WO2015132958A1 - Input/output matching circuit - Google Patents

Input/output matching circuit Download PDF

Info

Publication number
WO2015132958A1
WO2015132958A1 PCT/JP2014/055981 JP2014055981W WO2015132958A1 WO 2015132958 A1 WO2015132958 A1 WO 2015132958A1 JP 2014055981 W JP2014055981 W JP 2014055981W WO 2015132958 A1 WO2015132958 A1 WO 2015132958A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
diode
wiring
input
lsi
Prior art date
Application number
PCT/JP2014/055981
Other languages
French (fr)
Japanese (ja)
Inventor
健治 古後
高司 川本
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2014/055981 priority Critical patent/WO2015132958A1/en
Publication of WO2015132958A1 publication Critical patent/WO2015132958A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/26Improving frequency characteristic by the use of loading coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0264Arrangements for coupling to transmission lines
    • H04L25/0272Arrangements for coupling to multiple lines, e.g. for differential transmission
    • H04L25/0276Arrangements for coupling common mode signals

Definitions

  • the present invention relates to an electrostatic discharge element in a portion where a signal is input or output in a semiconductor chip that performs high-speed transmission in the Gbit / s band, and relates to a technique for suppressing communication deterioration due to this element.
  • This Z is generally set to 50 ⁇ for single-phase wiring and 100 ⁇ for differential wiring, but the conductor width of the conductor is widened to reduce the conductor loss of the wiring and designed to have a differential of 85 ⁇ . There is also a case. Thus, various measures are taken to reduce the loss of the signal transmission line.
  • active elements such as transistors and diodes are provided inside the transmission LSI and the reception LSI that perform such communication. Therefore, when a high voltage such as static electricity is applied from the outside of the circuit, the active element is destroyed, causing a failure. Therefore, in order to protect the active element, an electrostatic protection circuit as shown in FIG. 25 is configured, and a termination resistor 15 and an ESD element 11 are provided between the pad 10 and the first stage transistor 13.
  • 14 is a pad capacitance
  • 16 is an input capacitance of a transistor.
  • ESD Electro Static Discharge
  • one diode is connected between the VDD voltage and the signal line, and between the signal line and the GND.
  • High voltage noise input from the outside is connected to VDD or GND with a low resistance to prevent a high voltage from being applied to the input of the transistor 13.
  • Both diodes have the same allowable current tolerance and the same discharge current.
  • the pass characteristic from the pad 10 to the transistor 13 becomes a low-pass characteristic.
  • the signal strength deteriorates, which causes a problem in high-speed transmission.
  • the input / output pads for high-speed signals are minimized to the extent that there is no problem in assembly, and measures such as setting a metal wiring prohibited area under the pads are taken to reduce the pad capacitance 14.
  • the input capacitance 16 is reduced, and measures are taken so that the transistor 13 can operate with a high-speed signal.
  • the ESD element 11 when an element with a small PN junction area (details will be described later) is used to reduce the capacitance, the ESD element 11 also deteriorates the resistance to high voltage due to a disturbance and fulfills its original purpose. I can't. For this reason, it is impossible to take measures by changing the PN junction area or the like. Therefore, compared with the pad capacitance 14 and the input capacitance 16 of the transistor, the characteristic deterioration of high-speed transmission by the ESD element 11 becomes dominant.
  • Patent Document 1 in order to improve the high-speed transmission characteristic deterioration due to the ESD element, as shown in Patent Document 1 and Non-Patent Document 1, a coil is added and the ESD element and the coil are arranged symmetrically in the signal transmission direction. There is a technique for configuring a transmission line to increase the speed of signal passage.
  • an ESD element is provided to protect an active element in an LSI.
  • this ESD element has a low-pass characteristic as described above, it causes deterioration of communication quality particularly in high-speed communication, and high-speed communication performance. Decreases.
  • Patent Document 1 and Non-Patent Document 1 for improving the high-speed communication performance need to connect many ESD elements and coils, and increase the area and form three or more layers to form the coils. This results in a complicated shape requiring a large number of wiring layers. As the number of coil wiring layers increases, even the lower signal wiring area is used, so a wiring layer with a thin electrode thickness is used, which increases the resistance value of the coil and increases the passage loss in the coil.
  • an object of the present invention is to realize an input / output matching circuit having high-speed communication performance that maintains electrostatic resistance by an ESD element and is not affected by noise.
  • a plurality of transistors are provided between the input / output pads in the LSI and the input / output transistors.
  • a diode, a resistor, and a plurality of coils are arranged, and the LSI has at least two potentials, that is, a ground potential GND and a circuit drive power supply voltage.
  • the first coil Are connected in this order, and between the first coil and the second coil, one end is connected to the signal wiring, the other end is connected to the power supply voltage, and one end is connected to the signal wiring.
  • a second diode having the other end connected to GND is disposed, and the first diode has an anode connected to the signal wiring side and a cathode connected to the power supply voltage side so as to be reverse-biased.
  • the second diode has a cathode connected to the signal wiring side and an anode connected to the GND side so as to be reverse-biased, and one end connected to the signal wiring and the other end connected to the power supply voltage between the second coil and the transistor.
  • a fourth diode having one end connected to the signal line and the other end connected to the GND.
  • the third diode has an anode and a power supply on the signal line side so as to be reverse-biased.
  • the cathode is connected to the voltage side
  • the cathode of the fourth diode is connected to the signal wiring side and the anode is connected to the GND side so as to be reverse-biased
  • a resistor is arranged in parallel with the third diode or the fourth diode.
  • the PN junction area of the first diode is larger than the PN junction area of the third diode
  • the PN junction area of the second diode is larger than the PN junction area of the fourth diode.
  • the diode is arranged such that the PN junction area of the first diode is smaller than the PN junction area of the third diode and the PN junction area of the second diode is smaller than the PN junction area of the fourth diode. Is done.
  • FIG. 3 is an equivalent circuit model diagram of the input matching circuit according to the first embodiment and its impedance characteristic diagram.
  • FIG. 12 is another example of an equivalent circuit model diagram of the input matching circuit according to the first embodiment.
  • the characteristic at the time of performing an electrostatic discharge test at the time of using Example 1 is shown.
  • 3 is a frequency characteristic of a transmission signal according to the first embodiment.
  • FIG. 3 is a schematic diagram of a metal wiring layer in an LSI according to the first embodiment. It is a figure which shows the layout pattern of the coil which concerns on Example 1.
  • FIG. It is a figure which shows the layout pattern of the coil which concerns on Example 1.
  • FIG. 4 shows another layout pattern of the coil according to the first embodiment.
  • FIG. 10 is a diagram illustrating LSI control corresponding to a multi-protocol, multi-rate including a speed detection circuit inside or outside the LSI according to the third embodiment.
  • FIG. 10 is a circuit diagram of an input matching circuit for performing band change according to a third embodiment. It is a frequency characteristic concerning the circuit of FIG. It is a figure which shows the layout pattern of the coil which concerns on the circuit of FIG. 7 is a cross-sectional view of an LSI mounting structure according to Embodiment 4. FIG. It is a figure which shows the upper surface structure of the LSI mounting structure based on the circuit of FIG. FIG. 10 is an equivalent circuit model diagram of the input matching circuit according to the fourth embodiment.
  • FIG. 10 is a diagram illustrating a cross-sectional structure of an LSI mounting structure according to a fifth embodiment.
  • FIG. 22 is a top view of the LSI mounting structure according to FIG. 21.
  • FIG. 10 is an equivalent circuit model diagram of the input matching circuit according to the fifth embodiment. It is a figure which shows an example of the scene which uses LSI of an Example. It is a figure which shows the conventional input circuit. This is a conventional pass frequency characteristic.
  • 1A is a top layout view and a cross-sectional view of an ESD element according to Example 1.
  • FIG. 10 is an equivalent circuit model diagram of the input matching circuit according to the fifth embodiment. It is a figure which shows an example of the scene which uses LSI of an Example. It is a figure which shows the conventional input circuit. This is a conventional pass frequency characteristic.
  • 1A is a top layout view and a cross-sectional view of an ESD element according to Example 1.
  • FIG. 1A is an equivalent circuit of the input circuit of the present invention.
  • An ESD element having a large PN junction area is arranged on the PAD side, and an ESD element having a small PN junction area is arranged on the transistor side.
  • Coils 12 a and 12 b are inserted in series between the pad 10 and the input transistor 13.
  • ESD elements 11a and 11b are disposed between the coils.
  • a termination resistor 15 and ESD elements 11c and 11d are arranged between the coil 12b and the input transistor 13. Elements having different PN coupling areas of these four ESD elements are used.
  • Fig. 1 (b) shows the characteristics of the ESD element.
  • the horizontal axis represents frequency and the vertical axis represents impedance. Focusing on one ESD element, it can be largely divided into three regions. In the first region, the dominant factor that determines the impedance is the C component, and in the second region, the impedance decreases in inverse proportion to the frequency. In the second region, the dominant factor that determines the impedance is the R component, and the impedance is constant regardless of the frequency. The third region is a region where the dominant factor that determines the impedance is the L component, and the impedance increases in proportion to the frequency.
  • the region in which R having the smallest impedance is the dominant factor is distributed in different frequency bands. By doing so, it is possible to widen the frequency region for electrostatic discharge.
  • One method of using ESD element groups having different frequency characteristics is to change the PN junction area.
  • FIG. 27A shows an example of the top surface layout of the ESD element.
  • the diode has a p-electrode and an n-electrode, and the n-electrode is formed so as to surround the p-electrode concavely.
  • FIG. 27B shows a cross-sectional view of the ESD element taken along the line AA ′.
  • An n-well is formed in the p-substrate, and a p + region and an n + region are provided in the n-well to perform a PN junction.
  • the p + region and the n + region are connected to the p electrode and the n electrode, respectively.
  • the product of the electrode width, the electrode length, and the number of electrodes of the p-electrode differs depending on the manufacturing process used.
  • the product of the electrode width, the electrode length, and the number of electrodes is slightly different from the PN junction area. It is a measure of the bonding area. That is, the ESD elements 11a, 11b, 11c, and 11d can change the PN junction area between the ESD elements by providing a difference in the electrode width or electrode length, or both the electrode width and electrode length.
  • the electrode length of the ESD element 11a is 500 nm, a difference of about 10 times from the electrode length of 50 nm of 11c is provided.
  • the discharge currents of the ESD element connected to the power supply side and the ESD element connected to GND are made uniform.
  • the electrode length of the ESD element 11b is 250 ⁇ m
  • the electrode length of the ESD element 11d is 2.5 ⁇ m
  • the magnitude relationship among the ESD elements 11a and 11b and the ESD elements 11c and 11d is aligned between the power supply side and the GND side.
  • the ESD capacitance on the pad side constituted by the ESD elements 11a and 11b becomes larger than the ESD capacitance on the transistor side constituted by 11c and 11d, so that the low impedance band can be widened and electrostatic discharge can be prevented.
  • the band to be suppressed can be widened.
  • a coil is arranged between the pad and the ESD elements 11a and 11b and between the ESD elements 11a and 11b and the ESD elements 11c and 11d, and a matching circuit is configured by the inductance of the coil and the capacitance of the ESD element.
  • the pad capacitance 14, the input capacitance 16 of the input transistor, the combined capacitance of the ESD elements 11a and 11b pair, and the combined capacitance of the ESD elements 11c and 11d pair are different.
  • the inductance of the coils 12a and 12b is determined in consideration of the element characteristics.
  • FIG. 1 When a plurality of ESD elements having different PN junction areas are arranged, in FIG. 1, an ESD element having a large PN junction area is arranged on the pad side, and an ESD element having a small PN junction area is arranged on the transistor side.
  • an ESD element having a large PN junction area is arranged on the pad side, and an ESD element having a small PN junction area is arranged on the transistor side.
  • the electrode length of the ESD element 11a the electrode length of the ESD element 11c and the ESD element 11b, contrary to FIG. ⁇ The electrode length of the ESD element 11d.
  • FIG. 3 shows the characteristics when an electrostatic discharge test is performed when Example 1 is used.
  • FIG. 3A is a circuit diagram of a human body model used in the test. Electric charge is supplied to a 100 pF capacitor through a 1 M ⁇ resistor. After the charge is sufficiently charged, the switch is connected to the resistance 1.5 k ⁇ side to inject the charge into the circuit. The waveform of the injected current is shown in FIG. The voltage applied to the transistor 13 when this current is injected is shown in FIG. In the first embodiment, the maximum applied voltage of the transistor is smaller than that in the conventional method (FIG. 25) due to the broadening of the electrostatic discharge suppression region and the increase in wiring resistance due to the coil insertion. That is, it can be seen that even when voltages of the same strength are applied, the voltage applied to the transistor is smaller in Example 1 and the electrostatic resistance is maintained.
  • FIG. 4 shows the frequency characteristics of the transmission signal of the first embodiment.
  • FIG. 4A shows reflection characteristics when viewed from the pad 10.
  • Example 1 can reduce reflection to a high frequency of about 20 GHz.
  • the pass characteristic from the pad 10 to the transistor 13 can pass a signal having a high frequency of 10 GHz or more as shown in FIG.
  • the resistance due to the wiring increases due to the addition of the coil, and the pass characteristic is deteriorated in the low frequency region as compared with the conventional method. Since this resistance is a component connected in series with the signal path, it is desirable to reduce it as much as possible in order to increase the loss of pass characteristics in the entire frequency band.
  • FIG. 5 shows a schematic diagram of a metal wiring layer in the LSI according to the first embodiment. It has a total of nine wiring layers including the pads. Each layer is connected by VIA.
  • this wiring structure two types of wiring conductor thicknesses are used: a thin layer of wiring conductors M1 to M6 and a thick layer of wiring conductors M7 and M8.
  • a layer having a thin wiring conductor thickness has a small change in the wiring width in the thickness direction, so that the wiring width can be reduced, so that wiring can be performed at a high density. However, since the width is narrow and the thickness is thin, the wiring resistance becomes high, which is suitable as a short distance wiring.
  • a pattern having a narrow wiring width is used for M1 to M4 for connecting the transistors in the block at a very short distance.
  • high-density wiring is not required for M1 to M4, so although the wiring conductor layer is thin, the wiring width is made wider than M1 to M4 to lower the wiring resistance.
  • the wiring layers M7 and M8 are used for connection between power supply wiring and long-distance blocks. Since the wiring layer is thick and the wiring width is large, high-density wiring cannot be performed, but wiring resistance can be reduced. Therefore, a thick layer of M7 and M8 wiring conductors is suitable for reducing the conductor loss of the coil. Since the pad layer is also thick, the pad layer may be formed including the pad layer.
  • FIG. 6 shows a coil layout pattern (only the coil 12a is described) used in the first embodiment.
  • the pad and M8 are connected, and the M8 layer is wired spirally from the outside to the inside.
  • M8 and M7 are connected inside by VIA78 and pulled out from M7, and a signal is input to the circuit.
  • the coil can be disposed between the front-stage circuit and the rear-stage circuit relatively easily.
  • Example 1 two coils 12a and 12b are used.
  • metal wiring is prohibited within a certain distance including other wiring layers from M1 to M6 around the coil. An area to do is required. Therefore, in order to create a coil, a relatively large area is required on the LSI, so it is desirable that the number of coils be small.
  • FIG. 7A a layout pattern in which the coils 12a and 12b are created by one coil will be described.
  • a coil having an inductance value obtained by combining the two is created.
  • An extraction wiring for connecting an ESD element is provided in the middle of the coil to connect the ESD element.
  • the portion from the pad 10 to the lead wires of the ESD elements 11a and 11b can be the coil 12a
  • the portion from the lead wire of the ESD elements 11a and 11b to the lead wires of the ESD elements 11c and 11d can be the coil 12b.
  • the inductance values of the coils 12a and 12b can be arbitrarily adjusted by changing the positions of the lead wires of the ESD elements 11a and 11b.
  • FIG. 8 shows another layout pattern of the coil according to the first embodiment.
  • the coils up to FIG. 7 formed a spiral pattern in the M8 single layer, but there is a problem even if the M7 single layer forms a spiral pattern from the outer periphery to the inner periphery and is connected in the M8 from the innermost periphery. Absent. Further, in this case, when the connection destination of the signal after the coil extracted from the inner circumference is connected to a component arranged in the lower layer such as a transistor, the lead-out line from the innermost circumference is drawn from the lower layer such as M1 to M6. It is also possible to pull it out. However, in the case of pulling out in the lower layer, in order to reduce the loss due to wiring, it is necessary to connect to the subsequent transistor as close as possible to the coil.
  • Fig. 9 shows an example of an octagonal layout pattern of coils.
  • One of the coil performance indexes is a Q value. This is a characteristic determined by the ratio of the inductance component and the resistance component of the coil. A higher Q value indicates a smaller resistance component and an ideal inductance. This Q value is determined by various factors such as a wiring width, a wiring interval, and a coil pattern. Since the Q value is generally higher as it is closer to a circle, the Q value is higher in the case where the inductance is formed by the octagonal coil pattern of FIG. 9 than in the case of the quadrangular shape.
  • the coils 12a and 12b may be integrated into one coil, and a lead-out wiring for connecting the ESD elements 11a and 11b may be provided from the middle of the coil.
  • FIG. 10 shows another example of the coil layout pattern of the first embodiment. This is a case of creating a circle in order to further improve the Q value compared to the octagon.
  • the coils 12a and 12b may be integrated into one coil, and a lead-out wiring for connecting the ESD elements 11a and 11b may be provided from the middle of the coil.
  • FIG. 11 shows another example of the coil layout pattern of the first embodiment. Since the LSI area is limited, it is desirable to make the coil area as small as possible. For this reason, the two layers of the coils M7 and M8 are formed as spiral wiring. As a result, when using only one layer as shown in FIGS. 7 to 10, the inductance value that required three turns as a spiral was used, and the number of turns per layer was 2 by using two layers M7 and M8. This can be achieved with less than the winding, leading to a reduction in area.
  • FIG. 12 shows an example of a layout pattern created for the purpose of reducing resistance by the coil according to the first embodiment. Since the resistance due to the coil wiring is connected in series with the transmission signal, it directly affects the passage loss of the matching circuit of the present invention. Therefore, it is required to reduce the wiring resistance as much as possible. Therefore, a coil is formed by virtually increasing the wiring layer thickness of one VIA layer of VIA 78 connecting M7, M8 and M7, M8. Since wiring cannot be drawn in the VIA portion, M7 and M8 are connected with low impedance by arranging VIA in high density as shown in the portion surrounded by ⁇ . As a result, it is possible to make the wiring thickness even thicker than wiring with two layers of M7 and M8, and by reducing the resistance due to the wiring of the coil, the passing loss of the matching circuit can be reduced.
  • Example 2 is an example in which the input of an LSI is realized as a differential signal.
  • FIG. 13 shows a coil layout of the second embodiment.
  • Differential wiring is used in electrical wire transmission such as electrical interconnection technology. This is because noise resistance is higher than that of a single phase.
  • two wirings are always arranged close to each other, so that the wiring area is increased as compared with a single phase.
  • these two wirings are similarly affected by disturbances such as electromagnetic noise, the influence of the disturbances can be canceled out by taking the difference between the lines, and the resistance to the disturbances is enhanced. Accordingly, it is required to provide an arrangement with excellent noise resistance that can cancel the influence of disturbance even in the arrangement of the coils.
  • current flows in opposite directions by injection and outflow. Therefore, if the coils are wound in the same direction, the magnetic field generated by the coils is generated in the opposite direction between the differentials, and the noise is reduced by canceling the differential common mode noise.
  • Example 3 is an example in which an optimum high-speed performance is realized by detecting a transmission speed.
  • various standards such as PCI express and Ethernet for communication from IC to IC.
  • various communication speeds in the same standard as 100 GKR4 (25.78125 Gbit / s) and 10 GKR (10.3125 Gbit / s).
  • Each transmission speed has an optimum bandwidth. If the bandwidth is insufficient, a signal on the high frequency side cannot be received, leading to deterioration of characteristics. On the other hand, if the band is too wide, the received noise band is widened, so that the intensity of the noise amount is increased.
  • FIG. 14 shows a block diagram of the third embodiment.
  • FIG. 14A is a block diagram showing speed control corresponding to multiprotocol and multirate by providing a speed detection circuit in an LSI alone.
  • a matching circuit 141 in which the ESD element of the present invention and a coil are combined is disposed at the input and output portions of the LSI. Since the transmitted signal is attenuated, it is amplified by the amplifier 142 in the LSI. The attenuation of the line increases as the frequency increases.
  • an amplifier 142 having a peaking characteristic 144 that increases the gain as the frequency becomes higher and lowers the gain at a high frequency where the signal component is small and the noise component is large is used so that the characteristics are opposite to those of the line.
  • a speed detection circuit 143 for detecting the data speed is provided after the amplifier. In this circuit, the current transmission speed is discriminated, and the matching circuit characteristics, the amplifier frequency characteristics, and the output amplitude corresponding to the communication speed are controlled. By operating each in the optimum state, unnecessary power can be reduced and interference with other circuits and LSIs can be reduced. When the transmission speed to be handled is changed, the signal is received with the maximum speed at which the LSI can operate. Using the signal, the speed detection circuit 143 detects the communication protocol and the communication speed. When the speed detection is completed, a control signal is sent to the matching circuit 141 and the amplifier 142 to change the setting.
  • FIG. 14B is a block diagram showing multi-protocol, multi-rate compatible speed control when the LSI does not have a speed detection circuit. Since the speed cannot be detected inside the LSI, communication protocol and communication speed information is input from the LSI 146 or the like of the I2C serial communication system that controls the information at the upper level of the apparatus. The settings of the matching circuit 141 and the amplifier 142 are changed according to this information.
  • FIG. 15 shows a configuration diagram of a matching circuit for changing the band.
  • a method of changing the band there is a method of changing the L value of the coil.
  • the L value of a single coil cannot be varied, but if another coil is placed near the coil, magnetic coupling (mutual) occurs between the coils.
  • the combined inductance L can be expressed by Equation 1 by the inductance L1 of the coil 17a for transmitting a signal, the inductance L2 of the coil 17b for generating a mutual, and the mutual inductance M generated between the coils.
  • L L1 + L2 ⁇ 2M Formula (1)
  • the sign of M depends on whether the magnetic flux directions of L1 and L2 are the same or opposite. Therefore, L can be changed by changing M.
  • a method of changing the current flowing through the coil 17b is used. Since the amount of magnetic flux generated changes depending on the flowing current, the coupling amount M can be changed, so that the combined inductance L can be changed.
  • a frequency source of the matching circuit is adjusted by providing a current source 18 in the coil and controlling the current value.
  • FIG. 16 shows a schematic diagram of the frequency characteristic change of the matching circuit in which the value of the current flowing through the coil 17b of FIG. 15 is varied.
  • 16A shows reflection characteristics
  • FIG. 16B shows transmission characteristics.
  • M can be reduced to improve reflection within the band, and pass characteristics can be improved.
  • reflection at a low frequency is deteriorated and a loss of a passing characteristic is increased.
  • a wideband characteristic can be obtained by increasing M at a high frequency to reduce the loss.
  • Fig. 17 shows the layout pattern of the coils connected in a mutual manner.
  • the coil 17a to which the signal is transmitted forms a coil with M7 and M8 having a thick wiring layer thickness to reduce the loss of the transmission line.
  • the coil 17b for adjusting the mutual is not on the signal transmission line, so there is no need to consider signal degradation. Therefore, the coil 17b is created by M5 and M6 immediately below the coils created by M7 and M8.
  • Example 4 is an example of a mounting structure.
  • 18 is a cross-sectional view of a mounting structure of an LSI chip 18 to which the input matching circuit of the present invention is applied
  • FIG. 19 is a top view. Since the LSI chip 18 cannot be directly mounted on the printed circuit board 22 to ensure reliability, it must be mounted on the package 25.
  • the package substrate 20 has a high-speed signal wiring 23 to which a signal input / output pad of the LSI chip 18 is connected. At this time, the LSI chip 18 is mounted face down with the circuit surface facing the package substrate 20.
  • the high-speed signal wiring 23 is connected to a through hole 26 that connects the front and back surfaces of the package substrate 20, and is connected to the high-speed signal wiring 24 on the printed circuit board 22 through the solder 21, from the LSI chip to the printed circuit board. Input / output signals.
  • FIG. 19B shows an enlarged view of the connection portion A ( ⁇ portion) between the LSI chip 18 and the package substrate 20 in FIG.
  • this width is wider than the high-speed signal wiring 23 designed for impedance. Therefore, a parasitic capacitance is generated at this connection portion.
  • Fig. 20 shows the equivalent circuit model of LSI including the mounting structure.
  • the LSI chip pad 10 and the high-speed signal wiring 23 there are an inductance 27 by the bump 19 and a capacitor 28 by a wiring width expansion pattern provided for disposing the bump 19.
  • a better high frequency characteristic can be obtained by performing input / output matching including the inductance 27 and the capacitor 28. Therefore, the parasitic inductance 27 can have a part or all of the coil 12a of the input matching circuit. As a result, the inductance value of the coil can be reduced, and the coil area on the LSI chip 18 can be reduced.
  • the fifth embodiment is an example applied to a QFN LSI chip.
  • 21 is a cross-sectional view of the mounting structure of the LSI chip 18 to which the input matching circuit of the present invention is applied
  • FIG. 22 is a top view.
  • the chip is packaged in a general-purpose package 25 such as a QFN (Quad For Non-Lead Package), it is connected to the pad of the package with a wire 29 by face-up mounting.
  • the pads of the package are connected to the high-speed signal wiring 24 of the printed circuit board 22 through the solder 21 and input / output signals from the LSI chip 18 to the printed circuit board 22.
  • FIG. 22B shows an enlarged view of the connection portion between the pad of the package in the portion A ( ⁇ portion) in FIG. 22A and the printed circuit board 22.
  • the pad positions are arranged at regular intervals according to the standard. Therefore, a discontinuous point of impedance occurs at this connection position due to the parasitic capacitance and the parasitic inductance due to the pad.
  • the solder connection portion needs a wiring width wider than the wiring width of the high-speed signal wiring 24. For this reason, a parasitic capacitance is generated in this connection portion.
  • a parasitic pattern is obtained by removing the GND pattern immediately below the portion of the printed circuit board 22 of the multilayer substrate from the location where the second layer package pad and the high-speed signal wiring 24 are connected from the surface where the package 25 is mounted. There is also a means to relieve capacity.
  • the equivalent circuit model when including the mounting structure of the LSI chip 18 has the configuration shown in FIG.
  • the LSI chip pad 10 and the high-speed signal wiring 24 there exists a capacitance 31 due to the wiring width expansion performed for providing the inductance 30 by the wire 29 and the solder 21 for arranging the package pad.
  • a better high frequency characteristic can be obtained by performing input / output matching including the inductance 30 and the capacitor 31.
  • the parasitic inductance 30 and the coil 12a of the input matching circuit can complement the characteristics as a matching circuit. Therefore, part or all of the role of the coil 12a can be shared by the wire 29, and the inductance value of the coil 12a can be reduced. As a result, the coil area on the LSI chip 18 can be reduced.
  • ESD element 12a 12b coil 10: pad capacitance 13: LSI first stage transistor 15: termination resistor 16: parasitic capacitance of LSI first stage transistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

Provided is an input/output matching circuit, which maintains electrostatic resistance by means of ESD elements, and which, at the same time, has high-speed communication performance without being affected by noise. In the present invention, a plurality of ESD elements having different frequency characteristics, and elements thereof are connected to each other by means of coils, thereby constituting a matching circuit of the ESD elements and the coils.

Description

入出力整合回路I / O matching circuit
 本発明は,Gbit/s帯の高速伝送を行う半導体チップにおいて,信号を入力または出力される部分にある静電気放電素子に関し,この素子による通信劣化を抑制する技術に関する。 The present invention relates to an electrostatic discharge element in a portion where a signal is input or output in a semiconductor chip that performs high-speed transmission in the Gbit / s band, and relates to a technique for suppressing communication deterioration due to this element.
 情報通信分野において、インターネット、スマートフォンの普及、クラウド化の進展により、データセンタ内におけるサーバやルータ等の処理すべきデータ量が飛躍的に増加し、大規模情報処理のニーズが拡大している。このサーバやルータのデータ処理速度を上げるためには、デバイス単体の動作速度の高速化に加え、CPU(中央演算処理ユニット)-メモリ間および、デバイス間の信号伝送速度の高速化が必要である。 In the information and communication field, with the spread of the Internet and smartphones and the progress of cloud computing, the amount of data to be processed by servers and routers in the data center has increased dramatically, and the need for large-scale information processing has expanded. In order to increase the data processing speed of these servers and routers, it is necessary to increase the signal transmission speed between the CPU (Central Processing Unit) and the memory and between the devices in addition to increasing the operating speed of the device alone. .
 近年、サーバやルータ等の装置では、Tbit/s級のスループットが要求されており、この要求を満足するためには、CPU-メモリ間等の伝送も、高速化することが必要となる。現在、高速I/O(Input/Output)の通信規格として、PCI express、Ethernet等いくつかあるが、どの通信規格においても、最高の通信速度は、20Gbit/sを超える速度となっている。このように、伝送速度が高速化されてくると、CPU-メモリを接続する基板やケーブルの損失が大きくなるため、低損失基板の適用や装置構造を変えることで短配線化を行ない対応している。 In recent years, devices such as servers and routers are required to have a throughput of Tbit / s class, and in order to satisfy this requirement, it is necessary to increase the speed of transmission between the CPU and the memory. Currently, there are several high-speed I / O (Input / Output) communication standards, such as PCI express and Ethernet, but the maximum communication speed exceeds 20 Gbit / s in any communication standard. In this way, as the transmission speed increases, the loss of the board and cable connecting the CPU-memory increases. Therefore, the wiring can be shortened by changing the application of the low-loss board and changing the device structure. Yes.
 そういった材料開発や構造検討と同時に、伝送損失の逆特性を有するLSIを用いて広帯域化を図る波形等化技術の開発も進められている。さらに、有線伝送を行なう場合は、信号の損失は勿論のこと、インピーダンス不連続により生じる反射による損失も考慮する必要がある。そのため、伝送は、反射による劣化を低減するためにも、図24に示すように、送信LSIの出力インピーダンスZT、線路インピーダンスZL、受信LSIの入力インピーダンスZRをZT=ZL=ZR=Zとなるように揃えることが求められる。
このZは、一般的には単相で配線する場合は50Ω、差動で配線する場合は100Ωとするが、配線の導体損失を低減するために導体の配線幅を広げて差動85Ωで設計する場合もある。このように、様々な対策を行い、信号伝送線路の損失低減を図っている。
Simultaneously with such material development and structural studies, development of a waveform equalization technique for increasing the bandwidth using an LSI having a reverse characteristic of transmission loss is also in progress. Furthermore, when performing wired transmission, it is necessary to consider not only signal loss but also loss due to reflection caused by impedance discontinuity. Therefore, in order to reduce deterioration due to reflection, the transmission is such that the output impedance ZT of the transmission LSI, the line impedance ZL, and the input impedance ZR of the reception LSI become ZT = ZL = ZR = Z, as shown in FIG. It is required to align.
This Z is generally set to 50Ω for single-phase wiring and 100Ω for differential wiring, but the conductor width of the conductor is widened to reduce the conductor loss of the wiring and designed to have a differential of 85Ω. There is also a case. Thus, various measures are taken to reduce the loss of the signal transmission line.
 また、このような通信を行なう送信LSI、受信LSI内部には、トランジスタやダイオードといったアクティブ素子が設けられている。そのため、回路外部から静電気などの高電圧が印加されると、アクティブ素子が破壊されてしまい、故障の原因となる。そのため、アクティブ素子を守るために、図25に示すような静電気保護回路を構成して、パッド10と初段のトランジスタ13の間には、終端抵抗15とESD素子11を設けている。 Also, active elements such as transistors and diodes are provided inside the transmission LSI and the reception LSI that perform such communication. Therefore, when a high voltage such as static electricity is applied from the outside of the circuit, the active element is destroyed, causing a failure. Therefore, in order to protect the active element, an electrostatic protection circuit as shown in FIG. 25 is configured, and a termination resistor 15 and an ESD element 11 are provided between the pad 10 and the first stage transistor 13.
 なお、14はパッド容量、16はトランジスタの入力容量である。ESD(Electro Static Discharge)素子は、VDD電圧と信号線間、信号線とGNDの間にダイオードを1個ずつ接続する。この2個のダイオードにより、外部から入力されてくる高電圧のノイズを、VDDもしくはGNDへ低抵抗で接続し、トランジスタ13の入力に高電圧が印加されることを防いでいる。この両ダイオードは電流の許容耐性を同一にして、放電電流を同等にしている。 Note that 14 is a pad capacitance, and 16 is an input capacitance of a transistor. In an ESD (Electro Static Discharge) element, one diode is connected between the VDD voltage and the signal line, and between the signal line and the GND. By these two diodes, high voltage noise input from the outside is connected to VDD or GND with a low resistance to prevent a high voltage from being applied to the input of the transistor 13. Both diodes have the same allowable current tolerance and the same discharge current.
 このように14や16の容量を信号線路に対して並列に接続すると、パッド10からトランジスタ13への通過特性がローパス特性となる。その結果、図26に示すように周波数が高くなると信号強度が劣化し、高速伝送では問題となってくる。そのため、高速信号の入出力パッドに関しては、組立上問題ない範囲まで極小として、さらに、パッド下はメタル配線禁止領域にする等の対策を行ない、パッド容量14を低減している。また、寄生容量の小さいトランジスタを選択することで入力容量16を小さくして、トランジスタ13が高速信号で動作できるように対策している。 Thus, when the capacitors 14 and 16 are connected in parallel to the signal line, the pass characteristic from the pad 10 to the transistor 13 becomes a low-pass characteristic. As a result, as shown in FIG. 26, as the frequency increases, the signal strength deteriorates, which causes a problem in high-speed transmission. For this reason, the input / output pads for high-speed signals are minimized to the extent that there is no problem in assembly, and measures such as setting a metal wiring prohibited area under the pads are taken to reduce the pad capacitance 14. In addition, by selecting a transistor having a small parasitic capacitance, the input capacitance 16 is reduced, and measures are taken so that the transistor 13 can operate with a high-speed signal.
 しかし、ESD素子11も容量を低減するためにPN接合面積(詳細は後述)の小さい素子を使用した場合、外乱による高電圧への耐性を劣化させてしまうことになり、本来の目的を果たす事ができない。そのため、PN接合面積の変更等による対策を行なうことはできないので、パッド容量14やトランジスタの入力容量16に比べ、ESD素子11による高速伝送の特性劣化が支配的になってしまう。 However, when an element with a small PN junction area (details will be described later) is used to reduce the capacitance, the ESD element 11 also deteriorates the resistance to high voltage due to a disturbance and fulfills its original purpose. I can't. For this reason, it is impossible to take measures by changing the PN junction area or the like. Therefore, compared with the pad capacitance 14 and the input capacitance 16 of the transistor, the characteristic deterioration of high-speed transmission by the ESD element 11 becomes dominant.
 そこで従来、ESD素子による高速伝送の特性劣化を改善するため、特許文献1や非特許文献1に示すように、コイルを追加し、ESD素子とコイルを信号伝送方向に対称配置とすることで擬似伝送線路を構成して、信号通過の高速化を図る技術が存在する。 Therefore, conventionally, in order to improve the high-speed transmission characteristic deterioration due to the ESD element, as shown in Patent Document 1 and Non-Patent Document 1, a coil is added and the ESD element and the coil are arranged symmetrically in the signal transmission direction. There is a technique for configuring a transmission line to increase the speed of signal passage.
米国特許出願公開第2012/0314328A1号明細書US Patent Application Publication No. 2012 / 0314328A1
 従来、LSI内のアクティブ素子を保護するためにESD素子を設けているが、このESD素子は上述のようにローパス特性を有するため,特に高速通信においては通信品質を劣化させる原因となり、高速通信性能が低下する。 Conventionally, an ESD element is provided to protect an active element in an LSI. However, since this ESD element has a low-pass characteristic as described above, it causes deterioration of communication quality particularly in high-speed communication, and high-speed communication performance. Decreases.
 一方、高速通信性能劣化を改善するための特許文献1や非特許文献1に開示される技術は、数多くのESD素子、コイルを接続する必要があり、面積の増大やコイルの形成に3層以上の配線層数を要する複雑な形状となってしまう。コイルの配線層数が増えると、下層の信号用配線領域までも利用するので、電極厚の薄い配線層を使用することになるため、コイルの抵抗値が高くなり、コイルでの通過損失を増加させる。 On the other hand, the techniques disclosed in Patent Document 1 and Non-Patent Document 1 for improving the high-speed communication performance need to connect many ESD elements and coils, and increase the area and form three or more layers to form the coils. This results in a complicated shape requiring a large number of wiring layers. As the number of coil wiring layers increases, even the lower signal wiring area is used, so a wiring layer with a thin electrode thickness is used, which increases the resistance value of the coil and increases the passage loss in the coil. Let
 また、両文献開示の技術は高周波のノイズ領域を含む広帯域にわたって伝送性能が高いため、LSIの入出力部分で、不要なノイズまで拾いやすくなるという欠点を有する。
従って、本発明の目的は、ESD素子による静電耐性を保ち、ノイズの影響を受けない高速な通信性能を有する入出力整合回路を実現することである。
Further, since the techniques disclosed in both documents have high transmission performance over a wide band including a high-frequency noise region, there is a disadvantage that it is easy to pick up unnecessary noise at the input / output portion of the LSI.
Accordingly, an object of the present invention is to realize an input / output matching circuit having high-speed communication performance that maintains electrostatic resistance by an ESD element and is not affected by noise.
 本発明は、半導体基板上に複数のトランジスタを有するLSIにおいて、LSIの外部とデータの授受を行なうために、該LSI内部の入出力用のパッドから入出力用のトランジスタまでの間に、複数のダイオード、抵抗、複数のコイルが配され、LSIには、少なくとも、接地電位のGNDと回路駆動の電源電圧の2つの電位があり、パッドからトランジスタまでの信号配線として、第1のコイルと、第2のコイルとがこの順番で接続され、第1のコイルと第2のコイルとの間に、一端を信号配線に、他端を電源電圧に接続された第1のダイオードと、一端を信号配線に、他端をGNDに接続された第2のダイオードとが配置され、第1のダイオードは、逆バイアスになるように信号配線側にアノード、電源電圧側にカソードが接続され、第2のダイオードは、逆バイアスになるように信号配線側にカソード、GND側にアノードが接続され、第2のコイルとトランジスタとの間に、一端を信号配線に、他端を電源電圧に接続された第3のダイオードと、一端を信号配線に、他端をGNDに接続された第4のダイオードとが配置され、第3のダイオードは、逆バイアスになるように信号配線側にアノード、電源電圧側にカソードが接続され、第4のダイオードは、逆バイアスになるように信号配線側にカソード、GND側にアノードが接続され、第3のダイオードあるいは第4のダイオードと並列に抵抗が配置され、第1のダイオードのPN接合面積は第3のダイオードのPN接合面積より大きく、かつ第2のダイオードのPN接合面積は第4のダイオードのPN接合面積より大きいか、又は、第1のダイオードのPN接合面積は第3のダイオードのPN接合面積より小さく、かつ第2のダイオードのPN接合面積は第4のダイオードのPN接合面積より小さいようにダイオードが配置される。 In an LSI having a plurality of transistors on a semiconductor substrate, in order to exchange data with the outside of the LSI, a plurality of transistors are provided between the input / output pads in the LSI and the input / output transistors. A diode, a resistor, and a plurality of coils are arranged, and the LSI has at least two potentials, that is, a ground potential GND and a circuit drive power supply voltage. As a signal wiring from the pad to the transistor, the first coil, Are connected in this order, and between the first coil and the second coil, one end is connected to the signal wiring, the other end is connected to the power supply voltage, and one end is connected to the signal wiring. In addition, a second diode having the other end connected to GND is disposed, and the first diode has an anode connected to the signal wiring side and a cathode connected to the power supply voltage side so as to be reverse-biased. The second diode has a cathode connected to the signal wiring side and an anode connected to the GND side so as to be reverse-biased, and one end connected to the signal wiring and the other end connected to the power supply voltage between the second coil and the transistor. And a fourth diode having one end connected to the signal line and the other end connected to the GND. The third diode has an anode and a power supply on the signal line side so as to be reverse-biased. The cathode is connected to the voltage side, the cathode of the fourth diode is connected to the signal wiring side and the anode is connected to the GND side so as to be reverse-biased, and a resistor is arranged in parallel with the third diode or the fourth diode. The PN junction area of the first diode is larger than the PN junction area of the third diode, and the PN junction area of the second diode is larger than the PN junction area of the fourth diode. The diode is arranged such that the PN junction area of the first diode is smaller than the PN junction area of the third diode and the PN junction area of the second diode is smaller than the PN junction area of the fourth diode. Is done.
 本発明によれば、ESD素子による静電放電の耐性を保ったまま、高速信号においても、ノイズの影響を受けず、損失の小さい入出力特性を有するLSIを実現することができる。 According to the present invention, it is possible to realize an LSI having input / output characteristics with low loss without being affected by noise even in a high-speed signal while maintaining the resistance to electrostatic discharge by the ESD element.
実施例1に係る入力整合回路の等価回路モデル図及びそのインピーダンス特性図である。FIG. 3 is an equivalent circuit model diagram of the input matching circuit according to the first embodiment and its impedance characteristic diagram. 実施例1に係る入力整合回路の等価回路モデル図の他の例である。FIG. 12 is another example of an equivalent circuit model diagram of the input matching circuit according to the first embodiment. 実施例1を用いた場合の静電放電試験を行なった時の特性を示す。The characteristic at the time of performing an electrostatic discharge test at the time of using Example 1 is shown. 実施例1に係る伝送信号の周波数特性である。3 is a frequency characteristic of a transmission signal according to the first embodiment. 実施例1に係るLSI内のメタル配線層の模式図を示す。FIG. 3 is a schematic diagram of a metal wiring layer in an LSI according to the first embodiment. 実施例1に係るコイルのレイアウトパターンを示す図であるIt is a figure which shows the layout pattern of the coil which concerns on Example 1. FIG. 実施例1に係るコイルのレイアウトパターンを示す図であるIt is a figure which shows the layout pattern of the coil which concerns on Example 1. FIG. 実施例1に係るコイルの他のレイアウトパターンを示す。4 shows another layout pattern of the coil according to the first embodiment. 実施例1に係るコイルの8角形レイアウトパターンの一例を示す図であるIt is a figure which shows an example of the octagonal layout pattern of the coil which concerns on Example 1. FIG. 実施例1に係るコイルの円形レイアウトパターンの一例を示す図であるIt is a figure which shows an example of the circular layout pattern of the coil which concerns on Example 1. FIG. 実施例1に係るコイルの配線を2層使用して小型化したレイアウトパターンの一例を示す図であるIt is a figure which shows an example of the layout pattern miniaturized using the wiring of the coil which concerns on Example 1 using two layers. 実施例1に係るコイルで低抵抗化を目的として作成したレイアウトパターンの一例を示す図であるIt is a figure which shows an example of the layout pattern created in order to reduce resistance with the coil which concerns on Example 1. FIG. 実施例2に係る差動信号に対応するコイルのレイアウトパターンの一例を示す図であるIt is a figure which shows an example of the layout pattern of the coil corresponding to the differential signal which concerns on Example 2. FIG. 実施例3に係るLSIの内部又は外部に速度検出回路を具備したマルチプロトコル、マルチレート対応のLSI制御を示す図であるFIG. 10 is a diagram illustrating LSI control corresponding to a multi-protocol, multi-rate including a speed detection circuit inside or outside the LSI according to the third embodiment. 実施例3に係る帯域変更を行なうための入力整合回路の回路図である。FIG. 10 is a circuit diagram of an input matching circuit for performing band change according to a third embodiment. 図15の回路に係る周波数特性である。It is a frequency characteristic concerning the circuit of FIG. 図15の回路に係るコイルのレイアウトパターンを示す図である。It is a figure which shows the layout pattern of the coil which concerns on the circuit of FIG. 実施例4に係るLSI実装構造の断面図である。7 is a cross-sectional view of an LSI mounting structure according to Embodiment 4. FIG. 図18の回路に係るLSI実装構造の上面構造を示す図である。It is a figure which shows the upper surface structure of the LSI mounting structure based on the circuit of FIG. 実施例4に係る入力整合回路の等価回路モデル図である。FIG. 10 is an equivalent circuit model diagram of the input matching circuit according to the fourth embodiment. 実施例5に係るLSI実装構造の断面構造を示す図である。FIG. 10 is a diagram illustrating a cross-sectional structure of an LSI mounting structure according to a fifth embodiment. 図21に係るLSI実装構造の上面図である。FIG. 22 is a top view of the LSI mounting structure according to FIG. 21. 実施例5に係る入力整合回路の等価回路モデル図である。FIG. 10 is an equivalent circuit model diagram of the input matching circuit according to the fifth embodiment. 実施例のLSIを使用する場面の一例を示す図である。It is a figure which shows an example of the scene which uses LSI of an Example. 従来の入力回路を示す図である。It is a figure which shows the conventional input circuit. 従来の通過周波数特性である。This is a conventional pass frequency characteristic. 実施例1に係るESD素子の上面レイアウト図及び断面図である。1A is a top layout view and a cross-sectional view of an ESD element according to Example 1. FIG.
以下に、図面を用いて、本発明の実施形態を詳細に述べる。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 本発明の実施例1の入出力整合回路について説明する。
図1の(a)は、本発明の入力回路の等価回路である。PAD側にPN接合面積の大きななESD素子を配置して、トランジスタ側にPN接合面積の小さいESD素子を配置している。パッド10から入力トランジスタ13までの間にコイル12aと12bを直列に挿入する。このコイルの間にESD素子11aと11bを配置する。さらに、コイル12bと入力トランジスタ13の間に終端抵抗15およびESD素子11cと11dを配置する。この4個のESD素子のPN結合面積が異なる素子を使用する。
The input / output matching circuit according to the first embodiment of the present invention will be described.
FIG. 1A is an equivalent circuit of the input circuit of the present invention. An ESD element having a large PN junction area is arranged on the PAD side, and an ESD element having a small PN junction area is arranged on the transistor side. Coils 12 a and 12 b are inserted in series between the pad 10 and the input transistor 13. ESD elements 11a and 11b are disposed between the coils. Further, a termination resistor 15 and ESD elements 11c and 11d are arranged between the coil 12b and the input transistor 13. Elements having different PN coupling areas of these four ESD elements are used.
 図1の(b)にESD素子の特性図を示す。横軸が周波数、縦軸がインピーダンスを表している。1個のESD素子に着目すると、大きく3つの領域に分離することができる。1つめの領域はインピーダンスを決める支配要因がC成分であり、周波数に反比例してインピーダンスが低下する領域、2つめの領域は、インピーダンスを決める支配要因がR成分であり周波数に関わらずインピーダンスが一定の領域、3つめの領域は、インピーダンスを決める支配要因がL成分であり、周波数に対してインピーダンスが比例して高くなる領域である。 Fig. 1 (b) shows the characteristics of the ESD element. The horizontal axis represents frequency and the vertical axis represents impedance. Focusing on one ESD element, it can be largely divided into three regions. In the first region, the dominant factor that determines the impedance is the C component, and in the second region, the impedance decreases in inverse proportion to the frequency. In the second region, the dominant factor that determines the impedance is the R component, and the impedance is constant regardless of the frequency. The third region is a region where the dominant factor that determines the impedance is the L component, and the impedance increases in proportion to the frequency.
 複数のESD素子を用いて、このインピーダンスが最小となるRが支配要因となる領域を異なる周波数帯に分散するようにする。こうすることで、静電放電に対する周波数領域を広げることが可能となる。この周波数特性の異なるESD素子群を利用する手法の1つとして、PN接合面積を変える方法がある。 Using a plurality of ESD elements, the region in which R having the smallest impedance is the dominant factor is distributed in different frequency bands. By doing so, it is possible to widen the frequency region for electrostatic discharge. One method of using ESD element groups having different frequency characteristics is to change the PN junction area.
 図27の(a)にESD素子の上面レイアウトの一例を示す。ダイオードには、p電極とn電極があり、p電極の周りを凹に囲うようにn電極を形成する。図27の(b)にESD素子のA-A'断面図を示す。p基板内にnウェルを作成し、そのnウェル内にp+領域とn+領域を設けPN接合を行なう。このp+領域、n+領域をそれぞれp電極、n電極に接続する。このp電極の電極幅と電極長と電極数の積は使用する製造プロセスによって、電極の形状等が異なるため、電極幅と電極長と電極数の積はPN接合面積と若干異なるが、ほぼPN接合面積の目安となる。
つまり、ESD素子11a、11b、11c、11dは、この電極幅もしくは電極長、あるいは電極幅及び電極長の両方に差異を設ければ、ESD素子間でPN接合面積を変えることができる。
FIG. 27A shows an example of the top surface layout of the ESD element. The diode has a p-electrode and an n-electrode, and the n-electrode is formed so as to surround the p-electrode concavely. FIG. 27B shows a cross-sectional view of the ESD element taken along the line AA ′. An n-well is formed in the p-substrate, and a p + region and an n + region are provided in the n-well to perform a PN junction. The p + region and the n + region are connected to the p electrode and the n electrode, respectively. The product of the electrode width, the electrode length, and the number of electrodes of the p-electrode differs depending on the manufacturing process used. The product of the electrode width, the electrode length, and the number of electrodes is slightly different from the PN junction area. It is a measure of the bonding area.
That is, the ESD elements 11a, 11b, 11c, and 11d can change the PN junction area between the ESD elements by providing a difference in the electrode width or electrode length, or both the electrode width and electrode length.
 例えば、ESD素子11aの電極長を500nmとすると,11cの電極長50nmと10倍程度の差を設ける。また、静電気の+側による耐性と-側による耐性を揃えるため、電源側に接続されるESD素子とGNDに接続されるESD素子の放電電流を均一にする。そのため、GND側に配置されるESD素子においてはESD素子11bの電極長を250μm、ESD素子11dの電極長を2.5μmとして、ESD素子11aの電極長>ESD素子11cの電極長、及びESD素子11bの電極長>ESD素子11dの電極長として、ESD素子11a、11b,ESD素子11c,11dの大小関係は電源側とGND側で揃える。 For example, if the electrode length of the ESD element 11a is 500 nm, a difference of about 10 times from the electrode length of 50 nm of 11c is provided. In addition, in order to equalize the resistance due to the positive side and the negative side due to static electricity, the discharge currents of the ESD element connected to the power supply side and the ESD element connected to GND are made uniform. Therefore, in the ESD element arranged on the GND side, the electrode length of the ESD element 11b is 250 μm, the electrode length of the ESD element 11d is 2.5 μm, the electrode length of the ESD element 11a> the electrode length of the ESD element 11c, and the ESD element The electrode length of 11b> the electrode length of the ESD element 11d, the magnitude relationship among the ESD elements 11a and 11b and the ESD elements 11c and 11d is aligned between the power supply side and the GND side.
 その結果、ESD素子11aと11bで構成されるパッド側のESD容量は11cと11dで構成されるトランジスタ側のESD容量よりも大きくなって、低インピーダンスの帯域を広げることができ,静電放電を抑圧する帯域を広範囲にすることができる。
回路の入力部分にESD素子11を挿入すると、静電気などに対する耐性は高くなるが、LSIに接続される線路とLSIの入力または出力インピーダンスの間に不整合を生じさせ、高い周波数帯域の特性を著しく劣化させることになってしまう。
As a result, the ESD capacitance on the pad side constituted by the ESD elements 11a and 11b becomes larger than the ESD capacitance on the transistor side constituted by 11c and 11d, so that the low impedance band can be widened and electrostatic discharge can be prevented. The band to be suppressed can be widened.
When the ESD element 11 is inserted into the input portion of the circuit, resistance against static electricity and the like is increased. However, a mismatch occurs between the line connected to the LSI and the input or output impedance of the LSI, and the characteristics in the high frequency band are remarkably increased. It will be deteriorated.
 そこで、パッドとESD素子11a、11b間ならびにESD素子11a,11bとESD素子11c、11d間にコイルを配置し、コイルのインダクタンスと、ESD素子の容量にて整合回路を構成する。本発明では、パッド容量14、入力トランジスタの入力容量16、ESD素子11a、11bペアの合成容量、ESD素子11c,11dペアの合成容量が異なるため、広帯域に良好な整合を得るためには、ESD素子の特性を考慮して、コイル12a,12bのインダクタンスを決定する。 Therefore, a coil is arranged between the pad and the ESD elements 11a and 11b and between the ESD elements 11a and 11b and the ESD elements 11c and 11d, and a matching circuit is configured by the inductance of the coil and the capacitance of the ESD element. In the present invention, the pad capacitance 14, the input capacitance 16 of the input transistor, the combined capacitance of the ESD elements 11a and 11b pair, and the combined capacitance of the ESD elements 11c and 11d pair are different. The inductance of the coils 12a and 12b is determined in consideration of the element characteristics.
 PN接合面積の異なる複数のESD素子を配置する場合、図1は、パッド側にPN接合面積の大きなESD素子を配置して、トランジスタ側にPN接合面積の小さいESD素子を配置している。パッド側にPN接合面積の大きなESD素子を配置することで、比較的強度の大きな低周波成分の静電放電ノイズを落としてESD耐性を保つことができる。
図2は、図1とは反対に、PAD側にPN接合面積の小さなESD素子を配置して、トランジスタ側にPN接合面積の大きいESD素子を配置している。これは、低周波成分の静電放電ノイズの低減に効果的なPN接合面積の大きなESD素子を後段に配置することで、コイルの抵抗成分により、ノイズ源の減少が生じるため、低周波対応用のPN接合面積を小さくできるので、大きな低周波用ESD素子のサイズを大幅に削減することができる。なお、図1と比べて、コイルが1個追加になっているが、これは容量の大きいESD素子をトランジスタ側に配置した場合、等価的にトランジスタの入力容量が大きくなりトランジスタが高速動作できなくなるので、この位置にコイルを挿入することで高周波対応の整合回路を作っているためである。
また、パッド側のPN接合面積を大きくし、トランジスタ側のPN接合面積を小さくするためには、図1とは逆に、ESD素子11aの電極長<ESD素子11c、及びESD素子11bの電極長<ESD素子11dの電極長とする。
When a plurality of ESD elements having different PN junction areas are arranged, in FIG. 1, an ESD element having a large PN junction area is arranged on the pad side, and an ESD element having a small PN junction area is arranged on the transistor side. By disposing an ESD element having a large PN junction area on the pad side, it is possible to maintain ESD resistance by reducing electrostatic discharge noise of a relatively high strength low frequency component.
In FIG. 2, contrary to FIG. 1, an ESD element having a small PN junction area is arranged on the PAD side, and an ESD element having a large PN junction area is arranged on the transistor side. This is because an ESD element with a large PN junction area, which is effective for reducing electrostatic discharge noise of low frequency components, is arranged in the subsequent stage, and the noise source is reduced due to the resistance component of the coil. Therefore, the size of the large low-frequency ESD element can be greatly reduced. Compared with FIG. 1, one coil is added. However, when an ESD element having a large capacity is arranged on the transistor side, the input capacity of the transistor is equivalently increased and the transistor cannot operate at high speed. Therefore, a high-frequency matching circuit is made by inserting a coil at this position.
Also, in order to increase the PN junction area on the pad side and reduce the PN junction area on the transistor side, the electrode length of the ESD element 11a <the electrode length of the ESD element 11c and the ESD element 11b, contrary to FIG. <The electrode length of the ESD element 11d.
 図3に実施例1を用いた場合の静電放電試験を行なった時の特性を示す。図3の(a)は試験に使用したヒューマンボディモデルの回路図である。1MΩの抵抗を介して100pFの容量に電荷を給電する。電荷が十分に充電された後で、スイッチを抵抗1.5kΩ側に接続し回路に電荷を注入する。この注入される電流の波形を図3の(b)に示している。この電流が注入された時のトランジスタ13への印加電圧を図3の(c)に示す。静電放電抑圧領域の広帯域化および、コイル挿入による配線抵抗の増加により、トランジスタの最大印加電圧が従来方式(図25)に比べ、実施例1の方が小さい。つまり、同じ強度の電圧を印加した場合においても、実施例1の方がトランジスタに印加される電圧が小さくなり、静電耐性は保たれていることが分かる。 FIG. 3 shows the characteristics when an electrostatic discharge test is performed when Example 1 is used. FIG. 3A is a circuit diagram of a human body model used in the test. Electric charge is supplied to a 100 pF capacitor through a 1 MΩ resistor. After the charge is sufficiently charged, the switch is connected to the resistance 1.5 kΩ side to inject the charge into the circuit. The waveform of the injected current is shown in FIG. The voltage applied to the transistor 13 when this current is injected is shown in FIG. In the first embodiment, the maximum applied voltage of the transistor is smaller than that in the conventional method (FIG. 25) due to the broadening of the electrostatic discharge suppression region and the increase in wiring resistance due to the coil insertion. That is, it can be seen that even when voltages of the same strength are applied, the voltage applied to the transistor is smaller in Example 1 and the electrostatic resistance is maintained.
 図4は、実施例1の伝送信号の周波数特性を示す。図4(a)はパッド10から見た時の反射特性である。コイルを用いない従来方式(図25)に比べて、実施例1は20GHz程度の高い周波数まで反射を低減することができる。この反射特性の改善により、パッド10からトランジス13までの通過特性は、図4(b)に示すように、10GHz以上の高い周波数の信号まで通過させることができる。しかし、実施例1では、コイルを追加することで配線による抵抗が増加してしまい、低周波領域では、従来方式と比べて通過特性が劣化している。この抵抗は信号経路に対して直列に接続される成分であるため、全周波数帯域において、通過特性の損失を増加させるため、できる限り低減させることが望ましい。 FIG. 4 shows the frequency characteristics of the transmission signal of the first embodiment. FIG. 4A shows reflection characteristics when viewed from the pad 10. Compared with the conventional method (FIG. 25) which does not use a coil, Example 1 can reduce reflection to a high frequency of about 20 GHz. By improving the reflection characteristic, the pass characteristic from the pad 10 to the transistor 13 can pass a signal having a high frequency of 10 GHz or more as shown in FIG. However, in the first embodiment, the resistance due to the wiring increases due to the addition of the coil, and the pass characteristic is deteriorated in the low frequency region as compared with the conventional method. Since this resistance is a component connected in series with the signal path, it is desirable to reduce it as much as possible in order to increase the loss of pass characteristics in the entire frequency band.
 図5に実施例1によるLSI内のメタル配線層の模式図を示す。パッドまで含めて全9層の配線層を有する。各層間はVIAで接続している。この配線構造においては、M1~M6までの配線導体が薄い層と、M7とM8の配線導体が厚い層の2種類の配線導体厚を使用する。配線導体厚が薄い層は、厚さ方向の配線幅の変化が小さいので配線幅を細くすることができるため、高密度に配線することが可能である。しかし、幅が狭く厚さも薄いので、配線抵抗が高くなってしまうため、近距離用の配線として適している。そのため、極近距離のブロック内のトランジスタ間接続を行なうM1~M4に配線幅の細いパターンを用いる。さらに、隣接ブロック間接続として使用されるM5、M6についても、M1~M4ほど高密度配線は不要なため、配線導体層が薄くはあるが、M1~M4より配線幅を太くし配線抵抗を下げて使用する。M7、M8の配線層は電源配線や長距離のブロック間の接続に使用する。配線層厚が厚く、配線の幅が太いため、高密度に配線することができないが、配線抵抗を小さくすることができる。そのため、コイルの導体損失を低減させるためには、M7、M8の配線導体の厚い層が適している。パッド層も配線層は厚いため、パッド層を含めて形成してもよい。 FIG. 5 shows a schematic diagram of a metal wiring layer in the LSI according to the first embodiment. It has a total of nine wiring layers including the pads. Each layer is connected by VIA. In this wiring structure, two types of wiring conductor thicknesses are used: a thin layer of wiring conductors M1 to M6 and a thick layer of wiring conductors M7 and M8. A layer having a thin wiring conductor thickness has a small change in the wiring width in the thickness direction, so that the wiring width can be reduced, so that wiring can be performed at a high density. However, since the width is narrow and the thickness is thin, the wiring resistance becomes high, which is suitable as a short distance wiring. For this reason, a pattern having a narrow wiring width is used for M1 to M4 for connecting the transistors in the block at a very short distance. Furthermore, for M5 and M6 used as connections between adjacent blocks, high-density wiring is not required for M1 to M4, so although the wiring conductor layer is thin, the wiring width is made wider than M1 to M4 to lower the wiring resistance. To use. The wiring layers M7 and M8 are used for connection between power supply wiring and long-distance blocks. Since the wiring layer is thick and the wiring width is large, high-density wiring cannot be performed, but wiring resistance can be reduced. Therefore, a thick layer of M7 and M8 wiring conductors is suitable for reducing the conductor loss of the coil. Since the pad layer is also thick, the pad layer may be formed including the pad layer.
 図6に実施例1に使用するコイルのレイアウトパターン(コイル12aのみについて説明)を示す。パッドとM8を接続してM8層で外側から内側に向かって渦巻状に配線する。最後に内側でM8とM7をVIA78で接続してM7から引き出し、回路へ信号を入力する。この時、M8とM7の引き出し線を対面となる辺方向に引き出すことにより、比較的簡単に、前段の回路と後段の回路の間にコイルを配置することができる。 FIG. 6 shows a coil layout pattern (only the coil 12a is described) used in the first embodiment. The pad and M8 are connected, and the M8 layer is wired spirally from the outside to the inside. Finally, M8 and M7 are connected inside by VIA78 and pulled out from M7, and a signal is input to the circuit. At this time, by drawing out the lead lines of M8 and M7 in the opposite side direction, the coil can be disposed between the front-stage circuit and the rear-stage circuit relatively easily.
 実施例1ではコイル12aと12bの2個のコイルを使用する。しかし、コイルは周りの回路やメタル配置等により影響を受けやすいため、所望の特性を有するためには、コイル周辺にM1~M6までの別の配線層も含めて一定距離以内にメタル配線を禁止する領域が必要となる。そのため、コイルを作成するためには、LSI上に比較的広い面積が必要となるので、コイルの個数は少ないほうが望ましい。 In Example 1, two coils 12a and 12b are used. However, since the coil is easily affected by surrounding circuits and metal arrangements, in order to have the desired characteristics, metal wiring is prohibited within a certain distance including other wiring layers from M1 to M6 around the coil. An area to do is required. Therefore, in order to create a coil, a relatively large area is required on the LSI, so it is desirable that the number of coils be small.
 そこで、図7の(a)に示すように、コイル12a、12bを1個のコイルで作成するレイアウトパターンについて示す。まず、2個を合成したインダクタンスの値を有するコイルを作成する。このコイルの途中にESD素子接続用の引き出し配線を設け、ESD素子を接続する。こうすることで、コイル周辺の配線禁止領域を集約し、コイルの必要面積を削減することができる。この時パッド10からESD素子11aと11bの引出し配線までの部分をコイル12aと、ESD素子11aと11bの引出し配線からESD素子11cと11dの引き出し線までの部分をコイル12bとすることができる。また、図7の(b)に示すように、ESD素子11aと11bの引出し配線の位置を変更することで、コイル12aと12bのインダクタンス値を任意に調整することが可能である。 Therefore, as shown in FIG. 7A, a layout pattern in which the coils 12a and 12b are created by one coil will be described. First, a coil having an inductance value obtained by combining the two is created. An extraction wiring for connecting an ESD element is provided in the middle of the coil to connect the ESD element. By doing so, it is possible to consolidate the wiring prohibited areas around the coil and reduce the required area of the coil. At this time, the portion from the pad 10 to the lead wires of the ESD elements 11a and 11b can be the coil 12a, and the portion from the lead wire of the ESD elements 11a and 11b to the lead wires of the ESD elements 11c and 11d can be the coil 12b. Further, as shown in FIG. 7B, the inductance values of the coils 12a and 12b can be arbitrarily adjusted by changing the positions of the lead wires of the ESD elements 11a and 11b.
 図8に実施例1に関するコイルの他のレイアウトパターンを示す。図7までのコイルはM8単層で渦状のパターンを形成していたが、M7単層で外周から内周に向かって渦状のパターンを構成して、最内周からM8で接続しても問題ない。また、この場合、内周から取出した信号のコイル後段の接続先がトランジスタ等の下層に配置された部品に接続される場合は、最内周からの引出し線は、M1からM6等の下層から引き出すことも可能である。但し、下層で引出す場合は、配線による損失を低減するため、極力コイルの直近で後段のトランジスタに接続することが必要である。 FIG. 8 shows another layout pattern of the coil according to the first embodiment. The coils up to FIG. 7 formed a spiral pattern in the M8 single layer, but there is a problem even if the M7 single layer forms a spiral pattern from the outer periphery to the inner periphery and is connected in the M8 from the innermost periphery. Absent. Further, in this case, when the connection destination of the signal after the coil extracted from the inner circumference is connected to a component arranged in the lower layer such as a transistor, the lead-out line from the innermost circumference is drawn from the lower layer such as M1 to M6. It is also possible to pull it out. However, in the case of pulling out in the lower layer, in order to reduce the loss due to wiring, it is necessary to connect to the subsequent transistor as close as possible to the coil.
 図9にコイルの8角形レイアウトパターンの一例を示す。コイル性能指標の1つにQ値がある。これは、コイルのインダクタンス成分と抵抗成分の比によって決定する特性で、Q値が高いほうが、抵抗成分が小さく理想的なインダクタンスであることを示す。このQ値は、配線幅、配線間隔、コイルのパターン等の様々な要因によって決定される。一般的にQ値は、円に近いほど高くなるため、図9の8角形によるコイルパターンにてインダクタンスを構成した方が4角形の場合よりもQ値が高い。この時も、コイル12a、12bを1個のコイルに集約して、コイルの途中からESD素子11aと11bの接続用の引出し配線を設けても良い。 Fig. 9 shows an example of an octagonal layout pattern of coils. One of the coil performance indexes is a Q value. This is a characteristic determined by the ratio of the inductance component and the resistance component of the coil. A higher Q value indicates a smaller resistance component and an ideal inductance. This Q value is determined by various factors such as a wiring width, a wiring interval, and a coil pattern. Since the Q value is generally higher as it is closer to a circle, the Q value is higher in the case where the inductance is formed by the octagonal coil pattern of FIG. 9 than in the case of the quadrangular shape. At this time, the coils 12a and 12b may be integrated into one coil, and a lead-out wiring for connecting the ESD elements 11a and 11b may be provided from the middle of the coil.
 図10に実施例1のコイルのレイアウトパターンの他の例を示す。8角形よりもさらにQ値を向上させるために、円で作成した場合である。この時も、コイル12a、12bを1個のコイルに集約して、コイルの途中からESD素子11aと11bの接続用の引出し配線を設けても良い。 FIG. 10 shows another example of the coil layout pattern of the first embodiment. This is a case of creating a circle in order to further improve the Q value compared to the octagon. At this time, the coils 12a and 12b may be integrated into one coil, and a lead-out wiring for connecting the ESD elements 11a and 11b may be provided from the middle of the coil.
 図11に実施例1のコイルのレイアウトパターンの他の例を示す。LSI面積は限られているため、コイルの面積は極力小さくすることが望まれる。そのため、コイルM7、M8の2層共に渦巻状の配線とする。その結果、図7~図10のように1層のみで構成する場合に渦巻きとして3巻き必要であったインダクタンス値を、M7、M8の2層を用いることで、1層あたりの巻き数を2巻以下で達成することができ、面積の削減に繋がる。 FIG. 11 shows another example of the coil layout pattern of the first embodiment. Since the LSI area is limited, it is desirable to make the coil area as small as possible. For this reason, the two layers of the coils M7 and M8 are formed as spiral wiring. As a result, when using only one layer as shown in FIGS. 7 to 10, the inductance value that required three turns as a spiral was used, and the number of turns per layer was 2 by using two layers M7 and M8. This can be achieved with less than the winding, leading to a reduction in area.
 図12に実施例1に係るコイルで低抵抗化を目的として作成したレイアウトパターンの一例を示す。コイルの配線による抵抗は伝送信号と直列に接続されるため、本発明の整合回路の通過損失に直接的に影響を与える。そのため、極力配線抵抗を小さくすることが求められる。そこで、M7、M8および、M7、M8を接続するVIA78のVIA層1層で仮想的に配線層厚を厚くしてコイルを作成する。VIA部分は、配線を引くことは出来ないため、○で囲った部分に示すように、VIAを高密度に並べて配置することで、M7、M8を低インピーダンスで接続する。この結果、M7およびM8の2層で配線するよりも、さらに配線厚を厚くすることが可能であり、コイルの配線による抵抗を低インピーダンスにすることで、整合回路の通過損失を低減できる。 FIG. 12 shows an example of a layout pattern created for the purpose of reducing resistance by the coil according to the first embodiment. Since the resistance due to the coil wiring is connected in series with the transmission signal, it directly affects the passage loss of the matching circuit of the present invention. Therefore, it is required to reduce the wiring resistance as much as possible. Therefore, a coil is formed by virtually increasing the wiring layer thickness of one VIA layer of VIA 78 connecting M7, M8 and M7, M8. Since wiring cannot be drawn in the VIA portion, M7 and M8 are connected with low impedance by arranging VIA in high density as shown in the portion surrounded by ◯. As a result, it is possible to make the wiring thickness even thicker than wiring with two layers of M7 and M8, and by reducing the resistance due to the wiring of the coil, the passing loss of the matching circuit can be reduced.
 実施例2は、LSIの入力を差動信号にして実現する例である。 Example 2 is an example in which the input of an LSI is realized as a differential signal.
 図13に実施例2のコイルレイアウトを示す。電気インターコネクション技術のような電気の有線伝送では差動配線を使用する。これは、単相に比べてノイズ耐性が高いからである。差動の線路は、常に2本の配線を近接して配線するため、単相に比べて配線面積は増えてしまう。しかし、この2本の配線は電磁波ノイズなどの外乱の影響を同様に受けるため、この線路の差をとることで、外乱の影響を打ち消すことができ、外乱に対する耐性が強くなる。従って、、コイルの配置においても外乱の影響を打ち消すことができるノイズ耐性の優れた配置とすることが求められる。差動の場合、電流は注入と流出で互いに反対方向に流れる。そのため、コイルを同方向巻きにすれば、コイルの発生する磁場が差動間で逆方向に発生して、差動のコモンモードノイズを打ち消ことによりノイズ低減に繋がる。 FIG. 13 shows a coil layout of the second embodiment. Differential wiring is used in electrical wire transmission such as electrical interconnection technology. This is because noise resistance is higher than that of a single phase. In the differential line, two wirings are always arranged close to each other, so that the wiring area is increased as compared with a single phase. However, since these two wirings are similarly affected by disturbances such as electromagnetic noise, the influence of the disturbances can be canceled out by taking the difference between the lines, and the resistance to the disturbances is enhanced. Accordingly, it is required to provide an arrangement with excellent noise resistance that can cancel the influence of disturbance even in the arrangement of the coils. In the differential case, current flows in opposite directions by injection and outflow. Therefore, if the coils are wound in the same direction, the magnetic field generated by the coils is generated in the opposite direction between the differentials, and the noise is reduced by canceling the differential common mode noise.
 実施例3は、伝送速度を検出して最適な高速性能を実現する例である。図24に示すようにICからIC等への通信には、PCI express、Ethernetなどの様々な規格がある。さらに、同じEthernet規格においても、100GKR4(25.78125Gbit/s)、10GKR(10.3125Gbit/s)と言うように、同じ規格においても、様々な通信速度がある。伝送速度には、それぞれ最適な帯域幅があり、帯域が不足すると高周波側の信号を受信できなくなり特性劣化に繋がる。逆に帯域が広すぎると受信するノイズの帯域が広がるため、ノイズ量の強度が増加してしまう。従って、、送信の出力振幅を増加させるなどの対策が必要となるため、不必要な電力増加に繋がる。そのため、通信レートによって最適な帯域があり、通信速度に応じて整合回路や増幅器の振幅等を変更することで最適な性能を導くことができる。 Example 3 is an example in which an optimum high-speed performance is realized by detecting a transmission speed. As shown in FIG. 24, there are various standards such as PCI express and Ethernet for communication from IC to IC. Further, even in the same Ethernet standard, there are various communication speeds in the same standard as 100 GKR4 (25.78125 Gbit / s) and 10 GKR (10.3125 Gbit / s). Each transmission speed has an optimum bandwidth. If the bandwidth is insufficient, a signal on the high frequency side cannot be received, leading to deterioration of characteristics. On the other hand, if the band is too wide, the received noise band is widened, so that the intensity of the noise amount is increased. Accordingly, measures such as increasing the output amplitude of transmission are required, leading to an unnecessary increase in power. Therefore, there is an optimum band depending on the communication rate, and optimum performance can be derived by changing the amplitude of the matching circuit and the amplifier according to the communication speed.
 図14に実施例3のブロック図を示す。図14の(a)はLSI単体に速度検出回路を設け、マルチプロトコル、マルチレート対応の速度制御を示したブロック図である。LSIの入力、出力部には、本発明のESD素子とコイルを組合せた整合回路141を配置している。送信してきた信号は、減衰しているため、LSI内部の増幅器142で増幅する。線路の減衰は、周波数が高くなるほど大きくなる。 FIG. 14 shows a block diagram of the third embodiment. FIG. 14A is a block diagram showing speed control corresponding to multiprotocol and multirate by providing a speed detection circuit in an LSI alone. A matching circuit 141 in which the ESD element of the present invention and a coil are combined is disposed at the input and output portions of the LSI. Since the transmitted signal is attenuated, it is amplified by the amplifier 142 in the LSI. The attenuation of the line increases as the frequency increases.
 従って、線路と逆特性になるように、周波数が高くなるほど、利得を高くし、信号成分が小さくてノイズ成分の多い高い周波数では利得を落とすようなピーキング特性144を有する増幅器142を用いる。このアンプの後段にデータ速度を検出する速度検出回路143を設ける。この回路にて、現在の伝送している通信速度の判別を行い、その通信速度にあった整合回路特性、増幅器の周波数特性、出力振幅を制御する。それぞれを最適な状態で動作させることで、不要な電力の削減ならびに他の回路やLSIへの干渉を低減することができる。扱う伝送速度が変更になる場合、LSIが動作できる最高速度の設定にして信号を受信する。その信号を用いて速度検出回路143で通信プロトコル、通信速度を検出する。速度検出が完了したら、整合回路141、増幅器142に制御信号を送り、設定変更を行う。 Therefore, an amplifier 142 having a peaking characteristic 144 that increases the gain as the frequency becomes higher and lowers the gain at a high frequency where the signal component is small and the noise component is large is used so that the characteristics are opposite to those of the line. A speed detection circuit 143 for detecting the data speed is provided after the amplifier. In this circuit, the current transmission speed is discriminated, and the matching circuit characteristics, the amplifier frequency characteristics, and the output amplitude corresponding to the communication speed are controlled. By operating each in the optimum state, unnecessary power can be reduced and interference with other circuits and LSIs can be reduced. When the transmission speed to be handled is changed, the signal is received with the maximum speed at which the LSI can operate. Using the signal, the speed detection circuit 143 detects the communication protocol and the communication speed. When the speed detection is completed, a control signal is sent to the matching circuit 141 and the amplifier 142 to change the setting.
 図14の(b)は、LSI内部に速度検出回路を具備しない時の、マルチプロトコル、マルチレート対応の速度制御を示したブロック図である。LSI内部で速度検出ができないため、装置の上位で情報を制御しているI2Cシリアル通信方式のLSI146等から、通信のプロトコルおよび通信速度の情報を入力する。この情報に従って、整合回路141、増幅器142の設定変更を行う。 FIG. 14B is a block diagram showing multi-protocol, multi-rate compatible speed control when the LSI does not have a speed detection circuit. Since the speed cannot be detected inside the LSI, communication protocol and communication speed information is input from the LSI 146 or the like of the I2C serial communication system that controls the information at the upper level of the apparatus. The settings of the matching circuit 141 and the amplifier 142 are changed according to this information.
 図15に帯域変更を行なうための整合回路の構成図を示す。帯域を変更させる方法としてコイルのL値を変更する方法がある。単体コイルのL値は、可変することができないが、コイルの近傍にもう1つコイルを配置すると、コイル間に磁気による結合(ミューチャル)が生じる。この時合成インダクタンスLは、信号を伝送するためのコイル17aのインダクタンスL1とミューチャルを生じさせるコイル17bのインダクタンスL2、このコイル間で生じるミューチャルインダクタンスMによって、式1で表すことができる。
L=L1+L2±2M  式(1)
 Mの±の符号は、L1、L2の磁束の向きが同じか逆かによって決まる。そこで、Mを可変することでLを変えることができる。Mを変えるためには、コイル17bに流す電流を可変する方法を用いる。流れる電流により、発生する磁束量が変化するため結合量Mを変えることができるので、合成インダクタンスLを変化させることができる。コイルに電流源18を設けて、この電流値を制御することで、整合回路の周波数特性を調整する。
FIG. 15 shows a configuration diagram of a matching circuit for changing the band. As a method of changing the band, there is a method of changing the L value of the coil. The L value of a single coil cannot be varied, but if another coil is placed near the coil, magnetic coupling (mutual) occurs between the coils. At this time, the combined inductance L can be expressed by Equation 1 by the inductance L1 of the coil 17a for transmitting a signal, the inductance L2 of the coil 17b for generating a mutual, and the mutual inductance M generated between the coils.
L = L1 + L2 ± 2M Formula (1)
The sign of M depends on whether the magnetic flux directions of L1 and L2 are the same or opposite. Therefore, L can be changed by changing M. In order to change M, a method of changing the current flowing through the coil 17b is used. Since the amount of magnetic flux generated changes depending on the flowing current, the coupling amount M can be changed, so that the combined inductance L can be changed. A frequency source of the matching circuit is adjusted by providing a current source 18 in the coil and controlling the current value.
 図16に、図15のコイル17bに流す電流値を可変させた整合回路の周波数特性変化の模式図を示す。図16の(a)は反射特性、図16の(b)は通過特性を示している。通信速度が低速の場合は、高い周波数まで信号を通過させる必要がないため、Mを小さくして帯域内での反射を改善し、通過特性を改善することができる。また、高速な信号においては、低周波での反射が劣化して、通過特性の損失が大きくなるが、高周波ではMを大きくして損失を小さくすることにより広帯域な特性を得ることができる。 FIG. 16 shows a schematic diagram of the frequency characteristic change of the matching circuit in which the value of the current flowing through the coil 17b of FIG. 15 is varied. 16A shows reflection characteristics, and FIG. 16B shows transmission characteristics. When the communication speed is low, there is no need to pass a signal up to a high frequency. Therefore, M can be reduced to improve reflection within the band, and pass characteristics can be improved. Further, in a high-speed signal, reflection at a low frequency is deteriorated and a loss of a passing characteristic is increased. However, a wideband characteristic can be obtained by increasing M at a high frequency to reduce the loss.
 図17にミューチャル結合させたコイルのレイアウトパターンを示す。信号が伝送されるコイル17aは配線層厚が厚いM7、M8でコイルを形成して、伝送線路の損失を低減させる。コイルを物理的に近い位置で結合させる方が、Mに及ぼす影響が大きくなるため、少ない電流の変化で広い可変範囲を得ることができる。また、ミューチャルを調整するコイル17bは、信号の伝送線路上にないので信号の劣化を考える必要がないため、M7、M8で作成したコイルの直下のM5、M6で作成する。このように、可変インダクタンスを作成し調整することで、マルチプロトコル、マルチレートに対応した整合回路を作成することができる。 Fig. 17 shows the layout pattern of the coils connected in a mutual manner. The coil 17a to which the signal is transmitted forms a coil with M7 and M8 having a thick wiring layer thickness to reduce the loss of the transmission line. When the coils are coupled at physically close positions, the influence on M becomes larger, so that a wide variable range can be obtained with a small change in current. Further, the coil 17b for adjusting the mutual is not on the signal transmission line, so there is no need to consider signal degradation. Therefore, the coil 17b is created by M5 and M6 immediately below the coils created by M7 and M8. Thus, by creating and adjusting the variable inductance, it is possible to create a matching circuit that supports multi-protocol and multi-rate.
 実施例4は、実装構造の例である。
図18は、本発明の入力整合回路を適用したLSIチップ18の実装構造の断面図、図19は上面図を示す。LSIチップ18は、信頼性確保のためプリント基板22に直接実装することはできないので、パッケージ25に実装する必要がある。パッケージ基板20には高速信号用の配線23があり、LSIチップ18の信号入出力パッドを接続する。この時、LSIチップ18は、回路面をパッケージ基板20側にするフェースダウンにて実装する。この高速信号用の配線23は、パッケージ基板20の表裏面を接続するスルーホール26と接続されおり、半田21を介してプリント基板22上の高速信号配線24と接続し、LSIチップからプリント基板まで信号の入出力を行なう。
Example 4 is an example of a mounting structure.
18 is a cross-sectional view of a mounting structure of an LSI chip 18 to which the input matching circuit of the present invention is applied, and FIG. 19 is a top view. Since the LSI chip 18 cannot be directly mounted on the printed circuit board 22 to ensure reliability, it must be mounted on the package 25. The package substrate 20 has a high-speed signal wiring 23 to which a signal input / output pad of the LSI chip 18 is connected. At this time, the LSI chip 18 is mounted face down with the circuit surface facing the package substrate 20. The high-speed signal wiring 23 is connected to a through hole 26 that connects the front and back surfaces of the package substrate 20, and is connected to the high-speed signal wiring 24 on the printed circuit board 22 through the solder 21, from the LSI chip to the printed circuit board. Input / output signals.
 LSIチップ18をフェースダウン実装することで、パッケージ基板20との接続をバンプ19のみとし、寄生成分を抑えることができる。この結果、インピーダンスの不整合を抑えることができ、良好な高周波特性を得ることができる。
図19(a)のLSIチップ18とパッケージ基板20の接続部分A(○部分)の拡大図を図19の(b)に示す。フェースダウン実装を行なう場合、信頼性確保の観点から、バンプの接着強度を確保するために、バンプ部分の面積を広げる必要がある。基本的には、この幅はインピーダンス設計された高速信号用の配線23よりも広い幅の配線となってしまう。そのため、この接続部分には寄生容量が生じる。
By mounting the LSI chip 18 face-down, only the bumps 19 are connected to the package substrate 20 and parasitic components can be suppressed. As a result, impedance mismatch can be suppressed and good high frequency characteristics can be obtained.
FIG. 19B shows an enlarged view of the connection portion A (◯ portion) between the LSI chip 18 and the package substrate 20 in FIG. When performing face-down mounting, it is necessary to increase the area of the bump portion in order to ensure the adhesive strength of the bump from the viewpoint of ensuring reliability. Basically, this width is wider than the high-speed signal wiring 23 designed for impedance. Therefore, a parasitic capacitance is generated at this connection portion.
 図20に、実装構造まで含めたLSIの等価回路モデルを示す。LSIチップのパッド10と高速信号用の配線23の間に、バンプ19によるインダクタンス27とバンプ19を配置するために設ける配線幅拡大パターンによる容量28が存在する。このインダクタンス27と容量28も含めて入出力整合を行なう方が、より良好な高周波特性を得ることができる。そのため、寄生インダクタンス27に入力整合回路のコイル12aの一部もしくは全てを持たせることができる。この結果、コイルのインダクタンス値を小さくすることが可能であり、LSIチップ18上のコイル面積の縮小を行なうことができる。 Fig. 20 shows the equivalent circuit model of LSI including the mounting structure. Between the LSI chip pad 10 and the high-speed signal wiring 23, there are an inductance 27 by the bump 19 and a capacitor 28 by a wiring width expansion pattern provided for disposing the bump 19. A better high frequency characteristic can be obtained by performing input / output matching including the inductance 27 and the capacitor 28. Therefore, the parasitic inductance 27 can have a part or all of the coil 12a of the input matching circuit. As a result, the inductance value of the coil can be reduced, and the coil area on the LSI chip 18 can be reduced.
 実施例5はQFNのLSIチップに適用した例である。
図21は、本発明の入力整合回路を適用したLSIチップ18の実装構造の断面図、図22は上面図を示す。チップをQFN(Quad For Non-Lead Package)等の汎用パッケージ25にパッケージングする場合には、フェイスアップ実装でワイヤ29にてパッケージのパッドと接続する。パッケージのパッドは半田21を介して、プリント基板22の高速信号配線24と接続し、LSIチップ18からプリント基板22まで信号の入出力を行なう。
The fifth embodiment is an example applied to a QFN LSI chip.
21 is a cross-sectional view of the mounting structure of the LSI chip 18 to which the input matching circuit of the present invention is applied, and FIG. 22 is a top view. When the chip is packaged in a general-purpose package 25 such as a QFN (Quad For Non-Lead Package), it is connected to the pad of the package with a wire 29 by face-up mounting. The pads of the package are connected to the high-speed signal wiring 24 of the printed circuit board 22 through the solder 21 and input / output signals from the LSI chip 18 to the printed circuit board 22.
 図22(a)の部分A(○部分)のパッケージのパッドとプリント基板22の接続部分の拡大図を図22の(b)に示す。汎用品のパッケージを用いた場合、パッド位置は規格により等間隔に配置されているため、このパッドによる寄生容量と寄生インダクタンスのため、この接続位置でインピーダンスの不連続点が生じてしまう。また、半田21の接着強度確保のため、半田接続部分は、高速信号配線24の配線幅よりも広い配線幅が必要となる。そのため、この接続部分には寄生容量が生じてしまう。この寄生容量の対策として、多層基板のプリント基板22にて、パッケージ25が実装された面から2層目のパッケージパッドと高速信号配線24が接続された箇所から部分直下のGNDパターンを抜いて寄生容量を緩和する手段もある。 FIG. 22B shows an enlarged view of the connection portion between the pad of the package in the portion A (◯ portion) in FIG. 22A and the printed circuit board 22. When a general-purpose product package is used, the pad positions are arranged at regular intervals according to the standard. Therefore, a discontinuous point of impedance occurs at this connection position due to the parasitic capacitance and the parasitic inductance due to the pad. Further, in order to ensure the adhesive strength of the solder 21, the solder connection portion needs a wiring width wider than the wiring width of the high-speed signal wiring 24. For this reason, a parasitic capacitance is generated in this connection portion. As a countermeasure for this parasitic capacitance, a parasitic pattern is obtained by removing the GND pattern immediately below the portion of the printed circuit board 22 of the multilayer substrate from the location where the second layer package pad and the high-speed signal wiring 24 are connected from the surface where the package 25 is mounted. There is also a means to relieve capacity.
 しかし、緩和することはできても寄生容量を完全に無くすことはできない。そのため、LSIチップ18の実装構造まで含めた場合の等価回路モデルは図23に示す構成となる。LSIチップのパッド10と高速信号用の配線24の間に、ワイヤ29によるインダクタンス30とパッケージパッドを配置する半田21を設けるために行なう配線幅拡大による容量31が存在する。このインダクタンス30と容量31も含めて入出力整合を行なう方が、より良好な高周波特性を得ることができる。この時、寄生インダクタンス30と入力整合回路のコイル12aは、整合回路として特性を補完することができる。そのため、コイル12aの一部もしくは全ての役割をワイヤ29に分担させて、コイル12aのインダクタンス値を小さくすることができる。その結果、LSIチップ18上のコイル面積の削減を行なうことが可能である。 However, even if it can be mitigated, the parasitic capacitance cannot be completely eliminated. Therefore, the equivalent circuit model when including the mounting structure of the LSI chip 18 has the configuration shown in FIG. Between the LSI chip pad 10 and the high-speed signal wiring 24, there exists a capacitance 31 due to the wiring width expansion performed for providing the inductance 30 by the wire 29 and the solder 21 for arranging the package pad. A better high frequency characteristic can be obtained by performing input / output matching including the inductance 30 and the capacitor 31. At this time, the parasitic inductance 30 and the coil 12a of the input matching circuit can complement the characteristics as a matching circuit. Therefore, part or all of the role of the coil 12a can be shared by the wire 29, and the inductance value of the coil 12a can be reduced. As a result, the coil area on the LSI chip 18 can be reduced.
 以上説明した構成を用いることで、高速伝送を行なうLSIにおいて、静電放射による耐性を保ったまま、高速動作に優れたLSIを提供することができる。 By using the configuration described above, it is possible to provide an LSI that performs high-speed operation while maintaining resistance to electrostatic radiation in an LSI that performs high-speed transmission.
11a 11b 11c 11d  : ESD素子
12a 12b : コイル
10 : パッド容量
13 : LSI初段のトランジスタ
15 : 終端抵抗
16 : LSI初段のトランジスタの寄生容量
11a 11b 11c 11d: ESD element 12a 12b: coil 10: pad capacitance 13: LSI first stage transistor 15: termination resistor 16: parasitic capacitance of LSI first stage transistor

Claims (14)

  1. 半導体基板上に複数のトランジスタを有するLSIにおいて、
    該LSIの外部とデータの授受を行なうために、該LSI内部の入出力用のパッドから入出力用のトランジスタまでの間に、複数のダイオード、抵抗、複数のコイルが配され、
    該LSIには、少なくとも、接地電位のGNDと回路駆動の電源電圧の2つの電位があり、
    該パッドから該トランジスタまでの信号配線として、第1のコイルと、第2のコイルとがこの順番で接続され、
    第1のコイルと第2のコイルとの間に、一端を信号配線に、他端を電源電圧に接続された第1のダイオードと、一端を信号配線に、他端をGNDに接続された第2のダイオードとが配置され、
    第1のダイオードは、逆バイアスになるように信号配線側にアノード、電源電圧側にカソードが接続され、第2のダイオードは、逆バイアスになるように信号配線側にカソード、GND側にアノードが接続され、
    第2のコイルと該トランジスタとの間に、一端を信号配線に、他端を電源電圧に接続された第3のダイオードと、一端を信号配線に、他端をGNDに接続された第4のダイオードとが配置され、第3のダイオードは、逆バイアスになるように信号配線側にアノード、電源電圧側にカソードが接続され、第4のダイオードは、逆バイアスになるように信号配線側にカソード、GND側にアノードが接続され、
    第3のダイオードあるいは第4のダイオードと並列に抵抗が配置され、
    第1のダイオードのPN接合面積は第3のダイオードのPN接合面積より大きく、かつ
    第2のダイオードのPN接合面積は第4のダイオードのPN接合面積より大きい、
    ことを特徴とする入出力整合回路。
    In an LSI having a plurality of transistors on a semiconductor substrate,
    In order to exchange data with the outside of the LSI, a plurality of diodes, resistors, and coils are arranged between the input / output pads inside the LSI and the input / output transistors.
    The LSI has at least two potentials, that is, a ground potential GND and a circuit drive power supply voltage.
    As the signal wiring from the pad to the transistor, the first coil and the second coil are connected in this order,
    A first diode having one end connected to the signal wiring and the other end connected to the power supply voltage, one end connected to the signal wiring and the other end connected to the GND between the first coil and the second coil. Two diodes, and
    The first diode has an anode on the signal line side and a cathode on the power supply voltage side so as to be reverse-biased, and the second diode has a cathode on the signal line side and an anode on the GND side so as to be reverse-biased. Connected,
    Between the second coil and the transistor, a third diode having one end connected to the signal line, the other end connected to the power supply voltage, one end connected to the signal line, and the other end connected to the GND A diode is arranged, an anode on the signal wiring side and a cathode on the power supply voltage side are connected so that the third diode is reverse-biased, and a fourth diode is a cathode on the signal wiring side so as to be reverse-biased , The anode is connected to the GND side,
    A resistor is arranged in parallel with the third diode or the fourth diode,
    The PN junction area of the first diode is larger than the PN junction area of the third diode, and the PN junction area of the second diode is larger than the PN junction area of the fourth diode.
    An input / output matching circuit characterized by that.
  2. 半導体基板上に複数のトランジスタを有するLSIにおいて、
    該LSIには、LSI外部とデータの授受を行なうために入出力用のパッドから、トランジスタまでの間に、複数のダイオード、抵抗、複数のコイルが具備され、該LSIには、少なくとも、接地電位のGNDと回路駆動の電源電圧の2つの以上の電位があり、該パッドから該トランジスタまでの信号配線として、第1のコイル、第2のコイル、第3のコイルがこの順番で接続され、
    第1のコイルと第2のコイルとの間に、一端を信号配線に、他端を電源電圧に接続された第1のダイオードと、一端を信号配線に、他端をGNDに接続された第2のダイオードとが配置され、
    第2のコイルと該第3のコイルの間に、一端を信号配線に、他端を電源電圧に接続された第3のダイオードと、一端を信号配線に、他端をGNDに接続された第4のダイオードとが配置され、第3のダイオードは、逆バイアスになるように信号配線側にアノード、電源電圧側にカソードが接続され、第4のダイオードは、逆バイアスになるように信号配線側にカソード、GND側にアノードが接続され、
    第3のコイルと該トランジスタの間に、抵抗が信号配線と電源電圧間、あるいは信号配線とGND間に配置され、
    第1のダイオードのPN接合面積は第3のダイオードのPN接合面積より小さく、かつ
    第2のダイオードのPN接合面積は第4のダイオードのPN接合面積より小さい、
    ことを特徴とする入出力整合回路。
    In an LSI having a plurality of transistors on a semiconductor substrate,
    The LSI includes a plurality of diodes, resistors, and a plurality of coils between an input / output pad and a transistor for exchanging data with the outside of the LSI. The LSI includes at least a ground potential. There are two or more potentials of GND and circuit drive power supply voltage, and the first coil, the second coil, and the third coil are connected in this order as signal wiring from the pad to the transistor,
    A first diode having one end connected to the signal wiring and the other end connected to the power supply voltage, one end connected to the signal wiring and the other end connected to the GND between the first coil and the second coil. Two diodes, and
    Between the second coil and the third coil, a third diode having one end connected to the signal wiring, the other end connected to the power supply voltage, one end connected to the signal wiring, and the other end connected to the GND 4 diodes are arranged, the anode of the third diode is connected to the signal wiring side so as to be reverse bias, the cathode is connected to the power supply voltage side, and the fourth diode is connected to the signal wiring side so as to be reverse biased. Are connected to the cathode, and the anode is connected to the GND side.
    Between the third coil and the transistor, a resistor is disposed between the signal line and the power supply voltage, or between the signal line and GND,
    The PN junction area of the first diode is smaller than the PN junction area of the third diode, and the PN junction area of the second diode is smaller than the PN junction area of the fourth diode.
    An input / output matching circuit characterized by that.
  3. 該LSIは複数の配線層を有し、
    該配線層の厚さは2種類以上あり、
    最も薄い層以外の層が少なくとも連続して2層あり、
    該連続する2層で第1のコイルおよび第2のコイルが渦巻状に形成されていることを特徴とする請求項1に記載の入出力整合回路。
    The LSI has a plurality of wiring layers,
    There are two or more thicknesses of the wiring layer,
    There are at least two consecutive layers other than the thinnest layer,
    The input / output matching circuit according to claim 1, wherein the first coil and the second coil are formed in a spiral shape in the two continuous layers.
  4. 該LSIは複数の配線層を有し、
    該配線層の厚さは2種類以上あり、
    最も薄い層以外の層が少なくとも連続して2層あり、
    該連続する2層で第1のコイル、第2のコイルおよび第3のコイルが渦巻状に形成されていることを特徴とする請求項2に記載の入出力整合回路。
    The LSI has a plurality of wiring layers,
    There are two or more thicknesses of the wiring layer,
    There are at least two consecutive layers other than the thinnest layer,
    3. The input / output matching circuit according to claim 2, wherein the first coil, the second coil, and the third coil are formed in a spiral shape in the two continuous layers.
  5. 第1のコイルおよび第2のコイルは合わせて1つの渦巻状の配線で構成され、
    該渦巻き配線の任意の位置に引出し配線を設け、
    該引出し配線には、第1のダイオードと第2のダイオードが接続されていることを特徴とする請求項1に記載の入出力整合回路。
    The first coil and the second coil are composed of one spiral wire,
    A lead wiring is provided at an arbitrary position of the spiral wiring,
    The input / output matching circuit according to claim 1, wherein a first diode and a second diode are connected to the lead-out wiring.
  6. 第1のコイル、第2のコイル及び該第3のコイルは1つの渦巻状の配線で構成され,
    該渦巻き配線の任意の位置に2個の引出し配線を設け,
    該パッドに近い引出し配線には第1のダイオードと第2のダイオードが接続され、
    該トランジスタに近い引出し配線には第3のダイオードと第4のダイオードが接続されていることを特徴とする請求項2に記載の入出力整合回路。
    The first coil, the second coil, and the third coil are composed of one spiral wire,
    Two lead wires are provided at an arbitrary position of the spiral wire,
    A first diode and a second diode are connected to the lead wiring close to the pad,
    3. The input / output matching circuit according to claim 2, wherein a third diode and a fourth diode are connected to the lead wiring close to the transistor.
  7. 該渦巻状の配線の形状が四角形であることを特徴とする請求項3ないし6のいずれかの項に記載の入出力整合回路。 7. The input / output matching circuit according to claim 3, wherein the spiral wiring has a quadrangular shape.
  8. 該渦巻状の配線の形状が八角形であることを特徴とする請求項3ないし6のいずれかの項に記載の入出力整合回路。 7. The input / output matching circuit according to claim 3, wherein the spiral wiring is octagonal.
  9. 該渦巻状の配線の形状が円形であることを特徴とする請求項3ないし6のいずれかの項に記載の入出力整合回路。 7. The input / output matching circuit according to claim 3, wherein the spiral wiring has a circular shape.
  10. 該LSIの信号は差動信号であり、差動信号のそれぞれに入出力整合回路を有し、該コイルの巻き方向が差動の両信号間で同じ方向であることを特徴とする請求項1ないし9のいずれかの項に記載の入出力整合回路。 2. The LSI signal is a differential signal, and each differential signal has an input / output matching circuit, and the winding direction of the coil is the same between both differential signals. The input / output matching circuit according to any one of Items 9 to 9.
  11. 該LSIは入出力信号の速度検出回路を有し、該速度検出回路が検出した速度に対応して、入出力周波数特性を調整することを特徴とする請求項1ないし10のいずれかの項に記載の入出力整合回路。 11. The LSI according to claim 1, wherein the LSI has a speed detection circuit for input / output signals, and adjusts the input / output frequency characteristics in accordance with the speed detected by the speed detection circuit. The input / output matching circuit described.
  12. 前記LSIは両面に配線パターンを有する第1の基板の片面に搭載され、
    前記パッドと該基板の該片側の面の配線パターンとは導電性の接着剤で固定され、
    該基板のLSI搭載面の裏面には第2の基板と接着するための導電性の接着剤があり、
    第1の基板と第2の基板とは電気的に接続されていることを特徴とする請求項1又は2に記載のLSI入出力整合回路。
    The LSI is mounted on one side of a first substrate having a wiring pattern on both sides,
    The pad and the wiring pattern on one side of the substrate are fixed with a conductive adhesive,
    There is a conductive adhesive on the back side of the LSI mounting surface of the substrate for bonding to the second substrate,
    The LSI input / output matching circuit according to claim 1, wherein the first substrate and the second substrate are electrically connected.
  13. 前記LSIは、周囲を金属パターンで囲まれたパッケージの中央部分に配置され、
    前記LSIのパッドは、金属のワイヤで該金属パターンと接続され、
    該金属パターンは、少なくとも一面に金属で形成された配線パターンを有する基板と導電性の接着剤で固定されたことを特徴とする請求項1又は2に記載の入出力整合回路。
    The LSI is arranged in a central portion of a package surrounded by a metal pattern,
    The LSI pad is connected to the metal pattern with a metal wire,
    3. The input / output matching circuit according to claim 1, wherein the metal pattern is fixed to a substrate having a wiring pattern formed of metal on at least one surface by a conductive adhesive.
  14. 該入出力整合回路を通過するデータ速度は20Gbit/s以上であることを特徴とする請求項1又は2に記載の入出力整合回路。 3. The input / output matching circuit according to claim 1, wherein a data rate passing through the input / output matching circuit is 20 Gbit / s or more. 4.
PCT/JP2014/055981 2014-03-07 2014-03-07 Input/output matching circuit WO2015132958A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/055981 WO2015132958A1 (en) 2014-03-07 2014-03-07 Input/output matching circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/055981 WO2015132958A1 (en) 2014-03-07 2014-03-07 Input/output matching circuit

Publications (1)

Publication Number Publication Date
WO2015132958A1 true WO2015132958A1 (en) 2015-09-11

Family

ID=54054790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055981 WO2015132958A1 (en) 2014-03-07 2014-03-07 Input/output matching circuit

Country Status (1)

Country Link
WO (1) WO2015132958A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005521297A (en) * 2002-03-15 2005-07-14 ジェノム コーポレイション System and method for compensating for line loss via a digital visual interface (DVI) link
US20120314328A1 (en) * 2011-04-29 2012-12-13 International Business Machines Corporation Esd protection device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005521297A (en) * 2002-03-15 2005-07-14 ジェノム コーポレイション System and method for compensating for line loss via a digital visual interface (DVI) link
US20120314328A1 (en) * 2011-04-29 2012-12-13 International Business Machines Corporation Esd protection device

Similar Documents

Publication Publication Date Title
TWI408707B (en) Stacked dual inductor structure
US8400249B2 (en) Common mode choke coil and high-frequency component
TWI382517B (en) Ingrated circuit devices
US10886730B2 (en) Filter having an ESD protection device
US10193336B2 (en) ESD protection circuit, differential transmission line, common mode filter circuit, ESD protection device, and composite device
CN107070418A (en) RF power transistors and its manufacture method with impedance matching circuit
US9741655B2 (en) Integrated circuit common-mode filters with ESD protection and manufacturing method
US20080042785A1 (en) Inductor circuit board, method of forming inductor, and bias-T circuit
US20190341902A1 (en) Noise filter circuit
US20120314328A1 (en) Esd protection device
JP2005341118A (en) Filter circuit, logic ic, multichip module, filter mount type connector, transmitting device, and transmission system
JP2008028214A (en) Electrostatic countermeasure circuit
US20180359848A1 (en) Printed circuit board for high-speed transmission
JP2011155176A (en) Interconnection structure
US11569340B2 (en) Fully symmetrical laterally coupled transformer for signal and power isolation
US6885258B2 (en) Method and apparatus for reducing radiant noise energy by radiating noise energy from a quasi-ground into a signal wire
US9806602B2 (en) Radio frequency interference suppression circuit
JP2018078495A (en) Amplifier circuit and optical transmitter
US20110050383A1 (en) Planar inductive unit and an electronic device comprising a planar inductive unit
WO2015132958A1 (en) Input/output matching circuit
JP4609569B2 (en) Common mode choke coil connection structure
US20110199737A1 (en) Semiconductor package
US9306776B2 (en) Filtering high speed signals
US20200211986A1 (en) Compound via rf transition structure in a multilayer high-density interconnect
CN113093606B (en) Equipment control circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14884647

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14884647

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP