjusted by those skilled in the art.
 また、必要であれば、培地中に窒素源や無機物を添加してもよい。窒素源としては、アンモニア、塩化アンモニウム、硫酸アンモニウム、リン酸アンモニウム等のアンモニウム塩の他、ペプトン、肉エキス、酵母エキス、コーンスティープリカー等が挙げられる。無機物としては、例えばリン酸第一カリウム、リン酸第二カリウム、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウム等が挙げられる。 If necessary, a nitrogen source or an inorganic substance may be added to the medium. Examples of the nitrogen source include ammonia, ammonium chloride, ammonium sulfate, ammonium phosphate and the like, as well as peptone, meat extract, yeast extract, corn steep liquor and the like. Examples of inorganic substances include monopotassium phosphate, dipotassium phosphate, magnesium phosphate, magnesium sulfate, and sodium chloride.
 培養は、通常、振とう培養が用いられ、好気的条件下で、25℃~37℃で遺伝子発現誘導後少なくとも1日以上行うことが好ましい。抗生物質として、カナマイシン、アンピシリン等を培地に添加してもよい。また、必要であれば、遺伝子発現誘導剤として、アラビノース、インドールアクリル酸(IAA)、イソプロピル-β-D-チオガラクトピラノシド(IPTG)等を使用することができる。当業者であれば、所望の遺伝子発現のために可能な培養条件、遺伝子発現の誘導条件等を適宜選択できる。 Cultivation is usually carried out using shaking culture, and it is preferable to carry out the aerobic conditions at 25 ° C. to 37 ° C. for at least one day after induction of gene expression. As an antibiotic, kanamycin, ampicillin or the like may be added to the medium. If necessary, arabinose, indoleacrylic acid (IAA), isopropyl-β-D-thiogalactopyranoside (IPTG) or the like can be used as a gene expression inducer. A person skilled in the art can appropriately select culture conditions and conditions for inducing gene expression that are possible for desired gene expression.
(8)共重合PHA中のモノマーユニットの組成比の制御
 本発明によれば、1つ以上の広基質特異性のPHA重合酵素をコードする遺伝子を該遺伝子の生物種と異なる宿主に導入することで共重合PHA生産能を付与した組換え株において、該組換え株に存在するPHA顆粒結合タンパク質をコードする遺伝子を、上記PHA重合酵素をコードする遺伝子と同じ生物種に由来するPHA顆粒結合タンパク質をコードする遺伝子で置換することよって、共重合PHA中のモノマーユニットの組成比を制御することができる。ここで、本明細書で使用するとき、「制御」とは、本発明によって生産される共重合PHAを構成するモノマーユニットの組成比を所望の値又は範囲に変化させることを意味する。より具体的には、このような組成比の制御は、宿主に導入される遺伝子(すなわち、外来phaC、外来phaCと由来を同じくするphaP、及びphaJ)の選択、生物種を適宜変更することによって行うことができる。また、一態様として、染色体上に導入されたこれらの遺伝子の発現を、調節因子(例えば、転写因子、プロモーター、エンハンサー)の活性を変化させることによって行うことができる。さらに、宿主に導入される遺伝子に変異を加え、遺伝子の機能を改変させてもよい。これらの改変は、宿主のゲノム情報、及び導入される遺伝子の塩基配列情報に基づいて、一般的な遺伝子工学的手法を用いて行うことができる。また、組換え株の培養条件を適宜変更してもよい。
(8) Control of composition ratio of monomer units in copolymerized PHA According to the present invention, a gene encoding one or more broad substrate specific PHA polymerases is introduced into a host different from the species of the gene. In the recombinant strain imparted with the ability to produce copolymer PHA, the gene encoding the PHA granule binding protein present in the recombinant strain is derived from the same species as the gene encoding the PHA polymerase. By substituting with a gene encoding, the composition ratio of the monomer units in the copolymerized PHA can be controlled. Here, as used herein, “control” means changing the composition ratio of the monomer units constituting the copolymerized PHA produced by the present invention to a desired value or range. More specifically, such a composition ratio is controlled by selecting genes introduced into the host (ie, exogenous phaC, phaP and phaJ having the same origin as the exogenous phaC), and appropriately changing the species. It can be carried out. Moreover, as one aspect, the expression of these genes introduced onto the chromosome can be performed by changing the activity of regulatory factors (eg, transcription factors, promoters, enhancers). Furthermore, mutation may be added to the gene introduced into the host to alter the function of the gene. These modifications can be performed using a general genetic engineering technique based on the genome information of the host and the base sequence information of the introduced gene. Moreover, you may change suitably the culture conditions of a recombinant strain.
 本発明の一態様において、共重合PHAがポリ(3-ヒドロキシブタン酸-co-3-ヒドロキシヘキサン酸)(以下、「P(3HB-co-3HHx)とする場合がある。)である場合、共重合PHA中の3-ヒドロキシヘキサン酸(3HHx)の分率を制御することができ、好ましくは、3HHxの分率を増加させることができる。例えば、後述する実施例2において詳述されるように、宿主をC.necator株とし、phaCNSDG及びphaJAcを導入したNSDG-PACnJ株では、P(3HB-co-3HHx)中の3HHx分率は、6.5mol%であったのに対して、該株の染色体上に存在するphaP1Cn遺伝子を、phaCNSDG遺伝子と同じA.caviae株由来のphaP1Ac遺伝子で置換することによって、3HHx分率を9.3mol%に増加させることができた。 In one embodiment of the present invention, when the copolymer PHA is poly (3-hydroxybutanoic acid-co-3-hydroxyhexanoic acid) (hereinafter sometimes referred to as “P (3HB-co-3HHx)”) The fraction of 3-hydroxyhexanoic acid (3HHx) in the copolymerized PHA can be controlled, and preferably the fraction of 3HHx can be increased, for example as detailed in Example 2 below. In addition, in the NSDG-PA Cn J strain in which the host was a C. necator strain and phaC NSDG and phaJ Ac were introduced, the 3HHx fraction in P (3HB-co-3HHx) was 6.5 mol%. in contrast, the phaP1 Cn gene present on the chromosome of the strain, by substituting phaP1 Ac gene from the same A.caviae strain as phaC NSDG gene, 3 The Hx percentage could be increased to 9.3mol%.
(9)共重合PHAの精製と構造解析
 本発明において、共重合PHAは、下記の通り精製することができる:培地から遠心分離によって形質転換体を回収し、蒸留水で洗浄後、乾燥又は凍結乾燥させる。その後、クロロホルムに乾燥した形質転換体を懸濁させ、室温で所定時間撹拌し、共重合PHAを抽出する。抽出の段階で、必要であれば加熱してもよい。濾過によって残渣を除去し、上清にメタノールを加えて共重合PHAを沈殿させ、沈殿物を濾過又は遠心分離によって、上清を除去し、乾燥させて精製した共重合PHAを得ることができる。その後、限定されないが、NMR(核磁気共鳴)、ガスクロマトグラフィーを用いて、得られた共重合PHAのモノマーユニットの組成比を確認することができる。
(9) Purification and structural analysis of copolymerized PHA In the present invention, copolymerized PHA can be purified as follows: a transformant is recovered from the medium by centrifugation, washed with distilled water, dried or frozen. dry. Thereafter, the transformant dried in chloroform is suspended and stirred at room temperature for a predetermined time to extract copolymerized PHA. In the extraction stage, heating may be performed if necessary. The residue is removed by filtration, methanol is added to the supernatant to precipitate copolymer PHA, and the precipitate is filtered or centrifuged to remove the supernatant and dried to obtain purified copolymer PHA. Thereafter, although not limited, the composition ratio of the monomer units of the obtained copolymer PHA can be confirmed using NMR (nuclear magnetic resonance) and gas chromatography.
 本発明の一態様において、共重合PHAがP(3HB-co-3HHx)である場合、3HHx分率は、少なくとも1%モル以上であればよく、例えば、1モル%、2モル%、3モル%、4モル%、5モル%、6モル%、7モル%、8モル%、9モル%、10モル%、又はそれ以上であってもよい。また、該3HHx分率は、99モル%以下であればよく、例えば、99モル%、98モル%、97モル%、96モル%、95モル%、94モル%、93モル%、92モル%、91モル%、90モル%、又はそれ以下であってもよい。3HHx分率の取り得る範囲としては、限定されないが、例えば、1~99モル%、1~95モル%、1~90モル%、1~85モル%、1~80モル%、1~75モル%、1~70モル%、1~65モル%、1~60モル%、1~55モル%、1~50モル%、1~45モル%、1~40モル%、1~35モル%、1~30モル%、1~25モル%、1~20モル%、2~99モル%、2~95モル%、2~90モル%、2~85モル%、2~80モル%、2~75モル%、2~70モル%、2~65モル%、2~60モル%、2~55モル%、2~50モル%、2~45モル%、2~40モル%、2~35モル%、2~30モル%、2~25モル%、2~20モル%、3~99モル%、3~95モル%、3~90モル%、3~85モル%、3~80モル%、3~75モル%、3~70モル%、3~65モル%、3~60モル%、3~55モル%、3~50モル%、3~45モル%、3~40モル%、3~35モル%、3~30モル%、3~25モル%、3~20モル%、4~99モル%、4~95モル%、4~90モル%、4~85モル%、4~80モル%、4~75モル%、4~70モル%、4~65モル%、4~60モル%、4~55モル%、4~50モル%、4~45モル%、4~40モル%、4~35モル%、4~30モル%、4~25モル%、4~20モル%、5~99モル%、5~95モル%、5~90モル%、5~85モル%、5~80モル%、5~75モル%、5~70モル%、5~65モル%、5~60モル%、5~55モル%、5~50モル%、5~45モル%、5~40モル%、5~35モル%、5~30モル%、5~25モル%、5~20モル%が挙げられる。3HHx分率は、好ましくは3~90モル%、より好ましくは4~80モル%、さらに好ましくは5~70モル%である。ここで、用語「モル%」は、本明細書中で使用するとき、多成分系における各成分のモル数の和で、ある成分のモル数を割ったものをいう。また、本発明の制御方法によって得られる共重合PHAは、乾燥菌体重量あたり50~95重量%、好ましくは70~95重量%の割合で菌体に蓄積される。 In one embodiment of the present invention, when the copolymerized PHA is P (3HB-co-3HHx), the 3HHx fraction may be at least 1% mol or more, for example, 1 mol%, 2 mol%, 3 mol %, 4 mol%, 5 mol%, 6 mol%, 7 mol%, 8 mol%, 9 mol%, 10 mol%, or more. The 3HHx fraction may be 99 mol% or less, for example, 99 mol%, 98 mol%, 97 mol%, 96 mol%, 95 mol%, 94 mol%, 93 mol%, 92 mol%. 91 mol%, 90 mol%, or less. The possible range of the 3HHx fraction is not limited, but for example, 1 to 99 mol%, 1 to 95 mol%, 1 to 90 mol%, 1 to 85 mol%, 1 to 80 mol%, 1 to 75 mol %, 1 to 70 mol%, 1 to 65 mol%, 1 to 60 mol%, 1 to 55 mol%, 1 to 50 mol%, 1 to 45 mol%, 1 to 40 mol%, 1 to 35 mol%, 1 to 30 mol%, 1 to 25 mol%, 1 to 20 mol%, 2 to 99 mol%, 2 to 95 mol%, 2 to 90 mol%, 2 to 85 mol%, 2 to 80 mol%, 2 to 75 mol%, 2 to 70 mol%, 2 to 65 mol%, 2 to 60 mol%, 2 to 55 mol%, 2 to 50 mol%, 2 to 45 mol%, 2 to 40 mol%, 2 to 35 mol %, 2 to 30 mol%, 2 to 25 mol%, 2 to 20 mol%, 3 to 99 mol%, 3 to 95 mol%, 3 to 90 mol%, 3 to 85 mol% 3 to 80 mol%, 3 to 75 mol%, 3 to 70 mol%, 3 to 65 mol%, 3 to 60 mol%, 3 to 55 mol%, 3 to 50 mol%, 3 to 45 mol%, 3 to 40 mol%, 3 to 35 mol%, 3 to 30 mol%, 3 to 25 mol%, 3 to 20 mol%, 4 to 99 mol%, 4 to 95 mol%, 4 to 90 mol%, 4 to 85 mol %, 4 to 80 mol%, 4 to 75 mol%, 4 to 70 mol%, 4 to 65 mol%, 4 to 60 mol%, 4 to 55 mol%, 4 to 50 mol%, 4 to 45 mol%, 4 to 40 mol%, 4 to 35 mol%, 4 to 30 mol%, 4 to 25 mol%, 4 to 20 mol%, 5 to 99 mol%, 5 to 95 mol%, 5 to 90 mol%, 5 to 85 mol%, 5-80 mol%, 5-75 mol%, 5-70 mol%, 5-65 mol%, 5-60 mol%, 5-55 mol%, 5-50 mol%, 5-45 mol Le%, 5 to 40 mol%, 5 to 35 mol%, 5 to 30 mol%, 5 to 25 mol%, and 5 to 20 mol%. The 3HHx fraction is preferably 3 to 90 mol%, more preferably 4 to 80 mol%, and still more preferably 5 to 70 mol%. Here, the term “mol%” as used herein refers to the sum of the number of moles of each component in a multi-component system divided by the number of moles of a component. The copolymerized PHA obtained by the control method of the present invention is accumulated in the cells at a rate of 50 to 95% by weight, preferably 70 to 95% by weight, based on the dry cell weight.
 以下、本発明を実施例に基づきより具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically based on examples. However, the present invention is not limited to the following examples.
実施例1:相同性組換え用ベクターの作製
 本発明で使用した一連の組換えベクターの作製を以下の通りに行った。なお、以下の操作においては、特に断らない限り、PCR用のDNAポリメラーゼとしてはKOD Plus DNAポリメラーゼ(トーヨーボー社製)を、5’-リン酸化反応にはT4ポリヌクレオチドキナーゼ(トーヨーボー社製)を、5’-脱リン酸化反応にはウシ小腸由来アルカリホスファターゼ(トーヨーボー社製)を、DNA断片の連結にはLigation High(トーヨーボー社製)をそれぞれ用いた。
Example 1 Production of Vector for Homologous Recombination A series of recombinant vectors used in the present invention were produced as follows. In the following operations, unless otherwise specified, KOD Plus DNA polymerase (Toyobo) is used as a DNA polymerase for PCR, and T4 polynucleotide kinase (Toyobo) is used for 5′-phosphorylation. Bovine small intestine-derived alkaline phosphatase (Toyobo) was used for 5'-dephosphorylation reaction, and Ligation High (Toyobo) was used for ligation of DNA fragments.
(1)pK18ms-P1udの作製
 C.necator H16株のゲノムDNA断片を鋳型として下記の配列1と配列2、及び配列3と配列4のオリゴヌクレオチドをプライマーとしたPCR法によって、C.necator株由来のPHA顆粒結合タンパク質をコードする遺伝子phaP1Cnの上流領域(0.84kb)と下流領域(0.81kb)をそれぞれ増幅した。PCRは98℃で20秒、59℃で20秒、68℃で70秒の反応を1サイクルとしてこれを30サイクル行った。
 配列1:CGGGATCCCTGGTGCACATCCAGGTCGACCACG(配列番号5)
 配列2:TGCTGGTCTCCAGTGGTGAACTTC(配列番号6)
 配列3:CGGGATCCGACGCGTTCTATGTTGCCTTCAC(配列番号7)
 配列4:TAACTGCCTGCGTTGAAGATGGAC(配列番号8)
(1) Preparation of pK18ms-P1ud C.I. by PCR using the genomic DNA fragment of Necator H16 strain as a template and oligonucleotides of the following Sequence 1 and Sequence 2, and Sequence 3 and Sequence 4 as primers. The upstream region (0.84 kb) and the downstream region (0.81 kb) of the gene phaP1 Cn encoding the PHA granule binding protein derived from the necator strain were each amplified. PCR was performed for 30 cycles with a reaction of 98 ° C. for 20 seconds, 59 ° C. for 20 seconds, and 68 ° C. for 70 seconds as one cycle.
Sequence 1: CGGGATCCCCTGGTGCACATCCAGGTCGACCACG (SEQ ID NO: 5)
Sequence 2: TGCTGGTCTCCAGTGGTGAACTTC (SEQ ID NO: 6)
Sequence 3: CGGGATCCGACGCGTTCTATGTTGCCTCTCAC (SEQ ID NO: 7)
Sequence 4: TAACTGCCCTGCGTTGAAGATGAC (SEQ ID NO: 8)
 次に、増幅したphaP1Cnの下流断片をキナーゼ処理により5’-リン酸化し、上流断片と連結した。この連結した断片を鋳型として前述の配列1及び配列3のオリゴヌクレオチドをプライマーとしたPCR法によってphaP1Cnの上下流が連結された断片(1.6kb)を増幅した。PCRは98℃で20秒、59℃で20秒、68℃で2分の反応を1サイクルとして、これを30サイクル行った。増幅したphaP1Cnの上下流連結断片をキナーゼ処理により5’-リン酸化し、ベクタープラスミドpK18mobsacBをHincIIで切断し、脱リン酸化処理を施した断片と連結したpK18ms-P1udを作製した。 Next, the amplified downstream fragment of phaP1 Cn was 5′-phosphorylated by kinase treatment and ligated with the upstream fragment. Using this ligated fragment as a template, a fragment (1.6 kb) in which the upstream and downstream of phaP1 Cn were ligated was amplified by PCR using the oligonucleotides of sequence 1 and sequence 3 as primers. PCR was performed for 30 cycles, with a reaction of 98 ° C. for 20 seconds, 59 ° C. for 20 seconds, and 68 ° C. for 2 minutes as one cycle. The amplified upstream / downstream ligated fragment of phaP1 Cn was 5′-phosphorylated by kinase treatment, and the vector plasmid pK18mobsacB was cleaved with HincII to prepare pK18ms-P1ud linked to the dephosphorylated fragment.
(2)pEE32-NSDGの作製
 A.caviae株由来のPHA重合酵素に二重アミノ酸変異を導入した変異型酵素遺伝子phaCNSDGがクローニングされたpBBREE32-NSDG(Tsuge,T.ら,FEMS Microbiol.Lett(2007))を鋳型とし、下記の配列5及び配列6のオリゴヌクレオチドをプライマーとしたPCR法によってphaCNSDG(1.8kb)を増幅した。PCRは98℃で20秒、61℃で20秒、68℃で3分の反応を1サイクルとしてこれを30サイクル行った。
 配列5:ATGAGCCAACCATCTTATGGCCC(配列番号9)
 配列6:TCATGCGGCGTCCTCCTCTGTT(配列番号10)
(2) Preparation of pEE32-NSDG pBBREE32-NSDG (Tsuge, T., et al., FEMS Microbiol. Lett (2007)) in which a mutated enzyme gene phaC NSDG in which a double amino acid mutation is introduced into a PHA synthase derived from Caviae strain is cloned, is used as a template, and the following sequence PhaC NSDG (1.8 kb) was amplified by PCR using oligonucleotides 5 and 6 as primers. PCR was performed for 30 cycles with a reaction of 98 ° C. for 20 seconds, 61 ° C. for 20 seconds, and 68 ° C. for 3 minutes as one cycle.
Sequence 5: ATGAGCCAACCATCTTATGGCCC (SEQ ID NO: 9)
Sequence 6: TCATGCCGCGTCTCTCCTCTTT (SEQ ID NO: 10)
 次に、phaPAc-phaCAc-phaJAcを含むEE32断片(特許文献3)をクローニングしたプラスミドpEE32を鋳型として、下記の配列7及び配列8のオリゴヌクレオチドをプライマーとしたPCR法によってphaCAcを除く遺伝子領域(4.1kb)を増幅した。PCRはKOD Plus Neo DNAポリメラーゼ(トーヨーボー社製)を用い、98℃で20秒、61℃で20秒、68℃で2分30秒の反応を1サイクルとしてこれを30サイクル行った。
 配列7:GTGCTCTCCTTCACCCACACCCGA(配列番号11)
 配列8:GCGCACAATCCCTGGAAGTAGGCCAGA(配列番号12)
Next, the phaP Ac -phaC Ac -phaJ Ac EE32 fragment containing the plasmid pEE32 which was cloned (Patent Document 3) as a template, except phaC Ac by PCR method using oligonucleotides of SEQ 7 and SEQ 8 below the primer The gene region (4.1 kb) was amplified. For PCR, KOD Plus Neo DNA polymerase (Toyobo Co., Ltd.) was used, and the reaction of 98 ° C. for 20 seconds, 61 ° C. for 20 seconds, and 68 ° C. for 2 minutes 30 seconds was performed for 30 cycles.
Sequence 7: GTGCTCTCCCTTCACCCACACCGA (SEQ ID NO: 11)
Sequence 8: GCGCACAATCCCTGGGAAGTAGGCCAGA (SEQ ID NO: 12)
 続いて、増幅したphaCNSDG断片をキナーゼ処理により5’-リン酸化し、pEE32からphaCAcを除いて開環したベクター断片と連結した。上下流の遺伝子と同じ向きにphaCNSDGが連結されたプラスミドを選抜し、pEE32-NSDGとした。 Subsequently, the amplified phaC NSDG fragment was 5′-phosphorylated by kinase treatment and ligated with the vector fragment obtained by removing phaC Ac from pEE32. A plasmid in which phaC NSDG was ligated in the same direction as the upstream and downstream genes was selected and designated pEE32-NSDG.
(3)pK18ms-P1ud-PAcの作製
 pEE32を鋳型として下記の配列9及び配列10のオリゴヌクレオチドをプライマーとしたPCR用法によってphaPAc断片(0.35kb)を増幅した。PCR用は98℃で20秒、59℃で20秒、68℃で50秒の反応を1サイクルとしてこれを25サイクル行った。
 配列9:ATGAATATGGACGTGATCAAGAGCTTT(配列番号13)
 配列10:TCAGGCCTTGCCCGTGCTTTTCTTGATG(配列番号14)
(3) Preparation of pK18ms-P1ud-P Ac A phaP Ac fragment (0.35 kb) was amplified by PCR using pEE32 as a template and oligonucleotides of the following sequences 9 and 10 as primers. For PCR, a reaction of 98 ° C. for 20 seconds, 59 ° C. for 20 seconds, and 68 ° C. for 50 seconds was performed as 25 cycles.
Sequence 9: ATGAATATGGACGTGATCAAGAGCTTT (SEQ ID NO: 13)
Sequence 10: TCAGGCCTTGCCCGTGCTTTTTCTTGATG (SEQ ID NO: 14)
 次に、pK18ms-P1udを鋳型として前述の配列2及び配列4のオリゴヌクレオチドをプライマーとしたPCR法によって全領域(7.3kb)を増幅し、phaP1Cn上流領域とphaP1Cn下流領域の連結部で開環したベクター断片を得た。PCRはKOD Plus Neo DNAポリメラーゼ(トーヨーボー社製)を用い、98℃で20秒、63℃で20秒、68℃で4分の反応を1サイクルとしてこれを30サイクル行った。 Next, the entire region (7.3 kb) was amplified by PCR using pK18ms-P1ud as a template and the oligonucleotides of sequence 2 and sequence 4 described above as primers, and at the junction of the phaP1 Cn upstream region and phaP1 Cn downstream region. An open vector fragment was obtained. For PCR, KOD Plus Neo DNA polymerase (Toyobo Co., Ltd.) was used, and the reaction was performed 30 cycles at 98 ° C. for 20 seconds, 63 ° C. for 20 seconds, and 68 ° C. for 4 minutes.
 続いて、増幅したphaPAc断片をキナーゼ処理により5’-リン酸化し、pK18ms-P1udからPCR増幅で開環したベクター断片と連結した。phaPAcがプロモーター領域と同じ方向に連結されたプラスミドを選抜し、pK18ms-P1ud-PAcとした。 Subsequently, the amplified phaP Ac fragment was 5′-phosphorylated by kinase treatment and ligated with a vector fragment opened from pK18ms-P1ud by PCR amplification. A plasmid in which phaP Ac was ligated in the same direction as the promoter region was selected and designated pK18ms-P1ud-P Ac .
(4)pK18ms-P1ud-PAcCJの作製
 pEE32-NSDGを鋳型として前述の配列6及び下記の配列11のオリゴヌクレオチドをプライマーとしたPCR法によってphaPAc-phaCNSDG-phaJAc断片(2.6kb)を増幅した。PCRは98℃で20秒、61℃で20秒、68℃で3分の反応を1サイクルとしてこれを30サイクル行った。
 配列11:TCGACGCGGCCGCTTCGAAACTAGTTTAAGGCAGCTTGACCACGGCTTCCC(配列番号15)
(4) Preparation of pK18ms-P1ud-P Ac CJ The phaP Ac -phaC NSDG -phaJ Ac fragment (2.6 kb ) was obtained by PCR using pEE32-NSDG as a template and the oligonucleotide of the sequence 6 and the sequence 11 shown below as primers. ) Was amplified. PCR was performed for 30 cycles with a reaction of 98 ° C. for 20 seconds, 61 ° C. for 20 seconds, and 68 ° C. for 3 minutes as one cycle.
Sequence 11: TCGACGCGGCCGCTTCGAAACTAGTTTAAGGCAGCTTGACCACGGCTTCCC (SEQ ID NO: 15)
 次に、増幅したphaPAc-phaCNSDG-phaJAc断片をキナーゼ処理により5’-リン酸化し、前述のpK18ms-P1udからPCR増幅で開環したベクター断片と連結した。phaPAc-phaCNSDG-phaJAcがプロモーター領域と同じ方向に連結されたプラスミドを選抜し、pK18ms-P1ud-PAcCJとした。 Next, the amplified phaP Ac -phaC NSDG -phaJ Ac fragment was 5′-phosphorylated by kinase treatment and ligated with the vector fragment opened from the above-mentioned pK18ms-P1ud by PCR amplification. A plasmid in which phaP Ac -phaC NSDG -phaJ Ac was ligated in the same direction as the promoter region was selected and designated pK18ms-P1ud-P Ac CJ.
(5)pK18ms-P1ud-PAcJの作製
 pK18ms-P1ud-PAcCJを鋳型として前述の配列7及び配列12のオリゴヌクレオチドをプライマーとしたPCR法によってphaCNSDGを除いて開環したベクター断片(8.2kb)を増幅した。PCRはKOD Plus Neo DNAポリメラーゼ(トーヨーボー社製)を用い、98℃で20秒、68℃で4分30秒の反応を1サイクルとしてこれを30サイクル行った。
 配列12:ATGAGCGCACAATCCCTGGAAGTAG(配列番号16)
 次に、phaCNSDGを除いて開環したベクター断片をキナーゼ処理により5’-リン酸化し、両端を自己連結してpK18ms-P1ud-PAcJを作製した。
(5) Preparation of pK18ms-P1ud-P Ac J A vector fragment obtained by removing the phaC NSDG by PCR using pK18ms-P1ud-P Ac CJ as a template and the oligonucleotides of the above-mentioned sequence 7 and sequence 12 as primers ( 8.2 kb) was amplified. For PCR, KOD Plus Neo DNA polymerase (manufactured by Toyobo Co., Ltd.) was used, and a reaction of 98 ° C. for 20 seconds and 68 ° C. for 4 minutes 30 seconds was performed for 30 cycles.
Sequence 12: ATGAGCGCACAATCCCTGGAAGTAG (SEQ ID NO: 16)
Next, the vector fragment that had been opened except for phaC NSDG was 5′-phosphorylated by kinase treatment and self-ligated at both ends to prepare pK18ms-P1ud-P Ac J.
(6)pK18ms-P1ud-P1CnCJの作製
 C.necator H16株のゲノムDNAを鋳型として下記配列13及び配列14のオリゴヌクレオチドをプライマーとしたPCR法によってphaP1Cn断片(0.6 kb)(配列番号4)を増幅した。PCRは98℃で20秒、54℃で20秒、68℃で50秒の反応を1サイクルとしてこれを30サイクル行った。
 配列13:ATGATCCTCACCCCGGAACAA(配列番号17)
 配列14:TCAGGCAGCCGTCGTCTTCTTTGCCGT(配列番号18)
(6) Preparation of pK18ms-P1ud-P1 Cn CJ The phaP1 Cn fragment (0.6 kb) (SEQ ID NO: 4) was amplified by PCR using the genomic DNA of necator H16 strain as a template and oligonucleotides of the following sequences 13 and 14 as primers. PCR was performed for 30 cycles, with a reaction of 98 ° C. for 20 seconds, 54 ° C. for 20 seconds, and 68 ° C. for 50 seconds as one cycle.
Sequence 13: ATGATCCTCACCCCGGGAACAA (SEQ ID NO: 17)
Sequence 14: TCAGGCAGCCCGTCGTCTTCTTTGCCCGT (SEQ ID NO: 18)
 次に、pK18ms-P1ud-PAcCJを鋳型として前述の配列1及び配列3のオリゴヌクレオチドをプライマーとしたPCR法によってphaP1Cn上流-phaPAc-phaCNSDG-phaJAc-phaP1Cn下流断片(3.3kb)を増幅した。増幅した断片をキナーゼ処理により5’-リン酸化し、pK18mobsacBのHincIIサイトに連結し、pK18ms-P1ud-PAcCJとは逆向きに断片が連結されたプラスミドを選抜し、pK18ms-P1ud-PAcCJ-Rとした。 Next, phaP1 Cn upstream-phaP Ac -phaC NSDG -phaJ Ac -phaP1 Cn downstream fragment (3. p.sup.18 ms-P1ud-P Ac CJ as a template and PCR using the oligonucleotides of sequence 1 and sequence 3 described above as primers. 3 kb) was amplified. The amplified fragment is 5′-phosphorylated by kinase treatment, ligated to the HincII site of pK18mobsacB, a plasmid in which the fragment is ligated in the opposite direction to pK18ms-P1ud-P Ac CJ is selected, and pK18ms-P1ud-P Ac CJ-R.
 続いて、pK18ms-P1ud-PAcCJ-Rを鋳型として前述の配列2及び下記の配列15のオリゴヌクレオチドをプライマーとしたPCR法によってphaPAcを除いて開環したベクター断片(9.7kbp)を増幅した。PCRはKOD Plus Neo DNAポリメラーゼ(トーヨーボー社製)を用い、98℃で20秒、59℃で20秒、68℃で5分の反応を1サイクルとしてこれを30サイクル行った。
 配列15:TAACCCCTGGCTGCCCGTTCGGGCAGCCACATCTCCCCAT(配列番号19)
Subsequently, a vector fragment (9.7 kbp) opened by removing the phaP Ac by the PCR method using pK18ms-P1ud-P Ac CJ-R as a template and the oligonucleotides of the sequence 2 and the sequence 15 shown below as primers. Amplified. For PCR, KOD Plus Neo DNA polymerase (Toyobo Co., Ltd.) was used, and the reaction was carried out for 30 cycles, with a reaction of 98 ° C. for 20 seconds, 59 ° C. for 20 seconds, and 68 ° C. for 5 minutes.
Sequence 15: TAACCCCCTGGCTGCCCGTTCGGGGCAGCCACATCTCCCCAT (SEQ ID NO: 19)
 その後、増幅したphaP1Cn断片をキナーゼ処理により5’-リン酸化し、K18ms-P1ud-PAcCJ-RからphaPAcを除いて開環したベクター断片と連結した。phaP1Cnがプロモーター領域や下流の遺伝子と同じ向きに連結されたプラスミドを選抜し、pK18ms-P1ud-P1CnCJとした。 Thereafter, the amplified phaP1 Cn fragment was 5′-phosphorylated by kinase treatment, and ligated with a vector fragment obtained by removing phaP Ac from K18ms-P1ud-P Ac CJ-R. A plasmid in which phaP1 Cn was linked in the same direction as the promoter region and the downstream gene was selected and designated pK18ms-P1ud-P1 Cn CJ.
(7)pK18ms-P1ud-P1CnJの作製
 pK18ms-P1ud-PAcJを鋳型として前述の配列2及び配列15のオリゴヌクレオチドをプライマーとしたPCR法によってphaPAcを除いて開環したベクター断片(7.9kbp)を増幅した。PCRはKOD Plus Neo DNAポリメラーゼ(トーヨーボー社製)を用い、98℃で20秒、59℃で20秒、68℃で5分の反応を1サイクルとしてこれを30サイクル行った。
(7) Preparation of pK18ms-P1ud-P1 Cn J A vector fragment obtained by removing the phaP Ac by PCR using pK18ms-P1ud-P Ac J as a template and the oligonucleotides of sequence 2 and sequence 15 described above as primers ( 7.9 kbp) was amplified. For PCR, KOD Plus Neo DNA polymerase (Toyobo Co., Ltd.) was used, and the reaction was carried out for 30 cycles, with a reaction of 98 ° C. for 20 seconds, 59 ° C. for 20 seconds, and 68 ° C. for 5 minutes.
 次に、前述のphaP1Cn増幅断片をキナーゼ処理により5’-リン酸化し、pK18ms-P1ud-PAcJからphaPAcを除いて開環したベクター断片と連結した。phaP1Cnがプロモーター領域や下流の遺伝子と同じ向きに連結されたプラスミドを選抜し、pK18ms-P1ud-P1CnJとした。 Next, the above-mentioned phaP1 Cn amplified fragment was 5′-phosphorylated by kinase treatment, and ligated with the vector fragment obtained by removing phaP Ac from pK18ms-P1ud-P Ac J. A plasmid in which phaP1 Cn was linked in the same direction as the promoter region and the downstream gene was selected and designated pK18ms-P1ud-P1 Cn J.
実施例2:NSDG-P1CnJ株及びNSDG-PAcJ株の作製とPHA生合成
 A.caviae株由来のR-ヒドラターゼをコードする遺伝子(phaJAc)をC.necator株由来のNSDG株のphaP1Cnの下流に挿入したNSDG-P1CnJ株、さらにこのphaP1CnがphaCNSDGと同種のA.caviae株に由来するphaPAcに置換されたNSDG-PAcJ株を作製し、その合成能について検討した。具体的には以下の通りである。
Example 2: Production and PHA biosynthesis of NSDG-P1 Cn J strain and NSDG-P Ac J strain The gene (phaJ Ac ) encoding R-hydratase derived from Caviae strain is C.I. NSDG-P1 Cn J strain was inserted downstream of phaP1 Cn of NSDG lines from necator strains, further A. This phaP1 Cn is phaC NSDG akin NSDG-P Ac J strain substituted with phaP Ac derived from Caviae strain was prepared, and its synthetic ability was examined. Specifically, it is as follows.
 実施例1(7)で得られた組換えプラスミドpK18ms-P1ud-P1CnJを用いて、C.necator NSDG株を接合伝達により形質転換した。まず、塩化カルシウム法によって、pK18ms-P1ud-P1CnJを大腸菌S17-1株に導入した。次に、この組換え大腸菌をLB培地(1%トリプトン、1%塩化ナトリウム、0.5%イーストエキス、pH7.2)3.0ml中で37℃終夜培養した。これと並行して、C.necator NSDG株をNR培地(1%魚肉エキス、1%ポリペプトン、0.2%イーストエキス)3.0ml中で30℃終夜培養した。その後、大腸菌の培養液0.2mlに対して、C.necator NSDG株の培養液0.1mlを混合し、30℃で6時間培養した。この菌体混合液を0.2mg/mlカナマイシンを添加したSimmons Citrate寒天培地(ディフコ社製)に塗布し、30℃で3日間培養した。組換え大腸菌のプラスミドが、C.necatorに伝達され相同性組換えにより染色体上に取り込まれた該菌体はカナマイシン耐性を示し、一方、組換え大腸菌はSimmons Citrate寒天培地では増殖不能であるため、上記培地上で増殖したコロニーは組換え大腸菌からpK18ms-P1ud-P1CnJが染色体に取り込まれたC.necator形質転換体(ポップイン株)である。さらに、ポップイン株をNR培地で30℃終夜培養した後、10%スクロースを添加したNR培地に塗布し、30℃で3日間培養した。pK18mobsacB由来ベクター上のsacBにコードされるレヴァンスクラーゼはスクロースを基質にして細胞内に毒性多糖を蓄積する。このため、10%スクロース添加培地においてはプラスミド領域が脱離した株(ポップアウト株)のみが生育することができる。これらのコロニーの中から染色体上のphaP1Cn下流にphaJAcが挿入されたクローンをPCR法によって選抜し、これをNSDG-P1CnJ株とした。 Using the recombinant plasmid pK18ms-P1ud-P1 Cn J obtained in Example 1 (7), C.I. Necator NSDG strain was transformed by conjugation transfer. First, pK18ms-P1ud-P1 Cn J was introduced into Escherichia coli S17-1 by the calcium chloride method. Next, this recombinant Escherichia coli was cultured overnight at 37 ° C. in 3.0 ml of LB medium (1% tryptone, 1% sodium chloride, 0.5% yeast extract, pH 7.2). In parallel with this, C.I. Necator NSDG strain was cultured overnight at 30 ° C. in 3.0 ml of NR medium (1% fish extract, 1% polypeptone, 0.2% yeast extract). Thereafter, C.I. The culture solution of necator NSDG strain (0.1 ml) was mixed and cultured at 30 ° C. for 6 hours. This bacterial cell mixture was applied to a Simons Citrate agar medium (Difco) supplemented with 0.2 mg / ml kanamycin and cultured at 30 ° C. for 3 days. The recombinant Escherichia coli plasmid is C.I. The bacterial cells transferred to the necator and incorporated into the chromosome by homologous recombination show kanamycin resistance, while the recombinant Escherichia coli cannot grow on the Simmons Citrate agar medium. PK18ms-P1ud-P1 Cn J incorporated into the chromosome of the recombinant E. coli Necator transformant (pop-in strain). Further, the pop-in strain was cultured in NR medium at 30 ° C. overnight, applied to NR medium supplemented with 10% sucrose, and cultured at 30 ° C. for 3 days. Levansucrase encoded by sacB on the pK18mobsacB-derived vector accumulates toxic polysaccharide in cells using sucrose as a substrate. For this reason, only a strain from which the plasmid region has been eliminated (pop-out strain) can grow in a medium supplemented with 10% sucrose. From these colonies, a clone in which phaJ Ac was inserted downstream of phaP1 Cn on the chromosome was selected by the PCR method, and this was designated NSDG-P1 Cn J strain.
 実施例1(5)で得られた組換えプラスミドpK18ms-P1ud-PAcJを用いて、NSDG株を同様に接合伝達により形質転換した。得られたポップアウト株のコロニーの中から染色体上のphaP1CnがphaPAcに置換され、さらにその下流にphaJAcが挿入されたクローンをPCR法によって選抜し、これをNSDG-PAcJ株とした。 Using the recombinant plasmid pK18ms-P1ud-P Ac J obtained in Example 1 (5), NSDG strain was similarly transformed by conjugation transfer. PhaP1 Cn on the chromosome from the colonies resulting pop-out line was replaced in phaP Ac, further Clones PhaJ Ac is inserted into the downstream were selected by PCR, which the NSDG-P Ac J strain did.
 NR培地(前述)で前培養した組換え株を100mlのMB培地(0.9%リン酸水素二ナトリウム12水和物、0.15%リン酸二水素カリウム、0.05%塩化アンモニウム、1%微量金属溶液)に植菌し、坂口フラスコ中、30℃で72時間振とう培養した。炭素源として1%大豆油を用いた。なお、培地には0.1mg/mlカナマイシンが添加されている。培養終了後に遠心分離によって菌体を回収し、付着した油分を除くために70%エタノールで洗浄したのち、蒸留水で洗浄した。得られた菌体は凍結乾燥し、乾燥菌体重量を測定した。 Recombinant strains pre-cultured in NR medium (described above) were treated with 100 ml of MB medium (0.9% disodium hydrogen phosphate 12 hydrate, 0.15% potassium dihydrogen phosphate, 0.05% ammonium chloride, % Trace metal solution) and cultured with shaking in a Sakaguchi flask at 30 ° C. for 72 hours. 1% soybean oil was used as a carbon source. In addition, 0.1 mg / ml kanamycin is added to the medium. After culturing, the cells were collected by centrifugation, washed with 70% ethanol to remove the attached oil, and then washed with distilled water. The obtained cells were freeze-dried and the dry cell weight was measured.
 乾燥菌体10~30mgに2mlの硫酸-メタノール混液(15:85)と2mlのクロロホルムを添加して密栓し、100℃で140分間加熱することにより、菌体内ポリエステル分解物のメチルエステルを得た。これに1mlの蒸留水を添加して激しく攪拌した。静置して二層に分離させた後、下層の有機層を取り出した。有機層0.5mlをキャピラリーガラスクロマトグラフィーにより分析した。ガスクロマトグラフは島津製作所製GC-17A、キャピラリーカラムはGLサイエンス社製InertCap-1(カラム長25m、カラム内径0.25mm、液膜厚0.4μm)を用いた。温度条件は、初発温度100℃から8℃/分の速度で昇温した。下記に、作製した組換えC.necator株の染色体上の関連遺伝子の構成、及びPHA生産に関する結果を表1に示す。 2 ml of sulfuric acid-methanol mixture (15:85) and 2 ml of chloroform were added to 10-30 mg of dried cells and sealed, and heated at 100 ° C. for 140 minutes to obtain methyl ester of the degradation product of intracellular polyester. . 1 ml of distilled water was added thereto and stirred vigorously. After allowing to stand and separating into two layers, the lower organic layer was taken out. 0.5 ml of the organic layer was analyzed by capillary glass chromatography. GC-17A manufactured by Shimadzu Corporation was used for the gas chromatograph, and InertCap-1 (column length 25 m, column inner diameter 0.25 mm, liquid film thickness 0.4 μm) manufactured by GL Sciences was used for the capillary column. The temperature was raised from the initial temperature of 100 ° C. at a rate of 8 ° C./min. The prepared recombinant C.I. Table 1 shows the composition of related genes on the chromosome of the necator strain and the results regarding PHA production.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 phaCNSDGを染色体上のphaオペロン中に導入し、さらに染色体上のphaP1Cn下流にphaJAcを挿入したNSDG-P1CnJ株は、大豆油炭素源から3HHx分率が6.5mol%のP(3HB-co-3HHx)を合成した。NSDG-P1CnJ株ではPHA重合酵素がA.caviae株由来であり、主要顆粒結合タンパク質がC.necator株由来と、互いに異なっている。一方で、染色体上のphaP1Cnを、phaCNSDGと同じA.caviae株由来のphaPAcとしたNSDG-PAcJ株では、PHA生産量がやや増加しつつ、3HHx分率が6.5mol%から9.3mol%に増加した。 phaC NSDG was introduced into pha operon on the chromosome, further NSDG-P1 Cn J strain was inserted PhaJ Ac to phaP1 Cn downstream on the chromosome, soy oil carbon source 3HHx fraction of 6.5 mol% P ( 3HB-co-3HHx) was synthesized. In NSDG-P1 Cn J strain, PHA synthase is A.I. derived from the Caviae strain and the major granule-binding protein is C.I. It is different from the necator strain. On the other hand, phaP1 Cn on the chromosome is converted to the same A.P. In NSDG-P Ac J strain, which was phaP Ac derived from Caviae strain, the 3HHx fraction increased from 6.5 mol% to 9.3 mol% while the PHA production amount increased slightly.
実施例3:NSDG-P1CnCJ株及びNSDG-PAcCJ株の作製とPHA生合成
 NSDG-P1CnJ株のphaP1CnとphaJAcの間、及びNSDG-PAcJ株のphaPAcとphaJAcの間にさらに1コピーのphaCNSDGが挿入されたNSDG-P1CnCJ株、及びNSDG-PAcCJ株を作製し、そのPHA生合成能について検討した。具体的には以下の通りである。
Example 3: Production of NSDG-P1 Cn CJ strain and NSDG-P Ac CJ strain and biosynthesis of PHA Between NSDG-P1 Cn J strain phaP1 Cn and phaJ Ac , and NSDG-P Ac J strain phaP Ac and phaJ prepared NSDG-P1 Cn CJ Corporation further one copy of phaC NSDG is inserted between the Ac, and NSDG-P Ac CJ strains were examined for their PHA biosynthesis ability. Specifically, it is as follows.
 実施例1(6)で得られた組換えプラスミドpK18ms-P1ud-P1CnCJを用いて、NSDG株を同様に接合伝達により形質転換した。得られたポップアウト株のコロニーの中から染色体上のphaP1Cnの下流にphaCNSDG-phaJAcが挿入されたクローンをPCR法によって選抜し、これをNSDG-P1ud-P1CnCJ株とした。同様に、実施例1(4)で得られた組換えプラスミドpK18ms-P1ud-PAcCJを用いて、NSDG株を同様に接合伝達により形質転換した。得られたポップアウト株のコロニーの中から染色体上のphaP1CnがphaPAcに置換され、さらにその下流にphaCNSDG-phaJAcが挿入されたクローンをPCR法によって選抜し、これをNSDG-PAcCJ株とした。 Using the recombinant plasmid pK18ms-P1ud-P1 Cn CJ obtained in Example 1 (6), NSDG strain was similarly transformed by conjugation transfer. A clone in which phaC NSDG -phaJ Ac was inserted downstream of phaP1 Cn on the chromosome was selected from the obtained popout colonies by PCR, and this was designated NSDG-P1ud-P1 Cn CJ strain. Similarly, NSDG strain was similarly transformed by conjugative transfer using the recombinant plasmid pK18ms-P1ud-P Ac CJ obtained in Example 1 (4). PhaP1 Cn on the chromosome from the colonies resulting pop-out line was replaced in phaP Ac, further Clones phaC NSDG -phaJ Ac is inserted into the downstream were selected by PCR, which NSDG-P Ac CJ strain was designated.
 実施例2と同様に、上記組換え株のPHA生産について検討した。下記に、作製した組換え株の染色体上の関連遺伝子の構成、及びPHA生産に関する結果を表2に示す。 In the same manner as in Example 2, the PHA production of the above recombinant strain was examined. Table 2 shows the composition of related genes on the chromosome of the prepared recombinant strain and the results relating to PHA production.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 phaCNSDGを染色体上のphaオペロン中に導入し、染色体上のphaP1Cn下流にさらに1コピーのphaCNSDGとphaJAcを挿入したNSDG-P1CnCJ株は、大豆油炭素源から3HHx分率が10.5mol%のP(3HB-co-3HHx)を合成した。NSDG-P1CnCJ株ではPHA重合酵素がA.caviae株由来であり、主要顆粒結合タンパク質がC.necator株由来と、互いに異なっている。一方で、染色体上のphaP1Cnを、phaCNSDGと同じA.caviae株由来のphaPAcとしたNSDG-PAcCJ株ではPHA生産量がやや増加しつつ、3HHx分率が10.5mol%から17.2mol%に増加した。 The phaC NSDG introduced into pha operon on the chromosome, NSDG-P1 Cn CJ strains inserting the phaC NSDG and PhaJ Ac further 1 copy phaP1 Cn downstream on the chromosome, 3HHx fraction from soybean carbon source 10 .5 mol% P (3HB-co-3HHx) was synthesized. In NSDG-P1 Cn CJ strain, PHA synthase is A.I. derived from the Caviae strain and the major granule-binding protein is C.I. It is different from the necator strain. On the other hand, phaP1 Cn on the chromosome is converted to the same A.P. In NSDG-P Ac CJ strain, which is phaP Ac derived from Caviae strain, the 3HHx fraction increased from 10.5 mol% to 17.2 mol% while the PHA production amount increased slightly.
実施例4:MF02-PAc株の作製とPHA生合成
 以前に作製されたMF02株は、染色体phaオペロン中にphaCNSDG-phaJAcを導入した株であり、大豆油から4.6mol% 3HHxの共重合体を生合成する(特許文献6)。この株を親株として主要顆粒結合タンパク質遺伝子phaP1CnをphaPAcに置換したMF02-PAc株を作製し、そのPHA生合成能について検討した。具体的には以下の通りである。
Example 4: Production of MF02-P Ac strain and PHA biosynthesis The previously produced MF02 strain is a strain in which phaC NSDG -phaJ Ac is introduced into the chromosome pha operon, and 4.6 mol% 3HHx from soybean oil. A copolymer is biosynthesized (Patent Document 6). Using this strain as a parent strain, a MF02-P Ac strain in which the main granule-binding protein gene phaP1 Cn was replaced with phaP Ac was prepared, and its PHA biosynthesis ability was examined. Specifically, it is as follows.
 実施例1(3)で得られた組換えプラスミドpK18ms-P1ud-PAcを用いて、MF02株を同様に接合伝達により形質転換した。得られたポップアウト株のコロニーの中から染色体上のphaP1CnがphaPAcに置換されたクローンをPCR法によって選抜し、これをMF02-PAc株とした。 Using the recombinant plasmid pK18ms-P1ud-P Ac obtained in Example 1 (3), the MF02 strain was similarly transformed by conjugation transfer. A clone in which phaP1 Cn on the chromosome was replaced by phaP Ac was selected from the obtained popout colonies by PCR, and this was designated as MF02-P Ac strain.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 その結果、PHA重合酵素と主要顆粒結合タンパク質が異なる由来であるMF02株は大豆油炭素源から3HHx分率が4.6mol%のP(3HB-co-3HHx)を合成した。MF02株染色体上のphaP1Cnを、phaCNSDGと同じ由来のphaPAcに置換することで、PHA重合酵素と主要顆粒結合タンパク質の由来を同じA.caviae由来としたMF02-PAc株ではPHA生産量がやや増加しつつ、3HHx分率が4.6mol%から6.4mol%に増加した。 As a result, the MF02 strain, which is derived from different PHA synthase and main granule binding protein, synthesized P (3HB-co-3HHx) having a 3HHx fraction of 4.6 mol% from a soybean oil carbon source. By replacing phaP1 Cn on the chromosome of MF02 strain with phaP Ac derived from the same as phaC NSDG , the origin of the PHA synthase and the main granule binding protein is the same In the MF02-P Ac strain derived from Caviae, the 3HHx fraction increased from 4.6 mol% to 6.4 mol% while the PHA production amount increased slightly.
 PHA重合酵素と主要顆粒結合タンパク質の由来が異なる場合と比較すると、両者の由来が同じ微生物種である株ではPHA生産量を向上させたうえで、3HHx分率を1.4~1.7倍に増加させることができた。特に、NSDG-PAcJ株では適度な結晶化度と柔軟性を示すと期待できる約9mol% 3HHx含有共重合PHAを従来株より高い効率で生合成可能である。またNSDG-PAcCJ株では17.2mol%という高い3HHx分率のP(3HB-co-3HHx)を効率的に生合成する。このような高い3HHx分率の共重合PHAは高軟質性バイオプラスチックとしての新規用途の可能性がある。 Compared to the case where the origins of PHA synthase and the main granule binding protein are different, the strain with the same microbial species from both has improved the PHA production amount, and the 3HHx fraction is 1.4 to 1.7 times Could be increased. In particular, the NSDG-P Ac J strain can biosynthesize about 9 mol% 3HHx-containing copolymer PHA that can be expected to show an appropriate degree of crystallinity and flexibility, compared to conventional strains. NSDG-P Ac CJ strain efficiently biosynthesizes P (3HB-co-3HHx) with a high 3HHx fraction of 17.2 mol%. Such a copolymerized PHA having a high 3HHx fraction has a potential for new applications as a highly flexible bioplastic.
 PHA生産菌の顆粒結合タンパク質遺伝子座の改変を行うことにより、優れた共重合ポリヒドロキシアルカン酸生産株及び高3HHx分率の共重合ポリヒドロキシアルカン酸の効率的な製造方法を提供し、さらに、モノマーユニットの組成比を制御する方法を提供することができる。 By modifying the granule-binding protein locus of the PHA-producing bacterium, an excellent copolymerized polyhydroxyalkanoic acid producing strain and a method for efficiently producing a copolymerized polyhydroxyalkanoic acid having a high 3HHx fraction are provided. A method for controlling the composition ratio of the monomer units can be provided.
 本明細書に引用する全ての刊行物及び特許文献は、参照により全体として本明細書中に援用される。なお、例示を目的として、本発明の特定の実施形態を本明細書において説明したが、本発明の精神及び範囲から逸脱することなく、種々の改変が行われる場合があることは、当業者に容易に理解されるであろう。 All publications and patent literature cited herein are hereby incorporated by reference in their entirety. While specific embodiments of the invention have been described herein for purposes of illustration, it will be apparent to those skilled in the art that various modifications may be made without departing from the spirit and scope of the invention. It will be easily understood.

Claims (8)

  1.  1つ以上の広基質特異性のポリヒドロキシアルカン酸(PHA)重合酵素をコードする遺伝子を該遺伝子の生物種と異なる宿主に導入することで共重合PHA生産能を付与した組換え株において、該組換え株で主要なPHA顆粒結合タンパク質をコードする遺伝子を、上記PHA重合酵素をコードする遺伝子と同じ生物種に由来するPHA顆粒結合タンパク質をコードする遺伝子とすることを含む、共重合PHA中のモノマーユニットの組成比を制御する方法。 In a recombinant strain imparted with the ability to produce copolymerized PHA by introducing a gene encoding one or more broad substrate specific polyhydroxyalkanoic acid (PHA) polymerizing enzymes into a host different from the species of the gene, A gene encoding a major PHA granule-binding protein in a recombinant strain, which is a gene encoding a PHA granule-binding protein derived from the same species as the gene encoding the PHA-polymerizing enzyme. A method for controlling the composition ratio of the monomer units.
  2.  共重合PHA生産能を付与した組換え株が、1つ以上の広基質特異性のPHA重合酵素をコードする遺伝子と、さらに1つ以上のR体特異的エノイル-CoAヒドラターゼ遺伝子が導入された株である、請求項1に記載の方法。 A recombinant strain imparted with the ability to produce copolymerized PHA introduced with one or more genes encoding a broad substrate-specific PHA polymerase and one or more R-isomer-specific enoyl-CoA hydratase genes The method of claim 1, wherein
  3.  共重合PHAが、ポリ(3-ヒドロキシブタン酸-co-3-ヒドロキシヘキサン酸)であり、共重合PHA中の3-ヒドロキシヘキサン酸の分率を増加させる、請求項1又は2に記載の方法。 The process according to claim 1 or 2, wherein the copolymerized PHA is poly (3-hydroxybutanoic acid-co-3-hydroxyhexanoic acid) and increases the fraction of 3-hydroxyhexanoic acid in the copolymerized PHA. .
  4.  広基質特異性のPHA重合酵素及びPHA顆粒結合タンパク質が、アエロモナス・キャビエ(A.caviae)株由来である、請求項1~3のいずれか1項に記載の方法。 The method according to any one of claims 1 to 3, wherein the broad substrate-specific PHA polymerizing enzyme and the PHA granule-binding protein are derived from an Aeromonas caviae strain.
  5.  宿主がクプリアヴィダス・ネカトール(C.necator)株由来である、請求項1~4のいずれか1項に記載の方法。 The method according to any one of claims 1 to 4, wherein the host is derived from a C. necator strain.
  6.  広基質特異性のPHA重合酵素をコードする遺伝子の1つが、
    (a)配列番号1で表される塩基配列を含む核酸;又は
    (b)配列番号1で表される塩基配列を含む核酸とストリンジェントな条件下でハイブリダイズし、かつPHAを合成する活性を有するタンパク質をコードする核酸
    からなり;及び
     置換に使用されるPHA顆粒結合タンパク質をコードする遺伝子が、
    (a)配列番号2で表される塩基配列を含む核酸;又は
    (b)配列番号2で表される塩基配列を含む核酸とストリンジェントな条件下でハイブリダイズし、かつPHA顆粒に結合する活性を有するタンパク質をコードする核酸
    からなる、請求項1~5のいずれか1項に記載の方法。
    One of the genes encoding a broad substrate specificity PHA synthase is
    (A) a nucleic acid comprising the base sequence represented by SEQ ID NO: 1; or (b) an activity of hybridizing with a nucleic acid comprising the base sequence represented by SEQ ID NO: 1 under stringent conditions and synthesizing PHA. Comprising a nucleic acid encoding a protein having; and a gene encoding a PHA granule binding protein used for replacement,
    (A) a nucleic acid comprising the nucleotide sequence represented by SEQ ID NO: 2; or (b) an activity that hybridizes with a nucleic acid comprising the nucleotide sequence represented by SEQ ID NO: 2 under stringent conditions and binds to PHA granules. The method according to any one of claims 1 to 5, which comprises a nucleic acid encoding a protein having
  7.  R体特異的エノイル-CoAヒドラターゼ遺伝子が、
    (a)配列番号3で表される塩基配列を含む核酸;又は
    (b)配列番号3で表される塩基配列を含む核酸とストリンジェントな条件下でハイブリダイズし、かつ脂肪酸β-酸化系中間体を(R)-3-ヒドロキシアシル-CoAに変換する活性を有するタンパク質をコードする核酸
    からなる、請求項1~6のいずれか1項に記載の方法。
    The R body specific enoyl-CoA hydratase gene is
    (A) a nucleic acid comprising the base sequence represented by SEQ ID NO: 3; or (b) hybridizing with a nucleic acid comprising the base sequence represented by SEQ ID NO: 3 under stringent conditions and in the middle of the fatty acid β-oxidation system The method according to any one of claims 1 to 6, comprising a nucleic acid encoding a protein having an activity of converting the body into (R) -3-hydroxyacyl-CoA.
  8.  広基質特異性のPHA重合酵素をコードする遺伝子の1つが、
    (a)配列番号1で表される塩基配列を含む核酸;又は
    (b)配列番号1で表される塩基配列を含む核酸とストリンジェントな条件下でハイブリダイズし、かつPHAを合成する活性を有するタンパク質をコードする核酸
    からなり;
     置換に使用されるPHA顆粒結合タンパク質をコードする遺伝子の1つが、
    (a)配列番号2で表される塩基配列を含む核酸;又は
    (b)配列番号2で表される塩基配列を含む核酸とストリンジェントな条件下でハイブリダイズし、かつPHA顆粒に結合する活性を有するタンパク質をコードする核酸
    からなり;及び
     R体特異的エノイル-CoAヒドラターゼ遺伝子が、
    (a)配列番号3で表される塩基配列を含む核酸;又は
    (b)配列番号3で表される塩基配列を含む核酸とストリンジェントな条件下でハイブリダイズし、かつ脂肪酸β-酸化系中間体を(R)-3-ヒドロキシアシル-CoAに変換する活性を有するタンパク質をコードする核酸
    からなる、請求項1~7のいずれか1項に記載の方法。
    One of the genes encoding a broad substrate specificity PHA synthase is
    (A) a nucleic acid comprising the base sequence represented by SEQ ID NO: 1; or (b) an activity of hybridizing with a nucleic acid comprising the base sequence represented by SEQ ID NO: 1 under stringent conditions and synthesizing PHA. Consisting of a nucleic acid encoding a protein having:
    One of the genes encoding PHA granule binding proteins used for replacement is
    (A) a nucleic acid comprising the nucleotide sequence represented by SEQ ID NO: 2; or (b) an activity that hybridizes with a nucleic acid comprising the nucleotide sequence represented by SEQ ID NO: 2 under stringent conditions and binds to PHA granules. And a R-form specific enoyl-CoA hydratase gene,
    (A) a nucleic acid comprising the base sequence represented by SEQ ID NO: 3; or (b) hybridizing with a nucleic acid comprising the base sequence represented by SEQ ID NO: 3 under stringent conditions and in the middle of the fatty acid β-oxidation system The method according to any one of claims 1 to 7, which comprises a nucleic acid encoding a protein having an activity of converting the body into (R) -3-hydroxyacyl-CoA.
PCT/JP2015/056201 2014-03-04 2015-03-03 Production method for copolymer polyester using recombinant strain having modified protein locus for polyester granule binding WO2015133468A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014041787A JP2017077184A (en) 2014-03-04 2014-03-04 Method for producing copolymerized polyester using recombinant strain with modified locus of polyester granule-binding protein
JP2014-041787 2014-03-04

Publications (1)

Publication Number Publication Date
WO2015133468A1 true WO2015133468A1 (en) 2015-09-11

Family

ID=54055274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056201 WO2015133468A1 (en) 2014-03-04 2015-03-03 Production method for copolymer polyester using recombinant strain having modified protein locus for polyester granule binding

Country Status (2)

Country Link
JP (1) JP2017077184A (en)
WO (1) WO2015133468A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017056442A1 (en) * 2015-09-28 2017-04-06 株式会社カネカ Microorganism having pha synthase-coding genes and method for producing pha using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114381415B (en) 2022-03-22 2022-11-15 深圳蓝晶生物科技有限公司 Gene recombination strain for high-yield PHA and construction method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10108682A (en) * 1996-08-14 1998-04-28 Rikagaku Kenkyusho Polyester polymerase gene and production of polyester
WO2008090873A1 (en) * 2007-01-24 2008-07-31 Kaneka Corporation Process for producing polyhydroxyalkanoate
WO2009145164A1 (en) * 2008-05-26 2009-12-03 株式会社カネカ Microorganism capable of producing improved polyhydroxyalkanoate and method of producing polyhydroxyalkanoate by using the same
WO2011105379A1 (en) * 2010-02-26 2011-09-01 国立大学法人東京工業大学 PROCESS FOR PRODUCTION OF POLYHYDROXYALKANOIC ACID USING GENETICALLY MODIFIED MICROORGANISM HAVING ENOYL-CoA HYDRATASE GENE INTRODUCED THEREIN
JP2013042697A (en) * 2011-08-24 2013-03-04 Tokyo Institute Of Technology Variant polyhydroxyalkanoic acid-coupled protein and production method of polyhydroxyalkanoic acid using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10108682A (en) * 1996-08-14 1998-04-28 Rikagaku Kenkyusho Polyester polymerase gene and production of polyester
WO2008090873A1 (en) * 2007-01-24 2008-07-31 Kaneka Corporation Process for producing polyhydroxyalkanoate
WO2009145164A1 (en) * 2008-05-26 2009-12-03 株式会社カネカ Microorganism capable of producing improved polyhydroxyalkanoate and method of producing polyhydroxyalkanoate by using the same
WO2011105379A1 (en) * 2010-02-26 2011-09-01 国立大学法人東京工業大学 PROCESS FOR PRODUCTION OF POLYHYDROXYALKANOIC ACID USING GENETICALLY MODIFIED MICROORGANISM HAVING ENOYL-CoA HYDRATASE GENE INTRODUCED THEREIN
JP2013042697A (en) * 2011-08-24 2013-03-04 Tokyo Institute Of Technology Variant polyhydroxyalkanoic acid-coupled protein and production method of polyhydroxyalkanoic acid using the same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HAN JING ET AL.: "Engineered Aeromonas hydrophila for enhanced production of poly(3- hydroxybutyrate-co-3-hydroxyhexanoate) with alterable monomers composition", FEMS MICROBIOLOGY, vol. 239, no. 1, 2004, pages 195 - 201, XP004579971, ISSN: 0378-1097 *
KAZUNORI USHIMARU ET AL.: "An in vitro study of PHA synthase activation by PHA binding protein", ABSTRACTS OF THE ANNUAL MEETING OF THE SOCIETY FOR BIOTECHNOLOGY, JAPAN, vol. 64, 2012, pages 26 *
KUCHTA KENNY ET AL.: "Studies on the Influence of Phasins on Accumulation and Degradation of PHB and Nanostructure of PHB Granules in Ralstonia eutropha H16", BIOMACROMOLECULES, vol. 8, no. 2, 2007, pages 657 - 662, XP055223102, ISSN: 1525-7797 *
TIAN SHU-JUN ET AL.: "Effect of over- expression of phasin gene from Aeromonas hydrophila on biosynthesis of copolyesters of 3-hydroxybutyrate and 3-hydroxyhexanoate", FEMS MICROBIOL. LETT., vol. 244, no. 1, 2005, pages 19 - 25, XP027871660, ISSN: 0378-1097 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017056442A1 (en) * 2015-09-28 2017-04-06 株式会社カネカ Microorganism having pha synthase-coding genes and method for producing pha using same
JPWO2017056442A1 (en) * 2015-09-28 2018-07-26 株式会社カネカ Microorganism having gene encoding PHA synthase and method for producing PHA using the same
US10865429B2 (en) 2015-09-28 2020-12-15 Kaneka Corporation Microorganism having PHA synthase-coding genes and method for producing PHA using same

Also Published As

Publication number Publication date
JP2017077184A (en) 2017-04-27

Similar Documents

Publication Publication Date Title
Mitra et al. Current developments on polyhydroxyalkanoates synthesis by using halophiles as a promising cell factory
JP5807878B2 (en) Method for producing polyhydroxyalkanoic acid by recombinant microorganism introduced with enoyl-CoA hydratase gene
JP6755515B2 (en) Method for producing copolymerized polyhydroxyalkanoic acid from sugar raw material
JP2007259708A (en) New method for producing biodegradable polyester
EP2242845A2 (en) Recombinant microorganism having a producing ability of polylactate or its copolymers and method for preparing polylactate or its copolymers using the same
WO2008010296A1 (en) Microorganism with replaced gene and process for producing polyester using the same
JP4960033B2 (en) Method for producing copolymerized polyester using microorganisms having reduced enzyme activity
Hang et al. PCR cloning of polyhydroxyalkanoate biosynthesis genes from Burkholderia caryophylli and their functional expression in recombinant Escherichia coli
WO2015133468A1 (en) Production method for copolymer polyester using recombinant strain having modified protein locus for polyester granule binding
Lu et al. Molecular cloning of polyhydroxyalkanoate synthesis operon from Aeromonashydrophila and its expression in Escherichia coli
JP2008086238A (en) Method for producing polyhydroxyalkanoate
JPWO2008090873A1 (en) Process for producing polyhydroxyalkanoate
WO2014133088A1 (en) Production method for copolymer polyhydroxyalkanoate using genetically modified strain of fatty acid β-oxidation pathway
US10876140B2 (en) Method for producing polyhydroxyalkanoic acid, and microbes
JP2009207420A (en) Method for producing polyhydroxyalkanoate copolymer using methanol as raw material
Lu et al. Molecular cloning and functional analysis of two polyhydroxyalkanoate synthases from two strains of Aeromonas hydrophila spp.
Davis et al. Role of (R)-specific enoyl coenzyme A hydratases of Pseudomonas sp in the production of polyhydroxyalkanoates
JP5103619B2 (en) Production method of copolyester
JPWO2006101176A1 (en) Microorganisms that accumulate ultra high molecular weight polyester
Galehdari et al. Cloning of poly (3-Hydroxybutyrate) synthesis genes from Azotobacter vinelandii into Escherichia coli
JP2009225775A (en) Method of producing polyhydroxyalkanoic acid
JP2005333933A (en) New expression plasmid
JP2023128089A (en) PRODUCTION METHOD OF POLY(3-HYDROXY BUTANOIC ACID-co-4-HYDROXY BUTANOIC ACID) COPOLYMERIZATION
TWI404799B (en) The application of pha synthetase gene phar and its gene product from extreme halophilic archaea in bioplastic production
TWI404800B (en) The application of pha synthetase gene phat and its gene product from extreme halophilic archaea in bioplastic production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15758745

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15758745

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP