WO2015133219A1 - Semiconductor integrated circuit device and sensing module equipped with same - Google Patents
Semiconductor integrated circuit device and sensing module equipped with same Download PDFInfo
- Publication number
- WO2015133219A1 WO2015133219A1 PCT/JP2015/053259 JP2015053259W WO2015133219A1 WO 2015133219 A1 WO2015133219 A1 WO 2015133219A1 JP 2015053259 W JP2015053259 W JP 2015053259W WO 2015133219 A1 WO2015133219 A1 WO 2015133219A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- circuit
- signal
- power supply
- terminal
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H11/00—Emergency protective circuit arrangements for preventing the switching-on in case an undesired electric working condition might result
- H02H11/002—Emergency protective circuit arrangements for preventing the switching-on in case an undesired electric working condition might result in case of inverted polarity or connection; with switching for obtaining correct connection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H3/00—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
- H02H3/02—Details
- H02H3/04—Details with warning or supervision in addition to disconnection, e.g. for indicating that protective apparatus has functioned
Definitions
- the present invention relates to a semiconductor integrated circuit device having a power supply terminal, a ground terminal, and a signal terminal, and in particular, a semiconductor having a function of protecting a circuit from an overcurrent or the like even when a wiring is erroneously connected to these terminals.
- the present invention relates to an integrated circuit device.
- sensors that detect physical quantities, for example, those composed of passive devices such as variable resistors, and sensors composed of sensor elements and IC chips.
- the sensor is connected to an external device by three lines of a power line, a ground line, and a signal line, and receives power supply from the external apparatus and performs control related to acquisition of sensor measurement values and sensing.
- FIG. 10 is a diagram showing a connection method between a general sensor and a device.
- a cable harness 103 with a connector is often used for connection between the sensor 101 and the device 102.
- there is a signal line voltage as a method of notifying the device 102 of an abnormal state when the connection between the sensor 101 and the device 102 is incomplete or when an abnormality occurs in the sensor 101.
- “effective range” indicates a voltage range in a normal state
- “error range” indicates a voltage range in an abnormal state. This method does not require a special signal line for notifying an abnormal condition, and is very effective for a digital signal or an analog signal.
- the signal line may be connected to the power supply voltage by the pull-up resistor 104 on the device 102 side, or the signal line may be connected to the ground by the pull-down resistor. Many. The reason is that, as shown in FIG. 12, when the cable is disconnected, the voltage of the signal line becomes equal to the power supply voltage or the ground potential and enters the error range, so that the abnormal state can be detected in the device 102. .
- the senor 101 is a variable resistor which is a passive element.
- An increasing number of sensor modules are configured with electronic circuits (such as ICs) by another means for realizing the function of variable resistors (the function of converting position into voltage) in a non-contact manner.
- the power line, ground line, and signal line may be short-circuited or disconnected in any combination.
- the connector of the sensor 101 may be mistakenly connected to a connector with a different voltage level.
- the sensor module IC has an overcurrent. It is desirable not to flow. In such an abnormal state, it is desirable to be able to notify the connected device of the abnormal state.
- the present invention has been made in view of such circumstances, and an object of the present invention is to provide a current that flows from these terminals to the power supply terminal, the ground terminal, and the signal terminal even if an improper voltage is applied due to an incorrect connection of wiring or the like. It is an object to provide a semiconductor integrated circuit device capable of protecting a circuit by suppressing the above-described problem and notifying an external device of such an abnormal state, and a sensor module including the semiconductor integrated circuit device.
- a semiconductor integrated circuit device provides a ground terminal connected to a ground potential, a power supply terminal for inputting a power supply voltage, a signal terminal, and outputs or inputs a signal at the signal terminal,
- a signal circuit that sets an output impedance or input impedance at a signal terminal to a high impedance state according to a control signal, and determines whether or not the voltage of the power supply terminal with reference to the voltage of the ground terminal is within a normal range
- a first determination circuit configured to determine whether a voltage of the signal terminal with respect to a voltage of the ground terminal is within a normal range that is lower than the voltage of the power supply terminal and higher than the voltage of the ground terminal; When the determination circuit and the first determination circuit determine that the voltage of the power supply terminal is not within the normal range, or in the second determination circuit
- a control signal output circuit for outputting the control signal for setting the output impedance or input impedance of the signal terminal to a high impedance state when it is determined that the voltage of the signal terminal is not within
- the highest voltage among the voltage of the power supply terminal, the voltage of the ground terminal, and the voltage of the signal terminal is selected by the first voltage selection circuit, and the selected voltage is entirely Applied to the bulk of the P-type MOS transistor included in the circuit.
- the relative voltage level relationship at these terminals becomes abnormal due to misconnection of wirings, no current flows through the parasitic diode formed in the bulk of the P-type MOS transistor.
- the output impedance or input impedance of the signal circuit at the signal terminal is in a high impedance state. Therefore, when an abnormal state such as erroneous wiring, disconnection, or short circuit occurs, the occurrence of the abnormal state is notified to an external device as the high impedance state.
- the first voltage selection circuit may supply the selected voltage as a power supply voltage to the signal circuit, the first determination circuit, the second determination circuit, and the control signal output circuit.
- the signal circuit, the first determination circuit, the second determination circuit, and the control signal output circuit are supplied with the voltage of the ground terminal. Since a high power supply voltage is supplied, the operation of these circuits may be able to notify an external device of an abnormal state.
- a semiconductor integrated circuit device provides a ground terminal connected to a ground potential, a power supply terminal for inputting a power supply voltage, a signal terminal, and outputs or inputs a signal at the signal terminal,
- a signal circuit that sets an output impedance or input impedance at a signal terminal to a high impedance state according to a control signal, and determines whether or not the voltage of the power supply terminal with reference to the voltage of the ground terminal is within a normal range
- a first determination circuit configured to determine whether a voltage of the signal terminal with respect to a voltage of the ground terminal is within a normal range that is lower than the voltage of the power supply terminal and higher than the voltage of the ground terminal; When the determination circuit and the first determination circuit determine that the voltage of the power supply terminal is not within the normal range, or in the second determination circuit
- a control signal output circuit for outputting the control signal for setting the output impedance or input impedance of the signal terminal to a high impedance state when it is determined that the voltage of the signal terminal is not within
- a two-voltage selection circuit and a regulator circuit that converts a power supply voltage input at the power supply terminal into an internal power supply voltage and supplies the internal power supply voltage to the internal circuit.
- the first voltage selection circuit applies the selected voltage to a bulk of a P-type MOS transistor included in the signal circuit, the second determination circuit, and the control signal output circuit.
- the second voltage selection circuit applies the selected voltage to a bulk of a P-type MOS transistor included in the first determination circuit and the regulator circuit.
- the highest voltage among the voltage of the power supply terminal, the voltage of the ground terminal, and the voltage of the signal terminal is selected by the first voltage selection circuit, and the selected voltage is The signal is applied to the bulk of the P-type MOS transistor included in the signal circuit, the second determination circuit, and the control signal output circuit.
- a high voltage is selected by the second voltage selection circuit among the voltage at the ground terminal and the voltage at the power supply terminal, and the selected voltage is a P-type MOS transistor included in the first determination circuit and the regulator circuit. Applied to the bulk. As a result, even when the relative voltage level relationship at these terminals becomes abnormal due to misconnection of wirings, no current flows through the parasitic diode formed in the bulk of the P-type MOS transistor.
- the output impedance or input impedance of the signal circuit at the signal terminal is in a high impedance state. Therefore, when an abnormal state such as erroneous wiring, disconnection, or short circuit occurs, the occurrence of the abnormal state is notified to an external device as the high impedance state.
- the first voltage selection circuit may supply the selected voltage as a power supply voltage to the signal circuit, the second determination circuit, and the control signal output circuit
- the second voltage selection circuit includes the first voltage selection circuit.
- the selected voltage may be supplied as a power supply voltage to one determination circuit.
- the signal circuit, the first determination circuit, the second determination circuit, and the control signal output circuit are supplied with the voltage of the ground terminal. Since a high power supply voltage is supplied, the operation of these circuits may be able to notify an external device of an abnormal state.
- the internal circuit may include a circuit that records a signal indicating a determination result output from at least one of the first determination circuit, the second determination circuit, and the control signal output circuit. Thereby, more detailed information regarding the abnormal state is acquired.
- the first determination circuit generates a reference voltage that is constant with respect to the voltage of the voltage dividing circuit including a plurality of resistors connected in series between the ground terminal and the power supply terminal.
- a reference voltage generating circuit for comparing a plurality of detection voltages divided by different voltage dividing ratios in the voltage dividing circuit with the reference voltage, and the ground terminal based on a comparison result of the comparison circuit
- a determination signal output circuit that outputs a first determination signal indicating a determination result as to whether or not the voltage of the power supply terminal is within a normal range.
- the semiconductor integrated circuit device may include a control terminal that receives a power supply voltage common to the power supply terminal during a normal operation, and receives the ground potential or is opened during a non-normal operation.
- the plurality of resistors included in the voltage dividing circuit are connected in series between the ground terminal and the control terminal instead of being connected in series between the ground terminal and the power supply terminal. It's okay.
- the first determination circuit determines that the voltage of the power supply terminal is not within the normal range, and the output impedance or input impedance of the signal circuit at the signal terminal is in a high impedance state.
- the reference voltage generation circuit outputs a status signal indicating whether or not the reference voltage is generated, and the comparison circuit indicates that the status signal indicating that the reference voltage is not generated is the reference voltage generation circuit. Is output from the first determination signal indicating that the voltage of the power supply terminal is within a normal range. As a result, when there is a possibility that the erroneous first determination signal is output based on the reference voltage that is not normal, the first determination signal indicating that the voltage of the power supply terminal is within the normal range is output. It will not be done.
- the comparison circuit outputs a signal indicating that the voltage of the power supply terminal is higher than the upper limit of the normal range.
- the second detection voltage higher than the first detection voltage in the plurality of detection voltages changes from a state higher than the reference voltage to a lower state
- the voltage of the power supply terminal is lower than the upper limit of the normal range
- a first hysteresis comparator that outputs a signal
- a third detection voltage that is higher than the second detection voltage in the plurality of detection voltages changes from a state that is lower than the reference voltage to a state that is higher than the reference voltage.
- the fourth detection voltage higher than the third detection voltage in the plurality of detection voltages is higher than the reference voltage.
- the voltage of the power supply terminal may comprise a second hysteresis comparator for outputting a signal indicating that the lower limit of the normal range.
- the determination signal output circuit outputs a signal indicating that the voltage of the power supply terminal is higher than the upper limit of the normal range in the first hysteresis comparator, or the voltage of the power supply terminal in the second hysteresis comparator.
- the first determination signal indicating that the voltage of the power supply terminal is not within the normal range may be output.
- a sensor module includes a sensor unit and the semiconductor integrated circuit device that outputs a signal corresponding to a sensing result of the sensor unit from the signal terminal.
- the present invention even if an improper voltage is applied to the power supply terminal, the ground terminal, and the signal terminal due to misconnection of the wiring, the current flowing from these terminals can be suppressed to protect the circuit, and such It is possible to notify an external device that there is an abnormal state.
- FIG. 1 is a diagram illustrating an example of a configuration of a semiconductor integrated circuit device according to a first embodiment. It is a figure which shows an example of a structure of a hysteresis comparator. It is a figure which shows an example of the circuit which determines whether a signal voltage exists in a normal range. It is a figure which shows an example of a structure of a voltage selection circuit. It is a figure for demonstrating the parasitic diode of a P-type MOS transistor. 6A shows a structure of a P-type MOS transistor, and FIG. 6B shows an example of a circuit including a P-type MOS transistor.
- FIG. 1 is a diagram illustrating an example of a configuration of a sensor module 1 according to an embodiment of the present invention.
- a sensor module 1 shown in FIG. 1 includes a sensor unit 6 that detects a physical quantity such as a position and speed as an electrical signal, and a semiconductor integrated circuit device 5 that outputs a signal (sensing signal) corresponding to a sensing result of the sensor unit 6.
- the sensor unit 6 may be a component independent of the semiconductor integrated circuit device 5 or may be formed on the same semiconductor chip as the semiconductor integrated circuit device 5.
- the semiconductor integrated circuit device 5 of the sensor module 1 includes three terminals (a power supply terminal T1, a ground terminal T2, and a signal terminal T3), and each terminal corresponds to a corresponding terminal (T21 to T23) of the external device 2. Connected. In the example of FIG. 1, the sensor module 1 and the device 2 are connected via a cable harness 3 with a connector. Even if an incorrect voltage is applied to the three terminals (the power supply terminal T1, the ground terminal T2, and the signal terminal T3) due to miswiring, disconnection, or short circuit inside the cable harness 3, the semiconductor integrated circuit device 5 Prevent overcurrent from flowing through the circuit.
- the semiconductor integrated circuit device 5 has an output impedance at the signal terminal T3 when an improper voltage is applied to the three terminals (power supply terminal T1, ground terminal T2, signal terminal T3) due to miswiring, disconnection, or short circuit. Set to high impedance state.
- the signal terminal T23 of the device 2 since the signal terminal T23 of the device 2 is connected to the power supply terminal T21 via the pull-up resistor 4, when the signal terminal T3 of the semiconductor integrated circuit device 5 is in a high impedance state, the signal terminal T23 The voltage rises to the power supply voltage VDD. If the voltage at the signal terminal T23 is included in the error range close to the power supply voltage VDD, the device 2 determines that the semiconductor integrated circuit device 5 of the sensor module 1 is in an abnormal state in which an incorrect voltage is applied.
- the pull-up resistor 4 in FIG. 1 may be replaced with a pull-down resistor connected between the signal terminal T23 and the ground terminal T12.
- the signal terminal T3 of the semiconductor integrated circuit device 5 when the signal terminal T3 of the semiconductor integrated circuit device 5 is in a high impedance state, the voltage of the signal terminal T23 of the device 2 decreases to the ground potential VSS.
- the error range for determining an abnormal state in the device 2 is set near the ground potential VSS.
- FIG. 2 is a diagram illustrating an example of the configuration of the semiconductor integrated circuit device 5 according to the first embodiment.
- the semiconductor integrated circuit device 5 shown in FIG. 2 includes a power supply terminal T1, a ground terminal T2, a signal terminal T3, a signal circuit 10, determination circuits 20 and 30, a control signal output circuit 40, and a voltage selection circuit 51.
- the power terminal T1 is an example of a power terminal in the present invention.
- the ground terminal T2 is an example of the ground terminal in the present invention.
- the signal terminal T3 is an example of a signal terminal in the present invention.
- the signal circuit 10 is an example of a signal circuit in the present invention.
- the determination circuit 20 is an example of a first determination circuit in the present invention.
- the determination circuit 30 is an example of a second determination circuit in the present invention.
- the control signal output circuit 40 is an example of the control signal output circuit in the present invention.
- the voltage selection circuit 51 is an example of a first voltage selection circuit in the present invention.
- the signal circuit 10 is a circuit that outputs a sensing signal according to the sensing result of the sensor unit 6 at the signal terminal T3.
- the signal circuit 10 is an amplifier circuit that amplifies and outputs a weak sensing signal input from a circuit (not shown).
- the signal circuit 10 sets the output impedance at the signal terminal T3 to a high impedance state.
- the signal circuit 10 operates as an amplifier circuit that amplifies the sensing signal when the control signal S40 is “1”, and sets the output impedance to a high impedance state when the control signal S40 is “0”. .
- the signal circuit 10 includes an output short circuit protection circuit that prevents an overcurrent from flowing to the output even when the signal terminal T3 is short-circuited to the power supply terminal T1 or the ground terminal T2.
- the determination circuit 20 determines whether or not the voltage (power supply voltage VDD) of the power supply terminal T1 based on the voltage of the ground terminal T2 (ground potential VSS) is within a normal range. For example, the determination circuit 20 determines an abnormal state when the power supply voltage VDD is lower than the lower limit threshold voltage or higher than the upper limit threshold voltage, and when the power supply voltage VDD is higher than the lower limit value and lower than the upper limit value. Judged as normal.
- the threshold voltage at which the determination changes from the abnormal state to the normal state and the threshold voltage at which the determination changes from the normal state to the abnormal state may be the same or different. By making the two threshold voltages different from each other, it is possible to prevent the determination result from frequently changing due to a minute fluctuation of the power supply voltage VDD when the power supply voltage VDD is in the vicinity of the threshold voltage.
- the determination circuit 20 uses two threshold voltages Vth1 and Vth2 (Vth1> Vth2) for the upper limit determination, and uses two threshold voltages Vth3, Vth4 (Vth3> Vth4) for the lower limit determination.
- the determination circuit 20 determines that the power supply voltage VDD has changed to an abnormal state when the power supply voltage VDD is higher than the upper limit threshold voltage Vth1 when determining that the power supply voltage VDD is normal, and determines that the power supply voltage VDD is the upper limit when determining the abnormal state. When it becomes lower than the threshold voltage Vth2, it is determined that the normal state has been changed.
- the determination circuit 20 determines that the power supply voltage VDD has changed to an abnormal state when the power supply voltage VDD is lower than the lower limit threshold voltage Vth4 when determining that the power supply voltage is normal, and determines that the power supply voltage VDD is determined to be abnormal. Is higher than the lower threshold voltage Vth3, it is determined that the state has changed to the normal state.
- the determination circuit 20 includes a voltage dividing circuit 21, a reference voltage generation circuit 22, a comparison circuit 23, and a determination signal output circuit 24.
- the voltage dividing circuit 21 is an example of a voltage dividing circuit in the present invention.
- the reference voltage generation circuit 22 is an example of the reference voltage generation circuit in the present invention.
- the comparison circuit 23 is an example of a comparison circuit in the present invention.
- the determination signal output circuit 24 is an example of a determination signal output circuit in the present invention.
- the voltage dividing circuit 21 is a circuit that outputs a plurality of detection voltages (Vs1 to Vs4) divided by different voltage dividing ratios, and a plurality of resistors (series) connected in series between the power supply terminal T1 and the ground terminal T2. R1 to R5).
- the resistors R1, R2, R3, R4, and R5 are connected in series in this order.
- One end on the resistor R1 side in the series circuit of the resistors R1 to R5 is connected to the ground terminal T2, and the other end on the resistor R5 side is connected to the power supply terminal T1.
- the detection voltage Vs1 is generated at the connection node of the resistors R1 and R2, the detection voltage Vs2 is generated at the connection node of the resistors R2 and R3, the detection voltage Vs3 is generated at the connection node of the resistors R3 and R4, and the detection voltage Vs4 is the resistance Occurs at the connection node of R4 and R5.
- the voltage level relationship with respect to the ground potential VSS is “Vs1 ⁇ Vs2 ⁇ Vs3 ⁇ Vs4”.
- the reference voltage generation circuit 22 generates a constant reference voltage Vref with respect to the ground potential VSS.
- the reference voltage generation circuit 22 outputs a status signal R_RDY indicating whether or not the reference voltage Vref is generated. As a result, when the correct reference voltage Vref cannot be generated due to an abnormality in the power supply voltage VDD, the state is notified to the comparison circuit 23.
- the comparison circuit 23 compares the plurality of detection voltages (Vs1 to Vs4) divided by different voltage division ratios in the voltage dividing circuit 21 with the reference voltage Vref, and the comparison result indicates whether the power supply voltage VDD exceeds the upper limit.
- a signal Sh1 indicating whether or not the power supply voltage VDD is below the lower limit
- a signal Sh2 indicating whether or not the power supply voltage VDD is lower than the lower limit.
- the comparison circuit 23 indicates that the power supply voltage VDD is within the normal range when the state signal R_RDY indicating that the normal reference voltage Vref is not generated in the reference voltage generation circuit 22 is output.
- the output of the signals Sh1 and Sh2 is suppressed.
- the comparison circuit 23 outputs at least one of the signal Sh1 indicating that the power supply voltage VDD exceeds the upper limit and the signal Sh2 where the power supply voltage VDD is lower than the lower limit.
- the comparison circuit 23 includes hysteresis comparators 231 and 232.
- the hysteresis comparator 231 is an example of a first hysteresis comparator in the present invention.
- the hysteresis comparator 232 is an example of a second hysteresis comparator in the present invention.
- the detection voltages Vs1 and Vs2 are expressed by the following equations using upper limit threshold voltages Vth1 and Vth2 (Vth1> Vth2), respectively.
- Vs1 Vref ⁇ (VDD / Vth1) (1)
- Vs2 Vref ⁇ (VDD / Vth2) (2)
- Detected voltages Vs3 and Vs4 are expressed by the following equations using lower limit threshold voltages Vth3 and Vth4 (Vth3> Vth4), respectively.
- Vs3 Vref ⁇ (VDD / Vth3) (3)
- Vs4 Vref ⁇ (VDD / Vth4) (4)
- FIG. 3 is a diagram illustrating an example of the configuration of the hysteresis comparators 231 and 232.
- the hysteresis comparator 231 includes comparators CP1 and CP2 and a flip-flop FF1.
- Hysteresis comparator 232 includes comparators CP3 and CP4 and flip-flop FF2.
- the output signal Scp1 of the comparator CP1 becomes “1” when the detection voltage Vs1 is higher than the reference voltage Vref, and becomes “0” when it is lower.
- the output signal Scp2 of the comparator CP2 becomes “0” when the detection voltage Vs2 is higher than the reference voltage Vref, and becomes “1” when it is lower.
- the detection voltage Vs1 is lower than the reference voltage Vref and the detection voltage Vs2 is higher than the reference voltage Vref (Vs2>Vref> Vs1)
- the output signal Scp3 of the comparator CP3 becomes “1” when the detection voltage Vs3 is higher than the reference voltage Vref, and becomes “0” when it is lower.
- the output signal Scp4 of the comparator CP4 becomes “0” when the detection voltage Vs4 is higher than the reference voltage Vref, and becomes “1” when it is lower.
- the determination signal output circuit 24 is configured by an AND circuit that calculates a logical product of the signal Sh1 and the signal Sh2.
- the determination circuit 30 determines whether or not the voltage of the signal terminal T3 (signal voltage VSIG) is within a normal range lower than the power supply voltage VDD and higher than the ground potential VSS.
- FIG. 4 is a diagram illustrating an example of the configuration of the determination circuit 30.
- the determination circuit 30 includes comparators CP5 and CP6 and an AND circuit 303.
- the comparator CP5 outputs “1” when the signal voltage VSIG is lower than the power supply voltage VDD, and outputs “0” when it is higher.
- the comparator CP6 outputs “1” when the signal voltage VSIG is higher than the ground potential VSS, and outputs “0” when it is lower.
- the AND circuit 303 outputs “1” as the determination signal Sc2 when the outputs of the comparators CP5 and CP6 are both “1”, and outputs “0” otherwise. According to the configuration shown in FIG.
- the control signal output circuit 40 A control signal S40 for controlling the signal circuit 10 is output so that the output impedance at T3 is in a high impedance state.
- the control signal output circuit 40 is configured by an AND circuit that calculates the logical product of the determination signal Sc ⁇ b> 1 of the determination circuit 20 and the determination signal Sc ⁇ b> 2 of the determination circuit 30.
- the voltage selection circuit 51 selects the highest voltage among the ground potential VSS, the power supply voltage VDD and the signal voltage VSIG and outputs it as the selection voltage VBULK.
- the voltage selection circuit 51 is configured using three diodes (D1, D2, D3).
- the power supply voltage VDD is input to the anode of the diode D1
- the signal voltage VSIG is input to the anode of the diode D2
- the ground potential VSS is input to the anode of the diode D3.
- the cathodes of the diodes D1, D2, and D3 are commonly connected, and the selection voltage VBULK is output at the commonly connected node.
- the selection voltage VBULK output from the voltage selection circuit 51 is applied to the bulk of the P-type MOS transistor included in the entire circuit of the semiconductor integrated circuit device 5 shown in FIG. That is, the highest voltage input to the semiconductor integrated circuit device 5 at the three terminals (T1 to T3) is applied to the bulk of the P-type MOS transistor.
- the semiconductor integrated circuit device 5 shown in FIG. 2 in order to be able to notify the external device 2 of an abnormal state even when the power supply voltage VDD is lower than the ground potential VSS due to reverse connection or the like, At least some of the circuits including the determination circuit 20, the determination circuit 30, and the control signal output circuit 40 are supplied with the selection voltage VBULK of the voltage selection circuit 51 instead of the power supply voltage VDD. As a result, even in an abnormal state such as reverse connection, the selection voltage VBULK higher than the ground potential VSS is supplied to these circuits as a power supply voltage, so that an operation similar to the normal state is possible.
- FIG. 6 is a diagram for explaining a parasitic diode of a P-type MOS transistor.
- 6A shows the structure of the P-type MOS transistor Qp
- FIG. 6B shows an example of a circuit including the P-type MOS transistor Qp.
- An N type diffusion region (N well) is formed on the surface of the P type substrate.
- P type diffusion regions (p +) are two P type diffusion regions (p +) to be the source (S) and drain (D) of the P type MOS transistor Qp, and N for connecting the N well to the bulk electrode (B).
- a mold diffusion region (n +) is formed.
- the source (S) of the P-type MOS transistor Qp is connected to the power supply line (VDD), and its drain (D) is connected to the ground (VSS) via the element 91 such as an N-type MOS transistor.
- VDD power supply line
- VSS ground
- parasitic diodes Dp1 and Dp2 are formed between the source (S) and drain (D) and the bulk (N well) in the P-type MOS transistor Qp, respectively.
- the parasitic diodes Dp1 and Dp2 become conductive when the source (S) and the drain (D) have a higher voltage than the bulk (N well).
- a parasitic diode Dp3 is also formed between the bulk (N well) of the P-type MOS transistor Qp and the P-type substrate. The parasitic diode Dp3 becomes conductive when the P-type substrate has a higher voltage than the bulk (N well) of the P-type MOS transistor Qp.
- the bulk (N well) voltage Vbk of the P-type MOS transistor Qp is equal to the power supply voltage VDD.
- the power supply voltage VDD becomes lower than the ground potential VSS as shown by a dotted line in FIG.
- the bulk (N well) voltage Vbk is equal to the selection voltage VBULK, the cathode side of the parasitic diodes Dp1, Dp2, Dp3 becomes the highest voltage. No current flows through the parasitic diode.
- the internal logic circuit may be configured so that the high level voltage of the logic signal becomes a voltage based on the selection voltage VBULK.
- the logic circuit included in the semiconductor integrated circuit device 5 may be supplied with the selection voltage VBULK instead of the power supply voltage VDD as a high level voltage. Therefore, even if the power supply voltage VDD becomes lower than the ground potential VSS, the selection voltage VBULK does not become lower than the ground potential VSS. Therefore, the P-type MOS transistor Qp that outputs a high level voltage has In the abnormal state, no current flows in the opposite direction to that in the normal state.
- the internal logic circuit is configured to output a high-level logic signal. It may be.
- the highest voltage select voltage VBULK
- the gate voltage Vg of the P-type MOS transistor Qp in the logic circuit in the abnormal state and the channel of the P-type MOS transistor Qp is turned off. No current flows through the channel of the P-type MOS transistor Qp.
- the determination circuit 30 outputs “0” as the determination signal Sc2 indicating an abnormal state. Further, since the power supply voltage VDD becomes equal to the ground potential VSS, the power supply voltage VDD becomes lower than the lower limit of the normal range, so that the determination circuit 30 also outputs “0” as the determination signal Sc1 indicating an abnormal state.
- the control signal S40 is also “0”, and the output impedance of the signal circuit 10 is in a high impedance state. As a result, almost no current flows through the signal line connected to the signal terminal T3, and the voltage of the signal terminal T23 of the device 2 rises to the power supply voltage by the pull-up resistor 4 and enters the error range. The status is notified.
- the signal terminal T23 of the device 2 When the signal terminal T23 of the device 2 is not connected to the power supply line by the pull-up resistor 4, but is connected to the ground line by the pull-down resistor, the power supply to the semiconductor integrated circuit device 5 due to the disconnection of the power supply line. Supply is cut off. In this case, since no current flows through the entire circuit of the semiconductor integrated circuit device 5 and no current can flow from the signal circuit 10 to the pull-down resistor, the voltage at the signal terminal T23 of the device 2 becomes equal to the ground level. Therefore, since the voltage at the signal terminal T23 of the device 2 is in the error range, the device 2 is notified of the abnormal state.
- the signal terminal T23 of the device 2 When the signal terminal T23 of the device 2 is not connected to the power supply line by the pull-up resistor 4 and is connected to the ground line by the pull-down resistor, the signal terminal T23 on the device 2 side is connected from the signal circuit 10 through the pull-down resistor. Since current flows through the ground line, the voltage of the signal terminal T3 (signal voltage VSIG) is lower than the voltage of the power supply terminal T1 (power supply voltage VDD). On the other hand, since the ground terminal T2 is connected to the power supply terminal T1 via the resistors (R1 to R5) of the voltage dividing circuit 21, when the ground line is disconnected, the voltage (ground potential VSS) of the ground terminal T2 is It becomes equal to the voltage of the power supply terminal T1 (power supply voltage VDD).
- the determination circuit 30 since the signal voltage VSIG becomes lower than the ground potential VSS, the determination circuit 30 outputs “0” as the determination signal Sc2 indicating an abnormal state. Further, since the power supply voltage VDD becomes equal to the ground potential VSS, the power supply voltage VDD becomes lower than the lower limit of the normal range, so that the determination circuit 30 also outputs “0” as the determination signal Sc1 indicating an abnormal state.
- the control signal S40 is also “0”, and the output impedance of the signal circuit 10 is in a high impedance state. As a result, almost no current flows through the signal line connected to the signal terminal T3, and the voltage at the signal terminal T23 of the device 2 is lowered to the ground level by the pull-down resistor and enters the error range. Be notified.
- the highest voltage among the voltage (VDD) of the power supply terminal T1, the voltage (VSS) of the ground terminal T2, and the voltage (VSIG) of the signal terminal T3 is the selection voltage VBULK.
- the voltage is selected by the voltage selection circuit 51, and the selection voltage VBULK is applied to the bulk of the P-type MOS transistor included in the entire circuit.
- the signal circuit 10 Becomes the high impedance state. Therefore, when an abnormal state such as erroneous wiring, disconnection, or short circuit occurs, the external device 2 can be notified of the occurrence of the abnormal state.
- one end of the voltage dividing circuit 21 is connected to the power supply terminal T1, but in the semiconductor integrated circuit device 5 shown in FIG. 7, one end of the voltage dividing circuit 21 is connected to the power supply terminal T1. Instead, it is connected to the control terminal T4.
- a plurality of resistors (R1 to R5) included in the voltage dividing circuit 21 are connected in series between the control terminal T4 and the ground terminal T2.
- the operation of the semiconductor integrated circuit device 5 shown in FIG. 7 is the same as that of the semiconductor integrated circuit device 5 shown in FIG. In a normal use state, the power supply voltage VDD is supplied to the control terminal T4.
- the determination circuit 20 determines that the state is abnormal, the control signal S40 becomes “0”, and the output impedance of the signal circuit 10 becomes a high impedance state. Further, in the semiconductor integrated circuit device 5 shown in FIG. 7, when the control signal S40 becomes “0” (when it is determined that the determination circuit 20 or 30 is in an abnormal state), dynamic operations such as clock oscillation are stopped.
- the logic circuit is configured as described above.
- the semiconductor integrated circuit device 5 can be put into a standby state with low current consumption.
- IDDQ test static current measurement
- FIG. 8 is a diagram illustrating an example of the configuration of the semiconductor integrated circuit device 5 according to the second embodiment.
- the semiconductor integrated circuit device 5 shown in FIG. 8 has the same configuration as that of the semiconductor integrated circuit device 5 shown in FIG. 2, and includes a voltage selection circuit 52, a regulator circuit 60, an internal circuit 70, and level shift circuits 71 and 80. And have.
- the voltage selection circuit 52 is an example of a second voltage selection circuit in the present invention.
- the regulator circuit 60 is an example of a regulator circuit in the present invention.
- the internal circuit 70 is an example of an internal circuit in the present invention.
- the voltage selection circuit 52 selects a higher voltage from the ground potential VSS and the power supply voltage VDD and outputs it as the selection voltage VBULK2.
- the voltage selection circuit 52 can be configured using, for example, two diodes whose cathodes are commonly connected, similarly to the voltage selection circuit 51 shown in FIG.
- the regulator circuit 60 converts the power supply voltage VDD input at the power supply terminal T1 into an internal power supply voltage VDD2 of a predetermined level and supplies it to the internal circuit 70.
- the regulator circuit 60 may include a protection circuit that prevents current from flowing in the reverse direction from the output to the input when the power supply voltage VDD is lower than the ground potential VSS. Thereby, since the internal power supply voltage VDD2 does not become lower than the ground potential VSS, it is possible to prevent a reverse abnormal power supply current from flowing due to the negative power supply voltage being applied to the internal circuit 70.
- the internal circuit 70 is a circuit that operates based on the internal power supply voltage VDD2, and includes a logic circuit such as a CPU, for example.
- the internal circuit 70 includes a circuit for recording determination signals Sc1 and Sc2 input via the level shift circuit 71.
- the level shift circuit 80 is a circuit that changes the high level voltage of the determination signal Sc1 output from the determination circuit 20 and inputs it to the control signal output circuit 40A.
- the selection voltage VBULK2 of the voltage selection circuit 52 is supplied as a power supply voltage to the determination circuit 20 and the regulator circuit 60, and the bulk of the P-type MOS transistors included in these circuits The selection voltage VBULK2 is also applied.
- the selection voltage of the voltage selection circuit 51 is used as the power supply voltage and the bulk voltage of the P-type MOS transistor, as in the semiconductor integrated circuit device 5 shown in FIG. VBULK is supplied. Therefore, the high level voltage of the determination signal Sc1 is the selection voltage VBULK2, and the high level voltage of the control signal output circuit 40A is the selection voltage VBULK, and the signal levels of both are different. Therefore, the level shift circuit 80 that converts the signal level of the determination signal Sc1 is required.
- FIG. 9 is a diagram illustrating an example of the level shift circuit 80.
- the level shift circuit 80 shown in FIG. 9 has an N-type MOS transistor Qn1 and resistors R10 and R11.
- the ground potential VSS is input to the source and bulk of the MOS transistor Qn1
- the selection voltage VBULK is input to the drain via the resistor R11
- the determination signal Sc1 is input to the gate.
- Resistor R10 is connected between the gate and source of MOS transistor Qn1. At the drain of the MOS transistor Q, the level-shifted determination signal Sc1A is output.
- the determination signal Sc1A after the level shift is logically inverted with respect to the determination signal Sc1 before the level shift. That is, when the determination signal Sc1 is at a high level (VBULK2), the determination signal Sc1A is at a low level (VSS), and when the determination signal Sc1 is at a low level (VSS), the determination signal Sc1A is at a high level (VBULK). Therefore, the control signal output circuit 40A in FIG. 8 calculates a logical product of the result of logical inversion of the determination signal Sc1A and the determination signal Sc2, and the control signal S40 having the same logical level as the control signal output circuit 40 in FIG. Is output.
- the level shift circuit 71 converts the determination signals Sc1 and Sc2 having different signal levels into the signal level of the internal power supply voltage VDD2 as described above and inputs the signal to the internal circuit 70.
- the level shift circuit 71 can be configured using an N-type MOS transistor, for example, similarly to the level shift circuit 80 shown in FIG.
- the selection voltage VBULK2 which is the higher of the power supply voltage VDD or the ground potential VSS, is applied to the bulk of the P-type MOS transistor configuring the regulator circuit 60.
- the selection voltage VBULK of the voltage selection circuit 51 is applied to the bulk of the P-type MOS transistor of the regulator circuit 60, the bulk of the P-type MOS transistor becomes higher than the power supply voltage VDD when the signal voltage VSIG is the highest voltage.
- the threshold voltage of the P-type MOS transistor may change due to the substrate bias effect, and the internal power supply voltage VDD2 output from the regulator circuit 60 may decrease.
- the internal circuit 70 can be easily operated even in an abnormal state where the signal voltage VSIG is higher than the power supply voltage VDD. It becomes possible to record Sc2. By recording such an abnormal state, verification and reliability of the system including the sensor module 1 can be increased.
- a determination circuit that determines whether or not the internal power supply voltage VDD2 of the regulator circuit 60 has reached a specified voltage is provided, and a determination signal indicating that the voltage has not reached the specified voltage is output from the determination circuit May output the control signal S40 from the control signal output circuit 40 so that the output impedance of the signal circuit 10 is in a high impedance state.
- a determination circuit for determining whether or not the operation is started is provided based on a reset signal of the CPU or logic circuit included in the internal circuit 70 to determine that the CPU or the logic circuit is in a state before the operation is started.
- the control signal S40 may be output from the control signal output circuit 40 so that the output impedance of the signal circuit 10 is in a high impedance state.
- the output impedance of the signal circuit 10 is in a high impedance state until an operation of the CPU or logic circuit is started, for example, at the time of power activation, and an unnecessary signal is not output from the signal terminal T3. Stability can be further improved.
- the signal circuit 10 is a circuit that outputs a sensing signal, but the present invention is not limited to this.
- the signal circuit 10 may include a circuit that inputs a signal from the device 2 at the signal terminal T3.
- the signal circuit 10 sets the input impedance to a high impedance state according to the control signal S40 of the control signal output circuit 40.
- the input impedance of the signal circuit 10 is in a high impedance state, the voltage of the signal line falls within an error range near the power supply voltage VDD or near the ground potential VSS due to the pull-up resistor or pull-down resistor provided on the device 2 side. The status is notified to the device 2.
- SYMBOLS 1 Sensor module, 2 ... Apparatus, 3 ... Cable harness, 4 ... Pull-up resistor, 5 ... Semiconductor integrated circuit device, 6 ... Sensor part, 10 ... Signal circuit, 20, 30 ... Judgment circuit, 21 ... Voltage divider circuit, DESCRIPTION OF SYMBOLS 22 ... Reference voltage generation circuit, 23 ... Comparison circuit, 231, 232 ... Hysteresis comparator, 24 ... Determination signal output circuit, 40, 40A ... Control signal output circuit, 51, 52 ... Voltage selection circuit, 60 ... Regulator circuit, 70 ... Internal circuit 71, 80 ... Level shift circuit, T1 ... Power supply terminal, T2 ... Ground terminal, T3 ... Signal terminal, T4 ... Control terminal, R1-R5 ... Resistance.
Landscapes
- Semiconductor Integrated Circuits (AREA)
Abstract
[Problem] To provide a semiconductor integrated circuit device as follows: even when an incorrect voltage is applied to a power terminal, a ground terminal and a signal terminal due to an improper wiring connection, or the like, the semiconductor integrated circuit device is capable of protecting the circuit by suppressing a current flowing inward from these terminals, and is also capable of notifying an external device of this abnormal state.
[Solution] The highest voltage among a power voltage VDD, a ground potential VSS and a signal voltage VSIG is selected by a voltage selection circuit (51) and applied as a selection voltage VBULK to the bulk of a P-type MOS transistor contained in the circuit. In addition, when the power voltage VDD is outside of a predetermined normal range, or when the signal voltage VSIG is outside of the normal range, which is higher than the ground potential VSS and lower than the power voltage VDD, the signal circuit (10) output impedance is shifted to a high-impedance state.
Description
本発明は、電源端子とグランド端子と信号端子を備えた半導体集積回路装置に係り、特に、これらの端子において配線の誤接続が起きた場合でも過電流等から回路を保護する機能を備えた半導体集積回路装置に関するものである。
The present invention relates to a semiconductor integrated circuit device having a power supply terminal, a ground terminal, and a signal terminal, and in particular, a semiconductor having a function of protecting a circuit from an overcurrent or the like even when a wiring is erroneously connected to these terminals. The present invention relates to an integrated circuit device.
物理量を検出するセンサには種々の形態のものがあり、例えば可変抵抗器のような受動デバイスで構成されたものや、センシング素子とICチップを組み合わせたセンサモジュールとして構成されたものなどがある。通常、センサは電源線とグランド線と信号線の3線によって外部機器に接続され、外部機器からの電源供給を受けてセンサ計測値の取得やセンシングに関わる制御を行っている。
There are various types of sensors that detect physical quantities, for example, those composed of passive devices such as variable resistors, and sensors composed of sensor elements and IC chips. Usually, the sensor is connected to an external device by three lines of a power line, a ground line, and a signal line, and receives power supply from the external apparatus and performs control related to acquisition of sensor measurement values and sensing.
図10は、一般的なセンサと機器との接続方法を示す図である。センサ101と機器102との接続には、コネクタ付きのケーブルハーネス103が用いられることが多い。センサ101と機器102との接続が不完全な場合や、センサ101において異常が発生した場合にその異常状態を機器102に通知する方法として、例えば図11に示すように、信号線の電圧がある範囲を逸脱したならば異常状態と判定する方法がある。図11において、「有効レンジ」は正常状態の電圧範囲を示し、「エラーレンジ」は異常状態の電圧範囲を示す。この方法は、異常状態を通知するための特別な信号線が不要であり、デジタル的な信号であっても、アナログ的な信号であっても非常に有効である。
FIG. 10 is a diagram showing a connection method between a general sensor and a device. A cable harness 103 with a connector is often used for connection between the sensor 101 and the device 102. For example, as shown in FIG. 11, there is a signal line voltage as a method of notifying the device 102 of an abnormal state when the connection between the sensor 101 and the device 102 is incomplete or when an abnormality occurs in the sensor 101. There is a method of determining an abnormal state if it deviates from the range. In FIG. 11, “effective range” indicates a voltage range in a normal state, and “error range” indicates a voltage range in an abnormal state. This method does not require a special signal line for notifying an abnormal condition, and is very effective for a digital signal or an analog signal.
このエラーレンジによる異常状態の通知方法では、図10に示すように、機器102側においてプルアップ抵抗104により信号線を電源電圧に接続するか、又はプルダウン抵抗により信号線をグランドに接続することが多い。その理由は、図12に示すように、ケーブルの断線が生じていると信号線の電圧が電源電圧若しくはグランド電位と等しくなってエラーレンジに入るため、機器102において異常状態を検出できるからである。
In this abnormal state notification method based on the error range, as shown in FIG. 10, the signal line may be connected to the power supply voltage by the pull-up resistor 104 on the device 102 side, or the signal line may be connected to the ground by the pull-down resistor. Many. The reason is that, as shown in FIG. 12, when the cable is disconnected, the voltage of the signal line becomes equal to the power supply voltage or the ground potential and enters the error range, so that the abnormal state can be detected in the device 102. .
図10、図11の例では、センサ101が受動素子である可変抵抗器の場合を示しているが、最近では、可変抵抗器の摺動部分の物理的磨耗による機能不全を防止するために、可変抵抗器の機能(位置を電圧に変換する機能)を非接触で実現する別の手段によって電子回路(IC等)とともに構成したセンサモジュールが多くなっている。
In the example of FIGS. 10 and 11, the sensor 101 is a variable resistor which is a passive element. Recently, in order to prevent malfunction due to physical wear of the sliding portion of the variable resistor, An increasing number of sensor modules are configured with electronic circuits (such as ICs) by another means for realizing the function of variable resistors (the function of converting position into voltage) in a non-contact manner.
図10に示すように機器102とセンサ101がケーブルで接続される場合、上述したケーブルの断線(図12)だけでなく、図13のように、センサ101の3つの端子(電源端子、グランド端子、信号端子)に誤った配線が接続される可能性もある。このような誤接続が起きた場合、センサ101のモジュールに含まれるICに不正な電圧が印加されてしまい、ICの内部回路に過電流が流れてしまうことがある。
When the device 102 and the sensor 101 are connected by a cable as shown in FIG. 10, not only the disconnection of the cable (FIG. 12) but also the three terminals of the sensor 101 (power supply terminal and ground terminal) as shown in FIG. Incorrect wiring may be connected to the signal terminal. When such an erroneous connection occurs, an incorrect voltage may be applied to the IC included in the module of the sensor 101, and an overcurrent may flow in the internal circuit of the IC.
また、状況によっては、電源線,グランド線及び信号線の3つが任意の組み合わせでショートしたり、断線したりする場合がある。更には、センサ101のコネクタが誤って電圧レベルの異なるコネクタに接続されてしまうこともある。
Also, depending on the situation, the power line, ground line, and signal line may be short-circuited or disconnected in any combination. Furthermore, the connector of the sensor 101 may be mistakenly connected to a connector with a different voltage level.
従って、誤接続等によって端子間の電圧の相対的な高低の関係が異常な状態になっても(例えば電源端子がグランド端子より低電位になっても)、センサモジュールのICには過電流が流れないことが望ましい。また、そのような異常状態の場合には、接続相手の機器に異常状態を通知できることが望ましい。
Therefore, even if the relative voltage level between the terminals becomes abnormal due to incorrect connection or the like (for example, even when the power supply terminal is lower in potential than the ground terminal), the sensor module IC has an overcurrent. It is desirable not to flow. In such an abnormal state, it is desirable to be able to notify the connected device of the abnormal state.
本発明はかかる事情に鑑みてなされたものであり、その目的は、電源端子,グランド端子及び信号端子に配線の誤接続等によって不正な電圧が印加されても、これらの端子から内部に流れる電流を抑制して回路を保護できるとともに、そのような異常状態にあることを外部の機器に通知することができる半導体集積回路装置、及びこれを備えたセンサモジュールを提供することにある。
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a current that flows from these terminals to the power supply terminal, the ground terminal, and the signal terminal even if an improper voltage is applied due to an incorrect connection of wiring or the like. It is an object to provide a semiconductor integrated circuit device capable of protecting a circuit by suppressing the above-described problem and notifying an external device of such an abnormal state, and a sensor module including the semiconductor integrated circuit device.
本発明の第1の観点に係る半導体集積回路装置は、グランド電位に接続されるグランド端子と、電源電圧を入力する電源端子と、信号端子と、前記信号端子において信号を出力又は入力し、前記信号端子における出力インピーダンス又は入力インピーダンスを制御信号に応じて高インピーダンス状態に設定する信号回路と、前記グランド端子の電圧を基準とする前記電源端子の電圧が正常範囲内にあるか否かを判定する第1判定回路と、前記グランド端子の電圧を基準とする前記信号端子の電圧が、前記電源端子の電圧より低くかつ前記グランド端子の電圧より高い正常範囲内にあるか否かを判定する第2判定回路と、前記第1判定回路において前記電源端子の電圧が正常範囲内にないと判定された場合、又は、前記第2判定回路において前記信号端子の電圧が正常範囲内にないと判定された場合に、前記信号端子における出力インピーダンス又は入力インピーダンスを高インピーダンス状態に設定する前記制御信号を出力する制御信号出力回路と、前記グランド端子の電圧、前記電源端子の電圧、及び、前記信号端子の電圧の中で最も高い電圧を選択する第1電圧選択回路とを有する。前記第1電圧選択回路は、全体の回路に含まれる少なくとも一部のP型MOSトランジスタのバルクに前記選択した電圧を印加する。
A semiconductor integrated circuit device according to a first aspect of the present invention provides a ground terminal connected to a ground potential, a power supply terminal for inputting a power supply voltage, a signal terminal, and outputs or inputs a signal at the signal terminal, A signal circuit that sets an output impedance or input impedance at a signal terminal to a high impedance state according to a control signal, and determines whether or not the voltage of the power supply terminal with reference to the voltage of the ground terminal is within a normal range A first determination circuit configured to determine whether a voltage of the signal terminal with respect to a voltage of the ground terminal is within a normal range that is lower than the voltage of the power supply terminal and higher than the voltage of the ground terminal; When the determination circuit and the first determination circuit determine that the voltage of the power supply terminal is not within the normal range, or in the second determination circuit A control signal output circuit for outputting the control signal for setting the output impedance or input impedance of the signal terminal to a high impedance state when it is determined that the voltage of the signal terminal is not within a normal range; and A first voltage selection circuit that selects the highest voltage among the voltage, the voltage of the power supply terminal, and the voltage of the signal terminal. The first voltage selection circuit applies the selected voltage to the bulk of at least some of the P-type MOS transistors included in the entire circuit.
上記の構成によれば、前記電源端子の電圧、前記グランド端子の電圧、及び、前記信号端子の電圧の中で最も高い電圧が前記第1電圧選択回路により選択され、その選択された電圧が全体の回路に含まれるP型MOSトランジスタのバルクに印加される。これにより、配線の誤接続などによってこれらの端子における相対的な電圧の高低関係が異常な状態になった場合でも、P型MOSトランジスタのバルクに形成される寄生ダイオードには電流が流れない。
また、上記の構成によれば、前記第1判定回路の判定結果において前記電源端子の電圧が正常範囲内にないと判定された場合や、前記第2判定回路の判定結果において前記信号端子の電圧が正常範囲にないと判定された場合に、前記信号端子における前記信号回路の出力インピーダンス又は入力インピーダンスが高インピーダンス状態になる。そのため、誤配線や断線や短絡などの異常状態が起きた場合に、異常状態の発生が当該高インピーダンス状態として外部の機器に通知される。 According to the above configuration, the highest voltage among the voltage of the power supply terminal, the voltage of the ground terminal, and the voltage of the signal terminal is selected by the first voltage selection circuit, and the selected voltage is entirely Applied to the bulk of the P-type MOS transistor included in the circuit. As a result, even when the relative voltage level relationship at these terminals becomes abnormal due to misconnection of wirings, no current flows through the parasitic diode formed in the bulk of the P-type MOS transistor.
Further, according to the above configuration, when it is determined in the determination result of the first determination circuit that the voltage of the power supply terminal is not within the normal range, or in the determination result of the second determination circuit, the voltage of the signal terminal Is not in the normal range, the output impedance or input impedance of the signal circuit at the signal terminal is in a high impedance state. Therefore, when an abnormal state such as erroneous wiring, disconnection, or short circuit occurs, the occurrence of the abnormal state is notified to an external device as the high impedance state.
また、上記の構成によれば、前記第1判定回路の判定結果において前記電源端子の電圧が正常範囲内にないと判定された場合や、前記第2判定回路の判定結果において前記信号端子の電圧が正常範囲にないと判定された場合に、前記信号端子における前記信号回路の出力インピーダンス又は入力インピーダンスが高インピーダンス状態になる。そのため、誤配線や断線や短絡などの異常状態が起きた場合に、異常状態の発生が当該高インピーダンス状態として外部の機器に通知される。 According to the above configuration, the highest voltage among the voltage of the power supply terminal, the voltage of the ground terminal, and the voltage of the signal terminal is selected by the first voltage selection circuit, and the selected voltage is entirely Applied to the bulk of the P-type MOS transistor included in the circuit. As a result, even when the relative voltage level relationship at these terminals becomes abnormal due to misconnection of wirings, no current flows through the parasitic diode formed in the bulk of the P-type MOS transistor.
Further, according to the above configuration, when it is determined in the determination result of the first determination circuit that the voltage of the power supply terminal is not within the normal range, or in the determination result of the second determination circuit, the voltage of the signal terminal Is not in the normal range, the output impedance or input impedance of the signal circuit at the signal terminal is in a high impedance state. Therefore, when an abnormal state such as erroneous wiring, disconnection, or short circuit occurs, the occurrence of the abnormal state is notified to an external device as the high impedance state.
好適に、前記第1電圧選択回路は、前記信号回路、前記第1判定回路、前記第2判定回路、及び、前記制御信号出力回路に前記選択した電圧を電源電圧として供給してよい。
これにより、誤配線や断線や短絡などの異常状態が起きた場合でも、前記信号回路、前記第1判定回路、前記第2判定回路、及び、前記制御信号出力回路には前記グランド端子の電圧より高い電源電圧が供給されるため、これらの回路の動作により、外部の機器に対する異常状態の通知が可能となる場合が生じる。 Preferably, the first voltage selection circuit may supply the selected voltage as a power supply voltage to the signal circuit, the first determination circuit, the second determination circuit, and the control signal output circuit.
As a result, even when an abnormal state such as miswiring, disconnection, or short-circuit occurs, the signal circuit, the first determination circuit, the second determination circuit, and the control signal output circuit are supplied with the voltage of the ground terminal. Since a high power supply voltage is supplied, the operation of these circuits may be able to notify an external device of an abnormal state.
これにより、誤配線や断線や短絡などの異常状態が起きた場合でも、前記信号回路、前記第1判定回路、前記第2判定回路、及び、前記制御信号出力回路には前記グランド端子の電圧より高い電源電圧が供給されるため、これらの回路の動作により、外部の機器に対する異常状態の通知が可能となる場合が生じる。 Preferably, the first voltage selection circuit may supply the selected voltage as a power supply voltage to the signal circuit, the first determination circuit, the second determination circuit, and the control signal output circuit.
As a result, even when an abnormal state such as miswiring, disconnection, or short-circuit occurs, the signal circuit, the first determination circuit, the second determination circuit, and the control signal output circuit are supplied with the voltage of the ground terminal. Since a high power supply voltage is supplied, the operation of these circuits may be able to notify an external device of an abnormal state.
本発明の第2の観点に係る半導体集積回路装置は、グランド電位に接続されるグランド端子と、電源電圧を入力する電源端子と、信号端子と、前記信号端子において信号を出力又は入力し、前記信号端子における出力インピーダンス又は入力インピーダンスを制御信号に応じて高インピーダンス状態に設定する信号回路と、前記グランド端子の電圧を基準とする前記電源端子の電圧が正常範囲内にあるか否かを判定する第1判定回路と、前記グランド端子の電圧を基準とする前記信号端子の電圧が、前記電源端子の電圧より低くかつ前記グランド端子の電圧より高い正常範囲内にあるか否かを判定する第2判定回路と、前記第1判定回路において前記電源端子の電圧が正常範囲内にないと判定された場合、又は、前記第2判定回路において前記信号端子の電圧が正常範囲内にないと判定された場合に、前記信号端子における出力インピーダンス又は入力インピーダンスを高インピーダンス状態に設定する前記制御信号を出力する制御信号出力回路と、前記グランド端子の電圧、前記電源端子の電圧、及び、前記信号端子の電圧の中で最も高い電圧を選択する第1電圧選択回路と、前記グランド端子の電圧及び前記電源端子の電圧のうち高い電圧を選択する第2電圧選択回路と、前記電源端子において入力される電源電圧を内部電源電圧に変換して内部回路に供給するレギュレータ回路とを有する。前記第1電圧選択回路は、前記信号回路、前記第2判定回路、及び、前記制御信号出力回路に含まれるP型MOSトランジスタのバルクに前記選択した電圧を印加する。前記第2電圧選択回路は、前記第1判定回路及び前記レギュレータ回路に含まれるP型MOSトランジスタのバルクに前記選択した電圧を印加する。
A semiconductor integrated circuit device according to a second aspect of the present invention provides a ground terminal connected to a ground potential, a power supply terminal for inputting a power supply voltage, a signal terminal, and outputs or inputs a signal at the signal terminal, A signal circuit that sets an output impedance or input impedance at a signal terminal to a high impedance state according to a control signal, and determines whether or not the voltage of the power supply terminal with reference to the voltage of the ground terminal is within a normal range A first determination circuit configured to determine whether a voltage of the signal terminal with respect to a voltage of the ground terminal is within a normal range that is lower than the voltage of the power supply terminal and higher than the voltage of the ground terminal; When the determination circuit and the first determination circuit determine that the voltage of the power supply terminal is not within the normal range, or in the second determination circuit A control signal output circuit for outputting the control signal for setting the output impedance or input impedance of the signal terminal to a high impedance state when it is determined that the voltage of the signal terminal is not within a normal range; and A first voltage selection circuit that selects the highest voltage among the voltage, the voltage of the power supply terminal, and the voltage of the signal terminal; and a first voltage selection circuit that selects a higher voltage among the voltage of the ground terminal and the voltage of the power supply terminal. A two-voltage selection circuit; and a regulator circuit that converts a power supply voltage input at the power supply terminal into an internal power supply voltage and supplies the internal power supply voltage to the internal circuit. The first voltage selection circuit applies the selected voltage to a bulk of a P-type MOS transistor included in the signal circuit, the second determination circuit, and the control signal output circuit. The second voltage selection circuit applies the selected voltage to a bulk of a P-type MOS transistor included in the first determination circuit and the regulator circuit.
上記の構成によれば、前記電源端子の電圧、前記グランド端子の電圧、及び、前記信号端子の電圧の中で最も高い電圧が前記第1電圧選択回路により選択され、その選択された電圧が前記信号回路、前記第2判定回路、及び、前記制御信号出力回路に含まれるP型MOSトランジスタのバルクに印加される。また、前記グランド端子の電圧及び前記電源端子の電圧のうち高い電圧が前記第2電圧選択回路により選択され、その選択された電圧が前記第1判定回路及び前記レギュレータ回路に含まれるP型MOSトランジスタのバルクに印加される。これにより、配線の誤接続などによってこれらの端子における相対的な電圧の高低関係が異常な状態になった場合でも、P型MOSトランジスタのバルクに形成される寄生ダイオードには電流が流れない。
また、上記の構成によれば、前記第1判定回路の判定結果において前記電源端子の電圧が正常範囲内にないと判定された場合や、前記第2判定回路の判定結果において前記信号端子の電圧が正常範囲にないと判定された場合に、前記信号端子における前記信号回路の出力インピーダンス又は入力インピーダンスが高インピーダンス状態になる。そのため、誤配線や断線や短絡などの異常状態が起きた場合に、異常状態の発生が当該高インピーダンス状態として外部の機器に通知される。 According to the above configuration, the highest voltage among the voltage of the power supply terminal, the voltage of the ground terminal, and the voltage of the signal terminal is selected by the first voltage selection circuit, and the selected voltage is The signal is applied to the bulk of the P-type MOS transistor included in the signal circuit, the second determination circuit, and the control signal output circuit. A high voltage is selected by the second voltage selection circuit among the voltage at the ground terminal and the voltage at the power supply terminal, and the selected voltage is a P-type MOS transistor included in the first determination circuit and the regulator circuit. Applied to the bulk. As a result, even when the relative voltage level relationship at these terminals becomes abnormal due to misconnection of wirings, no current flows through the parasitic diode formed in the bulk of the P-type MOS transistor.
Further, according to the above configuration, when it is determined in the determination result of the first determination circuit that the voltage of the power supply terminal is not within the normal range, or in the determination result of the second determination circuit, the voltage of the signal terminal Is not in the normal range, the output impedance or input impedance of the signal circuit at the signal terminal is in a high impedance state. Therefore, when an abnormal state such as erroneous wiring, disconnection, or short circuit occurs, the occurrence of the abnormal state is notified to an external device as the high impedance state.
また、上記の構成によれば、前記第1判定回路の判定結果において前記電源端子の電圧が正常範囲内にないと判定された場合や、前記第2判定回路の判定結果において前記信号端子の電圧が正常範囲にないと判定された場合に、前記信号端子における前記信号回路の出力インピーダンス又は入力インピーダンスが高インピーダンス状態になる。そのため、誤配線や断線や短絡などの異常状態が起きた場合に、異常状態の発生が当該高インピーダンス状態として外部の機器に通知される。 According to the above configuration, the highest voltage among the voltage of the power supply terminal, the voltage of the ground terminal, and the voltage of the signal terminal is selected by the first voltage selection circuit, and the selected voltage is The signal is applied to the bulk of the P-type MOS transistor included in the signal circuit, the second determination circuit, and the control signal output circuit. A high voltage is selected by the second voltage selection circuit among the voltage at the ground terminal and the voltage at the power supply terminal, and the selected voltage is a P-type MOS transistor included in the first determination circuit and the regulator circuit. Applied to the bulk. As a result, even when the relative voltage level relationship at these terminals becomes abnormal due to misconnection of wirings, no current flows through the parasitic diode formed in the bulk of the P-type MOS transistor.
Further, according to the above configuration, when it is determined in the determination result of the first determination circuit that the voltage of the power supply terminal is not within the normal range, or in the determination result of the second determination circuit, the voltage of the signal terminal Is not in the normal range, the output impedance or input impedance of the signal circuit at the signal terminal is in a high impedance state. Therefore, when an abnormal state such as erroneous wiring, disconnection, or short circuit occurs, the occurrence of the abnormal state is notified to an external device as the high impedance state.
好適に、前記第1電圧選択回路は、前記信号回路、前記第2判定回路及び前記制御信号出力回路に前記選択した電圧を電源電圧として供給してよく、前記第2電圧選択回路は、前記第1判定回路に前記選択した電圧を電源電圧として供給してよい。
これにより、誤配線や断線や短絡などの異常状態が起きた場合でも、前記信号回路、前記第1判定回路、前記第2判定回路、及び、前記制御信号出力回路には前記グランド端子の電圧より高い電源電圧が供給されるため、これらの回路の動作により、外部の機器に対する異常状態の通知が可能となる場合が生じる。 Preferably, the first voltage selection circuit may supply the selected voltage as a power supply voltage to the signal circuit, the second determination circuit, and the control signal output circuit, and the second voltage selection circuit includes the first voltage selection circuit. The selected voltage may be supplied as a power supply voltage to one determination circuit.
As a result, even when an abnormal state such as miswiring, disconnection, or short-circuit occurs, the signal circuit, the first determination circuit, the second determination circuit, and the control signal output circuit are supplied with the voltage of the ground terminal. Since a high power supply voltage is supplied, the operation of these circuits may be able to notify an external device of an abnormal state.
これにより、誤配線や断線や短絡などの異常状態が起きた場合でも、前記信号回路、前記第1判定回路、前記第2判定回路、及び、前記制御信号出力回路には前記グランド端子の電圧より高い電源電圧が供給されるため、これらの回路の動作により、外部の機器に対する異常状態の通知が可能となる場合が生じる。 Preferably, the first voltage selection circuit may supply the selected voltage as a power supply voltage to the signal circuit, the second determination circuit, and the control signal output circuit, and the second voltage selection circuit includes the first voltage selection circuit. The selected voltage may be supplied as a power supply voltage to one determination circuit.
As a result, even when an abnormal state such as miswiring, disconnection, or short-circuit occurs, the signal circuit, the first determination circuit, the second determination circuit, and the control signal output circuit are supplied with the voltage of the ground terminal. Since a high power supply voltage is supplied, the operation of these circuits may be able to notify an external device of an abnormal state.
好適に、前記内部回路は、前記第1判定回路、前記第2判定回路、及び、前記制御信号出力回路の少なくとも1つにおいて出力される判定結果を示す信号を記録する回路を含んでよい。
これにより、異常状態に関するより詳しい情報が取得される。 Preferably, the internal circuit may include a circuit that records a signal indicating a determination result output from at least one of the first determination circuit, the second determination circuit, and the control signal output circuit.
Thereby, more detailed information regarding the abnormal state is acquired.
これにより、異常状態に関するより詳しい情報が取得される。 Preferably, the internal circuit may include a circuit that records a signal indicating a determination result output from at least one of the first determination circuit, the second determination circuit, and the control signal output circuit.
Thereby, more detailed information regarding the abnormal state is acquired.
好適に、前記第1判定回路は、前記グランド端子と前記電源端子との間で直列に接続された複数の抵抗を含む分圧回路と、前記グランド端子の電圧に対して一定の基準電圧を発生する基準電圧発生回路と、前記分圧回路において異なる分圧比によって分圧された複数の検出電圧と前記基準電圧とをそれぞれ比較する比較回路と、前記比較回路の比較結果に基づいて、前記グランド端子の電圧に対する前記電源端子の電圧が正常範囲内にあるか否かの判定結果を示す第1判定信号を出力する判定信号出力回路とを含んでよい。
Preferably, the first determination circuit generates a reference voltage that is constant with respect to the voltage of the voltage dividing circuit including a plurality of resistors connected in series between the ground terminal and the power supply terminal. A reference voltage generating circuit, a comparison circuit for comparing a plurality of detection voltages divided by different voltage dividing ratios in the voltage dividing circuit with the reference voltage, and the ground terminal based on a comparison result of the comparison circuit And a determination signal output circuit that outputs a first determination signal indicating a determination result as to whether or not the voltage of the power supply terminal is within a normal range.
好適に、上記半導体集積回路装置は、通常動作時に前記電源端子と共通の電源電圧が入力され、非通常動作時に前記グランド電位が入力されるか若しくはオープン状態とされる制御端子を有してよい。この場合、前記分圧回路に含まれる前記複数の抵抗が、前記グランド端子と前記電源端子との間で直列に接続される代わりに、前記グランド端子と前記制御端子との間で直列に接続されてよい。
これにより、前記非通常動作時には前記第1判定回路において前記電源端子の電圧が正常範囲内にないと判定され、前記信号端子における前記信号回路の出力インピーダンス又は入力インピーダンスが高インピーダンス状態となる。 Preferably, the semiconductor integrated circuit device may include a control terminal that receives a power supply voltage common to the power supply terminal during a normal operation, and receives the ground potential or is opened during a non-normal operation. . In this case, the plurality of resistors included in the voltage dividing circuit are connected in series between the ground terminal and the control terminal instead of being connected in series between the ground terminal and the power supply terminal. It's okay.
As a result, during the non-normal operation, the first determination circuit determines that the voltage of the power supply terminal is not within the normal range, and the output impedance or input impedance of the signal circuit at the signal terminal is in a high impedance state.
これにより、前記非通常動作時には前記第1判定回路において前記電源端子の電圧が正常範囲内にないと判定され、前記信号端子における前記信号回路の出力インピーダンス又は入力インピーダンスが高インピーダンス状態となる。 Preferably, the semiconductor integrated circuit device may include a control terminal that receives a power supply voltage common to the power supply terminal during a normal operation, and receives the ground potential or is opened during a non-normal operation. . In this case, the plurality of resistors included in the voltage dividing circuit are connected in series between the ground terminal and the control terminal instead of being connected in series between the ground terminal and the power supply terminal. It's okay.
As a result, during the non-normal operation, the first determination circuit determines that the voltage of the power supply terminal is not within the normal range, and the output impedance or input impedance of the signal circuit at the signal terminal is in a high impedance state.
好適に、前記基準電圧発生回路は、前記基準電圧の発生の有無を示す状態信号を出力し、前記比較回路は、前記基準電圧が発生していないことを示す前記状態信号が前記基準電圧発生回路から出力されている場合、前記電源端子の電圧が正常範囲内にあることを示す前記第1判定信号の出力を抑止する。
これにより、正常でない前記基準電圧に基づいて誤った前記第1判定信号が出力される可能性のある場合において、前記電源端子の電圧が正常範囲内にあることを示す前記第1判定信号が出力されなくなる。 Preferably, the reference voltage generation circuit outputs a status signal indicating whether or not the reference voltage is generated, and the comparison circuit indicates that the status signal indicating that the reference voltage is not generated is the reference voltage generation circuit. Is output from the first determination signal indicating that the voltage of the power supply terminal is within a normal range.
As a result, when there is a possibility that the erroneous first determination signal is output based on the reference voltage that is not normal, the first determination signal indicating that the voltage of the power supply terminal is within the normal range is output. It will not be done.
これにより、正常でない前記基準電圧に基づいて誤った前記第1判定信号が出力される可能性のある場合において、前記電源端子の電圧が正常範囲内にあることを示す前記第1判定信号が出力されなくなる。 Preferably, the reference voltage generation circuit outputs a status signal indicating whether or not the reference voltage is generated, and the comparison circuit indicates that the status signal indicating that the reference voltage is not generated is the reference voltage generation circuit. Is output from the first determination signal indicating that the voltage of the power supply terminal is within a normal range.
As a result, when there is a possibility that the erroneous first determination signal is output based on the reference voltage that is not normal, the first determination signal indicating that the voltage of the power supply terminal is within the normal range is output. It will not be done.
好適に、前記比較回路は、前記複数の検出電圧における第1検出電圧が前記基準電圧より低い状態から高い状態へ変化すると、前記電源端子の電圧が前記正常範囲の上限より高いことを示す信号を出力し、前記複数の検出電圧において前記第1検出電圧より高い第2検出電圧が前記基準電圧より高い状態から低い状態へ変化すると、前記電源端子の電圧が前記正常範囲の上限より低いことを示す信号を出力する第1ヒステリシスコンパレータと、前記複数の検出電圧において前記第2検出電圧より高い第3検出電圧が前記基準電圧より低い状態から高い状態へ変化すると、前記電源端子の電圧が前記正常範囲の下限より高いことを示す信号を出力し、前記複数の検出電圧において前記第3検出電圧より高い第4検出電圧が前記基準電圧より高い状態から低い状態へ変化すると、前記電源端子の電圧が前記正常範囲の下限より低いことを示す信号を出力する第2ヒステリシスコンパレータとを含んでよい。前記判定信号出力回路は、前記第1ヒステリシスコンパレータにおいて前記電源端子の電圧が前記正常範囲の上限より高いことを示す信号が出力されるか、又は、前記第2ヒステリシスコンパレータにおいて前記電源端子の電圧が前記正常範囲の下限より低いことを示す信号が出力される場合、前記電源端子の電圧が正常範囲内にないことを示す前記第1判定信号を出力してよい。
Preferably, when the first detection voltage in the plurality of detection voltages changes from a state lower than the reference voltage to a higher state, the comparison circuit outputs a signal indicating that the voltage of the power supply terminal is higher than the upper limit of the normal range. When the second detection voltage higher than the first detection voltage in the plurality of detection voltages changes from a state higher than the reference voltage to a lower state, the voltage of the power supply terminal is lower than the upper limit of the normal range A first hysteresis comparator that outputs a signal; and a third detection voltage that is higher than the second detection voltage in the plurality of detection voltages changes from a state that is lower than the reference voltage to a state that is higher than the reference voltage. The fourth detection voltage higher than the third detection voltage in the plurality of detection voltages is higher than the reference voltage. Changes from There state to a low state, the voltage of the power supply terminal may comprise a second hysteresis comparator for outputting a signal indicating that the lower limit of the normal range. The determination signal output circuit outputs a signal indicating that the voltage of the power supply terminal is higher than the upper limit of the normal range in the first hysteresis comparator, or the voltage of the power supply terminal in the second hysteresis comparator. When a signal indicating that the voltage is lower than the lower limit of the normal range is output, the first determination signal indicating that the voltage of the power supply terminal is not within the normal range may be output.
本発明の第3の観点に係るセンサモジュールは、センサ部と、前記センサ部のセンシング結果に応じた信号を前記信号端子から出力する上記半導体集積回路装置とを有する。
A sensor module according to a third aspect of the present invention includes a sensor unit and the semiconductor integrated circuit device that outputs a signal corresponding to a sensing result of the sensor unit from the signal terminal.
本発明によれば、電源端子,グランド端子及び信号端子に配線の誤接続等によって不正な電圧が印加されても、これらの端子から内部に流れる電流を抑制して回路を保護できるとともに、そのような異常状態にあることを外部の機器に通知することができる。
According to the present invention, even if an improper voltage is applied to the power supply terminal, the ground terminal, and the signal terminal due to misconnection of the wiring, the current flowing from these terminals can be suppressed to protect the circuit, and such It is possible to notify an external device that there is an abnormal state.
<第1の実施形態>
以下、本発明の実施形態について図面を参照しながら説明する。
図1は、本発明の実施形態に係るセンサモジュール1の構成の一例を示す図である。図1に示すセンサモジュール1は、位置や速度などの物理量を電気信号として検出するセンサ部6と、そのセンサ部6のセンシング結果に応じた信号(センシング信号)を出力する半導体集積回路装置5を有する。センサ部6は、半導体集積回路装置5と独立した部品でもよいし、半導体集積回路装置5と同一の半導体チップ上に形成されてもよい。 <First Embodiment>
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram illustrating an example of a configuration of asensor module 1 according to an embodiment of the present invention. A sensor module 1 shown in FIG. 1 includes a sensor unit 6 that detects a physical quantity such as a position and speed as an electrical signal, and a semiconductor integrated circuit device 5 that outputs a signal (sensing signal) corresponding to a sensing result of the sensor unit 6. Have. The sensor unit 6 may be a component independent of the semiconductor integrated circuit device 5 or may be formed on the same semiconductor chip as the semiconductor integrated circuit device 5.
以下、本発明の実施形態について図面を参照しながら説明する。
図1は、本発明の実施形態に係るセンサモジュール1の構成の一例を示す図である。図1に示すセンサモジュール1は、位置や速度などの物理量を電気信号として検出するセンサ部6と、そのセンサ部6のセンシング結果に応じた信号(センシング信号)を出力する半導体集積回路装置5を有する。センサ部6は、半導体集積回路装置5と独立した部品でもよいし、半導体集積回路装置5と同一の半導体チップ上に形成されてもよい。 <First Embodiment>
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram illustrating an example of a configuration of a
センサモジュール1の半導体集積回路装置5は、3つの端子(電源端子T1,グランド端子T2,信号端子T3)を備えており、それぞれの端子が外部の機器2の対応する端子(T21~T23)に接続される。図1の例において、センサモジュール1と機器2は、コネクタ付きのケーブルハーネス3を介して接続される。半導体集積回路装置5は、このケーブルハーネス3内部の誤配線や断線、短絡などによって3つの端子(電源端子T1,グランド端子T2,信号端子T3)に不正な電圧が印加された場合でも、内部の回路に過電流が流れることを防止する。
The semiconductor integrated circuit device 5 of the sensor module 1 includes three terminals (a power supply terminal T1, a ground terminal T2, and a signal terminal T3), and each terminal corresponds to a corresponding terminal (T21 to T23) of the external device 2. Connected. In the example of FIG. 1, the sensor module 1 and the device 2 are connected via a cable harness 3 with a connector. Even if an incorrect voltage is applied to the three terminals (the power supply terminal T1, the ground terminal T2, and the signal terminal T3) due to miswiring, disconnection, or short circuit inside the cable harness 3, the semiconductor integrated circuit device 5 Prevent overcurrent from flowing through the circuit.
また、半導体集積回路装置5は、誤配線や断線、短絡などによって3つの端子(電源端子T1,グランド端子T2,信号端子T3)に不正な電圧が印加された場合、信号端子T3における出力インピーダンスを高インピーダンス状態に設定する。図2の例において、機器2の信号端子T23はプルアップ抵抗4を介して電源端子T21に接続されているため、半導体集積回路装置5の信号端子T3が高インピーダンス状態になると、信号端子T23の電圧が電源電圧VDDまで上昇する。機器2は、信号端子T23の電圧が電源電圧VDDに近いエラーレンジに含まれる場合、センサモジュール1の半導体集積回路装置5に不正な電圧が印加された異常状態であると判定する。
Also, the semiconductor integrated circuit device 5 has an output impedance at the signal terminal T3 when an improper voltage is applied to the three terminals (power supply terminal T1, ground terminal T2, signal terminal T3) due to miswiring, disconnection, or short circuit. Set to high impedance state. In the example of FIG. 2, since the signal terminal T23 of the device 2 is connected to the power supply terminal T21 via the pull-up resistor 4, when the signal terminal T3 of the semiconductor integrated circuit device 5 is in a high impedance state, the signal terminal T23 The voltage rises to the power supply voltage VDD. If the voltage at the signal terminal T23 is included in the error range close to the power supply voltage VDD, the device 2 determines that the semiconductor integrated circuit device 5 of the sensor module 1 is in an abnormal state in which an incorrect voltage is applied.
なお、図1におけるプルアップ抵抗4は、信号端子T23とグランド端子T12との間に接続されるプルダウン抵抗に置き換えてもよい。この場合、半導体集積回路装置5の信号端子T3が高インピーダンス状態になると、機器2の信号端子T23の電圧はグランド電位VSSまで低下する。この場合、機器2において異常状態を判定するエラーレンジはグランド電位VSS付近に設定される。
Note that the pull-up resistor 4 in FIG. 1 may be replaced with a pull-down resistor connected between the signal terminal T23 and the ground terminal T12. In this case, when the signal terminal T3 of the semiconductor integrated circuit device 5 is in a high impedance state, the voltage of the signal terminal T23 of the device 2 decreases to the ground potential VSS. In this case, the error range for determining an abnormal state in the device 2 is set near the ground potential VSS.
図2は、第1の実施形態に係る半導体集積回路装置5の構成の一例を示す図である。
図2に示す半導体集積回路装置5は、電源端子T1と、グランド端子T2と、信号端子T3と、信号回路10と、判定回路20,30と、制御信号出力回路40と、電圧選択回路51とを有する。
電源端子T1は、本発明における電源端子の一例である。
グランド端子T2は、本発明におけるグランド端子の一例である。
信号端子T3は、本発明における信号端子の一例である。
信号回路10は、本発明における信号回路の一例である。
判定回路20は、本発明における第1判定回路の一例である。
判定回路30は、本発明における第2判定回路の一例である。
制御信号出力回路40は、本発明における制御信号出力回路の一例である。
電圧選択回路51は、本発明における第1電圧選択回路の一例である。 FIG. 2 is a diagram illustrating an example of the configuration of the semiconductor integratedcircuit device 5 according to the first embodiment.
The semiconductor integratedcircuit device 5 shown in FIG. 2 includes a power supply terminal T1, a ground terminal T2, a signal terminal T3, a signal circuit 10, determination circuits 20 and 30, a control signal output circuit 40, and a voltage selection circuit 51. Have
The power terminal T1 is an example of a power terminal in the present invention.
The ground terminal T2 is an example of the ground terminal in the present invention.
The signal terminal T3 is an example of a signal terminal in the present invention.
Thesignal circuit 10 is an example of a signal circuit in the present invention.
Thedetermination circuit 20 is an example of a first determination circuit in the present invention.
Thedetermination circuit 30 is an example of a second determination circuit in the present invention.
The controlsignal output circuit 40 is an example of the control signal output circuit in the present invention.
Thevoltage selection circuit 51 is an example of a first voltage selection circuit in the present invention.
図2に示す半導体集積回路装置5は、電源端子T1と、グランド端子T2と、信号端子T3と、信号回路10と、判定回路20,30と、制御信号出力回路40と、電圧選択回路51とを有する。
電源端子T1は、本発明における電源端子の一例である。
グランド端子T2は、本発明におけるグランド端子の一例である。
信号端子T3は、本発明における信号端子の一例である。
信号回路10は、本発明における信号回路の一例である。
判定回路20は、本発明における第1判定回路の一例である。
判定回路30は、本発明における第2判定回路の一例である。
制御信号出力回路40は、本発明における制御信号出力回路の一例である。
電圧選択回路51は、本発明における第1電圧選択回路の一例である。 FIG. 2 is a diagram illustrating an example of the configuration of the semiconductor integrated
The semiconductor integrated
The power terminal T1 is an example of a power terminal in the present invention.
The ground terminal T2 is an example of the ground terminal in the present invention.
The signal terminal T3 is an example of a signal terminal in the present invention.
The
The
The
The control
The
信号回路10は、センサ部6のセンシング結果に応じたセンシング信号を信号端子T3において出力する回路であり、例えば図示しない回路から入力される微弱なセンシング信号を増幅して出力するアンプ回路である。信号回路10は、制御信号出力回路40から出力される制御信号S40に応じて、信号端子T3における出力インピーダンスを高インピーダンス状態に設定する。具体的には、信号回路10は、制御信号S40が「1」の場合はセンシング信号を増幅するアンプ回路として動作し、制御信号S40が「0」の場合は出力インピーダンスを高インピーダンス状態に設定する。
The signal circuit 10 is a circuit that outputs a sensing signal according to the sensing result of the sensor unit 6 at the signal terminal T3. For example, the signal circuit 10 is an amplifier circuit that amplifies and outputs a weak sensing signal input from a circuit (not shown). In response to the control signal S40 output from the control signal output circuit 40, the signal circuit 10 sets the output impedance at the signal terminal T3 to a high impedance state. Specifically, the signal circuit 10 operates as an amplifier circuit that amplifies the sensing signal when the control signal S40 is “1”, and sets the output impedance to a high impedance state when the control signal S40 is “0”. .
また、信号回路10は、信号端子T3が電源端子T1やグランド端子T2に短絡された場合でも出力に過電流が流れないようにする出力短絡保護回路を備える。
Further, the signal circuit 10 includes an output short circuit protection circuit that prevents an overcurrent from flowing to the output even when the signal terminal T3 is short-circuited to the power supply terminal T1 or the ground terminal T2.
判定回路20は、グランド端子T2の電圧(グランド電位VSS)を基準とする電源端子T1の電圧(電源電圧VDD)が正常範囲内にあるか否かを判定する。例えば、判定回路20は、電源電圧VDDが下限のしきい電圧より低い場合や、上限のしきい電圧より高い場合に異常状態と判定し、電源電圧VDDが下限値より高く上限値より低い場合は正常状態と判定する。
The determination circuit 20 determines whether or not the voltage (power supply voltage VDD) of the power supply terminal T1 based on the voltage of the ground terminal T2 (ground potential VSS) is within a normal range. For example, the determination circuit 20 determines an abnormal state when the power supply voltage VDD is lower than the lower limit threshold voltage or higher than the upper limit threshold voltage, and when the power supply voltage VDD is higher than the lower limit value and lower than the upper limit value. Judged as normal.
なお、異常状態から正常状態へ判定が変化するしきい電圧と、正常状態から異常状態へ判定が変化するしきい電圧は同じでもよいし、異なっていてもよい。この2つのしきい電圧が異なるようにすることで、電源電圧VDDがしきい電圧付近にある場合に、電源電圧VDDの微小な変動によって判定結果が頻繁に変化することを防止できる。
Note that the threshold voltage at which the determination changes from the abnormal state to the normal state and the threshold voltage at which the determination changes from the normal state to the abnormal state may be the same or different. By making the two threshold voltages different from each other, it is possible to prevent the determination result from frequently changing due to a minute fluctuation of the power supply voltage VDD when the power supply voltage VDD is in the vicinity of the threshold voltage.
例えば、判定回路20は、上限の判定に2つのしきい電圧Vth1,Vth2(Vth1>Vth2)を用いるとともに、下限の判定に2つのしきい電圧Vth3,Vth4(Vth3>Vth4)を用いる。判定回路20は、正常状態と判定しているときに電源電圧VDDが上限のしきい電圧Vth1より高くなったら異常状態に変わったと判定し、異常状態と判定しているときに電源電圧VDDが上限のしきい電圧Vth2より低くなったら正常状態に変わったと判定する。また、判定回路20は、正常状態と判定しているときに電源電圧VDDが下限のしきい電圧Vth4より低くなったら異常状態に変わったと判定し、異常状態と判定しているときに電源電圧VDDが下限のしきい電圧Vth3より高くなったら正常状態に変わったと判定する。
For example, the determination circuit 20 uses two threshold voltages Vth1 and Vth2 (Vth1> Vth2) for the upper limit determination, and uses two threshold voltages Vth3, Vth4 (Vth3> Vth4) for the lower limit determination. The determination circuit 20 determines that the power supply voltage VDD has changed to an abnormal state when the power supply voltage VDD is higher than the upper limit threshold voltage Vth1 when determining that the power supply voltage VDD is normal, and determines that the power supply voltage VDD is the upper limit when determining the abnormal state. When it becomes lower than the threshold voltage Vth2, it is determined that the normal state has been changed. The determination circuit 20 determines that the power supply voltage VDD has changed to an abnormal state when the power supply voltage VDD is lower than the lower limit threshold voltage Vth4 when determining that the power supply voltage is normal, and determines that the power supply voltage VDD is determined to be abnormal. Is higher than the lower threshold voltage Vth3, it is determined that the state has changed to the normal state.
図2の例において、判定回路20は、分圧回路21と、基準電圧発生回路22と、比較回路23と、判定信号出力回路24とを有する。
分圧回路21は、本発明における分圧回路の一例である。
基準電圧発生回路22は、本発明における基準電圧発生回路の一例である。
比較回路23は、本発明における比較回路の一例である。
判定信号出力回路24は、本発明における判定信号出力回路の一例である。 In the example of FIG. 2, thedetermination circuit 20 includes a voltage dividing circuit 21, a reference voltage generation circuit 22, a comparison circuit 23, and a determination signal output circuit 24.
Thevoltage dividing circuit 21 is an example of a voltage dividing circuit in the present invention.
The referencevoltage generation circuit 22 is an example of the reference voltage generation circuit in the present invention.
Thecomparison circuit 23 is an example of a comparison circuit in the present invention.
The determinationsignal output circuit 24 is an example of a determination signal output circuit in the present invention.
分圧回路21は、本発明における分圧回路の一例である。
基準電圧発生回路22は、本発明における基準電圧発生回路の一例である。
比較回路23は、本発明における比較回路の一例である。
判定信号出力回路24は、本発明における判定信号出力回路の一例である。 In the example of FIG. 2, the
The
The reference
The
The determination
分圧回路21は、異なる分圧比によって分圧された複数の検出電圧(Vs1~Vs4)を出力する回路であり、電源端子T1とグランド端子T2との間に直列に接続された複数の抵抗(R1~R5)を有する。抵抗R1,R2,R3,R4,R5は、この順番で直列に接続される。抵抗R1~R5の直列回路における抵抗R1側の一端がグランド端子T2に接続され、抵抗R5側の他端が電源端子T1に接続される。検出電圧Vs1は抵抗R1とR2の接続ノードにおいて発生し、検出電圧Vs2は抵抗R2とR3の接続ノードにおいて発生し、検出電圧Vs3は抵抗R3とR4の接続ノードにおいて発生し、検出電圧Vs4は抵抗R4とR5の接続ノードにおいて発生する。グランド電位VSSを基準とした場合の電圧の高低関係は「Vs1<Vs2<Vs3<Vs4」となる。
The voltage dividing circuit 21 is a circuit that outputs a plurality of detection voltages (Vs1 to Vs4) divided by different voltage dividing ratios, and a plurality of resistors (series) connected in series between the power supply terminal T1 and the ground terminal T2. R1 to R5). The resistors R1, R2, R3, R4, and R5 are connected in series in this order. One end on the resistor R1 side in the series circuit of the resistors R1 to R5 is connected to the ground terminal T2, and the other end on the resistor R5 side is connected to the power supply terminal T1. The detection voltage Vs1 is generated at the connection node of the resistors R1 and R2, the detection voltage Vs2 is generated at the connection node of the resistors R2 and R3, the detection voltage Vs3 is generated at the connection node of the resistors R3 and R4, and the detection voltage Vs4 is the resistance Occurs at the connection node of R4 and R5. The voltage level relationship with respect to the ground potential VSS is “Vs1 <Vs2 <Vs3 <Vs4”.
基準電圧発生回路22は、グランド電位VSSに対して一定の基準電圧Vrefを発生する。また、基準電圧発生回路22は、基準電圧Vrefの発生の有無を示す状態信号R_RDYを出力する。これにより、電源電圧VDDの異常などによって正しい基準電圧Vrefを発生できない場合には、その状態が比較回路23へ通知される。
The reference voltage generation circuit 22 generates a constant reference voltage Vref with respect to the ground potential VSS. The reference voltage generation circuit 22 outputs a status signal R_RDY indicating whether or not the reference voltage Vref is generated. As a result, when the correct reference voltage Vref cannot be generated due to an abnormality in the power supply voltage VDD, the state is notified to the comparison circuit 23.
比較回路23は、分圧回路21において異なる分圧比によって分圧された複数の検出電圧(Vs1~Vs4)と基準電圧Vrefとをそれぞれ比較し、その比較結果として、電源電圧VDDが上限を超えるか否かを示す信号Sh1と、電源電圧VDDが下限を下回るか否かを示す信号Sh2をそれぞれ出力する。
The comparison circuit 23 compares the plurality of detection voltages (Vs1 to Vs4) divided by different voltage division ratios in the voltage dividing circuit 21 with the reference voltage Vref, and the comparison result indicates whether the power supply voltage VDD exceeds the upper limit. A signal Sh1 indicating whether or not the power supply voltage VDD is below the lower limit, and a signal Sh2 indicating whether or not the power supply voltage VDD is lower than the lower limit.
ただし、比較回路23は、基準電圧発生回路22において正常な基準電圧Vrefが発生していないことを示す状態信号R_RDYが出力されている場合には、電源電圧VDDが正常範囲内にあることを示す信号Sh1,Sh2の出力を抑止する。この場合、例えば、比較回路23は、電源電圧VDDが上限を超えることを示す信号Sh1、及び、電源電圧VDDが下限を下回る信号Sh2の少なくとも一方を出力する。これにより、正常でない基準電圧Vrefに基づいて誤った信号Sh1,Sh2が出力される可能性のある場合において、電源電圧VDDが正常範囲内にあることを示す信号Sh1,Sh2が出力されることを防止できる。
However, the comparison circuit 23 indicates that the power supply voltage VDD is within the normal range when the state signal R_RDY indicating that the normal reference voltage Vref is not generated in the reference voltage generation circuit 22 is output. The output of the signals Sh1 and Sh2 is suppressed. In this case, for example, the comparison circuit 23 outputs at least one of the signal Sh1 indicating that the power supply voltage VDD exceeds the upper limit and the signal Sh2 where the power supply voltage VDD is lower than the lower limit. As a result, when there is a possibility that erroneous signals Sh1 and Sh2 are output based on the reference voltage Vref that is not normal, the signals Sh1 and Sh2 indicating that the power supply voltage VDD is within the normal range are output. Can be prevented.
図2の例において、比較回路23は、ヒステリシスコンパレータ231と232を有する。
ヒステリシスコンパレータ231は、本発明における第1ヒステリシスコンパレータの一例である。
ヒステリシスコンパレータ232は、本発明における第2ヒステリシスコンパレータの一例である。 In the example of FIG. 2, thecomparison circuit 23 includes hysteresis comparators 231 and 232.
Thehysteresis comparator 231 is an example of a first hysteresis comparator in the present invention.
Thehysteresis comparator 232 is an example of a second hysteresis comparator in the present invention.
ヒステリシスコンパレータ231は、本発明における第1ヒステリシスコンパレータの一例である。
ヒステリシスコンパレータ232は、本発明における第2ヒステリシスコンパレータの一例である。 In the example of FIG. 2, the
The
The
ヒステリシスコンパレータ231は、検出電圧Vs1が基準電圧Vrefより低い状態から高い状態へ変化すると、電源電圧VDDが正常範囲の上限より高いことを示す信号Sh1を出力し(例えばSh1=「0」)、検出電圧Vs2が基準電圧Vrefより高い状態から低い状態へ変化すると、電源電圧VDDが正常範囲の上限より低いことを示す信号Sh1を出力する(例えばSh1=「1」)。
When the detection voltage Vs1 changes from a state lower than the reference voltage Vref to a higher state, the hysteresis comparator 231 outputs a signal Sh1 indicating that the power supply voltage VDD is higher than the upper limit of the normal range (for example, Sh1 = “0”). When the voltage Vs2 changes from a state higher than the reference voltage Vref to a state lower than the reference voltage Vref, a signal Sh1 indicating that the power supply voltage VDD is lower than the upper limit of the normal range is output (for example, Sh1 = “1”).
検出電圧Vs1,Vs2は、上限のしきい電圧Vth1,Vth2(Vth1>Vth2)を用いて、それぞれ次式のように表わされる。
The detection voltages Vs1 and Vs2 are expressed by the following equations using upper limit threshold voltages Vth1 and Vth2 (Vth1> Vth2), respectively.
[数1]
Vs1=Vref×(VDD/Vth1) … (1)
Vs2=Vref×(VDD/Vth2) … (2) [Equation 1]
Vs1 = Vref × (VDD / Vth1) (1)
Vs2 = Vref × (VDD / Vth2) (2)
Vs1=Vref×(VDD/Vth1) … (1)
Vs2=Vref×(VDD/Vth2) … (2) [Equation 1]
Vs1 = Vref × (VDD / Vth1) (1)
Vs2 = Vref × (VDD / Vth2) (2)
式(1)より、検出電圧Vs1が基準電圧Vrefより低い状態から高い状態へ変化することは、電源電圧VDDが上限のしきい電圧Vth1より高くなること(正常範囲の上限より高い異常状態になること)を示す。この場合、ヒステリシスコンパレータ231は、信号Sh1として「0」を出力する。
また、式(2)より、検出電圧Vs2が基準電圧Vrefより高い状態から低い状態へ変化することは、電源電圧VDDが上限のしきい電圧Vth2より低くなること(正常範囲の上限より低い状態になること)を示す。この場合、ヒステリシスコンパレータ231は、信号Sh1として「1」を出力する。 From Expression (1), when the detection voltage Vs1 changes from a state lower than the reference voltage Vref to a higher state, the power supply voltage VDD becomes higher than the upper limit threshold voltage Vth1 (becomes an abnormal state higher than the upper limit of the normal range). Show). In this case, thehysteresis comparator 231 outputs “0” as the signal Sh1.
Further, according to equation (2), when the detection voltage Vs2 changes from a state higher than the reference voltage Vref to a lower state, the power supply voltage VDD becomes lower than the upper threshold voltage Vth2 (becomes lower than the upper limit of the normal range). ). In this case, thehysteresis comparator 231 outputs “1” as the signal Sh1.
また、式(2)より、検出電圧Vs2が基準電圧Vrefより高い状態から低い状態へ変化することは、電源電圧VDDが上限のしきい電圧Vth2より低くなること(正常範囲の上限より低い状態になること)を示す。この場合、ヒステリシスコンパレータ231は、信号Sh1として「1」を出力する。 From Expression (1), when the detection voltage Vs1 changes from a state lower than the reference voltage Vref to a higher state, the power supply voltage VDD becomes higher than the upper limit threshold voltage Vth1 (becomes an abnormal state higher than the upper limit of the normal range). Show). In this case, the
Further, according to equation (2), when the detection voltage Vs2 changes from a state higher than the reference voltage Vref to a lower state, the power supply voltage VDD becomes lower than the upper threshold voltage Vth2 (becomes lower than the upper limit of the normal range). ). In this case, the
ヒステリシスコンパレータ232は、検出電圧Vs3が基準電圧Vrefより低い状態から高い状態へ変化すると、電源電圧VDDが正常範囲の下限より高いことを示す信号Sh2を出力し(例えばSh2=「1」)、検出電圧Vs4が基準電圧Vrefより高い状態から低い状態へ変化すると、電源電圧VDDが正常範囲の下限より低いことを示す信号Sh2を出力する(例えばSh2=「0」)。
When the detection voltage Vs3 changes from a state lower than the reference voltage Vref to a higher state, the hysteresis comparator 232 outputs a signal Sh2 indicating that the power supply voltage VDD is higher than the lower limit of the normal range (for example, Sh2 = “1”), and is detected. When the voltage Vs4 changes from a higher state to a lower state than the reference voltage Vref, a signal Sh2 indicating that the power supply voltage VDD is lower than the lower limit of the normal range is output (for example, Sh2 = “0”).
検出電圧Vs3,Vs4は、下限のしきい電圧Vth3,Vth4(Vth3>Vth4)を用いて、それぞれ次式のように表わされる。
Detected voltages Vs3 and Vs4 are expressed by the following equations using lower limit threshold voltages Vth3 and Vth4 (Vth3> Vth4), respectively.
[数1]
Vs3=Vref×(VDD/Vth3) … (3)
Vs4=Vref×(VDD/Vth4) … (4) [Equation 1]
Vs3 = Vref × (VDD / Vth3) (3)
Vs4 = Vref × (VDD / Vth4) (4)
Vs3=Vref×(VDD/Vth3) … (3)
Vs4=Vref×(VDD/Vth4) … (4) [Equation 1]
Vs3 = Vref × (VDD / Vth3) (3)
Vs4 = Vref × (VDD / Vth4) (4)
式(3)より、検出電圧Vs3が基準電圧Vrefより低い状態から高い状態へ変化することは、電源電圧VDDが下限のしきい電圧Vth3より高くなること(正常範囲の下限より高い状態になること)を示す。この場合、ヒステリシスコンパレータ232は、信号Sh2として「1」を出力する。
また、式(4)より、検出電圧Vs4が基準電圧Vrefより高い状態から低い状態へ変化することは、電源電圧VDDが下限のしきい電圧Vth4より低くなること(正常範囲の下限より低い異常状態になること)を示す。この場合、ヒステリシスコンパレータ232は、信号Sh2として「0」を出力する。 From Expression (3), when the detection voltage Vs3 changes from a state lower than the reference voltage Vref to a higher state, the power supply voltage VDD becomes higher than the lower limit threshold voltage Vth3 (becomes higher than the lower limit of the normal range). ). In this case, thehysteresis comparator 232 outputs “1” as the signal Sh2.
Further, from the equation (4), when the detection voltage Vs4 changes from a state higher than the reference voltage Vref to a lower state, the power supply voltage VDD becomes lower than the lower threshold voltage Vth4 (an abnormal state lower than the lower limit of the normal range). To become). In this case, thehysteresis comparator 232 outputs “0” as the signal Sh2.
また、式(4)より、検出電圧Vs4が基準電圧Vrefより高い状態から低い状態へ変化することは、電源電圧VDDが下限のしきい電圧Vth4より低くなること(正常範囲の下限より低い異常状態になること)を示す。この場合、ヒステリシスコンパレータ232は、信号Sh2として「0」を出力する。 From Expression (3), when the detection voltage Vs3 changes from a state lower than the reference voltage Vref to a higher state, the power supply voltage VDD becomes higher than the lower limit threshold voltage Vth3 (becomes higher than the lower limit of the normal range). ). In this case, the
Further, from the equation (4), when the detection voltage Vs4 changes from a state higher than the reference voltage Vref to a lower state, the power supply voltage VDD becomes lower than the lower threshold voltage Vth4 (an abnormal state lower than the lower limit of the normal range). To become). In this case, the
図3は、ヒステリシスコンパレータ231,232の構成の一例を示す図である。図3の例において、ヒステリシスコンパレータ231は、コンパレータCP1,CP2とフリップフロップFF1を含む。ヒステリシスコンパレータ232は、コンパレータCP3,CP4とフリップフロップFF2を含む。
FIG. 3 is a diagram illustrating an example of the configuration of the hysteresis comparators 231 and 232. In the example of FIG. 3, the hysteresis comparator 231 includes comparators CP1 and CP2 and a flip-flop FF1. Hysteresis comparator 232 includes comparators CP3 and CP4 and flip-flop FF2.
コンパレータCP1の出力信号Scp1は、検出電圧Vs1が基準電圧Vrefより高い場合に「1」、低い場合に「0」となる。コンパレータCP2の出力信号Scp2は、検出電圧Vs2が基準電圧Vrefより高い場合に「0」、低い場合に「1」となる。フリップフロップFF1の出力信号Sh1は、信号Scp1=「1」かつ信号Scp2=「0」の場合に「0」となり、信号Scp1=「0」かつ信号Scp2=「0」の場合に前の状態と同じ値となり、信号Scp1=「0」かつ信号Scp2=「1」の場合に「1」となる。
検出電圧Vs1が基準電圧Vrefより高くなると(Vs2>Vs1>Vref)、信号Scp1=「1」かつ信号Scp2=「0」となるため、ヒステリシスコンパレータ231は信号Sh1として「0」を出力する。検出電圧Vs1が基準電圧Vrefより低く、かつ、検出電圧Vs2が基準電圧Vrefより高くなると(Vs2>Vref>Vs1)、信号Scp1=「0」かつ信号Scp2=「0」となるため、ヒステリシスコンパレータ231の値は変化しない。検出電圧Vs2が基準電圧Vrefより低くなると(Vref>Vs2>Vs1)、信号Scp1=「0」かつ信号Scp2=「1」となるため、ヒステリシスコンパレータ231は信号Sh1として「1」を出力する。 The output signal Scp1 of the comparator CP1 becomes “1” when the detection voltage Vs1 is higher than the reference voltage Vref, and becomes “0” when it is lower. The output signal Scp2 of the comparator CP2 becomes “0” when the detection voltage Vs2 is higher than the reference voltage Vref, and becomes “1” when it is lower. The output signal Sh1 of the flip-flop FF1 becomes “0” when the signal Scp1 = “1” and the signal Scp2 = “0”, and the previous state when the signal Scp1 = “0” and the signal Scp2 = “0”. When the signal Scp1 = “0” and the signal Scp2 = “1”, the value is “1”.
When the detection voltage Vs1 becomes higher than the reference voltage Vref (Vs2>Vs1> Vref), since the signal Scp1 = “1” and the signal Scp2 = “0”, thehysteresis comparator 231 outputs “0” as the signal Sh1. When the detection voltage Vs1 is lower than the reference voltage Vref and the detection voltage Vs2 is higher than the reference voltage Vref (Vs2>Vref> Vs1), the signal Scp1 = “0” and the signal Scp2 = “0”, so that the hysteresis comparator 231 The value of does not change. When the detection voltage Vs2 becomes lower than the reference voltage Vref (Vref>Vs2> Vs1), since the signal Scp1 = “0” and the signal Scp2 = “1”, the hysteresis comparator 231 outputs “1” as the signal Sh1.
検出電圧Vs1が基準電圧Vrefより高くなると(Vs2>Vs1>Vref)、信号Scp1=「1」かつ信号Scp2=「0」となるため、ヒステリシスコンパレータ231は信号Sh1として「0」を出力する。検出電圧Vs1が基準電圧Vrefより低く、かつ、検出電圧Vs2が基準電圧Vrefより高くなると(Vs2>Vref>Vs1)、信号Scp1=「0」かつ信号Scp2=「0」となるため、ヒステリシスコンパレータ231の値は変化しない。検出電圧Vs2が基準電圧Vrefより低くなると(Vref>Vs2>Vs1)、信号Scp1=「0」かつ信号Scp2=「1」となるため、ヒステリシスコンパレータ231は信号Sh1として「1」を出力する。 The output signal Scp1 of the comparator CP1 becomes “1” when the detection voltage Vs1 is higher than the reference voltage Vref, and becomes “0” when it is lower. The output signal Scp2 of the comparator CP2 becomes “0” when the detection voltage Vs2 is higher than the reference voltage Vref, and becomes “1” when it is lower. The output signal Sh1 of the flip-flop FF1 becomes “0” when the signal Scp1 = “1” and the signal Scp2 = “0”, and the previous state when the signal Scp1 = “0” and the signal Scp2 = “0”. When the signal Scp1 = “0” and the signal Scp2 = “1”, the value is “1”.
When the detection voltage Vs1 becomes higher than the reference voltage Vref (Vs2>Vs1> Vref), since the signal Scp1 = “1” and the signal Scp2 = “0”, the
コンパレータCP3の出力信号Scp3は、検出電圧Vs3が基準電圧Vrefより高い場合に「1」、低い場合に「0」となる。コンパレータCP4の出力信号Scp4は、検出電圧Vs4が基準電圧Vrefより高い場合に「0」、低い場合に「1」となる。フリップフロップFF2の出力信号Sh2は、信号Scp3=「1」かつ信号Scp4=「0」の場合に「1」となり、信号Scp3=「0」かつ信号Scp4=「0」の場合に前の状態と同じ値となり、信号Scp3=「0」かつ信号Scp4=「1」の場合に「0」となる。
検出電圧Vs3が基準電圧Vrefより高くなると(Vs4>Vs3>Vref)、信号Scp3=「1」かつ信号Scp4=「0」となるため、ヒステリシスコンパレータ232は信号Sh2として「1」を出力する。検出電圧Vs3が基準電圧Vrefより低く、かつ、検出電圧Vs4が基準電圧Vrefより高くなると(Vs4>Vref>Vs3)、信号Scp3=「0」かつ信号Scp4=「0」となるため、ヒステリシスコンパレータ232の値は変化しない。検出電圧Vs4が基準電圧Vrefより低くなると(Vref>Vs4>Vs3)、信号Scp3=「0」かつ信号Scp4=「1」となるため、ヒステリシスコンパレータ232は信号Sh2として「0」を出力する。 The output signal Scp3 of the comparator CP3 becomes “1” when the detection voltage Vs3 is higher than the reference voltage Vref, and becomes “0” when it is lower. The output signal Scp4 of the comparator CP4 becomes “0” when the detection voltage Vs4 is higher than the reference voltage Vref, and becomes “1” when it is lower. The output signal Sh2 of the flip-flop FF2 becomes “1” when the signal Scp3 = “1” and the signal Scp4 = “0”, and the previous state when the signal Scp3 = “0” and the signal Scp4 = “0”. When the signal Scp3 = “0” and the signal Scp4 = “1”, the value is “0”.
When the detection voltage Vs3 becomes higher than the reference voltage Vref (Vs4>Vs3> Vref), since the signal Scp3 = “1” and the signal Scp4 = “0”, thehysteresis comparator 232 outputs “1” as the signal Sh2. When the detection voltage Vs3 is lower than the reference voltage Vref and the detection voltage Vs4 is higher than the reference voltage Vref (Vs4>Vref> Vs3), the signal Scp3 = “0” and the signal Scp4 = “0”, so that the hysteresis comparator 232 The value of does not change. When the detection voltage Vs4 becomes lower than the reference voltage Vref (Vref>Vs4> Vs3), since the signal Scp3 = “0” and the signal Scp4 = “1”, the hysteresis comparator 232 outputs “0” as the signal Sh2.
検出電圧Vs3が基準電圧Vrefより高くなると(Vs4>Vs3>Vref)、信号Scp3=「1」かつ信号Scp4=「0」となるため、ヒステリシスコンパレータ232は信号Sh2として「1」を出力する。検出電圧Vs3が基準電圧Vrefより低く、かつ、検出電圧Vs4が基準電圧Vrefより高くなると(Vs4>Vref>Vs3)、信号Scp3=「0」かつ信号Scp4=「0」となるため、ヒステリシスコンパレータ232の値は変化しない。検出電圧Vs4が基準電圧Vrefより低くなると(Vref>Vs4>Vs3)、信号Scp3=「0」かつ信号Scp4=「1」となるため、ヒステリシスコンパレータ232は信号Sh2として「0」を出力する。 The output signal Scp3 of the comparator CP3 becomes “1” when the detection voltage Vs3 is higher than the reference voltage Vref, and becomes “0” when it is lower. The output signal Scp4 of the comparator CP4 becomes “0” when the detection voltage Vs4 is higher than the reference voltage Vref, and becomes “1” when it is lower. The output signal Sh2 of the flip-flop FF2 becomes “1” when the signal Scp3 = “1” and the signal Scp4 = “0”, and the previous state when the signal Scp3 = “0” and the signal Scp4 = “0”. When the signal Scp3 = “0” and the signal Scp4 = “1”, the value is “0”.
When the detection voltage Vs3 becomes higher than the reference voltage Vref (Vs4>Vs3> Vref), since the signal Scp3 = “1” and the signal Scp4 = “0”, the
図2に戻る。
判定信号出力回路24は、比較回路23の比較結果に基づいて、電源電圧VDDが正常範囲内にあるか否かの判定結果を示す判定信号Sc1を出力する。すなわち、判定信号出力回路24は、ヒステリシスコンパレータ231において電源電圧VDDが正常範囲の上限より高いことを示す信号Sh1(=「0」)が出力されるか、又は、ヒステリシスコンパレータ232において電源電圧VDDが正常範囲の下限より低いことを示す信号Sh2(=「0」)が出力される場合、電源電圧VDDが正常範囲内にないことを示す判定信号Sc1(=「0」)を出力する。電源電圧VDDが正常範囲内にある場合(Sh1=「1」かつSh2=「1」の場合)、判定信号出力回路24は判定信号Sc1として「1」を出力する。図2の例において、判定信号出力回路24は、信号Sh1と信号Sh2との論理積を演算するAND回路によって構成される。 Returning to FIG.
Based on the comparison result of thecomparison circuit 23, the determination signal output circuit 24 outputs a determination signal Sc1 indicating the determination result of whether or not the power supply voltage VDD is within the normal range. That is, the determination signal output circuit 24 outputs the signal Sh1 (= “0”) indicating that the power supply voltage VDD is higher than the upper limit of the normal range in the hysteresis comparator 231 or the power supply voltage VDD is output in the hysteresis comparator 232. When the signal Sh2 (= “0”) indicating that it is lower than the lower limit of the normal range is output, the determination signal Sc1 (= “0”) indicating that the power supply voltage VDD is not within the normal range is output. When the power supply voltage VDD is within the normal range (when Sh1 = “1” and Sh2 = “1”), the determination signal output circuit 24 outputs “1” as the determination signal Sc1. In the example of FIG. 2, the determination signal output circuit 24 is configured by an AND circuit that calculates a logical product of the signal Sh1 and the signal Sh2.
判定信号出力回路24は、比較回路23の比較結果に基づいて、電源電圧VDDが正常範囲内にあるか否かの判定結果を示す判定信号Sc1を出力する。すなわち、判定信号出力回路24は、ヒステリシスコンパレータ231において電源電圧VDDが正常範囲の上限より高いことを示す信号Sh1(=「0」)が出力されるか、又は、ヒステリシスコンパレータ232において電源電圧VDDが正常範囲の下限より低いことを示す信号Sh2(=「0」)が出力される場合、電源電圧VDDが正常範囲内にないことを示す判定信号Sc1(=「0」)を出力する。電源電圧VDDが正常範囲内にある場合(Sh1=「1」かつSh2=「1」の場合)、判定信号出力回路24は判定信号Sc1として「1」を出力する。図2の例において、判定信号出力回路24は、信号Sh1と信号Sh2との論理積を演算するAND回路によって構成される。 Returning to FIG.
Based on the comparison result of the
判定回路30は、信号端子T3の電圧(信号電圧VSIG)が電源電圧VDDより低くグランド電位VSSより高い正常範囲内にあるか否かを判定する。
The determination circuit 30 determines whether or not the voltage of the signal terminal T3 (signal voltage VSIG) is within a normal range lower than the power supply voltage VDD and higher than the ground potential VSS.
図4は、判定回路30の構成の一例を示す図である。図4の例において、判定回路30は、コンパレータCP5,CP6とAND回路303を含む。コンパレータCP5は、信号電圧VSIGが電源電圧VDDより低い場合に「1」、高い場合に「0」を出力する。コンパレータCP6は、信号電圧VSIGがグランド電位VSSより高い場合に「1」、低い場合に「0」を出力する。AND回路303は、コンパレータCP5,CP6の出力が共に「1」の場合に判定信号Sc2として「1」を出力し、それ以外の場合に「0」を出力する。図4に示す構成によれば、信号電圧VSIGが電源電圧VDDより低くグランド電位VSSより高い正常範囲内にある場合、AND回路303から判定信号Sc2として「1」が出力される。信号電圧VSIGが正常範囲内にない場合(VSIG>VDDの場合やVSS>VSIGの場合)、AND回路303から判定信号Sc2として「0」が出力される。
FIG. 4 is a diagram illustrating an example of the configuration of the determination circuit 30. In the example of FIG. 4, the determination circuit 30 includes comparators CP5 and CP6 and an AND circuit 303. The comparator CP5 outputs “1” when the signal voltage VSIG is lower than the power supply voltage VDD, and outputs “0” when it is higher. The comparator CP6 outputs “1” when the signal voltage VSIG is higher than the ground potential VSS, and outputs “0” when it is lower. The AND circuit 303 outputs “1” as the determination signal Sc2 when the outputs of the comparators CP5 and CP6 are both “1”, and outputs “0” otherwise. According to the configuration shown in FIG. 4, when the signal voltage VSIG is in a normal range lower than the power supply voltage VDD and higher than the ground potential VSS, “1” is output from the AND circuit 303 as the determination signal Sc2. When the signal voltage VSIG is not within the normal range (when VSIG> VDD or VSS> VSIG), “0” is output from the AND circuit 303 as the determination signal Sc2.
再び図2に戻る。
制御信号出力回路40は、判定回路20において電源電圧VDDが正常範囲内にないと判定された場合、又は、判定回路30において信号電圧VSIGが正常範囲内にないと判定された場合に、信号端子T3における出力インピーダンスが高インピーダンス状態となるように信号回路10を制御する制御信号S40を出力する。図2の例において、制御信号出力回路40は、判定回路20の判定信号Sc1と判定回路30の判定信号Sc2との論理積を演算するAND回路によって構成される。 Returning again to FIG.
When thedetermination circuit 20 determines that the power supply voltage VDD is not within the normal range, or when the determination circuit 30 determines that the signal voltage VSIG is not within the normal range, the control signal output circuit 40 A control signal S40 for controlling the signal circuit 10 is output so that the output impedance at T3 is in a high impedance state. In the example of FIG. 2, the control signal output circuit 40 is configured by an AND circuit that calculates the logical product of the determination signal Sc <b> 1 of the determination circuit 20 and the determination signal Sc <b> 2 of the determination circuit 30.
制御信号出力回路40は、判定回路20において電源電圧VDDが正常範囲内にないと判定された場合、又は、判定回路30において信号電圧VSIGが正常範囲内にないと判定された場合に、信号端子T3における出力インピーダンスが高インピーダンス状態となるように信号回路10を制御する制御信号S40を出力する。図2の例において、制御信号出力回路40は、判定回路20の判定信号Sc1と判定回路30の判定信号Sc2との論理積を演算するAND回路によって構成される。 Returning again to FIG.
When the
電圧選択回路51は、グランド電位VSS、電源電圧VDD及び信号電圧VSIGの中で最も高い電圧を選択し、選択電圧VBULKとして出力する。電圧選択回路51は、例えば図5において示すように、3つのダイオード(D1,D2,D3)を用いて構成される。ダイオードD1のアノードには電源電圧VDDが入力され、ダイオードD2のアノードには信号電圧VSIGが入力され、ダイオードD3のアノードにはグランド電位VSSが入力される。ダイオードD1,D2,D3のカソードが共通に接続され、この共通接続されたノードにおいて選択電圧VBULKが出力される。
The voltage selection circuit 51 selects the highest voltage among the ground potential VSS, the power supply voltage VDD and the signal voltage VSIG and outputs it as the selection voltage VBULK. For example, as shown in FIG. 5, the voltage selection circuit 51 is configured using three diodes (D1, D2, D3). The power supply voltage VDD is input to the anode of the diode D1, the signal voltage VSIG is input to the anode of the diode D2, and the ground potential VSS is input to the anode of the diode D3. The cathodes of the diodes D1, D2, and D3 are commonly connected, and the selection voltage VBULK is output at the commonly connected node.
なお、図2に示す半導体集積回路装置5の全体の回路に含まれるP型MOSトランジスタのバルクには、電圧選択回路51から出力される選択電圧VBULKが印加される。すなわち、P型MOSトランジスタのバルクには、3つの端子(T1~T3)において半導体集積回路装置5に入力される最も高い電圧が印加される。
Note that the selection voltage VBULK output from the voltage selection circuit 51 is applied to the bulk of the P-type MOS transistor included in the entire circuit of the semiconductor integrated circuit device 5 shown in FIG. That is, the highest voltage input to the semiconductor integrated circuit device 5 at the three terminals (T1 to T3) is applied to the bulk of the P-type MOS transistor.
また、図2に示す半導体集積回路装置5では、逆接続等によって電源電圧VDDがグランド電位VSSより低い状態となっても外部の機器2へ異常状態を通知できるようにするため、信号回路10,判定回路20,判定回路30,制御信号出力回路40を含む少なくとも一部の回路には、電源電圧VDDの代わりとして、電圧選択回路51の選択電圧VBULKが供給される。これにより、逆接続等の異常状態においても、これらの回路にはグランド電位VSSより高い選択電圧VBULKが電源電圧として供給されるため、通常状態と同様な動作が可能になる。
Further, in the semiconductor integrated circuit device 5 shown in FIG. 2, in order to be able to notify the external device 2 of an abnormal state even when the power supply voltage VDD is lower than the ground potential VSS due to reverse connection or the like, At least some of the circuits including the determination circuit 20, the determination circuit 30, and the control signal output circuit 40 are supplied with the selection voltage VBULK of the voltage selection circuit 51 instead of the power supply voltage VDD. As a result, even in an abnormal state such as reverse connection, the selection voltage VBULK higher than the ground potential VSS is supplied to these circuits as a power supply voltage, so that an operation similar to the normal state is possible.
ここで、上述した構成を有する半導体集積回路装置5の動作を説明する。
まず、配線の誤接続などによって不正な電圧が端子T1~T3に印加された場合(端子T1~T3の相対的な電圧の高低関係が異常な場合)の保護動作について述べる。 Here, the operation of the semiconductor integratedcircuit device 5 having the above-described configuration will be described.
First, a protection operation in the case where an improper voltage is applied to the terminals T1 to T3 due to misconnection of wirings (when the relative voltage level of the terminals T1 to T3 is abnormal) will be described.
まず、配線の誤接続などによって不正な電圧が端子T1~T3に印加された場合(端子T1~T3の相対的な電圧の高低関係が異常な場合)の保護動作について述べる。 Here, the operation of the semiconductor integrated
First, a protection operation in the case where an improper voltage is applied to the terminals T1 to T3 due to misconnection of wirings (when the relative voltage level of the terminals T1 to T3 is abnormal) will be described.
図6は、P型MOSトランジスタの寄生ダイオードを説明するための図である。図6AはP型MOSトランジスタQpの構造を示し、図6BはP型MOSトランジスタQpを含んだ回路の例を示す。P型基板の表面には、N型拡散領域(Nウェル)が形成される。そのNウェルの表面には、P型MOSトランジスタQpのソース(S)及びドレイン(D)となる2つのP型拡散領域(p+)と、Nウェルをバルク電極(B)に接続するためのN型拡散領域(n+)が形成される。図6の例では、P型MOSトランジスタQpのソース(S)は電源線(VDD)に接続され、そのドレイン(D)はN型MOSトランジスタ等の素子91を介してグランド(VSS)に接続される。
FIG. 6 is a diagram for explaining a parasitic diode of a P-type MOS transistor. 6A shows the structure of the P-type MOS transistor Qp, and FIG. 6B shows an example of a circuit including the P-type MOS transistor Qp. An N type diffusion region (N well) is formed on the surface of the P type substrate. On the surface of the N well, there are two P type diffusion regions (p +) to be the source (S) and drain (D) of the P type MOS transistor Qp, and N for connecting the N well to the bulk electrode (B). A mold diffusion region (n +) is formed. In the example of FIG. 6, the source (S) of the P-type MOS transistor Qp is connected to the power supply line (VDD), and its drain (D) is connected to the ground (VSS) via the element 91 such as an N-type MOS transistor. The
図6において示すように、P型MOSトランジスタQpにおけるソース(S)及びドレイン(D)とバルク(Nウェル)との間には、それぞれ寄生ダイオードDp1,Dp2が形成される。この寄生ダイオードDp1,Dp2は、ソース(S)やドレイン(D)がバルク(Nウェル)より高い電圧になると導通する。
また、P型MOSトランジスタQpのバルク(Nウェル)とP型基板との間にも寄生ダイオードDp3が形成される。この寄生ダイオードDp3は、P型基板がP型MOSトランジスタQpのバルク(Nウェル)より高い電圧になると導通する。 As shown in FIG. 6, parasitic diodes Dp1 and Dp2 are formed between the source (S) and drain (D) and the bulk (N well) in the P-type MOS transistor Qp, respectively. The parasitic diodes Dp1 and Dp2 become conductive when the source (S) and the drain (D) have a higher voltage than the bulk (N well).
A parasitic diode Dp3 is also formed between the bulk (N well) of the P-type MOS transistor Qp and the P-type substrate. The parasitic diode Dp3 becomes conductive when the P-type substrate has a higher voltage than the bulk (N well) of the P-type MOS transistor Qp.
また、P型MOSトランジスタQpのバルク(Nウェル)とP型基板との間にも寄生ダイオードDp3が形成される。この寄生ダイオードDp3は、P型基板がP型MOSトランジスタQpのバルク(Nウェル)より高い電圧になると導通する。 As shown in FIG. 6, parasitic diodes Dp1 and Dp2 are formed between the source (S) and drain (D) and the bulk (N well) in the P-type MOS transistor Qp, respectively. The parasitic diodes Dp1 and Dp2 become conductive when the source (S) and the drain (D) have a higher voltage than the bulk (N well).
A parasitic diode Dp3 is also formed between the bulk (N well) of the P-type MOS transistor Qp and the P-type substrate. The parasitic diode Dp3 becomes conductive when the P-type substrate has a higher voltage than the bulk (N well) of the P-type MOS transistor Qp.
一般に、P型MOSトランジスタQpのバルク(Nウェル)の電圧Vbkは電源電圧VDDと等しくなっているが、その場合、図6において点線で示すように電源電圧VDDがグランド電位VSSより低くなると、素子91と寄生ダイオードDp2を介して電流が流れる可能性がある。これに対し、図2に示す半導体集積回路装置5では、バルク(Nウェル)の電圧Vbkが選択電圧VBULKと等しくなっているため、寄生ダイオードDp1,Dp2,Dp3のカソード側が最高電圧となり、これらの寄生ダイオードには電流が流れない。
In general, the bulk (N well) voltage Vbk of the P-type MOS transistor Qp is equal to the power supply voltage VDD. In this case, when the power supply voltage VDD becomes lower than the ground potential VSS as shown by a dotted line in FIG. There is a possibility that a current flows through 91 and the parasitic diode Dp2. On the other hand, in the semiconductor integrated circuit device 5 shown in FIG. 2, since the bulk (N well) voltage Vbk is equal to the selection voltage VBULK, the cathode side of the parasitic diodes Dp1, Dp2, Dp3 becomes the highest voltage. No current flows through the parasitic diode.
なお、図2に示す半導体集積回路装置5では、ロジック信号のハイレベル電圧が選択電圧VBULKに基づいた電圧となるように、内部のロジック回路が構成されていてもよい。例えば、半導体集積回路装置5に含まれるロジック回路には、ハイレベルの電圧として、電源電圧VDDの代わりに選択電圧VBULKが供給されてもよい。これにより、電源電圧VDDがグランド電位VSSより低くなる異常な状態となっても、選択電圧VBULKがグランド電位VSSより低くなることはないため、ハイレベルの電圧を出力するP型MOSトランジスタQpには、異常状態において正常時と逆方向の電流が流れることはない。
In the semiconductor integrated circuit device 5 shown in FIG. 2, the internal logic circuit may be configured so that the high level voltage of the logic signal becomes a voltage based on the selection voltage VBULK. For example, the logic circuit included in the semiconductor integrated circuit device 5 may be supplied with the selection voltage VBULK instead of the power supply voltage VDD as a high level voltage. Thereby, even if the power supply voltage VDD becomes lower than the ground potential VSS, the selection voltage VBULK does not become lower than the ground potential VSS. Therefore, the P-type MOS transistor Qp that outputs a high level voltage has In the abnormal state, no current flows in the opposite direction to that in the normal state.
また、この場合、判定回路20及び30において異常状態と判定されたら(判定信号Sc1及びSc2が共に「0」となったら)、ハイレベルのロジック信号を出力するように内部のロジック回路が構成されていてもよい。これにより、ロジック回路中のP型MOSトランジスタQpのゲート電圧Vgには、異常状態において最高電圧(選択電圧VBULK)が印加されることになり、P型MOSトランジスタQpのチャンネルがオフ状態となるため、P型MOSトランジスタQpのチャンネルに電流が流れることはない。
In this case, if the determination circuits 20 and 30 determine that the state is abnormal (when both of the determination signals Sc1 and Sc2 are “0”), the internal logic circuit is configured to output a high-level logic signal. It may be. As a result, the highest voltage (select voltage VBULK) is applied to the gate voltage Vg of the P-type MOS transistor Qp in the logic circuit in the abnormal state, and the channel of the P-type MOS transistor Qp is turned off. No current flows through the channel of the P-type MOS transistor Qp.
次に、異常状態の通知動作について説明する。
Next, the abnormal state notification operation will be described.
[電源電圧VDDが正常範囲内にない場合]
電源電圧VDDが正常範囲内にない場合は、判定回路20の判定信号Sc1が「0」となり、制御信号出力回路40の制御信号S40が「0」となるため、信号回路10の出力インピーダンスが高インピーダンス状態になる。そうすると、信号端子T3に接続された信号線に電流が流れず、機器2の信号端子T23の電圧がプルアップ抵抗4によって電源電圧まで上昇し、エラーレンジに入るため、機器2に異常状態が通知される。 [When power supply voltage VDD is not within the normal range]
When the power supply voltage VDD is not within the normal range, the determination signal Sc1 of thedetermination circuit 20 is “0” and the control signal S40 of the control signal output circuit 40 is “0”, so that the output impedance of the signal circuit 10 is high. It becomes an impedance state. Then, no current flows through the signal line connected to the signal terminal T3, and the voltage at the signal terminal T23 of the device 2 rises to the power supply voltage by the pull-up resistor 4 and enters the error range. Is done.
電源電圧VDDが正常範囲内にない場合は、判定回路20の判定信号Sc1が「0」となり、制御信号出力回路40の制御信号S40が「0」となるため、信号回路10の出力インピーダンスが高インピーダンス状態になる。そうすると、信号端子T3に接続された信号線に電流が流れず、機器2の信号端子T23の電圧がプルアップ抵抗4によって電源電圧まで上昇し、エラーレンジに入るため、機器2に異常状態が通知される。 [When power supply voltage VDD is not within the normal range]
When the power supply voltage VDD is not within the normal range, the determination signal Sc1 of the
[信号電圧VSIGが電源電圧VDDより高いか、グランド電位VSSより低い場合]
信号電圧VSIGが電源電圧VDDより高い場合やグランド電位VSSより低い場合は、判定回路30の判定信号Sc2が「0」となり、制御信号S40が「0」となるため、信号回路10の出力インピーダンスが高インピーダンス状態になる。これにより、上述と同様に機器2の信号端子T23の電圧がエラーレンジに入るため、機器2に異常状態が通知される。 [When signal voltage VSIG is higher than power supply voltage VDD or lower than ground potential VSS]
When the signal voltage VSIG is higher than the power supply voltage VDD or lower than the ground potential VSS, the determination signal Sc2 of thedetermination circuit 30 is “0” and the control signal S40 is “0”, so that the output impedance of the signal circuit 10 is It becomes a high impedance state. As a result, the voltage at the signal terminal T23 of the device 2 falls within the error range as described above, so that the device 2 is notified of the abnormal state.
信号電圧VSIGが電源電圧VDDより高い場合やグランド電位VSSより低い場合は、判定回路30の判定信号Sc2が「0」となり、制御信号S40が「0」となるため、信号回路10の出力インピーダンスが高インピーダンス状態になる。これにより、上述と同様に機器2の信号端子T23の電圧がエラーレンジに入るため、機器2に異常状態が通知される。 [When signal voltage VSIG is higher than power supply voltage VDD or lower than ground potential VSS]
When the signal voltage VSIG is higher than the power supply voltage VDD or lower than the ground potential VSS, the determination signal Sc2 of the
[信号線が電源線と短絡している場合]
信号線が電源線と短絡している場合、機器2の信号端子T23の電圧が電源電圧VDDと等しくなり、エラーレンジに入るため、機器2に異常状態が通知される。 [When the signal line is short-circuited with the power line]
When the signal line is short-circuited with the power supply line, the voltage of the signal terminal T23 of thedevice 2 becomes equal to the power supply voltage VDD and enters the error range, so that the device 2 is notified of the abnormal state.
信号線が電源線と短絡している場合、機器2の信号端子T23の電圧が電源電圧VDDと等しくなり、エラーレンジに入るため、機器2に異常状態が通知される。 [When the signal line is short-circuited with the power line]
When the signal line is short-circuited with the power supply line, the voltage of the signal terminal T23 of the
[信号線がグランド線と短絡している場合]
信号線がグランド線と短絡している場合、機器2の信号端子T23の電圧がグランド電位VSSと等しくなり、エラーレンジに入るため、機器2に異常状態が通知される。 [When the signal line is shorted to the ground line]
When the signal line is short-circuited with the ground line, the voltage of the signal terminal T23 of thedevice 2 becomes equal to the ground potential VSS and enters the error range, so that the device 2 is notified of the abnormal state.
信号線がグランド線と短絡している場合、機器2の信号端子T23の電圧がグランド電位VSSと等しくなり、エラーレンジに入るため、機器2に異常状態が通知される。 [When the signal line is shorted to the ground line]
When the signal line is short-circuited with the ground line, the voltage of the signal terminal T23 of the
[電源線が断線している場合]
電源端子T1は分圧回路21の抵抗(R1~R5)を介してグランド端子T2に接続されているため、電源線が断線している場合、電源端子T1の電圧(電源電圧VDD)はグランド端子T2の電圧(グランド電位VSS)と等しくなる。他方、信号端子T3は機器2においてプルアップ抵抗4を介して機器2側の電源線に接続されるため、信号端子T3の電圧(信号電圧VSIG)はグランド電位VSSより高い電圧となる。従って、信号電圧VSIGが電源電圧VDDより高くなるため、判定回路30は異常状態を示す判定信号Sc2として「0」を出力する。
また、電源電圧VDDがグランド電位VSSと等しくなることから、電源電圧VDDが正常範囲の下限より低くなるため、判定回路30も異常状態を示す判定信号Sc1として「0」を出力する。 [When the power line is disconnected]
Since the power supply terminal T1 is connected to the ground terminal T2 via the resistors (R1 to R5) of thevoltage dividing circuit 21, when the power supply line is disconnected, the voltage of the power supply terminal T1 (power supply voltage VDD) is the ground terminal. It becomes equal to the voltage of T2 (ground potential VSS). On the other hand, since the signal terminal T3 is connected to the power supply line on the device 2 side via the pull-up resistor 4 in the device 2, the voltage (signal voltage VSIG) of the signal terminal T3 is higher than the ground potential VSS. Accordingly, since the signal voltage VSIG becomes higher than the power supply voltage VDD, the determination circuit 30 outputs “0” as the determination signal Sc2 indicating an abnormal state.
Further, since the power supply voltage VDD becomes equal to the ground potential VSS, the power supply voltage VDD becomes lower than the lower limit of the normal range, so that thedetermination circuit 30 also outputs “0” as the determination signal Sc1 indicating an abnormal state.
電源端子T1は分圧回路21の抵抗(R1~R5)を介してグランド端子T2に接続されているため、電源線が断線している場合、電源端子T1の電圧(電源電圧VDD)はグランド端子T2の電圧(グランド電位VSS)と等しくなる。他方、信号端子T3は機器2においてプルアップ抵抗4を介して機器2側の電源線に接続されるため、信号端子T3の電圧(信号電圧VSIG)はグランド電位VSSより高い電圧となる。従って、信号電圧VSIGが電源電圧VDDより高くなるため、判定回路30は異常状態を示す判定信号Sc2として「0」を出力する。
また、電源電圧VDDがグランド電位VSSと等しくなることから、電源電圧VDDが正常範囲の下限より低くなるため、判定回路30も異常状態を示す判定信号Sc1として「0」を出力する。 [When the power line is disconnected]
Since the power supply terminal T1 is connected to the ground terminal T2 via the resistors (R1 to R5) of the
Further, since the power supply voltage VDD becomes equal to the ground potential VSS, the power supply voltage VDD becomes lower than the lower limit of the normal range, so that the
判定信号Sc1,Sc2が「0」のため、制御信号S40も「0」となり、信号回路10の出力インピーダンスは高インピーダンス状態になる。これにより、信号端子T3に接続された信号線にはほとんど電流が流れず、機器2の信号端子T23の電圧がプルアップ抵抗4によって電源電圧まで上昇し、エラーレンジに入るため、機器2に異常状態が通知される。
Since the determination signals Sc1 and Sc2 are “0”, the control signal S40 is also “0”, and the output impedance of the signal circuit 10 is in a high impedance state. As a result, almost no current flows through the signal line connected to the signal terminal T3, and the voltage of the signal terminal T23 of the device 2 rises to the power supply voltage by the pull-up resistor 4 and enters the error range. The status is notified.
なお、機器2の信号端子T23がプルアップ抵抗4で電源線に接続されておらず、プルダウン抵抗でグランド線に接続されている場合には、電源線の断線によって半導体集積回路装置5への電源供給が断たれる。この場合、半導体集積回路装置5の回路全体に電流が流れず、信号回路10からプルダウン抵抗へ電流を流すこともできないため、機器2の信号端子T23の電圧がグランドレベルと等しくなる。従って、機器2の信号端子T23の電圧がエラーレンジに入るため、機器2に異常状態が通知される。
When the signal terminal T23 of the device 2 is not connected to the power supply line by the pull-up resistor 4, but is connected to the ground line by the pull-down resistor, the power supply to the semiconductor integrated circuit device 5 due to the disconnection of the power supply line. Supply is cut off. In this case, since no current flows through the entire circuit of the semiconductor integrated circuit device 5 and no current can flow from the signal circuit 10 to the pull-down resistor, the voltage at the signal terminal T23 of the device 2 becomes equal to the ground level. Therefore, since the voltage at the signal terminal T23 of the device 2 is in the error range, the device 2 is notified of the abnormal state.
[グランド線が断線している場合]
信号端子T3は機器2においてプルアップ抵抗4を介して機器2側の電源線に接続されるため、グランド線が断線していると、半導体集積回路装置5への電源供給が断たれる。この場合、半導体集積回路装置5の回路全体に電流が流れず、機器2の電源線からプルアップ抵抗4を介して信号回路10に電流を流すこともできないため、機器2の信号端子T23の電圧が電源電圧と等しくなる。従って、機器2の信号端子T23の電圧がエラーレンジに入るため、機器2に異常状態が通知される。 [When the ground wire is disconnected]
Since the signal terminal T3 is connected to the power supply line on thedevice 2 side via the pull-up resistor 4 in the device 2, the power supply to the semiconductor integrated circuit device 5 is cut off if the ground line is disconnected. In this case, since no current flows through the entire circuit of the semiconductor integrated circuit device 5 and current cannot flow from the power supply line of the device 2 to the signal circuit 10 via the pull-up resistor 4, the voltage at the signal terminal T23 of the device 2 Becomes equal to the power supply voltage. Therefore, since the voltage at the signal terminal T23 of the device 2 is in the error range, the device 2 is notified of the abnormal state.
信号端子T3は機器2においてプルアップ抵抗4を介して機器2側の電源線に接続されるため、グランド線が断線していると、半導体集積回路装置5への電源供給が断たれる。この場合、半導体集積回路装置5の回路全体に電流が流れず、機器2の電源線からプルアップ抵抗4を介して信号回路10に電流を流すこともできないため、機器2の信号端子T23の電圧が電源電圧と等しくなる。従って、機器2の信号端子T23の電圧がエラーレンジに入るため、機器2に異常状態が通知される。 [When the ground wire is disconnected]
Since the signal terminal T3 is connected to the power supply line on the
なお、機器2の信号端子T23がプルアップ抵抗4で電源線に接続されておらず、プルダウン抵抗でグランド線に接続されている場合には、信号回路10からプルダウン抵抗を介して機器2側のグランド線に電流が流れるため、信号端子T3の電圧(信号電圧VSIG)は電源端子T1の電圧(電源電圧VDD)より低い電圧となる。他方、グランド端子T2は分圧回路21の抵抗(R1~R5)を介して電源端子T1に接続されているため、グランド線が断線している場合、グランド端子T2の電圧(グランド電位VSS)は電源端子T1の電圧(電源電圧VDD)と等しくなる。従って、信号電圧VSIGがグランド電位VSSより低くなるため、判定回路30は異常状態を示す判定信号Sc2として「0」を出力する。
また、電源電圧VDDがグランド電位VSSと等しくなることから、電源電圧VDDが正常範囲の下限より低くなるため、判定回路30も異常状態を示す判定信号Sc1として「0」を出力する。 When the signal terminal T23 of thedevice 2 is not connected to the power supply line by the pull-up resistor 4 and is connected to the ground line by the pull-down resistor, the signal terminal T23 on the device 2 side is connected from the signal circuit 10 through the pull-down resistor. Since current flows through the ground line, the voltage of the signal terminal T3 (signal voltage VSIG) is lower than the voltage of the power supply terminal T1 (power supply voltage VDD). On the other hand, since the ground terminal T2 is connected to the power supply terminal T1 via the resistors (R1 to R5) of the voltage dividing circuit 21, when the ground line is disconnected, the voltage (ground potential VSS) of the ground terminal T2 is It becomes equal to the voltage of the power supply terminal T1 (power supply voltage VDD). Accordingly, since the signal voltage VSIG becomes lower than the ground potential VSS, the determination circuit 30 outputs “0” as the determination signal Sc2 indicating an abnormal state.
Further, since the power supply voltage VDD becomes equal to the ground potential VSS, the power supply voltage VDD becomes lower than the lower limit of the normal range, so that thedetermination circuit 30 also outputs “0” as the determination signal Sc1 indicating an abnormal state.
また、電源電圧VDDがグランド電位VSSと等しくなることから、電源電圧VDDが正常範囲の下限より低くなるため、判定回路30も異常状態を示す判定信号Sc1として「0」を出力する。 When the signal terminal T23 of the
Further, since the power supply voltage VDD becomes equal to the ground potential VSS, the power supply voltage VDD becomes lower than the lower limit of the normal range, so that the
判定信号Sc1,Sc2が「0」のため、制御信号S40も「0」となり、信号回路10の出力インピーダンスは高インピーダンス状態になる。これにより、信号端子T3に接続された信号線にはほとんど電流が流れず、機器2の信号端子T23の電圧がプルダウン抵抗によってグランドレベルまで低下し、エラーレンジに入るため、機器2に異常状態が通知される。
Since the determination signals Sc1 and Sc2 are “0”, the control signal S40 is also “0”, and the output impedance of the signal circuit 10 is in a high impedance state. As a result, almost no current flows through the signal line connected to the signal terminal T3, and the voltage at the signal terminal T23 of the device 2 is lowered to the ground level by the pull-down resistor and enters the error range. Be notified.
以上説明したように、本実施形態によれば、電源端子T1の電圧(VDD),グランド端子T2の電圧(VSS)及び信号端子T3の電圧(VSIG)の中で最も高い電圧が選択電圧VBULKとして電圧選択回路51により選択され、その選択電圧VBULKが全体の回路中に含まれるP型MOSトランジスタのバルクに印加される。これにより、配線の誤接続などによってこれらの端子における相対的な電圧の高低関係が異常な状態になった場合でも、P型MOSトランジスタのバルクに形成される寄生ダイオードには電流が流れないため、これらの端子から半導体集積回路装置5の内部に流れ込む電流を抑制して、内部の回路を保護することができる。
As described above, according to the present embodiment, the highest voltage among the voltage (VDD) of the power supply terminal T1, the voltage (VSS) of the ground terminal T2, and the voltage (VSIG) of the signal terminal T3 is the selection voltage VBULK. The voltage is selected by the voltage selection circuit 51, and the selection voltage VBULK is applied to the bulk of the P-type MOS transistor included in the entire circuit. As a result, even when the relative voltage level relationship at these terminals becomes abnormal due to misconnection of wiring, etc., current does not flow through the parasitic diode formed in the bulk of the P-type MOS transistor. The current flowing into the semiconductor integrated circuit device 5 from these terminals can be suppressed to protect the internal circuit.
また、本実施形態によれば、電源電圧VDDが所定の正常範囲から外れている場合や、信号電圧VSIGがグランド電位VSSより高く電源電圧VDDより低い正常範囲から外れている場合に、信号回路10の出力インピーダンスが高インピーダンス状態となる。そのため、誤配線や断線や短絡などの異常状態が起きた場合に、異常状態の発生を外部の機器2に通知することができる。
Further, according to the present embodiment, when the power supply voltage VDD is out of the predetermined normal range, or when the signal voltage VSIG is out of the normal range higher than the ground potential VSS and lower than the power supply voltage VDD, the signal circuit 10 Becomes the high impedance state. Therefore, when an abnormal state such as erroneous wiring, disconnection, or short circuit occurs, the external device 2 can be notified of the occurrence of the abnormal state.
第1の実施形態に係る半導体集積回路装置5の変形例について、図7を参照して説明する。
A modification of the semiconductor integrated circuit device 5 according to the first embodiment will be described with reference to FIG.
図2示す半導体集積回路装置5では、分圧回路21の一端が電源端子T1に接続されているが、図7に示す半導体集積回路装置5では、この分圧回路21の一端が電源端子T1の代わりに制御端子T4に接続される。分圧回路21に含まれる複数の抵抗(R1~R5)は、制御端子T4とグランド端子T2との間において直列に接続される。
In the semiconductor integrated circuit device 5 shown in FIG. 2, one end of the voltage dividing circuit 21 is connected to the power supply terminal T1, but in the semiconductor integrated circuit device 5 shown in FIG. 7, one end of the voltage dividing circuit 21 is connected to the power supply terminal T1. Instead, it is connected to the control terminal T4. A plurality of resistors (R1 to R5) included in the voltage dividing circuit 21 are connected in series between the control terminal T4 and the ground terminal T2.
制御端子T4に電源電圧VDDを供給すると、図7に示す半導体集積回路装置5の動作は図2に示す半導体集積回路装置5と同じになる。通常の使用状態において、制御端子T4には電源電圧VDDが供給される。
When the power supply voltage VDD is supplied to the control terminal T4, the operation of the semiconductor integrated circuit device 5 shown in FIG. 7 is the same as that of the semiconductor integrated circuit device 5 shown in FIG. In a normal use state, the power supply voltage VDD is supplied to the control terminal T4.
他方、制御端子T4にグランド電位VSSを供給するか、又は制御端子T4を開放状態にすると、分圧回路21の検出電圧Vs1~Vs4は全てゼロ(グランド電位VSS)になる。そのため、判定回路20において異常状態と判定され、制御信号S40が「0」となり、信号回路10の出力インピーダンスが高インピーダンス状態となる。また、図7に示す半導体集積回路装置5では、制御信号S40が「0」になった場合(判定回路20又は30において異常状態と判定された場合)、クロック発振等の動的な動作が停止されるようにロジック回路が構成されている。そのため、外部の機器から制御端子T4にグランド電位VSSを供給する(あるいは、制御端子T4を開放状態にする)ことによって、半導体集積回路装置5を消費電流の小さい待機状態にすることができる。また、半導体集積回路装置5の動的な動作が停止されることから、この待機状態において回路素子の評価方法の一つである静電流計測(IDDQテスト)を行うことも可能である。
On the other hand, when the ground potential VSS is supplied to the control terminal T4 or when the control terminal T4 is opened, the detection voltages Vs1 to Vs4 of the voltage dividing circuit 21 are all zero (ground potential VSS). Therefore, the determination circuit 20 determines that the state is abnormal, the control signal S40 becomes “0”, and the output impedance of the signal circuit 10 becomes a high impedance state. Further, in the semiconductor integrated circuit device 5 shown in FIG. 7, when the control signal S40 becomes “0” (when it is determined that the determination circuit 20 or 30 is in an abnormal state), dynamic operations such as clock oscillation are stopped. The logic circuit is configured as described above. Therefore, by supplying the ground potential VSS from an external device to the control terminal T4 (or making the control terminal T4 open), the semiconductor integrated circuit device 5 can be put into a standby state with low current consumption. In addition, since the dynamic operation of the semiconductor integrated circuit device 5 is stopped, it is possible to perform static current measurement (IDDQ test) which is one of the circuit element evaluation methods in this standby state.
<第2の実施形態>
次に、本発明の第2の実施形態について説明する。
図8は、第2の実施形態に係る半導体集積回路装置5の構成の一例を示す図である。図8に示す半導体集積回路装置5は、図2に示す半導体集積回路装置5と同様な構成を有するとともに、電圧選択回路52と、レギュレータ回路60と、内部回路70と、レベルシフト回路71,80とを有する。
電圧選択回路52は、本発明における第2電圧選択回路の一例である。
レギュレータ回路60は、本発明におけるレギュレータ回路の一例である。
内部回路70は、本発明における内部回路の一例である。 <Second Embodiment>
Next, a second embodiment of the present invention will be described.
FIG. 8 is a diagram illustrating an example of the configuration of the semiconductor integratedcircuit device 5 according to the second embodiment. The semiconductor integrated circuit device 5 shown in FIG. 8 has the same configuration as that of the semiconductor integrated circuit device 5 shown in FIG. 2, and includes a voltage selection circuit 52, a regulator circuit 60, an internal circuit 70, and level shift circuits 71 and 80. And have.
Thevoltage selection circuit 52 is an example of a second voltage selection circuit in the present invention.
Theregulator circuit 60 is an example of a regulator circuit in the present invention.
Theinternal circuit 70 is an example of an internal circuit in the present invention.
次に、本発明の第2の実施形態について説明する。
図8は、第2の実施形態に係る半導体集積回路装置5の構成の一例を示す図である。図8に示す半導体集積回路装置5は、図2に示す半導体集積回路装置5と同様な構成を有するとともに、電圧選択回路52と、レギュレータ回路60と、内部回路70と、レベルシフト回路71,80とを有する。
電圧選択回路52は、本発明における第2電圧選択回路の一例である。
レギュレータ回路60は、本発明におけるレギュレータ回路の一例である。
内部回路70は、本発明における内部回路の一例である。 <Second Embodiment>
Next, a second embodiment of the present invention will be described.
FIG. 8 is a diagram illustrating an example of the configuration of the semiconductor integrated
The
The
The
電圧選択回路52は、グランド電位VSS及び電源電圧VDDのうち高い電圧を選択し、選択電圧VBULK2として出力する。電圧選択回路52は、例えば図5に示す電圧選択回路51と同様に、カソードが共通接続された2つのダイオードを用いて構成することが可能である。
The voltage selection circuit 52 selects a higher voltage from the ground potential VSS and the power supply voltage VDD and outputs it as the selection voltage VBULK2. The voltage selection circuit 52 can be configured using, for example, two diodes whose cathodes are commonly connected, similarly to the voltage selection circuit 51 shown in FIG.
レギュレータ回路60は、電源端子T1において入力される電源電圧VDDを所定レベルの内部電源電圧VDD2に変換して内部回路70に供給する。レギュレータ回路60は、電源電圧VDDがグランド電位VSSより低い場合に出力から入力へ逆方向に電流が流れることを防止する保護回路を備えてもよい。これにより、内部電源電圧VDD2はグランド電位VSSより低い電圧にならないため、内部回路70に負の電源電圧が加わることによる逆方向の異常な電源電流が流れることを防止できる。
The regulator circuit 60 converts the power supply voltage VDD input at the power supply terminal T1 into an internal power supply voltage VDD2 of a predetermined level and supplies it to the internal circuit 70. The regulator circuit 60 may include a protection circuit that prevents current from flowing in the reverse direction from the output to the input when the power supply voltage VDD is lower than the ground potential VSS. Thereby, since the internal power supply voltage VDD2 does not become lower than the ground potential VSS, it is possible to prevent a reverse abnormal power supply current from flowing due to the negative power supply voltage being applied to the internal circuit 70.
内部回路70は、内部電源電圧VDD2に基づいて動作する回路であり、例えばCPU等のロジック回路を含む。また、内部回路70は、レベルシフト回路71を介して入力される判定信号Sc1,Sc2を記録する回路を含む。
The internal circuit 70 is a circuit that operates based on the internal power supply voltage VDD2, and includes a logic circuit such as a CPU, for example. The internal circuit 70 includes a circuit for recording determination signals Sc1 and Sc2 input via the level shift circuit 71.
レベルシフト回路80は、判定回路20から出力される判定信号Sc1のハイレベル電圧を変更して制御信号出力回路40Aに入力する回路である。
The level shift circuit 80 is a circuit that changes the high level voltage of the determination signal Sc1 output from the determination circuit 20 and inputs it to the control signal output circuit 40A.
図8に示す半導体集積回路装置5において、判定回路20とレギュレータ回路60には、電圧選択回路52の選択電圧VBULK2が電源電圧として供給されており、これらの回路に含まれるP型MOSトランジスタのバルクにも選択電圧VBULK2が印加される。一方、信号回路10,判定回路30及び制御信号出力回路40Aには、図2に示す半導体集積回路装置5と同様に、電源電圧とP型MOSトランジスタのバルク電圧として、電圧選択回路51の選択電圧VBULKが供給される。そのため、判定信号Sc1のハイレベル電圧は選択電圧VBULK2であり、制御信号出力回路40Aのハイレベル電圧は選択電圧VBULKであって、両者の信号レベルは異なる。従って、判定信号Sc1の信号レベルを変換するレベルシフト回路80が必要となる。
In the semiconductor integrated circuit device 5 shown in FIG. 8, the selection voltage VBULK2 of the voltage selection circuit 52 is supplied as a power supply voltage to the determination circuit 20 and the regulator circuit 60, and the bulk of the P-type MOS transistors included in these circuits The selection voltage VBULK2 is also applied. On the other hand, in the signal circuit 10, the determination circuit 30, and the control signal output circuit 40A, the selection voltage of the voltage selection circuit 51 is used as the power supply voltage and the bulk voltage of the P-type MOS transistor, as in the semiconductor integrated circuit device 5 shown in FIG. VBULK is supplied. Therefore, the high level voltage of the determination signal Sc1 is the selection voltage VBULK2, and the high level voltage of the control signal output circuit 40A is the selection voltage VBULK, and the signal levels of both are different. Therefore, the level shift circuit 80 that converts the signal level of the determination signal Sc1 is required.
図9は、レベルシフト回路80の一例を示す図である。図9に示すレベルシフト回路80は、N型のMOSトランジスタQn1と抵抗R10,R11を有する。MOSトランジスタQn1のソースとバルクにはグランド電位VSSが入力され、そのドレインには抵抗R11を介して選択電圧VBULKが入力され、そのゲートには判定信号Sc1が入力される。抵抗R10は、MOSトランジスタQn1のゲートとソースの間に接続される。MOSトランジスタQのドレインにおいて、レベルシフトされた判定信号Sc1Aが出力される。
FIG. 9 is a diagram illustrating an example of the level shift circuit 80. The level shift circuit 80 shown in FIG. 9 has an N-type MOS transistor Qn1 and resistors R10 and R11. The ground potential VSS is input to the source and bulk of the MOS transistor Qn1, the selection voltage VBULK is input to the drain via the resistor R11, and the determination signal Sc1 is input to the gate. Resistor R10 is connected between the gate and source of MOS transistor Qn1. At the drain of the MOS transistor Q, the level-shifted determination signal Sc1A is output.
図9に示すレベルシフト回路80では、レベルシフト後の判定信号Sc1Aがレベルシフト前の判定信号Sc1に対して論理反転する。すなわち、判定信号Sc1がハイレベル(VBULK2)の場合に判定信号Sc1Aがローレベル(VSS)となり、判定信号Sc1がローレベル(VSS)の場合に判定信号Sc1Aがハイレベル(VBULK)となる。そのため、図8における制御信号出力回路40Aは、判定信号Sc1Aを論理反転した結果と判定信号Sc2との論理積を演算し、図2における制御信号出力回路40と同じ論理レベルを有した制御信号S40を出力する。
In the level shift circuit 80 shown in FIG. 9, the determination signal Sc1A after the level shift is logically inverted with respect to the determination signal Sc1 before the level shift. That is, when the determination signal Sc1 is at a high level (VBULK2), the determination signal Sc1A is at a low level (VSS), and when the determination signal Sc1 is at a low level (VSS), the determination signal Sc1A is at a high level (VBULK). Therefore, the control signal output circuit 40A in FIG. 8 calculates a logical product of the result of logical inversion of the determination signal Sc1A and the determination signal Sc2, and the control signal S40 having the same logical level as the control signal output circuit 40 in FIG. Is output.
レベルシフト回路71は、上述のように信号レベルが異なる判定信号Sc1,Sc2を内部電源電圧VDD2の信号レベルに変換して内部回路70に入力する。レベルシフト回路71は、例えば図9に示すレベルシフト回路80と同様にN型MOSトランジスタを用いて構成することができる。
The level shift circuit 71 converts the determination signals Sc1 and Sc2 having different signal levels into the signal level of the internal power supply voltage VDD2 as described above and inputs the signal to the internal circuit 70. The level shift circuit 71 can be configured using an N-type MOS transistor, for example, similarly to the level shift circuit 80 shown in FIG.
上述した構成を有する半導体集積回路装置5によれば、レギュレータ回路60を構成するP型MOSトランジスタのバルクには、電源電圧VDD又はグランド電位VSSのいずれか高い電圧である選択電圧VBULK2が印加される。もし、レギュレータ回路60のP型MOSトランジスタのバルクに電圧選択回路51の選択電圧VBULKが印加されると、信号電圧VSIGが最高電圧の場合、P型MOSトランジスタのバルクは電源電圧VDDより高くなる。その場合、基板バイアス効果によってP型MOSトランジスタのしきい電圧が変化し、レギュレータ回路60において出力される内部電源電圧VDD2が低下してしまう可能性がある。内部電源電圧VDD2が大きく低下すると、内部回路70においてCPU等のロジック回路の動作がリセットされてしまうなどの不安定な現象が起こる。レギュレータ回路60のP型MOSトランジスタのバルクに選択電圧VBULK2を印加することにより、P型MOSトランジスタの基板バイアス効果による内部回路70の不安定な現象を生じ難くすることができる。
According to the semiconductor integrated circuit device 5 having the above-described configuration, the selection voltage VBULK2, which is the higher of the power supply voltage VDD or the ground potential VSS, is applied to the bulk of the P-type MOS transistor configuring the regulator circuit 60. . If the selection voltage VBULK of the voltage selection circuit 51 is applied to the bulk of the P-type MOS transistor of the regulator circuit 60, the bulk of the P-type MOS transistor becomes higher than the power supply voltage VDD when the signal voltage VSIG is the highest voltage. In this case, the threshold voltage of the P-type MOS transistor may change due to the substrate bias effect, and the internal power supply voltage VDD2 output from the regulator circuit 60 may decrease. When the internal power supply voltage VDD2 greatly decreases, an unstable phenomenon such as the operation of a logic circuit such as a CPU being reset in the internal circuit 70 occurs. By applying the selection voltage VBULK2 to the bulk of the P-type MOS transistor of the regulator circuit 60, the unstable phenomenon of the internal circuit 70 due to the substrate bias effect of the P-type MOS transistor can be made difficult to occur.
また、上述した構成を有する半導体集積回路装置5によれば、信号電圧VSIGが電源電圧VDDより高くなる異常な状態においても内部回路70を動作させ続け易くなるため、内部回路70において判定信号Sc1,Sc2を記録することが可能になる。このような異常状態の記録をとることにより、センサモジュール1を含んだシステムの検証や信頼度を高めることができる。
Further, according to the semiconductor integrated circuit device 5 having the above-described configuration, the internal circuit 70 can be easily operated even in an abnormal state where the signal voltage VSIG is higher than the power supply voltage VDD. It becomes possible to record Sc2. By recording such an abnormal state, verification and reliability of the system including the sensor module 1 can be increased.
なお、本発明は上述した実施形態にのみ限定されるものではなく、種々のバリエーションを含んでいる。
In addition, this invention is not limited only to embodiment mentioned above, Various variations are included.
例えば、レギュレータ回路60の内部電源電圧VDD2が規定の電圧に達しているか否かを判定する判定回路を設けて、規定の電圧に達していないことを示す判定信号が当該判定回路から出力される場合は、信号回路10の出力インピーダンスが高インピーダンス状態となるように制御信号出力回路40から制御信号S40を出力してもよい。あるいは、内部回路70に含まれるCPUやロジック回路のリセット信号に基づいて動作開始前の状態か否か判定する判定回路を設けて、CPUやロジック回路が動作開始前の状態であることを示す判定信号が当該判定回路から出力される場合は、信号回路10の出力インピーダンスが高インピーダンス状態となるように制御信号出力回路40から制御信号S40を出力してもよい。これにより、例えば電源起動時など、CPUやロジック回路が動作を開始するまでの間は信号回路10の出力インピーダンスが高インピーダンス状態になり、信号端子T3から不要な信号が出力されなくなるため、システムの安定性を更に向上することができる。
For example, a determination circuit that determines whether or not the internal power supply voltage VDD2 of the regulator circuit 60 has reached a specified voltage is provided, and a determination signal indicating that the voltage has not reached the specified voltage is output from the determination circuit May output the control signal S40 from the control signal output circuit 40 so that the output impedance of the signal circuit 10 is in a high impedance state. Alternatively, a determination circuit for determining whether or not the operation is started is provided based on a reset signal of the CPU or logic circuit included in the internal circuit 70 to determine that the CPU or the logic circuit is in a state before the operation is started. When a signal is output from the determination circuit, the control signal S40 may be output from the control signal output circuit 40 so that the output impedance of the signal circuit 10 is in a high impedance state. As a result, the output impedance of the signal circuit 10 is in a high impedance state until an operation of the CPU or logic circuit is started, for example, at the time of power activation, and an unnecessary signal is not output from the signal terminal T3. Stability can be further improved.
また、上述した実施形態では、信号回路10がセンシング信号を出力する回路である例を挙げているが、本発明はこれに限定されない。本発明の他の実施形態では、信号回路10が信号端子T3において機器2からの信号を入力する回路を含んでいてもよい。この場合、信号回路10は、制御信号出力回路40の制御信号S40に応じて入力インピーダンスを高インピーダンス状態とする。信号回路10の入力インピーダンスが高インピーダンス状態になると、機器2の側に設けられたプルアップ抵抗又はプルダウン抵抗によって信号線の電圧が電源電圧VDD付近又はグランド電位VSS付近のエラーレンジに入るため、異常状態が機器2へ通知される。
In the above-described embodiment, an example is given in which the signal circuit 10 is a circuit that outputs a sensing signal, but the present invention is not limited to this. In another embodiment of the present invention, the signal circuit 10 may include a circuit that inputs a signal from the device 2 at the signal terminal T3. In this case, the signal circuit 10 sets the input impedance to a high impedance state according to the control signal S40 of the control signal output circuit 40. When the input impedance of the signal circuit 10 is in a high impedance state, the voltage of the signal line falls within an error range near the power supply voltage VDD or near the ground potential VSS due to the pull-up resistor or pull-down resistor provided on the device 2 side. The status is notified to the device 2.
1…センサモジュール、2…機器、3…ケーブルハーネス、4…プルアップ抵抗、5…半導体集積回路装置、6…センサ部、10…信号回路、20,30…判定回路、21…分圧回路、22…基準電圧発生回路、23…比較回路、231,232…ヒステリシスコンパレータ、24…判定信号出力回路、40,40A…制御信号出力回路、51,52…電圧選択回路、60…レギュレータ回路、70…内部回路、71,80…レベルシフト回路、T1…電源端子、T2…グランド端子、T3…信号端子、T4…制御端子、R1~R5…抵抗。
DESCRIPTION OF SYMBOLS 1 ... Sensor module, 2 ... Apparatus, 3 ... Cable harness, 4 ... Pull-up resistor, 5 ... Semiconductor integrated circuit device, 6 ... Sensor part, 10 ... Signal circuit, 20, 30 ... Judgment circuit, 21 ... Voltage divider circuit, DESCRIPTION OF SYMBOLS 22 ... Reference voltage generation circuit, 23 ... Comparison circuit, 231, 232 ... Hysteresis comparator, 24 ... Determination signal output circuit, 40, 40A ... Control signal output circuit, 51, 52 ... Voltage selection circuit, 60 ... Regulator circuit, 70 ... Internal circuit 71, 80 ... Level shift circuit, T1 ... Power supply terminal, T2 ... Ground terminal, T3 ... Signal terminal, T4 ... Control terminal, R1-R5 ... Resistance.
Claims (10)
- グランド電位に接続されるグランド端子と、
電源電圧を入力する電源端子と、
信号端子と、
前記信号端子において信号を出力又は入力し、前記信号端子における出力インピーダンス又は入力インピーダンスを制御信号に応じて高インピーダンス状態に設定する信号回路と、
前記グランド端子の電圧を基準とする前記電源端子の電圧が正常範囲内にあるか否かを判定する第1判定回路と、
前記グランド端子の電圧を基準とする前記信号端子の電圧が、前記電源端子の電圧より低くかつ前記グランド端子の電圧より高い正常範囲内にあるか否かを判定する第2判定回路と、
前記第1判定回路において前記電源端子の電圧が正常範囲内にないと判定された場合、又は、前記第2判定回路において前記信号端子の電圧が正常範囲内にないと判定された場合に、前記信号端子における出力インピーダンス又は入力インピーダンスを高インピーダンス状態に設定する前記制御信号を出力する制御信号出力回路と、
前記グランド端子の電圧、前記電源端子の電圧、及び、前記信号端子の電圧の中で最も高い電圧を選択する第1電圧選択回路と
を有し、
前記第1電圧選択回路は、全体の回路に含まれる少なくとも一部のP型MOSトランジスタのバルクに前記選択した電圧を印加する、
ことを特徴とする半導体集積回路装置。 A ground terminal connected to the ground potential;
A power supply terminal for inputting power supply voltage;
A signal terminal;
A signal circuit that outputs or inputs a signal at the signal terminal, and sets an output impedance or input impedance at the signal terminal to a high impedance state according to a control signal;
A first determination circuit for determining whether or not the voltage of the power supply terminal with respect to the voltage of the ground terminal is within a normal range;
A second determination circuit that determines whether the voltage of the signal terminal with respect to the voltage of the ground terminal is within a normal range that is lower than the voltage of the power supply terminal and higher than the voltage of the ground terminal;
When the first determination circuit determines that the voltage of the power supply terminal is not within the normal range, or when the second determination circuit determines that the voltage of the signal terminal is not within the normal range, A control signal output circuit for outputting the control signal for setting the output impedance or input impedance at the signal terminal to a high impedance state;
A first voltage selection circuit that selects the highest voltage among the voltage of the ground terminal, the voltage of the power supply terminal, and the voltage of the signal terminal;
The first voltage selection circuit applies the selected voltage to the bulk of at least some of the P-type MOS transistors included in the entire circuit.
A semiconductor integrated circuit device. - 前記第1電圧選択回路は、前記信号回路、前記第1判定回路、前記第2判定回路、及び、前記制御信号出力回路に前記選択した電圧を電源電圧として供給する
ことを特徴とする請求項1に記載の半導体集積回路装置。 The first voltage selection circuit supplies the selected voltage as a power supply voltage to the signal circuit, the first determination circuit, the second determination circuit, and the control signal output circuit. A semiconductor integrated circuit device according to 1. - グランド電位に接続されるグランド端子と、
電源電圧を入力する電源端子と、
信号端子と、
前記信号端子において信号を出力又は入力し、前記信号端子における出力インピーダンス又は入力インピーダンスを制御信号に応じて高インピーダンス状態に設定する信号回路と、
前記グランド端子の電圧を基準とする前記電源端子の電圧が正常範囲内にあるか否かを判定する第1判定回路と、
前記グランド端子の電圧を基準とする前記信号端子の電圧が、前記電源端子の電圧より低くかつ前記グランド端子の電圧より高い正常範囲内にあるか否かを判定する第2判定回路と、
前記第1判定回路において前記電源端子の電圧が正常範囲内にないと判定された場合、又は、前記第2判定回路において前記信号端子の電圧が正常範囲内にないと判定された場合に、前記信号端子における出力インピーダンス又は入力インピーダンスを高インピーダンス状態に設定する前記制御信号を出力する制御信号出力回路と、
前記グランド端子の電圧、前記電源端子の電圧、及び、前記信号端子の電圧の中で最も高い電圧を選択する第1電圧選択回路と、
前記グランド端子の電圧及び前記電源端子の電圧のうち高い電圧を選択する第2電圧選択回路と、
前記電源端子において入力される電源電圧を内部電源電圧に変換して内部回路に供給するレギュレータ回路と
を有し、
前記第1電圧選択回路は、前記信号回路、前記第2判定回路、及び、前記制御信号出力回路に含まれるP型MOSトランジスタのバルクに前記選択した電圧を印加し、
前記第2電圧選択回路は、前記第1判定回路及び前記レギュレータ回路に含まれるP型MOSトランジスタのバルクに前記選択した電圧を印加する
ことを特徴とする半導体集積回路装置。 A ground terminal connected to the ground potential;
A power supply terminal for inputting power supply voltage;
A signal terminal;
A signal circuit that outputs or inputs a signal at the signal terminal, and sets an output impedance or input impedance at the signal terminal to a high impedance state according to a control signal;
A first determination circuit for determining whether or not the voltage of the power supply terminal with respect to the voltage of the ground terminal is within a normal range;
A second determination circuit that determines whether the voltage of the signal terminal with respect to the voltage of the ground terminal is within a normal range that is lower than the voltage of the power supply terminal and higher than the voltage of the ground terminal;
When the first determination circuit determines that the voltage of the power supply terminal is not within the normal range, or when the second determination circuit determines that the voltage of the signal terminal is not within the normal range, A control signal output circuit for outputting the control signal for setting the output impedance or input impedance at the signal terminal to a high impedance state;
A first voltage selection circuit that selects the highest voltage among the voltage of the ground terminal, the voltage of the power supply terminal, and the voltage of the signal terminal;
A second voltage selection circuit for selecting a higher voltage among the voltage of the ground terminal and the voltage of the power supply terminal;
A regulator circuit that converts a power supply voltage input at the power supply terminal into an internal power supply voltage and supplies the internal power supply voltage, and
The first voltage selection circuit applies the selected voltage to a bulk of a P-type MOS transistor included in the signal circuit, the second determination circuit, and the control signal output circuit,
The semiconductor integrated circuit device, wherein the second voltage selection circuit applies the selected voltage to a bulk of a P-type MOS transistor included in the first determination circuit and the regulator circuit. - 前記第1電圧選択回路は、前記信号回路、前記第2判定回路及び前記制御信号出力回路に前記選択した電圧を電源電圧として供給し、
前記第2電圧選択回路は、前記第1判定回路に前記選択した電圧を電源電圧として供給する
ことを特徴とする請求項3に記載の半導体集積回路装置。 The first voltage selection circuit supplies the selected voltage as a power supply voltage to the signal circuit, the second determination circuit, and the control signal output circuit,
The semiconductor integrated circuit device according to claim 3, wherein the second voltage selection circuit supplies the selected voltage as a power supply voltage to the first determination circuit. - 前記内部回路は、前記第1判定回路、前記第2判定回路、及び、前記制御信号出力回路の少なくとも1つにおいて出力される判定結果を示す信号を記録する回路を含む
ことを特徴とする請求項3又は4に記載の半導体集積回路装置。 The internal circuit includes a circuit that records a signal indicating a determination result output from at least one of the first determination circuit, the second determination circuit, and the control signal output circuit. 5. The semiconductor integrated circuit device according to 3 or 4. - 前記第1判定回路は、
前記グランド端子と前記電源端子との間で直列に接続された複数の抵抗を含む分圧回路と、
前記グランド端子の電圧に対して一定の基準電圧を発生する基準電圧発生回路と、
前記分圧回路において異なる分圧比によって分圧された複数の検出電圧と前記基準電圧とをそれぞれ比較する比較回路と、
前記比較回路の比較結果に基づいて、前記グランド端子の電圧に対する前記電源端子の電圧が正常範囲内にあるか否かの判定結果を示す第1判定信号を出力する判定信号出力回路とを含む
ことを特徴とする請求項1乃至5のいずれか一項に記載の半導体集積回路装置。 The first determination circuit includes:
A voltage dividing circuit including a plurality of resistors connected in series between the ground terminal and the power supply terminal;
A reference voltage generating circuit for generating a constant reference voltage with respect to the voltage of the ground terminal;
A comparison circuit for comparing a plurality of detection voltages divided by different voltage dividing ratios in the voltage dividing circuit with the reference voltage, respectively;
And a determination signal output circuit that outputs a first determination signal indicating a determination result of whether or not the voltage of the power supply terminal with respect to the voltage of the ground terminal is within a normal range based on the comparison result of the comparison circuit. The semiconductor integrated circuit device according to claim 1, wherein: - 通常動作時に前記電源端子と共通の電源電圧が入力され、非通常動作時に前記グランド電位が入力されるか若しくはオープン状態とされる制御端子を有し、
前記分圧回路に含まれる前記複数の抵抗が、前記グランド端子と前記電源端子との間で直列に接続される代わりに、前記グランド端子と前記制御端子との間で直列に接続される
ことを特徴とする請求項6に記載の半導体集積回路装置。 A power supply voltage common to the power supply terminal is input during normal operation, and the ground potential is input during non-normal operation or a control terminal that is open.
The plurality of resistors included in the voltage dividing circuit are connected in series between the ground terminal and the control terminal instead of being connected in series between the ground terminal and the power supply terminal. 7. The semiconductor integrated circuit device according to claim 6, wherein: - 前記基準電圧発生回路は、前記基準電圧の発生の有無を示す状態信号を出力し、
前記比較回路は、前記基準電圧が発生していないことを示す前記状態信号が前記基準電圧発生回路から出力されている場合、前記電源端子の電圧が正常範囲内にあることを示す前記第1判定信号の出力を抑止する
ことを特徴とする請求項6又は7に記載の半導体集積回路装置。 The reference voltage generation circuit outputs a status signal indicating whether or not the reference voltage is generated;
The comparison circuit, when the status signal indicating that the reference voltage is not generated is output from the reference voltage generation circuit, the first determination indicating that the voltage of the power supply terminal is within a normal range 8. The semiconductor integrated circuit device according to claim 6, wherein output of a signal is suppressed. - 前記比較回路は、
前記複数の検出電圧における第1検出電圧が前記基準電圧より低い状態から高い状態へ変化すると、前記電源端子の電圧が前記正常範囲の上限より高いことを示す信号を出力し、前記複数の検出電圧において前記第1検出電圧より高い第2検出電圧が前記基準電圧より高い状態から低い状態へ変化すると、前記電源端子の電圧が前記正常範囲の上限より低いことを示す信号を出力する第1ヒステリシスコンパレータと、
前記複数の検出電圧において前記第2検出電圧より高い第3検出電圧が前記基準電圧より低い状態から高い状態へ変化すると、前記電源端子の電圧が前記正常範囲の下限より高いことを示す信号を出力し、前記複数の検出電圧において前記第3検出電圧より高い第4検出電圧が前記基準電圧より高い状態から低い状態へ変化すると、前記電源端子の電圧が前記正常範囲の下限より低いことを示す信号を出力する第2ヒステリシスコンパレータと
を含み、
前記判定信号出力回路は、前記第1ヒステリシスコンパレータにおいて前記電源端子の電圧が前記正常範囲の上限より高いことを示す信号が出力されるか、又は、前記第2ヒステリシスコンパレータにおいて前記電源端子の電圧が前記正常範囲の下限より低いことを示す信号が出力される場合、前記電源端子の電圧が正常範囲内にないことを示す前記第1判定信号を出力する
ことを特徴とする請求項6乃至8のいずれか一項に記載の半導体集積回路装置。 The comparison circuit is
When the first detection voltage in the plurality of detection voltages changes from a state lower than the reference voltage to a higher state, a signal indicating that the voltage of the power supply terminal is higher than the upper limit of the normal range is output, and the plurality of detection voltages A first hysteresis comparator that outputs a signal indicating that the voltage at the power supply terminal is lower than the upper limit of the normal range when a second detection voltage higher than the first detection voltage changes from a higher state to a lower state than the reference voltage in FIG. When,
When a third detection voltage higher than the second detection voltage in the plurality of detection voltages changes from a state lower than the reference voltage to a higher state, a signal indicating that the voltage of the power supply terminal is higher than the lower limit of the normal range is output. When the fourth detection voltage higher than the third detection voltage in the plurality of detection voltages changes from a state higher than the reference voltage to a lower state, a signal indicating that the voltage at the power supply terminal is lower than the lower limit of the normal range A second hysteresis comparator that outputs
The determination signal output circuit outputs a signal indicating that the voltage of the power supply terminal is higher than the upper limit of the normal range in the first hysteresis comparator, or the voltage of the power supply terminal in the second hysteresis comparator. The first determination signal indicating that the voltage of the power supply terminal is not within the normal range is output when a signal indicating that the voltage is lower than the lower limit of the normal range is output. The semiconductor integrated circuit device according to any one of the above. - センサ部と、
前記センサ部のセンシング結果に応じた信号を前記信号端子から出力する、請求項1乃至9の何れか一項に記載の半導体集積回路装置と
を有することを特徴とするセンサモジュール。
A sensor unit;
10. A sensor module comprising: the semiconductor integrated circuit device according to claim 1, wherein a signal corresponding to a sensing result of the sensor unit is output from the signal terminal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016506182A JP6229040B2 (en) | 2014-03-06 | 2015-02-05 | Semiconductor integrated circuit device and sensing module having the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014043950 | 2014-03-06 | ||
JP2014-043950 | 2014-03-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015133219A1 true WO2015133219A1 (en) | 2015-09-11 |
Family
ID=54055029
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/053259 WO2015133219A1 (en) | 2014-03-06 | 2015-02-05 | Semiconductor integrated circuit device and sensing module equipped with same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6229040B2 (en) |
WO (1) | WO2015133219A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017163776A (en) * | 2016-03-11 | 2017-09-14 | 日立オートモティブシステムズ株式会社 | Controller and abnormality notification method for a plurality of calculation processing devices |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007012798A (en) * | 2005-06-29 | 2007-01-18 | Rohm Co Ltd | Semiconductor integrated circuit device |
JP2007139664A (en) * | 2005-11-21 | 2007-06-07 | Nec Electronics Corp | Battery voltage monitoring device |
JP2011247629A (en) * | 2010-05-24 | 2011-12-08 | Denso Corp | Angular speed detection |
JP2013253806A (en) * | 2012-06-05 | 2013-12-19 | Jtekt Corp | Sensor device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4690915B2 (en) * | 2006-03-10 | 2011-06-01 | 日立オートモティブシステムズ株式会社 | Integrated circuit power protection circuit |
JP5603277B2 (en) * | 2011-03-29 | 2014-10-08 | セイコーインスツル株式会社 | ESD protection circuit for semiconductor integrated circuit |
-
2015
- 2015-02-05 WO PCT/JP2015/053259 patent/WO2015133219A1/en active Application Filing
- 2015-02-05 JP JP2016506182A patent/JP6229040B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007012798A (en) * | 2005-06-29 | 2007-01-18 | Rohm Co Ltd | Semiconductor integrated circuit device |
JP2007139664A (en) * | 2005-11-21 | 2007-06-07 | Nec Electronics Corp | Battery voltage monitoring device |
JP2011247629A (en) * | 2010-05-24 | 2011-12-08 | Denso Corp | Angular speed detection |
JP2013253806A (en) * | 2012-06-05 | 2013-12-19 | Jtekt Corp | Sensor device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017163776A (en) * | 2016-03-11 | 2017-09-14 | 日立オートモティブシステムズ株式会社 | Controller and abnormality notification method for a plurality of calculation processing devices |
Also Published As
Publication number | Publication date |
---|---|
JP6229040B2 (en) | 2017-11-08 |
JPWO2015133219A1 (en) | 2017-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7106107B2 (en) | Reliability comparator with hysteresis | |
US7629775B2 (en) | Battery connection detection circuit | |
KR100815388B1 (en) | Low voltage detecting circuit | |
JP5397571B2 (en) | Control device | |
US7102395B2 (en) | Power-supply voltage detection circuit and integrated circuit device | |
US20090224804A1 (en) | Detecting circuit and electronic apparatus using detecting circuit | |
WO2015114923A1 (en) | Semiconductor integrated circuit device | |
US7711971B1 (en) | Multi-input power supply supervisor | |
EP3477317B1 (en) | Method for identifying a fault at a device output and system therefor | |
US9331684B2 (en) | Semiconductor device for sensing physical quantity | |
JP6229040B2 (en) | Semiconductor integrated circuit device and sensing module having the same | |
JP5757833B2 (en) | Switch circuit | |
US7321257B2 (en) | Semiconductor device capable of detecting an open bonding wire using weak current | |
EP3474027A1 (en) | Method for identifying a fault at a device output and system therefor | |
US9088274B1 (en) | Voltage clamping circuit | |
JP6332601B2 (en) | Semiconductor integrated circuit device | |
JP2014020796A (en) | Voltage abnormality detection circuit | |
US20100019803A1 (en) | Oscillation detection circuit | |
US8854779B2 (en) | Integrated circuit | |
JP6797035B2 (en) | Magnetic sensor and magnetic sensor device | |
US8449179B2 (en) | Temperature detection system | |
CN112311337A (en) | Semiconductor device with a plurality of semiconductor chips | |
KR101551201B1 (en) | Split circuit and split device for splitting integrated circuit device | |
JPH06308171A (en) | Power supply-voltage detecting circuit | |
JP2020173098A (en) | Frequency detection circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15759220 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016506182 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15759220 Country of ref document: EP Kind code of ref document: A1 |